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ABSTRACT

Aleksandrov, Konstantin
Phase-locked loops with active PI filter: the lock-in range computation
Jyväskylä: University of Jyväskylä, 2016, 38 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 239)
ISBN 978-951-39-6687-4 (nid.)
ISBN 978-951-39-6688-1 (PDF)
Finnish summary
Diss.

The present work is devoted to the study of the lock-in range of phase-locked
loop (PLL). The PLL concept was originally described by H. de Bellescize in 1932.
Nowadays various modifications of PLL are widely used in radio systems (e.g.,
AM/FM radio, software-defined radio), telecommunication systems (e.g., GSM,
CDMA), global positioning systems (GPS), computer architectures, and other do-
mains. PLL is of great current interest due to continued increase of its possible
applications (optical PLLs, neuronal PLLs, and others).

PLL operating principle is to adjust the phase of a local (tunable) oscilla-
tor to the phase of a reference oscillator. The lock-in range concept, which was
introduced in 1960’s by IEEE Fellow F. M. Gardner, is used to describe fast syn-
chronization of oscillators without cycle-slipping – the undesired growth of phase
difference. However, in the second edition of the fundamental handbook “Phase-
lock Techniques”, which was published in 1979, F. M. Gardner remarked that the
suggested definition of the lock-in range may lack rigor in general case. Despite
this fact, the lock-in range is a useful concept and is used in many PLL applica-
tions. Thus, the problem of rigorous lock-in range definition, which was stated
in 1979 by F. M. Gardner, and the lock-in range computation according to its rig-
orous definition have important applied relevance.

In the present work, the lock-in range of nonlinear PLL model is studied
according to a recently suggested rigorous mathematical definition. We pay our
attention to the nonlinear PLL model with active proportionally-integrating (PI)
filter in the signal’s phase space. The relation for the lock-in range computation
is presented. For the case of sinusoidal characteristics of phase detector the ana-
lytical estimates of the lock-in range are derived. The estimates we have obtained
improve the known estimates of the lock-in range of PLL with active PI filter. For
the case of triangular characteristics of phase detector the exact formulae of the
lock-in range are obtained. The numerical simulations performed are to confirm
the adequacy of the obtained results.

Keywords: phase-locked loop, signal’s phase space, active PI, lock-in range, cycle
slipping
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1 INTRODUCTION AND THE STRUCTURE OF THE

WORK

1.1 Introduction

The synchronization of two weakly coupled oscillators was originally described
in “Horologium Oscillatorium” by Dutch physicist Christiaan Huygens: “Two
clocks so constructed from two hooks imbedded in the same wooden beam, the motions of
each pendulum in opposite swings were so much in agreement that they never receded the
least bit from each other <. . . >. For a long time I was amazed at this unexpected result,
but after a careful examination finally found that the cause of this is due to the motion of
the beam, even though this is hardly perceptible” (Huygens, 1966). This is a classic ex-
ample about the phase synchronization of oscillators. The wooden beam serves
as a regulator, which provides the synchronization of the pendulums. Small mo-
tions of a beam in a system of this kind affect pendulums of clocks in such way
that they have opposite phases in some time.

The phase-locked loop (PLL) was developed for synchronization of two os-
cillators as well: the reference oscillator and the local (tunable) oscillator. Origi-
nally the PLL was described by French engineer H. de Bellescize in 1932 (Belles-
cize, 1932, 1935). The PLL was used in synchrodyne (homodyne) receivers (see,
e.g., (Tucker, 1954)) for a signal demodulation by tuning a local oscillator to the
frequency of a reference oscillator. The synchrodyne receivers were developed as
an alternative to superheterodyne receivers (Armstrong, 1921). However, the first
wide use of PLLs is dated back to the 1940s for the horizontal-sweep synchroniza-
tion in television receivers (Wendt and Fredentall, 1943; Gruen, 1953) and for the
synchronization in color television (George, 1951; Richman, 1953, 1954). Applica-
tions of PLLs multiplied after the PLL principles were implemented in integrated
circuits (Grebene and Camenzind, 1969).

Nowadays, various modifications of PLLs are being developed (see, e.g.,
(Costas, 1956, 1962; Hershey et al., 2002; Tretter, 2008)). These PLL-based cir-
cuits are widely used in radio systems (e.g., AM/FM radio, software-defined
radio), wireless communication systems (e.g., GSM, CDMA), and global posi-
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tioning systems (GPS) for carrier recovery, frequency tracking, demodulation,
and frequency synthesis (see, e.g., (Viterbi, 1959; Blanchard, 1976; Johnson et al.,
1984; Rosenkranz, 1985; Janc and Jasper, 1988; Meyr and Ascheid, 1990; Rapeli,
1992; Crawford, 1994; Mitola, 1995; Vankka, 1997; Ahola et al., 1999; Jorgensen,
1999; Egan, 2000; Ahola and Halonen, 2003; Kaplan and Hegarty, 2005)). In com-
puter architecture PLL-based circuits are used for clock recovery, data synchro-
nization, frequency synthesis, and others (Kung, 1988; Razavi, 1996; Kauraniemi
and Vuori, 1997; Kim et al., 2003; Moon et al., 2005; Keliu and Sánchez-Sinencio,
2006). PLLs are also used in optical systems (DeLange, 1968; Lindgren, 1970;
Kazovsky, 1985; Alexander, 1997; Chan, 2000; Lerber et al., 2009) and neuronal
systems (Tokunaga and Mori, 1990; Wei-Ping and Chin-Kan, 1998; Hoppensteadt
and Izhikevich, 2000; Ahissar, 2003).

A large amount of engineering literature is devoted to the study of PLL-
based circuits and the various characteristics related to their stability (see, e.g. a
rather comprehensive bibliography of pioneering works in (Lindsey and Taus-
worthe, 1973)). The first well-known books on the study of PLL are dated back to
the 1960s (see e.g. (Gardner, 1966; Shakhgildyan and Lyakhovkin, 1966; Viterbi,
1966)). Nowadays, PLL analysis is an active research area (see (Kroupa, 2003;
Gardner, 2005; Aaltonen et al., 2005; Banerjee, 2006; Rapinoja et al., 2006; Best,
2007; Kudrewicz and Wasowicz, 2007; Proakis and Salehi, 2008; Goldman, 2007;
Saukoski et al., 2008; Speeti et al., 2009; Shakhtarin, 2012; Shalfeev and Matrosov,
2013)).

Proper operating of PLL is characterized by frequency range concepts such
as pull-in range and lock-in range (Gardner, 1966; Shakhgildyan and Lyakhovkin,
1966; Viterbi, 1966). These concepts are widely used nowadays (see, e.g., (Kroupa,
2003; Gardner, 2005; Best, 2007)). Usually, in engineering literature, only non-
strict definitions are given for the concepts; thus, in a handbook on synchroniza-
tion and communications (Kihara et al., 2002) there is a remark “to check these
definitions carefully before using them” was given.

The pull-in range corresponds to mistuning between the reference and lo-
cal oscillators, where the PLL will synchronize for every initial state of its com-
ponents (see, e.g., (Gruen, 1953; Gardner, 1966; Viterbi, 1966; Abramovich and
Leonov, 1978)). However, that synchronization process may be slow. In order to
consider the property of the PLL to synchronize in a short time, a lock-in range
concept was introduced by F. M. Gardner (Gardner, 1966): “If, for some reason, the
frequency difference between input and VCO is less than the loop bandwidth, the loop will
lock up almost instantaneously without slipping cycles. The maximum frequency differ-
ence for which this fast acquisition is possible is called the lock-in frequency”. However,
due to nonlinear behavior of PLL the initial states of its components may affect
the acquisition process and associated frequency ranges (see, e.g., (Kuznetsov
et al., 2015; Best et al., 2015)). Thereby, in the Gardner’s 2nd edition (Gardner,
1979), the following problem was stated: “There is no natural way to define exactly
any unique lock-in frequency”(Gardner, 1979). Nevertheless, “despite its vague re-
ality, lock-in range is a useful concept” (Gardner, 2005). Subsequently, a rigorous
mathematical definition of the lock-in range was suggested in (Kuznetsov, 2016;
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Kuznetsov et al., 2015; Leonov et al., 2015b) to overcome the stated problem.

In the present work, the lock-in range of PLL with active proportionally-
integrating (PI) filter is studied. Application of phase plane analysis (see (Tricomi,
1933; Andronov et al., 1937)) allowed the author to obtain exact relation for the
lock-in range computation for the sinusoidal and triangular characteristics of a
phase detector. For the case of PLL with sinusoidal characteristic of phase detec-
tor, the analytical estimates for the lock-in range were obtained. These estimates
improve the estimates given in (Gardner, 2005; Huque, 2011; Huque and Stensby,
2013). For the case of PLL with triangular characteristic of phase detector the
exact formulae for the lock-in range computation were derived. The numerical
simulations were performed to confirm the adequacy of the analytical results.

PLL model with active PI filter

Description

The lock-in range

Global asymptotical stability

Relation for the lock-in range computation

The lock-in range computation

Sinusoidal phase detector characteristic

Triangular phase detector characteristic

Stability criterion

PIII, PIV, PV

Numerical methods for 

phase plane analysis of 

two-dimensional systems

PVI, PVII

Analytical estimates 

of the lock-in range

PII

Exact formulae 

of the lock-in range

PI

Phase plane analysis

PI, PII

FIGURE 1 Structure of the work.
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1.2 Structure of the work

The present work consists of an introduction and one chapter (see Figure 1). In
the introduction an overview on the history of PLL and its applications is given.
A number of classical works devoted to the PLL study are highlighted. The prob-
lem concerning the study of the lock-in range is outlined.

The first chapter of the present work consists of three sections. The first sec-
tion is devoted to the description of PLL operating principles. The model of PLL
in a signal’s phase space is described, and the equations for PLL with active PI
filter are derived. In the next section of the first chapter, a rigorous mathematical
definition of the lock-in range of the considered PLL is given. For the case of sinu-
soidal and triangular characteristics of phase detector the relation for the lock-in
range computation is derived. In the last section the analytical estimates for the
lock-in range of PLL with sinusoidal and triangular characteristics are presented.
The numerical diagrams which confirm the adequacy of the obtained analytical
results are constructed.

Appendix 1 contains the programming code for constructing numerical di-
agrams from the first chapter.

1.3 Included articles and author contribution

The study of the lock-in range in the present work required the development and
application of numerical methods of analysis (see (PVII; PVI)), development of
global stability criteria (see (PV; PIV; PIII)), and development of analytical meth-
ods for the study of separatrices of saddle equilibria in two-dimensional systems
(see (PII; PI)).

In (PVII; PVI), the author developed and applied numerical methods for the
study of phase plane of two-dimensional systems. In (PV; PIV; PIII), the author
proved the stability criterion and applied the criterion for the case of PLL with
active PI filter. In (PI), for the case of sinusoidal characteristic of phase detector,
the author derived analytical estimates of the lock-in range, which improve es-
timates from (Gardner, 2005; Huque, 2011; Huque and Stensby, 2013). In (PII),
for the case of triangular characteristic of phase detector, the author obtained the
exact formulae of the lock-in range.

The results of this work were presented at an IEEE Conference (6th Inter-
national Congress on Ultra Modern Telecommunications and Control Systems,
ICUMT-2014), at IFAC Conferences (8th Vienna International Conference on Math-
ematical Modeling, MATHMOD-2015, and 1st Conference on Modeling, Identifi-
cation and Control of Nonlinear Systems, MICNON-2015); at the seminars of the
Department of Applied Cybernetics (St. Petersburg State University), and at the
seminars of the Department of Mathematical Information Technology (University
of Jyväskylä).



2 PROBLEM STATEMENT AND MAIN RESULTS

Next, following to papers (PI; PII; PIII) and (Leonov et al., 2012, 2015b), the main
content is presented.

2.1 Mathematical model of PLL

Consider a physical model of classical PLL in the signal space (see Figure 2).
This model contains the following blocks: a reference oscillator (Input), a voltage-

Filter

g(t)

VCO

ϕ(t)= f
1
(θ

1
(t))f

2
(θ

2
(t))

Input

x(0)

θ
2
(0)

f
1
(θ

1
(t)) 

f
2
(θ

2
(t))

FIGURE 2 PLL model in the signal space.

controlled oscillator (VCO), a filter (Filter), and an analog multiplier as a phase
detector (PD).

The signals f1 (θ1(t)) and f2 (θ2(t)) of Input and VCO (here θ2(0) is the ini-
tial phase of VCO) enter the multiplier block. The resulting signal, φ(t), is filtered
by a low-pass filter, Filter (here x(0) is an initial state of Filter). The filtered signal
g(t) is used as a control signal for the VCO.

The main purpose of PLL is to adjust the phase θ2(t) of VCO to the phase
θ1(t) of Input. This process is called an acquisition process. When the VCO phase
is adjusted to the phase of Input, i.e. the difference between phases is constant,
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VCO generates signal (voltage) of the same frequency as Input. This state of PLL
is called locked state (see Figure 3).

lockedunlocked

input signal

VCO output

0

filter output
(VCO input)

T
lock

2�/ω
12�/ω

2

2�/ω
1

2�/ω
1

FIGURE 3 The acquisition process of PLL.

The PLL model in the signal space is difficult to study, since the equations
describing the model are non-autonomous (see, e.g., (Abramovitch, 2002; Ku-
drewicz and Wasowicz, 2007; Leonov et al., 2015)). By contrast, the PLL model
in the signal’s phase space can be described by autonomous equations (Gardner,
1966; Shakhgildyan and Lyakhovkin, 1966; Viterbi, 1966), which simplifies the
study of PLL-based circuits. The application of averaging methods (Mitropol-
sky and Bogolubov, 1961; Samoilenko and Petryshyn, 2004) allows one to reduce
the model of PLL-based circuits in the signal space to the model in the signal’s
phase space (see, e.g., (Kuznetsov et al., 2009, 2011, 2012b,a, 2013; Kuznetsov,
2008; Kudryashova et al., 2014; Best et al., 2015; Leonov et al., 2015c,d; Kuznetsov
et al., 2015)).

Consider now a model of classical PLL in the signal’s phase space (see Fig-
ure 4). Input and VCO generate phases θ1(t) and θ2(t), respectively. These phases
enter to the inputs of the PD. The output of the phase detector in the signal’s
phase space is called a phase detector characteristic and has the form

Kd ϕ(θ1(t) − θ2(t)). (1)

The maximum absolute value of PD output Kd > 0 is called a phase detector gain
(see, e.g., (Best, 2007; Goldman, 2007)). The periodic function, ϕ(θΔ(t)), depends
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Filter

θ
2
(t) G(t)

VCO

PD
K

d
φ(θ

1
(t) - θ

2
(t))

Input
θ

1
(t)

x(0)

θ
2
(0)

FIGURE 4 PLL model in the signal’s phase space.

on phase difference θ1(t) − θ2(t) (which is called a phase error and denoted by
θΔ(t)). The PD characteristic depends on the design of PLL and the signal wave-
forms f1(θ1) of Input and f2(θ2) of VCO (see, e.g., (Kuznetsov et al., 2009; Leonov
et al., 2011; Kuznetsov et al., 2011, 2012a; Leonov et al., 2015a)).

The output of PD is processed by Filter.The active PI filter with transfer
function W(s) = 1+τ2s

τ1s , τ1 > 0, τ2 > 0 is then considered. The filter can be
described as (see, e.g., (Baker, 2011)){

ẋ(t) = Kd ϕ(θΔ(t)),
G(t) = 1

τ1
x(t) + τ2

τ1
Kd ϕ(θΔ(t)),

(2)

where x(t) is the filter state. The output of Filter G(t) is used as a control signal
for VCO:

θ̇2(t) = ωfree
2 + KvG(t), (3)

where ωfree
2 is the VCO free-running frequency and Kv > 0 is the VCO gain coef-

ficient. The frequency of reference signal is usually assumed to be constant:

θ̇1(t) ≡ ω1. (4)

Relations (2), (3) and (4) result in an autonomous system of differential equations:{
ẋ = Kd ϕ(θΔ),
θ̇Δ = ω1 − ωfree

2 − Kv
τ1

(x + τ2Kd ϕ(θΔ)) .
(5)

The difference between the reference frequency and the VCO free-running fre-
quency is denoted as ωfree

Δ : ωfree
Δ = ω1 − ωfree

2 . By linear transformation x → Kdx
we have {

ẋ = ϕ(θΔ),
θ̇Δ = ωfree

Δ − K0
τ1

(x + τ2ϕ(θΔ)) ,
(6)

where K0 = KvKd is the loop gain. Relations (6) describe the nonlinear model of
PLL with active PI filter in the signal’s phase space.
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If the PD characteristic is an odd function, relations (6) are not changed by
transformation (

ωfree
Δ , x, θΔ

)
→

(
−ωfree

Δ ,−x,−θΔ

)
.

This property allows one to use the concept of frequency deviation∣∣∣ωfree
Δ

∣∣∣ =
∣∣∣ω1 − ωfree

2

∣∣∣
and consider (6) with ωfree

Δ ≥ 0 only.
For the most common PD characteristics (1) of classical PLL, function ϕ(θΔ)

is a 2π-periodic piecewise smooth odd function (see, e.g., (Gardner, 1966; Shakh-
gildyan and Lyakhovkin, 1966; Gardner, 1966)). For such PD characteristic, the
right side of (6) is 2π-periodic in θΔ, and we can consider locked states of (6) in a
2π-interval of θΔ, θΔ ∈ (−π, π].

The case of a 2π-periodic piecewise smooth odd function ϕ(θΔ) is consid-
ered further.

2.2 The lock-in range of PLL with active PI filter

Consider the acquisition process of PLL with active PI filter in terms of (6). The
locked states of PLL correspond to the asymptotically stable equilibria of (6) (see,
e.g., (Leonov et al., 2015b)).

Definition 1 (e.g., (Lyapunov, 1892)). The equilibrium
(
θeq, xeq

)
of (6) is said to be

asymptotically stable if for every ε > 0 there exists a δ > 0 such that, if || (θΔ(0), x(0))−(
θeq, xeq

) || < δ, then for every t ≥ 0 we have || (θΔ(t), x(t)) − (
θeq, xeq

) || < ε, and
lim

t→+∞
|| (θΔ(t), x(t)) − (

θeq, xeq
) || = 0.

Hence, in order to find the locked states of PLL, we need to perform two
steps. The first step is to check if there exist any equilibrium of (6) and find all
existing equilibria. The second step is to check asymptotic stability of those equi-
libria. For this purpose, the classical criteria of stability are used, e.g. the Routh-
Hurwitz criterion (see, e.g., (Gopal, 2002; Gantmacher and Brenner, 2005)).

In order to study the locked states of PLL with active PI filter, consider the

following property of (6). Linear transformation x → x +
τ1ωfree

Δ
K0

shifts each phase
trajectory in the phase plane of (6) vertically:{

ẋ = ϕ(θΔ),
θ̇Δ = −K0

τ1
(x + τ2ϕ(θΔ)) .

(7)

The equilibria
(
θeq, xeq

)
of (7) can be found by equating the right side of (7) to

zero: {
0 = ϕ(θΔ),
0 = −K0

τ1
(x + τ2ϕ(θΔ)) .

(8)
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For (8), the θΔ coordinates of equilibria are equal to zeros of ϕ(θΔ) (if any), and
the x coordinate is equal to zero. The phase trajectories of (7) coincide with phase
trajectories of (6) for ωfree

Δ = 0. Thus, if the equilibria
(
θeq, xeq

)
of (6) exist for

ωfree
Δ = 0, they also exist for any arbitrary ωΔ and are shifted vertically by τ1ωfree

Δ
K0

,
i.e., (

θeq

(
ωfree

Δ

)
, xeq

(
ωfree

Δ

))
=

(
θeq,

τ1ωfree
Δ

K0

)
. (9)

The θΔ-coordinates of (9) are equal to zeros of ϕ(θΔ) and do not depend on ωfree
Δ ,

while the x-coordinates of (9) coincide and depend on ωfree
Δ .

In interval θΔ ∈ (−π, π], denote the asymptotically stable equilibria of (6)
by

(
θs

eq, xeq(ωfree
Δ )

)
and the remaining equilibria by

(
θu

eq, xeq(ωfree
Δ )

)
. If no asymp-

totically stable equilibrium exists, the PLL will never synchronize for any arbi-
trary initial loop state (θΔ(0), x(0)) �∈

(
θu

eq, xeq(ωfree
Δ )

)
.

For the case of sinusoidal and triangular PD characteristics, the equilibria of
(6) are given by (see (PI; PII))

(
θeq, xeq

(
ωfree

Δ

))
=

(
πk,

τ1ωfree
Δ

K0

)
, k ∈ Z. (10)

For any arbitrary ωfree
Δ , the equilibria

(
θs

eq + 2πk, xeq

(
ωfree

Δ

))
=

(
2πk,

ωfree
Δ τ1

K0

)
, k ∈ Z

are asymptotically stable, and the equilibria

(
θu

eq + 2πk, xeq

(
ωfree

Δ

))
=

(
π + 2πk,

ωfree
Δ τ1

K0

)
, k ∈ Z (11)

are unstable (saddle) equilibria.
If the PLL model (6) with certain frequency difference, ωfree

Δ , synchronizes
for each initial loop state, then the model is globally asymptotically stable:

Definition 2 (e.g., (Leonov and Kuznetsov, 2014)). If for a certain frequency differ-
ence, ωfree

Δ , any solution of (6) tends to an equilibrium, then the system with such ωfree
Δ

is called globally asymptotically stable.

In a number of works, the global asymptotic stability of the PLL model with
active PI filter (6) for certain PD characteristics (e.g., with sinusoidal and triangu-
lar PD characteristics) is considered (see, e.g., (Gubar’, 1961; Bakaev, 1963; Viterbi,
1966)). By methods of the phase plane analysis (Tricomi, 1933; Andronov et al.,
1937), in (Viterbi, 1966) the global asymptotic stability of the PLL model with ac-
tive PI filter (6) and sinusoidal PD characteristic for any arbitrary ωfree

Δ is stated.
However, to rigorously complete the proof given in (Viterbi, 1966), additional ex-
planations are required, i.e., the absence of heteroclinic trajectory and limit cycles
of the first kind (see Figure 5) are needed to be explained.
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FIGURE 5 Example of possible periodic trajectories.

To overcome these difficulties, the methods of the Lyapunov functions con-
struction (Lyapunov, 1892) can be applied (see, e.g., (Bakaev, 1963; Bakaev and
Guzh, 1965; Gelig et al., 1978; Leonov and Kuznetsov, 2014)). For that purpose
the modifications of classical stability criteria for cylindrical phase space are de-
veloped in (Gelig et al., 1978; Leonov and Kuznetsov, 2014). In (PIII), the global
asymptotic stability of the PLL model with active PI filter (6) and 2π-periodic
piecewise smooth function ϕ(θΔ) such that

2π∫
0

ϕ(θΔ)dθΔ = 0;

∀θ0
Δ ∈ (−∞, +∞) ∃δ > 0 :

θΔ∫
θ0

Δ

ϕ(θΔ)dθΔ �= 0, ∀θΔ ∈
(

θ0
Δ − δ, θ0

Δ )∪( θ0
Δ, θ0

Δ + δ
)

; (12)

is proved for any arbitrary ωfree
Δ using Lyapunov function

V(x, θΔ) =
K0

2τ1

(
x − τ1ωfree

Δ
K0

)2

+

θΔ∫
0

ϕ(s)ds ≥ 0;

V̇(x, θΔ) = −K0τ2

τ1
ϕ2 (θΔ) < 0, ∀θΔ �= {θeq + 2πk}.

However, phase error θΔ may substantially increase during the acquisition
process. In order to consider the synchronization of the PLL model without un-
desired growth of the phase error θΔ, a lock-in range concept was introduced in
(Gardner, 1966): “If, for some reason, the frequency difference between input and VCO
is less than the loop bandwidth, the loop will lock up almost instantaneously without slip-
ping cycles. The maximum frequency difference for which this fast acquisition is possible
is called the lock-in frequency”.

It is said that cycle slipping occurs if (see, e.g., (Meyr, 1975; Ascheid and
Meyr, 1982; Ershova and Leonov, 1983))

lim sup
t→+∞

|θΔ(0) − θΔ(t)| ≥ 2π.
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For (6) with fixed ωfree
Δ , the domain of initial loop states for which the synchro-

nization without cycle slipping occurs is called the lock-in domain, Dlock−in(ωfree
Δ )

(see Figure 6).

- no cycle slipping

- cycle slipping

x

θΔ

θ
eq

τ
1
ωΔ
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(a) Sinusoidal PD characteristic: K0 = 200, τ1 = 0.5, τ1 = 0.05
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(b) Triangular PD characteristic: K0 = 200, τ1 = 0.5, τ1 = 0.05

FIGURE 6 Examples of the lock-in domain and the cycle slipping effect.

However, in general, even for zero frequency difference (ωfree
Δ = 0) and a

sufficiently large initial state of filter (x(0)), cycle slipping may take place (see,
e.g., (Kuznetsov et al., 2015; Best et al., 2015; Kudryashova et al., 2014)). Thus, in
1979, F. M. Gardner wrote: “There is no natural way to define exactly any unique lock-
in frequency” and “despite its vague reality, lock-in range is a useful concept” (Gardner,
1979). To overcome the stated problem, in (Kuznetsov et al., 2015; Leonov et al.,
2015b) the rigorous mathematical definition of the lock-in range is suggested. For
PLL with odd PD characteristics, the definition of the lock-in range is as follows:

Definition 3 (e.g., (Leonov et al., 2015b)). The lock-in range of model (6) is a maximal
range [0, ωl) such that for each frequency deviation

∣∣ωfree
Δ

∣∣ ∈ [0, ωl) the model (6) is
globally asymptotically stable and the following domain

Dlock−in ((−ωl, ωl)) =
⋂

|ωfree
Δ |<ωl

Dlock−in(ωfree
Δ )

contains all corresponding locked states of (6).
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FIGURE 7 Examples of domain Dlock−in ((− |ω̃| , |ω̃|)): the intersection of lock-in do-
mains Dlock−in (− |ω̃|) (red area) and Dlock−in (|ω̃|) (green area) results in
Dlock−in ((− |ω̃| , |ω̃|)) (yellow area).
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Definition 3 implies that if the PLL is in a locked state, then after an abrupt
change of ωfree

Δ within a lock-in range [0, ωl) the corresponding acquisition pro-
cess of PLL leads, if it is not interrupted, to a new locked state without cycle
slipping (Kuznetsov et al., 2015).

Recall that the phase trajectories in the phase plane of (6) are shifted verti-

cally by linear transformation x → x +
τ1ωfree

Δ
K0

, and the equilibria
(
θeq, xeq

(
ωfree

Δ
))

of (6) are described by (9). Thus, to find the lock-in range of (6) (under the as-
sumption of global asymptotic stability of (6)) we need to find the maximal fre-
quency deviation, |ω̃| = ωl (where ωl is called a lock-in frequency), such that the
vertical intervals

θΔ = θs
eq, −τ1 |ω̃|

K0
< x <

τ1 |ω̃|
K0

are contained in Dlock−in ((− |ω̃| , |ω̃|)) (see Figure 7).
For the most common PD characteristics, function ϕ(θΔ) has two zeros in

interval θΔ ∈ (−π, π], and the one corresponding equilibrium,
(

θs
eq, xeq(ωfree

Δ )
)

,
is asymptotically stable, while the another one is unstable (see, e.g., (Kuznetsov et
al., 2011; Leonov et al., 2012)). Consider the steps for finding the lock-in frequency
ωl of (6). First, let frequency deviation |ω̃| = 0 (see Figure 7a). For this case, the
symmetric locked states of (6),

(
θs

eq, xeq(|ω̃|)
)

and
(

θs
eq, xeq(− |ω̃|)

)
, coincide and

are inside Dlock−in (0). Slowly increase |ω̃| (see Figure 7b) until the symmetric
locked states of (6) reach the border of Dlock−in ((− |ω̃| , |ω̃|)) (see Figure 7c). A
further increment of |ω̃| leads the symmetric locked states of (6) to be outside
Dlock−in ((− |ω̃| , |ω̃|)) (see Figure 7d). Thus, ωl that is desired corresponds to
Figure 7c.

Let us derive the exact relation for the lock-in range computation in the case
of sinusoidal and triangular characteristics of the PLL model (6). Consider in
detail the critical case from Figure 7c, which corresponds to lock-in frequency ωl.
The lock-in domain of (6) for a certain frequency difference, ωfree

Δ , is bounded
by the separatrices of saddle equilibria (11) and vertical lines θΔ = θs

eq + 2πk
(see Figure 6a). The Dlock−in ((−ωl, ωl)) of (6) is the intersection of the lock-in
domains for ωfree

Δ ∈ (−ωl, ωl). Thus, to compute the lock-in range of (6), we
need to find ωfree

Δ = ωl such that

xeq(−ωfree
Δ ) = Q(θs

eq, ωfree
Δ ), (13)

where Q(θΔ, ωfree
Δ ) is the separatrix of unstable saddle equilibrium

(
θu

eq, xeq(ωfree
Δ )

)
(see Figure 8).

Since the phase trajectories in the phase plane of (6) are shifted vertically

by linear transformation x → x +
τ1ωfree

Δ
K0

, we obtain an exact relation for lock-in
frequency ωl:

− ωl
K0/τ1

=
ωl

K0/τ1
+ Q(θs

eq, 0) ⇒ ωl = −K0Q(θs
eq, 0)

2τ1
. (14)
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FIGURE 8 The domain Dlock−in ((−ωl , ωl)).

2.3 The lock-in range computation for the case of sinusoidal and
triangular PD characteristic

In the present section, the analytical estimates and numerical diagrams for the
lock-in range computation, which are based on relation (14), are presented for
the case of sinusoidal and triangular PD characteristics.

Consider the PLL with active PI filter and signals f1(θ1(t)) = sin(θ1(t)) and
f2(θ2(t)) = cos(θ2(t)). For this case, the PD characteristic of the PLL model (6) is
sinusoidal (see, e.g., (Leonov et al., 2012, 2015a)):

Kd =
1
2

, ϕ(θΔ) = sin(θΔ). (15)

Numerical simulations are used to compute the lock-in range of (6) using (14).
The separatrix, Q(θΔ, 0), is numerically integrated and the corresponding lock-in
frequency, ωl, is approximated. The obtained numerical results can be illustrated
by diagram in Figure 9a.

Relations (6) depend on the value of two coefficients, K0
τ1

and τ2; thus, in
Figure 9a we can plot a single curve for every fixed value of τ2 and variables τ1,
K0 by choosing the X-axis as K0

τ1
. The results of numerical simulations show that

for sufficiently large K0
τ1

, the value of ωl grows almost proportionally to K0
τ1

. Hence,

in Figure 9a the Y-axis can be chosen as ωfree
Δ τ1
K0

for the illustration of the obtained
results.

To obtain lock-in frequency ωl for fixed τ1, τ2, and K0 using Figure 9a, we
consider the curve corresponding to τ2 that was chosen. Next, for the X-value
equal to K0

τ1
we get the Y-value of the curve. Finally, we multiply the Y-value by

K0
τ1

(see Figure 9b).
However, examples are known (see, e.g., (Best et al., 2015; Bianchi et al.,

2015)) for which numerical simulation is a challenging task and may lead to
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FIGURE 9 Calculation of the lock-in frequency, ωl , in the case of
sinusoidal PD characteristic.

wrong conclusion about synchronization due to possible existence of hidden os-
cillations (Leonov et al., 2011, 2012; Kuznetsov et al., 2013; Leonov and Kuznetsov,
2013; Kuznetsov et al., 2014; Leonov et al., 2015; Dudkowski et al., 2016). The an-
alytical estimates

ωl =
K0

√
K0/τ1

τ1
+

K2
0τ2

3τ2
1

+ O
(
(τ2/τ1)

2
)

, (16)

ωl =
K0

√
K0/τ1

τ1
+

K2
0τ2

3τ2
1

+
K2

0τ2
2 (5 − 6 ln 2)

18τ2
1

√
K0/τ1 + O

(
(τ2/τ1)

3
)

, (17)

which are obtained in (PI) confirm the adequacy of the presented numerical re-
sults. In Figure 10, the numerical estimate (dashed curve) is compared with an-
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FIGURE 10 Comparison of numerical and analytical estimates of the lock-in frequency,
ωl , in the case of sinusoidal PD characteristic.
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alytical estimates (16) (red curve) and (17) (green curve). The obtained estimates
improve the estimates from (Gardner, 2005; Huque, 2011; Huque and Stensby,
2013) for K0

τ1
being not large.

Consider now the PLL with active PI filter and impulse signals f1(θ1(t)) =
sign [sin(θ1(t))] and f2(θ2(t)) = sign [cos(θ2(t))]. For this case, the 2π-periodic
PD characteristic of the PLL model (6) is triangular (see, e.g., (Leonov et al., 2011;
Kuznetsov et al., 2011, 2015)):

Kd = 1, ϕ(θΔ) =

{
2
π θΔ, if −π

2 ≤ θΔ(t) ≤ π
2 ,

− 2
π θΔ + 2, if π

2 ≤ θΔ(t) ≤ 3π
2 .

(18)

The numerical diagrams analogous to Figure 9a are obtained in Figure 11.
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FIGURE 11 Diagrams for the lock-in frequency ωl calculation in the case of triangular
PD characteristic.

For this case, the exact formulae of the lock-in range are derived in (PII) (re-
definitions a = τ2

τ1
, b = 1

τ1
are used to reduce the analytical formulae):

A.(aK0)
2 − 2bK0π > 0 :

ωl =
1
π

c1

√
(aK0)2 − 2bK0π

(
− c2

c1

)
⎛
⎜⎜⎝1

2
− aK0

2
√

(aK0)2 − 2bK0π

⎞
⎟⎟⎠

, (19)

where c1 =
π

4

(√
(aK0)2 + 2bK0π√
(aK0)2 − 2bK0π

+ 1

)
, c2 =

π

4

(
1 −

√
(aK0)2 + 2bK0π√
(aK0)2 − 2bK0π

)
;
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B.(aK0)
2 − 2bK0π = 0 :

ωl =
1
2

c2 e

( aK0

2c2

)
, where c2 =

√
(aK0)2 + 2bK0π

2
; (20)

C.(aK0)
2 − 2bK0π < 0 :

ωl = − aK0 et0 Re λs
1

2π
(c1 cos (t0 Im λs

1) + c2 sin (t0 Im λs
1)) +

+
et0 Re λs

1
√

2bK0π − (aK0)2

2π
(c2 cos (t0 Im λs

1) − c1 sin (t0 Im λs
1)) , (21)

where t0 =

arctg
(
− c1

c2

)
Im λs

1
, c1 =

π

2
, c2 =

π
√

(aK0)2 + 4bK0(π − 1
k )

2
√

2bK0π − (aK0)2
,

λs
1 =

−aK0 + i
√

2bK0π − (aK0)2

π
.

The formulae (19), (20), and (21) confirm the adequacy of the numerical diagrams
in Figure 11.



3 CONCLUSIONS

In the present work, the lock-in range of PLL with active PI filter is studied. The
nonlinear model of PLL in the signal’s phase space is considered as well. The
lock-in range is studied according to a rigorous mathematical definition from
(Kuznetsov et al., 2015; Leonov et al., 2015b).

The phase plane analysis is applied to obtain the relation for the lock-in
range computation. For the case of sinusoidal characteristics of phase detector the
analytical estimates of the lock-in range, which improve the estimates in (Gard-
ner, 2005; Huque, 2011; Huque and Stensby, 2013), are obtained. For the case
of triangular characteristics of phase detector, the exact formulae of the lock-in
range are derived, and the problem of the lock-in range computation is com-
pletely solved. Numerical methods are used to obtain diagrams for the lock-in
range computation. The constructed diagrams confirm the adequacy of analyti-
cal results.

The study of the lock-in range for PLLs with other first-order filters (e.g.,
lead-lag filter) and PD characteristics (e.g., piecewise continuous sawtooth PD
characteristic) by methods of phase plane analysis may form the next step of
this research. Further work includes the study of the lock-in range of PLLs with
higher-order filters, which is a challenging task since the methods of phase plane
analysis can not be applied for the study of multidimensional phase space. Fur-
ther research steps may include generalization of the existing analytical methods,
development of new methods for analytical estimation of the lock-in range, and
development of new methods for numerical computation of the lock-in range.
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YHTEENVETO (FINNISH SUMMARY)

Aktiivisuodatettujen vaihelukittujen piirien lukkiutumisalueista

Tässä työssä tutkitaan vaihelukittuja silmukoita (phase-locked loops (PLL)) sul-
jetuissa etäisyyksissä (lock-in range). PLL-variaatioita sovelletaan radiojärjestel-
missä (esimerkiksi AM/FM-radio), telekommunikaatiojärjestelmissä (esimerkik-
si GSM ja CDMA), GPS-paikannuksissa ja tietokonearkkitehtuureissa. Viime ai-
koina PLL on muodostunut aktiiviseksi tutkimusaiheeksi sen lukuisten potenti-
aalisten sovelluksien takia, esimerkkinä näistä optinen PLL.

Perusperiaatteena PLL:ssä on oikaista paikallisen (muokattavan) oskillaat-
torin vaihetta annettuun viiteoskillattoriin. F.M. Gardner esitteli suljetun etäisyy-
den konseptin, joka kuvailee oskillaattorien nopeaa synkronointia ilman epätoi-
vottuja vaihe-eroja. F.M. Gardner tosin huomautti v. 1979 kirjassaan “Phaselock
Techniques”, että suljetun etäisyyden määritelmä ei ole yleisissä tapauksissa tar-
peeksi tiukka. Tästä huolimatta, suljetun etäisyyden määritelmä on hyödyllinen
konsepti ja sitä hyödynnetään monissa PLL-sovelluksissa.

Tässä työssä tutkitaan epälineaarisen PLL-mallin suljettuja etäisyyksiä uu-
den matemaattisen määritelmän mukaan. Kyseistä PLL-mallia tutkitaan sen sig-
naalin vaiheavaruudessa käyttämällä aktiivista suhteellis-sopeutettua (active pro-
portionally-integrating (PI)) suodatinta. Työssä johdetaan analyyttisiä arvioita
vaihdeilmaisimen suljettuun etäisyyteen, jolla on sinimuotoisia ominaisuuksia.
Johdetut arviot ovat tiukempia arvioita tunnettuihin PLL:n suljettuihin etäisyyk-
siin joilla on PI-suodattimia. Lisäksi työssä johdetaan tiukempia arvioita vaih-
deilmaisimiin joilla on kolmionmuotoisia ominaisuuksia. Mallien arviot validoi-
tiin käyttämällä numeerisia simulaatioita.
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APPENDIX 1 NUMERICAL COMPUTATION OF THE
LOCK-IN RANGE

The implementation of the PLL model (6) with sinusoidal PD characteristic is
given in Listing 1.1.

1 funct ion dz = PLLSysSin ( t , z )
2 % Function f o r def in ing d i f f e r e n t i a l equations , which ODE s o l v e r w i l l

i n t e g r a t e
3 % Sinusoida l PD c h a r a c t e r i s t i c
4 g loba l omega_e tau_1 tau_2 L ;
5 dz = zeros ( 2 , 1 ) ;
6 dz ( 1 ) = s i n ( z ( 2 ) ) ;
7 dz ( 2 ) = omega_e − L * ( z ( 1 ) + tau_2 * s i n ( z ( 2 ) ) ) /tau_1 ;
8 end

LISTING 1.1 Equations for the PLL model with active PI filter and sinusoidal PD
characteristic in the signal’s phase space.

The implementation of the PLL model (6) with triangular PD characteristic is
given in Listing 1.2.

1 funct ion dz = PLLSysTriangle ( t , z )
2 % Function f o r def in ing d i f f e r e n t i a l equations , which ODE s o l v e r w i l l

i n t e g r a t e
3 % Triangular PD c h a r a c t e r i s t i c
4 g loba l omega_e tau_1 tau_2 L ;
5 dz = zeros ( 2 , 1 ) ;
6 dz ( 1 ) = sawtooth ( z ( 2 ) +pi /2 , 0 . 5 ) ;
7 dz ( 2 ) = omega_e − L * ( z ( 1 ) + tau_2 * sawtooth ( z ( 2 ) +pi /2 , 0 . 5 ) ) /tau_1 ;
8 end

LISTING 1.2 Equations for the PLL model with active PI filter and triangular PD
characteristic in the signal’s phase space.

The event for stopping the numerical integration of phase trajectory reaching
θΔ = initial_value± halt_value is given in Listing 1.3.

1 funct ion [ value , i s t e r m i n a l , d i r e c t i o n ] = Event ( t , y , i n i t i a l _ v a l u e ,
ha l t_va lue )

2 % Event func t ion f o r ODE s olver to stop when hal t_va lue i s reached
3

4 value = ( y ( 2 ) − i n i t i a l _ v a l u e ) ^2 − hal t_va lue ^2;
5 i s t e r m i n a l =1;
6 d i r e c t i o n =0;
7 end

LISTING 1.3 Event MATLAB function.

The MATLAB script for constructing the lock-in range diagrams from Section 2.3
is given in Listing 1.4.

1 c l e a r a l l ;
2 g loba l omega_e tau_1 tau_2 L ;
3 %S e t t i n g f i g u r e opt ions
4 f i g u r e ;
5 hold on ;
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6 grid on ;
7 t e x t ( −0.05 , 0 . 5 , ’\tau_2 ’ , ’ Units ’ , ’ normalized ’ ) ;
8 x l a b e l ( ’ K_0 / \tau_1 ’ ) ;
9 y l a b e l ( ’\omega_l *\ tau_1/K_0 ’ ) ;

10 ax = gca ;
11 ax . YAxisLocation = ’ r i g h t ’ ;
12 s e t ( ax , ’ XScale ’ , ’ log ’ ) ;
13 s e t ( ax , ’ f o n t s i z e ’ , 2 0 ) ;
14 %S e t t i n g PLL parameters
15 omega_e = 0 ;
16 tau_1 = 0 . 5 ;
17 i n i t i a l _ v a l u e = pi ; %t h e t a _ d e l t a coordinate of saddle equi l ibr ium
18 ha l t_va lue = pi ; %t h e t a _ d e l t a maximum devia t ion from i n i t i a l _ v a l u e
19 %S e t t i n g ODE s o l v e r options , system , and event
20 xoverFcn = @( t , y ) Event ( t , y , i n i t i a l _ v a l u e , ha l t_va lue ) ; %event f o r

stopping i n t e g r a t i o n
21 opt ions = odeset ( ’ RelTol ’ , 1 . e−10, ’ AbsTol ’ , 1 . e−10, ’ events ’ , xoverFcn

) ;
22 len = 1 . e4 ; % time of i n t e g r a t i o n
23

24 %the case of s i n u s o i d a l / t r i a n g u l a r PD c h a r a c t e r i s t i c ;
25 %one of two p o s s i b l e should be chosen
26 sys = @PLLSysSin ;
27 % sys = @PLLSysTriangle ;
28

29 tau2_values = 0 : 0 . 5 : 1 ; %vector of tau_2 values
30 %The outer c y c l e f o r p l o t t i n g curves f o r each value stored in

tau2_values
31 f o r i =1 : s i z e ( tau2_values , 2 )
32 tau_2 = tau2_values ( i ) ;
33 plotNum = zeros ( 0 , 2 ) ;
34 % The inner c y c l e f o r computing the values of omega_l f o r f i x e d

tau_2
35 f o r j = 0 : 1 : 5
36 L_tau1 = 10^ j ;
37 L = L_tau1 * tau_1 ;
38 % Numerical i n t e g r a t i o n of t r a j e c t o r y c l o s e to s e p a r a t r i x Q
39 [ T , Y , Te , Ye , De] = ode15s ( sys , −[0 len ] , [ omega_e/L* tau_1

i n i t i a l _ v a l u e +1. e−4] , opt ions ) ;
40 plotNum = [ plotNum ; [ L_tau1 Y( end , 1 ) / 2 ] ] ;
41 c l e a r T Y Te Ye De ;
42 end ;
43 % P l o t the computed array of omega_l
44 semilogx ( plotNum ( : , 1 ) , plotNum ( : , 2 ) , ’ blue ’ , ’ LineWidth ’ , 3 ) ;
45 t e x t ( plotNum ( 1 , 1 ) , plotNum ( 1 , 2 ) , s p r i n t f ( ’ %.2 f ’ , tau_2 ) , ’

HorizontalAlignment ’ , ’ r i g h t ’ ) ;
46 end ;

LISTING 1.4 MATLAB script for constructing the diagram from Figure 9a and
Figure 11.
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Abstract

In the present work PLL-based circuits with sinusoidal phase detector characteristic and
active proportionally-integrating (PI) filter are considered. The notion of lock-in range
– an important characteristic of PLL-based circuits, which corresponds to the synchro-
nization without cycle slipping, is studied. For the lock-in range a rigorous mathematical
definition is discussed. Numerical and analytical estimates for the lock-in range are ob-
tained.
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1. Model of PLL-based circuits in the signal’s phase space

For the description of PLL-based circuits a physical model in the signals space and a
mathematical model in the signal’s phase space are used (Gardner, 1966; Shakhgil’dyan
and Lyakhovkin, 1966; Viterbi, 1966).

The equations describing the model of PLL-based circuits in the signals space are
difficult for the study, since that equations are nonautonomous (see, e.g., (Kudrewicz
and Wasowicz, 2007)). By contrast, the equations of model in the signal’s phase space
are autonomous (Gardner, 1966; Shakhgil’dyan and Lyakhovkin, 1966; Viterbi, 1966),
what simplifies the study of PLL-based circuits. The application of averaging methods
(Mitropolsky and Bogolubov, 1961; Samoilenko and Petryshyn, 2004) allows one to reduce
the model of PLL-based circuits in the signals space to the model in the signal’s phase
space (see, e.g., (Leonov et al., 2012; Leonov and Kuznetsov, 2014; Leonov et al., 2015a;
Kuznetsov et al., 2015b,a; Best et al., 2015).

Consider a model of PLL-based circuits in the signal’s phase space (see Fig. 1). A
reference oscillator (Input) and a voltage-controlled oscillator (VCO) generate phases θ1(t)
and θ2(t), respectively. The frequency of reference signal usually assumed to be constant:

θ̇1(t) = ω1. (1)

The phases θ1(t) and θ2(t) enter the inputs of the phase detector (PD). The output of
the phase detector in the signal’s phase space is called a phase detector characteristic and
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Figure 1: Model of PLL-based circuit in the signal’s phase space.

has the form
Kdϕ(θ1(t)− θ2(t)).

The maximum absolute value of PD output Kd > 0 is called a phase detector gain (see,
e.g., (Best, 2007; Goldman, 2007)). The periodic function ϕ(θΔ(t)) depends on difference
θ1(t)−θ2(t) (which is called a phase error and denoted by θΔ(t)). The PD characteristic
depends on the design of PLL-based circuit and the signal waveforms f1(θ1) of Input and
f2(θ2) of VCO. In the present work a sinusoidal PD characteristic with

ϕ(θΔ(t)) = sin(θΔ(t))

is considered (which corresponds, e.g., to the classical PLL with f1(θ1(t)) = sin(θ1(t)) and
f2(θ2(t)) = cos(θ2(t))).

The output of phase detector is processed by Filter. Further we consider the active
PI filter (see, e.g., (Baker, 2011)) with transfer function W (s) = 1+τ2s

τ1s , τ1 > 0, τ2 > 0.
The considered filter can be described as⎧⎨

⎩ẋ(t) = Kd sin(θΔ(t)),
G(t) = 1

τ1
x(t)+ τ2

τ1
Kd sin(θΔ(t)),

(2)

where x(t) is the filter state. The output of Filter G(t) is used as a control signal for
VCO:

θ̇2(t) = ωfree
2 +KvG(t), (3)

where ωfree
2 is the VCO free-running frequency and Kv > 0 is the VCO gain coefficient.

Relations (1), (2), and (3) result in autonomous system of differential equations⎧⎨
⎩ẋ = Kd sin(θΔ),

θ̇Δ = ω1 −ωfree
2 − Kv

τ1
(x+ τ2Kd sin(θΔ)) .

(4)

Denote the difference of the reference frequency and the VCO free-running frequency
ω1 −ωfree

2 by ωfree
Δ . By the linear transformation x → Kdx we have⎧⎨

⎩ẋ = sin(θΔ),
θ̇Δ = ωfree

Δ − K0
τ1

(x+ τ2 sin(θΔ)) ,
(5)

2



where K0 = KvKd is the loop gain. For signal waveforms listed in Table 1, relations (5)
describe the models of the classical PLL and two-phase PLL in the signal’s phase space.
The models of classical Costas loop and two-phase Costas loop in the signal’s phase space
can be described by relations similar to (5) (PD characteristic of the circuits usually is a
π-periodic function, and the approaches presented in this paper can be applied to these
circuits as well) (see, e.g., (Best et al., 2014; Leonov et al., 2015a; Best et al., 2015)).

Signal waveforms PD characteristic

Classical PLL

f1(θ1) = sin(θ1) 1
2 sin(θΔ)

f2(θ2) = cos(θ2)

f1(θ1) = sin(θ1) 2
π sin(θΔ)

f2(θ2) = sign(cos(θ2))

f1(θ1) =
⎧⎨
⎩

2
π θ1 +1, θ1 ∈ [0;π] ,
1− 2

π θ1, θ1 ∈ [π;2π] 4
π2 sin(θΔ)

f2(θ2) = sin(θ2)

Two-phase PLL

f1(θ1) = cos(θ1)
sin(θΔ)

f2(θ2) = cos(θ2)

Table 1: The dependency PD characteristics of PLL-based circuits on signal waveforms.

By the transformation (
ωfree

Δ ,x,θΔ
)

→
(
−ωfree

Δ ,−x,−θΔ
)

,

(5) is not changed. This property allows one to use the concept of frequency deviation
∣∣∣ωfree

Δ

∣∣∣ =
∣∣∣ω1 −ωfree

2

∣∣∣
and consider (5) with ωfree

Δ > 0 only.
The state of PLL-based circuits for which the VCO frequency is adjusted to the ref-

erence frequency of Input is called a locked state. The locked states correspond to the
locally asymptotically stable equilibria of (5), which can be found from the relations

⎧⎨
⎩sin(θeq) = 0,

ωfree
Δ − K0

τ1
xeq = 0.

Here xeq depends on ωfree
Δ and further is denoted by xeq(ωfree

Δ ).
Since (5) is 2π-periodic in θΔ, we can consider (5) in a 2π-interval of θΔ, θΔ ∈ (−π,π].

In interval θΔ ∈ (−π,π] there exist two equilibria:
(

0,
ωfree

Δ τ1
K0

)
and

(
π,

ωfree
Δ τ1
K0

)
. To define

3



type of the equilibria let us write out corresponding characteristic polynomials and find
the eigenvalues:

equilibrium (0,
ωfree

Δ τ1
K0

) : λ2 + K0τ2
τ1

λ+ K0
τ1

= 0;

λ1,2 = −K0τ2±
√

(K0τ2)2−4K0τ1
2τ1

, (K0τ2)2 −4K0τ1 > 0;
λ1 = λ2 = −K0τ2

2τ1
, (K0τ2)2 −4K0τ1 = 0;

λ1,2 = −K0τ2±i
√

4K0τ1−(K0τ2)2

2τ1
, (K0τ2)2 −4K0τ1 < 0;

equilibrium (π,
ωfree

Δ τ1
K0

) : λ2 − K0τ2
τ1

λ− K0
τ1

= 0;

λ1,2 = K0τ2±
√

(K0τ2)2+4K0τ1
2τ1

.

Denote the stable equilibrium as

(
θs

eq,xeq(ωfree
Δ )

)
=

(
0,

ωfree
Δ τ1
K0

)

and the unstable equilibrium as

(
θu

eq,xeq(ωfree
Δ )

)
=

(
π,

ωfree
Δ τ1
K0

)
.

Thus, for any arbitrary ωfree
Δ the equilibria

(
θs

eq +2πk,xeq(ωfree
Δ )

)
=

(
2πk,

ωfree
Δ τ1
K0

)

are locally asymptotically stable. Hence, the locked states of (5) are given by equilibria(
θs

eq +2πk,xeq(ωfree
Δ )

)
. The remaining equilibria

(
θu

eq +2πk,xeq(ωfree
Δ )

)
=

(
π +2πk,

ωfree
Δ τ1
K0

)

are unstable saddle equilibria.

2. The global stability of PLL-based circuit model

In order to consider the lock-in range of PLL-based circuits let us discuss the global
asymptotic stability. If for a certain ωfree

Δ any solution of (5) tends to an equilibrium,
then the system with such ωfree

Δ is called globally asymptotically stable (see, e.g., (Leonov
et al., 2015b)). To prove the global asymptotic stability of (5) two approaches can be
applied: the phase plane analysis (Tricomi, 1933; Andronov et al., 1937) and construction
of the Lyapunov functions (Lyapunov, 1892).

By methods of the phase plane analysis, in (Viterbi, 1966) the global asymptotic
stability of (5) for any ωfree

Δ is stated. However, to complete rigorously the proof given in
(Viterbi, 1966), the additional explanations are required (i.e., the absence of heteroclinic

4



x

θΔ

θ
eq

τ
1
ωΔ

free

K
0

possible periodic trajectories:

- limit cycle of the first kind

- heteroclinic trajectory

- limit cycle of the second kind

s
θ

eq

uθ
eq

-2�u
θ

eq
+2�s

θ
eq

+2�u

Figure 2: Phase portrait and possible periodic trajectories of (5).

trajectory and limit cycles of the first kind (see Fig. 2) is needed to be explained; e.g., for
the case of lead-lag filter a number of works (Kapranov, 1956; Gubar’, 1961; Shakhtarin,
1969; Belyustina et al., 1970) is devoted to the study of these periodic trajectories).

To overcome these difficulties, the methods of the Lyapunov functions construction can
be applied. The modifications of the classical global stability criteria for cylindrical phase
space are developed in (Gelig et al., 1978; Leonov and Kuznetsov, 2014; Leonov et al.,
2015b). The global asymptotic stability of (5) for any ωfree

Δ can be using the Lyapunov
function

V (x,θΔ) = 1
2

(
x− τ1ωfree

Δ
K0

)2

+ 2τ1
K0

sin2
(

θΔ
2

)
≥ 0;

V̇ (x,θΔ) = −τ2 sin2 (θΔ) < 0, ∀θΔ �= {θs
eq +2πk,θu

eq +2πk}.

3. The lock-in range definition and analysis

Since the considered model of PLL-based circuits in the signal’s phase space is globally
asymptotically stable, it achieves locked state for any initial VCO phase θ2(0) and filter
state x(0). However, the phase error θΔ may substantially increase during the acquisition
process. In order to consider the property of the model to synchronize without undesired
growth of the phase error θΔ, a lock-in range concept was introduced in (Gardner, 1966):
“If, for some reason, the frequency difference between input and VCO is less than the
loop bandwidth, the loop will lock up almost instantaneously without slipping cycles. The
maximum frequency difference for which this fast acquisition is possible is called the lock-
in frequency”. The lock-in range concept is widely used in engineering literature on the
PLL-based circuits study (see, e.g., (Stensby, 1997; Kihara et al., 2002; Kroupa, 2003;
Gardner, 2005; Best, 2007)). Remark, that it is said that cycle slipping occurs if (see,
e.g., (Ascheid and Meyr, 1982; Ershova and Leonov, 1983; Smirnova et al., 2014))

limsup
t→+∞

|θΔ(0)− θΔ(t)| ≥ 2π.

For (5) with fixed ωfree
Δ a domain of loop states for which the synchronization without

cycle slipping occurs is called the lock-in domain Dlock−in(ωfree
Δ ) (see Fig. 3). However, in

general, even for zero frequency deviation (ωfree
Δ = 0) and a sufficiently large initial state

of filter (x(0)), cycle slipping may take place, thus in 1979 Gardner wrote: “There is no
natural way to define exactly any unique lock-in frequency” and “despite its vague reality,
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Figure 3: The lock-in domain Dlock−in(ωfree
Δ ) of (5).

lock-in range is a useful concept” (Gardner, 1979). To overcome the stated problem, in
(Kuznetsov et al., 2015c; Leonov et al., 2015b) the rigorous mathematical definition of a
lock-in range is suggested:

Definition 1. (Kuznetsov et al., 2015c; Leonov et al., 2015b) The lock-in range of model
(5) is a range [0,ωl) such that for each frequency deviation

∣∣∣ωfree
Δ

∣∣∣ ∈ [0,ωl) the model (5)
is globally asymptotically stable and the following domain

Dlock−in ((−ωl,ωl)) =
⋂

|ωfree
Δ |<ωl

Dlock−in(ωfree
Δ )

contains all corresponding equilibria
(
θs

eq,xeq(ωfree
Δ )

)
.

For model (5) each lock-in domain from intersection ⋂
|ωfree

Δ |<ωl

Dlock−in(ωfree
Δ ) is bounded

by the separatrices of saddle equilibria
(
θu

eq,xeq(ωfree
Δ )

)
and vertical lines θΔ = θs

eq ± 2π.
Thus, the behavior of separatrices on the phase plane is the key to the lock-in range study
(see Fig. 4).

4. Phase plane analysis for the lock-in range estimation

Consider an approach to the lock-in range computation of (5), based on the phase plane
analysis. To compute the lock-in range of (5) we need to consider the behavior of the lower
separatrix Q(θΔ,ωfree

Δ ), which tends to the saddle point
(
θu

eq,xeq(ωfree
Δ )

)
=

(
π,

ωfree
Δ τ1
K0

)
as

t → +∞ (by the symmetry of the lower and the upper half-planes, the consideration of
the upper separatrix is also possible).

The parameter ωfree
Δ shifts the phase plane vertically. To check this, we use a linear

transformation x → x+ ωfree
Δ τ1
K0

. Thus, to compute the lock-in range of (5), we need to find
ωfree

Δ = ωl (where ωl is called a lock-in frequency) such that (see Fig. 4)

xeq(−ωl) = Q(θs
eq,ωl). (6)

6



0

x

θ
Δ

θ
eq

s

Q(θ
Δ
,ω

l
)

(θ
eq

,x
eq

(-ω
l
))

s

θ
eq

+2�s
θ

eq
-2�s

(θ
eq

,x
eq

(ω
l
))

s

Figure 4: The domain Dlock−in ((−ωl,ωl)) of (5).

By (6), we obtain an exact formula for the lock-in frequency ωl:

− ωl

K0/τ1
= ωl

K0/τ1
+Q(θs

eq,0).

ωl = −K0Q(θs
eq,0)

2τ1
, (7)

Numerical simulations are used to compute the lock-in range of (5) applying (7). The
separatrix Q(θΔ,0) is numerically integrated and the corresponding ωl is approximated.
The obtained numerical results can be illustrated by a diagram (see Fig. 5)1.

Note that (5) depends on the value of two coefficients K0
τ1

and τ2. In Fig. 5, choosing X-
axis as K0

τ1
, we can plot a single curve for every fixed value of τ2. The results of numerical

simulations show that for sufficiently large K0
τ1

, the value of ωl grows almost proportionally
to K0

τ1
. Hence, ωlτ1

K0
is almost constant for sufficiently large K0

τ1
and in Fig. 5 the Y-axis

can be chosen as ωfree
Δ τ1
K0

.
To obtain the lock-in frequency ωl for fixed τ1, τ2, and K0 using Fig. 5, we consider

the curve corresponding to the chosen τ2. Next, for X-value equal K0
τ1

we get the Y-value
of the curve. Finally, we multiply the Y-value by K0

τ1
(see Fig. 6).

Consider an analytical approach to the lock-in range estimation. Main stages of the
approach are presented in Subsection 4.1.

1These results submitted to IFAC PSYCO 2016
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4.1. Analytical approach to the lock-in range estimation
Consider an active PI filter with small parameter 0 < τ2

τ1
	 1 (see, e.g., (Alexandrov

et al., 2014)). The consideration of (5) with such active PI filter allows us to estimate the
lower separatrix Q(θΔ,0) and the lock-in range. For this purpose the approximations of
separatrix Q(θΔ,0) in interval 0 ≤ θΔ < π are used.

The separatrix Q(θΔ,0), which is a solution of (5), can be expanded in a Taylor series
in variable τ2/τ1 (since the parameter τ2/τ1 is considered as a variable, the separatrix
Q(θΔ,0) = Q(θΔ,0, τ2/τ1) depends on it). The first-order approximation of the lower
separatrix Q(θΔ,0, τ2/τ1) has the form

Q̂1(θΔ,0, τ2/τ1) = −2
√

K0/τ1 cos θΔ
2 −

− τ2
τ1

K0
(

2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)
cos θΔ

2
. (8)

The second-order approximation of Q(θΔ,0, τ2/τ1) has the form

Q̂2(θΔ,0, τ2/τ1) = −2
√

K0/τ1 cos θΔ
2 − τ2

τ1

K0
(

2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)
cos θΔ

2
−

−
(

τ2
τ1

)2 K2
0(61

2 −4ln2)
6
√

K0/τ1 cos θΔ
2

+
K2

0
(

2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)2

4
√

K0/τ1 cos3 θΔ
2

+

+
(

τ2
τ1

)2 K2
0

(
8sin(θΔ

2 )−4ln
∣∣∣∣sin θΔ

2 +1
∣∣∣∣
)

6
√

K0/τ1 cos θΔ
2

+
(

τ2
τ1

)2 K2
0
(

1
2 cos2θΔ +2cosθΔ

)
6
√

K0/τ1 cos θΔ
2

. (9)

For approximations (8), (9) of separatrix Q(θΔ,0, τ2/τ1) the following relations are
valid:

Q(θΔ,0, τ2/τ1) = Q̂1(θΔ,0, τ2/τ1)+O
(
(τ2/τ1)2) ,

Q(θΔ,0, τ2/τ1) = Q̂2(θΔ,0, τ2/τ1)+O
(
(τ2/τ1)3) .

For θΔ = θs
eq the relations (8), (9) take the following values:

Q̂1(θs
eq,0, τ2/τ1) = −2

√
K0/τ1 − 2K0τ2

3τ1
,

Q̂2(θs
eq,0, τ2/τ1) = −2

√
K0/τ1 − 2K0τ2

3τ1
−

− K0τ2
2 (5−6ln2)

9τ1

√
K0/τ1.

Using relation (7) the lock-in frequency ωl is approximated as follows:

ωl =
K0

√
K0/τ1

τ1
+ K2

0τ2
3τ2

1
+O

(
(τ2/τ1)2) , (10)
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Figure 7: Estimates on ωl
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for various K0, τ1.

ωl =
K0

√
K0/τ1

τ1
+ K2

0τ2
3τ2

1
+

+ K2
0τ2

2 (5−6ln2)
18τ2

1

√
K0/τ1 +O

(
(τ2/τ1)3) . (11)

For fixed τ2 = 0.1 the three curves are shown in Fig. 7. The values of ωl (the blue
curve, which is obtained numerically using relation (7)) are estimated from below by (10)
and from above by (11) (the red and green curves correspondingly). Since the lock-in
frequency ωl is approximated under the condition of small parameter τ2/τ1, the estimates
(10) and (11) give less precise result in the case of large K0/τ1.

4.2. The pull-out frequency and lock-in range
An another characteristic related to the cycle slipping effect is the pull-out frequency

ωpo (see, e.g., (Gardner, 1979; Stensby, 1997; Kroupa, 2003). In (Gardner, 2005) the
pull-out frequency is defined as a frequency-step limit, “below which the loop does not skip
cycles but remains in lock”. However, in general case of Filter (see, e.g., (Pinheiro and
Piqueira, 2014; Banerjee and Sarkar, 2008)) the pull-out frequency may depend on the
value of ωfree

Δ .
However, in the case of active PI filter, the pull-out frequency can be defined and

approximated (see, e.g., (Gardner, 1979; Huque and Stensby, 2013)), since the parameter
ωfree

Δ only shifts the phase plane vertically. The pull-out frequency can be found as follows
(see Fig. 8):

xeq(ωfree
Δ ) = Q(θs

eq,ωfree
Δ +ωpo),

ωfree
Δ

K0/τ1
= ωfree

Δ +ωpo

K0/τ1
+Q(θs

eq,0).

ωpo = −K0Q(θs
eq,0)

τ1
= 2ωl. (12)
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In Fig. 9 the estimates from (Gardner, 1979; Huque and Stensby, 2013) are compared
with estimates based on (10) and (11). The pull-out frequency estimate, which is obtained
according to Fig. 5 and (12), is drawn in blue color. Analytical estimates based on (10),
(11), and (12) are drawn in red and green colors correspondingly. The black curve is the
estimate of the pull-out frequency from (Huque and Stensby, 2013). The dashed curve
corresponds to the empirical estimate

ωpo ≈ 1.85
(

1
2 + τ1

K0τ2
2

)
, (13)

presented in (Gardner, 1979).
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Figure 9: Comparison of the pull-out frequency estimates.

For K0/τ1 not very large the relation (11) is the most precise estimate compared to
the presented ones.
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5. Conclusion

In the present work models of the PLL-based circuits in the signal’s phase space are
described. The lock-in range of PLL-based circuits with sinusoidal PD characteristic and
active PI filter is considered. The rigorous definition of the lock-in range is discussed, and
relation (7) for the lock-in range computation is derived. For the lock-in range estimation
two approaches – numerical and analytical – are presented. The methods are based on the
integration of phase trajectories. In Subsection 4.1 the numerical estimates are verified
by analytical estimates, which are obtained under the condition of small parameter.

Appendix A. The lock-in range estimation for small parameter of the loop
filter.

Let us write out (5) in a different form with a = τ2
τ1

and b = 1
τ1

:
⎧⎨
⎩ẋ = sin(θΔ),

θ̇Δ = ωfree
Δ − bK0x−aK0 sin(θΔ).

(A.1)

Consider the following system, which is equivalent to (A.1):⎧⎨
⎩θ̇Δ = y,

ẏ = −aK0 cos(θΔ)y − bK0 sin(θΔ),
(A.2)

where y = ωfree
Δ − bK0x−aK0 sin(θΔ).

In virtue of 2π-periodicity of (A.2) in variable θΔ, phase trajectories of (A.2) coincides
for each interval θΔ ∈ (−π +2πk,π +2πk], k ∈ Z. Thus, one can study (A.2) in interval
θΔ ∈ (−π,π] only.

Let us find equilibria of (A.2) from the following system of equations:⎧⎨
⎩sin(θeq) = 0,

aK0 cos(θeq)yeq = 0.

In interval θΔ ∈ (−π,π] there exist two equilibria
(
θs

eq,yeq

)
= (0;0) and

(
θu

eq,yeq

)
=

(π;0). To define type of the equilibria points let us write out corresponding characteristic
polynomials and find the eigenvalues:

equilibrium (0;0) : λ2 +aK0λ+ bK0 = 0;

λ1,2 = −aK0±
√

(aK0)2−4bK0
2 , (aK0)2 −4bK0 > 0;

λ1 = λ2 = −aK0
2 , (aK0)2 −4bK0 = 0;

λ1,2 = −aK0±i
√

4bK0−(aK0)2

2 , (aK0)2 −4bK0 < 0;

equilibrium (π;0) : λ2 −aK0λ− bK0 = 0;

λ1,2 = aK0±
√

(aK0)2+4bK0
2 .

Thus, equilibrium
(
θs

eq,yeq

)
is a stable node, a stable degenerated node, or a stable focus

(that depends on the sign of (aK0)2 − 4bK0). Equilibrium
(
θu

eq,yeq

)
is a saddle point for
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all a > 0, b > 0, K0 > 0. Moreover, in virtue of periodicity each equilibrium
(
θu

eq +2πk,yeq

)
is a saddle point, and each equilibrium

(
θs

eq +2πk,yeq

)
is a stable equilibrium of the same

type as
(
θs

eq,yeq

)
. Note also that equilibria (θeq,yeq) of (A.2) and corresponding equilibria

(θeq,xeq) of (A.1) are of the same type, and related as follows:

(θeq,yeq) =
(
θeq,ωfree

Δ − bK0xeq

)
.

Let us consider the following differential equation:

y′(θΔ) = −aK0 cos(θΔ)y(θΔ)+ bK0 sin(θΔ)
y(θΔ) . (A.3)

The right side of equation (A.3) is discontinuous in each point of line y = 0. This line is
an isocline line of vertical angular inclination of (A.3) (Barbashin and Tabueva, 1969).
Equation (A.3) is equivalent to (A.2) in the upper and the lower open half planes of the
phase plane.

Let the solutions y(θΔ,a) of equation (A.3) be considered as functions of two variables
θΔ, a. Consider the solution of differential equation (A.3), which range of values lies in the
upper open half plane of its phase plane. Right side of equation (A.3) in the upper open
half plane is function of class Cm for m arbitrary large. Solutions of the Cauchy problem
with initial conditions x = x0, y = y0 (which solutions are on the upper half plane) are
also of class Cm on their domain of existence for m arbitrary large (Hartman, 1964).

Let us study the separatrix S(θΔ,a) in interval [0,π), which tends to saddle point
(θu

eq;xeq) = (π;0) and is situated in its second quadrant. Separatrix S(θΔ,a) is the solution
of the corresponding Cauchy problem for equation (A.3). The separatrix S(θΔ,a) is of
class Cm on its domain of existence for m arbitrary large.

Consider separatrix S(θΔ,a) as a Taylor series in variable a in the neighborhood of
a0 = 0:

S(θΔ,a) = S(θΔ,0)+a
∂S(θΔ,a)

∂a

∣∣∣∣
a=0

+ · · ·+ an

n!
∂nS(θΔ,a)

∂an

∣∣∣∣
a=0

+ . . . . (A.4)

Let us denote

S0(θΔ) = S(θΔ,0),

Si(θΔ) = 1
i!

∂iS(θΔ,a)
∂ai

∣∣∣∣
a=0

, i ≥ 1.

Ŝn(θΔ,a) as the n-th approximation of S(θΔ,a) in variable a:

Ŝn(θΔ,a) = S(θΔ,0)+
n∑

i=1
aiSi(θΔ).

The Taylor remainder is denoted as follows:

S̃n(θΔ,a) =
+∞∑

i=n+1
aiSi(θΔ). (A.5)

For the convergent Taylor series its remainder S̃n(θΔ,a) = O(an+1) for each point x0 of
interval [0,π).
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Separatrix S(θΔ,a) satisfies the following relation, which follows from (A.3):
S(θΔ,a)S′(θΔ,a) = −aK0 cos(θΔ)S(θΔ,a)− bK0 sin(θΔ).

π∫
θΔ

S(s,a)dS(s,a) = −aK0

π∫
θΔ

cos(s)S(s,a)ds− bK0

π∫
θΔ

sin(s)ds.

1
2 lim

s→π−0
S2(s,a)− 1

2S2(θΔ,a) = −aK0

π∫
θΔ

cos(s)S(s,a)ds− bK0

π∫
θΔ

sin(s)ds. (A.6)

Let us represent S(θΔ,a) as Taylor series (A.4) in relation (A.6).

− 1
2
(
S0(θΔ)+aS1(θΔ)+a2S2(θΔ)+ S̃2(θΔ,a)

)2
= −bK0

π∫
θΔ

sin(s)ds−

−aK0

π∫
θΔ

cos(s)
(
S0(s)+S1(s)+S2(s)+ S̃2(s,a)

)
ds.

− 1
2S2

0(θΔ)−aS0(θΔ)S1(θΔ)− 1
2a2S2

1(θΔ)−a2S0(θΔ)S2(θΔ)+O(a3) =

− bK0

π∫
θΔ

sin(s)ds−aK0

π∫
θΔ

cos(s)S0(s)−a2K0

π∫
θΔ

cos(s)S1(s)ds−O(a3).

− 1
2S2

0(θΔ)−aS0(θΔ)S1(θΔ)−a2
(1

2S2
1(θΔ)+S0(θΔ)S2(θΔ)

)
+O(a3) =

− bK0

π∫
θΔ

sin(s)ds−aK0

π∫
θΔ

cos(s)S0(s)−a2K0

π∫
θΔ

cos(s)S1(s)ds+O(a3). (A.7)

Let us write out the corresponding members of (A.7) for each an, n = 0,1,2.
For a0:

1
2S2

0(θΔ) = bK0

π∫
θΔ

sin(s)ds. (A.8)

For a1:

S0(θΔ)S1(θΔ) = K0

π∫
θΔ

cos(s)S0(s)ds. (A.9)

For a2:

S0(θΔ)S2(θΔ)+ 1
2S2

1(θΔ) = K0

π∫
θΔ

cos(s)S1(s)ds. (A.10)

Let us consequently find S0(θΔ), S1(θΔ), S2(θΔ) using relations (A.8), (A.9) and
(A.10). Begin with evaluation of S0(θΔ):

1
2S2

0(θΔ) = bK0

π∫
θΔ

sin(s)ds = −bK0 cos(s)
∣∣∣∣π
x
ds =

= bK0(1+cos(θΔ)).

S0(θΔ) =
√

2bK0(1+cos(θΔ)). (A.11)

14



According to (A.11)
S0(0) = 2

√
bK0. (A.12)

Using equation (A.9) and relations (A.11) evaluate S1(θΔ):

S1(θΔ) =
K0

π∫
θΔ

cos(s)S0(s)ds

S0(θΔ) .

S1(θΔ) =
K0

√
2bK0

π∫
θΔ

cos(s)
√

(1+cos(s))ds

√
2bK0(1+cos(θΔ))

.

Let us evaluate the integral
π∫

θΔ

cos(s)
√

(1+cos(s))ds

in the interval θΔ ∈ [0;π) using the following substitutions:

u = 1+cos(s),du = −sin(s)ds

v =
√

2−u,dv = − du

2
√

2−u
.

π∫
θΔ

cos(s)
√

(1+cos(s))ds =
π∫

θΔ

cos(s)sin(s)√
(1− cos(s))

ds =

= −
0∫

1+cos(θΔ)

u−1√
2−u

du = 2

√
2∫

√
1−cos(θΔ)

(1−v2)dv =

= 2
(√

2−
√

1− cos(θΔ)
)

− 2
3

(
2
√

2−
√

1− cos(θΔ)
3)

=

= −2
3(2+cos(θΔ))

√
1− cos(θΔ)+ 2

√
2

3 .

Hence, an expression for S1(θΔ) in interval θΔ ∈ [0;π) is obtained:

S1(θΔ) =
K0

√
2bK0

(
2
√

2
3 − 2

3(2+cos(θΔ))
√

1− cos(θΔ)
)

√
2bK0(1+cos(θΔ))

. (A.13)

Moreover,
S1(0) = 2K0

3 . (A.14)

To shorten the further evaluation of S2(θΔ), write out S1(θΔ) in equivalent form (in
interval θΔ ∈ [0;π)).

S1(θΔ) =
K0

√
2bK0

(
2
√

2
3 − 2

3(2+cos(θΔ))
√

1− cos(θΔ)
)

√
2bK0(1+cos(θΔ))

=
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=
K0

√
2bK0

(
2
√

2
3 − 2

3(2+cosθΔ)
√

2sin θΔ
2

)
√

2bK0
√

2cos θΔ
2

=
K0

(
2
3 − 2

3(2+cosθΔ)sin θΔ
2

)
cos θΔ

2
=

=
K0

(
2
3 − 2

3(3−2sin2 θΔ
2 )sin θΔ

2

)
cos θΔ

2
=

K0
(

2
3 −2sin θΔ

2 − 4
3 sin3 θΔ

2

)
cos θΔ

2
=

=
K0

(
2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)
cos θΔ

2
.

Let us evaluate S2(θΔ) using (A.10), (A.11) and (A.13).

S2(θΔ) =
K0

π∫
θΔ

cos(s)S1(s)ds− 1
2S2

1(θΔ)

S0(θΔ) =

=
K2

0
π∫

θΔ

cos(s)( 2
3 −sin s

2 − 1
3 sin 3s

2 )
cos s

2
ds

2
√

bK0 cos θΔ
2

− K2
0
(

2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)2

4
√

bK0 cos3 θΔ
2

.

Evaluate the integral
π∫

θΔ

cos(s)
(

2
3 − sin s

2 − 1
3 sin 3s

2

)
cos s

2
ds:

I
π∫

θΔ

2
3

cos(s)
cos s

2
ds = 2

3

π∫
θΔ

2cos2( s
2)−1

cos s
2

ds = 2
3

π∫
θΔ

(
2cos s

2 − 1
cos s

2

)
ds =

= 8
3

(
sin(s

2)
)∣∣∣∣π

x
− 2

3

π∫
θΔ

1
cos s

2
ds =

u = s

2; du = 1
2ds

= 8
3

(
sin(s

2)
)∣∣∣∣π

x
− 4

3

π
2∫

θΔ
2

1
cosu

du =
(

8
3 sin(s

2)− 4
3 ln

∣∣∣∣tg s

2 + 1
cos s

2

∣∣∣∣
)∣∣∣∣π

x
.

II

−
π∫

θΔ

cos(s)
(
sin s

2 + 1
3 sin 3s

2

)
cos s

2
ds = −

π∫
θΔ

cos(s)
(
sin s

2 + 1
3

(
3sin s

2 −4sin3 s
2

))
cos s

2
ds =

−
π∫

θΔ

cos(s)
(
2sin s

2 − 4
3 sin3 s

2

)
cos s

2
ds = −2

π∫
θΔ

cos(s)sin s
2 cos s

2

(
1− 2

3 sin2 s
2

)
cos2 s

2
ds =

−2
π∫

θΔ

cos(s)sins
(
1− 2

3 sin2 s
2

)
coss+1 ds = −2

3

π∫
θΔ

cos(s)sins(2+coss)
coss+1 ds =

16



u = coss; du = −sin(s)ds

= 2
3

−1∫
cos(θΔ)

u(2+u)
u+1 du = 2

3

cosπ∫
cos(θΔ)

(
u+1− 1

u+1

)
du =

= 2
3

(1
2 cos2 s+coss− ln

∣∣∣∣coss+1
∣∣∣∣
) ∣∣∣∣π

x
=

= 2
3

(1
2 cos2 s+coss−2ln

∣∣∣∣√2cos s

2

∣∣∣∣
) ∣∣∣∣π

x
=

= 2
3

(1
2 cos2 s+coss−2ln

∣∣∣∣cos s

2

∣∣∣∣
) ∣∣∣∣π

x
.

I+II (
8
3 sin(s

2)− 4
3 ln

∣∣∣∣tg s

2 + 1
cos s

2

∣∣∣∣
)∣∣∣∣π

x
+ 2

3

(1
2 cos2 s+coss−2ln

∣∣∣∣cos s

2

∣∣∣∣
) ∣∣∣∣π

x
=

1
3

(
8sin(s

2)−4ln
∣∣∣∣sin

s
2 +1

cos s
2

∣∣∣∣+cos2 s+2coss−4ln
∣∣∣∣cos s

2

∣∣∣∣
)∣∣∣∣π

x
=

1
3

(
8sin(s

2)−4ln
∣∣∣∣sin s

2 +1
∣∣∣∣+ 1

2 cos2s+ 1
2 +2coss

)∣∣∣∣π
x

=

=
61

2 −4ln2
3 − 1

3

(
8sin(θΔ

2 )−4ln
∣∣∣∣sin θΔ

2 +1
∣∣∣∣+ 1

2 cos2θΔ +2cosθΔ

)
.

Hence,

S2(θΔ) =
K2

0(61
2 −4ln2)−K2

0

(
8sin(θΔ

2 )−4ln
∣∣∣∣sin θΔ

2 +1
∣∣∣∣+ 1

2 cos2θΔ +2cosθΔ

)

6
√

bK0 cos θΔ
2

−
(A.15)

− K2
0
(

2
3 − sin θΔ

2 − 1
3 sin 3θΔ

2

)2

4
√

bK0 cos3 θΔ
2

.

In θΔ = 0

S2(0) = 2K2
0(1− ln2)
3
√

bK0
− 1K2

0
9
√

bK0
= K2

0(5−6ln2)
9
√

bK0
. (A.16)

Hence, S0(θΔ), S1(θΔ), S2(θΔ) are evaluated (equations (A.11), (A.13) and (A.15),
correspondingly). I. e. the first and the second approximations Ŝ1(θΔ,a), Ŝ2(θΔ,a) of
separatrix S(θΔ,a) are found. Furthermore, using (A.12), (A.14) and (A.16) the following
relations are valid:

Ŝ1(0,a) = 2
√

bK0 +a
2K0

3 ,

Ŝ2(0,a) = Ŝ2(0) = 2
√

bK0 +a
2K0

3 +a2 K0(5−6ln2)
9b

√
K0b.
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Lock-in range of classical PLL with impulse signals and
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Abstract

In the present work the model of PLL with impulse signals and active PI filter in the
signal’s phase space is described. For the considered PLL the lock-in range is computed
analytically and obtained result are compared with numerical simulations.
Keywords: phase-locked loop, nonlinear analysis, PLL, two-phase PLL, lock-in range,
Gardner’s problem on unique lock-in frequency, pull-out frequency

1. Models of classical PLL with impulse signals

Consider a physical model of classical PLL in the signals space (see Fig. 1).

Filter

g(t)
VCO

ϕ(t)=sign(sin θ
1
(t) cos θ

2
(t)) 

Input

x(0)

θ
2
(0)

f
1
(θ

1
(t)) =

sign(sin θ
1
(t))

f
2
(θ

2
(t)) =

sign(cos θ
2
(t))

Figure 1: Model of PLL with impulse signals in the signals space.

This model contains the following blocks: a reference oscillator (Input), a voltage-
controlled oscillator (VCO), a filter (Filter), and an analog multiplier as a phase detector
(PD). The signals sign(sinθ1(t)) and sign(cosθ2(t)) of the Input and the VCO (here θ2(0)
is the initial phase of VCO) enter the multiplier block. The resulting impulse signal
φ(t) = sign(sinθ1(t)cosθ2(t)) is filtered by low-pass filter Filter (here x(0) is an initial
state of Filter). The filtered signal g(t) is used as a control signal for VCO.

The equations describing the model of PLL-based circuits in the signals space are
difficult for the study, since that equations are nonautonomous (see, e.g., (Kudrewicz
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and Wasowicz, 2007)). By contrast, the equations of model in the signal’s phase space
are autonomous (Gardner, 1966; Shakhgil’dyan and Lyakhovkin, 1966; Viterbi, 1966),
what simplifies the study of PLL-based circuits. The application of averaging methods
(Mitropolsky and Bogolubov, 1961; Samoilenko and Petryshyn, 2004) allows one to reduce
the model of PLL-based circuits in the signals space to the model in the signal’s phase
space (see, e.g., (Leonov et al., 2012; Leonov and Kuznetsov, 2014; Leonov et al., 2015a;
Kuznetsov et al., 2015b,a; Best et al., 2015).

Filter

θ
2
(t) G(t)

VCO

PD
K

d
φ(θ

1
(t) - θ

2
(t))

Input
θ

1
(t)

x(0)

θ
2
(0)

Figure 2: Model of the classical PLL in the signal’s phase space.

The main difference between the physical model (Fig. 1) and the simplified mathemat-
ical model in the signal’s phase space (Fig. 2) is the absence of high-frequency component
of the phase detector output. The output of the phase detector in the signal’s phase space
is called a phase detector characteristic and has the form

Kdϕ(θ1(t)− θ2(t)).

The maximum absolute value of PD output Kd > 0 is called a phase detector gain (see,
e.g., (Best, 2007; Goldman, 2007)). The periodic function ϕ(θΔ(t)) depends on difference
θ1(t)−θ2(t) (which is called a phase error and denoted by θΔ(t)). The PD characteristic
depends on the design of PLL-based circuit and the signal waveforms f1(θ1) of Input and
f2(θ2) of VCO. For PLL with impulse signals the PD characteristic is as follows (see, e.g.,
(Viterbi, 1966; Gardner, 1966; Leonov et al., 2012)):

Kd = 1;

ϕ(θΔ(t)) =
⎧⎨
⎩

2
π θΔ(t), if −π

2 ≤ θΔ(t) ≤ π
2 ,

− 2
π θΔ(t)+2, if π

2 ≤ θΔ(t) ≤ 3π
2 .

(1)

Let us describe a model of classical PLL with impulse signals in the signal’s phase
space (see Fig. 2). A reference oscillator and a voltage-controlled oscillator generate the
phases θ1(t) and θ2(t), respectively. The frequency of reference signal usually assumed to
be constant:

θ̇1(t) = ω1. (2)
The phases θ1(t) and θ2(t) enter the inputs of the phase detector. The output of phase

detector is processed by Filter. Further we consider the active PI filter (see, e.g., (Baker,
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2011)) with transfer function W (s) = 1+τ2s
τ1s , τ1 > 0, τ2 > 0. The considered filter can

be described as ⎧⎨
⎩ẋ(t) = Kdϕ(θΔ(t)),

G(t) = 1
τ1

x(t)+ τ2
τ1

Kdϕ(θΔ(t)),
(3)

where x(t) is the filter state.
The output of Filter G(t) is used as a control signal for VCO:

θ̇2(t) = ωfree
2 +KvG(t), (4)

where ωfree
2 is the VCO free-running frequency and Kv > 0 is the VCO gain.

Relations (2), (3), and (4) result in autonomous system of differential equations⎧⎨
⎩ẋ = Kdϕ(θΔ),

θ̇Δ = ω1 −ωfree
2 − Kv

τ1
(x+ τ2Kdϕ(θΔ)) .

(5)

Denote the difference of the reference frequency and the VCO free-running frequency
ω1 −ωfree

2 by ωfree
Δ . By the linear transformation x → Kdx we have

⎧⎨
⎩ẋ = ϕ(θΔ),

θ̇Δ = ωfree
Δ − K0

τ1
(x+ τ2ϕ(θΔ)) ,

(6)

where K0 = KvKd is the loop gain. Here (6) describes the model of PLL with the impulse
signals and active PI filter in the signal’s phase space.

By the transformation (
ωfree

Δ ,x,θΔ
)

→
(
−ωfree

Δ ,−x,−θΔ
)

,

(6) with odd PD characteristic (1) is not changed. This property allows one to use the
concept of frequency deviation ∣∣∣ωfree

Δ

∣∣∣ =
∣∣∣ω1 −ωfree

2

∣∣∣
and consider (6) with ωfree

Δ > 0 only.
The PLL state for which the VCO frequency is adjusted to the reference frequency

of Input is called a locked state. The locked states of the PLL correspond to the locally
asymptotically stable equilibria of (6), which can be found from the relations⎧⎨

⎩ϕ(θeq) = 0,

ωfree
Δ − K0

τ1
xeq = 0.

Since (6) is 2π-periodic in θΔ, we can consider (6) in a 2π-interval of θΔ, θΔ ∈ (−π,π].
In interval θΔ ∈ (−π,π] there exist two equilibria:

(
θs

eq,xeq(ωfree
Δ )

)
= (0,

ωfree
Δ τ1
K0

) and
(
θu

eq,xeq(ωfree
Δ )

)
= (π,

ωfree
Δ τ1
K0

).

As is shown below (see Appendix A) the equilibria

(
θs

eq +2πk,xeq(ωfree
Δ )

)
=

(
2πk,

ωfree
Δ τ1
K0

)

3



are locally asymptotically stable. Hence, the locked states of (6) are given by equilibria(
θs

eq,xeq(ωfree
Δ )

)
. The remaining equilibria

(
θu

eq +2πk,xeq(ωfree
Δ )

)
=

(
π +2πk,

ωfree
Δ τ1
K0

)

are saddle equilibria (see Appendix A).

2. The lock-in range

The model of classical PLL with impulse signals and active PI filter in the signal’s phase
space is globally asymptotically stable (see, e.g., (Gubar’, 1961; Leonov and Aleksandrov,
2015)). The PLL achieves locked state for any initial VCO phase θ2(0) and filter state
x(0). So, there exist no limit cycles of the first kind, heteroclinic trajectories, and limit
cycles of the second kind on the phase plane of (6) (see Fig. 3).

x

θΔ

θ
eq

τ
1
ωΔ

free

K
0

possible periodic trajectories:

- limit cycle of the first kind

- heteroclinic trajectory

- limit cycle of the second kind

s
θ

eq

uθ
eq

-2�u
θ

eq
+2�s

θ
eq

+2�u

Figure 3: Possible periodic trajectories on the phase plane of (6).

However, the phase error θΔ may significantly increase during the acquisition process.
In order to consider the property of the model to synchronize without undesired growth
of the phase error θΔ, a lock-in range concept was introduced in (Gardner, 1966): “If,
for some reason, the frequency difference between input and VCO is less than the loop
bandwidth, the loop will lock up almost instantaneously without slipping cycles. The max-
imum frequency difference for which this fast acquisition is possible is called the lock-in
frequency”. The lock-in range concept is widely used in engineering literature on the PLL-
based circuits study (see, e.g., (Stensby, 1997; Kihara et al., 2002; Kroupa, 2003; Gardner,
2005; Best, 2007)). It is said that a cycle slipping occurs if (see, e.g., (Ascheid and Meyr,
1982; Ershova and Leonov, 1983; Smirnova et al., 2014))

limsup
t→+∞

|θΔ(0)− θΔ(t)| ≥ 2π.

However, in general, even for zero frequency deviation (ωfree
Δ = 0) and a sufficiently large

initial state of filter (x(0)), cycle slipping may take place, thus in 1979 Gardner wrote:
“There is no natural way to define exactly any unique lock-in frequency” and “despite its
vague reality, lock-in range is a useful concept” (Gardner, 1979).

To overcome the stated problem, in (Kuznetsov et al., 2015c; Leonov et al., 2015b)
the rigorous mathematical definition of a lock-in range is suggested:
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x
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s
θ

eq
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eq
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eq
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eq
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- no cycle slipping

- cycle slipping

Figure 4: The lock-in domain and cycle slipping.

Definition 1. (Kuznetsov et al., 2015c; Leonov et al., 2015b) The lock-in range of model
(6) is a range [0,ωl) such that for each frequency deviation

∣∣∣ωfree
Δ

∣∣∣ ∈ [0,ωl) the model (6)
is globally asymptotically stable and the following domain

Dlock−in ((−ωl,ωl)) =
⋂

|ωfree
Δ |<ωl

Dlock−in(ωfree
Δ )

contains all corresponding equilibria
(
θs

eq,xeq(ωfree
Δ )

)
.

For model (6) each lock-in domain from intersection ⋂
|ωfree

Δ |<ωl

Dlock−in(ωfree
Δ ) is bounded

by the separatrices of saddle equilibria
(
θu

eq,xeq(ωfree
Δ )

)
and vertical lines θΔ = θs

eq ± 2π.
Thus, the behavior of separatrices on the phase plane is the key to the lock-in range study
(see Fig. 5).

3. Phase plane analysis for the lock-in range estimation

Consider an approach to the lock-in range computation of (6), based on the phase plane
analysis. To compute the lock-in range of (6) we need to consider the behavior of the lower
separatrix Q(θΔ,ωfree

Δ ), which tends to the saddle point
(
θu

eq,xeq(ωfree
Δ )

)
=

(
π,

ωfree
Δ τ1
K0

)
as

t → +∞ (by the symmetry of the lower and the upper half-planes, the consideration of the
upper separatrix is also possible). The parameter ωfree

Δ shifts the phase plane vertically.
To check this, we use a linear transformation x → x+ ωfree

Δ τ1
K0

. Thus, to compute the lock-in
range of (6), we need to find ωfree

Δ = ωl (where ωl is called a lock-in frequency) such that
(see Fig. 5)

xeq(−ωl) = Q(θs
eq,ωl). (7)

By (7), we obtain an exact formula for the lock-in frequency ωl:

− ωl

K0/τ1
= ωl

K0/τ1
+Q(θs

eq,0).

ωl = −K0Q(θs
eq,0)

2τ1
, (8)
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s
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eq
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θΔ

ω

θ
eq

s
θ

eq
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eq
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0

s

Figure 5: The lock-in domain of (6) for
∣∣ωfree

Δ
∣∣ = ωl.

Numerical simulations are used to compute the lock-in range of (6) applying (8). The
separatrix Q(θΔ,0) is numerically integrated and the corresponding ωl is approximated.
The obtained numerical results can be illustrated by special diagram (see Fig. 6). Note
that (6) depends on the value of two coefficients K0

τ1
and τ2. In Fig. 6, choosing X-axis

as K0
τ1

, we can plot a single curve for every fixed value of τ2. The results of numerical
simulations show that for sufficiently large K0

τ1
, the value of ωl grows almost proportionally

to K0
τ1

. Hence, ωlτ1
K0

is almost constant for sufficiently large K0
τ1

and in Fig. 6 the Y-axis

can be chosen as ωfree
Δ τ1
K0

.
To obtain the lock-in frequency ωl for fixed τ1, τ2, and K0 using Fig. 6, we consider

the curve corresponding to the chosen τ2. Next, for X-value equal K0
τ1

we get the Y-value
of the curve. Finally, we multiply the Y-value by K0

τ1
.

Consider an analytical approach to the exact lock-in range computation. Main stages
of computation are presented in Subsection 3.1.

3.1. Analytical approach to the lock-in range computation
Consider a system ⎧⎨

⎩θ̇Δ(t) = y(t),
ẏ(t) = −K0τ2

τ1
ϕ̇(θΔ(t))y(t)− K0

τ1
ϕ(θΔ(t)),

(9)

where y(t) = ωfree
Δ − K0

τ1
(x(t)+ τ2ϕ(θΔ(t))). Relations (9) are equivalent to (6) and allow

one to exclude ωfree
Δ from the computation. Note that equilibria (θeq,yeq) of (9) and the

corresponding equilibria (θeq,xeq) of (6) are of the same type and related as

(θeq,yeq) =
(
θeq,ωfree

Δ −K0bxeq

)
.
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Figure 6: Diagram for the lock-in frequency ωl calculation.

The separatrix Q(θΔ,ωfree
Δ ) from (8) corresponds to the upper separatrix S′(θΔ) of the

phase plane of (9) (see Fig. 7) and the following relation

Q(θs
eq,ωfree

Δ ) = τ1
K0

(
ωfree

Δ −S′(θs
eq)

)

is valid.

x

θ
Δ

θ
eq

s

x
eq

(ω
∆   

)free

freeQ(θ
Δ
,ω

∆   
)

θ
eq

+2�s
θ

eq
-2�s

y

θ
Δ

θ
eq

s θ
eq

+2�s
θ

eq
-2�s

0

S'(θ
Δ
)

Figure 7: Phase plane portraits of (6) and (9).

Relation (8) takes the form
ωl = 1

2S′(θs
eq). (10)

The computation of the separatrix S′(θΔ) is in two steps. Step 1: we integrate the
separatrix S′(θΔ) in the interval

(
π
2 ,π

)
(in which the function ϕ(θΔ) is continuously

differentiable) and compute S′(π
2 ). For this purpose, we need to find the eigenvector that

7



corresponds to separatrix S′(θΔ) on the considered interval. Step 2: we find a general
solution of (9) on the interval

(
−π

2 , π
2

)
. Here there exist three cases depending on the type

stable equilibrium
(
θs

eq,0
)
: a stable focus, stable node, and stable degenerated node. For

every case described above we perform separate computations. Using the computed S′(π
2 )

as the initial data of the Cauchy problem, it is possible to obtain an exact expression for
S′(θs

eq).
The obtained analytical results are illustrated in Fig. 8. The red line in Fig. 8 is used

for the case of stable focus, and the green line for the case of stable node. The crosses are
used for the case of stable degenerated node.
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Figure 8: Diagram for the lock-in frequency ωl calculation.

The formulae for three possible cases are given below (redefinitions a = τ2
τ1

, b = 1
τ1

are
used to reduce the analytical formulae):
A. (aK0)2 −2bK0π > 0 that corresponds to a stable node:

ωl = 1
π

c1
√

(aK0)2 −2bK0π
(

−c2
c1

)
⎛
⎝1

2 − aK0

2
√

(aK0)2 −2bK0π

⎞
⎠

, (11)

where c1 = π

4

⎛
⎝

√
(aK0)2 +2bK0π√
(aK0)2 −2bK0π

+1
⎞
⎠ , c2 = π

4

⎛
⎝1−

√
(aK0)2 +2bK0π√
(aK0)2 −2bK0π

⎞
⎠ .

B. (aK0)2 −2bK0π = 0 that corresponds to a stable degenerated node:

ωl = 1
2c2 e

(
aK0
2c2

)
,where c2 =

√
(aK0)2 +2bK0π

2 . (12)
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C. (aK0)2 −2bK0π < 0 that corresponds to a stable focus:

ωl = −aK0 et0 Reλs
1

2π
(c1 cos(t0 Imλs

1)+ c2 sin(t0 Imλs
1))+

+
et0 Reλs

1
√

2bK0π − (aK0)2

2π
(c2 cos(t0 Imλs

1)− c1 sin(t0 Imλs
1)) , (13)

where t0 =
arctg

(
−c1

c2

)
Imλs

1
, c1 = π

2 , c2 =
π
√

(aK0)2 +4bK0(π − 1
k )

2
√

2bK0π − (aK0)2
,

λs
1 =

−aK0 + i
√

2bK0π − (aK0)2

π
.

Rigorous derivation of (11), (12), and (13) is given in Appendix A. The analytical and
numerical results are compared in Fig. 9.
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Figure 9: Comparison of analytical and numerical results on the lock-in computation.

4. Conclusion

In the present work the model of PLL with impulse signals and active PI filter in the
signal’s phase space is described. For the considered PLL the lock-in range is computed
analytically and obtained result are compared with numerical simulations.

Appendix A. The lock-in computation

In this section equations (11), (12), and (13) are rigorously derived. Consider the
following relations ⎧⎨

⎩θ̇Δ = y,

ẏ = −aK0ϕ̇(θΔ)y − bK0ϕ(θΔ).
(A.1)

Also we consider a normalized 2π-periodic zigzag function

ϕ(θΔ) =
⎧⎨
⎩kθΔ, if − 1

k ≤ θΔ ≤ 1
k ;

− k
πk−1θΔ + πk

πk−1 , if 1
k ≤ θΔ ≤ 2π − 1

k

(A.2)
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for finite k > 1
π in the interval θΔ ∈

[
− 1

k ,2π − 1
k

)
. For k = 2

π the function ϕ(θΔ) is trian-
gular and corresponds to (1).

From 2π-periodicity of (A.1) it follows that for each interval the behavior of phase
trajectories on the system phase plane is the same

θΔ ∈
(

−1
k

+2πj,−1
k

+2π(j +1)
]
, j ∈ Z.

Thus, we can consider a single interval
(
− 1

k ,2π − 1
k

]
of the phase plane of (A.1).

In the intervals inside
(
− 1

k ,2π − 1
k

]
, (A.1) takes the form:

I. − 1
k < θΔ < 1

k

⎧⎨
⎩

˙θΔ = y,

ẏ = −aK0ky − bK0kθΔ;
(A.3)

II. 1
k < θΔ < 2π − 1

k ⎧⎨
⎩

˙θΔ = y,

ẏ = aK0
k

πk−1y + bK0
(

k
πk−1θΔ − πk

πk−1

)
.

(A.4)

In each interval there exists only one equilibrium:
I. − 1

k < θΔ < 1
k⎧⎨

⎩yeq = 0,

−aK0ky − bK0kθeq = 0;

⎧⎨
⎩yeq = 0,

θeq = 0;

II. 1
k < θΔ < 2π − 1

k⎧⎨
⎩yeq = 0,

aK0k
πk−1yeq + bK0k

πk−1 (θeq −π) = 0.

⎧⎨
⎩yeq = 0,

θeq = π.

To define a type of the equilibria points, we compute the corresponding characteristic
polynomial and eigenvalues. For the first equilibrium (θeq,yeq) = (0,0) the characteristic
polynomial is as follows

χ(λ) =
∣∣∣∣∣ −λ 1

−bK0k −aK0k −λ

∣∣∣∣∣ = λ2 +aK0kλ+ bK0k.

The eigenvalues of the equilibrium (θeq,yeq) = (0,0) depend on a sign of (aK0)2 − 4bK0
k .

Here, there exist three cases:
A. (aK0)2 − 4bK0

k > 0:

λs
1,2 =

−aK0k ±
√

(aK0k)2 −4bK0k

2 ,

the equilibrium (0,0) is a stable node.
B. (aK0)2 − 4bK0

k = 0:

λs
1 = λs

2 = −aK0k

2 ,

10



the equilibrium (0,0) is a stable degenerated node, or stable proper node.
C. (aK0)2 − 4bK0

k < 0:

λs
1,2 =

−aK0k ± i
√

4bK0k − (aK0k)2

2 ,

the equilibrium (0,0) is a stable focus.
Denote (θs

eq,yeq) = (0,0).
For the second equilibrium (θeq,yeq) = (π,0) we have

χ(λ) =
∣∣∣∣∣ −λ 1

bK0k
πk−1

aK0k
πk−1 −λ

∣∣∣∣∣ = λ2 − aK0k

πk −1λ− bK0k

πk −1;

λu
1,2 =

aK0k
πk−1 ±

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 ,

which means that (π,0) is always an unstable saddle for the considered parameters of the
PLL. Denote (θu

eq,yeq) = (π,0).
The calculation of S′(θs

eq) from formula (10) for lock-in range is in some stages. First,
find two-dimensional eigenvectors Xu

1 , Xu
2 of saddle point

(
θu

eq,yeq
)

from the interval
θΔ ∈

(
1
k ,2π − 1

k

)
. Next, compute S′( 1

k ), which is possible due to the continuity of (A.1).
Find two-dimensional eigenvectors Xs

1 , Xs
2 of stable equilibrium

(
θs

eq,yeq
)

in the interval
θΔ ∈

(
− 1

k , 1
k

)
. Find a general solution of (A.1) in the interval θΔ ∈

(
− 1

k , 1
k

)
. Using the

obtained S′( 1
k ) as the initial data of the Cauchy problem, we can compute S′(θs

eq).
Let us find the eigenvectors Xu

1 , Xu
2 of a saddle point

(
θu

eq,yeq
)
. First, find the

eigenvector Xu
1 :

( −λu
1 1

bK0k
πk−1

aK0k
πk−1 −λu

1

)
Xu

1 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

−
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 1

bK0k
πk−1

aK0k
πk−1 −

aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
1 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

−
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 1

bK0k
πk−1 −

aK0k
πk−1 −

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
1 = O. (A.5)

Multiply the second row of (A.5) by
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 and divide it by bK0k

πk −1.
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Then we have⎛
⎜⎜⎜⎜⎜⎜⎝

−
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 1
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 −

((
aK0k
πk−1

)2 − (aK0k
πk−1)2 + 4bK0k

πk−1

)
(πk −1)

4bK0k

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
1 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

−
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 1
aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1

2 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
1 = O.

Hence,

Xu
1 =

⎛
⎜⎜⎝

c

c

√
(aK0k)2 +4bK0k(πk −1)+aK0k

2(πk −1)

⎞
⎟⎟⎠ .

Let us choose c =

√
(aK0k)2 +4bK0k(πk −1)−aK0k

2bK0k
. Then

Xu
1 =

⎛
⎜⎜⎜⎜⎝

√
(aK0k)2 +4bK0k(πk −1)−aK0k

2bK0k
(aK0k)2 +4bK0k(πk −1)− (aK0k)2

4bK0k(πk −1)

⎞
⎟⎟⎟⎟⎠ ,

Xu
1 =

⎛
⎜⎜⎝

√
(aK0k)2 +4bK0k(πk −1)−aK0k

2bK0k
1

⎞
⎟⎟⎠ .

Next, find the second eigenvector Xu
2 in the same way:( −λu

2 1
bK0k
πk−1

aK0k
πk−1 −λu

2

)
Xu

2 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 1

bK0k
πk−1

aK0k
πk−1 +

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
2 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 1

bK0k
πk−1

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 + aK0k
πk−1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
2 = O. (A.6)
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Multiply the second row of (A.6) by

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 , and divide it by bK0k

πk −1.
Then

⎛
⎜⎜⎜⎜⎜⎜⎝

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 1√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2

((
aK0k
πk−1

)2
+ 4bK0k

πk−1 −
(

aK0k
πk−1

)2)
(πk −1)

4bK0k

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
2 = O,

⎛
⎜⎜⎜⎜⎜⎜⎝

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 1√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Xu
2 = O.

Hence,

Xu
2 =

⎛
⎜⎜⎝

−c

c

√(
aK0k
πk−1

)2
+ 4bK0k

πk−1 − aK0k
πk−1

2

⎞
⎟⎟⎠ .

Choose c =

√
(aK0k)2 +4bK0k(πk −1)+aK0k

2bK0k
:

Xu
2 =

⎛
⎜⎜⎜⎜⎝

−
√

(aK0k)2 +4bK0k(πk −1)+aK0k

2bK0k
(aK0k)2 +4bK0k(πk −1)− (aK0k)2

4bK0k(πk −1)

⎞
⎟⎟⎟⎟⎠ ,

Xu
2 =

⎛
⎜⎜⎝ −

√
(aK0k)2 +4bK0k(πk −1)+aK0k

2bK0k
1

⎞
⎟⎟⎠ .

We can show that the direction of separatrix S′(θΔ) coincides with the direction of
eigenvector Xu

2 , which corresponds to eigenvalue λu
2 . That allows us to find S′( 1

k ). For
this purpose, we write an equation of straight line, which passes through two points

(x1,y1) = (π,0) ,

(x2,y2) =
⎛
⎝π −

√
(aK0k)2 +4bK0k(πk −1)+aK0k

2bK0k
,1

⎞
⎠ .

13



The equation takes the form
y −0
1−0 = x−π⎛

⎝π −
√

(aK0k)2 +4bK0k(πk −1)+aK0k

2bK0k

⎞
⎠−π

,

y = 2bK0k√
(aK0k)2 +4bK0k(πk −1)+aK0k

(π −x) ,

y =
2bK0k

(√
(aK0k)2 +4bK0k(πk −1)−aK0k

)
(aK0k)2 +4bK0k(πk −1)− (aK0k)2 (π −x) ,

y =

√
(aK0k)2 +4bK0k(πk −1)−aK0k

2(πk −1) (π −x) .

Then

S′(1
k

) =

√
(aK0k)2 +4bK0k(πk −1)−aK0k

2(πk −1)

(
π − 1

k

)
=

=

√
(aK0)2 +4bK0(π − 1

k )−aK0

2 .

Next, we need to find the eigenvectors of equilibrium (θs
eq,yeq) and a general solution

of (A.1) in the interval
(
− 1

k , 1
k

)
. It was shown that for a stable equilibrium (θs

eq,yeq) in the
interval

(
− 1

k , 1
k

)
there exist three different cases, which depend on a sign of (aK0)2 − 4bK0

k .
The eigenvectors Xs

1 and Xs
2 are computed in the case of stable focus only. For other

cases the computation of Xs
1 , Xs

2 is similar to that, considered in Appendix A.1.

Appendix A.1. Stable node
This case corresponds to (aK0)2 − 4bK0

k > 0. Let us find the eigenvectors Xs
1 , Xs

2 :( −λs
1 1

−bK0k −aK0k −λs
1

)
Xs

1 = O,

⎛
⎜⎜⎜⎜⎝

aK0k −
√

(aK0k)2 −4bK0k

2 1

−bK0k −aK0k +
aK0k −

√
(aK0k)2 −4bK0k

2

⎞
⎟⎟⎟⎟⎠Xs

1 = O,

⎛
⎜⎜⎜⎜⎝

aK0k −
√

(aK0k)2 −4bK0k

2 1

−bK0k −aK0k +
√

(aK0k)2 −4bK0k

2

⎞
⎟⎟⎟⎟⎠Xs

1 = O. (A.7)

Multiply the second row of (A.7) by
aK0k −

√
(aK0k)2 −4bK0k

2 , and divide it by bK0k:
⎛
⎜⎜⎜⎜⎝

aK0k −
√

(aK0k)2 −4bK0k

2 1

−aK0k −
√

(aK0k)2 −4bK0k

2 −(aK0k)2 − (aK0k)2 +4bK0k

4bK0k

⎞
⎟⎟⎟⎟⎠Xs

1 = O,
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⎛
⎜⎜⎜⎜⎝

aK0k −
√

(aK0k)2 −4bK0k

2 1

−aK0k −
√

(aK0k)2 −4bK0k

2 −1

⎞
⎟⎟⎟⎟⎠Xs

1 = O,

Xs
1 =

⎛
⎜⎝

−c

c
aK0k −

√
(aK0k)2 −4bK0k

2

⎞
⎟⎠ .

Choose c = −1. Then

Xs
1 =

⎛
⎜⎝

1√
(aK0k)2 −4bK0k −aK0k

2

⎞
⎟⎠ .

Next, find eigenvector Xs
2 :

( −λs
2 1

−bK0k −aK0k −λs
2

)
Xs

2 = O,

⎛
⎜⎜⎜⎜⎝

aK0k +
√

(aK0k)2 −4bK0k

2 1

−bK0k −aK0k +
aK0k +

√
(aK0k)2 −4bK0k

2

⎞
⎟⎟⎟⎟⎠Xs

2 = O,

⎛
⎜⎜⎜⎜⎝

aK0k +
√

(aK0k)2 −4bK0k

2 1

−bK0k

√
(aK0k)2 −4bK0k −aK0k

2

⎞
⎟⎟⎟⎟⎠Xs

2 = O. (A.8)

Multiply the second row of (A.8) by
aK0k +

√
(aK0k)2 −4bK0k

2 , and divide it by bK0k:

⎛
⎜⎜⎜⎜⎝

aK0k +
√

(aK0k)2 −4bK0k

2 1

−aK0k +
√

(aK0k)2 −4bK0k

2
(aK0k)2 −4bK0k − (aK0k)2

4bK0k

⎞
⎟⎟⎟⎟⎠Xs

2 = O,

⎛
⎜⎜⎜⎜⎝

aK0k +
√

(aK0k)2 −4bK0k

2 1

−aK0k +
√

(aK0k)2 −4bK0k

2 −1

⎞
⎟⎟⎟⎟⎠Xs

2 = O,

Xs
2 =

⎛
⎜⎝

−c

c
aK0k +

√
(aK0k)2 −4bK0k

2

⎞
⎟⎠ .
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Choose c = −1. Then

Xs
2 =

⎛
⎜⎝

1

−aK0k +
√

(aK0k)2 −4bK0k

2

⎞
⎟⎠ .

In the interval θΔ ∈
(
− 1

k , 1
k

)
for

(
θs

eq,yeq
)

= (0,0) being a node, a general solution of (A.1)
has the form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θΔ(t) = c1 eλs
1t + c2 eλs

2t,

y(t) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t.

(A.9)

Let us find coefficients c1, c2 of (A.9) for the solution of the Cauchy problem with initial

conditions θΔ(0) = 1
k , y(0) =

√
(aK0)2+4bK0(π− 1

k )−aK0
2 , which coincide with S′( 1

k ).
At moment t = 0 we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k

= c1 + c2,

√
(aK0)2 +4bK0(π − 1

k )−aK0

2 =

= −c1
aK0k −

√
(aK0k)2 −4bK0k

2 − c2
aK0k +

√
(aK0k)2 −4bK0k

2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 = 1
k

− c1,

√
(aK0)2 +4bK0(π − 1

k )−aK0

2 +
aK0k +

√
(aK0k)2 −4bK0k

2k
=

= −c1
aK0k −

√
(aK0k)2 −4bK0k

2 + c1
aK0k +

√
(aK0k)2 −4bK0k

2 ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c2 = 1
k

− c1,

√
(aK0)2 +4bK0(π − 1

k )
2 +

√
(aK0)2 − 4bK0

k

2 = c1k

√
(aK0)2 − 4bK0

k
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c2 = 1
k

− c1,

c1 =
⎛
⎝

√
(aK0)2 +4bK0(π − 1

k )√
(aK0)2 − 4bK0

k

+1
⎞
⎠ : 2k,
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
⎛
⎝

√
(aK0)2 +4bK0(π − 1

k )√
(aK0)2 − 4bK0

k

+1
⎞
⎠ : 2k,

c2 =
⎛
⎝1−

√
(aK0)2 +4bK0(π − 1

k )√
(aK0)2 − 4bK0

k

⎞
⎠ : 2k.

(A.10)

Finally, find y(t0) under the condition θΔ(t0) = 0. The value of y(t0) corresponds to
S′(θs

eq). For this purpose, we express y(t0) in terms of c1, c2 from (A.10). Then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = c1 eλs
1t0 + c2 eλs

2t0 ,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−c1
c2

= e(λs
2 −λs

1) t0 ,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c1
c2

= e

⎛
⎝−

√
(aK0k)2 −4bK0k +aK0k

2 −
√

(aK0k)2 −4bK0k −aK0k

2

⎞
⎠ t0

,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c1
c2

= e

(
−

√
(aK0k)2 −4bK0k

)
t0

,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln
(

−c1
c2

)
= −

(√
(aK0k)2 −4bK0k

)
t0,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 =
ln

(
−c2

c1

)
√

(aK0k)2 −4bK0k
,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,
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Transform the following expression

eλs
1t0 = e

⎛
⎝ln

(
−c2

c1

)
λs

1√
(aK0k)2 −4bK0k

⎞
⎠

= e

⎛
⎜⎝ln

(
−c2

c1

) √
(aK0k)2 −4bK0k −aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎟⎠

=

=

⎛
⎜⎜⎝e

ln
(

−c2
c1

)⎞
⎟⎟⎠

⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

=
(

−c2
c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

.

Similarly,

eλs
2t0 = e

⎛
⎝ln

(
−c2

c1

)
λs

2√
(aK0k)2 −4bK0k

⎞
⎠

= e

−

⎛
⎜⎝ln

(
−c2

c1

) √
(aK0k)2 −4bK0k +aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎟⎠

=

=

⎛
⎜⎜⎝e

ln
(

−c2
c1

)⎞
⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

1
2 + aK0

2
√

(aK0)2 − 4bK0
k

⎞
⎟⎟⎟⎟⎠

=
(

−c2
c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠−1

.

Then

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2 eλs
1t0 − c2

aK0k +
√

(aK0k)2 −4bK0k

2 eλs
2t0 ,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2

(
−c2

c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

−

− c2
aK0k +

√
(aK0k)2 −4bK0k

2

(
−c2

c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠−1

,

y(t0) = −c1
aK0k −

√
(aK0k)2 −4bK0k

2

(
−c2

c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

+

+ c1
aK0k +

√
(aK0k)2 −4bK0k

2

(
−c2

c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

.

As a result, for the case (aK0k)2 − 4bK0k > 0, when a stable equilibrium
(
θs

eq,yeq
)

is
a stable node, S′(θs

eq) can be found from the following formula

S′(θs
eq) = c1

√
(aK0k)2 −4bK0k

(
−c2

c1

)
⎛
⎝1

2 − aK0k

2
√

(aK0k)2 −4bK0k

⎞
⎠

, (A.11)
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where

c1 =
⎛
⎝

√
(aK0)2 +4bK0(π − 1

k )√
(aK0)2 − 4bK0

k

+1
⎞
⎠ : 2k, c2 =

⎛
⎝1−

√
(aK0)2 +4bK0(π − 1

k )√
(aK0)2 − 4bK0

k

⎞
⎠ : 2k.

Appendix A.2. Stable focus
This case corresponds to (aK0)2 − 4bK0

k < 0. The eigenvectors Xs
1 , Xs

2 are found in
the same way as in Appendix A.1:

Xs
1 =

⎛
⎜⎝

1

−aK0k − i
√

4bK0k − (aK0k)2

2

⎞
⎟⎠ , Xs

2 =

⎛
⎜⎝

1

−aK0k + i
√

4bK0k − (aK0k)2

2

⎞
⎟⎠ .

The eigenvectors Xs
1 , Xs

2 can be represented as

Xs
1,2(t) = Us

1,2 + iV s
1,2,

where Us
1,2, V s

1,2 are real two-dimensional vectors:

Us
1 =

⎛
⎝ 1

−aK0k

2

⎞
⎠ , V s

1 =

⎛
⎜⎝

0√
4bK0k − (aK0k)2

2

⎞
⎟⎠ ,

Us
2 =

⎛
⎝ 1

−aK0k

2

⎞
⎠ , V s

2 =

⎛
⎜⎝

0

−
√

4bK0k − (aK0k)2

2

⎞
⎟⎠ .

Consider a solution of (A.1), which corresponds to the eigenvalue λs
1:

Y1(t) = eλs
1tXs

1 = e(Reλs
1 + i Imλs

1) t (Us
1 + iV s

1 ) =

= etReλs
1 (cos(t Imλs

1)+ isin(t Imλs
1))(Us

1 + iV s
1 ) =

etReλs
1 (Us

1 cos(t Imλs
1)−V s

1 sin(t Imλs
1))+

+ ietReλs
1 (Us

1 sin(t Imλs
1)+V s

1 cos(t Imλs
1)) .

A general solution of (A.1) takes the form

Y (t) = c1etReλs
1 (Us

1 cos(t Imλs
1)−V s

1 sin(t Imλs
1))+

+ c2etReλs
1 (Us

1 sin(t Imλs
1)+V s

1 cos(t Imλs
1)) =

= etReλs
1Us

1 (c1 cos(t Imλs
1)+ c2 sin(t Imλs

1))+

+ etReλs
1V s

1 (c2 cos(t Imλs
1)− c1 sin(t Imλs

1)) .

In other words,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θΔ(t) = etReλs
1 (c1 cos(t Imλs

1)+ c2 sin(t Imλs
1)) ,

y(t) = −aK0k etReλs
1

2 (c1 cos(t Imλs
1)+ c2 sin(t Imλs

1))+

+
etReλs

1
√

4bK0k − (aK0k)2

2 (c2 cos(t Imλs
1)− c1 sin(t Imλs

1)) .

(A.12)
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Let us find the coefficients c1, c2 for the solution of the Cauchy problem with the initial

data θΔ(0) = 1
k , y(0) =

√
(aK0)2+4bK0(π− 1

k )−aK0
2 , similarly to Appendix A.1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k

= e0Reλs
1 (c1 cos(0Imλs

1)+ c2 sin(0Imλs
1)) ,√

(aK0)2 +4bK0(π − 1
k )−aK0

2 =

= −aK0k e0Reλs
1

2 (c1 cos(0Imλs
1)+ c2 sin(0Imλs

1))+

+
e0Reλs

1
√

4bK0k − (aK0k)2

2 (c2 cos(0Imλs
1)− c1 sin(0Imλs

1)) ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
k

= c1,√
(aK0)2 +4bK0(π − 1

k )−aK0

2 = −aK0k

2 c1 +

√
4bK0k − (aK0k)2

2 c2,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1 = 1
k

,

c2 =

√
(aK0)2 +4bK0(π − 1

k )

k

√
4bK0

k
− (aK0)2

.

Next, let us find t0 such that θΔ(t0) = 0.

0 = et0 Reλs
1 (c1 cos(t0 Imλs

1)+ c2 sin(t0 Imλs
1)) ,

− c1
c2

= tg(t0 Imλs
1) ,

t0 =
arctg

(
−c1

c2

)
Imλs

1
.

Finally, all the unknowns for y(t0) from (A.12) are found and S′(θs
eq) is as follows

S′(θs
eq) = y(t0) = −aK0k et0 Reλs

1

2 (c1 cos(t0 Imλs
1)+ c2 sin(t0 Imλs

1))+

+
et0 Reλs

1
√

4bK0k − (aK0k)2

2 (c2 cos(t0 Imλs
1)− c1 sin(t0 Imλs

1)) , (A.13)

where

t0 =
arctg

(
−c1

c2

)
Imλs

1
, λs

1 =
−aK0k + i

√
4bK0k − (aK0k)2

2 ,

c1 = 1
k

, c2 =

√
(aK0)2 +4bK0(π − 1

k )

k

√
4bK0

k
− (aK0)2

.
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Appendix A.3. Stable degenerated node
This case corresponds to (aK0)2 − 4bK0

k = 0. In this case the eigenvalues λs
1 and λs

1
coincide:

λs := −aK0k

2 = λs
1 = λs

2.

A stable equilibrium
(
θs

eq,yeq
)

is a stable degenerated node, or a stable proper node.
For the characteristic matrix( −λs 1

−bK0k −aK0k −λs

)

of (A.1) it is shown that
(
θs

eq,yeq
)

is a stable degenerated node. Find the eigenvector Xs

corresponding to the eigenvalue λs of algebraic multiplicity two:
( −λs 1

−bK0k −aK0k −λs

)
Xs = O,

⎛
⎜⎜⎝

aK0k

2 1

−bK0k −aK0k

2

⎞
⎟⎟⎠Xs = O.

Adding the first row, multiplied by aK0k

2 , to the second row, we have:

⎛
⎜⎜⎝

aK0k

2 1
(aK0k)2

4 − bK0k 0

⎞
⎟⎟⎠Xs = O.

The eigenvector Xs can be written as

Xs =
⎛
⎝ c

−c
aK0k

2

⎞
⎠ .

Choose c = 1. To find a general solution of (A.1), we need to additionally find the first
associated vector Xs

1 :
⎛
⎜⎜⎝

aK0k

2 1

−bK0k −aK0k

2

⎞
⎟⎟⎠Xs

1 =
⎛
⎝ 1

−aK0k

2

⎞
⎠ ,

⎛
⎜⎜⎝

aK0k

2 1
(aK0k)2

4 − bK0k 0

⎞
⎟⎟⎠Xs

1 =
(

1
0

)
,

Xs
1 =

⎛
⎝ c

c− c
aK0k

2

⎞
⎠ .

Choose c = 1.

21



A general solution of (A.1) has the form
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θΔ(t) = e

(
−aK0k

2 t

)
(c1 + c2 (t+1)) ,

y(t) = e

(
−aK0k

2 t

) (
−aK0k

2 c1 + c2

(
−aK0k

2 t+1− aK0k

2

))
.

(A.14)

Similarly to Appendix A.1 and Appendix A.2, let us find the coefficients c1 and c2
for the solution of the Cauchy problem with the initial data θΔ(0) = 1

k and y(0) =√
(aK0)2+4bK0(π− 1

k )−aK0
2 . In this case we have:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
k

= c1 + c2,√
(aK0)2 +4bK0(π − 1

k )−aK0

2 = −aK0k

2 c1 + c2

(
1− aK0k

2

)
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 = 1
k

− c2,√
(aK0)2 +4bK0(π − 1

k )−aK0

2 = −aK0k

2

(1
k

− c2

)
+ c2 − c2

aK0k

2 ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 = 1
k

− c2,√
(aK0)2 +4bK0(π − 1

k )
2 = c2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 = 1
k

−
√

(aK0)2 +4bK0(π − 1
k )

2 ,

c2 =

√
(aK0)2 +4bK0(π − 1

k )
2 .

Find t0 such that θΔ(t0) = 0:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = e

(
−aK0k

2 t0

)
(c1 + c2 (t0 +1)) ,

y(t0) = e

(
−aK0k

2 t0

) (
−aK0k

2 c1 + c2

(
−aK0k

2 t0 +1− aK0k

2

))
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = e

(
−aK0k

2 t0

)
((c1 + c2)+ c2t0) ,

y(t0) = e

(
−aK0k

2 t0

) (
−aK0k

2 (c1 + c2)+ c2

(
−aK0k

2 t0 +1
))

,
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = 1
k

+ c2t0,

y(t0) = e

(
−aK0k

2 t0

) (
−aK0

2 + c2

(
−aK0k

2 t0 +1
))

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t0 = − 1
c2k

,

y(t0) = e

(
−aK0k

2 t0

) (
−aK0

2 − aK0kc2
2 t0 + c2

)
.

Finally, the expression for S′(θs
eq) is as follows

S′(θs
eq) = y(t0) = c2 e

(
aK0
2c2

)
, (A.15)

where

c2 =

√
(aK0)2 +4bK0(π − 1

k )
2 .
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1. INTRODUCTION

The PLL circuit has been invented by French engineer
Henri de Bellescize in 1932 (Bellescize, 1932) for the
use in synchrodyne radio receivers – as alternative to
a popular, at the time, superheterodyne. Since then,
various modifications of PLL circuits (digital PLL, all-
digital PLL, software PLL, neuronal PLL and so on) have
been developed. Moreover, new circuits, based on PLL
operation principles, were invented. One of such circuits is
the Costas loop, which was invented by American engineer
John Costas in 1956 (Costas, 1956; Costas, 1962).

The PLL-based circuits are widely used in radio engineer-
ing for signal demodulation, carrier frequency recovery,
and frequency synthesis (see, e.g., (Best, 2007)). After
the invention of integral circuits, PLL-based circuits have
started to be applied to computer architecture, for exam-
ple, for synchronization of multiprocessors’ clocks (Smith,
1999; Gardner et al., 1993). At the present time there are
lots of publications devoted to the study of PLL-based
circuits.

One of the important problem, related to the study of
PLL-based circuits, is to find a pull-in range – difference
of reference and tunable oscillators’ frequencies for which
synchronization occurs for any initial state of the circuit.
Two effective analytical approaches for the pull-in range
estimation are known. The first one is based on the
integration of the phase plane trajectories and the analysis
of their behavior (Tricomi, 1933; Andronov et al., 1937).
Using this approach, in (Viterbi, 1966) it is stated that
the pull-in range of the classical PLL with sinusoidal
characteristic of the phase detector is infinite (to complete
rigorously explanations given in (Viterbi, 1966), one has
to prove the nonexistence of heteroclitic trajectory and
� This work was supported by Saint-Petersburg State University
(project 6.39.416.2014, s. 3-4; project 6.38.505.2014, s. 5.). and
Russian Scientific Foundation (project 14-21-00041, s. 6).

the first-order limit cycles). In a recent paper (not yet
published) Roland E. Best formulated a similar statement
as a conjecture for two-phase Costas loop. The second
approach is based on the Lyapunov function (Lyapunov,
1892) construction and the use of global stability criteria
for the cylindrical phase space (Yakubovich et al., 2004;
Leonov and Kuznetsov, 2014).

In the present work rigorous analytical study of the pull-in
range by both methods are discussed. Here the application
of the method of phase plane analysis is demonstrated
for the PLL-based circuits with sinusoidal phase detector
(PD) characteristics and the method of Lyapunov function
is applied to PD characteristics in general form.

2. MODEL OF PLL-BASED CIRCUITS IN SIGNAL’S
PHASE SPACE

For the description of PLL-based circuits, a physical model
in the signals space and a mathematical model in signal’s
phase space are used. The models of PLL-based circuits
in signal’s phase space were described in the works related
to 60-s of XX century (Viterbi, 1966; Shakhgil’dyan and
Lyakhovkin, 1966; Gardner, 1966). The main advantage of
models in the signal’s phase space is the nonexistence of
high-frequency components. Thus, simulation in signal’s
phase space allows one to consider slow varying frequency
only. By contrast, the simulation of PLL-based circuits
in the signals space is complicated since one has to
observe simultaneously both high-frequency (fast changing
of phases) and low-frequency (relatively slow changing of
frequencies) oscillations (Abramovitch, 2008).

The physical models of PLL-based circuits can be reduced
to the models in signal’s phase space (Leonov et al.,
2012; Leonov and Kuznetsov, 2014) by the averaging
methods (see, e.g., (Mitropolsky and Bogolubov, 1961;
Samoilenko and Petryshyn, 2004)). In order to study
models of PLL-based circuits in signal’s phase space it

Keywords: phase-locked loop, nonlinear analysis, PLL, Costas loop, pull-in range, hidden
oscillations
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AbstractIn the present work the pull-in range of PLL-based circuits with proportionally-
integrating filter is studied. Two approaches based on the methods of phase plane analysis
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is necessary to compute characteristic of a phase detector
– nonlinear element of PLL-based circuits for matching
tunable signals. The characteristic of a phase detector
ϕ(θ1(t) − θ2(t)) (further it will be denoted θe(t) = θ1(t) −
θ2(t)) is a function with respect to the difference of phases
of reference and tunable oscillators (for the model in the
signals space the result of the work of phase detector ϕ(t)
depends on time t).

θ
2
(t)

G(t)

VCO

PD
φ(θ

1
(t) - θ

2
(t))

Input
θ

1
(t)

Filter

Figure 1. Model of PLL-based circuit in signal’s phase
space.

Let us describe a general model of PLL-based circuits in
signal’s phase space. A reference oscillator and a tunable
oscillator generate phases θ1(t) and θ2(t) respectively. The
frequency of carrier signal is constant and equals to ω1:

dθ1(t)
dt

= ω1. (1)

The VCO free-running frequency is denoted by ωfree.

The phases θ1(t) and θ2(t) enter the inputs of a phase
detector. A signal of phase detector output ϕ(θe(t)) is
filtered by Filter. In the context of considered conjecture
the Filter is chosen to be proportionally-integrating with
the transfer function W (s) = b+as

s , a > 0, b > 0. The
Filter is described by the equation

dG(t)
dt

= a
dϕ(θe(t))

dt
+ bϕ(θe(t)). (2)

The output of Filter G(t) serves as a control signal for
VCO:

dθ2(t)
dt

= ωfree +K0G(t), (3)
where K0 > 0 is a VCO gain coefficient.

3. TWO-PHASE MODIFICATIONS OF PLL-BASED
CIRCUITS

In this section two-phase PLL-based circuits: the two-
phase PLL circuit and the two-phase Costas loop, are
described.

Input
cos(θ

1
(t))

sin(θ
1
(t))

Filter

-sin(θ
2
(t))

cos(θ
2
(t))

G(t)

Hilbert

VCO

PD
sin(θ

1
(t) - θ

2
(t))

Figure 2. Two-phase PLL circuit.

A block diagram of the two-phase PLL circuit is shown
in Fig. 2 (see also (Best et al., 2014)). The compo-
nents of this circuit are the following: reference oscilla-
tor (Input), Hilbert converter (Hilbert), tunable oscillator

(VCO), complex multiplier as a phase detector, and filter
(Filter).

The reference oscillator Input generates a carrier signal
cos(θ1(t)). The carrier signal is transformed by the Hilbert
converter in sin(θ1(t)). The tunable oscillator VCO gener-
ates signals cos(θ2(t)) and −sin(θ2(t)).

-sin(θ
2
(t))

cos(θ
2
(t))

sin(θ
1
(t))

cos(θ
1
(t))

sin(θ
1
(t) - θ

2
(t))+

+

Figure 3. Complex multiplier of the two-phase PLL circuit.

To attain phase synchronization of frequency, the complex
multiplier (see Fig. 3) is used. The signals, generated by
Input and VCO, enter the input of the complex multiplier.
Signal

ϕ(θe(t)) = sin(θ1(t))cos(θ2(t))+
+cos(θ1(t))(−sin(θ2(t))) = sin(θe(t)), (4)

which is generated by a complex multiplier, enters the
input of the Filter. The signal G(t), obtained as a result
of filtration ϕ(θe(t)) serves as a control signal of VCO.

A physical model of the two-phase PLL circuit in the
signals space is equivalent to a mathematical model in
signal’s phase space since the characteristic of the phase
detector depends on θe(t).

By the given in Section 2 equations (1), (2), and (3), the
work of the two-phase PLL circuit is described by the
second order differential equation with respect to variable
θe(t):

θ̈e(t)+aK0 cos(θe(t))θ̇e(t)+ bK0 sin(θe(t)) = 0. (5)

A detailed study of equation (5) is given in Section 6.1.

Input
m(t)cos(θ

1
(t))

m(t)sin(θ
1
(t))

Filter

-sin(θ
2
(t))

cos(θ
2
(t))

G(t)

Hilbert

VCO

PD
sin(2(θ

1
(t) - θ

2
(t)))

2
1

Figure 4. The two-phase Costas loop.

The device of the two-phase Costas loop (see Fig 4) is de-
scribed in detail in (Tretter, 2007; Leonov and Kuznetsov,
2014; Best et al., 2014). The main difference between the
two-phase Costas loop and the two-phase PLL circuit is a
device of complex multiplier (see Fig. 5), which is used as
a phase detector.

For the two-phase Costas loop, the characteristic of phase
detector is as follows ϕ(θe(t)) = 1

2 sin(2θe(t)). As in the
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-sin(θ
2
(t))

cos(θ
2
(t))

-sin(θ
2
(t))

cos(θ
2
(t))

m(t)sin(θ
1
(t))

m(t)cos(θ
1
(t))

m(t)cos(θ
1
(t))

m(t)cos(θ
1
(t) - θ

2
(t))

m(t)sin(θ
1
(t) - θ

2
(t))

+

+

+

-
sin(2(θ

1
(t) - θ

2
(t)))2

1

Figure 5. Complex multiplier of the two-phase Costas loop.
case of the two-phase PLL circuit, the two-phase Costas
loop can be described by the second order differential
equation

2θ̈e(t)+aK0 cos(2θe(t))2θ̇e(t)+ bK0 sin(2θe(t)) = 0. (6)

Equation (6) is reduced to equation (5) by the change
θe(t) → 1

2θe(t).

4. DESCRIPTION OF THE PLL CIRCUIT

Consider a physical model of the PLL circuit in the
signals space (see Fig. 6). The Input of reference oscillator

Filter

f
2
(θ

2
(t))

G(t)

VCO

f 
1
(θ

1
(t))f

2
(θ

2
(t))

Input
f 

1
(θ

1
(t))

Figure 6. Model of the PLL circuit in signal’s phase space.

generates a carrier signal f1(θ1(t)) with the phase θ1(t).
The tunable oscillator VCO generates a signal f2(θ2(t))
with the phase θ2(t). A phase detector of the PLL circuit
is a multiplier. The multiplier receives the signals of the
reference and tunable oscillators and generates its product
f1(θ1(t))f2(θ2(t)).

A phase detector characteristic of a mathematical model
of the PLL circuit’s depends on the form of signals of the
reference and tunable oscillators. For the pairs of signals
f1(θ1), f2(θ2), given in Table 1, the characteristics of phase
detector are sinusoidal.

f1(θ1) = sin(θ1)
ϕ(θe) = 1

2 cos(θe)
f2(θ2) = sin(θ2)
f1(θ1) = sin(θ1)

ϕ(θe) = 2
π cos(θe)

f2(θ2) = sgn(sin(θ2))

f1(θ1) =
{ 2

π θ1 +1,θ1 ∈ [0;π] ,
1− 2

π θ1,θ1 ∈ [π;2π] ϕ(θe) = 4
π2 sin(θe)

f2(θ2) = sin(θ2)

Table 1. Characteristic of PD ϕ(θe) of the PLL circuit.

Further a derivative with respect to θe will be denoted by
ϕ′. From the given in Section 2 equations (1), (2), and (3)
for the models of the PLL circuit in signal’s phase space
one obtains

θ̈e(t)+aK0ϕ′(θe(t))θ̇e(t)+ bK0ϕ(θe(t)) = 0. (7)

ϕ(θe) = 1
2 cos(θe) θe → θe + π

2
K0 → 2K0

ϕ(θe) = 2
π cos(θe) θe → θe + π

2
K0 → π

2 K0

ϕ(θe) = 4
π2 sin(θe) K0 → π2

4 K0

Table 2. Reduction of equation (7) to equation (5).
For the characteristics of phase detector from Table 1,
by the linear changes from Table 2 equation (7) can be
reduced to equation (5).

5. DESCRIPTION OF THE COSTAS LOOP

Consider a model of electronic realization of the BPSK
Costas loop (see Fig. 7). The components of the circuit

-90º
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VCO
m(t) f

1
(θ

1
(t)) f

2
(θ

2
(t))
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L = m(t) f
1
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1
(t))f

2
(θ

2
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U = m(t) f
1
(θ

1
(t))f

2
(θ

2
(t))

m(t) 

LPF

Figure 7. Realization of the BPSK Costas loop.

are the following: reference oscillator (Input), tunable
oscillator (VCO), two multipliers, Hilbert converter, low-
pass side filters (LPF), and filter (Filter).

The Input generates a signal m(t)f1(θ1(t)), which is a
product of a signal of data m(t) = ±1 and a carrier high-
frequency signal f1(θ1(t)). The VCO generates a signal
f2(θ2(t)).

In the lower branch of circuit the signal L is obtained
by the Hilbert transformation of VCO signal and its
multiplication by carrier signal. In the upper branch the
signal U is obtained by the multiplication of carrier signal
and bias-free signal of VCO. After a transient process,
on the upper branch the demodulation process occurs. In
this case the signals U and L pass the circuit’s side filters
(LPF).

The control signal G(t) of tunable oscillator VCO is
obtained after the passing through Filter of a signal, which
arises as a result of multiplication (by the multiplier) of the
signals U and L. Since G(t) is independent on signal data
m(t), further one assumes that m(t) ≡ 1.

For sinusoidal signals f1(θ1(t)) = sin(θ1(t)) and f2(θ2(t)) =
sin(θ2(t)) the characteristic of phase detector in signal’s
phase space is as follows

ϕ(θe(t)) = −1
8

sin(θ1(t)−θ2(t)).

Similarly to the computations in Sections 3 and 4, a model
of the Costas loop in signal’s phase space can be described
by the second order differential equation

θ̈e(t)− aK0
8

cos(θe(t))θ̇e(t)− bK0
8

sin(θe(t)) = 0. (8)
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By the changes θe → θe + π, K0 → 8K0 equation (8) is
reduced to equation (5).

6. ANALYTICAL APPROACHES TO PULL-IN
RANGE ANALYSIS

6.1 Sinusoidal PD characteristic

Consider the conjecture on pull-in range of PLL-based
circuits.
Assertion 1. The pull-in range for the considered PLL-
based circuits with proportionally-integrating filter is infi-
nite.

For equation (5), which describes the work of all considered
circuits up to linear changes, Assertion 1 can be reformu-
lated in the following way:

For arbitrary parameters of circuits a > 0, b > 0, and
K0 > 0 any solution of equation (5) tends to stationary set
of system as t → +∞.
To prove Assertion 1, let us consider the classical analytical
approach, based on the phase plane analysis. In (Viterbi,
1966), by the methods of phase plane analysis, it is
explained that the pull-in range of the classical PLL
with PI filter and sinusoidal characteristic of the phase
detector is infinite. However to complete rigorously the
explanations given in (Viterbi, 1966), one has to prove
the nonexistence of a heteroclitic trajectory and first-order
limit cycles.

The consideration of a filter Filter with small parameter
allows one to integrate separatrices and demonstrate the
nonexistence of heteroclinic cycles (Alexandrov et al.,
2014).

Equation (5) with a = ε, where 0 < ε 	 1 is a small
parameter, can be represented as the following equivalent
system{

θ̇e(t) = y(t),
ẏ(t) = −εK0 cos(θe(t))y(t)− bK0 sin(θe(t)).

(9)

Let us expand the separatrices of the upper half-plane
of a phase plane R(θe,ε) and S(θe,ε) in a Taylor series
in variable ε, and find a necessary number of terms of
series for the conclusion about mutual disposition of the
approximations of these separatrices. It is possible to
show analytically that a mutual disposition of separatrices
themselves on the phase plane coincides with a mutual
disposition of their approximations by a Taylor series in
variable ε 	 1. A qualitative disposition of R(θe,ε) and
S(θe,ε) is shown in Fig. 8.

Considered approach is also useful for the estimation of
lock-in domain, which is bounded by the separatrices
(Gardner, 1979). However, one of the problems of the
phase plane analysis is that for any new type of PD
characteristic one has to do a lot of new cumbersome
integrations.

By contrast, the second approach, which is based on
the Lyapunov function construction in the cylindrical
phase space (Lyapunov, 1892), allows one to consider
PD characteristic in general form. In (Bakaev, 1963) the
following system

y

-π π

S(θe,ɛ)

R(θe,ɛ)

θe0

Y(θe,ɛ)

Figure 8. Phase portrait of system (9).{
ẋ = sinθe,

θ̇e = −aK0 sinθe − bK0x,

which is equivalent to (5), was consider and corresponding
Lyapunov function was suggested:

V (x,θe) = bK0
x2

2
+2sin2 θe

2
.

The required modifications of the classical global stability
criteria for the cylindrical phase space have been devel-
oped in (Gelig et al., 1978; Leonov et al., 1992, 1996a,b;
Yakubovich et al., 2004; Leonov and Kuznetsov, 2014).

6.2 PD characteristic in general form

Below we consider PLL with PD characteristic in general
form, which is periodic with period Δ and continuous,{

ż = bϕ(θe),
θ̇e = −K0z −aK0ϕ(θe).

(10)

The following theorem is valid.
Theorem 1. Suppose

Δ∫
0

ϕ(θe)dθe = 0;

∀θ0
e ∈ (−∞,+∞) ∃δ > 0 :

θe∫
θ0

e

ϕ(θe)dθe �= 0, ∀θe ∈ (
θ0

e − δ,θ0
e + δ

)
.

Then for a > 0, b > 0, and K0 > 0 any solution of system
(10) tends to the stationary set of the system as t → +∞.

The proof of the theorem is based on consideration of the
following Lyapunov function:

V (z,θe) =
K0
2b

z2 +
θe∫

0

ϕ(θe)dθe.

7. CONCLUSION

Two different analytical approaches for the pull-in range
estimation are discussed. The first one is based on the
integration of trajectories and can be applied to sinusoidal
and piecewise linear PD characteristic (Alexandrov et al.,
2014, 2015). The second one is based on Lyapunov function



724 Konstantin D. Alexandrov et al. / IFAC-PapersOnLine 48-11 (2015) 720–724

constructions and allows one to study effectively PD
characteristics in general form.
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1. INTRODUCTION

The PLL circuit has been invented by French engineer
Henri de Bellescize in 1932 (Bellescize, 1932). Since that
time, various modifications of PLL circuits (digital PLL,
all-digital PLL, software PLL, neuronal PLL and so on)
were developed and new circuits, based on PLL operation
principles, were invented (e.g., Costas loop and PLL with
squarer). PLL-based circuits are used for carrier recovery,
demodulation, frequency synthesis in telecommunications.
At present there are many books devoted to the design and
analysis of PLL-based circuits (see, e.g., (Viterbi, 1966;
Gardner, 1966; Best, 2007) and refs within).

Rigorous analysis of PLL-based circuits is a complicated
problem since the consideration of these circuits leads to
a system of nonautonomous differential equations (Gelig
et al., 1978; Kudrewicz and Wasowicz, 2007; Leonov and
Kuznetsov, 2014a). Numerical simulation of PLL-based
circuits is also a challenging task since it is necessary
to consider simultaneously both high-frequency and low-
frequency oscillations.

An important problem in the study of PLL based circuits
is to find a pull-in range. In a recent paper (not yet
published) Roland E. Best (well-known expert on PLL-
based circuits and the author of the bestseller on PLL-
based circuits (Best, 2007)) states that the pull-in range
of the two-phase Costas loop is infinite if the loop filter
used as a PI filter (Best’s conjecture).

There are two effective analytical approaches for the pull-
in range estimation are developed. The first one is based
on the integration of separatrices and the analysis of
their behavior (see the pioneering works (Tricomi, 1933;
Andronov, 1937; Gubar’, 1961) and their further devel-
opment, e.g., in (Stensby, 1997; Leonov and Kuznetsov,

� This work was supported by Saint-Petersburg State University
(project 6.39.416.2014, s. 3-4; project 6.38.505.2014, s. 5.)
��The author acknowledge the support of Russian Scientific Foun-
dation (project 14-21-00041).

2013)). The second approach is based on the frequency
methods and Lyapunov function constructions (Lyapunov,
1892; Gelig et al., 1978; Leonov and Kuznetsov, 2014a).

In the present paper in order to study the pull-in range
of PLL with triangular-characteristic phase detector and
with proportionally-integrating filter a number of numer-
ical experiments in MatLab Simulink has been made and
analytical methods are discussed.

2. DESCRIPTION OF PLL MODELS IN THE SIGNAL
SPACE AND SIGNAL’S PHASE SPACE

Consider a PLL model in the signal space. The components
of this model (see Fig. 1) are the following: a reference
oscillator (Input), a voltage-controlled oscillator (VCO),
a multiplier, used as a phase detector (PD), and a filter
(Filter).

Filter

f 2(θ2(t)) g(t)
VCO

f1(θ1(t))f 2(θ2(t))
Input

f1(θ1(t))

Figure 1. PLL model in the signal space.

A carrier signal f1(θ1(t)) = sgn(sin(θ1(t))) enters the
Input. Carrier frequency ω1 is a constant: dθ1(t)

dt = ω1.

The VCO with gain K0 generates the signal f2(θ2(t)) =
sgn(sin(θ2(t))). The VCO free-running frequency is equal
to ω2

free.

The signals f1(θ1(t)) and f2(θ2(t)) of reference and tun-
able oscillators enter the input of a multiplier, which is
used as a phase detector, and at its output one has a
product f1(θ1(t))f2(θ2(t)) of these signals. After filtration
by Filter, this signal is used as a control signal g(t) for
VCO synchronization.
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Filter

θ2(t) G(t)
VCO

PD
φ(θ1(t) - θ2(t))

Input
θ1(t)

Figure 2. PLL model in signal’s phase space.
Consider now the PLL model in signal’s phase space (see
Fig. 2).

For this model the phases θ1(t) and θ2(t), generated by
reference and tunable oscillators, enter the input of phase
detector, and the output of phase detector is a function
with respect to phases difference: ϕ(θ1(t) − θ2(t)). It is
known that for the considered impulse signals f1(θ1(t))
and f2(θ2(t)), the characteristic of phase detector is tri-
angular (see, e.g., (Gardner, 1966; Leonov et al., 2012b)):

ϕ(θe(t)) =

=

⎧⎨
⎩

2
π

θe(t), if −π

2
+2πn < θe(t) ≤ π

2
+2πn;

− 2
π

θe(t)+2, if
π

2
+2πn < θe(t) ≤ 3π

2
+2πn,

(1)

where θe(t) = θ1(t) − θ2(t). If the circuit achieves lock
(θ1(t) ≡ θ2(t)+const), then ϕ(θe(t)) is equal to a constant
value.

The signal ϕ(θe(t)), generated by phase detector PD,
enters the input of filter Filter. At the output of Filter
a signal G(t) is generated and then it is used as a control
signal for the VCO. One has

dθ2(t)
dt

= ω2
free +K0G(t).

In the considered case Filter is a proportionally-integrating
filter with a transfer function W (s) = β+as

s , a > 0, β > 0
(Best, 2007). The relation between the input ϕ(θe) and the
output G(t) of Filter is as follows

dG(t)
dt

= a
dϕ(θe(t))

dt
+βϕ(θe(t)).

A derivative with respect to time t is denoted by θ̇e, and
a derivative with respect to θe by ϕ′. The above equations
yield the following relations:{

Ġ(θe(t)) = aϕ′(θe(t))θ̇e(t)+βϕ(θe(t)),
˙θe(t) = ω1 −ω2

free −K0G(θe(t)).
(2)

3. SIMULATION OF PLL WITH
TRIANGULAR-CHARACTERISTIC PHASE

DETECTOR

Simulation of the PLL model in the signal space is a
very challenging task since it is required to consider
simultaneously both very fast time scale signals and slow
time scale phase differences between the signals. So, for
the simulation, a small discretization step is used, what
significantly increases time of simulations. To overcome
these difficulties a Simulink model of PLL in signal’s phase
space (Fig. 3) is considered. It consists of four subsystems:
reference oscillator (Input), voltage- controlled oscillator
(VCO), phase detector (PD), and filter (Filter).

Figure 3. MatLab Simulink model of PLL in signal’s phase
space.

The block diagram of the reference oscillator is shown in
Fig. 4. This block defines a phase as a function of time,
which enters the input of the circuit.

Figure 4. Reference oscillator of PLL model.

The block diagram of the voltage-controlled oscillator is
shown in Fig. 5. VCO consists of six blocks: Simulink
Constant block, which provides free-running frequency
of VCO, Simulink Constant block, which provides initial
phase shift of VCO, Gain block, integrator block, and
two summation blocks. The phase detector (PD) is a

Figure 5. Voltage-controlled oscillator of PLL model.

Figure 6. Triangular-characteristic phase detector of PLL
model.

triangular-characteristic phase detector and can be defined
by using MatLab standard functions.

In the considered case the filter subsystem (see Fig. 7)
consists of one block of a filter transfer function. In the
Simulink model a proportionally-integrating filter is used.

Figure 7. Proportionally-integrating filter of PLL model.
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4. THE RESULTS OF SIMULATION.

For the Simulink model of the PLL with triangular-
characteristic phase detector, which was described in Sec-
tion 3, a number of simulations has been made. The
simulations were made by standard Matlab solver ode15s,
using the numerical Gear method with variable step. For
ode15s the following parameters are taken: absolute tol-
erance error is equal to 10−12, relative tolerance error is
equal to 10−12, initial time step is equal to 10−3, and
variable time step does not exceed 10−3. All simulations
for various values of parameters a, β, K0, and Δω = ω1 −
ω2

free confirm that finally the Simulink model with PI filter
achieves lock.

0 2 4 6 8 10
-1

0

1

2

3

t

G(t)

Figure 8. a = 1, β = 1, K0 = 10π, Δω = 20π.

Consider the conjecture on the pull-in range of PLL with
triangular-characteristic phase detector: The pull-in range
of PLL with triangular-characteristic phase detector and
proportionally-integrating filter is infinite. In other words,
for PLL with triangular-characteristic phase detector and
proportionally-integrating filter, any solution of the corre-
sponding system, described in Section 2, tends to a sta-
tionary set of system as t → +∞.
Numerical simulations (see, e.g., Figs. 8, 9, 10) with the use
of Simulink model from Section 3 confirms the conjecture.

0 0.5 1 1.5 2
-1

-0.5

0

0.5

t

G(t)

Figure 9. a = 1, β = 0.1, K0 = 10π, Δω = 4π.

At the same time it can be remarked that the applica-
tion of standard numerical analysis cannot guarantee the
finding of undesired stable oscillations: see, e.g., examples
of hidden oscillations and coexisting attractors in two-
dimensional PLL-based models (Leonov and Kuznetsov,
2013).

0 20 40 60 80 100
-0.2

0

0.2

0.4

0.6

0.8

G(t)

t

Figure 10. a = 0.01, β = 1, K0 = 10π, Δω = 4π.

An oscillation in a dynamical system can be easily lo-
calized numerically if the initial conditions from its open
neighborhood lead to long-time behavior that approaches
the oscillation. Thus, from a computational point of view,
it is natural to suggest the following classification of at-
tractors, based on the simplicity of finding the basin of
attraction in the phase space (Kuznetsov et al., 2010;
Leonov et al., 2011, 2012a; Leonov and Kuznetsov, 2013):
An attractor is called a hidden attractor if its basin of
attraction does not intersect with small neighborhoods of
equilibria, otherwise it is called a self-excited attractor.
For example, hidden attractors are attractors in the sys-
tems with no equilibria or with only one stable equilibrium
(a special case of multistable systems and coexistence of
attractors). Recent examples of hidden attractors can be
found in (Zhusubaliyev and Mosekilde, 2014; Pham et al.,
2014a,b; Wei et al., 2014b; Li and Sprott, 2014; Wei et al.,
2014a; Kuznetsov et al., 2015; Burkin and Khien, 2014; Li
et al., 2014; Zhao et al., 2014; Lao et al., 2014; Chaudhuri
and Prasad, 2014).

In the next section one of the approach, based on trajecto-
ries integration, for an estimation of the pull-in range will
be demonstrated. Some corresponding results can be also
found in (Stensby, 1997, 2011; Alexandrov et al., 2014).

5. ANALYTICAL ESTIMATION OF THE PULL-IN
RANGE

In the present section the system, corresponding to PLL
circuit with triangle characteristic of phase detector, is
considered. System (2), represented in Section 2, can
be reduced to the following system of the second-order
differential equations:

θ̇e = y, ẏ = −aK0ϕ(θe)′y −βK0ϕ(θe). (3)
Theorem 1. For arbitrary a > 0, β > 0, and K0 > 0 any
solution of system (3) tends to stationary set of system as
t → +∞.

For the proof it is sufficient to show the nonexistence of
limit cycles on phase plane of system (3). Let us prove
first the nonexistence of limit cycles of the second kind.
Consider the upper semiplane of the phase plane. The
calculations for the lower semiplane are the same.

On the interval θe ∈ [−π
2 ; π

2
)

by the changes t → t
√

π
2βK0

,

y → y
√

2βK0
π system (3) takes the form
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-π 0 π θ
e

y

Figure 11. A qualitative phase portrait of system (3).
dθe

dt
= y,

dy

dt
= −2h1y −θe. (4)

Here h1 = a
√

K0
2πβ . In the considered interval there is one

stationary point (θe,y) = (0;0). The point (θe,y) = (0;0) is
a stable node, a degenerated node or a stable focus, which
depends on the value h1. Consider the case h1 > 1 in detail.
Other cases leads to the same qualitative results. Denote
γ1 =

√
h2

1 −1, k1 = h1
γ1

.

0 π/2

y

-π/2

s
1
(τ) s

2
(τ)

θ
e

τ/γ
1

Figure 12. Transformation of the image point
(−π

2 ;s1(τ)
)

to the
(

π
2 ;s2(τ)

)
on the phase plane.

Let us find a solution of system (4) such that on the
considered interval a whole phase trajectory is located in
the upper semiplane of the phase plane. A sought solution
(see Fig. 12) moves the image point of the phase plane(−π

2 ;s1(τ)
)

from the line θe = −π
2 to the point of the phase

plane
(

π
2 ;s2(τ)

)
on the line θe = π

2 in a time equal to τ
γ1

,
τ > 0. The values of s1(τ) and s2(τ) can be found as the
ordinates at instants of time t = 0 and t = τ

γ1
, respectively

(Andronov et al., 1966). Having found s1(τ) and s2(τ), one
considers the function s1(s2(τ)). The obtained expressions
for s1(τ), s2(τ), ds1

ds2
(τ), and d2s1

ds2
2

(τ) are the following

s1(τ) =
π

2

(
2γ1ek1τ

eτ −e−τ
+h1 +γ1

eτ +e−τ

eτ −e−τ

)
; (5)

s2(τ) =
π

2

(
2γ1e−k1τ

eτ −e−τ
−h1 +γ1

eτ +e−τ

eτ −e−τ

)
; (6)

ds1
ds2

(τ) = e2k1τ s2
s1

> 0; (7)

d2s1
ds2

2
(τ) =

π2

4
e3k1τ (eτ −e−τ )

2γ1s3
1

(s1 −s2) > 0. (8)

By relations (5), (6) it can be found an oblique asymptote
of a graph of the function s1(s2):

s1(s2) = s2 +2πh1.

By relations (7), (8), the behavior of the curve s1(s2) is
conventionally shown in Fig. 13.

S1

S2

Figure 13. Behavior of function s1(s2).

Similar reasonings are valid for system (3) on the inter-
val θe ∈ [

π
2 ; 3π

2
)
. In this interval a unique critical point

(θe,y) = (π;0) is a saddle.

On the interval θe ∈ [
π
2 ; 3π

2
)

by the changes t → t
√

π
2βK0

,

y → y
√

2βK0
π the system can be represented as

dθe

dt
= y,

dy

dt
= −2h2y +θe −π. (9)

Here h2 = −a
√

K0
2πβ . Denote γ2 =

√
h2

2 +1, k2 = h2
γ2

.

0 3π/2 θ
e

π/2

s
2
(ν) s

3
(ν)

y

ν/γ
2

Figure 14. Transformation of the image point
(

π
2 ;s2(ν)

)
to the

(3π
2 ;s3(ν)

)
on the phase plane.

Consider a solution of system (9) such that on the consid-
ered interval the phase trajectory is completely located in
the upper semiplane of the phase plane. A sought solution
(see Fig. 14) moves an image point of the phase plane(

π
2 ;s2(ν)

)
from the line θe = π

2 to the point of phase plane(3π
2 ;s3(ν)

)
on the line θe = 3π

2 in a time, equal to ν
γ2

, ν > 0.
The values of s2(ν) and s3(ν) are the ordinates of image
point at instants of time t = 0 and t = ν

γ2
, respectively.

Consider a function s3(s2(ν)). The expressions for s2(ν),
s3(ν), ds3

ds2
(ν), and d2s3

ds2
2

(ν) are the following

s2(ν) =
π

2

(
2γ2ek2ν

eν −e−ν
+h2 +γ2

eν +e−ν

eν −e−ν

)
; (10)
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s3(ν) =
π

2

(
2γ2e−k2ν

eν −e−ν
−h2 +γ2

eν +e−ν

eν −e−ν

)
; (11)

ds3
ds2

= e−2k2ν s2
s3

> 0; (12)

d2s3
ds2

2
=

π2

4
e3k2ν(eν −e−ν)

2γ2s3
2

(s2 −s3) < 0. (13)

By relations (10), (11) one can find an oblique asymptote
of a graph of the function s3(s2): s3(s2) = s2 − 2πh2.
By relations (12), (13) a behavior of the curve s3(s2) is
conventionally shown in Fig. 15.

S3

S2

Figure 15. Behavior of the function s3(s2).

In the considered case h1 = −h2. It means that the curves
s1(s2), s3(s2) as functions with respect to s2 have the
same oblique asymptote. Besides, the obtained relations
for ds1

ds2
, ds3

ds2
, d2s1

ds2
2

, and d2s3
ds2

2
justify the fact that s1(s2),

s3(s2) do not intersect oblique asymptote and, therefore,
do not intersect. The mutual disposition of s1(s2) and
s3(s2) is shown in Fig. 16. The obtained result shows the

S1,3

S2

Figure 16. Mutual disposition of functions s1(s2) and
s3(s2).

nonexistence of limit cycles of the second kind in the upper
semiplane of system (3). The existence of limit cycle of the
second kind implies the intersection of s1(s2) and s3(s2).
By the same reasonings it is proved the nonexistence of the
second kind limit cycles in the lower semiplane of system
(3).

Thus, to finalize the proof, one need only to prove the
nonexistence of the first kind limit cycles. To reduce the
consideration, instead of integration of trajectories and
their analysis similar to that presented above, here we refer

to the dichotomy criterion, described in detail in (Leonov
and Kuznetsov, 2014a).

Thus, one can prove that the phase plane of system (3)
does not contain any limit cycles and all solutions of
system (3) tend to the set of stationary points as t → +∞.
In other words, the PLL circuit will achieve lock for any
initial difference of frequencies ω1 and ω2

free of reference
oscillator and VCO.

6. CONCLUSION.

In the present paper the problem of the pull-in range esti-
mation is discussed. Numerical method and two effective
analytical approaches for the pull-in range estimations are
presented. One of the analytical approaches is based on the
integration of separatrices and the analysis of their behav-
ior, while the other approach is based on the frequency
methods and Lyapunov function constructions. One of the
problems of the first method is that for any new PD char-
acteristic one has to perform many new tedious integra-
tions (as it was demonstrated above). Another problem is
that while this approach is useful for the two-dimensional
models, its generalization for a multidimensional models is
a challenging task. The advantage of this approach is that
it allows one to estimate also the lock-in range correspond-
ing to a domain of the phase space, where the loop achieves
a lock without cycle slips. If the aim is to study the pull-in
range only then to avoid cumbersome integrations one can
use the approach based on Lyapunov function construction
for the cylindrical phase space. For the model considered
in this paper it is possible to construct Lyapunov function
of the type “quadratic form plus the integral of nonlinear-
ity” (see, e.g., (Gelig et al., 1978; Leonov and Kuznetsov,
2014b)). The advantage of this approach is that it allows
to consider various PD characteristics at once.
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Abstract—In the present work for checking conjec-
ture on pull-in range of two-phase Costas loop, a num-
ber of numerical experiments in MatLab Simulink has
been made. In addition, the analytical approach to the
proof of the conjecture is presented.

I. INTRODUCTION

The Costas loop was suggested by American engineer
John Costas in 1956 [1], [2] and is widely used now in
the control circuits for carrier phase recovery [3], [4], [5].
A detailed mathematical description of Costas loop can
be found, e.g., in [6], [7], [8], [9]. At the present time
there are a great number of modifications, for example,
QPSK realization, BPSK realization, two-phase Costas
loop. Various modifications of Costas loop are widely used
in wireless receivers [10]. With a mathematical point of
view the investigation of Costas loops and its modifi-
cations is a complicated problem since the description
of this circuit leads to the analysis of nonautonomous
differential equation [11], [12], [13], the right-hand side
of which involves both high-frequency and low-frequency
components [14]. In such problems the consideration of
simplified mathematical models (for example, the linear
one), which are more convenient for investigation, can lead
to incorrect conclusions [15], [16].

In this paper the two-phase Costas loop as suggested
by Tretter [17] is considered. The advantage of two-phase
Costas loop in comparison to the original circuit of 50s
of XX century is elimination of high-frequency oscillations
by using the complex multiplier. One of the main problem,
connected with investigation of Costas loops, is the finding
of pull-in range –maximal initial difference of frequencies
of reference and voltage-controlled oscillators, over which
the loop can achieve lock. In a recent paper (not yet
published) Roland E. Best (well-known expert in PLL-
based circuits and the author of the bestseller on PLL-
based circuits [3]) states that the pull-in range of the two-
phase Costas loop is infinite if the loop filter used is a PI
filter (Best’s conjecture).

In this paper a number of numerical experiments in Mat-
Lab Simulink has been made and the analytical approach
to the proof of Best’s conjecture is presented.

-sin(θ2(t)) -sin(θ2(t))

cos(θ2(t)) cos(θ2(t))

-sin(θ2(t))

cos(θ2(t))

m(t)sin(θ1(t)) m(t)sin(θ1(t))

m(t)cos(θ1(t))

m(t)cos(θ1(t))

m(t)cos(θ1(t))

m(t)cos(θ1(t) - θ2(t))

m(t)sin(θ1(t) - θ2(t))

Input
s(t) = m(t)cos(θ1(t))

m(t)sin(θ1(t))

Filter

-sin(θ2(t))

cos(θ2(t))

g(t)

Hilbert

VCO

1/2 sin(2(θ1(t) - θ2(t)))

+

+

+

-

Figure 1: Two-phase Costas loop modification.

II. DESCRIPTION OF TWO-PHASE COSTAS
LOOP

Consider the two-phase Costas loop modification (see
Fig. 1). The components of this circuit are reference
oscillator (Input), filter (Filter), complex multiplier as a
phase detector, and voltage-controlled oscillator (VCO).

A carrier signal m(t)cos(θ1(t)) enters the input, where
m(t) = ±1 is a slowly varying data signal. A carrier
frequency is equal to ω1:

θ̇1(t) = ω1.

A carrier signal is transformed by Hilbert transformation
into m(t)sin(θ1(t)). Two input and two VCO signals enter
the complex multiplier, which is used to compare phases
of the signals.

The relations, describing the operation of complex mul-
tiplier, take the form

m(t)cos(θ1(t))cos(θ2(t))−m(t)sin(θ1(t))(−sin(θ2(t))) =
(1)

= m(t)cos(θ1(t)−θ2(t)),
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m(t)sin(θ1(t))cos(θ2(t))+m(t)cos(θ1(t))(−sin(θ2(t))) =
(2)

= m(t)sin(θ1(t)−θ2(t)).

If the loop achieves lock (for example, θ1(t) = θ2(t)), then
the signal (2) is equal to zero. At once the signal (1) is
equal to m(t), i.e., a demodulation is realized.

The multiplication of signals (1) and (2):

u(t) = ϕ(θ1(t)−θ2(t)) = m(t)cos(θ1(t)−θ2(t))·
·m(t)sin(θ1(t)−θ2(t)) =

1
2

sin(2(θ1(t)−θ2(t)))

after additional filtration (by the Filter) is used as a
control signal for VCO.

In the considered case Filter is a proportionally-
integrating filter with transfer function W (s) = β+as

s ,
a > 0, β > 0.

The relation between input u(t) and output g(t) of Filter
has the form

ġ(t) = au̇(t)+βu(t).

It should be noted that in the case of Filter absence the
circuit can also achieve lock, but only in the range |ω1 −
ω2|.

The control signal g(t) is used to adjust the VCO
frequency to the frequency of input carrier signal

θ̇2(t) = ω2 +K0g(t),

where VCO gain is K0 > 0 and VCO output signals are
cos(θ2(t)) and −sin(θ2(t)).

III. SIMULATION OF TWO-PHASE COSTAS
LOOP

Simulation of two-phase Costas loop in signal space is
highly difficult problem, since it is required to consider
simultaneously both very fast time scale of signals and slow
time scale of phase difference between the signals. There-
fore, the analysis and simulation are mostly performed in
signal’s phase space (Fig. 2) [1], [18], [5], [3], [8], [19].

The model in signal’s phase space consists of four sub-
systems – reference oscillator, phase detector (PD), filter
(Filter), and voltage-controlled oscillator (VCO).

Figure 2: MatLab Simulink model of two-phase Costas loop.

The device of a subsystem of reference oscillator is
shown in Fig. 3. This block determines a phase, as a
function of time, which enters the input of the circuit.

Figure 3: Reference oscillator of two-phase Costas loop.

The device of a subsystem of voltage-controlled oscilla-
tor is shown in Fig. 4. The VCO consists of six blocks: two
blocks Simulink Constant, which provides eigenfrequency
and initial phase shift of the VCO, two summation blocks,
Gain block and integrator block.

Figure 4: Voltage-controlled oscillator.

Figure 5: Phase detector (PD) in two-phase Costas loop.

The phase detector (PD) in Simulink model consists
of the difference block and complex multiplier subsystem,
shown in Fig. 6, which simulates the operation of complex
multiplier.

Figure 6: Complex multiplier of two-phase Costas loop.

In the considered case the filter subsystem (see Fig. 7)
consists of one block of a transfer function of filter.

IV. THE RESULTS OF SIMULATION AND
BEST’S CONJECTURE

Best’s conjecture on the the pull-in range of two-phase
Costas loop is formulated in the following way:

Assertion 1. The pull-in range of two-phase Costas loop
with proportionally-integrating filter is infinite.
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Figure 7: Filter of two-phase Costas loop.

In other words:

Assertion 2. For two-phase Costas loop with a transfer
function of filter W (s) = β+as

s , a > 0, β > 0, any solution
of the corresponding system, described in section II, tends
to a stationary set of system as t → +∞.

For numerical check of Best’s conjecture a number
of simulations have been made with the use of above
Simulink model of two-phase Costas loop. The simulation
was made by a standard MatLab solver ode15s, by using
the numerical Gear method with variable step. For ode15s
the following parameters are taken: an absolute tolerance
error is equal to 10−12, a relative tolerance error is equal
to 10−12, the initial step is equal to 10−3, and a variable
step does not exceed 10−3.

Figure 8: a = 0.1, β = 0.1, K0 = 10, ω1 = 100, ω2 = 97.

All the simulations for the different values of parameters
a, β, K0, and the different frequencies θ1 and θ2 confirm
that two-phase Costas loop achieves lock state (see the
examples in Fig. 8, 9, 10).

Figure 9: a = 0.1, β = 10, K0 = 10, ω1 = 100, ω2 = 90.

V. INVESTIGATION OF SYSTEM STABILITY
FOR SMALL VALUE OF FILTER PARAMETER

Consider the analytical approach to the verification of
Best’s conjecture. Denote θe = θ1 −θ2. The equations from

Figure 10: a = 10, β = 50, K0 = 10, ω1 = 100, ω2 = 50.

section II imply the following relations1{
ġ(θe) = aϕ′(θe)θ̇e +βϕ(θe),
θ̇e = ω1 −ω2

free −K0g(θe).
(3)

System (3) describes the operation of two-phase Costas
loop. It can be reduced to the following differential equa-
tion of second order with respect to x = 2θe

ẍ+aK0 cos(x)ẋ+βK0 sin(x) = 0. (4)

Relation (4) can be represented by the following equivalent
system {

ẋ = y,

ẏ = −aK0 cos(x)y −βK0 sin(x).
(5)

One can investigate only the behavior of system (5) in the
range −π < x ≤ π since the right-hand side of system is
2π-periodic. Equating the right-hand side of system (5) to
zero, one obtains that in the considered range there are
two critical points (x,y) = (0;0) and (x,y) = (π;0). It can
be checked that the point (0;0) on the phase plane is a
stable node or stable focus and (π;0) is a saddle. Besides,
taking into account periodicity, the critical point (−π;0)
is also a saddle.

Theorem 1. For small value of parameter a = ε, 0 <
ε 	 1, any solution of system (5) as t → +∞ tends to a
stationary set of system (5).

The main idea of the proof is the following. For the
proof it is necessary to make the analysis of the behavior
of separatrices of saddle points. Their behavior defines
a qualitative picture of a phase portrait of system (5).
Consider equation equivalent to (5)

y′(x) = −aK0 cos(x)y(x)+βK0 sin(x)
y(x)

. (6)

1A derivative with time t is denoted by θ̇e, and a derivative with
respect to x is denoted by y′.
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The right-hand side of (6) discontinues on y = 0. This line
is an isocline of vertical inclinations of phase portrait of
system (6) [20]. Further are considered the separatrices of
upper semiplane of the phase space. The reasoning for the
lower semiplane is similar.

Consider the case a = ε, 1 	 ε �= 0. The following separa-
trices of equation (6) are considered, namely a separatrix
R(x,ε), which leaves the saddle point (−π;0) and is situ-
ated in its first quadrant, and the separatrix S(x,ε), which
tends to the saddle point (π;0) and is placed in its second
quadrant. By expanding of separatrices R(x,ε) and S(x,ε)
in Taylor series in variable ε it is possible to determine a
mutual disposition of these separatrices approximations.
In addition it is possible to show that a mutual disposition
of separatrices on a phase plane coincides with a mutual
disposition of their approximations, obtained by Taylor se-
ries, taking into account ε 	 1. A qualitative disposition of
R(x,ε) and S(x,ε) is shown in Fig. 11. Then it is necessary

x

y

-π π0

m(ɛ)
R(x,ɛ)

S(x,ɛ)

P(x,ɛ)

Q(x,ɛ)

Y(x,ɛ)

Figure 11: Phase portrait of system (5).

to show that on the phase plane of system (5) there are no
any limit cycles of the second order. Consider an arbitrary
phase trajectory Y (x,ε) such that Y (−π,ε) = M , where
M ≥ m(ε) = S(−π,ε) is a fixed constant. By a similar
approximation, obtained by Taylor series, it can be proved
that Y (−π,ε) > Y (π,ε) ∀M ≥ m(ε). This means that on
the upper semiplane of phase plane (6) there are no any
limit cycles of second kind.

Figure 12: Separatrices on a phase plane of system (6).

Similarly, considering a behavior of separatrix P (x,ε),
which leaves the saddle point (−π;0) in its fourth quad-
rant, and Q(x,ε), which tends to the saddle point (π;0) in

its third quadrant, and using the Taylor series expansion
of phase trajectories in parameter a, it is possible to show
that in the lower semiplane there are also no any limit
cycles of second kind. Fig. 12 shows the real behavior of
separatrices on a phase plane.

The theorem is proved.

VI. CONCLUSION

In the present work for checking Roland E. Best con-
jecture on the pull-in range of two-phase Costas loop, a
number of numerical experiments is MatLab Simulink has
been made. The analytical approach to the proof of this
conjecture is suggested.
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