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Finnish summary

Diss.

In cognitive radios (CRs), the information obtained from the surrounding radio
environment is often an essential material for creating knowledge about the avail-
able resources and to apply that knowledge towards realizing reliable and effi-
cient wireless communications. Consequently, since the spectrum sensing func-
tionality in CRs provides information about the availability of the radio spectrum,
which is considered as one of the most valuable communication resources, devel-
oping better spectrum sensing techniques is of critical importance and directly
affects the performance of CR networks (CRNs) in many different aspects.

In this dissertation, better spectrum sensing schemes for CRNs are devel-
oped through considering a diverse collection of different processes and param-
eters involved. In particular, the research focus is on the so-called centralized
cooperative spectrum sensing in which the sensing CR nodes send their local
sensing outcomes to a so-called fusion center where the global decision about the
availability of the spectrum is constructed. All the major phases in this coop-
eration are taken into account, including, the local sensing, reporting, and deci-
sion/data fusion processes. Accordingly, several important tradeoffs in design-
ing these different phases are identified and formulated as standard optimization
problems and their impact on the overall detection performance is thoroughly
investigated. The optimization problems obtained are solved by using appropri-
ate tools from the optimization theory and a number of new spectrum sensing
structures are proposed to accommodate the tradeoffs. In addition, performance
improvements associated with the proposed spectrum sensing methods are visu-
alized by extensive simulation results.

Keywords: Dynamic spectrum access (DSA), cognitive radio (CR), spectrum sens-
ing, cooperative communications, decision/data fusion, efficiency, non-
linear optimization.
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1 INTRODUCTION

1.1 Scope of the Research

Efficient utilization of available resources is a vital requirement in designing mod-
ern communication systems. Limited battery lifetime of today’s so-called smart
wireless devices and the global warming effect [1] are among the challenges which
force engineers to reduce the energy consumption of wireless networks. On the
other hand, the current dramatic growth rate in the number of bandwidth-hungry
mobile systems and applications along with adherent scarcity in the available
spectrum resources necessitates developing advanced spectrum-efficient com-
munication techniques. Consequently, cognitive radio technology has been of
great interest as an important implementation platform for green and spectrum-
efficient wireless communication scenarios, see e.g., [2, 3, 4], and references therein.

In this dissertation, we first overview the notions of dynamic spectrum ac-
cess and cognitive radio, in particular, in order to highlight the role, impact, and
importance of this new communication paradigm in emerging wireless technolo-
gies. Specifically, we discuss the current state of spectrum utilization, new rules
and regulations facilitating better spectrum use and how cognitive radios are de-
veloped as powerful assets to cope with the ever-increasing demand for higher
levels of capacity, reliability, flexibility, and interoperability in wireless commu-
nication networks. As the core of this dissertation, we investigate spectrum sens-
ing as a major capability in cognitive radios and discuss a number of significant
design challenges in spectrum sensing for cognitive radio networks. These chal-
lenges cover a diverse collection of functionalities which, as a whole, enable cog-
nitive radio networks to discover transmission opportunities in the underutilized
parts of the radio spectrum and increase the efficiency of spectrum use without
compromising the integrity of the legacy wireless networks.

In addition, we discuss how cooperative communication techniques are
used to enhance the reliability of the spectrum sensing through better utiliza-
tion of the spatial/user diversities in cognitive radio networks. We study vari-
ous phases in the commonly-used cooperative sensing architectures in order to
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build a solid understating of the role of different building blocks in this cooper-
ation process. The analytical investigations in this dissertation along with their
supporting simulation results demonstrate that design of spectrum sensing in
cognitive radio networks, in general, involves dealing with various processes
which often are different in nature and impose contradicting requirements. In
fact, joint design of these processes often leads to a diverse collection of signal
processing challenges ranging from signal estimation/detection to signal trans-
mission/reception to decision/data fusion and decision-making processes. All
these elements directly affect the overall sensing performance and we show that
joint consideration of different processes involved in cooperative sensing can lead
to significant performance gains.

Clearly, joint design of different processes involved in cooperative sensing
requires joint effect of various variables to be taken into account by complex mod-
els and optimization problems. This is an interesting challenge which opens up a
set of exciting and valuable research opportunities. The present dissertation ad-
dresses a number of important research questions related to this challenge by
proposing novel spectrum sensing structures. These new structures are thor-
oughly analyzed and their associated design issues and tradeoffs are identified
and formulated in the form of standard optimization problems. Consequently,
proper techniques from the optimization theory are used to solve these problems
in an effective and computationally-affordable fashion, while the effectiveness of
the proposed spectrum sensing methods is supported by extensive simulations.

It is worth noting that, the set of theories, algorithms, and techniques used
for performance optimization of the proposed spectrum sensing schemes consists
of a broad range of materials including, standard convex optimization techniques
[5], semidefinite relaxation methods for solving nonconvex quadratically-constr-
ained quadratic programs (QCQPs) [6, 7, 8], mixed-integer nonlinear programs
(MINLPs) [9, 10], convex-over-convex fractional programs [11], the branc- h-and-
bound (BnB) algorithm [9, 10, 11], stochastic programming [12], and neural net-
works [13, 14, 15].

1.2 Structure of the Dissertation

We start with the radio spectrum in Chapter 2 and discuss why this valuable
resource is currently underutilized and how more efficient spectrum utilization
techniques are being developed to construct what is referred to as the dynamic
spectrum access technology. This discussion leads us to the fundamental con-
cept of cognitive radio for which a formal definition is provided in Section 2.2.
In addition, we discuss different components of the cognitive radio, disclose its
network architecture, and briefly overview its various emerging applications.
Chapter 3 is about different aspects of spectrum sensing in cognitive radio
networks. In particular, we discuss a number of commonly-used signal detection
techniques in spectrum sensing, introduce performance metrics for evaluating
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the sensing quality, and illustrate how these performance metrics are typically
calculated based on the statistical behavior of the received signal. In addition,
we introduce the concept of cooperative spectrum sensing and discuss its signif-
icance in developing reliable spectrum sensing methods, while providing a brief
overview of different components involved in this cooperation process and their
respective roles.

Chapter 4 represents the research questions along with the design chal-
lenges addressed in this dissertation. Specifically, we introduce several tradeoffs
by focusing on different processes in spectrum sensing. In each case, we dis-
cuss how the system design leads to conflicting requirements which are properly
taken into account in the form of mathematical optimizations. In addition, we
explain the solution procedure we have developed in each case for the system
performance optimization.

Finally, we provide our concluding remarks in Chapter 5.

1.3 Summary of the Publications Included

In the following, we briefly explain major contributions in each publication in-
cluded in this dissertation. Further details and discussions regarding the research
questions addressed by these publications are provided in Chapter 4.

In [PI], cooperative spectrum sensing in cognitive radio networks is studied
as a three-phase process composed of local sensing, reporting, and decision/data
fusion. Then, a significant tradeoff in designing the reporting phase, i.e., the ef-
fect of the number of bits used in local sensing quantization on the overall sens-
ing performance, is identified and formulated. In addition, a novel approach
is proposed to jointly optimize the linear soft-combining scheme at the fusion
phase with the number of quantization bits used by each sensing node at the re-
porting phase. The proposed optimization is represented using the conventional
false alarm and missed detection probabilities, in the form of a MINLP. The so-
lution is developed as a BnB procedure based on convex hull relaxation, and a
low-complexity suboptimal approach is also provided. Finally, the performance
improvement associated with the proposed joint optimization scheme, which is
due to better exploitation of spatial /user diversities in cognitive radio networks,
is demonstrated by a set of illustrative simulation results.

In [PII], maximizing the so-called deflection coefficient is discussed as an ef-
fective approach to design cooperative sensing schemes with low computational
complexity. Specifically, an extension to the deflection coefficient is proposed
which captures the effects of the quantization processes at the sensing nodes,
jointly with the impact of linear combining at the fusion center. The proposed pa-
rameter is then used to formulate a new MINLP as a fast suboptimal method to
design a distributed detection scenario where the nodes report their sensing out-
comes to a fusion center through nonideal digital links. Numerical evaluations
show that the performance of the proposed method is very close to the optimal
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case.

In [PIIT], the linear soft combining scheme at the fusion phase of the central-
ized cooperative sensing is jointly optimized with two elements of the reporting
phase: i) the number of bits used by each node to quantize the local sensing out-
comes, and ii) the power level by which each node reports its sensing outcome
to the fusion center. The proposed optimization problem is represented by using
the conventional false alarm and missed detection probabilities and two straight-
forward solutions are also provided. In addition, the performance improvement
associated with the proposed joint optimization scheme is demonstrated by sim-
ulation results.

In [PIV], a new cooperation structure for spectrum sensing in cognitive ra-
dio networks is proposed which outperforms the existing commonly-used ones
in terms of energy efficiency. The efficiency is achieved in the proposed design by
introducing random interruptions in the cooperation process between the sens-
ing nodes and the fusion center, along with a compensation process at the fusion
center. Regarding the hypothesis testing problem concerned, first, the proposed
system behavior is thoroughly analyzed and its associated likelihood-ratio test
is provided. Next, based on a general linear fusion rule, statistics of the global
test summary are derived and the sensing quality is characterized in terms of the
probability of false alarm and probability of detection. Then, optimization of the
overall detection performance is formulated according to the Neyman-Pearson
criterion and it is discussed that the optimization required is indeed a decision-
making process with uncertainty which incurs prohibitive computational com-
plexity. The Neyman-Pearson criterion is then modified to achieve a good af-
fordable solution by using semidefinite programming (SDP) techniques and it is
shown that this new solution is nearly optimal according to the deflection crite-
rion. Finally, the effectiveness of the proposed architecture and its associated SDP
are demonstrated by simulation results.

In [PV], joint optimization of the reporting and fusion phases in a cooper-
ative sensing with random interruptions is investigated. This optimization aims
at finding the best weights used at the fusion center to construct a linear fusion of
the received interrupted reports, jointly with Bernoulli distributions governing
the statistical behavior of the interruptions. The problem is formulated by us-
ing the deflection criterion and as a nonconvex quadratic program which is then
solved for a suboptimal solution, in a computationally-affordable fashion, by a
semidefinite relaxation technique. The system performance is then demonstrated
by a set of simulation results which compare the performance of the system for
the cases with and without the optimal linear fusion.

In [PVI], the average throughput maximization of a secondary user by op-
timizing its spectrum sensing time is formulated, assuming that a priori knowl-
edge of the presence and absence probabilities of the primary users is available.
The energy consumed to find a transmission opportunity is evaluated, and a dis-
cussion on the impacts of the number of primary users on the secondary user
throughput and consumed energy are presented. To avoid the challenges asso-
ciated with the analytical method, as a second solution, a systematic adaptive
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neural-network-based sensing time optimization approach is also proposed. The
proposed scheme is able to find the optimum value of the channel sensing time
without any prior knowledge or assumption about the wireless environment. The
structure, performance and cooperation of the artificial neural networks used in
the proposed method are explained in detail, and a set of illustrative simulation
results is presented to validate the analytical results as well as the performance
of the proposed learning-based optimization scheme.

1.4 Author’s Contributions

The author of this dissertation is the main contributor regarding the analysis and
simulations published in [P, PII, PIII, PIV, PV]. He has also written the text of
these publications.

The author of this dissertation was involved in developing the analysis and
writing the text in [PVI]. He also proposed the use of neural networks in the
system performance optimization. The idea of spectrum sensing time optimiza-
tion considering the spectrum mobility and handover was proposed by the first
author in [PVI] who has also conducted the simulations.



2 DYNAMIC SPECTRUM ACCESS TECHNOLOGY

2.1 Introduction

Availability of radio spectrum is essential to have reliable and high-performance
wireless communications. However, rigid spectrum regulatory policies based on
traditional command-and-control mechanisms make this precious natural resource
scars, yet, underutilized. It is well known, as the result of extensive field measure-
ments, that a large portion of the assigned spectrum is used sporadically with
high geographical variations and high variance in time [2, 16, 17]. Fig. 1 illus-
trates the signal strength distribution over a large portion of the radio spectrum
[16]. The underutilization is due to the fact that the use of spectrum is strictly
licensed by governments. In traditional regulatory procedures, a license, associ-
ated with a particular frequency band over a certain geographical area, is granted
to an operator which is referred to as licensee or license holder. The license gives,
usually on a long-term basis, the licensee an exclusive right of utilizing that spec-
trum, meaning that no one else is allowed to use it. This is relatively an old
process, referred to as spectrum assignment and is currently known to be highly
inefficient making the assigned spectrum underutilized.

Underutilization of the radio spectrum indicates that there exist bands of
frequencies assigned to license holders, which at some particular times and spe-
cific geographic locations are not being utilized. These temporarily- and/or spati-
ally-available transmission opportunities are referred to as spectrum holes or white
spaces [17, 18, 19]. The underutilization of spectrum has sparked a great deal of
interest in engineering, economics, and regulatory communities in searching for
better spectrum management policies and techniques [20, 21].

In order to promote more efficient use of the radio spectrum, altering the
old regulations was initiated in December 2003 by the USA Federal Communi-
cations Commission (FCC). The FCC issued the first report and order in October
2006 exploring the possibility of allowing fixed wireless access to the TV broad-
cast bands for license-exempt devices on a non-interfering basis. The FCC further
issued the second report and order in November 2008 to allow secondary usage
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FIGURE 1 Spectrum utilization © 2011 IEEE.

of TV broadcast bands for fixed and mobile devices. European Conference of
Postal and Telecommunications Administrations (CEPT), UK Office of Commu-
nications (Ofcom) and other countries like Canada, The Netherlands, Finland,
and Scotland have followed the FCC and started investigating secondary usage
of the radio spectrum, see [21, 22] and references therein. As explained in [23],
Europe is proceeding with the finalization of rules and testing of the available
technology on a large scale. The European progress is particularly driven by the
Ofcom’s work and instantiation of a large pilot of license-exempt devices and the
underlying enabling technology. All trials within this pilot must operate under
Ofcom’s prospective rules for license-exempt spectrum access in the TV bands,
reflected in ETSI standard [24]. In Finland, the WISE (white space test environ-
ment for broadcast frequencies) project [25] aims to construct an open testbed
for studying the use of white spaces in the UHF television broadcast bands. The
project partners are Finnish Communications Regulatory Authority (FICORA),
Aalto University, Digita, Fairspectrum, Nokia, University of Turku, Turku Uni-
versity of Applied Sciences and it is funded by Tekes, the Finnish national tech-
nology funding organization.

According to the new regulations, license-exempt access to unused TV bands,
known as TV band white spaces, is granted, provided that no harmful interfer-
ence is made to the incumbent users (i.e., licensed users) present on those bands.
In this scenario, the incumbents, which are TV broadcasters and wireless micro-
phones, are considered as primary users (PU) with exclusive right of utilizing the
spectrum while the license-exempt users are seen as secondary users (SU). SUs may
only use a particular licensed spectrum when the corresponding PU is not using it
and once the PU returns, the SUs have to vacate that band in order to avoid mak-
ing any harmful interference. This particular access mechanism is referred to as
hierarchical spectrum access which is further discussed in Section 2.4. Even though
the FCC has set strict limits to protect the incumbents against interference in this
scenario, valuable data communication opportunities can be realized by the sec-
ondary unlicensed access [26]. This is due to the fact that, significantly-large por-
tions of the radio spectrum—especially in the VHF and UHF bands which have
excellent propagation characteristics—are not utilized most of the time over large
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FIGURE 2 The concepts of white space and dynamic spectrum access © 2008 IEEE.

geographical areas. The unlicensed access was first considered for the TV bands
as an initial step for extending the rules to other spectrum bands in future.

New opportunities provided by the secondary usage of the spectrum come
with new challenges in radio communications. These challenges stem from the
fluctuating nature of the white spaces, as well as the diverse quality-of-service
(QoS) requirements of various applications [2]. For an SU, the availability of
spectrum for access and communication is a random process whose behavior is
dictated by the behavior of the PUs. In fact, SUs are supposed to identify the
white spaces in a pool of licensed spectrum bands, and reconfigure their internal
parameters such as operating frequency, transmission power, and bandwidth, in
real time and according to the statistical characteristics of the discovered white
spaces as well as their own QoS requirements.

Therefore, the radios used by the SUs need to have some sort of awareness
regarding the user needs, the surrounding RF environment, and their current in-
ternal parameters and to be able to reconfigure their own parameters in step with
changing circumstances in order to access and utilize dynamic spectral opportu-
nities. This behavior is commonly referred to as dynamic spectrum access (DSA)
[2, 16, 17] which is illustrated in Fig. 2 along with the concept of spectrum hole
[17].

Awareness regarding the radio environment and user needs can be seen
as context awareness whereas awareness with respect to the internal parameters
can be considered as radio’s self-awareness [27]. The changing circumstances may
include the change in the propagation characteristics of the wireless environ-
ment due to, for example, the mobility of the SU or other entities, change in
the behavior of the PUs as well as of other present SUs, and change in the QoS
requirements. Significant levels of reconfigurability, required for accessing the
dynamically-changing white spaces, are realized by implementing radios major
air interface functionalities in software. This type of implementation, termed as
software-defined radio (SDR), is a radio which could easily be reconfigured to oper-
ate on different frequencies with different protocols by software reprogramming
[28]. This means that, the protocols based on which an SDR works can be altered
without making changes to radio’s hardware components.
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Hence, we see that the secondary utilization of the spectrum needs to be
realized by radios with special capabilities or attributes. These radios are termed
as cognitive radios (CR) and were first introduced by J. Mitola in [27]. CR is com-
monly considered as the key enabling technology for realizing the DSA in wire-
less communication networks. In this chapter, we take a closer look at the concept
of CR and provide a definition for it. In addition, we investigate fundamental
building blocks commonly considered as major components of a CR and briefly
describe their respective roles. Finally, we explain the CR network (CRN) archi-
tecture and provide an overview of different applications of the DSA technology.

It is worth noting that, there exist several spectrum sharing mechanisms,
falling within the scope of the DSA technology, which are not entirely based on
the licensed-exempt spectrum use. In these sharing schemes, the spectrum is
dynamically accessed by several parties among which some may in fact be license
holders. Moreover, these shared access mechanisms make the DSA technology
be considered in other frequency bands rather than only in the TV spectrum. The
concepts of licensed share access (LSA) [29, 30], licensed-assisted access (LAA)
[31, 32, 33], and citizen broadband radio service (CBRS) [34] can be considered as
some examples. We briefly explain these methods in order to present a complete
overview of the state of the art. Nevertheless, implementation details of these
spectrum sharing schemes are beyond the scope of this dissertation.

LSA is a complementary approach, to exclusive licensing and license-exempt
approaches, allowing a spectrum band to be shared between an incumbent spec-
trum user and a mobile communication network (here, the LSA licensee) with
predetermined conditions that resemble exclusive licensing and offer benefits to
both parties. The LSA concept has been successfully trialled with a live LTE net-
work in the 2.3 GHz shared band in Finland [29, 30]. A key benefit of the LSA
concept is to ensure controlled predictable QoS levels for both incumbent spec-
trum users and the LSA licensees by considering a limited number of entities
involved in the sharing arrangement [29].

LAA is a spectrum sharing approach which enables the use of unlicensed
spectrum bands for the licensed services. Specifically, LAA is concerned with
sharing the unlicensed spectrum by the licensed and unlicensed users and its
main deployment scenario considers the coexistence of LTE-A with WiFi in the 5
GHz band [32]. This allows operators to leverage unlicensed 5 GHz spectrum for
improved peak rates and capacity.

CBRS is another hierarchical spectrum access which is recommended by the
FCC for the 3.5 GHz. The CBRS consists of a DSA architecture with three tiers
[34]: the incumbent users, Priority Access (PA) users and General Authorized
Access (GAA) users. In this architecture, existing primary operations in the 3.5
GHz would make up the incumbent access (IA) tier. The CBRS would be divided
into PA and GAA tiers of service, each of which would be required to operate on
a non-interference basis with the IA tier. As the name suggests, PA users receive
protection from the GAA operation while GAA users will receive no interference
protection from other CBRS users. The 3.5 GHz band has physical characteristics
that make it particularly well-suited for mobile broadband employing small cell
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technology. As such, the CBRS is envisioned to represent a major contribution
toward making more spectral resources available for broadband use.

2.2 Cognitive Radio

CR is regarded as a promising technology to alleviate the problem of spectrum
scarcity via utilizing large amounts of the unused spectrum while not interfering
with incumbent devices in frequency bands already licensed [35]. This new com-
munication paradigm is based on radios that can acquire information about their
operating environment and adapt their operating characteristics in real-time in
order to better utilize the available opportunities. Today, CR techniques are be-
ing applied to many different communications systems [28] (see Section 2.5), and
hold promise for increasing utilization of radio frequencies and allowing for im-
proved commercial, emergency, and military communication services [36]. More-
over, since the concept of CR is built on top of the SDR, its prominent reconfigu-
ration capabilities make it known as a facilitator of communications for devices
which may operate in different bands and/or have incompatible wireless inter-
faces. All these facts have made CR as the core of many technical discussions and
interactions among various academic, industrial, and regulatory groups special-
ized in wireless communications all over the world.

Considering CR in the context of the radio spectrum and as an enabling
technology for more efficient spectrum utilization serves the purposes of the
present dissertation appropriately. However, it should be noted that CR can be
seen with a broader perspective as a means in general for serving dynamically-
changing user needs based on the dynamic availability of resources influenced
by changing circumstances in radio’s environment. Consequently, we see generic
terms about the radio environment and the associated resources in commonly-
used definitions of cognitive radio.

There exist several definitions for CR in the literature provided by various
regulatory, standardization, and research institutes worldwide as well as some
distinguished researchers in the field. In [37] a number of most prominent def-
initions of CR are reviewed in order to obtain a fundamental understanding of
its capabilities. The result obtained by this investigation suggests the following
capabilities for a CR [37]:

— Whether directly or indirectly, the radio is capable of acquiring information
about its operating environment

— The radio is capable of changing its waveform (protocols)

— The radio is capable of applying information towards a purposeful goal

Accordingly, the following definition is proposed in [37]:

A cognitive radio is a radio whose control processes permit the radio to leverage
situational knowledge and intelligent processing to autonomously adapt towards
some goal.
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Intelligence in this definition is adopted from [38] which defines it as

Intelligence is the capacity to acquire and apply knowledge, especially toward a
purposeful goal.

In the CR scenarios considered in this dissertation, the goal pursued is to detect
white spaces and to use those white spaces in order to establish wireless commu-
nication without having spectrum bands allocated to that communication. Situa-
tional knowledge may include information acquired by the CR about its spectral
environment. In general, there are several ways in practice to acquire informa-
tion about radios spectral environment, among which spectrum sensing and geolo-
cation/database are the most common ones. Spectrum sensing in this context refers
to applying signal processing algorithms on the received radio signals in order
to detect the presence or absence of the PUs in the frequency bands of interest.
Geolocation/database is used when the SUs know their location. In this method,
the SUs have access to a (typically) remote database which provides them with a
list of available channels at their geolocation when requested. Situational knowl-
edge may also include the user needs characterized by the QoS requirements of
the communication. Hence, we see that having situational knowledge covers the
context awareness of the cognitive radio. Moreover, situational knowledge may
also include information a CR has about its own internal parameters and their
implications regarding the radio performance. In other words, the information
which gives the CR its self-awareness is covered by situational knowledge in this
definition as well.

In the following, we discuss the components of the CR to better illustrate
how the situational knowledge is acquired and how it is processed in order to
conduct the autonomous adaptation.

2.3 Components of a Cognitive Radio

Fig. 3, which is adapted from [28], provides a high-level view of the components
that can be found in a CR. This system is composed of a reconfigurable radio, a
reasoning engine, a decision (or configuration) database, and a policy database.
The reconfigurable radio is typically used to facilitate autonomous adaptation of
radio’s operating parameters including, but not limited to, transmission power,
frequency, and bandwidth. The sensing module is responsible for inspecting ra-
dio’s environment to provide information about the available communication re-
sources. The system may contain a policy database which defines a set of rules
to determine the acceptable behavior in different circumstances. The appropri-
ate configuration of the system internal parameters is determined by a reason-
ing module which receives information from the sensing engine and the policy
database and may be equipped with learning capabilities. Learning is a function
of observations and decisions [27]. For example, performance levels achieved
based on prior and current internal states may be compared with expectations
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etc.

to learn about the effectiveness of the decisions made by the reasoning engine.
The current configuration of the radio components, which is determined by the
decisions made by the reasoning engine, is stored in a configuration database. A
simple CR system might have a single reconfigurable radio component accepting
sensing information from a single local node and no external data sources.

It should be noted that the concept of CR roots back to the artificial intel-
ligence theory in which cognition is often involved with machine learning. In
some references, CR refers to a sophisticated radio device that mimics the hu-
man brain in a DSA environment to perceive and learn the radio environment to
control and adapt the transmission actions [4]. However, based on several avail-
able definitions of CR and the related terms, and as a result of inspecting several
commonly-used CR-based communication scenarios, the author concludes that
cognition, in the context of the radio technology, is mostly concerned with knowl-
edge and the ability to acquire and use that knowledge. Hence, the processes of
building, changing, or even contributing to that knowledge—in the form that can
be referred to as learning—may not be a necessary part of a cognitive system, or,
at least, a CR. As explained in [28], today, the term CR generally refers to a ra-
dio system that has the ability to sense its radio frequency (RF) environment and
modify its spectrum usage based on what it detects. Nevertheless, since CR is a
relatively new and evolving concept, the machine learning capability will most
likely be considered as one of the necessary components of a CR in future.

2.4 Network Architecture

The concept of CRN is built upon the notion of hierarchical spectrum access
which is described by the notions of primary and secondary users and primary
and secondary networks [17, 18]. In this structure, the legacy license holders, such
as cellular network operators and TV broadcasters, are the PUs and their net-
works are primary networks. Based their license, PUs can utilize the spectrum
exclusively, which means that, while they are operating on a certain frequency
band, no one else is allowed to use it. A primary network is typically composed
of a set of PUs and one or more primary base stations (BS). CR users are the SUs,
i.e., they can only access the spectrum and utilize it for communication when PUs
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are not using it. Accordingly, the CRNs are referred to as the secondary networks.
As clarified in Section 2.1, SUs need to be equipped with cognitive capabilities to
be aware of their spectral environment and also to be able to adapt their operat-
ing parameters in order to avoid making harmful interference to PUs. Note that
besides secondary access to the licensed spectrum, CRNs can use the unlicensed
spectrum bands. Availability of different licensed or unlicensed spectrum bands
for the secondary use is usually referred to as spectrum heterogeneity in CRNS.

The secondary network may contain a BS, equipped with cognitive func-
tionalities, which coordinates the spectrum access of SUs. This type of secondary
network is shown in Fig. 8 as a CRN with infrastructure [17]. However, this
may not always be the case and a CRN may be realized as an ad-hoc network.
It should be noted that the hierarchical spectrum access does not require the sec-
ondary nor the primary networks to be infrastructure-based. Accordingly, we see
both types of infrastructure-based and ad-hoc structures for either of the primary
or secondary networks in Fig. 8.

SUs typically get aware of their radio environment by spectrum sensing
and/or geolocation/database. If several secondary networks share a common
set of frequency bands, their spectrum usage may be coordinated by a central net-
work entity, called spectrum broker [18]. The spectrum broker collects operation
information from each secondary network and allocates the network resources to
achieve efficient and fair spectrum sharing.

The IEEE 802.22 standard [26] is a commonly-used CRN example. This stan-
dard concerns the secondary use of the TV bands on a non-interfering basis which
is realized by the so-called TV band devices (TVBD). TVBDs have been developed
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for the secondary use of the available chunks of TV spectrum (TV white spaces).
Since the TV bands have good propagation characteristics, they can increase cov-
erage and the ability to penetrate buildings at low power levels, leading to better
broadband access across remote rural areas.

The IEEE 802.22 standard specifies a cellular CRN. In each cell, a BS man-
ages the medium access for all the SUs. In order to properly protect the PUs
against harmful interference, both spectrum sensing and geolocation/database
techniques have been considered in this standard. In particular, each BS is equipped
with a GPS device and has access to a remote database of available channels.
Moreover, the BSs as well as the SUs are equipped with spectrum sensing capa-
bilities. The BSs coordinate the local spectrum sensing activities of SUs in their
cell and decide which TV bands are unoccupied based on information received
from the database, their own sensing outcome, and the sensing results provided
by the SUs. This particular type of spectrum sensing in which a network entity
coordinates the local spectrum sensing of the SUs and makes the global decision
about the presence or absence of the PU based on the data received from the
sensing SUs is referred to as centralized cooperative spectrum sensing. Cooperative
spectrum sensing is discussed in detail in Section 3.3.

2.5 Applications of Cognitive Radio

CRN s can be used in different applications. In what follows, we briefly discuss
some of the applications that can benefit from the research conducted in this dis-
sertation. For a more comprehensive overview of CR applications see [36] and
the references therein.

2.5.1 Cellular Networks

Cellular networks provide data and voice services for billions of us every day.
These networks, as our major communication infrastructures, need to be con-
stantly improved in coverage, efficiency, service quality, and reliability in order
to meet the ever-growing demand for wireless communications. At the same
time, the spectrum is limited. The DSA technology along with the unlicensed
access schemes to the radio spectrum provides more spectral resources for the
next generation cellular networks. As such, the cognitive cellular network is con-
sidered as one of the key concepts in designing the fifth-generation (5G) mobile
communication systems [39]. Employing the CR functionalities, such as spec-
trum sensing and spectrum sharing, in different components of cellular networks
enhances their performance and enable network operators to utilize the available
resources more efficiently and more effectively, see, e.g., [40, 41] and references
therein.

The tradeoff between energy efficiency and spectral efficiency has always
been of major importance in designing cellular communication networks. In fact,
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CR and the DSA technology are at the heart of discussions concerning green cel-
lular communications. Since Shannon’s communication capacity [42] increases
linearly with the available bandwidth while it grows only logarithmically with
power, by providing more bandwidth, we can reduce the transmission power in
communication systems. Hence, better spectrum management mechanisms re-
alized by the DSA technology can significantly reduce the power consumption
in cellular networks [43]. It is shown in [44] that the use of DSA techniques can
lead to substantial savings in the power consumption of cellular networks. As
another point, it is worth mentioning that, according to the definition provided
in Section 2.2, CR is a radio which can autonomously adapt its own parameters to
meet a certain objective. Therefore, the cognitive functionalities can be designed
in general with the primary goal of power saving. This design strategy reduces
the power consumption of wireless cellular networks while maintaining the re-
quired QoS levels, under various channel conditions [43].

2.5.2 Public Safety Networks

Public safety networks often suffer from two major drawbacks. First, the radio
frequencies allocated for public safety use are congested and cannot meet the
growing demand for high-quality wireless communications required by first re-
sponders. Second, since first responders from different agencies often use differ-
ent radio technologies, they are often not able to communicate with each other
properly and in accordance with their needs, especially, in disaster situations. In-
teroperability is hampered by the use of multiple frequency bands, incompatible
radio equipment, and a lack of standardization [36].

CR benefits for public safety can be summarized in two main factors as
first, DSA which leads to higher communication capacities and second, recon-
figurability which facilitates interoperability between communication systems.
With cognitive radio, public safety users can use additional spectrum such as
license-exempt TV white spaces. Moreover, through appropriate spectrum shar-
ing partnerships with commercial operators, public safety workers can also ac-
cess licensed spectrum and/or commercial networks [36]. When a natural dis-
aster or terrorist attack destroys existing communication infrastructure, CRNs,
deployed rapidly as a set of BSs mounted on emergency responders’ vehicles can
aid the search and rescue teams. Cognitive capabilities in recognizing spectrum
availability and autonomous adaptation for more efficient communication can
provide public safety personnel with reliable broadband communication which
reduces delay in information transfer when dealing with critical situations [16].

2.5.3 Smart Grid Communications

Smart grid is widely considered as the next generation of power grid. This promis-
ing technology is currently being promoted by many governments as an effective
means of developing power transmission networks with higher levels of agility,
reliability, efficiency, security, economy, and environmental friendliness [16, 45].
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A reliable and efficient communication infrastructure is the foundation of any
smart grid. In fact, optimality and accuracy of demand response management
(DRM), which is the core control unit of smart grid, directly depends on the per-
formance of communication facilities incorporated. The communication infras-
tructure concerned is typically a heterogeneous network providing access to grid
components in diverse environments. These network components typically need
to spread over large geographical areas including generation, transmission, and
distribution to the consumer premises [45].

Fig. 5 shows a basic illustration of the electrical power grid and the smart
grid multitier communications network [36]. This network is composed of a so-
called home area network (HAN), the advanced metering infrastructure (AMI) or
field area networks (FAN) and a wide area network (WAN). HAN is the network
of smart meters connected to on-premise appliances, plug-in electrical vehicles,
and distributed renewable sources (e.g., solar panels) while FANs carry infor-
mation between premises and an aggregation unit, which will often be a power
substation, a utility pole-mounted device, or a communications tower. The WAN
which serves as the backbone for communication, provides links between the
grid and core utility systems [36, 45].

Due to different nature of various applications running on these networks,
the smart grid communication infrastructure has to accommodate different types
of data traffic (e.g., real-time vs. non-real-time, emergency report vs. demand re-
sponse) with different priorities, and with various QoS requirements in terms of
the required bandwidth, latency, etc [16, 46]. Moreover, since an SG is typically a
large and costly power network built to serve over large geographical areas for a
considerably long time, it is clear that future growth in the number of applications
and connected devices must be taken into account in the initial design. However,
leaving significant room for future expansions is not an appropriate solution due
to high costs [46]. In particular, acquiring additional bandwidth through licens-
ing the spectrum, to facilitate future growth, can be very expensive, if possible.

CR is recognized as a promising technology to enhance capacity, coverage,
and scalability in smart grid networks and to reduce the cost associated with
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licensing the spectrum. In particular, CR-based AMI/FANs may offer many ad-
vantages in terms of bandwidth, distance, and cost, as compared with other wire-
line/wireless technologies currently available [16]. For instance, TVBDs operat-
ing with the IEEE 802.22 standard [26] provide a good solution for connecting the
gateways and smart meters which are fixed nodes in a smart grid. Fig. 5 illus-
trates a DSA-based wide area AMI/FAN. TVBDs provide relatively high trans-
mission power and superior TV band propagation characteristics. Specifically,
the BSs coverage area for the IEEE 802.22 can be 33 km if the power level of the
customer-premises equipment (CPE) is 4 W, and it can be extended to 100 km if
higher power levels are allowed [47]. Therefore, an IEEE 802.22-based network
gateway may reach all the smart meters with one or two hops (e.g., covering an
entire town). In rural areas available TV white space channels could be abun-
dant, providing low-cost reliable broadband communication facilities for smart
grid applications.

2.5.4 Wireless Medical Networks

Wireless communications has been considered as an important factor in improv-
ing patient’s quality of life in healthcare centers due to reducing the need for hav-
ing the patient connected to fixed medical equipment. Since patient’s mobility
plays an important role in fast recovery, especially, after surgical procedures and
interventions, developing reliable, scalable, and effective wireless medical de-
vices for monitoring vital signals, is of special interest in today’s biomedical engi-
neering. Current use of on-body sensors which are connected by wires to a mon-
itoring device is gradually replaced by the use of wireless body area networks
(WBAN). A WBAN typically consists of a collection of low-power, miniaturized,
lightweight devices with wireless communication capabilities that operate in the
proximity of a human body [48]. Medical BAN (MBAN), which is WBAN for
medical applications, refer to a low cost wireless sensor network designed to
collect multiple health-care-related parameters simultaneously and relay infor-
mation wirelessly such that clinicians can monitor their patients and respond
quickly to their medical needs without compromising their mobility [36, 48]. Be-
sides improving patient’s mobility, the use of MBAN reduces the infection risks
associated with using and managing wires in healthcare units.

Many standard solutions for WBAN, such as IEEE 802.15.4 and IEEE 802.15.6,
operate in the license-free Industrial Scientific and Medical (ISM) band centered
at 2.45 GHz and this leads to coexistence issues with other networks operating in
the same band, e.g., IEEE 802.11, a.k.a., WiFi. Cognitive wireless communication
paradigms can be used to mitigate the coexistence issues and improve the reliabil-
ity of WBANSs which is a serious issue due to their low transmission power, see
[48, 49]. CR-based MBAN architectures with frequency agility and frequency-
domain spectrum shaping capabilities are used to facilitate interference avoid-
ance in scenarios where many devices are operating in common spectrum seg-
ments and in close proximity to each other, as may occur in locations such as
a busy medical center. Besides facilitating coexistence, CR technology can con-
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tribute to the effectiveness and reliability of WBANSs by providing them with two
important characteristics: higher bandwidth and reconfigurability.



3 SPECTRUM SENSING IN COGNITIVE RADIO
NETWORKS

3.1 Introduction

In order to protect the PUs against harmful interference, CRs monitor their radio
environment by applying signal processing techniques on the received radio sig-
nals. This process is referred to as spectrum sensing and is certainly a key capa-
bility enabling CRs to find transmission opportunities without making harmful
interference on the PUs. Consequently, reliable spectrum sensing is of major im-
portance in designing CRNs. The average throughput of the SUs, their consumed
energy, and the amount of interference experienced by the PUs are directly related
to the effectiveness of the sensing methods incorporated in CRs.

When sensing the radio spectrum, CRs conduct a binary hypothesis test
based on statistical characteristics of the received signals. Conventionally, in this
test the null hypothesis, denoted H, corresponds to the absence of the PU sig-
nal while the alternative hypothesis, denoted H;, indicates its presence. Tech-
niques used by CRs to transform the radio signals received at their RF front end
into a set of statistics representing the state of the PU activities can range from
a simple radiometry, a.k.a., energy detection to cyclostationary detection to coherent
detection [50]. Energy detection is the most common way of spectrum sensing
because of its low computational and implementation complexities. In addition,
it does not need any knowledge about the primary users’” signal. The signal is
detected in this method by comparing the output of the energy detector with a
threshold which depends on the noise floor [51]. Cyclostationary detection is a
method for detecting PU transmissions by exploiting the cyclostationarity of the
received signals. Cyclostationary features are caused by the periodicity in the
signal or in its statistics such as mean and autocorrelation. These two techniques
are further explained in Section 3.2. In the presence of a known pattern, sensing
can be performed by correlating the received signal with a known copy of itself.
This method is only applicable when the PU signal patterns are known, and it is
termed as coherent detection.
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Depending on the DSA scenario considered, CRs may be designed either
to monitor a narrow chunk of the radio spectrum based on narrowband spec-
trum sensing methods or to inspect a wide range of frequencies by wideband
sensing schemes. How to choose the best parameter values when designing an
appropriate spectrum sensing algorithm is an important consideration in devel-
oping reliable CRNs and depends on several factors in general. These factors
may include hardware complexity of the CR nodes, amount of available a priory
knowledge about the behavior and signal statistics of the PUs, propagation char-
acteristics of the radio environment, the detection quality required, and number
of signal samples available. In particular, the detection quality is determined
based on interference limits to be maintained for protecting the PUs as well as
the QoS levels to be provided for the SUs. As a matter of fact, design of reliable,
yet low-complexity spectrum sensing schemes is a challenging task, often involv-
ing contradictory requirements, with significant impacts on the performance of
the CRNSs. In the following paragraph, the tradeoff between the sensing time and
accuracy [52] is explained as an example.

Typically, spectrum sensing and signal transmission cannot be performed at
the same time in a CR ! [51]. Hence, the time slots used by a CR are usually di-
vided into two parts; one for sensing and the other for data transmission. Sensing
time refers to the portion of time slots used for sensing the radio spectrum. For
interference avoidance, the sensing time needs to be long enough to achieve suf-
ficient detection accuracy, i.e., longer sensing time provides more signal samples
which, in turn, lead to higher sensing accuracy, and hence, to less interference.
However, as the sensing time becomes longer, the transmission time of CR users
are decreased. Conversely, while a longer transmission time increases the CR
throughput, it causes higher interference due to the lack of sensing information.
Accordingly, sensing time and transmission time are the sensing parameters that
influence the CR performance in two opposite directions and therefore, proper
selection of these sensing parameters is critical.

Performance of the spectrum sensing is commonly measured by two prob-
abilities, namely, the probability of false alarm and the probability of detection (or its
complement, the probability of missed detection). False alarm occurs when the sens-
ing CR node mistakenly decides the presence of the PU signal while it is absent.
In this case, a communication opportunity is lost by treating a spectrum hole
as occupied. Therefore, the higher the false alarm probability, the more trans-
mission opportunities missed by the CR. In general, due to inevitable sources of
uncertainty, such as thermal and environmental noise, shadowing, and multipath
fading, it is difficult in practice to have zero false alarm probability without failing

! Simultaneous sensing and transmission is currently possible by the use of full-duplex CRs.

However, design of these radios is challenging in the sense that proper techniques must be
implemented to mitigate the effect of the resulting self-interference. In fact, a high level of
isolation between the transmitter and receiver is necessary in full-duplex CRs. A typical
technique to reduce the self-interference in these radios is to use two antennas; one for
sensing and the other for data transmission. Mitigating the effect of self-interference in
full-duplex CRs is an ongoing research challenge which has recently gained a great deal of
interest, see [53] and the references therein.
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to detect the PU signals frequently. However, through certain design strategies
(which are discussed later) the false alarm probability can be minimized or con-
strained by a limit in order to achieve an acceptable performance. Probability of
detection can be regarded as the dual of the false alarm probability. Detection
occurs when the sensing algorithm declares the presence of the PU while it is
actually present and active. In this case, the CR node can avoid interfering with
the PU by either interrupting its own transmission or directing it to another va-
cant band. Clearly, the higher the detection probability, the lower the interference
level experienced by the PUs. By a similar reasoning as we did for the false alarm
probability, we can see that the probability of detection cannot be easily forced to
be one without having a high false alarm rate in the signal detection, especially,
in low SNR regimes. Nevertheless, performance of the spectrum sensing can be
optimized with the aim of maximizing the detection probability or bounding it
from below.

Detector design based on the Neyman-Pearson (NP) criterion [54] is a commo-
nly-used method for optimizing the spectrum sensing performance in CRs. In an
NP detector, the probability of detection is maximized subject to a constant false
alarm probability. This design method aims at achieving the maximum protec-
tion of the PUs while maintaining the rate of lost transmission opportunities at a
certain limit. Alternatively, the false alarm probability can be minimized subject
to a constant detection probability. In this way, the CR throughput is maximized
while keeping the level of interference experienced by the PUs at a certain level.
Since the spectrum sensing performance can depend on various uncertainties, the
mathematical representation of the false alarm and detection probabilities may
involve complicated nonlinear formulations which, in an NP setting, may lead to
complicated nonconvex optimizations. As an alternative method with good per-
formance and often low computational complexity, the deflector design based on
the deflection criterion is a popular technique in the literature, see e.g., [55, 56, 57]
and [PI, PII]. In this method, the so-called deflection coefficient, as a parameter
representing the sensitivity of the sensing scheme, is maximized without directly
considering the detection and false alarm probabilities.

As mentioned before, the sensing performance is susceptible to impairments
caused by the wireless environment. In fact, noise, interference, shadowing, and
multipath fading often degrade the CR sensing performance. Moreover, the sens-
ing CR might not be able to detect the PU signal due to its inappropriate location.
This particular issue is known as the hidden node problem and has to be taken into
account when designing the spectrum sensing in CRNs. In order to mitigate these
issues, the reliability of the sensing process is enhanced significantly by the so-
called cooperative spectrum sensing. In this method, spatially-divers sensing CR
nodes cooperate with each other in finding the spectrum holes.

Design and analysis of cooperative sensing schemes concern in general with
how the observations in different nodes are combined and tested and how the de-
cisions are made. In the centralized cooperative sensing [2] the binary hypothesis test
is conducted in a special node, referred to as the fusion center (FC), which receives
and processes local sensing outcomes from the cooperating nodes. This coopera-
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tion, which is synchronized and coordinated by the FC, follows a three-step pro-
cess: local sensing, reporting, and decision/data fusion. In the first step, the sensing
nodes perform their individual sensing by using their own built-in sensor. They
listen to their wireless environment to detect the PU signals. Hence, the channel
between the PU transmitter and the sensing CR nodes are referred to as listening
channels. Then, they report their sensing results to the FC through a reporting or
control channel indicated by the FC. Finally, the FC combines the received reports
and decides about the presence or absence of the PU. Note that centralized co-
operative sensing can occur in either centralized or distributed CR networks. In
centralized CR networks, a cognitive BS is naturally the FC. A commonly-used
practical example for this case is the IEEE 802.22 standard [58] where the BS is
also the FC coordinating the cooperative spectrum sensing process in the CRs.
Alternatively, in CR ad hoc networks where a CR BS is not present, any CR user
can act as an FC to coordinate the cooperative sensing and combine the sensing
information from the cooperating neighbors.

Besides centralized cooperation, there exist other methods, such as distributed
cooperative sensing and relay-based cooperative sensing, in which the information ex-
change between the CR nodes as well as the decision making process take place
differently. Specifically, in the former there is no such node as the FC and the
sensing CRs exchange their information directly with each other and converge to
a decision iteratively. In the latter, the nodes which experience better reporting
channels relay the results from the nodes with weak reporting channel. The re-
lays may be chosen from the ones which do not have a good listening channel.
More details can be found in [2] and the references therein. For the purposes of
this dissertation, we will focus on the centralized cooperative sensing which is
also known as distributed detection with an FC. We will see that design of each
different phase in centralized cooperative sensing is in general concerned with a
different set of challenges. In local sensing, the problem is how to quickly and
effectively detect a radio signal distorted by noise, shadowing, and multipath
fading, whereas the design of the reporting phase is mostly concerned with quan-
tization of the sensing outcomes as well as transmit power and/or bandwidth to
make efficient use of the available transmission and computation resources. At
the fusion phase, we are dealing with the hypothesis testing and decision-making
processes which need to properly take into account the PU behavior as well as
listening- and reporting- channel characteristics. Therefore, we see that the set of
problems to be addressed in each different phase of cooperative sensing is dif-
ferent in nature. However, we show that joint design and optimization of these
different phases can lead to significant performance gains in CRNs.

3.2 Signal Detection Methods

Spectrum sensing in CR is, in general, a decision-making problem. By using sig-
nal processing tools, the CR converts some statistical features of the PU signal re-
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ceived into a decision variable, referred to as test statistic or test summary, whose
value indicates the presence or absence of the PU. The test statistic, which is a
random variable, is usually compared against a predefined detection threshold
to decide the presence or absence of the PU. The random behavior of the decision
variable and the sensing result obtained stem from the uncertainties in the PU
behavior as well as the impact of the wireless environment on the received sig-
nal. Due to this randomness, the sensing performance is commonly measured by
probabilities, i.e., the probability of false alarm and the probability of detection.
To measure the sensing performance by these metrics, we first need to evaluate
the random behavior of the decision variable and find its probability distribution.
In order to illustrate the analysis concerned, in the following, we provide math-
ematical modeling of the energy detection and cyclostationary detection which
are two widely-used sensing schemes in CR systems.
The signal received by the ith sensing node in a CRN can be modeled as

{ xi(m) = vi(m), Ho

xi(m) = his(m) +vi(m),  Haq 1

where s(m) denotes the signal transmitted by the PU and x;(m) is the received
signal by the ith SU. I; is the listening channel block fading coefficient. v;(m) de-
notes the circularly-symmetric zero-mean additive white Gaussian noise (AWGN)
at the CR sensor receiver, i.e., v;(m) ~ CN(0,0?). s(m) and {v;(m)} are assumed
to be independent of each other.

3.2.1 Energy Detection

Energy detection [50, 51, 52, 55, 56, 59] is the simplest spectrum sensing technique.
A CR employing energy detection decides the presence or absence of the PU sim-
ply by comparing the energy of the received signal with a predefined threshold.
Energy detection is widely used in the literature due to its low computational
(and hence implementation) complexity and its fast detection ability. In addition,
energy detection assumes no a priori knowledge about the PU signal which makes
it feasible when there is no such information available.

The sensing outcome generated in the ith CR node applying energy detec-
tion on N samples of the received signal can be modeled as

N-1
wp =Y |xi(m)|? )
m=0

This sensing outcome is then compared against a detection threshold 7; to decide
the presence or absence of the PU signal, i.e.,

ui 2 i 3)

Since u; is the sum of squares of Gaussian random variables, it can be shown that
u;/o? follows a central chi-square x? distribution with N degrees of freedom if
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H, is true; otherwise, it would follow a noncentral x? distribution with N degrees
of freedom and parameter 7;. That is,

, 2
u [k @
Ui XN (771')/ Hl
where e
E.|h;
i = (7,‘2 @)
and E; = Y'N_, |s(m)|? denotes the PU signal energy. According to central limit

theorem [60], if the number of samples N is large enough, the test statistic u; is
asymptotically normally distributed, i.e,

| {N(Huimo],vﬂ[uimo]), Ho
up ~ (6)

/\/'(E[ui|’}-l1],Var[u[|’}-l1]), 7‘[1

where

Elu;|Ho] = No7 7)
Efuj|H1) = (N +n;)07 8)
Var[ui\’}-[o] = NU';L (9)
Var[u;|H1] = (N +25;)c (10)

Therefore, the false alarm and detection probabilities of the ith CR node, denoted
respectively as Pf(l) and Pc(ll), can be formulated as

P = Pr{us > i Ho} = /7 " fu(x[Ho)dx = Q (W) (11)

Pc(ii) = Pr{u; > vi|H1} = '[:ofui(xw—[l)dx =Q <’m> "

where Q(x) £ \/% [ e/ 2x,

It is worth noting that, energy detection is not able to distinguish between
the PU signal and noise and suffers from a poor performance in low signal-to-
noise ratio (SNR) regimes. Reliability of spectrum sensing in low SNR can be
improved significantly by establishing cooperation among the sensing nodes in a
CR network. We discuss cooperative sensing in Section 3.3.

3.2.2 Cyclostationary Detection

Cyclostationary detection [50, 51, 57, 61] is capable of distinguishing the PU signal
from the interference and noise. In this method, the signal detection is based on
estimating the discrete-time cyclic autocorrelation function (CAF) of the received

signal ngf[])(l) defined for 0 <1 < L as [50]
1 N=I-1 ‘
N ] Z xi(m+ l)xf(m)eﬂz”fom (13)

m=0

Ry 2



39

where fo = 1/Tj and T denotes the symbol period in the digitally-modulated PU
signal. CAF estimations corresponding to different lags are collected in a vector
as

p 2 [Re{ﬁi(fO)(O)},...,Re{ﬁi(f°>(L)},Im{Ri(fO)(O)},...,Im{l?i(fO)(L)}} (14)

where Re and Zm denote the real and imaginary parts, respectively.

Then, the signal detection is conducted based on the statistical behavior of
t [62]. Note that cyclostationary detection assumes that T is known a priori. This
information about the PU signal behavior enables cyclostationary detection to
distinguish the PU signal from noise and interference.

For simplicity, we focus here on the so-called single-cycle detector which
refers to a detector with L = 0. In this case, the CAF estimation is derived as

b (fo) 1 2 ,—j2mfom
RO(0) = 1 T [xi(m) 2o 27 (15)
m=0
and the test statistic is [57]
u 2 R (0) 2 (16)
(fo)

Assuming that N is large enough, R:’*’(0) follows a normal distribution. Replac-

i
ing x;(m) with its model in (1), we obtain the mean and variance of Rff 0) (0) under
Hoand Hq, ie.,

E[RY (0)[Ho] = 0 (17)
Var[RY) (0)[H,] = % (18)
E[RY (0)[#y] = [I[2P) (19)
R o2
Var[RY) (0)[#,) = ﬁ(2|h,-\2Ps +0?) (20)

where PY0) £ 1 SN 1ig ()| 20=12fomt and Py £ L YN"1js(m) 2.

Hence, when H) is true, ngf ) (0) is a zero-mean complex-valued Gaussian

random variable. Therefore, under Hy, our test summary #; follows a central X2

distribution with two degrees of freedom. When #; is true however, R0 (0)isa

i
complex-valued Gaussian random variable with nonzero mean which makes u;
follow a non-central Xz distribution. Therefore, when H,) is true we have,

”
-~ X (21)
O3,

whereas under H; we obtain
"
—— ~ X3(11) (22)
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. A »(fo) 2

where (772{0 = Var[RffO)(O) |Ho] and 0'72{1 £ Var[REfO)(O)H-ll],while = ‘E[&UM.
H

Consequently, the false alarm and detection probabilities of this detector are ob-

tained as

P = Pr{u; > yi|Ho} = / Fuy (x| Ho)dx = ey (23)

1

PY) = Pr{u; > 13| H1} = [r‘” fusxHh)dzx = Qu <\/E(7\/7;71> .

where Q) is the first-degree Marcum Q-function.
3.2.3 Other Sensing Methods

There exist several other spectrum sensing methods which constitute a rich col-
lection of signal processing tools to trade computational (and therefore, hardware
complexity) for the detection performance. Applicability of these methods de-
pends in general on how well the PU signal behavior is known a priori. Here we
provide a brief explanation of two important sensing methods, i.e., covariance-
based detection and coherent detection. A survey of existing spectrum sensing tech-
niques can be found in [50, 51].

Covariance-based detection is a spectrum sensing method which exploits
the correlation between the received PU signal samples. In this method, based on
estimating the covariance matrix of the received signal samples, a decision vari-
able is constructed and compared to a predefined threshold to decide the pres-
ence or absence of the PU signal. In general, when the PU is active the covariance
matrix exhibits different features compared to the case in which the only received
signal is the white noise. The decision variable can be considered as the ratio of
the minimum and maximum eigenvalues of the covariance matrix, the ratio of
its diagonal and off-diagonal elements, or its maximum eigenvalue. Clearly, per-
formance of the covariance-based detection depends on how correlated the PU
signal samples behave.

Coherent detection, a.k.a. wave-form-based sensing, is a spectrum sensing
method based on detection of known patterns in the PU signal of interest. This
method, which is capable of distinguishing the PU signal from the interference
and noise, requires the availability of known patterns in the PU signal and is re-
alized by matched filtering which is known to be the optimal detection method in
such cases. Known patterns are usually utilized in wireless systems to assist syn-
chronization or for other purposes. Such patterns include preambles, midambles,
regularly transmitted pilot patterns, spreading sequences etc [51]. A preamble is
a known sequence transmitted before each burst and a midamble is transmitted
in the middle of a burst or slot.

Other alternative spectrum sensing methods include multitaper spectral es-
timation, wavelet transform based estimation, Hough transform, and time-frequency
analysis [50, 51].
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FIGURE 6 CROC curves representing performance of energy detection scheme in dif-
ferent SNRs.

3.2.4 Receiver Operating Characteristics

The receiver operating characteristics (ROC) curve is a graphical representation
of the performance of signal detection schemes. This curve is derived by plotting
the system detection probability against its false alarm probability for different
values of the detection threshold. Equivalently, the same information regarding
the system performance can be represented by a so-called complementary ROC
(CROC) curve which depicts the system missed detection probability versus its
false alarm probability. In this dissertation, we use the CROC curves to demon-
strate the performance of spectrum sensing methods. It is clear that a spectrum
sensing method with a better performance exhibits, in general, a CROC curve
closer to the origin, i.e., closer to point (0,0). As an example, note that we can
remove 7; from (11) and (12) and express the detection probability for a given

false alarm probability of Pf(l) =unas

() = 0 <Q1<a>\/Var[ui|7€;}r[—u %%ﬂ + E[w%]) 25)

Now plotting 1 — Pc(ll) for different values of « gives the CROC curve of the detec-
tor. Fig. 6 depicts the CROC curves of this detector for different SNR levels. We
see that by increasing the SNR, the CROC curves get closer to the origin, indicat-
ing lower missed detection and false alarm probabilities.

3.3 Cooperative Spectrum Sensing

3.3.1 The Need for Cooperation

The performance of spectrum sensing can be severely degraded due to impair-
ments such as shadowing and multipath fading associated with typical wireless
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FIGURE 7 The hidden node problem in a CRN © 2011 IEEE.

environments. In fact, a CR may fail to detect the PU signal, even though it is
present and active, since the PU may be hidden form the sensing CR node. Con-
sequently, if not properly taken into account, the hidden node problem can cause
severe interference on PUs. Fig. 7 illustrates this issue. In this figure, the PU
transmitter is active and is transmitting PU signals to the PU receivers. CR1 is
able to detect the PU signal and avoid interfering with it. However, since the sig-
nal level received by CR2, which is located within the range of the PU transmitter,
is severely attenuated by shadowing and multipath fading, CR2 is not able to de-
tect the PU signal and may perceive the situation as a transmission opportunity.
CR3 may also misclassify the occupied spectrum as vacant, since it is located out-
side the range of the PU transmitter. Therefore, both CR2 and CR3 may cause
interference on the PU receiver if they solely rely on their own spectrum sensing
processes.

The hidden node problem can be mitigated by establishing cooperation
among spatially-diverse sensing nodes in the CRN. In fact, cooperative spectrum
sensing is known as an effective technique to maintain acceptable QoS levels for
the SUs while protecting the PUs against harmful interference. In this way, that
is when CRs share their sensing information with each other, the PU can be pro-
tected more reliably even when some of the sensing CR nodes are not able to
properly detect the PU signal individually.

3.3.2 Network Configuration

Fig. 8 depicts general configuration of a centralized cooperative spectrum sensing
[2]. There are K sensing CR nodes which use their own spectrum sensing module
to sense the PU signal. These CR nodes send their sensing outcomes, u;, i =
1,...,K, through a nonideal but dedicated reporting channel to the FC where the
received reports are combined and transformed into a decision variable based on
a fusion rule. The decision variable, which is commonly referred to as global test
summary, is then compared with a threshold to decide the presence or absence of
the PU.

We collect the local sensing outcomes in vector u = [ug, ..., ug]T and the
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FIGURE 8 Basic configuration of centralized cooperative spectrum sensing.

received reports at the FC in'y £ [yy,...,yk|T. It is clear that, due to reporting
channel contaminations, the received reports are not necessarily equal to the lo-
cal sensing outcomes transmitted to the FC. The fusion method incorporated at
the FC can either be soft- or hard-decision fusion. Soft-decision fusion is when the
sensing CR nodes directly report the data generated by their built-in sensor to
the FC without making any local decision themselves. In this case, the FC pro-
cesses a set of statistics received from the cooperating nodes to make the global
decision. In hard-decision fusion, the global decision is still made by the FC,
however, instead of local sensing outcomes, the sensing nodes report their local
decisions about the presence or absence of the PU. These local decisions can be
sent to the FC as one-bit binary signals consuming considerably lower communi-
cation resources allocated to the reporting phase. We know that the soft decision
fusion scheme outperforms the hard decision fusion method at the expense of
higher communication cost at the reporting phase. Note also that when sending
the sensing outcomes to the FC through the reporting channels with a limited
bandwidth, the CR nodes need to quantize this data. So the FC combines the
quantized data received from the cooperating nodes in this case. This process is
referred to as quantized soft fusion. In the following, we briefly explain the soft and
hard fusion schemes. The quantized soft decision fusion method is thoroughly
investigated in [PI].

3.3.3 Soft Fusion in Cooperative Sensing

The statistical behavior of the decision variable constructed at the FC depends in
general on the joint probability distribution of the received reports f(y) which, in
turn, depends on the behavior of the reporting channel, characterized by f(y|u),
as well as the statistical behavior of the local sensing outcomes specified by f(u).
The optimal fusion rule is found based on the NP test. In an NP test, the objec-
tive is to maximize the overall detection probability given the target false alarm
probability of «, where « is referred to as the significance level of the detector. It is
shown in [54] that the NP test is equivalent to the likelihood-ratio test (LRT) where
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the decision variable, denoted A, is constructed and compared to a threshold as

Hi

a flylH)
A(Y) - f(Y|H0)§07A (26)

This test is computationally-expensive in the sense that, to find the optimal
threshold 7y we need to find the probability distribution function (PDF) of the
decision variable A which, in turn, involves complicated multidimensional inte-
grations. As an alternative to the LRT, optimal linear combining is commonly used
as a low-complexity soft fusion rule with a very good performance [55, 56, 59, 63].
In this method, the received reports are combined linearly at the FC to form a
global test summary y. which is compared with a threshold to make the global
decision, i.e.,

Hy
ye 2wy 27 (27)
Ho

The main idea of linear combining is that the combining weight for the sig-
nal from a particular user represents its contribution to the global decision. For
example, if a CR generates a reliable (i.e., high-SNR) signal that may lead to cor-
rect detection on its own, it should be assigned a larger weighting coefficient. For
those SUs experiencing deep fading or shadowing, their weights are decreased in
order to reduce their negative contribution to the decision fusion.

Assuming that the sensing CR nodes conduct energy detection with a large
number of samples, u; can be considered as a normal random variable. Hence,
modeling the reporting media as AWGN channels between the FC and the CR,
we can conclude that y; is also a normal random variable. Consequently, the
global test summary y. follows a normal distribution with the mean and variance
represented (for h = 0,1) by

Elye|Hu] = wpy s, (28)
Varly.|Hy] = w'Cyppy, W (29)
where pt £ E[y|Hy] and Cyjgy, = E[(y — pryip, ) (Y — pyppy,) " [Hi]. Conse-

quently, the overall detection and false alarm probabilities are derived as
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Removing 7. from (30) and (31) for a target false alarm probability P = a, we
have
(@ Q () /WTICygyyw —a"w
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where Po(la) denotes the detection probability given the false alarm probability of
awand a = Hup, — Mujp, The system performance is then optimized by finding

a w which maximizes Pc(la). This optimization can be solved either by applying
the Karush-Kuhn-Tucker (KKT) conditions [59] or by the quadratic programming
techniques [63].

3.3.4 Hard Fusion in Cooperative Sensing

Regarding the hard-decision-based cooperative sensing, it is shown in [64] that
when the reporting facility comprises nonideal analogue communication chan-
nels between the distributed nodes and FC, the globally-optimal structure is to
perform the LRT both at individual nodes and at the FC. However, how to effi-
ciently find the optimal LRT thresholds for individual nodes and for the FC is still
unknown, see [56, 64].

Several suboptimal decision fusion methods have been introduced and in-
vestigated in the literature. In these methods, the global test summary is built at
the FC as a binary variable whose value is obtained by a logic operation on the
received local binary decisions. This logic operation can be an OR function, an
AND operation, a majority fusion rule or, more generally, a so-called k-out-of-
N fusion rule? [50, 65]. With the OR fusion rule, the global sensing outcome is 1,
indicating (let’s say) the presence of the PU, if at least one of the received local de-
cisions is 1. The AND fusion rule indicates that the global decision is 1 only when
all the received reports are 1. As clarified by the name, in a cooperative sensing
with the majority fusion rule, the global decision is the case supported by the ma-
jority of the sensing nodes. Note that the OR, AND, and majority fusion rules are
all special cases of the k-out-of-N fusion method in which the global sensing out-
come is 1 when at least k out of N received reports indicate 1 as the local decision.
The performance of different hard-decision fusion rules in the presence of report-
ing channel errors is investigated in [65] where it is shown that the majority rule
outperforms other commonly-used hard fusion methods in cooperative sensing
with erroneous reporting channels.

It is worth noting that, the binary symmetric channel (BSC) is a common
choice for modeling the reporting facility in analyzing the hard-decision-based
as well as quantized soft-decision-based cooperation. By using the BSC the effect
of reporting channel impairments on the overall sensing performance is captured
into the system model by the notion of reporting bit error probability (BEP), as
it is a convenient and widely applicable method to model the end-to-end per-
formance of the system including the transmitter, the channel, and the receiver
[65].

2 N refers here to the number of cooperating nodes.



4 TRADEOFFS IN SPECTRUM SENSING

4.1 Introduction

As we have seen so far, the performance of CRNs significantly depends on the
effectiveness of their spectrum sensing while the spectrum sensing performance
itself depends in general on several factors including the SU needs, affordable
hardware complexity, the radio environment, and the PU behavior. Generally
speaking, the design of reliable spectrum sensing often involves conflicting re-
quirements which need to be taken into account in the form of tradeoffs formu-
lated as optimization problems. In this chapter, we investigate several design
issues in spectrum sensing for CRs and introduce a number of important chal-
lenges which need to be addressed properly in order to realize effective and effi-
cient spectrum sensing.

We first focus on the local spectrum sensing process and investigate the
problem of the sensing time optimization. This investigation involves addressing
the throughput-energy tradeoff in CRNs while taking into account two funda-
mental processes, namely, spectrum mobility and spectrum handover. We have dis-
cussed these concepts in [PVI] where their effects on the throughput and energy
consumption of CRs are analyzed and formulated. Specifically, we construct an
optimization problem which aims at finding the best sensing time in a CRN with
spectrum mobility. In this analysis, we find the overall average throughput of a
CR system which incorporates the energy detection and sequential spectrum sens-
ing method to find spectrum holes among N, channels allocated to the PUs. We
also find the average number of spectrum handovers required to find a transmis-
sion opportunity and take into account, in the proposed optimization, the energy
consumed for spectrum sensing and for spectrum handover. Consequently, the
proposed optimization enables the SU to have control over its consumed energy
and the achieved average throughput. Further details are provided in Section 4.2.

Next, we work on the centralized cooperative spectrum sensing. In par-
ticular, we analyze the overall detection performance considering the effect of
three fundamental processes as i) quantization of the sensing outcomes at the CR
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nodes, ii) reporting the quantized sensing outcomes to the FC, and iii) the fu-
sion rule at the FC. The quantization process prepares the sensing outcomes at
CR nodes to be sent to the FC through a reporting channel with limited capac-
ity. Our analytical and simulation-based investigations reveal that increasing the
quality of local quantization does not necessarily lead to a better overall detec-
tion performance since there is a tradeoff between the local quantization quality
and the degradation caused by the reporting channel. Formulation of this trade-
off in an NP setting allows us to propose a better cooperative sensing scheme
which comes as a benefit for better exploitation of the spatial /user diversities in
CRNs. In addition, we extend the notion of deflection coefficient to take into ac-
count the impact of the number of quantization levels used at the sensing nodes
jointly with optimal linear combining at the FC. The extended deflection coeffi-
cient provides a practically-appealing fast suboptimal solution for the proposed
joint optimization. Further details are provided in Section 4.3.

In studying cooperative sensing schemes, we develop our formulations based
on the optimal linear combining method. Linear fusion is a widely-used method
and this popularity mainly stems from two important factors, the ease of im-
plementation and the close-to-LRT performance. We redesign the optimal linear
combining scheme from a different perspective aiming at more efficient use of
the available signal processing and communication resources in CRNs. In par-
ticular, we show that the idea of discriminating between the different sensing
nodes by assigning different weights to their received reports is not an efficient
approach. We then develop a new idea to realize the discrimination in a more
efficient way and propose a new cooperative sensing structure which outper-
forms the existing ones by better utilization of the available resources. This new
design is based on two mechanisms added to the commonly-used cooperation
structure. Specifically, the first mechanism is realized as a set of random energy-
saving interruptions in the cooperation between the sensing CR nodes and the
FC, while the second mechanism is a compensation process at the FC. This com-
pensation, which is realized as a linear estimator, aims at recovering the local test
summaries out of degradations caused jointly by the interruptions and reporting
channel contaminations. The estimation of the local test summaries is realized in
the proposed system by using the spatio-temporal cross-correlations of the sensor
outcomes as well as auto-covariance functions characterizing the behavior of the
reporting channels. Through comprehensive analytical investigations, novel op-
timization procedures, and extensive simulations, we show that this new struc-
ture can significantly improve the efficiency in utilizing the available resources
in CRNs which employ centralized cooperative spectrum sensing. Although the
idea of random interruptions is developed by investigating the linear cooperation
structure, the results obtained are not constrained to this particular cooperation
scheme. The use of linear fusion and linear estimation processes at the FC does
not limit the applicability scope of the proposed idea and is only for maintain-
ing tractability in the proposed analysis and optimization. Further details are
provided in Section 4.4.
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FIGURE 9 Energy consumed by a sensing CR vs. the maximum throughput achieved.

4.2 The Sensing-Throughput Tradeoff

In this section, we discuss the effect of spectrum mobility and spectrum han-
dover on the energy-throughput tradeoff in CRNs. Spectrum mobility refers to
the dynamic availability of transmission opportunities in a CRN due to the dy-
namic behavior of the PUs, while spectrum handover, or simply handover (HO),
is used to describe the process of vacating a spectrum band and switching to an-
other white space when a PU arrives. Taking these two important factors into
account, we propose a new formulation of the problem of spectrum sensing time
optimization in CRNs. In the proposed modeling and optimization we assume
that the SU performs sequential channel sensing in order to find the next available
white space. The sequential channel sensing means that the SU starts sensing the
channels from the top of a list, referred to as the sensing sequence, and if the chan-
nel considered is sensed as occupied, then the SU senses the next one and this
process is continued until an idle spectrum is found. We formulate the average
throughput maximization of an SU by optimizing its spectrum sensing time, as-
suming that a priori knowledge of the presence and absence probabilities of the
PUs is available. More specifically:

We formulate the throughput of an SU in terms of its sensing time duration when
the spectrum mobility and consequent HOs affect the SU performance. In addition,
the energy cost of HOs is considered in the proposed modeling in order to address
the energy-throughput tradeoff encountered in designing portable and/or green CR
systems.

Consequently, we evaluate the energy consumed to find a transmission opportu-
nity, and discuss the impact of the number of PU channels on the SU achievable
throughput and its consumed energy. In particular, we show that, see Fig. 9,
there is a saturation behavior in the relationship between the spectrum sensing
time and the throughput achieved by an SU. Hence, we show that:

At the cost of a small reduction in the maximum throughput, the consumed energy
of a CR can be substantially decreased. We use this saturation effect to increase the
energy efficiency of the spectrum sensing in CRNs.
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We propose a learning-based approach for solving the proposed optimization.
We first decompose the spectrum sensing time optimization into two distinct
parts as i) obtaining the mapping between the sensing time and the SU through-
put and ii) finding the optimum value for the sensing time based on the derived
mapping. For the first part, we use a multilayer feedforward neural network [15]
which learns the mapping between the parameters of interest and for the second
part we use a Kennedy-Chua neural network [14] which finds the optimal sensing
time based on the learned mapping. The neural-network-based method proposed
has several advantages over an analytical solution. These advantages can be sum-
marized as:

First, no prior knowledge about the link behavior, such as the presence or absence
probabilities of the PUs is required. Second, the limited consistency of the math-
ematical models with the real wireless environment does not affect the optimality
of the derived spectrum sensing time. And third, by using this learning-based op-
timization scheme, an adaptive system is proposed which is capable of effectively
following the variations in the link and keeping the average throughput at the max-
imum level in non-stationary conditions.

4.3 Joint Local Quantization and Linear Cooperation

As mentioned before, cooperative sensing in CRNs is often concerned with three
different phases; local sensing, reporting, and decision/data fusion. Since the
overall detection performance is affected in general by the joint effect of all the
elements involved, enhancing the performance quality of a certain phase does not
necessarily lead to a better overall detection performance. Consequently, a joint
design of the different phases, taking into account their joint impact on the overall
detection performance, can lead to a better cooperation structure. We show the
effectiveness of this design strategy in [PI] by joint consideration of all the three
phases. In particular, we identify, analyze, and take into account the following
tradeoff:

For a given set of radio resources dedicated to the reporting phase in terms of trans-
mission power and bandwidth, increasing the number of quantization bits influ-
ences the overall sensing performance in two opposite directions. Specifically, on
one side, increasing the number of quantization levels leads to a better quantiza-
tion process and consequently, lowers the quantization errors affecting the reported
local sensing outcomes, improving the cooperation performance. On the other side
however, increasing the quantization bits raises the BEP induced by the reporting
channels and reduces the received sensing outcomes quality at the FC, degrading
the overall sensing performance.

Fig. 10 shows the basic configuration and major elements of the cooperative sens-
ing in detail. K CR nodes cooperate for spectrum sensing by reporting their sens-
ing outcomes to an FC through an erroneous digital channel. As shown in Fig. 10,
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our analysis considers the joint impact of the following processes in detail: local
sensing, quantization, mapping the quantizer outputs onto bit strings, transmis-
sion of the bit strings to the FC, and the linear fusion process along with the
decision-making at the FC. Through considering all these elements, we develop
solid understanding of the role of different components in a cooperative spectrum
sensing and address this particular problem:

How precisely the local sensing outcomes should be quantized at each node, and
how to linearly combine the received statistics at the FC, when the reporting facility
is a digital communication link with a given bandwidth and transmission power?

In order to properly address this question, we develop a new model for analyz-
ing the reporting channel contaminations and, based on this model, we provide
a comprehensive set of mathematical relations for evaluating the reporting chan-
nel effect on the bit sequences generated by an arbitrary mapping process. In
particular:

The proposed analysis leads to exact as well as practical approximate relationships
describing the joint impact of the quantization, reporting, and linear fusion pro-
cesses.

Based on these results, we formulate the system performance optimization in an
NP setting and develop a computationally-efficient solution for it. The proposed
optimization is a MINLP problem. We develop its solution as a fast BnB proce-
dure which is based on the convex hull relaxation of the nonlinear factors in the
derived new formulations. It is worth noting that, the BnB procedure is a stan-
dard method for solving MINLPs and it has been shown that under very general
conditions, a BnB solution procedure always converges [66, 67]. Moreover, al-
though the worst-case complexity of such a procedure is exponential, the actual
running time is fast when all partition variables are integers. In addition, we
extend the notion of deflection coefficient to accommodate the proposed joint op-
timization [PI, PII]. In particular, we have developed fast deflection-based sub-
optimal solutions for the proposed problem. The computational complexity of
these solutions increases linearly with the number of sensing nodes involved in
cooperation. Therefore:
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compared with the optimal linear combining.

We provide a complete set of solutions which are practical, and scientifically-
appealing even when dealing with large-scale networks.

We evaluate the proposed system performance by a comprehensive set of simu-
lations. In these simulations, three distinct cases are considered as:

Case#1: Uniform linear combining at the FC and maximum number of quanti-
zation bits at the sensing nodes.

Case#2: Optimal linear combining at the FC and maximum number of quantiza-
tion bits at the sensing nodes.

Case#3: The proposed joint optimization, i.e., optimal linear combining at the
FC and optimal number of quantization bits at the sensing nodes.

Case#1 corresponds to a system design with no optimization involved. Equal
weights are used at the FC and the quantization is performed based on the max-
imum number of bits available. This case plays the role of a baseline in our per-
formance comparisons. In Case#2 optimization only concerns the fusion process.
This case represents the existing works in [55, 56, 59]. We aim at showing that
this optimization is not comprehensive enough since it ignores the effect of lo-
cal quantization at the sensing CR nodes. Case#3 represents the proposed design
which takes into account the local quantization jointly with its effect of reporting
degradations and the fusion rule at the FC.

As depicted in Fig. 11, the system performance in each case is illustrated
by their corresponding CROC curves. We see in this figure that the proposed
method leads to significant performance gains compared to the existing meth-
ods. This better performance is due to that fact that, in the proposed design the
spatial/user diversities regarding the listening and reporting channels are con-
sidered in a more comprehensive optimization approach.
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4.4 Random Interruptions in Cooperation

In this section, we discuss how to increase efficiency in utilizing the available re-
sources when designing centralized cooperative sensing schemes for CRNs. We
know that in order to achieve a better cooperation performance, it is necessary
to discriminate between the reliable and unreliable sensing nodes. This discrimi-
nation is commonly achieved by a linear fusion method which linearly combines
the received reports while assigning different weights to the reports from dif-
ferent sensing nodes. In this fusion method, by assigning higher weights to the
more reliable sensing nodes, their impact on the global decision is emphasized,
whereas the degrading effect of the unreliable reports is suppressed by assigning
relatively smaller weights to the nodes operating under deep fading or shadow-
ing. Although linear combining is known to be an effective and computationally-
affordable technique in designing cooperative sensing schemes, it is not energy-
efficient. In particular, we point out the following issue with the linear fusion
scheme in cooperative sensing:

Regardless of the channel conditions experienced by different sensing nodes, they all
provide their sensing outcomes at the same cost which manifests itself as the energy
consumed during the local sensing and reporting phases. When the contribution of
a particular node to the global decision is suppressed by assigning a small weight to
it, the energy and signal processing resources consumed by that node for the local
sensing and reporting processes are relatively wasted.

We propose in [PIV] a more efficient method to realize the required discrimina-
tion between the sensing nodes which experience different channel conditions.
Fig. 12 shows the proposed cooperation structure (for comparison, see Fig. 8).
In this method, instead of suppressing the contribution of nodes working under
deep fading or shadowing, they are occasionally ordered not to cooperate. This
interruption is modeled by a set of binary random variables—depicted in Fig. 12
as ;i =1,2,.., K—multiplied by the sensing outcomes. These random numbers
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control the behavior of the sensing nodes, i.e., a CR node performs the local sens-
ing and reporting processes in a time slot only when the corresponding random
number is 1 in that time slot. Otherwise, the CR saves its energy and signal pro-
cessing resources during that time slot by going to a sleep mode. By switching the
sensing nodes on and off we can save considerable energy in general, however,
we are deliberately imposing degradations on the reported sensing outcomes as
well. We compensate for these degradations by adding an estimation process to
the FC. This estimation process, depicted as compensator in Fig. 12, aims at recov-
ering the reported sensing outcomes out of degradations caused jointly by the
random interruptions and reporting channel contaminations. In this structure,
the more reliable a sensor, the more likely it is to contribute to the overall sensing
process.

We model and thoroughly analyze the proposed system to derive the global
test summary statistics in terms of probability distributions of the random in-
terruptions. By using the statistics obtained, we formulate the proposed system
performance optimization according to the NP and deflection criteria. Specifi-
cally, first, we analyze the global test summary statistics and characterize the sys-
tem performance by providing closed-form relations for the probability of false
alarm and the probability of detection. We then derive the detection threshold
for a fixed false alarm probability and formulate the system performance opti-
mization, in the NP setting, subject to a constraint on the energy consumed at
the local sensing and reporting phases. Consequently, we formulate a significant
tradeoff concerning the overall detection quality along with the joint energy con-
sumption of the local sensing and reporting phases. We discuss that the obtained
optimization is a stochastic program with prohibitive computational complexity
and then, we consider the optimization as a decision-making process with uncer-
tainty. By using this decision-making structure, we show the link between the NP
and deflection criteria for the proposed cooperative sensing structure.

Regarding the deflection criterion, we formulate the performance optimiza-
tion as a convex-over-convex fractional programming problem. This fractional
program, which is solved by a BnB algorithm, gives the optimal distributions
of the random interruptions for maximizing the overall detection performance,
subject to a constraint on the energy consumed at the local-sensing and report-
ing phases. Through delicate algebraic manipulations, we convert the fractional
program into a set of nonconvex QCQPs whose solution can be obtained in poly-
nomial time by using standard techniques in nonconvex quadratic programming,.
Therefore, we construct an effective low-complexity method for solving the pro-
posed optimization even when dealing with a large number of sensing nodes.
Based on these investigations, we obtain the following results:

The required discrimination between the reliable and unreliable sensors is achieved
by the proposed interruption-compensation structure while significant savings in
the available resources can be achieved. This efficiency is obtained by optimizing
the random-interruptions-based cooperation considering a constraint on the en-
erqy consumed in the local sensing and reporting phases. More specifically, we
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find optimal distributions associated with the random number generators, assum-
ing a general linear fusion rule at the FC. In addition, we discuss and highlight
the differences between the proposed method and the existing energy-efficient coop-
eration schemes and justify that the proposed method outperforms the commonly-
used energy-efficient methods, such as censoring-based methods and sensor selec-
tion/scheduling algorithms, by better utilizing the available resources.

In addition, we formulate the joint optimization of the reporting and fusion phases
in the proposed interruption-based cooperation [PV]. This optimization aims at
finding the best weights used at the FC to construct a linear fusion of the re-
ceived interrupted reports, jointly with the best Bernoulli distributions govern-
ing the statistical behavior of the interruptions. We construct this new problem
by using the deflection criterion and as a nonconvex quadratic program which
can be solved for a good suboptimal solution, in polynomial time complexity, by
a semidefinite relaxation technique. We then demonstrate the proposed system
performance by a set of simulation results which compare the performance of
the system for the cases with and without the optimal linear fusion. The results
obtained by this joint optimization demonstrate that:

When random interruptions are employed, there is no more need for discriminating
between the reliable and unreliable nodes by the fusion process.
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Significant levels of flexibility and adaptability are realized in wireless networks
by employing the CR technology which is developed through adding certain
artificial-intelligence-based capabilities, such as self-awareness, context-awareness,
and machine learning, to software-defined radios. Due to these prominent ca-
pabilities, CR has been of great interest in developing more efficient wireless
communications for various applications. In fact, wireless cellular communica-
tions, public safety networks, smart grid, and wireless body area networks can be
named as some of the major applications of this new promising communication
paradigm.

Spectrum sensing is the key capability in the CR systems and enables the
SUs to get informed about their radio environment and establish communication
without having any particular spectrum band assigned to them. The design of
reliable spectrum sensing in CRNs often requires dealing with contradictory re-
quirements which are represented and accounted for in the form of optimization
problems. These optimizations are constructed in general based on mathematical
modeling of the radio environment, the PU behavior and its signal characteris-
tics, and the target false alarm and detection probabilities. The optimizations
involved are often in nonlinear/nonconvex forms which make it a challenge to
develop a solution with affordable complexity. Therefore, a major step in devel-
oping efficient and effective spectrum sensing schemes is to use proper tools from
the optimization theory and construct a scalable solution for the problem.

5.1 Conclusions

In this dissertation, we have identified and thoroughly investigated a number of
important tradeoffs in spectrum sensing for CRNs. We have considered all the
major phases in cooperative spectrum sensing, i.e., the local sensing, reporting,
and fusion processes. We have modeled and evaluated the joint impact of differ-
ent parameters in cooperative sensing on the overall detection performance and
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developed novel design methods to increase the effectiveness and reliability of
the spectrum sensing. In particular, the following items constitute a summariz-
ing list of the results obtained:

— We have addressed the sensing-throughput tradeoff in a CR system with
the sequential spectrum sensing by formulating the SU throughput in terms
of its sensing time duration while taking into account the energy cost of
spectrum handovers due to the spectrum mobility effect of the radio envi-
ronment. Accordingly, we have provided an analytical and a learning-based
method for spectrum sensing time optimization in CRNs. We have shown
that at the cost of a small reduction in the maximum throughput, the con-
sumed energy of a CR can be substantially decreased.

— After providing a structured study of major phases in a centralized cooper-
ative sensing scheme, we have introduced the effect of the number of bits
used in local sensing quantization on the overall sensing performance in a
CRN with cooperative sensing. We have then proposed a joint optimization
approach to optimize the linear soft-combining scheme at the fusion phase
with the number of quantization bits used by each sensing node at the re-
porting phase. The presented analytical expressions followed by simulation
results demonstrate that, through joint consideration of the reporting and
fusion phases in a cooperative sensing scheme, considerable performance
gains can be obtained. This better performance stems from better exploita-
tion of spatial/user diversities in CRNs. The proposed joint optimization
scheme leads to more powerful distributed detection performance, espe-
cially when the sensing nodes have to work at low SNR regimes.

— We have proposed an extension to the deflection coefficient which captures
the effects of the quantization processes at the sensing nodes, jointly with
the impact of the linear combining at the FC. The proposed parameter has
been used to formulate a new MINLP problem as a fast suboptimal method
to design a distributed detection scenario where the nodes report their sens-
ing outcomes to a FC through nonideal digital links. Numerical results
demonstrate the effectiveness of the proposed design approach.

— We have proposed a novel energy-efficient structure for spectrum sensing
in CRNs based on making random interruptions in the cooperation process
among the CRs. We have thoroughly modeled and analyzed the proposed
system behavior, and developed an optimization problem in order to for-
mulate a tradeoff taking into account the energy consumption at the local
sensing and reporting processes jointly with the overall detection perfor-
mance. Analytical solution of the optimization problem and the presented
numerical results demonstrate that, significant levels of energy efficiency
can be achieved by the proposed architecture. This energy efficiency is due
to the fact that, unlike in existing cooperative sensing schemes, in the pro-
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posed design the discrimination between reliable and unreliable nodes is
obtained while no energy is wasted. Moreover, we have shown that, the
sensitivity of the overall detection to degradations in the local sensing and
reporting processes is significantly reduced by the proposed architecture,
leading to a more reliable cooperative spectrum sensing.

— We have jointly optimized the reporting and fusion phases of cooperative
spectrum sensing scheme with linear fusion at the FC and random interrup-
tions in cooperation of the sensing nodes with the FC. The results achieved
based on maximizing the modified deflection coefficient in this system demon-
strate that, when random interruptions are employed, there is no more need
for discriminating between the reliable and unreliable nodes by the fusion
process, and the equal-gain combining scheme at the FC is enough to nearly
have the optimal overall detection performance.

5.2 Future Research

There exist numerous possibilities for future research based on the findings pre-
sented in this dissertation. In the following, we provide some cases which can be
investigated in future:

Multiband cooperative sensing with random interruptions: Extension of the pro-
posed random-interruptions-based cooperation to multiband cooperative spec-
trum sensing is an interesting research question to be investigated. More specifi-
cally, formulation of the performance of the centralized cooperative sensing in a
multiband joint detection scenario with random interruptions can be considered
as a direct extension of the analysis provided in [PIV]. This investigation aims at
finding the aggregate opportunistic throughput [55] of the CRN on a (typically)
wide range of frequency bands along with the aggregate interference experienced
by the PUs operating on those bands. Then, the system performance is optimized
by maximizing the aggregate opportunistic throughput subject to a constraint on
the aggregate interference, while restricting the energy and signal processing re-
sources consumed to stay below a certain threshold.

Hard-decision fusion with random interruptions in cooperative sensing: Since the
hard-decision fusion is a commonly-used method in cooperative sensing schemes
for CRNs, developing analytical foundations for implementing the proposed ran-
dom interruptions in a hard-fusion-based cooperation could be an interesting
future work providing important tools for realizing the proposed energy effi-
cient cooperation in a variety of commonly-used detection scenarios. In this re-
search, the notion of random interruptions will be extended to cooperative sens-
ing schemes where the sensing nodes report to the FC their local decisions of
the presence and absence of the primary user signal. In particular, analyzing the
system behavior, finding closed-form relations for the system detection and false
alarm probabilities, and establishing the system performance optimization in an
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NP setting are the expected research results.

Network lifetime optimization in cooperative spectrum sensing with random inter-
ruptions: Fair and effective distribution of the load of spectrum sensing among the
cooperating nodes is of critical importance in designing CRNs. In this research,
first, the effect of random interruptions in extending the network lifetime is taken
into account by formulating an optimization problem to minimize the energy
consumption of the sensing nodes while maintaining a predefined cooperative
sensing quality. Then, based on this optimization problem, the tradeoff between
the network lifetime and fairness in distributing the sensing load among the
cooperating nodes is investigated by considering well accepted, axiomatically-
justified notions of fairness such as the proportional fairness and max-min fair-
ness [68]. The results obtained from this research are expected to provide valu-
able guidelines for researchers and system designers in incorporating the random
interruptions more effectively.

Security in DSA infrastructures: Considering the fact that the main source
of security threats in a distributed CRN setting is manipulation of the spectrum
sensing process by the adversaries [69], the knowledge developed in this disser-
tation provides an excellent foundation for more investigations towards mitigat-
ing the security threats in DSA networks. Currently, there exist several open re-
search topics concerning the security of DSA networks. For instance, the security
and reliability tradeoff in wireless communications in the presence of eavesdrop-
ping attacks is still an open issue [70]. In addition, there are several security at-
tacks identified in several layers and cross-layer designs taking into account these
threats are currently of great importance. Energy efficient and low-complexity se-
curity algorithms are desirable to make the CR technology a viable solution for
the future generation wireless communications and achieving these features with
highly robust cross-layer security mechanisms is still a very demanding topic of
research [70]. Since the models and analyses presented in this dissertation pro-
vide a deep insight into the role and impact of the key components in spectrum
sensing, they can be used in future to better investigate these open issues.
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YHTEENVETO (FINNISH SUMMARY)

Tulevaisuuden kognitiiviradioverkoissa on tdrkedd kerdtd tietoa ymparoivasta
radioymparistostd, kuten siitd mitka taajuudet ovat kulloinkin varattuina ja mit-
ka vapaina kdytettdaviksi tiedonsiirtoon. Tata tilannetiedon kerdamista kognitii-
viradioverkoissa kutsutaan yleisesti spektrin aistinnaksi, jonka luotettavuus on
vélttdimaton ehto luotettavalle ja tehokkaalle tiedonsiirrolle. Tédssa viitoskirjassa
tutkitaan tapoja parantaa spektrin aistinnan onnistumista ja siihen kaytettavaa
energiaa. Erityisesti tutkitaan nk. keskitettyad yhteistyohon perustuvaa aistintaa,
jossa monet spektrid aistivat radiot lahettdvat aistintainformaationsa keskitet-
tyyn péditelaitteeseen tai verkkoelementtiin fuusioitavaksi ja ndin ollen osallistu-
vat yhteistyohon vapaan taajuuden etsinndssa. Tutkimuksessa otetaan huomioon
kaikki olennaiset vaiheet koko prosessissa kuten itse aistinta, tulosten raportoin-
ti eteenpdin radioteitse ja lopuksi pddtoksenteko datafuusion jilkeen. Néin ollen
tutkimuksessa spektrin aistinta analysoidaan ja optimoidaan kokonaisena pro-
sessina, poiketen ndin siitd muusta alan laajasta tutkimuksesta, jossa yleensd op-
timoidaan jokin yksittdinen prosessin vaihe. Tutkimuksen tuloksina saavutettiin
useita rakenteita, joilla spektrin aistintaa voidaan parantaa kokonaisuutena joko
suorituskyvyn tai aistintaan kaytettivan energiankulutuksen suhteen. Kyseiset
suorituskyvyt ja niiden parannukset esitetddn niin analyyttisesti kuin monin nu-
meerisin esimerkeinkin.
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Abstract—In designing cognitive radio networks (CRNs), pro-
tecting the license holders from harmful interference while main-
taining acceptable quality-of-service (QoS) levels for the secondary
users is a challenge effectively mitigated by cooperative spectrum
sensing schemes. In this paper, cooperative spectrum sensing in
CRNs is studied as a three-phase process composed of local sensing,
reporting, and decision/data fusion. Then, a significant tradeoff in
designing the reporting phase, i.e., the effect of the number of bits
used in local sensing quantization on the overall sensing perfor-
mance, is identified and formulated. In addition, a novel approach
is proposed to jointly optimize the linear soft-combining scheme
at the fusion phase with the number of quantization bits used by
each sensing node at the reporting phase. The proposed optimiza-
tion is represented using the conventional false alarm and missed
detection probabilities, in the form of a mixed-integer nonlinear
programming (MINLP) problem. The solution is developed as a
branch-and-bound procedure based on convex hull relaxation, and
a low-complexity suboptimal approach is also provided. Finally,
the performance improvement associated with the proposed joint
optimization scheme, which is due to better exploitation of spa-
tial/user diversities in CRNs, is demonstrated by a set of illustrative
simulation results.

Index Terms—Cognitive radio (CR), cooperative spectrum
sensing, decision fusion, non-ideal reporting channel, quantization.

I. INTRODUCTION

ROMOTING more efficient use of the radio spectrum as a
valuable resource has been of the first priority in many sci-
entific debates and research activities worldwide, see e.g., [1],
[2]. Consequently, Cognitive Radio (CR) as the best implemen-
tation candidate for the emerging Dynamic Spectrum Manage-
ment procedures has been the core of most related technical dis-
cussions and interactions among various academic, industrial,
and regulatory groups specialized in wireless communications
all over the world, see [3], [4], and the references therein.
Conceptually, CR is an adaptive communication system
which offers the promise of intelligent radios that can learn
from and adapt to their environment [5]. As a matter of fact,
spectrum sensing is the key element in each CR system and
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enables its user, commonly referred to as Secondary User
(SU), to find transmission opportunities in spectrum resources
allocated exclusively to license holders. In this context, the
license holders are called Primary Users (PUs) and have the
exclusive right of using the spectrum. So the aim of a CR
Network (CRN) generally is to achieve radio resources for
communication within the spectrum band of the PUs without
causing any harmful interference and the spectrum sensing
capability enables CRs to detect active PUs and avoid causing
interference for them. However, due to impairments like shad-
owing and multipath fading associated with typical wireless
environments, there might be some cases in which not all the
CRs are able to detect the PU signal, even though it is present
and active. This significant issue is known as the Hidden Node
Problem and is a major concern in designing CRNs.
Conventionally, the hidden node problem is mitigated by co-
operation among spatially diverse sensing nodes, leading to the
concept of Cooperative Spectrum Sensing. As a common de-
sign strategy, the cooperative sensing is coordinated by and the
overall sensing outcome is generated in a special node called
the Fusion Center (FC) which might be considered as a more
powerful node, like a base station or an access point. This co-
operation of the CR nodes with the FC is generally performed
as a three-phase process. In the first phase which we call Local
Sensing, each node performs spectrum sensing individually, by
using its own built-in sensing scheme. In other words, the nodes
listen to their environment to detect the PU signal. Accord-
ingly, the wireless channels between the PU and the sensing
nodes are referred to as Listening Channels. In the second phase,
called Reporting, the sensing nodes send their local sensing out-
comes to the FC through dedicated [6]-[8] or non-dedicated [9],
[10] Reporting Channels. Finally, in the third phase, i.e., Fu-
sion, the FC combines the received local sensing outcomes by
using a soft-decision (SD) [8], [11]-[16] or hard-decision (HD)
[17]-[19] method to decide the presence or absence of the PU.

A. Assumed Architecture: Linear Fusion of Quantized Reports

The architecture assumed in this paper has two main parts,
namely, the fusion rule at the FC and the reporting links. We
have assumed that the FC performs linear combining on the
local test summaries which are reported through non-ideal
(i.e., erroneous) digital channels. The main considerations
motivating us to adopt this structure are as follows.

It has been shown in [20] that for a distributed detection
problem with nonideal analogue communication channels be-
tween the distributed nodes and FC, the globally optimal struc-
ture is to perform the Likelihood Ratio Test (LRT) both at indi-
vidual nodes and at the FC. However, how to efficiently find

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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the optimal LRT thresholds for individual nodes and for the
FC is still unknown, see [8], [20]. For the quantized SD case,
i.e., when the reporting is performed through nonideal digital
links, a solution for optimizing the local quantization levels
jointly with the LRT threshold at the FC may or may not exist
[21]. Even if an optimal solution exists, the threshold calcu-
lations are not trivial, and complex optimization schemes are
needed to solve them. The complexity cost further rises as these
optimizations have to be done each time the listening or re-
porting channels change. Moreover, the optimal rules are de-
rived under strict assumptions that may not hold in a practical
scenario, resulting in lack of robustness [22]. These difficul-
ties are commonly avoided by assuming a linear fusion scheme
[8], [12]-[14] which is the base for our considered architecture.
In particular, linear combining is shown in [8] to perform very
closely to the optimal LRT method but with much less compu-
tational complexity.

Two approaches are commonly used in the literature to
model the reporting phase. In the first approach, the reporting
links are modeled as analogue, i.c., additive white Gaussian
noise (AWGN) channels [8], [12]-[14], which is the simplest
assumption leading to analytically-tractable formulations. The
alternative approach is based on assuming nonideal digital
communication links, i.e., Binary Symmetric Channels (BSC)
through which the quantized test summaries are sent to the FC
[15], [19], [22]. Digital reporting is more practically appealing
since, first, the reporting channel bandwidth is limited in prac-
tice, and, second, in many cases, the FC is the access point, base
station (BS), or network coordinator which performs a set of
resource allocation activities besides decision/data fusion, see
e.g., the BS in the IEEE 802.22 standard. These tasks basically
require establishment of a set of digital communication links
between the FC and CR nodes, which can also be used for the
reporting purposes. When modeling the reporting facility as a
digital link, the effect of reporting channel impairments on the
overall sensing performance is captured into the system model
by reporting Bit Error Probability (BEP), as it is a convenient
and widely applicable method to model the end-to-end perfor-
mance of the system including the transmitter, the channel, and
the receiver.

B. Related Work

Optimal linear combining is a non-convex problem studied
in [8] and [23], where it is broken into several subproblems
and the optimal solution is derived through a tedious iterative
process which fails to cover all possible cases. As an alterna-
tive approach, the authors in [8] have proposed a suboptimal
solution based on the so-called Modified Deflection Coefficient
(MDC) and showed that this method provides very close results
to the ones obtained by the optimal LRT method, but with lower
complexity. The MDC approach is also used in other works like
[11] and [24] to optimize the detection performance where direct
formulation of the false alarm and missed detection probabilities
leads to a non-convex problem. In [12], a semidefinite program-
ming approach with a divide-and-conquer process is proposed
for the linear combining problem, but the most straightforward
and complete solution is developed in [13], which covers all
the possible cases. The method in [13] is simple to implement
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in the sense that it only requires solving a polynomial equa-
tion in a single scalar variable over a given interval depending
on the system parameters. The effect of reporting channel im-
pairments on the overall sensing performance has been investi-
gated in [19], [22], and [25], where the reporting channels are
modeled as BSCs that cause errors with a certain BEP. Exis-
tence of a BEP wall has been demonstrated in these works for
both soft- and hard-decision combining schemes, and it is shown
that if the BEP of the reporting channel is above the BEP wall
value, the constraints on the cooperative detection performance
cannot be met at the FC, regardless of the signal quality at the
listening channels. Moreover, the authors in [22] compare the
performance of the HD- and SD-based fusion methods and il-
lustrate that, in general, the SD significantly outperforms the
HD scheme when nonideal reporting channels are considered.
In [26], a seesaw analogy for distributed detection based on
Rayleigh-faded quantized reports is introduced and evaluated.
The fusion rule in [26] is based on assigning weights to the quan-
tization levels rather than to reporting nodes.

C. Contribution

In this paper, we jointly optimize the reporting and fusion
phases of the cooperative spectrum sensing in CRNs. In par-
ticular and different from the previous works, we optimize
the linear soft-combining at the FC considering the effect of
reporting channel impairments in designing the quantization
scheme used at the sensing nodes. In our novel design, we
identify, formulate, and take into account a tradeoff which is
described in the following paragraph.

For a given set of radio resources dedicated to the reporting
phase in terms of transmission power and bandwidth, in-
creasing the number of quantization bits influences the overall
sensing performance in two opposite directions. Specifically,
on one side, increasing the number of quantization levels leads
to a better quantization process and consequently, lowers the
quantization errors affecting the reported local sensing out-
comes, improving the cooperation performance. On the other
side however, increasing the quantization bits raises the BEP
induced by the reporting channels and reduces the received
sensing outcomes quality at the FC, degrading the overall
sensing performance.

We derive exact as well as practical approximate relationships
describing the joint impact of the quantization, reporting, and
linear fusion processes. Therefore, the spatial/user diversities
regarding the listening and reporting channels are considered
in a more comprehensive optimization approach, promising a
better overall sensing performance.

The rest of the paper is organized as follows. In Section I,
general modeling assumptions and details of the CRN con-
sidered are introduced. In Section III, the overall structure of
the proposed joint optimization problem is presented, and its
detailed mathematical formulations are derived. In Section IV,
the MINLP problem is formally constructed, and its solution
procedures are developed. The effectiveness of the proposed
joint optimization is demonstrated through simulation results
in Section V, followed by concluding remarks provided in
Section VI.
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II. SYSTEM MODEL

A CRN with K sensing nodes is considered. These nodes
cooperatively sense the radio spectrum to find temporal and/or
spatial vacant bands for their data communication. Fig. 1 shows
the basic configuration and major elements in a CRN exploiting
cooperative spectrum sensing.

A. Local Sensing and Quantization

In our adopted model, the kth sample of the received PU
signal at the ¢th CR node is represented as
{zl;,;(k') =v(k), Ho (1
ai (kY = his(k) + vi(k), Hi

where H; and H, denote the hypotheses representing the
presence or absence of the PU, respectively. s(k) denotes the
signal transmitted by the PU and x;(k) is the received signal
by the ith SU. h; is the listening channel block fading gain.
Listening channel gains are assumed to be independent cir-
cularly-symmetric Gaussian random variables. v;(k) denotes
the circularly-symmetric zero-mean AWGN at the CR sensor
receiver, i.e., v;(k) ~ CA(0,02 ). Without loss of generality,
s(k) and {r;(k)} are assumed to be independent of each other.

CRnodei,i=1,..., K performs spectrum sensing by using
its built-in sensor (Wthh can be of any common types like En-
ergy Detection (ED), Cyclostationary Detection (CSD), etc.) to
derive a local test statistic u;, and then uses the following quan-
tization rule to map it on a bit sequence of length d;

i) = i i by <y <tngis ?2)
where () denotes the quantization process at the ith SU, gy, ;,
n=1,...,2%isitsnth quantization level, while?,, ; and ;41 ;
denote the corresponding boundaries.

Letd & [dy,...,dx }T denote the number of quantization
bits used in all sensing nodes. As described in [22] several
quantization methods for signal detectors can be considered
here such as Maximum Output Entropy (MOE) quantization
and Minimum Average Error (MAE) quantization. Without
loss of generality, we have considered uniform and MOE
quantization schemes in this paper. We describe the uniform
quantization method in the following. For details of the MOE
quantization, see [22].
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In the uniform quantization incorporated in the ith
sensing node, the range covered by the quantization levels
is (pi — moy, p; +mo;), where m is determined by the
Chebyshev inequality such that Pr {|u; — p;| > mo;} < m%
This coverage range is then divided into 2% equally-spaced
levels, whose boundaries are denoted by

M—l). 3)

ty, i = [ + mo;

s= st (55
The quantization level ¢, ; lies in the middle of ,,_1 ; and #;, ;,
ie.,

ot ) 2n—1 1 )
qn,i = Hi ma; 2(12 1 .

And the conditional probability of having level ¢, ; at the ith
quantizer output is

Pr{¢i(u;) = ¢ ilH;} = / Jui (@ H;)de 5

trn—1.

where [, (-|H;) denotes the probability density function (pdf)
of u,; conditioned on H;, j = 0,1.

The generated reporting bit sequences are then transmitted to
the FC through the reporting channel in an orthogonal manner.
The effect of reporting channel impairments on the transmitted
bit sequences of the <th CR node is modeled as a BEP denoted
by P, ;. The reporting channel is assumed to affect each node’s
transmitted reporting bit sequence independently. Moreover, er-
rors introduced on different bits in a transmitted reporting se-
quence by the reporting channel are assumed to be independent
and identically distributed (i.i.d). Therefore, the received quan-
tized test statistics at the FC, y;, 4+ = 1,..., K are indepen-
dent discrete random variables whose probability mass func-
tions (pmf) can be represented (for j = 0, 1) as [22]

Pl‘J’l/,' = {n, I|H} -

Z r (1= Py )P Pr{gi(u) = gra i} (6)

where D,, ;. is the Hamming distance between bit sequences
corresponding to levels ¢, ; and gy ;.

B. Mapping and Bit Sequences

In analyzing the system behavior, it is worth considering the
BSC effect on the reported bit sequences and relate it to the
received test summary statistics. Therefore, focusing on trans-
mitted and received bit strings in the reporting phase, we model
the effect of the BSC using the eXclusive OR (XOR) operator
as

r; =5 ®e; @)
where d;-bit (scalar) random variables s;, r;, and ¢; denote the

sent and received bit sequences and error caused by the BSC,
respectively. If we denote the value of s; associated with the
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nth quantization level (i.e., ¢, ;) by s,, i, the following invert-
ible mapping describes the correspondence between the quanti-
zation levels and the bit sequences

r:{1,2,....2¢} = {0,1,...,24 -1} ®)
sni = T{(n).
In other words, s; = I'(n) if and only if 4); = g, ;, or equiv-
alently, s, = n if and only if ¢; = gr-1(,),:. Therefore, the
pmf of s; can be expressed as (forn = 0,1,...,2% — 1, and
J=01

P, (n) 2 Pr{s; =n|H;} =Pr {4 = gr1():[H;} . (9)

Without loss of generality, we have assumed the same mapping
process for all CR nodes.

Given the BEP P ;, each bit in the random variable e; follows
the Bernoulli distribution. Consequently, the pmf ofe; is derived
as (form = 0,1,...,2% — 1)

Pp,‘ (’TI,) _ Pbu;n(") (1 _ Pbyi,)di —wg(n)

(10)

where wg(n) denotes the Hamming weight of the binary rep-
resentation of 7.

In order to derive the pmf of 1;, we use the fact that the as-
sumed reporting channel contamination does not depend on the
reported bit sequence s;, nor the behavior of the PU. Therefore,
24 1

> Pr{r; =nle; = k|H;} Pr{e; = k}

k=0

24 1

Z Pri{s; =n®kle; = k|H;} Pr{e; = k}

k=0

24 1

_ Z Ps',\HJ (” & k)PI;“,:H(L) (1 _ Pb'i)difwﬂ (k) .
k=0

Py, (n)

(1

C. Reporting Channel Error

Assuming a general M-ary modulation for the reporting
channel, the reporting BEP can be expressed as

) (12)

where Q) 2 e exp(—#2/2)dt/\/2r is the Q-function, cas
and ¢}, are two constants determined by the modulation type
and v, ; is the reporting link signal-to-noise ratio (SNR). The
reporting SNR depends on the number of bits used in the re-
porting bit sequence d; as

Pyi=cu@Q (

‘hr,i|2 Er

= el S 13
]V()([i 10g2 M ( )

Yr.i
where h, ;, E;, and Ny denote the reporting channel gain, re-
porting signal energy, and noise power spectral density, respec-
tively. Therefore, the reporting BEP is a continuous function of
d;

P =cuQ 14)
’ 2
g CylheiFE.
where ¢, = Nologs M °
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D. Linear Combining

Linear combining is performed at the FC, meaning that the
global test statistic ¥, is constructed as a weighted sum of the
received quantized levels, i.e.,

K

ye =Y wiyi =w'y

i=1

(15)

A T a T
where w = [wy,...,wgk] andy = [y1,...,yx]

Finally, y. is compared against a predefined threshold ¢ to
decide the presence or absence of the PU, i.e.,

{le Ye 2 5
H()-,

Yo <&

The detector performance is commonly measured using
two probabilities, namely the probability of false alarm
Pg, = Pr{y. > {|Ho} and the probability of missed detection
Pia = Pr{y. < £|H1}. Both false alarm and missed detection
probabilities depend on the probability distribution of the
global test statistic ¥., which can be derived as a coqvolution
of the pmfs of K independent random variables {g/i}fll, ie.,

(16)

plye) = plysfwi)*. . *+p(yr fwic) 17)

where p(+) and * stand for pmf and convolution, respectively.

III. PROBLEM FORMULATION

Our problem is to jointly optimize the reporting and fusion
phases. Specifically, the goal is to jointly optimize w and d
to achieve the best cooperative sensing performance. We de-
termine the weighting vector w at the FC and d used by the
sensing nodes through jointly considering the effects of both
the listening and reporting channels while taking into account
the significant tradeoff explained earlier in specifying the op-
timal number of quantization bits.

A. Problem Structure

We formulate our proposed optimization based on mini-
mizing the missed detection probability subject to an upper
bound on the false alarm probability

min Pua
w.d

(P1)
st P <a

where « is the given upper limit on the false alarm probability.
According to the Central Limit Theorem (CLT), if K is
large enough, we can assume a Gaussian distribution for ..
In Appendix I, we have shown that Lyapunov’s CLT condition
[27] holds for ;3. Consequently, the false alarm and missed
detection probabilities can be expressed in closed form as

Y el 18
w0 e (18)
o Y

Pina =1 Q(m) (19)
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A

where (for j = 1,2) pyy, £ E [¥|#;] and 4, =
E [ny|Hj] = diag(aglmj ey U;K‘HJ). We have found
through numerical evaluations that Gaussian distribution fits
well for K > 5

Now, if we eliminate £ in (18) and (19) by considering a target
false alarm probability Py, = «, (P1) is converted to

Q Ha)y/wity,w—aTw
NCTR (P2)

where (2~ 1(-) is the functional inverse of the Q-function, a £
T a .
[(11,.. Jax]T = gy, — My, and, forL =1..... . K, we have
; 2 Efyi|H1] — E[vi|Ho]. a; and o2 413, Are related to the
number of quantization bits d; through the total probability the-
orem as

max ¢}

W,

2(} 2(1
¢_Zq,,,ZP (L = Py )t D
n=1

X [PI(% = qri|H1) = Pr(¥i = qr.i[Ho)] (20)

2
UJL\'H

Z Dosi Z Py (L= Py ) Pt Pr(dy = qua|Hy)—

n=1

2
"241 od; "
Dy i~ Doy i Do
LZ i Py (1= P i) Pms Pr(e); = qk,i\Hj)J :
n=1 k=1

@n

It is worth noting that the Hamming distance D),, ;. in (20) and
(21) is a complicated term which depends on the number of
quantization bits d;, as well as on the mapping process I' be-
tween the quantization levels and the reported bit sequences.
We use two approaches to derive explicit formulas describing
the effect of d; on the desired test statistics at the FC. In the
first approach, two simplifying but practical assumptions con-
sidering the mapping process and reporting BSC are used to
derive approximate relationships. In the second approach, the
quantization and mapping processes are considered separately,
and exact formulas for the desired statistics are derived in gen-
eral case. These approaches follow as the next two subsections.

B. Gray Coding and Reliable Reporting
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words, we assume that the bit sequences representing the ad-
jacent quantization levels, differ only in one bit. Secondly, we
assume a reliable reporting channel, i.e., small 77 ;s. Conse-
quently, we neglect the cases in which more than one bit in a
sequence arrive erroneously at the FC. Then, we use the fol-
lowing lemma which relates the bit sequences with one-bit dis-
tance in a Gray-encoded mapping mechanism.

Lemma 1: Let s, ;,n =1,..., ,2% denote the d;-bit Gray-
coded bit string correspondmg to ¢y, ;. By flipping the /.th bit in
$y,.i, it turns into s; ; where & can be derived as a function of »
and [, as

k(n, 1) =n+2% — 2mod(n — 1,2%) — 1. (22)

Proof: Please refer to Appendix II. [ ]
Hence, we know that if g;, ; (whose bit string is s, ;) is sent
by the ith CR node and the reporting channel changes only the
l.th element of the reported bit sequence, then qp(n 1,y,; will be
received at the FC. In addition, by setting {. = 0, (22) yields
k = n, i.e., no change in the code index. So we can consider
{. = 0 for the error-free bit sequences which arrive at the FC.
Lemma 1 and the aforementioned assumptions lead to the fol-
lowing simpliﬁed forms of a; and 051 1,

Qd
0; Pl 81, o _p it 01
~ Uni b, bxl) o
n=1 t.=0

X [Pr(; = quni.y.i1H1) — Pr(

i = Qi) Ho)
(23)

where 6;, o equals 1 when /. = 0 and 0 otherwise. 057“{] has
been expressed in (24) at the bottom of the page.

C. Bit-by-Bit Considerations

Now we proceed with the second approach to derive exact
relations for the desired statistics in general case. We relate the
bit-sequence interpretations to our detector optimization by con-
sidering a general mapping process. For simplicity, first assume
a linear mapping scheme, i.e.,

Spi=mn—1, n:l,.‘..,Zd‘. (25)
Extension to the general case will be considered later. Using
uniform quantization (4) at the CR nodes, the quantization levels

correspond to the bit sequences according to

We first assume that Gray coding is used to map the reporting 4 mos 280+ 1 1 2%
bit sequences to their corresponding quantization levels. In other Qo = Wi T g T (26)
2d
1-6
’L/\H qunzzp . U(l Ph )d+51 o IPI(E/J,—Qk,‘H)
n=1 1.=0
2% ’
- Z i Z P (1= Py ) e 0T (g = i i M) (24)

= 1.=0
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This correspondence can be expressed in terms of random vari-
ables ; and s; as
- 1> .

Thus, at the FC, the relation between the received bit sequences
and quantization levels is
_ 1)

which indicates that we can derive the desired statistics, i.e., a;

2-,% + 1
24 1

Ui = p1; + mo; ( (27)

2r;+1
2di — 1

Yy = i + oy ( (28)

and ”izl‘Hﬂ in terms of the received code statistics as
2771,01‘
a; = 2'1; 1 (E[T‘L‘Hl] - E[Ti‘HU]) (29)
2
. 2ma;
2 _ i 2
U?Ii\?‘l,‘ - (zd, . 1) (TT;,\H‘," (30)
These moments are calculated using (11) as (for j = 0, 1)
2% 1
Elri|H,] = Z nby, 1, (n) @31
n=0
24 1 2di 1 2
0,2,‘ M, = Z 'II,2P,,I‘7.{J (n)— Z P, (n)| . (32)

n=0 n=0

To clearly recognize the role of d; in the derived statis-
tics, we now focus on the pmf of the received bit sequences,
i.e., P jx,(n). More specifically, we reconsider (11) from a
bit-by-bit perspective to deal with the XOR operator and the
Hamming weight wz () by using the following lemma.

Lemma 2: For two d;-bit integers n, and k, if wg (k) = n.,
and n. # 0 then

n@®k=gln, ki k... kn,) (33)
where
gln, ki ke, k) 24 [26(0.5 = by, (n)) — 1] k11
+ [26(0.5 = by, (n)) — 1] ok2-1 4 .,
+ [24(0.5 — by, () — 1] 2571
(34)
where k;, ¢ = 1,. .., n. denotes the location of ith 1 in &, b;(n),

Jj = 1,....d; denotes the value of jth bit in » and u(-) is the

step function, which equals to 1 when its argument is positive
and 0 otherwise.
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Now we can eliminate the XOR operator and Hamming
weights in (11) and rewrite it as (35) (see Equation (35) at the
bottom of the page), where 7. acts as the number of errors
introduced by the BSC in the reported bit sequences and ¢
represents the index of bit sequences with .. -bit distance from
the nth sequence.

In addition, Lemma 2 enables us to approximate our desired
statistics by limiting the maximum number of errors considered.
Specifically, by adopting V., 1 < N, < d; as the upper limit of
the first summation in (35), we derive an approximation whose
accuracy can be controlled by V.. For instance, if we have a
reliable reporting channel, we can neglect the cases with more
than one-bit error by using the following approximation, which
is derived by restricting the first summation in (35) to n, = 1

Py, (n) = (1= Poi)" Py, (n)

d;
P (1= Po)® P> P (g(n,ky)). (36)
k=1

By relaxing the linear mapping and uniform quantization as-
sumptions, the developed analysis structure remains the same.
However, there will no longer be linear relationships (29), and
(30) between the statistics of the received bit sequences v;,
and their corresponding quantization levels y;. Nevertheless,
the moments of y; are obtained in terms of the received bit-se-
quence pmfs as (for j = 0, 1)

9d;

E[yz)\‘H7] = Z Q;},'L'Pry,\')’l] (F(ﬂ)) ’ A= 17 2‘ s

n=1

(37

and the desired statistics are obtained accordingly. Hence,
through analyzing the received bit sequences, we can derive
the desired test statistics a; and U;z/,,\'HJ in terms of the number
of quantization bits d; in general case.

IV. JOINT REPORTING-FUSION OPTIMIZATION

So far, we have thoroughly investigated the statistics gov-
erning our joint reporting-fusion optimization and derived ana-
lytical formulations describing the effect of local test summary
quantization on the overall cooperative sensing performance.
Now, we are ready to consider the joint optimization problem.
Recall that we are dealing with (P2), which aims at joint opti-
mization of w and d.

Fora givend, (P2) can be solved for optimal weighting vector
w through considering the Lagrange dual problem and Karush-
Kuhn-Tucker (KKT) conditions [13] which yield

Proof: The proof is given in Appendix III. | W= )];li/Q [Q*l(a)IK + (A e (38)
d; di ds d;
P, (n) = (1= Py )" Py, (n)+ Z P (1—P, ;)% Z Z P (gln by ko, oo ks ) (35)
no=1 =1 ko=1 ko, =1
koFky Fono ki ok, —1
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where A £ Elegi and ¢ £ Eéi/ga. ( is the single root of
the polynomial equation

[1Q ()Ix +¢A] e =1 (39)

and satisfies

Q Y a)Ixg +CA >0 (40)
where 0 stands for the null matrix and > represents the element-
wise inequality. Note that (39) and (40) specify a unique ¢ as a
function of d.

Now, using (38), (39), and (40), we remove w from (P2) and
convert it to an optimization in d and (. In addition, since the
number of quantization levels cannot be infinite in practice, we
limit d to lie between a minimum d,;;, and a maximum value
d,ax. Moreover, as the (J-function is strictly decreasing with
respect to its argument, we remove it from (P2) and turn the
problem into a minimization, i.e.,

min @(d. () (P3)
||[Q*1(a)IK + CA}*lc” =1
8.4, Qil(O{)IK -+ CA -0
dmin j d j dmax
where
—1 TS w— alw
o(d, () 2 Q@ Ha) /Wiy, w — a w @1

N>R

The cost function in (P3) is a nonlinear function of a;, 057’ o>
U'Ezp'fl (for+s = 1,...,K). As we have already studied, and
derived these parameters in terms of the number of quantization
bits (i.e., d;), we can clearly see that the cost function in (P3)
is highly sophisticated and nonlinear. Since d represents the
number of quantization levels used in the CR nodes, (P3) is a
MINLP problem, which is NP hard in general [28]. We develop
a Branch-and-Bound (BnB) algorithm to solve this MINLP.

A. The Branch-and-Bound Algorithm

Our optimization problem is a nonlinear program further con-
strained by integrality restrictions. Clearly, the optimal value of
cost function in a continuous linear relaxation of (P3) will al-
ways be a lower bound on the optimal value of our cost function.
Moreover, in any minimization, any feasible point always speci-
fies an upper bound on the optimal cost function value. The idea
of the BnB is to utilize these observations to subdivide MINLP’s
feasible region into more-manageable subdivisions and then, if
required, to further partition the subdivisions. These subdivi-
sions make a so-called enumeration tree whose branches can be
pruned in a systematic search for the global optimum.

Table I shows the pseudocode of our BnB algorithm. As-
suming * as the global minimum of the cost function in (P3),
this algorithm provides a (1 — &) optimal solution ., which
means . is close enough to ¢* such that ¢* > (1 — €)p..

In this algorithm, a lower bound for the cost function is first
derived through solving a linear relaxation of (P3) denoted by
(LP) (see line 3 in Table I). Construction of the linear relax-
ation is described later. Then, a local search is performed around
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TABLE 1
JOINT REPORTING-FUSION OPTIMIZATION AS A
BRANCH-AND-BOUND PROCEDURE

1. Define set L of subproblems;

2. L+ {(P3)}; By + +00; pe + ;

3. Solve (LP) for d; and denote its minimum cost function by B(Ll);
4. while L # &

5. Choose Px € L with the minimum BY);

6. L+ L\{Pxk};

7. B« B, i

8 Find a feasible solution ¢ for (P3) via local search around dg;
9

K ~

X B[(J ) [}
10. it BY) < By

1. e BEK);

1. By« B,
13.  i#BL>(1-e)By

14. output @¢;

15. else

’

16. Remove from L all Pg/ with B<LK ) > (1—¢)By;
17. end if
18. end if

19.  Choose a branching variable d; and a branching point dpranch;

20.  Create subproblems Pry and P _;

21.  Solve linear relaxations of Px 4 and Pr_ for dgy and di—
and denote their optimal cost functions by B(LK+) and B(LKf);

2. it BFY <(1-¢)By

23. L+ LU{Pk+}

24. end if
. K—

25 it B¥ ) <(1-e)By

26. L+ LU{Pk_}

27. end if

28. end while

29. output @¢;

the solution of the linear program to obtain a feasible point for
(P3) and an upper bound for the global minimum (line 8). Note
that any feasible solution of (P3) gives an upper bound on the
minimum of . This process, i.e., finding the lower and upper
bounds for the cost function, is called bounding. The algorithm
terminates if the derived upper and lower bounds are within the
e-vicinity of each other (lines 13, 14). Otherwise, it continues
with the so-called branching step, which refers to dividing the
feasible region of the problem into two narrower subsets (lines
19, 20).

In this algorithm, maximum relaxation error is considered as
metric for choosing the branching variable. That is, the variable
; with maximum relaxation error is selected for the branching

rocess. The relaxation error for the variable d; is defined as
dis — dp
the local search and by solving the linear program, respectively.
The branching point is dy,,anen = d:}’ ,i.e., the problems Py
and Pg . are constructed through imposing the constraints d; <

, where d* and d¥¥ denote the value of d; obtained by

{d,li" and d; > (l?;‘ on P, respectively.

Through an iterative branching procedure, subsets are further
divided into smaller ones, and the enumeration tree is built. This
tree structure allows the algorithm to remove some branches
and search for the solution in a very effective way. Moreover,
narrowing down the subsets of the optimization variables leads
to tighter linear relaxations (i.e., increases By, ) and provides the
next local search processes with a closer starting point to the
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TABLE II
DECOMPOSITION OF (P3) INTO SMALL BLOCKS AND SIMPLE CONSTRAINTS USED IN CONVEX HULL RELAXATION
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Elements of Xg) , Zyq,,and z for j = 1,...,7,and k = 0, 1.

X =moy (21 - 1)’ X, =@ (Xz(lrz/"i\m) Xt = X = X e X = Sl X ke
stn)mk =2 5Xz<zi2mk Xﬁzmk i 21Hka?2\Hk szm,c = Xz( nlre T Xl( 1—3|‘Hk
&J_ngq,zg_cMQ(¢%H¢) Zin =1—diZi2, Zia = Zip + Zi3, Ziss = Zi2Zias Dignty, = Zﬁﬂ-ﬁ?mk

N L — 2mo; o — 2 _ 22—12() _
Zit = Zioin, — Ziono Zis = F5Zit Zigpn, = (L) s Zinoiry = Lnmo - 2K g Zinipge = Zinoiy, — Zioir
_ —_ -1 _ 72 _ Zin _ 72
Zi 121y, = CZl 1He Zi13 = QTN Zi 113140 + Zir21my> Zijna = Zi g, Zijis = Zi,]S’ Zi 16|y, = Zi14 211 My, Zi7 = Ziq3s
Z.

i,16|H _ Zijaslny

Zi 18|11y, = —Lzl o 2oy, =
— K K

21=Q () =K | Zins. 22 = >o1n Zins, 23 = /72, 24 = 3oy Zi1omg — L 25 = 21/23.

optimal solution (i.e., reduces By ). Hence, the gap between By,
and By is reduced as the process continues. More specifically, at
each iteration, the global lower bound By, is updated to contain
the minimum of the lower bounds of all subsets (lines 5, 7).
The global upper bound By is also updated at each iteration
(lines 10, 12), and the branches with a lower bound greater than
(1 — €)Byg are pruned (line 16). This procedure is continued
until the difference between the global lower and upper bounds
satisfy the accuracy e (lines 13, 14). Clearly, we may lose the
global optimum by pruning the branches. However, if the global
optimum is in a pruned branch with the lower bound 3, (%) , then
* > Bé ), and consequently, ¢* > (1 —&)By. Therefore, the
current best feasible solution with objective value By is already
an (1 — &) optimal solution, and we can still guarantee {1 — &)
optimality. Indeed, this guarantee is the key feature of the BnB
algorithm which makes it very effective in solving the MINLPs.
It has been shown that under very general conditions, a BnB
solution procedure always converges [29], [30]. Moreover, al-
though the worst-case complexity of such a procedure is ex-
ponential, the actual running time could be fast when all parti-
tion variables are integers (e.g., the problem considered in this

paper).

B. Convex Hull Relaxation

To derive a linear relaxation of our joint optimization
problem, we reconfigure (P3) by introducing a number of
auxiliary variables along with some additional constraints. In
this process, the cost and constraints in (P3) are decomposed
into a set of small easy-to-handle functions. We refer to these
small functions as blocks. These blocks build a set of simple
constraints which, as a whole, represent (P3). Finally, the
derived constraint functions are replaced by appropriate linear
inequalities.

We have decomposed our cost and constraint functions into
a set of blocks represented in Table II. Through combination of
these blocks, it can be easily verified that the following opti-
mization problem is equivalent to (P3)

H{,in 25 (P4)
Constraints in Table 11
Z4 = 0
Zig > 0, fori=1,...,K

Vinin j v j Vmax

s.t.

where v contains the old optimization variables, namely, d and
¢, as well as the new ones defined in Table I, i.e.,
[x(l) """ xgz,x%?,...,xr(}_:3:_3’H‘]73'Hl,Z,dT:<]T
(42)
0,1,
denote the Vectorl;ed forms of X(,iz and Zy,, respectively, i.e.,
%&Jt) = (X%)) and 33, = vec(Zy, ). The elements of

= vec
.

X(,éz , Z3, , and z represent the blocks defined in Table I1. These

elements are denoted as!

in which row vectors %g?() and 33,7 =1,....7, k =

(7) )]
[Xé’]z,n _X7,7n\H;, (43)
(Zr,), ;5 = Zijine (44)
22 a1, 2 (45)

The vectors vi,i, and v, denote the lower and upper bounds
on the elements of v, respectively. These bounds are directly
obtained by applying d iy = d = dypax on the blocks.

It is worth noting that any element »; in v can be represented
as a function of other elements, i.e., for v; € [1; min, Vs, max), We
have v; = 9J;(v). ¥; is either a convex (or concave) function
or it represents a product (or ratio) of two elements in v, i.e.,
9i(v) = vpv;.

If ¢; is convex, we linearize it by partitioning each interval
[V min, V1, max] iNt0 Nin — 1 subintevals, 1 < [ < |v|. This
partitioning is realized by considering Ny, points as i min =
1 < 2 < -0 < U, = Vimax. In this way, we make a
grid over the space vinin = vV <X Viax. Now for any subspace
within this grid vy, < v < V511, k € {1,..., Njin}, we have
the following linear lower bound for v;

v; > (V) + V()T (v — %) (46)
where v can be any point such that ¥, < v =< ¥;4q, and
Vi £ ['f/'l,ky . 13“,‘7,{.,] . The number of points /Vy;, can be used
to control the precision of the partitioning process.

For v; € [¥; min. Ui max) the upper bound in our linearization
is denoted by the following relation,

— Y (me)

— Uk, min

ﬂi max
(o S ﬁ'i(vmin) + (V

( — Uk mm) (47)

Uk max

'We have dropped ;. from the element representations whenever there is no
difference between the element values for 7, and 7{1.
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where v;, can be any element in v such that 9¢; /v # 0, and
Uk min»> a0d U, max denote the minimum and maximum values of
v, respectively. Similar bounds can be obtained for the concave
functions.

For the blocks which represent the product of two elements,

i.e., ¥;(v) = vy, the tightest linear constraints are denoted by
[31], [32]
Ch Z Vs minVk + Vi, minV5 — Vj, minVk, min (48)
v > Vs maxVk + Vk,max¥j — Vi maxVk, max (49)
Vi <UjminVk + Uk max¥; — Vf,minVk,max (50)
i <V maxVk + Vk,min®¥; — U maxVk,min- (51)

Applying (46)—(51) on the functions defined in Table II, we de-
rive a linear relaxation of (P4) whose solution provides a tight
lower bound on the minimum value of our cost function in (P3).
This linear program can be expressed as

min 25 (LP)
v

Lincar constraints (46) — (51)
Z4 = 0

Ziz >0, fore=1,....K
Vmin j \ j Vinax

which is solved in polynomial time.

C. Low-Complexity Suboptimal Solution

As mentioned earlier, a commonly used suboptimal approach
for the design of linear cooperation is based on maximizing
the MDC. The MDC provides a good measure of the detec-
tion capability, as it characterizes the system performance as the
variance-normalized distance between the centers of two condi-
tional pdfs of the global test summary ... Therefore, we propose
an alternative approach for the discussed joint reporting-fusion
optimization based on the MDC, which leads to nearly optimal
performance with much less effort. The MDC is defined as
A (E[yc‘Hl] - E[yclH[)])2

A2 2
" Var{y.|Hi}

(52)

Replacing y.. with its weighted sum definition, we have

(aTw)?

Al = (53)

wlil;,w’
Using the MDC approach, we aim at finding w and d such that

max AZ (P5)

ot Jlwli=1 .
dmin j d j dmax

The constraint on the weight vector norm is necessary here to
derive a unique solution since the MDC does not depend on
.

In order to derive an analytical solution for (P5), we first elim-
inate w as follows. Through the linear transformation [8]

w =5 w (54)
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the MDC is converted to
WD T2 a2y T
H H —T/2
A= lw/TW’ : s HEHl/ aH (53
and the equality is achieved when w’ = E;f/ *a. Therefore, the

optimal w which maximizes the MDC is derived as function of
d as

s 2w
THy T (56)

Wimnde =
—1/2_,
HE’Hl w

Replacing w with its MDC-optimal value w,4.., the MDC can
be rewritten as a function of d

K (12
2 Te-1 i
Al =a 2%13:2 5

T
i=1 " wyilH1

(57)

Therefore, (P5) is converted to the following system of opti-
mization problems

(12
max —— (P6)
d; a2
yilHa
s.t. di,min < di S di,ma)v

fori=1,..., K.

We are now dealing with K one-dimensional problems and it
is clear that the computational complexity of solving this set
of optimizations linearly increases with the number of sensing
nodes K.

V. NUMERICAL RESULTS

Two typical distributed detection scenarios have been consid-
ered to illustrate the effectiveness of the proposed optimization
scheme. In the first scenario, the ED and uniform quantization
have been adopted as local sensing and test summary quanti-
zation methods at the CR nodes, respectively. As the second
scenario, CSD and MOE quantization have been considered.
Although not presented here, we also tested other combina-
tions such as CSD with uniform quantization and ED with MOE
quantization and obtained similar results, which are expected
since our proposed optimization does not depend on any spe-
cific local sensing or quantization scheme. In all simulations,
there are K' = 5 cooperating nodes which transmit their sensing
outcomes over the reporting channels using the Binary Phase
Shift Keying (BPSK) modulation. The PU signal is modeled as
a Direct-Sequence (DS) spread-spectrum BPSK signal by using
Walsh-Hadamard code with the length of 16, i.e., the processing
gain of 16 is considered in all simulation results. The maximum
number of quantization bits in each node is 7.

In ED, the energy of the received PU signal is measured using
N signal samples, i.e.,

N
up =y (k)
k=1

and in CSD the test summary is formed as an estimation of the
PU signal autocorrelation function as

(5%)

N—7

Z xz(k + T)w*(k)efﬂ’rfk

k=1

Uy =

(59

N =T
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Fig.2. Cumulative probability distribution of %. under hypotheses H (the two
leftmost curves) and H (the two rightmost curves). Solid curves correspond to
the analytic Gaussian approximations. Marked curves are obtained by Monte-
Carlo simulation.

where [ is the cycle frequency, and 7 is the lag used in calcu-
lating the autocorrelation.

The number of PU signal samples N used in ED is 20 and
the Chebyshev probability for the uniform quantization cov-
erage interval has been set to 95%. When CSD is considered, the
cyclic autocorrelation function is estimated in each node using
N = 100 samples of the PU signal and the estimated autocor-
relation corresponds to f = 1/T,. and 7 = 0. T, is the chip
period of the PU signal. For the ED, the local listening channel
SNR levels at sensor inputs are {0, —2.7,—-3.1, —1.4, —6.9}
in dB, and the reporting channel SNRs are {10,13,12,14, 11}
in dB. For the CSD, {5.2.3.1.9.3.6, —1.9} in dB are the lis-
tening channel SNR levels and the reporting channel SNRs are
{11,14,13,12, 11} in dB. Each point on the CROC curves has
been derived by averaging over 10,000 realizations. The aver-
aging has been performed on the noise for a fixed set of channel
gains and noise variances as in [8], [13].

Fig. 2 shows why Gaussian approximation works well for the
global test statistic in (17). It depicts the cumulative distribution
function (CDF) of the global test summary ¥, when ED is used
as the local sensing method at K = 5 sensing nodes, assuming
both hypotheses H; and Hg. It can be seen by comparing the
simulation and asymptotic results that 4. behaves very similarly
to a normal random variable while the PU is either present or
absent.

Fig. 3, and Fig. 4 depict the results derived as Complementary
Receiver Operational Characteristics (CROC) curves for both
energy and cyclostationary detectors. Specifically, for each de-
tector three cases have been considered as

Case#1: Depicts the performance of uniform linear com-
bining at the FC and maximum number of quantization bits
at the sensing nodes,

Case#2: Depicts the performance of optimal linear com-
bining at the FC and maximum number of quantization bits
at the sensing nodes,

Caset#f3: Depicts the performance of the proposed joint
optimization, i.e., optimal linear combining at the fusion
center and optimal number of quantization bits at the
sensing nodes.
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Fig.3. CROC curves for the energy detection using 20 samples of the PU signal
and uniform quantization with Chebyshev probability of 95%. The listening
channel SNR levels at sensor inputs are {0, —2.7, —3.1, —1.4, —6.9} in dB.
The reporting channel SNR levels are {10,13,12, 14,11} in dB. The results
are obtained using 10,000 realizations.
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Fig. 4. CROC curves for the cyclostationary detection using 100 samples of
the PU signal and MOE quantization. The local SNR levels at sensor inputs
are {5.2.3,1.9,3.6,—1.9} in dB. The reporting channel SNR levels are
{11.14,13,12,11} in dB. The results are obtained using 10,000 realizations.

It is worth noting that in both figures Case#1, Case#2, and
Case#f3 represent the detector design without any optimization,
only with optimal weighting, and with joint reporting-fusion op-
timization, respectively. The plots clearly illustrate the effec-
tiveness of our proposed detector in terms of lower false alarm
and missed detection probabilities which are shown as CROC
curves closer to the origin. Moreover, it can be observed that
the achieved optimization results from both the Gaussian ap-
proximation and MDC are in close agreement with each other.
As another point, we see that performance improvement due
to the proposed optimization is higher when ED is used as the
local sensing method. This observation is reasonable since ED
is known to be more sensitive to the PU signal SNR than the cy-
clostationary detection. In fact, the linear combining scheme at
the FC is a technique to exploit spatial diversity among different
sensing nodes to increase the effective SNR level experienced
by the detector. For a comparison between ED and CSD perfor-
mances, see [33]. Note also that we have adopted the parameter
values to have almost equal performances in both detectors be-
fore applying the proposed optimization. More specifically, by
comparing the curves labeled Case#2 in Figs. 2 and 3, we see
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almost-equal performances. In fact, we have set the parameters
in a way that both detectors meet Py, = 0.1, and Pq = 0.1
(both curves nearly pass the point 0.1, 0.1). In other words, al-
though the SNR levels and sensing times are different, we have
evaluated the achieved performance gain by using nearly-equal
detectors.

In order to evaluate the performance gain achieved by the pro-
posed joint optimization method, we define the listening channel
SNR gain as follows

SNR gain (dB) = SNRpaxq (dB) — SNRopiq (dB)  (60)
where SNR axq 1S the minimum SNR required at the SUs to
meet I, = « and P,q = [ when they use the maximum
number of quantization levels with optimal weighting and
SNRoptq 18 the minimum SNR required at the SUs when
they use optimal number of quantization levels and optimal
weighting vector derived through the proposed joint optimiza-
tion scheme.

Fig. 5 depicts the SNR gain at the listening channels vs. the
average SNR at the reporting channels. It represents the case in
which K = 5 sensing nodes experience different SNRs on their
listening and reporting channels. The corresponding SNRs for
both the reporting and listening channels of K = 5 sensing
nodes are [SNR + 2A SNRg + A SNRy SNRy — A SNRq —
2A], where SNRy is the average SNR over the 5 channels and
A =1 (dB). The target false alarm and missed detection proba-
bilities are both set to 5%. As shown in Fig. 5, the proposed joint
optimization leads to a significant performance gain, especially
at low SNR regimes experienced at the reporting channels. This
superior performance of the proposed design at low SNRs stems
from the fact that, the local sensing quantization is also consid-
ered when optimizing the linear combining at the FC. Hence, the
effect of reporting channel impairments is reduced and, conse-
quently, the proposed detector experiences the reporting channel
BEP wall (see [19] and [22]) at lower SNR values, compared
to the design which only optimizes the linear fusion. In other
words, by decreasing the reporting channel SNR levels, at a cer-
tain point, the detector with the maximum number of quantiza-
tion levels can not meet the target false alarm and missed de-
tection probabilities, no matter how high the SNR levels at the
listening channels are. But the proposed detector still reaches
the desired performance for a moderate average SNR level at
the listening channels. This observation demonstrates the im-
portance of the proposed method, especially when the sensing
nodes face stringent energy consumption constraints due to e.g.,
limited battery life time or green communication considerations,
which force the designer to reduce the transmission power used
for the reporting phase.

A set of significant observations is obtained by evaluating the
derived quantization levels for different listening-channel and
reporting-channel SNRs (Table III). In particular, we observe
that, when the sensing nodes experience high SNR levels at the
listening channel, the proposed optimization scheme reduces the
number of quantization levels as much as possible. This clearly
means that, when the PU signal is strong, only a small preci-
sion in quantizing the sensing outcomes is enough to have the
desired detection performance. Therefore, the optimizer takes
the advantage of this effect by reducing the number of quanti-
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SNR gain on listening channels

Reporting channel average SNR (dB)

Fig.5. SNR gains obtained by the proposed joint reporting-fusion optimization
scheme vs. the average reporting SNR level experienced by X' = 3 sensing
nodes (SNTR) and with reporting SNR deviation of A = 1 (dB).

TABLE III
OPTIMAL NUMBER OF QUANTIZATION LEVELS FOR DIFFERENT LISTENING
AND REPORTING SNRS

[SNR, I, SNR, — [[ -15dB [ -10dB | 0dB ]
0dB 15 15 7
5dB 30 135 7
15 dB 31 16 7

zation levels to decrease the reporting channel contaminations
on the reported sensing outcomes. Moreover, as long as the lis-
tening channel SNR is high, the optimal number of quantiza-
tion levels remains low for low-, medium-, and high-level re-
porting SNRs. This means, for the high listening-channel SNR,
that the optimal number of levels is not sensitive to the reporting
channel SNR levels. In other words, when the local detection
processes are reliable, the overall system performance is not af-
fected significantly by the reporting channel degradations. How-
ever, we observe a different behavior when the listening-channel
SNR is low, i.e., when cooperation in sensing is highly neces-
sary. Specifically, since the local sensing has to be performed
on weak PU signals in this case, the uncertainty in determining
whether the PU is active or not is quite high. The optimizer tries
to compensate for this uncertainty (or not to contribute to this
uncertainty) by increasing the precision of the local quantization
process at the expense of suffering a higher degradation at the
reporting phase. Recall that increasing the number of levels im-
proves the quality of local quantization but increases the BEP
of the reporting channel as well. As an important conclusion,
the proposed joint optimization approach enables the system to
trade the reporting channel quality for the local sensing quality
in order to achieve the best overall detection performance. These
observations are illustrated in Table III, which shows the op-
timal number of quantization levels for various listening and
reporting SNRs.

Table IV shows typical values of the obtained optimal
weighting and quantization vectors for sensing nodes operating
in different listening- and reporting-channel conditions.

VI. CONCLUSION

In this paper, after a structured study of major phases in
a centralized cooperative sensing scheme, the effect of the
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TABLE IV
OPTIMAL FUSION WEIGHTS, AND OPTIMAL NUMBER OF QUANTIZATION
LEVELS FOR NODES OPERATING IN DIFFERENT LISTENING-CHANNEL AND
REPORTING-CHANNEL CONDITIONS

[ SNR; (dB) 15 10 0]
[ SNR, (dB) 15 3 0|
[ Opt. Weights [[ 0.0037 [ 0.0171 | 0.9998 |
[ Opt. No.of Levels [| 31 | 16 | 4 |

number of bits used in local sensing quantization on the overall
sensing performance in a CRN with cooperative sensing has
been introduced and a joint optimization approach has been
proposed to optimize the linear soft-combining scheme at the
fusion phase with the number of quantization bits used by each
sensing node at the reporting phase. The presented analytical
expressions followed by simulation results demonstrate that,
through joint consideration of the reporting and fusion phases
in a cooperative sensing scheme, considerable performance
gains can be obtained. This better performance stems from
better exploitation of spatial/user diversities in CRNs. The
proposed joint optimization scheme leads to more powerful
distributed detection performance, especially when the sensing
nodes have to work at low SNR regimes.

APPENDIX I
PROOF OF LYAPUNOV’S CLT CONDITION FOR THE RECEIVED
QUANTIZED TEST SUMMARIES

Proof: For simplicity, we consider the uniform quantiza-
tion here. Other quantization schemes can be treated similarly.
For any 6 > 0, we have (for either Hg or H1)

E [Iyi - 271:\”6] < (2mo)* T < Cmowma)’t (61)

where y; denotes the mean of y;, and o, denotes the max-
imum standard deviation of the sensing outcomes. We also have

(62)

7”4 Yo, min

where Uiz.min denotes the minimum variance of the received
test summaries. Using the above inequalities, we can set an

upper bound on the ratio in Lyapunov’s condition, i.e.,

K

1 _ 12446 K (2"“71', max)
w2 [\y- = 5l ] <
Sifré ; i i K1+b/2o-§“min

(63)

Finally, since o; # 0 requires that o, .. # 0, the above upper

bound approaches zero as K — oo, hence,

K

1 _ 1248
RN S E [Iyi —ml*t ] =0.
SK i=1

lim
K—oc

(64)
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Index Four-bit
Gray code
1 0000 }
2 0001 [ |,
3 —0 0 1 1 }m;
4 0 0 1 0 L J g
5 0110
6 01 1 1 L m,
7 01 0 1
8 01 0 0 L ] B
9 171 0 0 7 r 9
10 11 0 1
11 =1 1 1 1
12 1110
13 1010 Ms
14 1.0 1 1
15 1.0 0 1
16 10 0 0 L,

Fig. 6. Four-bit Gray code structure. The least significant bits are the rightmost
ones.

APPENDIX II
PROOF OF LEMMA 1

Proof: The Gray code structure is depicted in Fig. 6, where
a four-bit Gray code is decomposed by four lines Ly, L, Lg,
and L, into four blocks g;, g2, g3, and g4. The vector gy,
k = 1,...,4, denotes the k-bit Gray code in this format. Al-
though only four bits are considered here, by repeating this
structure we can construct Gray codes with arbitrary number
of bits. According to this structure, we can see that g1 is gen-
erated by vertically concatenating g with my, i.e., fork > 1,

8rt1 = { Sk } (65)

my,

where my;, is generated by mirroring g, with respect to Ly and
then flipping its { £+ 1)th bit into 1. Therefore, considering only
the first & bits, g and m;, are symmetric with respect to Ly,.
The leftmost column in Fig. 6 contains the index of codewords
in this structure. Forn = 1, ..., 2, we denote the nth elements
of g and my, by gz(n) and my(n), respectively.

Because of the aforementioned symmetry, for /. > 1 and
n = 1,...,2%, change in the code index due to flipping the
I.th bit in g;_(n) and m, (n) are the same. In other words, if
flipping the . th bit in ¢;_{n) converts it to g;_(n1) and flipping
the same bit in mn;_(n) turns it into my, (n2), then n1 = no.
That is, the change in the element index of g;, (i.e., n; —n) and
my, are equal when the /.th bit is flipped in both g;, and m;_.
Moreover, since g;_+1 is composed of g;, and m;_, the same
rule applies for g;_+1. Consequently, when flipping the /. th bit,
the same jumping rule holds for all g,,, » > [.. Thus, in order
to find how the code index is changed when flipping the /. th bit,
we only need to consider g .

To maintain simplicity, we only focus on [, = 3, but the
general case is proved by considering the Gray code structure’s
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symmetry which stems from the explained mirroring process.
Recall that by considering gz and /. = 3, we find the jumping
rule when the 3rd bit is flipped in a complete Gray code with
arbitrary number of bits. Focusing on g3 in Fig. 6, we see that
flipping the 3rd bit is equivalent to two successive processes:
i) increasing the code index by 2% (which is 8 in this case),
i) mirroring the new codeword with respect to Ls. These two
processes are shown by arrows on ¢3(3) in Fig. 6 as an example.
¢3(3) is first converted to m3(3) and then mirrored against L3
to give g3(6).

According to the presented structure, mirroring a codeword
with index n > 2’ with respect to L, is equivalent to de-
crease n by 2mod(n— 1, 2"} +1. Therefore, the two mentioned
processes on the code index can be indicated by the following
relationship

k(n.1.) =n—+2% —2mod(n —1,2%) — 1 (66)

where % denotes the new index and n denotes the old index. m

APPENDIX IIT
PROOF OF LEMMA 2

Proof: If k only contains a single 1 in its binary format
(i.e., ne = 1), then & = 2*1~! and the XOR operation leads to

bkl (n) = 0

b, (n) = 1. (67)

n -+ 2]\1171"
nék= {’n, — Zk"I,

The right-hand side of this equation can be expressed in closed
form by using the step function as

n®k=mn+ 2005 — b, (n)) - 1271 (68)

For n. > 1, we have

k=2oklgoklg g2k 1 (69)

Hence, (34) is obtained by successively applying (68) on the

first, second, . . ., and n,th bit in k. [ ]
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Abstract—Maximizing the so-called deflection coefficient is
commonly used as an effective approach to design cooperative
sensing schemes with low computational complexity. In this
paper, an extension to the deflection coefficient is proposed which
captures the effects of the quantization processes at the sensing
nodes, jointly with the impact of linear combining at the fusion
center. The proposed parameter is then used to formulate a
new mixed-integer nonlinear programming problem as a fast
suboptimal method to design a distributed detection scenario
where the nodes report their sensing outcomes to a fusion center
through nonideal digital links. Numerical evaluations show that
the performance of the proposed method is very close to the
optimal case.

I. INTRODUCTION

Spectrum sensing is the key element in each cognitive radio
(CR) system and enables its user, commonly referred to as
secondary user (SU), to find transmission opportunities in
spectrum resources allocated exclusively to license holders.
In this context, the license holders are called primary users
(PU) and have the exclusive right of using the spectrum. The
reliability of spectrum sensing is greatly enhanced through
establishing certain kinds of cooperation among the sensing
nodes. This cooperation is commonly coordinated by and
the overall sensing outcome is generated in a special node
called the fusion center (FC). Specifically, each node first
performs spectrum sensing individually by using its own built-
in sensing scheme. Then, the sensing nodes send their local
sensing outcomes to the FC through the so-called reporting
channels and finally, the FC combines the received local
sensing outcomes to decide the presence or absence of the
PU.

It is worth noting that, for a distributed detection problem
with nonideal analogue communication channels between the
distributed nodes and FC, the globally optimal structure is to
perform likelihood ratio test (LRT) both at individual nodes
and at the FC [1]. However, how to efficiently find the optimal
LRT thresholds for individual nodes and for the fusion center
is still unknown [2]. For the quantized soft decision case,
i.e., when the reporting is performed through nonideal (i.e.,
erroneous) digital links, a solution for optimizing the local
quantization levels jointly with the LRT threshold at the FC
may or may not exist [3]. Even if the optimal solution exists,
the threshold calculations are not trivial and complex opti-
mization schemes are needed to solve them. These difficulties
are commonly avoided by assuming a linear fusion scheme
[2], [4]-[7] which is the base for our considered architecture.

978-1-4799-4912-0/14/$31.00 ©2014 IEEE

In particular, linear combining is shown in [2] to perform
very closely to the optimal LRT method with much less
computational complexity.

Maximizing the so-called deflection coefficient (DC) [8], [9]
or its modified version, modified deflection coefficient (MDC)
[2], [4], [6], [7] is commonly used in the literature as a fast
suboptimal approach to design effective fusion schemes in
distributed detection scenarios. Using this parameter, i.e., the
variance-normalized distance between the centers of two con-
ditional distributions of the global test summary, is effective
in the sense that it provides very close results to the ones
obtained by the optimal LRT method at low computational
cost. This method is of special interest when direct formulation
of the false alarm and missed detection probabilities leads to
nonconvex optimization problems.

In this paper, we assume that the FC performs linear
combining on the reported local test summaries which receive
through nonideal digital reporting channels. We first extend
our previous analysis in [6] and [7] to the case in which
the CR nodes use analogue-to-digital converters (ADC) with
non-integer bit resolutions. Then, we propose a new version
of the deflection coefficient which captures the effects of the
quantization process at the CR nodes jointly with the linear
fusion at the FC. Through these extensions, we construct and
solve a new mixed-integer nonlinear programming problem to
optimize the linear combining process at the FC, jointly with
the number of levels used by each node for quantizing the
sensing outcomes before reporting them.

II. SYSTEM MODEL

A cognitive radio network (CRN) with K sensing nodes is
considered in this paper. These nodes cooperatively sense the
radio spectrum to find temporal and/or spatial vacant bands
for their data communication. In our adopted model, the kth
sample of the received PU signal at the ¢th CR node is
represented as

zi(k) = vi(k), Ho 1)
;vl(k) = hzs(k) + l/,L'(kJ)7 7‘[1

where H; and H, denote the hypotheses representing the
presence or absence of the PU, respectively. s(k) denotes
the signal transmitted by the PU and x;(k) is the received
signal by the the ith SU. h; is the listening channel block
fading gain and v;(k) ~ CN(0, 02 ) denotes the additive white
Gaussian noise (AWGN). Without loss of generality, s(k) and
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{vi(k)} are assumed to be independent of each other. CR node
i, i = 1,..., K performs spectrum sensing using its built-
in sensor (which can be of any common types like Energy
Detection (ED), Cyclostationary Detection (CSD), etc.) to
derive a local test statistic u; and then uses the following
quantization rule to map it on a bit sequence of length d;

’%(W) = n,i

where 1);(-) denotes the quantization process at the ith SU,
Gni>n=1,.., 2% is its nth quantization level, while ¢,, ; and
tn+1,; denote the corresponding boundaries. Given the local
sensing method and the quantization processes incorporated
at the ith sensing node, the probability distribution of 1); is
obtained. We denote the number of quantization bits used in
all sensing nodes by d £ [dy, ...,dK}T

The generated reporting bit sequences are then transmitted
to the FC through the reporting channel in an orthogonal
manner. The effect of reporting channel impairments on the
transmitted bit sequences of the ith CR node is modeled as
a bit error probability (BEP) denoted by £, ;. The reporting
channel is assumed to affect each node’s transmitted reporting
bit sequence independently. Moreover, errors introduced on
different bits in a transmitted reporting sequence by the
reporting channel are assumed to be independent and identi-
cally distributed (i.i.d). Therefore, the received quantized test
statistics at the FC, y;, ¢ = 1, ..., K, are independent discrete
random variables whose probability mass functions (pmf) can
be represented (for j = 0,1) as [3]

if th <up <tpyi 2)

Pr{y; = qniH;} =
24
SR (= B T Pr{yi(u) = qral )
k=1
where D,, . is the Hamming distance between bit sequences
corresponding to levels g, ; and gy ;.

Focusing on transmitted and received bit strings in the
reporting phase, we model the effect of the reporting channel
by using the Exclusive OR (XOR) operator as r; = s; @ e;
where d;-bit random variables s;, 7;, and e; denote the sent
and received bit sequences and error caused by the reporting
channel, respectively. If we denote the value of s; associated
with the nth quantization level (i.e., g, ;) by s,, ;, the following
invertible mapping describes the correspondence between the
quantization levels and the bit sequences

r:{1,2,.,24} = {0,1,..,2% — 1}
Sn,i = F(n)

@

In other words, s; = T'(n) if and only if ¢; = ¢, ,, or
equivalently, s; = n if and only if 9); = qr-1(n),. Therefore,
the pmf of s; can be expressed as (for n = 0,1,...,2% — 1,
and 7 =0,1)

Py 3, (n) £ Pris; = n[H;} = Pr{vi = qr-1(n)4lH;} . (5)

Without loss of generality, we have assumed the same mapping
process for all CR nodes.

Given the BEP P, ;, each bit in the random variable e;
follows the Bernoulli distribution. Consequently, the pmf of
e; is derived as, (for n =0,1,...,2% — 1)

P.,(n) = P (1= By ) ten™) (©6)

i

where wy(n) denotes the Hamming weight of the binary
representation of n.

In order to derive the pmf of r;, we use the fact that the
assumed reporting channel contamination does not depend on
the reported bit sequence s;, nor the behavior of the PU, i.e.,
[7]

2%i 1

P, (n) = Z Pr{r; =nle; = k|H;} Pr{e; =k}
k=0

2di -1
= Z Pr{s;=n&kle; = k|H;} Pr{e; =k}
k=0
2di -1
= Z Pri{si=n®k|H;} Prie; =k}
k=0
2di -1
= Pop,(n@ k)P (1 - p )™ ()
k=0

Assuming a general M-ary modulation for the reporting
channel, the reporting BEP can be expressed as

i
B =cu@ e (8)

chylheil2Er

where ¢}, = o ioa T Qz) = f;c exp(—t2/2)dt//2m
is the Q-function, cjp; and ¢}, are two constants determined
by the modulation type. h, ;, E;, and Ny denote the reporting
channel gain, reporting signal energy, and noise power spectral
density, respectively.

Linear combining is performed at the FC, meaning that,
the global test statistic y. is constructed as a weighted sum
of the received quantized levels, i.e., yo = W'y where w £
[w1, ...,wK]T and y £ [y, ...,yK}T. Finally, y. is compared
against a predefined threshold ¢ to decide the presence or
absence of the PU, i.e.,

{Hl )
HOv Ye < 5

The detector performance is commonly measured using two
probabilities, namely the probability of false alarm P, =
Pr{y. > &|Ho} and the probability of missed detection Pyg =
Pr{y. < &|H1}. Both false alarm and missed detection prob-
abilities depend on the probability distribution of the global
test statistics y. which can be derived as a convolution of the
pmfs of K independent random variables {yl}fil

III. REPORTING-FUSION OPTIMIZATION

Our goal is to jointly optimize w and d to achieve the best
cooperative sensing performance. We determine the weighting
vector w at the FC and d used by the sensing nodes, through
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jointly considering the effects of both the listening and report-
ing channels.

We first formulate the optimization problem based on min-
imizing the missed detection probability subject to an upper
bound on the false alarm probability

mig Pna (P1)
s.t. Pfa <«

where « is the given upper limit on the false alarm probability.

According to the central limit theorem, if K is large enough,
we can assume a Gaussian distribution for y. and the false
alarm and missed detection probabilities can be expressed in
closed form as

T
§ #H0W> (10)

Pu=Q | =t
fa Q( /7WT2HOW

T
]
VwiEy w

where (for j = 1,2) py, = E[y|H,] and By, =
E [yy?|H,] = dz‘ag(aim],...7051(”_[]).. We h.ave. found
through numerical evaluations that Gaussian distribution fits
well for K > 5. Now if we eliminate £ in Egs. (10) and (11)
by considering a target false alarm probability P, = «, (P1)

is converted to
maxQ Q Ha)y/wISy,w—alw P2)
w,d VwiEy w

where Q~!(-) is the functional inverse of the Q-function,
a = [ay,...,ag] = py, — My, and for i = 1,..., K we
have a; £ E[yi|H1] — E[yi|Ho]. In our previous work [7],
we have developed a Branch-and-Bound (BnB) procedure to
solve (P2). Moreover, we have shown in [7] that the statistics
of the reported quantized test summaries, i.e., a, 3, and
34, can be obtained by the following relation

(1)

2%i

Ey M) =Y aniPriw, T(0)), A=1,2,..

n=1

12)

where P,,3, (n) can be expressed as a function of d; as

Prp;(n) = (1= Py i) Py, (n)

d; d; d;
+Y A=)t Y Y

ne=1 Ei=1 ka=1
ko#ky
d;
> P, (g(nskrs bz, ki) (13)
ne=1
kne#k1,....kn,—1
and
g(n, k1, ko, oo k) 2+ [2u(0.5 — by, (n)) — 1] 28271
+ [2u(0.5 — by, (n)) — 1] 2k~ 4 .
+ [2u(0.5 — by, (n)) — 1] 2=~ (14)

where k;, i = 1,...,n. denotes the location of ith 1 in k,
b;j(n), j =1,...,d; denotes the value of jth bit in n and w(-)
is the step function which equals to 1 when its argument is
positive and 0 otherwise.

For simplicity, we have considered discrete values for d;
so far. However, the number of quantization levels in ADCs
is commonly characterized by their so-called bit resolution
which is not necessarily an integer. For instance, one can use
a 5.32-bit ADC to quantize a signal to 40 levels. Therefore, we
extend the proposed analysis to account for non-integer values
of d;. We formally represent this matter by first modifying the
mapping process as

{F {1,2,...,24} = {o0,1,...,2[41 — 1} (15)

Sn,i = I'(n)

where [d;] denotes the smallest integer greater that or equal
to d;. Then, the definition for the pmf has to be extended to
account for the redundant bit strings. Since they are not used,

their probability mass equals zero, i.e.,
Py, (n)=0 forne{0,..2[%1 -1} —Rp (16

where Rr denotes the range of the mapping process I'. Finally,
the pmf of the received bit strings is modified as

d;
Pyyjpe, (0) = (1= Po) ™1 Py, ()

[di] , [di] [di]
+ P =Ry N
ne=1 k1=1 ko=1
ko#ky
[di]
Y Pupg(g(n ks ko, k) a7
kn,=1

Kne#k1yekng -1

The optimal linear fusion of analogue sensing outcomes can
be derived through considering the Lagrange dual problem and
Karush-Kuhn-Tucker (KKT) conditions [5]. Similarly, for a
given d, (P2) can be solved for optimal weighting vector as

W= [Q () +CA] e (18)
where A £ EHIE;{}J and ¢ £ Eii/za. (¢ is the single root
of the polynomial equation

H[Q’l(a)IK +<A]_ch -1 (19)

and satisfies

QY a)Ig+C¢A >0 (20)

where O stands for the null matrix and > represents the
element-wise inequality. Note that (19) and (20) specify ¢ as
a function of d.

In order to gain insight about the major elements in (P2),
we rewrite it in the following form by using (18) and through
some basic algebraic manipulations,

rgiglw(d,é) (P3)
s.t. (19) and (20)
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where
_1 ZK a?
=l Q- 1(”)% 70 TS0

Z i yiiﬂi .
i=1
1(a)rf I?Llo-i—C %iﬂi)

Since the Q-function is strictly decreasing with respect to
its argument, we have removed it from (P3) and turned the
problem into a minimization.

It is worth noting that, the local sensing outcomes have
greater variances when 7 is true (i.e., when the PU is
present), compared to H, case. Since the local sensing
outcomes pass through the same quantization and reporting
processes to reach the FC—regardless of whether the PU is
active or not—the received sensing outcomes at the FC have
greater variances in general when the PU signal is present.

That is, Uiml > O’y 1, Hence, we have
WISy, W > WSy, w=1 (21)
Applying this inequality on our cost function ¢(d,(), we
derive an upper bound, i.e.,
a?
¢(d, () < Z I (22)

A closer look at (22) leads to some interesting observations.
In fact, the term inside the summation is the ratio of two
performance metrics. Specifically, the numerator a? measures
the sensor ability to discriminate between H and H,, whereas
the denominator, measures the sensor uncertainty in declaring
either Ho or H;. Note that due to (20), the denominator in
(22) represents a positive linear combination of reported test
summary variances o2 vi [ Mo and o2 ilHe Therefore, the ratio in
(22) can be 1nterpreted as the SNR (measuring the detection
quality) of the ith sensor report when received at the FC.
In fact, it can be considered as an extended version of the
DC and MDC which have been introduced in literature as
good measures for performance optimization in cooperative
spectrum sensing. We refer to the ratio in (22) as extended
deflection coefficient (EDC).

These observations motivate us to propose a new approach
for the discussed joint reporting-fusion optimization based on
the EDC. We formally define EDC as

2 2 (E[ye|Ha] — E [ye[Ho))®
Aext - 1 (23)
Q' (a)Var {yc[Ho} + ¢ Var {yc[H1}
Replacing y. with its weighted sum definition, we have
A2 = (a7w)" (24)
S Wl Q T () By, + (B, W

We aim at finding w and d such that
max A2, (P4)
st w] =1

The constraint on the weight vector norm is necessary here to
derive a unique solution since the EDC does not depend on

[lw||. In order to derive an analytical solution for (P4) we first
eliminate w as follows. Through the linear transformation [2]

w = Sw 25)
the EDC is converted to
w s, T/2aaTE x1/2w _ 2
A% = e < 26

where Zey £ Q7 (), + (X4, and the inequality follows
the Rayleigh-Ritz inequality. The equality is achieved when

—T/2

w' = Eext a @7

Therefore, the optimal w which maximizes the EDC is derived
as a function of d as

=1/2_
Yo W

o]

ext

(28)

Wede =

Replacing w with its EDC-optimal value weq., the EDC can
be rewritten as a function of d

2
-3

yiHﬂ—I—C yilHa

Ale = a ext (29)
Now, by comparing (29) with (22) we see that maximizing
the variance-normalized distance between the centers of two
conditional distributions of the global test summary vy, is
equivalent to minimizing the upper bound in (22). Moreover,
due to the existence of ¢ in (29), (P4) is a MINLP problem
which is NP-hard in general. A standard method for solving
a MINLP is the BnB procedure. As mentioned before, we
have developed a BnB algorithm in [7] for (P3) and a
similar approach can be used to solve (P4) as well. Here,
we develop an alternative suboptimal approach based on EDC
which leads to nearly optimal performance, but at much lower
computational cost The proposed method is based on the fact
that o2 il Ho and a il only depend on d; and considering a
fixed value for (, converts (P4) from a (K + 1)-dimensional
problem into K one-dimensional integer programs. In other
words, the computational complexity of the optimization is
drastically decreased by considering a fixed (. Therefore, we
decompose the optimization procedure into two consecutive
processes in an iteration loop. Specifically, starting with an
initial point for d denoted by d(“), at kth iteration, we seek
the best d*) based on (*~1) by solving the following set of
optimizations,

Fori=1,..,K,

2

d® = argmax &
! d; Q*l(a)azl‘ﬂo + C(k71>051|7{l

where dq(-,k) and ¢®) denote the values of d; and ¢ at kth
iteration, respectively. Then, through considering (19) and (20)
we find ¢®) for d*). Consequently, at each iteration we are
dealing with K one-dimensional nonlinear integer programs.
Therefore, the computational complexity of this approach
increases linearly with the number of sensing nodes K.

(P5)
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TABLE I
LOW-COMPLEXITY LINEAR FUSION OF QUANTIZED REPORTS IN
COOPERATIVE SENSING

Input: €

Output:  Suboptimal d, w

1. Initialize d as d(O);

2. Solve (19) and (20) for ¢(9);
3. k « 0;

4. O @O )y,

5. do

6. k< k+1;

7. Solve (P5) for d(¥);

8. Plug d®) into (19) and (20) and solve them for ¢(¥);
9. ) — p(dl®), (W),
10.  while }(p“") — Lp(k’l)| > e
11.  return d(®) and ¢(%);

Numerical evaluations indicate that the desired performance
is achieved by only a few iterations. A pseudocode of the
proposed algorithm is presented in Table I.

IV. NUMERICAL RESULTS

The ED and uniform quantization have been adopted as
local sensing and test summary quantization methods at the
CR nodes, respectively. In all simulations, there are KX = 5
cooperating nodes which transmit their sensing outcomes
over the reporting channels using the BPSK modulation. The
PU signal is modeled as a direct-sequence spread-spectrum
BPSK signal using Walsh-Hadamard code with length 16, i.e.,
processing gain of 16 are considered in all simulation results.
The maximum number of quantization bits in each node is 7.

Fig. 1 depicts the results derived as Complementary Re-
ceiver Operational Characteristics (CROC) curves. Specifi-
cally, three cases have been considered as: Case#1) Depicts the
performance of uniform linear combining at the fusion center
and maximum number of quantization bits at the sensing
nodes, Case#2) Depicts the performance of optimal linear
combining at the fusion center and maximum number of
quantization bits at the sensing nodes, Case#3) Depicts the
performance of the proposed joint optimization, i.e., optimal
linear combining at the fusion center and optimal number of
quantization bits at the sensing nodes.

It is worth noting that, Case#1, Case#2, and Case#3 repre-
sent the detector design without any optimization, only with
optimal weighting, and with joint reporting-fusion optimiza-
tion respectively. The plots clearly illustrate the effectiveness
of our proposed detector in terms of lower false alarm and
missed detection probabilities which are shown as CROC
curves closer to the origin. Moreover, it can be observed that
the achieved optimization results based on both the Gaussian
approximation and EDC are in close agreement with each
other. Note that the optimal linear combining based on the
Gaussian approximation is known to provide nearly-optimal
performance [2].

V. CONCLUSION

In this paper, an extension to the deflection coefficient has
been proposed which captures the effects of the quantization

CROC, 10000 samples, ED, 95% Unif. Quantization

Joint optimization, EDC

— Optimal weighting, max. number of levels, EDC
Uniform weighting, max. number of levels

O Joint optimization, Gaussian

#+  Optimal weighting, max. number of levels, Gaussian

0.5

o
~

Probability of Missed Detection

/ Case#t1

0.1

L | B
015 0.2 035 04

0 005 01 045 05
Probability of False Alarm
Fig. 1. CROC curves for the energy detection using 20 samples of the PU

signal and uniform quantization with Chebyshev probability (see [7]) of 95%.
The listening channel SNR levels at sensor inputs are {0, -2.7, -3.1, -1.4, -6.9}
in dB. The reporting channel SNR levels are {10, 13, 12, 14, 11} in dB. The
results are obtained using 10,000 noise realizations.

processes at the sensing nodes, jointly with the impact of
the linear combining at the fusion center. The proposed
parameter has been used to formulate a new MINLP problem
as a fast suboptimal method to design a distributed detection
scenario where the nodes report their sensing outcomes to a
fusion center through nonideal digital links. Numerical results
demonstrate the effectiveness of the proposed design approach.
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Abstract—In this paper, the cooperative spectrum sensing in
centralized cognitive radio networks is studied as a three-phase
process, composed of local sensing, reporting, and decision/data
fusion and a novel approach is proposed to optimize the linear
soft combining scheme at the fusion phase jointly with two
elements of the reporting phase: i) the number of bits used
by each node to quantize the local sensing outcomes, and
ii) the power level by which each node reports its sensing
outcome to the fusion center. The proposed optimization problem
is represented using the conventional false alarm and missed
detection probabilities and two straightforward solutions are also
provided. Finally, the performance improvement associated with
the proposed joint optimization scheme is demonstrated by a set
of illustrative simulation results.

I. INTRODUCTION

For more than a decade, Cognitive Radio (CR) as the best
implementation candidate for the emerging dynamic spectrum
management procedures, has been the core of numerous tech-
nical discussions and interactions among various academic,
industrial, and regulatory groups specialized in wireless com-
munications all over the world, see [1], [2], and the references
therein.

As a matter of fact, spectrum sensing is the key element in
each CR system which enables its user, commonly referred to
as Secondary User (SU), to find transmission opportunities in
spectrum resources allocated exclusively to the license holders
which are called Primary Users (PUs). Through establishing
certain kinds of cooperation among the sensing nodes, signifi-
cant enhancements in sensing reliability is usually achieved in
wireless environments, leading to the concept of cooperative
spectrum sensing. As a common design strategy (in centralized
CRNs), the cooperative sensing is coordinated by and the
overall sensing outcome is generated in a special node called
the Fusion Center (FC) which might be considered as a
more powerful node, like a base station or an access point.
This cooperation is generally performed as a three-phase
process. In the first phase which we call Local Sensing, each
node performs spectrum sensing individually, using its own
built-in sensing scheme. In other words, they listen to their
environment to detect the PU signal. Accordingly, the wireless
channels between the PU and the sensing nodes are called

978-1-4799-0434-1/13/$31.00 ©2013 IEEE

Listening Channels. In the second phase, called Reporting,
the sensing nodes send their local sensing outcomes to the
FC through dedicated, or non-dedicated, Reporting Channels.
Finally, in the third phase, i.e., Fusion, the FC combines the
received local sensing outcomes to decide the presence or
absence of the PU.

In general, there exist various options for each phase
in designing an effective cooperative sensing scheme. Lo-
cal sensing can be realized using well-known methods like
Energy Detection (ED), Cyclostationary Detection (CSD),
Covariance-Based Detection, etc. In designing the reporting
phase, the effect of reporting channel impairments on the
overall sensing performance must be taken into account. This
effect is captured into the system model by reporting Bit
Error Probability (BEP) [3]. The BEP depends in general on
transmission power and bandwidth used in reporting, as well
as the number of bits used in sensing nodes for quantizing
the local sensing outcomes just before reporting. At the FC,
the combination of the sensing outcomes can be realized in
different ways among which the linear combining [4] is one
of the simplest, yet most effective ones, motivating us to adopt
it as the fusion method in our system model.

Optimal linear combining is a nonconvex problem studied
in several papers like [4] and [5]. Besides optimal solution, the
authors in [4] have proposed a suboptimal method using the
so-called Modified Deflection Coefficient (MDC) and showed
that this approach provides very close results to the ones
obtained by the optimal method, with much lower complexity.
The MDC approach is also used in several other works, see
e.g., [6], to optimize the detection performance where direct
formulation of optimal linear combing leads to a nonconvex
problem. The effect of reporting channel impairments on
the overall sensing performance has been investigated in [3]
and [7] where the reporting channels are modeled as binary
symmetric channels that cause errors with a certain BEP.

In this paper we jointly optimize the reporting and fusion
phases of the cooperative spectrum sensing. More specifically,
we formulate and solve a problem to jointly optimize the
weighting vector at the FC, the number of bits used by the
sensing nodes to quantize their test summaries just before

ICICS 2013
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Fig. 1. Basic configuration of cooperative spectrum sensing including the
listening and reporting channels, PU, SUs and FC.

reporting, and the power levels by which they transmit their
sensing outcomes to the FC. In other words, we formulate
and solve a new optimization problem which jointly takes
into account the three major mechanisms at the reporting and
fusion phases of the cooperative spectrum sensing. Therefore,
the spatial/user diversities regarding the listening and report-
ing channels are considered in a comprehensive optimization
approach, promising a better overall sensing performance.

The rest of the paper is organized as follows. In Section II
the system model is described. In Section III, mathematical
formulations of our proposed joint optimization are presented
along with two solutions. The effectiveness of the proposed
joint optimization is demonstrated through simulation results
in section IV followed by concluding remarks provided in
section V.

II. SYSTEM MODEL

A CRN with K sensing nodes has been considered. These
nodes cooperatively sense the radio spectrum to find temporal
and/or spatial vacant bands for their data communication. Fig.
1 shows the basic configuration and major elements in a CRN
exploiting cooperative spectrum sensing.

In our adopted model, the kth sample of the received PU
signal at the ith CR node is represented as

l’l(k}) = l/i(k), Ho (1)

where 7; and H, denote the hypotheses representing the
presence or absence of the PU, respectively. s(k) denotes
the signal transmitted by the PU and z;(k) is the received
signal by the the ith SU. h; is the listening channel block
fading gain. Listening channel gains are assumed to be in-
dependent circularly-symmetric Gaussian random variables.
v;(k) denotes the circularly-symmetric zero-mean Additive
White Gaussian Noise (AWGN) at the CR sensor receiver.
Without loss of generality, s(k) and {v;(k)} are assumed to
be independent of each other.

CR node i, ¢« = 1,..., K performs spectrum sensing using
its built-in sensor (which can be of any common types like
ED, CSD, etc.) to derive a local test statistic u; and then uses

the following quantization rule to map it on a bit sequence of
length d;

Yi(ui) = qni if
where 1);(-) denotes the quantization process at the ith SU,
Qni» = 1,...,2% is its nth quantization level, and tp,; and
t+1,; denote the corresponding boundaries.

Letd £ [dl, - dK]T denote the number of quantization
bits used in all sensing nodes. As described in [7] several
quantization methods for signal detectors can be considered
here like Maximum Output Entropy (MOE) quantization or
Minimum Average Error (MAE) quantization. Without loss of
generality, we have considered uniform and MOE quantization
methods in this paper.

In the uniform quantization incorporated in the ith sens-
ing node, the range covered by the quantization levels is
(i — moy, j1; + mo;) where 1; and o; are the mean and stan-
dard deviation of u; respectively and m is determined by the
Chebyshev inequality such that Pr{|u; — p;| > mo;} < #
This coverage range is then divided into 2% equally-spaced
levels whose boundaries are denoted by

2(n—1
tni = pi + mo; (% - 1) 3)

And the conditional probability of having level g, ; at the ith
quantizer output is

tn,i
Pr(stu) = anit} = [ fulal)ds @)

tn—1,i

tni S U <tpgi (2)

where f,,(-|7;) denotes the probability density function (pdf)
of u; conditioned on #H;, j = 0,1. MOE quantization is
described in [7].

The generated reporting bit sequences are then transmitted
to the FC through the reporting channel in an orthogonal
manner. The effect of reporting channel impairments on the
transmitted bit sequences of the ith CR node is modeled as
a BEP denoted by P, ;. The reporting channel is assumed
to affect each nodes transmitted reporting bit sequence inde-
pendently. Moreover, errors introduced on different bits by
the reporting channel in a transmitted reporting sequence are
assumed to be independent and identically distributed (i.i.d).
Therefore, the received quantized test statistics at the FC,
vi, ¢ = 1,..., K are independent discrete random variables
whose probability mass functions (pmf) can be represented
(for j =0,1) as [7]

Pr {yi = Qn,i‘Hj} =
2d
>R (U= B P R (i) = il ) 5)
k=1

where D, ; is the Hamming distance between bit sequences
corresponding to levels ¢, and gy.

Assuming a general M-ary modulation for the reporting
channel, the reporting BEP can be expressed as

Py =cu@Q (\/ C'M’Yr,i> (6)



where Q(x) £ [ exp(—t?/2)dt//2m is the Q-function, ¢y
and ¢, are two constants determined by the modulation type
and -y, ; is the reporting link signal-to-noise ratio (SNR).

In order to take into account the power allocation mecha-
nism of the reporting phase, we consider a different energy
level for each node. Specifically, in this model, the ith CR
node transmits its sensing outcome with energy F,. ; = n;E,,
where F,. denotes the total energy used by the whole CRN for
transmission of the sensing outcomes to the FC, and 7); denotes
the share of energy dedicated to the ith node. We collect the
reporting energy ratios of all K nodes in n £ [n,...,nx]7.
With these definitions, it is clear that 0 < 7; < 1 for
it =1,...,, K and the elements of 7 sum to unity.

Hence, the reporting SNR associated with the ith sensing
node depends on the number of bits used in its reporting bit
sequence d; as well as its normalized energy level 7, i.e.,

_ |hm'\277iEr

Ngdiloggj\/f
where h;, and N denote the reporting channel gain, and
noise power spectral density, respectively. Consequently, the
reporting BEP of the ith CR node is a continuous function of

ni/d;

Vri N

.
B =cu@ < ch %) ®)
1

’ 2
i cylheil"Er
whe.re M = “Nologahl - .

Linear combining is performed at the FC, meaning that, the

global test statistic y, is constructed as a weighted sum of the
received quantized levels, i.e.,

K
Ye=> wigi =w'y (C)]
i=1

where w £ [w, ...,wK]T and y £ [y, ...,yK]T.
Finally, y. is compared against a predefined threshold th to
decide the presence or absence of the PU, i.e.,

{Hh Yo > th
HU’

Yo < th
The detector performance is commonly measured using two
probabilities, namely probability of false alarm

(10)

Py, =Pr {yc > th|H0} (11)
and probability of missed detection
Pog =Pr{y. < th|H:} (12)

Both false alarm and missed detection probabilities depend on
the probability distribution of the global test statistics i, which
can be derived as a convolution of the pmfs of K independent
random variables {yl}lK:1 ie.,

p(ye) = p(y1) * ... * p(yrc) (13)

where p(-) and * stand for pmf and convolution respectively.
These definitions now enable us to develop our proposed
optimization approach in the next section.

III. REPORTING-FUSION OPTIMIZATION

Our problem is to jointly optimize w, n and d to achieve
the best cooperative sensing performance. We determine the
weighting vector w at the FC, and 1 and d used by the
sensing nodes, through jointly considering the effects of both
the listening channels, and reporting channels.

We formulate our proposed optimization based on minimiz-
ing the missed detection probability subject to an upper bound
on the false alarm probability

min P,q (P1)
w,n,d

sit. Pn<a
7’1 =1

where « is the given upper limit on the false alarm probability
and 1x denotes a K x 1 vector whose elements are all one.

According to the Central Limit Theorem, if K is large
enough, we can assume a Gaussian distribution for y,, and the
false alarm and missed detection probabilities can be expressed
in closed form as

th — pg, w
Po=0Q| ==

VwIEyw
th —pd, w >

VwiEy w

where (for j = 1,2) py, £ E[y|H,] and Sy, =
E[yTy|H;] = diag(o;m?,...,crikl%). We have found
through numerical evaluations that Gaussian distribution fits
well for K > 5.

Now if we eliminate ¢/ in Egs. (14) and (15) by considering

a target false alarm probability P, = «, (P1) is converted to

(14)

Pmd]-_Q< 15)

Q Y a)y/wIiZy,w—alw
max Q < S~ (P2)

where Q‘l -) is the functional inverse of the Q-function, a =
[a1,...,ax]" % wy, — py, and for i = 1,... K we have
a; £ Eyi|H1] — E[yi|Ho]. a; and 0y,)3, are related to the
number of quantization bits d; and the normalized reporting
energy 7; as

2 2%i

Dok di—Dy i

a; = Z Qni E K (1—PF,) ok
k=1

n=1

X [Pr(vpi(ui) = qr,ilH1) — Pr(vi(us) = qr.i|Ho)] (16)

2
OyilH; =
2%i 24
Dk _

Doy Byt (L= Po) P Pr(ehi(ui) = il Hy)—
n=1 k=1

2%i 2%

D, i— Do 1
D tniy Byt (1= Poa)®PrrPr(vi(ws) = qiilH,)
n=1 k=1

an



For a given pair of d and 7 (P2) can be solved for optimal
weighting vector w [5, Theorem 2]

- _ _ -1
W=3" [(Q Y a)Ix +(A] e (18)
where A £ EHIE;{}) c: E;{iﬂa and ( is the single root
of the polynomial equation

(@ ()L +¢A] || =1

Now using Egs. (18) and (19), we remove w from (P3) and
convert the problem to the following optimization in  and d

—1 ~ = T
max Q <Q VAR aw) (P3)
n.d VW, W

It is worth noting that d; attains discrete values from the set
wi 2 {1, ..., di.maz } Where d; mas is the maximum possible
number of bits used in the quantization process at the ith CR
node. If we also consider a set of step-wise discrete values for
n;, we can solve (P4) in a straightforward manner, through
a numerical search. For instance, the designer can consider
no = 10% and & £ {0,709, 210, ..., 1} as a set of normalized
reporting energies which can be used at the ith CR node. In
this way, (P3) can be solved through an exhaustive search over
Q2 (w,&)%...x (wk, k) where x stands for the Cartesian
product.

An alternative solution for joint optimization of w, 1, and
d can be achieved using the MDC. It can be interpreted as the
SNR of the global test statistic y. at the FC. The definition of
MDC is as follows

19

(Ely.|H:] —E [yclHu])2

AL £ 20
m Var {y.|H1} 20)
Replacing y. with its weighted sum definition, we have
a’w)’
A2 = _(atw) 21
m o wlSyw @D

Using the MDC approach, we aim at finding w, 7, and d such
that

max A% (P4)
w,n.d )

st w|=1
’I]T g =1

The constraint on the weight vector norm is necessary here to
derive a unique solution since the MDC does not depend on
Iwll.

Now we consider two simplifying but practical assumptions.
Firstly, we assume that Gray coding is used to map the
reporting bit sequences to their corresponding quantization
levels. In other words, we assume that the bit sequences
representing the adjacent quantization levels, differ only in
one bit. Secondly, we assume a reliable reporting channel,
i.e., small Pys. Consequently, we neglect the cases in which
more than one bit in a sequence arrive erroneously at the FC.

These assumptions lead to the following simplified form of a;
(and O'Zd 17,) that is differentiable with respect to d;

24 n+1
1—1p5—
—~ {k=n} di—1+174—
4G~ qni » By (L= Byt e
n=1 k=n—1

X [Pr(es(ui) = qri|H1) — Pr(wi(us) = qr,i|Ho)] (22)

where 1(p—y is the indicator function which is equal to 1
when k£ = n and O otherwise. O'Z[l i, can be simplified in a
similar way.

In order to derive an analytical solution for (P4) we first
eliminate w as follows. Through the linear transformation [4]

1/2

w = EHl w (23)

the MDC is converted to

wTS T2 aaT sV 2w/ B 2
AZ = = <z e
and the equality is achieved when
w =%,"a (25)

Therefore, the optimal w which maximizes the MDC is
derived as function of 7, and d as
2;{1/ ZW/

Wmde = 755 11
-1/2_,
HEHI w

(26)

Replacing w with its MDC-optimal value wy,4., the MDC can
be rewritten as a function of 5 and d

Al =a"%}'a 27

Now, the Lagrangian function associated with the proposed
optimization can be represented as

Lin,d,\) =a"3; la+An" -1 — 1) (28)

and the solution is derived by solving the following system of
equations

oL oL oL

an ad T oA

IV. NUMERICAL RESULTS

=0,— =0. (29)

Two typical distributed detection scenarios have been con-
sidered to illustrate the effectiveness of the proposed opti-
mization scheme. In the first scenario, the ED and uniform
quantization have been adopted as local sensing and test
summary quantization methods at the CR nodes, respectively.
As the second scenario, CSD and MOE quantization have been
considered. In all simulations, there are K = 3 cooperating
nodes which transmit their sensing outcomes over the reporting
channels using the BPSK modulation. The PU signal is mod-
eled as a direct-sequence spread-spectrum BPSK signal using
Walsh-Hadamard code with length 16, i.e., processing gain
of 16 are considered in all simulation results. The maximum
number of quantization bits in each node is 7. The number
of PU signal samples used in ED is 20 and the Chebychev



probability for the uniform quantization coverage interval
has been set to 95%. When CSD is considered, the cyclic
autocorrelation function is estimated in each node using 100
samples of the PU signal and the estimated autocorrelation
corresponds to f = 1/T. and 7 = 0, where f is the cycle
frequency, 7 is the lag used in calculating the autocorrelation,
and T, is the chip period of the PU signal.

Fig.s 2 and 3 depict the results derived as Complementary
Receiver Operational Characteristics (CROC) curves for both
energy and cyclostationary detectors. Specifically, for each
detector three cases have been considered as

Case#l: Depicts the performance of uniform linear com-
bining at the fusion center, uniform reporting power
allocation, and maximum number of quantization bits
at the sensing nodes,

Case#2: Depicts the performance of optimal linear com-
bining at the fusion center, uniform reporting power
allocation and maximum number of quantization bits
at the sensing nodes,

Case#3: Depicts the performance of the proposed joint
optimization, i.e., optimal linear combining at the
fusion center, optimal reporting power allocation, and
optimal number of quantization bits at the sensing
nodes.

It is worth noting that in both figures, Case#1, Case#2, and
Case#3 represent the detector design without any optimization,
only with optimal weighting, and with joint reporting-fusion
optimization respectively. The plots clearly illustrate the ef-
fectiveness of our proposed detector in terms of lower false
alarm and missed detection probabilities which are shown as
CROC curves closer to the origin.
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Fig. 2. CROC curves for the energy detection using 20 samples of the

PU signal and uniform quantization with Cebyshev probability of 95%. The
listening channel SNR levels at sensor inputs are {-6.9, 0, -2.7} in dB. The
reporting channel SNR levels are {10, 13, 12} in dB. The results are obtained
using 10000 noise realizations.
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Fig. 3. CROC curves for the cyclostationary detection using 100 samples of
the PU signal and MOE quantization. The local SNR levels at sensor inputs
are {-1.9, 5, 2.3} in dB. The reporting channel SNR levels are {11, 14, 13}
in dB. The results are obtained using 10000 noise realizations.

V. CONCLUSION

In this paper, the cooperative sensing in centralized cogni-
tive radio networks has been studied as a three-phase process,
composed of local sensing, reporting, and decision/data fusion
and a novel approach has been proposed to optimize the linear
soft combining scheme at the fusion phase jointly with two
significant mechanisms at the reporting phase. The simula-
tion results following the presented analytical formulations
demonstrate that, by joint consideration of reporting and fusion
phases, better detection performances can be achieved which
is due to better exploitation of spatial/user diversities.
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Abstract—Interrupted reporting has recently been introduced
as an effective method to increase the energy efficiency of coop-
erative spectrum sensing schemes in cognitive radio networks.
In this paper, joint optimization of the reporting and fusion
phases in a cooperative sensing with interrupted reporting is
considered. This optimization aims at finding the best weights
used at the fusion center to construct a linear fusion of the
received interrupted reports, jointly with Bernoulli distributions
governing the statistical behavior of the interruptions. The
problem is formulated by using the deflection criterion and as
a nonconvex quadratic program which is then solved for a
suboptimal solution, in a computationally-affordable fashion, by
a semidefinite relaxation technique. The system performance is
then demonstrated by a set of numerical results which compare
the performance of the system for the cases with and without
the optimal linear fusion.

Index Terms—Cognitive radio (CR), cooperative spectrum
sensing, decision fusion, correlation, non-ideal reporting chan-
nels.

I. INTRODUCTION

Traditional fixed spectrum assignment policy has been
proved inefficient as measurements demonstrate that the radio
spectrum is severely underutilized [1]. This underutilization
stems from the fact that, many portions of licensed spectrum
are neglected or underutilized by the licensees [2]. The scarcity
in the available specwum resources and continuous growth in
demand for wireless communications necessitate developing
more efficient spectrum management policies, procedures, and
technologies. In consequence, cognitive radio (CR) has gained
a great deal of interest as a powerful asset for realizing
the dynamic spectrum access (DSA) technology. CRs aim at
enabling their users, commonly referred to as secondary users
(SU), to find temporarily- or spatially-available portions of the
radio spectrum which are not used by the so-called primary
users (PU) who are in fact the licensees. When appropriate
spectral opportunities are found, the CRs adapt their own
parameters to establish communication. This communication is
realized by CRs while no particular spectrum band is assigned
to them.

Since CRs are obliged not to compromise the integrity of
the primary networks, they need to get informed about the PU
activities in their surrounding radio environment. In order to
accomplish this task, they are equipped with spectrum sensing
facilities to inspect the radio spectrum and discover whether
the PU is active. In this manner, CRs can avoid making
harmful interference for the PUs.

978-1-4673-6782-0/15/$31.00 ©2015 IEEE

It is well-known that, when the nodes in a CR network
(CRN) cooperate in spectrum sensing, better overall detection
performance is achieved. This is due to the fact that, when
cooperating, spatial diversity of the sensing nodes are exploited
to alleviate the effects of shadowing and multipath fading,
which might prevent the individual nodes from detecting the
PU signal. In this cooperation scheme which is referred to
as cooperative spectrum sensing, all nodes report their local
sensing outcome to a so-called fusion center (FC) [2]-[S].
Then, based on the received reports, the FC decides the
presence or absence of the PU signal and informs other nodes
of the decision.

Likelihood ratio test (LRT) [6] is known as the optimal
fusion method when the sensing nodes report their sensing
outcomes through nonideal links. However, finding the LRT
thresholds is not practical due to its high computational
complexity. Optimal linear combining has been proposed in
[2], [4], [5] as a low-complexity suboptimal fusion method
which nearly achieves the performance of the LRT. The main
idea of linear combining is that the combining weight for the
signal from a particular user represents its contribution to the
global decision. For those SUs experiencing deep fading or
shadowing, their weights are decreased in order to reduce their
negative contribution to the overall decision. Therefore, this
method makes a discrimination between the reports received
from the reliable and unreliable sensing nodes.

In our previous work [7], we have established, analyzed, and
optimized a novel energy-efficient approach for discriminating
between the reliable and unreliable nodes by introducing
random energy-saving interruptions in the cooperation of the
sensing nodes with the FC. In this approach, instead of
suppressing the contribution of nodes working under deep
fading or shadowing, they are occasionally ordered not to
cooperate. By optimizing this interruption process subject to
an upper bound on the energy consumed at the local sensing
and reporting processes, significant levels of energy efficiency
is achieved.

In this paper, we optimize the interrupted reporting mecha-
nism jointly with the commonly-used linear combining scheme
at the FC. We formulate an optimization problem for finding
the best weights used at the FC to linearly combine the
received sensing outcomes, jointly with Bernoulli distributions
based on which the random interruptions are realized. This
optimization is proposed based on maximizing the modified
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deflection coefficient (MDC) [5], [7] of the overall detection
and as a nonconvex quadratic program which can be solved for
a suboptimal solution by a polynomial-complexity semidefinite
relaxation technique. The system performance is then demon-
strated by a set of simulation results which compare the case
where the linear fusion is involved in the optimization process
with the case in which the optimization only concems the
interrupted reporting.

II. SYSTEM MODEL AND ANALYSIS

In this section, we first introduce our notation along with a
set of definitions which facilitate mathematical representation
of the proposed analysis. Then, the system model is introduced
and the parameters needed for performance optimization are
derived accordingly. Note that the notation and system model
represented in this section are similar to the ones introduced
in [7].

A. Notation

Matrices and column-vectors are denoted in boldface by
uppercase and lowercase letters, respectively. The notation ||x||
denotes the Euclidean norm of the vector x. The notation
diag(x) represents a diagonal matrix whose main diagonal
is x. Matrix inequality is represented by >, ie., A > B
means that A — B is positive semidefinite and for a vector
it denotes the element-wise inequality with >~ representing
the strict inequality. The identity matrix is denoted by I and
0,, denotes the n x n null matrix while 1 and 0 denote all-
ones and all-zeros column vectors, respectively. e; denotes a
column vector where all elements are zero except for the ith
element which is one. Tr(A) refers to the trace of A, i.e.,
sum of elements in the main diagonal of A. The vectorization
of matrix A is denoted by vec (A) which represents a vector
obtained by stacking the columns of A on top of one another.

In order to account for temporal and spatial representations
of signals, we use the following notation. For vector x in the
following form

x(m) = [g1(m), ..., zx (m)]” )
we consider these three notations
X(m) £ [x(m),x(m 1), .., x(m - D"
x1,(m) £ vec (X1(m)) A3)
X1 (m) £ diag (xz(m)) @

Note that we represent the time index by m.

For the two hypotheses considered in this paper, i.e., the
null hypothesis o corresponding to the absence of the PU
signal and H; representing the presence of the PU signal, the
following notations are used to represent conditional second-
order statistics of signals (for h = 1,2)

Cunn £ F [(x = B ) (X = B, )| Ha]
= R'x|’H,, - l'l’xl't"lh“fl?'lh ®)

Cuyirtn 2 B [(x = by, )V — yppe,) | Hal
= nyl’}{h - ""xlﬁh”ﬁ'ﬂh (6)

where ft, 5, and py3, denote mean of x and mean of
y, conditioned on Hj, respectively. The main diagonal of
the autocorrelation matrix Rz, is denoted MR,z which
is defined as

(mxluh)i,j 4 61',]' (R'xl'Hh)i,j (7)

where §; ; is Kronecker’s delta function which equals to 1 if
i = j and 0 otherwise.

Non-conditional statistics are related to their conditional
counterparts according to the following definitions

Cyx 2 PI'{HO}CXI’HO + PT{HI}CxH{l ®
Cxy £ PI{HO}nyl’Ho + Pr{Hl}CxY'”‘ ©)

Note that other non-conditional statistics in this paper are
related to their conditional counterparts in a similar fashion.

As another definition regarding the second-order statistics,
we have the following K(L + 1) x K matrix

Cusy 2 E [x1(m)yl(m), .. xc(m)yf(m)]

— [P ), s by ()] 10)

where p1,, £ E[x)] and 1 denotes complex conjugation.

B. System Model and Problem Formulation

A CRN with K sensing nodes is considered. These nodes
cooperatively sense the radio spectrum to find temporal and/or
spatial vacant bands for their data communication. Each CR
node is equipped with a built-in spectrum sensor which enables
it to detect the PU signal through inspecting its own listening
channel. Listening channels are referred to the channels be-
tween the PU and the sensing nodes. The sensing nodes have
access to a dedicated but nonideal reporting channel to send
their individual sensing outcomes to the FC.

In our adopted model, the mth sample of the received PU
signal at the ith CR node is represented as

{ zi(m) = vi(m),

zi(m) = h;s(m) + vi(m),

Ho
H, (11)

where s(m) denotes the signal transmitted by the PU and
z;(m) is the received signal by the ith SU. h; is the listening
channel block fading coefficient, which is assumed to be
constant during the detection interval. Listening channel gains
are assumed to be independent circularly-symmetric Gaussian
random variables. v;(m) denotes the circularly-symmetric
zero-mean additive white Gaussian noise (AWGN) at the CR
sensor receiver, i.e., v;(m) ~ CN(0,02). s(m) and {vi(m)}
are assumed to be independent of each other.

In this cooperative sensing scheme, the behavior of each
node is controlled by a predetermined sequence of binary ran-
dom numbers generated at the FC. Whenever the cooperative
sensing is performed, only the nodes whose corresponding
random number is one are allowed to contribute to the overall
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sensing process. Specifically, if the ith CR is among the
cooperating nodes, i € {1,2,..., K}, it performs specwum
sensing by using its built-in sensor to derive a local test statistic
u;. Without loss of generality, the local sensing process is
assumed to be in the form of energy detection which can be
represented as

N-1

u;(m) = E |zi(Nm — k)|? (12)

k=0
The resulting sensing outcome is then transmitted to the FC
through the reporting channel. We represent this interrupted
reporting as

yi(m) = 6i(m)u;(m) + 2;(m) (13)

where y;(m) denotes the ith received sensing outcome at
the FC, 6;(m) € {0,1} denotes the random number which
controls the ith sensing node, and z(m) ~ CAN(0,02) is
the reporting channel contamination modeled as AWGN. (13)
clearly demonstrates that when the generated random number
0; is zero, nothing is transmitted to the FC. This process can be
implemented in practice by using an energy-saving controller
which suspends the local sensing and reporting processes when
the corresponding random number is zero.
In the matrix form we can represent (13) as

y(m) = diag(8(m))u(m) + z(m) (14)

where y(m) 2 [u(m),..,yx(m)", 6(m) £
[01(m), ..., 6k (m)]T, u(m) £ [uy(m),...,ux(m)]”, and
z(m) £ [21(m),...,2x(m)]7. In the proposed system the
random numbers 6;, ¢ = 1, ..., K, are generated independently
over time and space, i.e., Ox(m — 1) and 6,(m — r) are
independent if k # n or I # r. Moreover, 6;(m) follows
the Bemoulli distribution with p;(m) £ Pr{6;(m)=1}.
Note that 0, u, and z are assumed to be independent of
each other. We also need p(m) 2 [pi(m),...,px(m)]"
and b(m) 2 [b(m),....bx(m)]T in our formulations.
b(m) denotes a realization of the random vector (m). For
simplicity, we will drop the time index m when representing
vectors and matrices.

The reported sensing outcomes feed a linear estimator which
uses spatial and temporal correlations of the received test
summaries to estimate their actual (i.e., non-contaminated and
non-interrupted) values. Specifically, the observation vector
used by the estimator is yr which, based on the notation
provided in Section II-A, can be expressed as

yL=©rur +z; (15)

Note that @, is a K (L +1) x K(L+1) diagonal matrix. The
estimation process at the FC is represented as

a=¢TyL+e (16)

where the weight vector £ and the constant € are ob-

tained as the minimizer of the mean-squared error (MMSE)
E [||ﬁ - u||2] . Hence,

E* — C;ICyLu

L

an

and since u has nonzero mean in general, the optimum value
of the bias term € is given by

e = Eu] - ¢TE[yy)]. (18)
‘We have shown in [7] that,
Cy;,u = f’LCuLu (19)

C,, =P (1 - PL) Ry, + PLCu PL+02L  (20)

Where P, = E[©)]. Note that, Cy,u, Cu,, and R, are
obtained in terms of the second-order statistics of the channel
gains between the PU and SUs as well as noise variances
experienced by the sensors.

According to the central limit theorem, if the number of
samples NNV in (12) is large enough, the local test summaries
follow the Gaussian distribution. Consequently, the estimated
local test summaries conditioned on a given realization of 6,
are normal random variables, i.e., for h = 0,1, we have G ~

N (Mm{m,hL},Cm{m,bL}) where
Baj(rnby = E[0[Hr, 0L = by] @
= E*TE [éLllL + le”haoL = bL] + €*
=¢TBLE [up|Hp] + €*

and Cg|{3,,b,} denotes the conditional covariance matrix of
u. Note tl_1at, conditioned on @1, = bz, the observation vector
is yr = Bruy + z; which leads to [7]

Cajsnbsy =€ (ﬁLCuLmhﬁL + 031) ¢

In the proposed cooperative sensing, the estimated local
sensing outcomes are used at the FC to make the decision.
Specifically, the estimated local sensing outcomes are linearly
combined to form a so-called global test summary .S(i) which
is defined as

(22

S(a) 2 wha (23)
where w is the weighting vector. S(1) is compared against
a predefined threshold to decide the presence or absence
of the PU signal. Consequently, the system performance is
characterized by the statistical behavior of S(i1).

In the following, we use the MDC to optimize the proposed
system performance. The MDC has long been used in devel-
oping distributed detection schemes and can be justified as
a performance metric by various arguments [8]. In order to
formulate this optimization, we need to evaluate the first- and
second-order statistics of the global test summary S(i). More
specifically, we require Apgs 2 E [S(@)|H1] — E [S(@)|Ho)
and 0%, = Var {S(@)[#:}.

The MDC is defined as the variance-normalized distance
between the centers of two conditional pdfs of the global test
summary, i.e.,

2 a (BIS@H] - EIS@)[Ho)® _ (Aus)®
m Var[S(@)|H4]

(24
S|H1
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By considering the fact that the elements of P, lie between
zero and one, and by using Taylor series expansions, we have
shown in [7] that

Aps = wTC?;Lulai (E [up|M1] — E[up|Ho)) (25)
By, ~ CL P2Cusu (26)

For simplicity, we have assumed o2 = 1.

Now, we formally represent the joint optimization of the
reporting and fusion schemes in the proposed cooperative
sensing as

(w*,p}) = argmax A2, (P1)

W,pL
0=2pr =1
S.t.
17.pL <(1-n)n

where 7) denotes the power-efficiency constraint we consider
in designing the proposed interrupted reporting scheme. Note
that for 0 < 7 < 1 some elements of p; have to be less
than 1, which means we are forcing some sensing nodes to
occasionally go to the sleeping mode (i.e., avoid cooperation).
Moreover, it is clear that in general, the higher  we chose,
the higher is the number of nodes which are forced to sleep,
or the more likely any node is to go to the sleeping mode.
In fact, n is the parameter by which we control the energy
consumption of the proposed interrupted reporting scheme.

III. JOINT INTERRUPTION-FUSION OPTIMIZATION

In this section, we develop our proposed approach for
solving the optimization problem. Note that the optimization
problem in (P1) is a fractional program. By change of vari-
ables, we first turn this fractional program into a quadratic
optimization and then use standard quadratic programming
techniques to solve the problem.

By using (25) and (26) and based on the following defini-
tions,

wp 2 P2Cy uW 1))
alFE [uL|H1] -F [uL|H0] (28)
we can approximate our objective function as
wTa)?
2~ —(T L 2) (29)
wy Prowp

This objective function is homogeneous with respect to wy, so
we can limit w,, to be on the unit ball. In addition, the MDC
in (29) can be expressed as a Rayleigh quotient by which we
can maximize the objective function for a given pr. To this
end, we use the following linear transformation

w'p e f’zlwp (30)
which leads to
2 w’Zf‘Laan‘Lw’p
AL R ——p 31
w,wp

Therefore, the objective function can be maximized, by using
the Lagrange multipliers, for a given p;, by

W =Pa (32
which is the eigenvector of the positive semi-definite matrix
PraaTP, corresponding to the maximum eigenvalue (the
nonzero eigenvalue). Consequently, w, which maximizes the

objective function for a given py, is derived as

(33)

and w* = C;llluPzgw;. Now we can eliminate w from our

objective function and convert it to

A% ~aTP}a=plDp. (34)
where D £ [diag(a)]®. Consequently, (P1) can be reformu-
lated as
p} = argmaxp.Dpy, P2)
PL

0=xpr =1
s.t.

1"pL < (1—n)n

It is worth noting that, solving (P2) requires maximizing
a convex quadratic objective function over a convex set,
which is NP-hard in general. Fortunately, there exist numer-
ous relaxation techniques in literature for solving nonconvex
quadratic programs in a computationally-efficient manner. A
variety of these relaxations can be formulated as semidefinite
programs (SDPs) and it is shown in [9] that very good results
are achieved when the so-called reformulation linearization
technique (RLT) [10] is jointly used with SDP relaxation.
Accordingly, we first reformulate (P2) by introducing a new
variable as V = pp? which leads to

max Tr(DV)

V.pL

0=pp =1
st.{1Tp, < (1—-n)n

V =prp}

(P3-a)

The SDP relaxation is then realized by replacing the last
constraint in (P3-a) by V. > pr'}:, while the RLT is
constructed based on using products of upper and lower bound
constraints on the original variables to obtain valid linear
inequality constraints on the new variable V. Consequently,
the resulting optimization is

max Tr(DV) (P3-b)
V.pL

1Tp, < (1—n)n

V-pr1T —1pF +117 >0
st.{V—-pr1T<0

V>0

V = pLpL
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Note that the last constraint in this problem is equivalent to

1 p{)
>0
(DL A\

Therefore, (P3-b) is a convex optimization problem which can
be solved, to any arbitrary accuracy, in a numerically-reliable
and efficient fashion.

In the following section, we demonstrate the proposed
system performance considering the cases with and without
the optimal linear combining.

(35)

IV. SIMULATION RESULTS

In this section, we report simulation results demonstrating
the performance of the proposed joint optimization scheme.
We use the optimal linear combining scheme in [2], [4], [5]
as the benchmark. In performance evaluation of the proposed
detector, we consider two cases as (i) the system performance
with equal-gain combining (ECG) (i.e., when equal weights
are used for all sensors) and optimal distributions for inter-
rupted reports and (ii) the system performance when the linear
fusion is jointly optimized by the interrupted reporting scheme.

Three sensing nodes are considered, i.e., K = 3, operating
at different SNR regimes. The listening channels are char-
acterized by SNRs equal to {12,5,8} in dB. The reporting
channel noise variance is 02 = 10. The correlation coefficient
p between the local sensing outcomes when #; is true is 0.1
and the number of samples N used by each sensing node
for energy detection is 20. All simulations are conducted by
100,000 sample realizations. When comparing the proposed
system performance with the optimal linear fusion, the energy
efficiency levels considered are 30%, 50%, 70%, and 90%. We
have set L = 0 to demonstrate that, compared to the optimal
linear fusion, no more information is required about the PU
signal in the proposed system.

Fig. 1 depicts the complementary receiver operational char-
acteristics (CROC) curves demonstrating the performance of
the proposed detector operating with different levels of en-
ergy efficiency, along with a CROC curve corresponding to
the performance of the optimal linear combiner. The curves
corresponding to the joint optimization are designated as
"Joint wp opt." whereas the curves corresponding to optimal
interruptions and uniform weighting (EGC) are denoted by
“Opt. pll'

In this figure, we observe that for all the different levels
of energy efficiency, the system performance does not change
significantly by involving the linear fusion in the optimiza-
tion process. These results clearly illustrate that the propose
random-interruptions-based cooperative sensing is capable of
discriminating between the reliable and unreliable sensing
nodes on its own and achieves the best performance even when
the linear combining is realized by EGC. More specifically,
we have established that, when interrupted reporting scheme
is incorporated in cooperation, EGC at the FC is nearly the
optimal fusion rule. Recall that the optimal linear combining
[5] closely achieves the optimal performance of LRT in
existing cooperative sensing schemes for CRNs.

—— Jointwp opt, eff = 30%
—8— Joint wpopt., eff = 50%
= Joint wp opt., eff = 70%
—&— Jointwp opt, eff = 90%

Probability of Missed Detection

Optimal linear combining
= ® = Opt. p, Unif. w, eff = 30%
= B = Opt. p, Unif. w, eff = 50%
= * = Opt. p, Unif. w, eff = 70%
= © = Opt. p, Unif. w, eff = 90%)

107 10" 10°
Probability of False Alarm

Fig. 1. CROC curves demonstrating the performance of the proposed
cooperative sensing scheme working under different energy-efficiency levels
and the performance of the optimal linear combining. The CRN considered
has three sensing nodes experiencing SNR levels as {12, 5,8} in dB at the
listening channels. The reporting channel noise variance is 02 = 10 and the
correlation coefficient between the local sensing outcomes when H; is true
is p=0.1.

V. CONCLUSION

In this paper, we have jointly optimized the reporting and
fusion phases of cooperative spectrum sensing scheme with
linear fusion at the FC and random interruptions in cooperation
of the sensing nodes with the FC. The results achieved based
on maximizing the MDC in this system demonstrate that, when
random interruptions are employed, there is no more need for
discriminating between the reliable and unreliable nodes by
the fusion process, and the EGC scheme at the FC is enough
to nearly have the optimal overall detection performance.
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Abstract: In this study, the average throughput maximisation of a secondary user (SU) by optimising its spectrum sensing time is
formulated, assuming that a priori knowledge of the presence and absence probabilities of the primary users (PUs) is available.
The energy consumed to find a transmission opportunity is evaluated, and a discussion on the impacts of the number of PUs on
SU throughput and consumed energy are presented. To avoid the challenges associated with the analytical method, as a second
solution, a systematic adaptive neural network-based sensing time optimisation approach is also proposed. The proposed scheme
is able to find the optimum value of the channel sensing time without any prior knowledge or assumption about the wireless
environment. The structure, performance and cooperation of the artificial neural networks used in the proposed method are
explained in detail, and a set of illustrative simulation results is presented to validate the analytical results as well as the
performance of the proposed learning-based optimisation scheme.

1 Introduction

Intense public interest in new wireless technologies has
motivated communication system designers and policy
makers worldwide to revolutionise traditional inefficient
spectrum management mechanisms and develop advanced
flexible scenarios for better spectrum utilisation, see [1].
These efforts have revealed that the old strategy of giving
the exclusive right of using particular spectrum bands to
some specific users (licensees) makes this valuable resource
severely under-utilised. Fortunately, the concept of
cognitive radio (CR) has emerged to mitigate this issue.
In fact, CRs are intended to find transmission opportunities
in wireless environment when no particular spectrum has
been assigned to them. To protect primary users (PUs) from
harmful interference, CRs have to be capable of sensing the
radio spectrum, learning and adapting to the wireless
environment [2].

Spectrum sensing schemes are of major importance in
designing superior CR systems. The average throughput of
the secondary users (SUs), their consumed energy and the
amount of interference experienced by PUs are directly
related to the effectiveness of the sensing schemes
incorporated in CRs. Slotted CRs usually divide their
time-slots into two parts; one for sensing and the other for
data transmission [3, 4]. Sensing time refers to the portion
of time-slots used for sensing the radio spectrum. Generally
speaking, increasing the sensing time leads to higher
sensing accuracy but decreases the average CR throughput
[4, 5]. Hence, it is certainly a challenge to find an optimal
value for the spectrum sensing time to have the maximum
possible throughput while protecting PUs from harmful
interference [3]. On the other hand, because of the dynamic
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behaviour of the PUs, the number and location of the
temporarily-available transmission opportunities in the radio
spectrum change occasionally. This behaviour is modelled
as spectrum mobility and when it is taken into account, the
aforementioned sensing time optimisation problem becomes
even more challenging. Since the distribution of white
spaces changes because of spectrum mobility, CRs have to
handoff spectrums in order to maintain a predefined
quality-of-service level. In other words, the SU must leave
its current spectrum and continue its transmission on
another spectrum when the corresponding PU arrives. This
process is called spectrum hand-over or simply hand-over
(HO).

In recent years, throughput maximisation by optimising
spectrum sensing time has gained a lot of interest. In [5],
the impact of spectrum sensing time on the overall
throughput of an SU is investigated, and the optimum value
of the sensing time has been found numerically. In [6], two
distributed Q-learning algorithms have been proposed to
determine the optimum value of sensing time. Joint
optimisations of sensing time and decision threshold have
been addressed in [7] for wideband OFDM-based cognitive
radio networks (CRNs). However, none of these works
have considered the effect of spectrum mobility and
consequent HOs in their utilised CR system models. In [8—
10], the problem of sequential channel sensing for an SU
has been evaluated. Sequential channel sensing means that
the SU starts sensing the channels from top of a list (called
sensing sequence), and if the considered channel is sensed
as occupied, the SU senses the next one and this process is
continued until an idle spectrum is found. Based on this
assumption, an optimisation problem is formulated in [8] in
order to minimise the average sensing time. The false
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detection and spectrum HO effects on sensing time have been
investigated in [8]; however the adverse effect of the HO (the
sensing time effect) on SU throughput has not been
considered. The impact of sensing time on the average
achievable throughput in sequential sensing scheme has
been partially studied in [9, 10].

In this paper, two independent solutions are proposed for
this problem. In the first proposed method, spectrum
sensing time optimisation of a CR system is investigated
analytically. Specifically, the throughput of an SU is clearly
formulated in terms of sensing time when the spectrum
mobility and consequent HOs are taken into account.
Moreover, the energy cost of HOs is considered in the
proposed modelling in order to address the energy-
throughput tradeoff encountered in designing portable and/
or green CR systems. In other words, the tradeoff between
the maximum achievable throughput and the sensing energy
consumption is explained and a design parameter is
introduced to modify the optimisation problem to address
the consumed energy.

The optimum value of sensing time derived through
conventional analytical optimisation procedures depends
directly on the models adopted for the channel, the users’
traffic and the PUs’ behaviour. Despite the increased
analytical complexity associated with using more complete
modellings, these models are not necessarily consistent with
the actual environments in which the CRs work; and
therefore the derived values cannot be considered as the
perfect optimum ones. Moreover, if any changes occur in
the parameters describing the wireless environment and
traffic conditions experienced by the SUs, it is required to
estimate the new parameters, repeat the analysis and
recalculate the optimum values of sensing time. To deal
with these issues appropriately, we propose a second
method which is based on systematic configuration of two
kinds of well-known artificial neural networks. Specifically,
a multilayer feed-forward (MFF) neural network [11] is
used to replace the mathematical modelling, which learns
the actual behaviour of the secondary link, that is, the effect
of spectrum sensing time on average throughput of the SU.
Based on the actual (non-analytical) model of the link
which is learned by the MFF network, a Kennedy-Chua
(KC) neural network [12] is used to find the optimum value
of spectrum sensing time. This learning-based optimisation
scheme has several advantages over the analytical method.
First, no prior knowledge about link behaviour, such as the
presence or absence probabilities of PUs are required.
Second, the limited consistency of the mathematical models
with the real wireless environment does not affect the
optimality of the derived spectrum sensing time. Third,
using this learning-based optimisation scheme, an adaptive
system is proposed which is capable of effectively
following the variations in the link and keeping the average
throughput at the maximum level in non-stationary
conditions.

The main reason for selecting the MFF and the KC
networks in our proposed scheme is that these networks can
efficiently learn unknown mappings and optimise general
non-linear programming problems. More specifically,
Homik et al. [13, 14] have shown that an MFF neural
network with as few as a single hidden layer and an
appropriately smooth hidden layer activation function is
capable of providing arbitrarily accurate approximation of
almost any given function and its derivatives, which
enables the proposed scheme to learn the effect of spectrum
sensing time on average throughput of the SU. On the other
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hand, the KC neural network, which is an advanced version
of the classical Hopfield neural network [15], is capable of
effectively  solving general non-linear programming
problems in a very short period of time, without any need
of computationally demanding iterative procedures [12].
This neural network is entirely made of simple electronic
devices such as capacitors, resistors and operational
amplifiers, and is also suitable for implementation in a very
large scale integration technology [16]. Furthermore, the
stability of its solution is analytically guaranteed [12].
Owing to these benefits, it has been widely used in
high-performance low-complexity adaptive communication
systems, see [16—18] and references therein.

The rest of this paper is organised as follows. In Section 2,
we describe the considered CR system model and derive the
related optimisation problem. In Section 3, the utilised
neural networks as well as the proposed learning-based
sensing time optimisation scheme are introduced. Numerical
results are then presented in Section 4, followed by
concluding remarks in Section 5.

2 System model and the related
optimisation problem

2.1 System model

We assume a primary network with N, users, each of them
with a dedicated channel, and also a single SU. The SU
utilises narrow-band spectrum sensing, that is, it senses
only one spectrum (out of N, spectrums) at a time. Hence,
the maximum possible transmission opportunities obtained
after each sensing phase are one. We assume that the SU
always has packets to transmit, that is, the SU starts its
transmission when an opportunity is found. The SU senses
the channels in an order determined by its sensing
sequence. If the sensed channel is busy, the SU
reconfigures its sensing circuitry in order to sense the next
spectrum indicated in its sensing sequence. Assume that it
takes a constant time 7, for the SU to do an HO. 7, does
not depend on the amount of frequency shift required by
the reconfiguration. The state of channel & is denoted by s

1:
£ =10:

where #H, and H, represent the absence and presence
hypotheses of the kth PU, respectively. Spectrum sensing
can be formulated as a binary hypothesis testing problem [5]

if channel £ is occupied, or H,
if channel £ is idle, or H,

M

{ Ho:  ¥(n) = z(n):channel is idle @

H,: y(n) = u(n) 4 z(n):channel is occupied

where z(n)s denote samples of zero mean complex-valued
Gaussian noise with independent and identical distributions
(i.i.d.), u(n) denotes the PUs signal which is independent of
z(n) and y(n) is the nth sample of the received signal.

We consider the energy detector (ED) method for PU
detection in which the energy of the received signal is
computed during a sensing time 7, and then the result is
compared with a predefined threshold to take the decision
[3]. Let N denote the number of samples of the received
signal, that is, N=7 f;, where 7 is the sensing time and f; is
the sampling frequency. By defining X as a decision metric
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for the ED scheme, we have

N
X = "pm| (3)
n=1

Let A denote the threshold of the ED decision rule. Then

X <A=H,
{Xz/\EHI @

If N is large enough, X can be described by a Gaussian
distribution [5]. Assume that Pp,, Py and Py denote the
false alarm probability, detection probability and minimum
allowable detection probability (i.e. we must have
Py > P{"™), respectively. Then [5]

Pu=0[ (%-1)v7] ©)

u

_ A 7
I (LR R

where o-zu is the received energy of the PU signal and o‘f is the
noise variance. The received signal-to-noise ratio because of
PU activity is y = (0}/07). _

Taking (5) and (6) into account, for Py = Pg"" we have

Po = 0B+ W] @
where g = 07" (Py™) /T + 2.

2.2 Sensing time optimisation problem

We consider a sequential HO method [8] as described in the
Introduction. Based on the energy detection scheme assumed,
the ith channel is sensed as occupied with probability

q; = Pr{EDl- =1ls; = O}Pi,o + Pr{EDi =lls; = 1} @®

Py =Py Py + Py
where ED; is the output of the ED because of sensing of the
ith channel. ED; =1 means that the CR has detected a PU on
the ith channel whereas ED; =0 means that no PU has been
detected. P;, and P;; are the absence and presence
probabilities of the ith PU, respectively.

Let a denote the maximum number of allowed HOs. « is
limited by two constraints. First, the number of sensed
channels which cannot exceed the number of PUs. Second,
the elapsed time for both sensing and HO procedures that
cannot exceed the time-slot duration, 7. Therefore

a= mianTJ:T;J, Np — 1) ©)

Using the sequential spectrum sensing scheme, the SU
transmits on channel / when i—1 consecutive handoff events
occur, that is, when ED;=1 for all £<i and ED,;=0.
Clearly, because of possible sensing errors, the SU might
mistakenly decide to transmit on a channel which has
already been occupied by a PU. Therefore two maximum
throughput levels are expected for an SU depending on the
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presence or absence of a PU on the adopted channel.
We denote these two maximum throughput levels by C;
and C, for the occupied and free channels, respectively.
Using these definitions, the contribution of the ith channel
on the overall maximum achievable throughput of the SU
can be expressed as

R; = C,T;Pr{ED, = 0 and ED; = 1 for k < i and s5; = 0}
+C1TiPr{EDi:0 and ED; =1 for k <iand s, = 1}

Cy =logy,(1+v,) and (10)

P v\
C, =1lo 1+ S =1lo 1+ s
! g2< N0+Pp> gz( [+7,

respectively, are the SUs capacities under the hypotheses
Hy and H;. ¥ and y, are the received SNRs because of the
secondary and PUs’ signals at the SU receiver, respectively.
T; is the fraction of time-slots remaining for data
transmission after sensing i—1 channels occupied and is
calculated as

where

T,=T—1—(—1)(r+m,) for

i=1,2, ...,N,

(1n

Although the random variables ED;, i=1, 2, ..., N,, are
mutually independent, each pair ED; and s; (the state of
channel i) are related to each other based on the
incorporated spectrum sensing algorithm which is

characterised by Py, and P4. Hence, (10) can be restated as

R; = (CyT;Pr{ED; = 0 and s; = 0}
+C,T,Pr{ED; = 0 and s; = 1}) ﬁPr{EDk =1}
k=1
= (CoT; Pr{ED, = 0|s; = 0} +
C,T;Pr{ED, = 0|s; = 1}) ﬁPr{EDk =1}
k=1

i—1
= (CoT(1 = Py,)Pg + C, Ty(1 — Py)Pyy) l_[qk
k=1
(12)
where g;, P; o and P; ; are defined in (8). Finally, the aggregate
maximum achievable throughput of the SU is derived by

summing over all R;, that is, for i=1, 2, ..., a. Hence, the
following proposition has been proved.

Proposition 1: The overall average throughput of a CR system
which incorporates the energy detection and sequential

spectrum sensing schemes to find transmission opportunities
among N,, primary channels is

R= 240611 “'ql'(clpi+|,1(1 _Pd) + COPi+1,O(1 _Pfa))
i=0

(1 _T+i(T+Th0)> (13)

T
where ¢, £ 1.
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Considering (13), the optimum throughput can be obtained by
solving the following optimisation problem P1

P1: max R

P = PR (14)
st.{ Py = pmn

0o<r<T

The derived optimisation problem cannot be simplified
to a one-dimensional (1D) one, as [5], without any
preassumptions on Pg, or P4. However, we can convert our
2D optimisation problem to a 1D one by using an
acceptable value for the detection probability imposed by
standards like ‘[EEE 802.22°. Supposing Py = P5"", the
optimisation problem is converted to

P2: max R

A

P = PR" (15)
st.{ P, =pmn

0<r<T

Note that, under the assumption Py = Py and using (6), 1
can be expressed in terms of 7 and as a result, the
throughput of the SU derived in (13) only depends on 7.
Moreover, based on the first constraint of (15) and from (7),
we have O[B + y\/i] < Pp™ which in turn leads to

! (gl (P - 3)2

T>—
5 Y
Therefore P2 can be simplified as
P3: max R
! (16)
st T <T<T
where
—1 max 2
o l Q (P fa ) - :B
A Y

2.3 Energy-throughput tradeoff

Recall that as defined in (8), ¢; denotes the probability that the
channel i is sensed busy. Thus, the probability of only one HO
occurring in the system equals to ¢;(1 — ¢»). In the same
way, the probability of performing exactly two HOs by the
system equals to ¢;¢q>(1 — ¢3) and so on. In other words,
for the sequential HO method described, the probability of
having i consecutive HOs and transmitting on the (i + 1)th
channel is equal to (1 — ¢;,,) [T, ¢;. Hence, if we denote
the average number of HOs required for finding a free
transmission opportunity by g, we have

g=q,(1 - ) +2q:9,(1 —q3) + -

a—1 o (17)
+@-D(1-q)[]g+e]]e
j=1 j=1

where « is defined in (9). Clearly, the average number of
sensed channels equals to 1 4+ g.
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Assume that E.(7) and E.(7,,) denote the consumed
energies for sensing of each primary channel and for each
HO, respectively. Hence, the average consumed energy for
finding a transmission opportunity is computed

E = (1+8)E(7) +ZE, () (18)

The processes of channel sensing and signal transmission
consume more energy compared with the HO [19].
Therefore it is reasonable to ignore the second term
gE, (7o) in (18) compared with the first one.

When the number of PUs increases, « in (9) increases, and
thus R and (1+2) in (13) and (17) rise, consequently.
Therefore increasing the number of PUs increases both the
maximum achievable throughput and the number of sensed
channels (equivalently the consumed energy). However,
among these two metrics, the consumed energy increases
more rapidly than the maximum throughput. To illustrate
this phenomenon, in the following we consider a numerical
example.

Fig. 1 shows the plot of the normalised energy consumed
for finding a transmission opportunity [i.e. (E/(E.)) which is
equal to the number of sensed channels] against the
maximum ‘achievable throughput assuming
PE™ =0.1, P{"™ = 0.9, T=100 ms, 7,,=0.1 ms and f;=6
MHz. The simulation setup procedure is described in
Section 4. As illustrated, for high throughput values,
increasing the consumed energy cannot improve the data
rate significantly. In fact, since increasing the number of
HOs reduces the time duration left for the transmission, the
achievable data rate is not substantially improved. For
instance, for N,=4 with the average number of sensed
channels equal to 1.8757, the maximum data rate is 0.8544,
whereas for N, =15 with the average sensed channels equal
to 3.398, the maximum data rate is 0.8809. As a result,
increasing the average number of sensed channels by 81%
only leads to a near 3% increase in the maximum data rate.
Therefore at the cost of a small reduction of the maximum
throughput, the consumed energy can be substantially
decreased. To take into account the energy consumption, in
the following, we reformulate the optimisation problem.

At first, we show that R in (13) does not depend on the
number of PUs for sufficiently large N,. If we rewrite R,
from (13) we have

u((T,NP)
R(T, A Np) = Y A, (7. VB,(7. )
m=0

A (1,0 =C 1Py (1= Py) + CoPyyro(1 = Pyy)

T+ m(7+ 7
B, (7, )\):CIO%'“qm(l _¥>

T —
)
+Th0

a(7, Np) = min ( \j

where

(19)

R(t, A, Np) is the throughput as a function of 7z, 2 and N,,.
Considering the constraint of the derived optimisation
problem imposed by sensing time, that is, 7, <7<7, if
Np 2 L((T - Tmin)/Tmin + Tho)J + 1’ we have

o, Np) = L r- TJ = a(7) (20)

T+ Tho
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SO

R(T, A Ny | (T=rin/ (rain o)) )1 = R A (21)

problem considering the consumed energy is formulated as

a

(C1Ppi1 1 (1= Pg) + CoPyo(1 = Pry))

o . ) max Ryp = Z T+ m(T+ T,)
If we indicate the maximum achievable throughput of the SU T =0 Xqoqy - gm| 1 — — 7
by L, from (21) we have
Ste Tin <7< T
T— 1.
L= maxR<T, AN = LAJ + 1) — R(r, A) (26)
T Tmin + Tho, (22)

St Tpin <7<T

have contro

To take into account the energy consumption, we define
J+)
(23)

and the corresponding optimum number of HO is

T — Ty
Topt = argmaxR(T, A Np = \\—m‘"
T Tmin + Tho

scheme

Ste Tin < T7<T

3.1

This new derived optimisation problem enables the SU to

1 over the consumed energy and the achieved

average throughput by the parameter TF.

3 Neural network-based optimisation

Learning and optimisation

To recast the aforementioned optimisation problem in a

suitable form for the learning-based optimisation scheme,

Copt = T=Topt (24)

divided
As stated above, at the throughput close to the maximum
achievable one, that is, L, defined in (22), by a small
reduction of the throughput, the average energy
consumption is substantially reduced. Now, let us define TF
(0<TF<1) as a Tradeoff factor indicating the amount of
throughput reduction considered. That is the target
throughput is set as Rpp=TF x L. Then, from (22), the
maximum number of HOs a(q& < oy, ) considering the
energy consumption concern (reflected in’the parameter TF)
are obtained by solving the following equation:

(16), findin
mapping.

suitable for
parameter
functions f

ZZ:OAm(Tv /\)Bm(T’ /\)
L

TF = (25)

That is from (22), L is calculated and by choosing a value for
TF, @ is obtained from (25). Finally, a new optimisation
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first note that the proposed optimisation problem can be
into two distinct parts.
mappings between 7 and R described by (13). Second, from

First, obtaining the

g the optimum value for 7 using the derived

In the proposed learning-based optimisation
scheme, both of these parts are performed effectively using
KC and MFF neural networks.

To restate the spectrum sensing time optimisation problem

the KC neural network, we define our adaptable
x, the cost function ¢ and the constraint
and f; as

x&r

@(x) £ 1/R(x)

Sl AT —x

L) £ x—,

min

@7

Hence, from (16) and (27), the optimisation problem can be
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rewritten as

X' = arg min ¢(x) (28)
fi) =0 29
SHx) =0 (30)

We collect the constraint functions and their derivatives in a
matrix named F defined as

C[A® A
= [ﬂ(x) /5@)] 1)

The exploited MFF network has three layers, that is, one input
layer, one hidden layer and one output layer. There is one
neuron at the input layer, K neurons at the hidden layer and
one neuron at the output layer. The proper value of K will
be discussed in Section 4. The network input and output are
x and the learned version of ¢(x) defined in (27),
respectively. There is also one extra output corresponding
to the sensitivity of the cost function, that is, dg/dx [20].
The output of the ith neuron at the /th layer is described as

Ny

u (D) =" wyha(l = 1)+ b(D) (32)
j=1

a(l)=hul), 1<i<N, =12 (33
where N, is the number of neurons at the /th layer; and u;(/)
and a;(/) are the activation and output values of the ith
neuron at the /th layer. wy(l) refers to the weight
connecting the output from the jth neuron at the (/— 1)th
layer to the input of the ith neuron at the /th layer. bi(/)
refers to the bias associated with the ith neuron at the /th
layer. The utilised transferring function #,(-) in (33) is
logistic sigmoid at hidden layer (/=1) and is hyperbolic
tangent sigmoid at output layer (/=2), that is

. 1+e™7! =1 4
hi) = {2(1 ve o1, 1=2 @4
The input unit is demonstrated by a;(0) and the output unit by
a;(2), so we have

x =ay(0)

35

¢(x) £ a,(2) G
where ¢ is the learned version of the cost function. We denote
the set of weights and biases by the matrix w. The MFF
network can be trained to model the function ¢, by
recursively adjusting wy;(/) and bi(/) to minimise the
mean-squared error between the MFF network output ¢ and
our cost function ¢

1 .
d:§Z|¢n1_¢n1|2 (36)

where M is the number of teacher patterns.

The first-order output derivative of the MMF networks, that
is, da;(2)/0a,(0), can be calculated by applying a backward
chaining partial differentiation rule that is described in
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detail in [20]

3a,(2) 8a,(2)
a0) Z < da,(1)

ay(D[1 = a,(D]wy(1)

_ 1, Ba,(2) B, (2)
= 0uy(2) day (1)

a(D[1 = a,(D]wi(1) G7

Ny
=[1-4@"] X wi@ a0l - )] w0
k=1

The KC neural network has one output voltage corresponding
to the adaptable parameter x. This network calculates the
optimum sensing time based on the cost function learned
by the MFF network. Now, if there exists a training process
to adjust the weight and bias values of the MFF network
appropriately and if the learned mapping approximates the
actual cost function closely, then the KC network output is
equal to the optimum value of x (i.e. the sensing time).

The dynamic equation implemented by the KC neural
network is [12, 21]

a¢ Z,
=Y il —Gx (38)

Jj=1 u

where i;= g,(f;j(x)), and C and G are the output capacitor and
the parasitic conductance of the KC network, respectively,
and g;(.) is defined as [12]

0, v>0
5= 11, vzo A0 (39)

The proper values for C and G will be discussed later in
Section 4.

3.2 Proposed scheme

Fig. 2 demonstrates the proposed neural network-based
optimisation scheme. It consists of a KC neural network
cooperating with an MFF neural network in a feedback
loop, a training process which calculates and updates the
weight and bias values of the MFF network, and a
throughput estimator (TE).

The TE estimates the SU throughput and calculates the
value of ¢(x). This estimation can be performed by
inspecting the packets and their acknowledgments (ACKs)
at the secondary transmitter for a period of time equal to
T, (estimation period) [22]. T, as a design parameter,
depends on the PUs activity and link behaviour.

As mentioned before, the KC neural network has one
output corresponding to x=7. It calculates the optimum
value for 7 based on the cost function provided by the MFF
network @(x). Its output, even though not necessarily
optimal at first, is always used by the ED as the channel
sensing time. The learned mapping of the MFF network is
considered as the cost function by the KC network.
Specifically, this learned function, that is, ¢(x), and its
derivative are used by the KC network to establish (38).
Thus, the KC network output x will be sufficiently close to
the optimum value provided that the function learned by the
MFF network can model the link behaviour sufficiently
accurately, that is, @(x) >~ ¢(x). Once the KC network
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Fig. 2 Block diagram of the proposed neural network-based sensing time optimisation scheme

output x is applied to set the spectrum sensing time of the ED,
the TE estimates the throughput obtained by this setting and
calculates ¢(x) within T, seconds. Then, the training
process uses x as the input and the estimated ¢(x) as the
target to adjust the weight and bias values of the MFF
network by the well-known backpropagation algorithm [11].
Having its weight and bias values modified, the MFF
network models the link more accurately, and therefore the
KC network output takes a new value closer to the optimal
point x°*. By iterating this learning and optimisation cycle,
we observe a joint convergence in the weight and bias
values w and more importantly in the KC network output x.
That is, w converges to w°" by which the learned mapping
fits the cost function ¢(x) appropriately and x converges to
x°P" which denotes the optimum value for 7, thanks to the
universal approximation theorem [14].

To sum up, the proposed adaptive system works according
to the following three-steps algorithm:

Step 1: Setting: The KC network output x is applied to the ED
to set its sensing time-duration.

Step 2: Throughput estimation: The average throughput is
estimated by inspecting the packets and their ACKs for T,
seconds, and accordingly ¢(x) is calculated.

Step 3: Training: The KC network output x and the TE
outputs ¢(x) are used as an input-target pair to adjust the
weights and biases of the MFF network, and then the
process returns to Step 1).

Computational complexity of the proposed system is due to
the backpropagation algorithm, whose order is O(N), where
N is the number of weights and biases of the MFF network
[11]. For the examples considered in the numerical results
section, nine hidden neurons were enough to well model
the relationship between sensing time and SUs throughput.
The MFF network with nine hidden neurons can be
considered equivalently as an adaptive filter with N=1x9
+1x9+10=28 weights which are being updated by the
LMS algorithm.

It is worth noting that the proposed learning-based
optimisation scheme adapts the sensing time of spectrum
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sensing according to the wvariations in the statistics
associated with the wireless environment. More specifically,
the optimisation is based on the link throughput estimated
by the TE, which according to the presented analysis is
directly related to the average SNR, experienced by the CR
nodes [see (5)—(8) and (13)], instead of instantaneous
variations of the wireless media. That is, in the proposed
scheme, the weights change according to variations of (a)
average channel SNRs, which change far more slowly than
the instantaneous values of the SNRs, and (b) PUs’
presence probabilities, which do not change or changes
slowly. Therefore considering its considerably low update
rate, even though the proposed system is designed for links
with a non-stationary behaviour, the computational
complexity of the backpropagation algorithm, that is, O(N),
overall is not very substantial .

4 Numerical results

In this section, we evaluate the performance of the proposed
schemes considering various parameters introduced
throughout the paper. To this end, first an SU performing
sequential channel sensing is simulated, and then by
implementation of the MFF and KC networks, the
performance of the proposed learning-based approach is
evaluated. For numerical evaluations, the parameters are set

Table 1 Simulation parameters

Parameter Description Value

P minimum allowable detection 0.9
probability

PR maximum allowable false alarm 0.1
probability

fs receiver sampling frequency 6 MHz

T time-slot duration 100 ms

Tho required time for HO 0.1ms

N, number of PUs 15

K number of hidden neurons 9

C capacitances of KC network 10 nF

G conductances of KC network 0.001Q7"
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Fig. 3 SU throughput against normalised sensing time

according to Table 1. The values of SNR and sampling
frequency are adopted from [5], and P§™" and PR are
chosen according to the ‘IEEE 802.22° standard [23]. In
simulation evaluations, the average throughput has been
computed after simulating the scenario for 100 time slots.
As stated previously, the MFF network, exploited in the
learning-based scheme, has three layers with one neuron at
the input layer, K neurons at the hidden layer and one
neuron at the output layer. As shown in [24], increasing the
number of hidden neurons in an MFF network promotes its
learning capability, and once satisfactory performance is
obtained, further increasing the number of hidden neurons
does not degrade the performance. Therefore as in [24, 25],
the value of K (=9) is chosen in our simulations as the
minimum value which leads to a satisfactory performance
(see Figs. 4-6). Moreover, to build a KC network, first, it
must be noted that the values of C (capacitances) and G
(conductances) do not prevent KC network outputs from the
convergence to the optimum point [From the analyses

0.9

provided in [12], it can be concluded that the values of C
and G only affect the convergence speed of the KC
network, which is negligible compared with the throughput
estimation period and MMF training phases (see Fig. 6).
Therefore those values have no considerable effects on the
performance of the proposed system.], provided that C is
strictly positive and G is very small. In practice, those very
small conductances are realised using op-amps based active
elements with high input impedances [12]. In the following
numerical evaluations, the values of C and G are adopted
from [16].

Fig. 3 verifies our analysis and depicts the achievable data
rate versus the normalised sensing time [i.e. (7/7")] for various
values of N, assuming that the presence probabilities of all the
PUs are equal to 0.65. As observed, for large normalised
sensing time, the plots for different values of N, coincide.
This behaviour is expected because of our previous
discussions on the constraints which affect the number of
possible HOs for an SU. As stated previously in Section 2,
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Fig. 4 Maximum normalised throughput of the SU against the number of channels
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N, =5 primary channels

the number of possible HOs is dictated by two factors;
namely, N, and the ratio (T — 7)/(7+ 7,). Therefore as 7
increases, we observe that the second factor dominates and
regardless of the number of available primary channels N,
the achieved throughput becomes limited to a value
corresponding to a lower N,. The throughput of the SU
where there are 10 primary channels equals the throughput
of the SU with 3 primary channels for approximately
7> 1/4T. Other important observations can be made through
Fig. 3. First, there exists an optimum value for the spectrum
sensing time. Second, as the number of primary channels
increases, the SU throughput increases as well, but in a
saturating manner. This is due to the fact that as the number
of primary channels increases, although the average number
of obtained transmission opportunities increases, the
average time-duration in which the SU transmits data
reduces. Third, the importance and efficiency of having
multiple HOs can be observed; the improvement in the
throughput when using multiple HOs, that is, N,>((T
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— Tomin)/(Tmin T Tho)) + 1, 1s about 44.5% compared with the
case of N, =1, with no HO capability.

The effectiveness of the discussed energy-throughput
tradeoff on the proposed sensing time optimisation scheme
is demonstrated by Table 2. In this table, two design sets
are presented namely Design [ and Design 2. Design 1 is
referred to the analytical optimisation that does not consider

Table 2 SUs average throughput and normalised consumed
energy (NCE) for TF=1 in Design 1 (without considering
energy-throughput tradeoff) and TF = 0.98 in Design 2

Design 1 Design 2
Throughput NCE Throughput NCE
Np=2 0.775 1.3186 0.775 1.3186
Np,=6 0.8723 2.3909 0.8660 2.1397
Np=12 0.8807 3.3080 0.8660 2.1397
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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