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Abstract

In this thesis we prove the Poincaré duality for open sets in Euclidean spaces.
We start with a brief introduction to differential geometry and introduce then
the de Rham cohomology. The actual proof begins with some auxiliary results.
We prove first the Poincaré duality for sets that are diffeomorphic to Rn. We
then introduce the Mayer–Vietoris sequence for de Rham cohomology and show
that the Poincaré duality holds for unions of open sets with some additional
assumptions. Finally we prove the Poincaré duality for an arbitrary open set
using the Whitney decomposition. We give also an illustrative example of the
Poincaré duality in the punctured plane.

Tiivistelmä

Todistamme tässä työssä Poincarén dualiteetin Euklidisten avaruuksien avoimille
joukoille. Annamme lyhyen johdatuksen differentiaaligeometriaan ja määrit-
telemme de Rham -kohomologian käsitteen. Itse Poincarén dualiteetin todis-
tuksen aloitamme muutamalla aputuloksella. Näytämme ensin, että Poincarén
dualiteetti pätee joukoille, jotka ovat diffeomorfisia avaruuteen Rn. Todis-
tamme sitten Poincarén dualiteetin avointen joukkojen yhdisteille erinäisten
lisäoletusten vallitessa. Tätä varten esittelemme Mayer–Vietoris jonon de
Rham -kohomologialle. Lopulta näytämme Poincarén dualiteetin mielivaltaiselle
avoimelle joukolle käytten Whitney-jakoa. Annamme myös havainnollistavan
esimerkin Poincarén dualiteetista punkteeratussa tasossa.
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5 Poincaré duality for Rn 18

6 Mayer–Vietoris sequence 24
6.1 Chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Exact sequences for compactly supported de Rham cohomology

and its dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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1 Introduction

Ever since the concept of topology was defined, there have been attempts to
classify topological spaces that are equivalent up to a homeomorphism. It
was soon realized that finding out the (non-)existence of the homeomorphism
is in general a hopeless task. This gave rise to algebraic topology, which
assigns to a topological space some algebraic invariants that remain unchanged
under a homeomorphism. Often it is easier to find out the nature of these
invariants, since there is the whole machinery of algebra in service. Then if
some topological invariants assigned to two topological spaces differ, there does
not exist a homeomorphism between the spaces. Nowadays the most important
concepts in algebraic topology are the homology, homotopy and cohomology
groups.

Even though some concepts that are now regarded as a part of algebraic
topology were already introduced by Enrico Betti and Bernhard Riemann in
19th century, the father of algebraic topology is considered to be Henri Poincaré
(1854-1912). He created the foundation for this field in his paper Analysis situs
in 1895, where he introduced the concepts of homology and fundamental group.
In this paper he also gave the first version of the theorem called Poincaré
duality, which he formulated in terms of the Betti numbers. The proof given
by Poincaré was considered imperfect already at his time, but the content of
the theorem appeared to be groundbreaking.

The branch of algebraic topology started to grow fast on the base Henri
Poincaré created in the beginning of 20th century. Poincaré duality achieved
new formulations as the theoretical background developed. However, it achieved
its modern form only after the concept of cohomology was introduced about
forty years later. In this work we consider the de Rham Cohomology, which
describes the topological properties of a space in terms of differential forms
and exterior derivative. Therefore the de Rham cohomology has several refined
features compared to homology [1].

Lately the benefits of algebraic topology have been discovered also outside
mathematics. About ten years ago it was discovered that some features of
condensed matter can be explained by their topological properties. This has
opened a new and fast growing field in the research of topological materials.
Similar methods have been applied also in the field of cosmology.

In this work we prove the Poincaré duality for open sets in Euclidean spaces.
The general statement is given for a connected orientable manifold, but we
restrict the discussion to Euclidean spaces in order to keep the conversation
brief. The proof is, however, in the general case in principle the same. First we
briefly introduce the theoretical framework needed to formulate the statement
of Poincaré duality. To be precise, in Section 2 we discuss some basic results in
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differential geometry. In Section 3 we define the de Rham cohomology and list
some of its basic properties. The Poincaré duality is then considered in Section
4.

The actual proof of Poincaré duality consists of four parts. In Sections
5, 6 and 7 we prove the Poincaré duality with some additional assumptions.
Finally in Section 8 we collect the results and prove the Poincaré duality for
an arbitrary open set in Euclidean space. We conclude this work with an
illustrative example of the Poincaré duality in the punctured plane in Section
9. The outline for this work is given by the lecture notes Introduction to de
Rham cohomology by P. Pankka [5].
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2 Preliminaries on differential geometry

In this section we give a brief insight to the most important concepts in
differential geometry. The discussion is rather dense, since the goal is to give
all the necessary tools for understanding the statement of Poincaré duality,
which is the main topic of this work. To keep things simple, all the definitions
are given in the Euclidean spaces. This section follows mostly the book An
Introduction to Manifolds by Loring W. Tu [6, part I].

2.1 Tangent space of Rn

We first introduce the concepts of tangent space and vector fields although
they do not appear in the definition nor proof of the Poincaré duality. They
offer an intuitive approach to the subject and play a central role when defining
differential k-forms, which are the fundamental objects in the de Rham theory.

We first define the space of germs. Two differentiable functions in Rn

have the same directional derivatives at point p ∈ Rn if they agree on some
neighbourhood U of p. Thus it is convenient to define that, in this case, the
functions are equivalent.

Definition 2.1. Let U and V be neighbourhoods of a point p ∈ Rn and let
f :U → R and g:V → R be smooth functions. We say that f and g are
equivalent if there exists an open set W ⊂ U ∩ V containing p so that f = g
on W . We call the equivalence class [f ]p the germ of f at p. We denote the
(vector) space of all germs at p by C∞p .

Below we do not write the brackets but treat the equivalence classes as if
they were functions.

Definition 2.2. The tangent space Tp(Rn) of Rn at a point p ∈ Rn is the
vector space of all linear mappings Xp:C

∞
p → R that satisfy the Leibniz rule

Xp(fg) = Xp(f)g + fXp(g) for all f, g ∈ C∞p .

The elements Xp ∈ Tp(Rn) are called tangent vectors at point p. Further, if U
is an open subset of Rn and X is a function that assigns to each point p ∈ U a
tangent vector Xp ∈ Tp(Rn), we call X a vector field on U .

We notice that at least the directional derivatives ∂/∂xi|p for i = 1, . . . , n
are elements in Tp(Rn). The next lemma tells that the tangent vectors of Rn

can be considered as vectors themselves.
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Lemma 2.3. Let p ∈ Rn. Then the mapping

φ:Rn → Tp(Rn), v 7→
n∑
i=1

vi
∂

∂xi

∣∣∣∣∣
p

is an isomorphism of vector spaces.

See e.g. [6, Thm 2.3] for a proof. Especially we see that an element ei of
the standard basis {e1, . . . , en} maps to the partial derivative ∂/∂xi. Hence
the set {∂/∂x1, . . . , ∂/∂xn} forms a basis for Tp(Rn) and any tangent vector
Xp on U can be expressed as

Xp =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣∣∣
p

, (2.1)

where ai:U → R are real functions.

2.2 Dual space

Let us denote the space of linear mappings f :U → V between vector spaces U
and V by Hom(U, V ). In this work we assume that the vector spaces are over
the field R. It is an important fact that if U and V are isomorphic as vector
spaces, this property passes down also to the level of linear mappings on U and
V . This is formulated in the following lemma that will be useful later on.

Lemma 2.4. Let U, V and W be vector spaces and let ϕ:U → V be a linear
map. Then

ϕ∗: Hom(V,W )→ Hom(U,W ), f 7→ f ◦ ϕ,

is a linear map. Moreover, if ϕ is an isomorphism, then also ϕ∗ is an isomor-
phism.

Proof. Let f, g ∈ Hom(V,W ) and λ, µ ∈ R. Then

ϕ∗(λf + µg) = (λf + µg) ◦ ϕ = λ(f ◦ ϕ) + µ(g ◦ ϕ) = λϕ∗(f) + µϕ∗(g).

Suppose then that ϕ is an isomorphism. We show first that ϕ∗ is injective. Let
f ∈ Hom(V,W ) so that ϕ∗(f) = 0. Hence (f ◦ ϕ)(u) = 0 for all u ∈ U . Since
ϕ is surjective, this implies that f(v) = 0 for all v ∈ V . Thus f is the zero map
and ϕ∗ is injective.

To show the surjectivity, take g ∈ Hom(U,W ). Since also ϕ−1 is linear, the
map g ◦ ϕ−1 ∈ Hom(V,W ). Additionally ϕ∗(g ◦ ϕ−1) = g, so ϕ∗ is surjective
and hence an isomorphism.
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An important special case is the space Hom(U,R), that is also called the
dual space of U .

Definition 2.5. Let V be a vector space. Define the dual space V ∗ of V by

V ∗ = {f :V → R : f is linear}.

With this notion we can formulate a corollary of Lemma 2.4 as follows.

Corollary 2.6. If ϕ:U → V is a linear map (an isomorphism) between vector
spaces, then also

ϕ∗:V ∗ → U∗, f 7→ f ◦ ϕ,

is a linear map (an isomorphism) between vector spaces.

If ϕ and ϕ∗ are as in the Corollary 2.6, we say that ϕ∗ is the dual map of ϕ.
The next theorem gives the correspondence between the bases of V and V ∗.

Theorem 2.7. Let V be a finite dimensional vector space. Then V ∼= V ∗.
Also, if {e1, . . . , en} is a basis of V , then the functions {a1, . . . , an} defined by

ai(ej) = δij

are a basis of V ∗.

Proof. Let n = dimV and v =
∑n

i=1 v
iei ∈ V . Then for any f ∈ V ∗ holds

f(v) =
n∑
i=1

vif(ei) =
n∑
i=1

f(ei)a
i(v),

so V ∗ = span{a1, . . . , an}. To show the linear independence, assume the
coefficients λi ∈ R are such that

∑
i λia

i = 0. Applying both sides to the vector
ej gives

0 =
n∑
i=1

λia
i(ej) =

n∑
i=1

λiδ
i
j = λj.

Hence for each i = 1, . . . , n we have that λi = 0. Thus the functions ai, . . . , an

are linearly independent.
The vector spaces V and V ∗ are isomorphic via the linear isomorphism

I:V → V ∗, I(ei) = ai, i ∈ {1, . . . , n}.
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2.3 Alternating k-linear functions

We next define multilinear algebra to be used to define differential forms.

Definition 2.8. Let V be vector a space and V k = V × . . .× V , the Cartesian
product of k copies of V . A function f :V k → R is k-linear if it is linear in each
of its components, that is, for all (v1, . . . , vk) ∈ V k, holds

f(v1, . . . , vj−1, vj + aw, vj+1, . . . , vk) = f(v1, . . . , vj−1, vj, vj+1, . . . , vk)

+af(v1, . . . , vj−1, w, vj+1, . . . , vk)

for all j ∈ {1, . . . , k}, a ∈ R and w ∈ Vj.

Definition 2.9. Let f :V k → R be a k-linear function and Sk the set of
permutations {1, . . . , k} → {1, . . . , k}. Function f is alternating, if

f(vσ(1), . . . , vσ(k)) = sign(σ)f(v1, . . . , vk)

for any permutation σ ∈ Sk and (v1, . . . , vk) ∈ V k. The space of alternating
k-linear functions is denoted by Altk(V ).

In the definition above we identify Alt0(V ) = R. Note also that

Alt1(V ) = {f :V → R : f is linear} = V ∗.

Next we would like to define a product between elements f ∈ Altk(V ) and
g ∈ Altl(V ) that preserves the alternating structure. The first try would be
the tensor product ⊗ defined by

(f ⊗ g)(v1, . . . , vk+l) = f(v1, . . . , vk)g(vk+1, . . . , vk+l),

but now f ⊗ g is not necessarily alternating. The correct form is slightly more
complicated and is called the exterior product.

Definition 2.10. Let l, k ≥ 1. We call a permutation σ ∈ Sk+l a (k, l)-shuffle
if

σ(1) < σ(2) < · · · < σ(k) and σ(k + 1) < . . . < σ(k + l).

The space of all (k, l)-shuffles is denoted by S(k, l).

Definition 2.11. Let f ∈ Altk(V ) and g ∈ Altl(V ). The exterior product
f ∧ g ∈ Altk+l(V ) is defined by

f ∧ g(v1, . . . , vk+l) =
∑

σ∈S(k,l)

sign(σ)f(vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+l))

=
∑

σ∈S(k,l)

sign(σ)(f ⊗ g)(vσ(1), . . . , vσ(k+l))

where v1, . . . , vk+l ∈ V .
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We omit the verification of f ∧ g ∈ Altk+l(V ) here, see e.g. [6, Prop 3.13].
We state as facts that the wedge product is associative and anticommutative
in the following manner.

Lemma 2.12. Let k, l, p ∈ N. Let also f ∈ Altk(V ), g ∈ Altl(V ) and h ∈
Altp(V ). Then

(i) f ∧ g = (−1)klg ∧ f and

(ii) (f ∧ g) ∧ h = f ∧ (g ∧ h).

From (i) it follows immediately that f ∧ f = −f ∧ f = 0 for f ∈ Altk(V ) if
k is odd. The next theorem gives us the basis for Altk(V ) whenever V is finite
dimensional. The idea is rather simple: above we noted that Alt1(V ) = V ∗

and in the previous subsection we studied carefully the dual basis {a1, . . . , an}
in V ∗. Also, since ai ∧ aj ∈ Alt2(V ) by definition, it is a good guess to form a
basis for Altk(V ) as an exterior product of dual vectors ai.

Theorem 2.13. Let V be an n-dimensional vector space with a basis {e1, . . . , en}
and let {a1, . . . , an} be the corresponding dual basis. Then

{aσ(1) ∧ . . . ∧ aσ(k) : σ ∈ S(k, n− k)}

is a basis of Altk(V ).

We skip the proof since it is similar to the proof of Theorem 2.7 but
somewhat technical, see e.g. [4, Thm 2.15] for a proof.

2.4 Cotangent space

The dual of the tangent space of Rn at point p ∈ Rn is called the cotangent
space of Rn and we denote it by T ∗p (Rn). The elements of T ∗p (Rn) are called
covectors. Further, if U ⊂ Rn is an open set, a 1-form is a function that assigns
to each point p on U a covector ωp. So 1-form at point p is a linear function
that takes a tangent vector Xp to a real number.

The cotangent space is closely related to the differentials of functions.
Indeed, if f is a smooth function on some neighbourhood of p ∈ Rn, we may
construct a differential 1-form df at point p as follows.

Definition 2.14. Let f ∈ C∞p . The differential of f at point p is defined as

(df)p(Xp) = Xpf

for any Xp ∈ Tp(Rn).
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We observe that the differentials of coordinate functions give a basis of the
cotangent space T ∗p (Rn).

Theorem 2.15. Let x1, . . . , xn be the standard coordinates of Rn. Then at
each point p ∈ Rn the set {dx1p, . . . ,dxnp} is the basis of the cotangent space
T ∗p (Rn) dual to the basis {∂/∂x1|p , . . . , ∂/∂xn|p} for the tangent space Tp(Rn).

Proof. By the definition of differential

(dxi)p

 ∂

∂xj

∣∣∣∣∣
p

 =
∂

∂xj

∣∣∣∣∣
p

xi = δij

for each i, j ∈ {1, . . . , n} and p ∈ Rn. The claim follows by Theorem 2.7.

The next lemma gives us a representation of the differential df in terms of
coordinates.

Lemma 2.16. Let f ∈ C∞(U), where U is an open subset of Rn. Then

df =
n∑
i=1

∂f

∂xi
dxi.

Proof. Since {dx1, . . . , dxn} forms a basis for T ∗p (Rn), we may write df at point
p ∈ Rn as

(df)p =
n∑
i=1

ai(p)dx
i
p,

where ai:U → R are functions. If we now apply both sides to the vector
∂/∂xj|p, we get from the left hand side by the definition of differential

(df)p

 ∂

∂xj

∣∣∣∣∣
p

 =
∂f

∂xj
(p)

and from the right hand side

n∑
i=1

ai(p)dx
i
p

 ∂

∂xj

∣∣∣∣∣
p

 =
n∑
i=1

ai(p)δ
i
j = aj(p).

Hence aj = ∂f/∂xj and the claim follows.
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2.5 Differential k-forms

Definition 2.17. Let U ⊂ Rn be an open set. A k-form ω on U is a function
U → tp∈UAltk(Tp(Rn)) so that ω(p) ∈ Altk(Tp(Rn)).

So given a k-form on U , if p ∈ U , then ω(p) =: ωp is an alternating mapping
that maps k tangent vectors X1

p , . . . , X
k
p to a real number. By Theorems 2.15

and 2.13, the basis of Altk(Tp(Rn)) is

{dxi1p ∧ . . . ∧ dxikp : 1 ≤ i1 ≤ . . . ≤ ik ≤ n}.

We denote an element of the basis with dxIp for short. Hence any k-form ω at
point p can be written as

ωp =
∑
I

aI(p)dx
I
p, (2.2)

where the summation is over I ∈ {(i1, . . . , ik) : 1 ≤ i1 ≤ . . . ≤ ik ≤ n} and
each aI is a function U → R.

Definition 2.18. Let U ⊂ Rn be an open set and ω =
∑

I aIdx
I be a k-form

on U . The form ω is called a differential k-form if all the functions aI are
smooth on U . The vector space of differential k-forms on U is denoted by
Ωk(U).

We note that Definition 2.17 is consistent with the definition of 1-forms given
in Section 2.4: since Alt1(Tp(Rn)) = T ∗p (Rn), a 1-form assigns to each point
p in U an element in T ∗p (Rn). From now on we consider only the differential
forms, and we call them just forms for short.

Another observation is that the space Ω0(U) consists of smooth functions
U → R, since we defined Alt0(Tp(Rn)) = R. Hence Ω0(U) = C∞(U). By
definition, for a given point in U every k-form is an alternating mapping.
This implies that the exterior product ∧ can be defined for differential forms
pointwise.

Definition 2.19. Let U ⊂ Rn be an open set. Let also ω ∈ Ωk(U) and
τ ∈ Ωl(U). Define the map

ω ∧ τ :U →
⊔
p∈U

Altk+l(Tp(Rn)), (ω ∧ τ)p = ωp ∧ τp,

to be the exterior product ω ∧ τ ∈ Ωk+l(U) of ω and τ .
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We note that the form ω ∧ τ is indeed a differential form. Let ω ∈ Ωk(U)
and τ ∈ Ωl(U) be forms

ωp =
∑
I

aI(p)dx
I
p and τp =

∑
J

bJ(p)dxJp ,

where aI and bJ are smooth for each I and J . Then

ωp ∧ τp =
∑
I,J

aI(p)bJ(p)dxIp ∧ dxJp =
∑
K

cK(p)dxKp ,

where cK(p) is the sum of all products aI(p)bJ(p) (upto correct sign) for which
multi-index K is a permutation of multi-indices I and J . Thus p 7→ CK(p) is a
smooth function if all functions aI(p) and bJ(p) are smooth.

We have now defined the natural product between differential forms. Next
we extend the differential of a function to an operator on general k-forms called
exterior derivative. As the differential takes smooth functions, i.e. 0-forms, to
1-forms, also the exterior derivative lifts the degree of a form.

Definition 2.20. A family of linear operators d: Ωk(U)→ Ωk+1(U) is called
the exterior derivative, if

(i) df is the differential of f ∈ C∞(U).

(ii) for any ω =
∑

I aIdx
I ∈ Ωk(U),

dω =
∑
I

daI ∧ dxI .

The exterior derivative has the following properties.

Lemma 2.21. Let k, l ∈ N and let ω ∈ Ωk(U) and τ ∈ Ωl(U). Then

(i) d(dω) = 0 and

(ii) d(ω ∧ τ) = dω ∧ τ + (−1)kω ∧ dτ .

These two identities with the condition (i) from Definition 2.20 actually
fully define the exterior derivative: they could have been taken as a definition
and the property (ii) in Definition 2.20 would have followed. The proofs are
straightforward calculations so they are omitted, see e.g. [6, Prop 4.13].
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2.6 Pull-back and integration of forms

If we are given a smooth function f :U ′ → U , where U ′ ⊂ Rm and U ⊂ Rn are
open sets, we can push forward some geometric objects in U ′ to objects living
in U via f . Similarly, some objects in U ′ can be pulled back to U . We define
first the push-forward of tangent vectors and use it to formulate the pull-back
of differential forms.

Definition 2.22. Let U ′ ⊂ Rm and U ⊂ Rn be open sets. Let also f :U ′ → U
be a smooth function. The push-forward f∗:Tp(U

′)→ Tf(p)(U) defined by f is

(f∗(Xp))(u) = Xp(u ◦ f)

for Xp ∈ Tp(U ′) and u ∈ C∞f(p).

Definition 2.23. Let U ′ ⊂ Rm and U ⊂ Rn be open sets, f :U ′ → U a smooth
function. The pull-back f ∗: Ωk(U)→ Ωk(U ′) defined by f is

(f ∗ω)p(X
1
p , . . . , X

k
p ) = ωf(p)(f∗X

1
p , . . . , f∗X

k
p )

for ω ∈ Ωk(U), p ∈ U and X i
p ∈ Tp(U ′), i = 1, . . . , k.

Especially, for a 0-form u ∈ Ω0(U) = C∞(U), we have f ∗(u) = u ◦ f . We
state as a lemma some useful relations, see [6, Prop 18.7 and Thm 19.8] for
proofs.

Lemma 2.24. Let U ′ ⊂ Rm and U ⊂ Rn be open sets and f :U ′ → U a smooth
function. Then, for ω ∈ Ωk(U) and τ ∈ Ωl(U), holds

(i) f ∗(ω ∧ τ) = (f ∗ω) ∧ (f ∗τ) and

(ii) d(f ∗ω) = f ∗(dω).

The last operation on differential forms that we are about to need is the
integration. In Rn the definition is simple. Since the basis of Altn(Tp(Rn))
consists of one element (dx1 ∧ . . . ∧ dxn)p, the space Ωn(U) is isomorphic to
C∞(U). Hence the integration of an n-form boils down to an ordinary Lebesgue
integral.

Definition 2.25. Let U ⊂ Rn be an open set and let ω = fdx1 ∧ . . . ∧ dxn ∈
Ωn(U) for some f ∈ C∞(U). Then the integral of ω over the set U is∫

U

ω =

∫
U

f dmn,

if the integral on the right hand side exists. Above mn is the n-dimensional
Lebesgue measure.
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Sometimes it is convenient to restrict the discussion to the n-forms for
which the integral over an open U ⊂ Rn is finite. This is the case for compactly
supported n-forms. The compactly supported 0-forms are just compactly
supported smooth functions C∞0 (U); the general case is analogous.

Definition 2.26. The space of compactly supported differential k-forms Ωk
c (U)

is defined as

Ωk
c (U) = {ω ∈ Ωk(U) : spt(ω) is compact, spt(ω) ⊂ U},

where spt(ω) = cl{p ∈ U : ωp 6= 0}.

In Rn this can be formulated as ω ∈ Ωk
c (U) if it is zero outside a bounded

set contained in U . Clearly, if we write the exterior derivative for compactly
supported forms as d: Ωk

c (U)→ Ωk+1
c (U), it is well-defined. Similarly, if f :U ′ →

U is a smooth function, we may write the pull-back as f ∗: Ωk
c (U)→ Ωk

c (U
′).

We next formulate two useful lemmas for compactly supported (n−1)-forms,
see e.g. [4, Lemma 10.15] for proofs.

Lemma 2.27. Let τ ∈ Ωn−1
c (Rn). Then

∫
Rn dτ = 0.

The assumption of the compact support is crucial in the above lemma.
The proof takes advantage of Fubini’s theorem and the fundamental theorem

of calculus. Indeed, if τ =
∑n

i=1 gidx
1 ∧ . . . ∧ d̂xi ∧ . . . dxn, where ˆ denotes

the missing index, the functions we are about to integrate are just partial
derivatives of smooth functions gi. By Fubini’s theorem it suffices to consider
one dimensional integrals and the fundamental theorem of calculus leaves us
with some vanishing boundary terms. Also the opposite result holds:

Theorem 2.28. Let ω ∈ Ωn
c (Rn) be such that

∫
Rn ω = 0. Then there exists

τ ∈ Ωn−1
c (Rn) for which dτ = ω.

12



3 De Rham cohomology

In the de Rham theory we are interested in k-forms that behave in a special
way under the exterior derivative d. The crucial objects are the forms that are
mapped to zero by d.

Definition 3.1. Let U ⊂ Rn be an open set. A form ω ∈ Ωk(U) is closed if
dω = 0 and it is exact if there exists a form τ ∈ Ωk−1(U) for which ω = dτ .

In the previous section we noted that for any open set U ⊂ Rn the mapping
d ◦ d: Ωk−1(U)→ Ωk+1(U) is a zero map if k ≥ 1. Thus

Im
(
d: Ωk−1(U)→ Ωk(U)

)
⊂ Ker

(
d: Ωk(U)→ Ωk+1(U)

)
as a vector subspace. If we denote Ωk(U) = {0} and d: Ωk(U) → Ωk+1(U),
d = 0 for all k < 0, the above relation extends to all k ∈ Z. Clearly the space
Ker(d) is exactly the space of closed forms and Im(d) corresponds to the exact
forms. Hence, every exact form is also closed. In de Rham theory we identify
all the closed forms that differ by an exact form.

Definition 3.2. Let U ⊂ Rn be an open set. The quotient vector space

Hk(U) =
Ker(d: Ωk(U)→ Ωk+1(U))

Im(d: Ωk−1(U)→ Ωk(U))
=
{closed k-forms in U}
{exact k-forms in U}

is the kth de Rham cohomology group of U .

Thus the elements [ω] ∈ Hk(U) are equivalence classes

[ω] = {ω + dτ ∈ Ωk(U): τ ∈ Ωk−1(U)}.

We can further define the kth compactly supported cohomology group Hk
c (U)

of U by requiring that all the forms in the definition of Hk(U) are compactly
supported; formally

Hk
c (U) =

Ker(d: Ωk
c (U)→ Ωk+1

c (U))

Im(d: Ωk−1
c (U)→ Ωk

c (U))
.

For an example and future purposes, we compute the zeroth cohomology class
of a connected set.

Lemma 3.3. Let U ⊂ Rn be a connected set. Then H0(U) ∼= R.

13



Proof. By definition

H0(U) =
Ker(d: Ω0(U)→ Ω1(U))

Im(d: Ω−1(U)→ Ω0(U))
.

Since d: Ω−1(U)→ Ω0(U)) is the zero map, we get simply

H0(U) ∼= Ker(d: Ω0(U)→ Ω1(U)).

Recalling that Ω0(U) is the space of smooth functions on U , we have that

H0(U) ∼= {f ∈ C∞(U) : df = 0}.

Now the differential of a function f vanishes exactly when all the partial
derivatives ∂f/∂xi are identically zero for each i ∈ {1, . . . , n}. Hence f is
constant in each connected component of U . Since U is connected, H0(U) is
just the space of constant functions. Thus

H0(U) ∼= R.

Some operations on k-forms can be generalized to operate on the equivalence
classes in Hk(U). The most important ones are the pull-back and exterior
product of the equivalence classes.

Lemma 3.4. Let U ⊂ Rn and U ′ ⊂ Rm be open sets and let f :U ′ → U be a
smooth function. The function f ∗:Hk(U)→ Hk(U ′),

[ω] 7→ [f ∗ω],

is well-defined and linear.

See e.g. [6, Lemma 23.7] for a proof. The mapping f ∗:Hk(U ′)→ Hk(U) is
the pull-back of f.

Lemma 3.5. Let U ⊂ Rn be an open set. The mapping ∧:Hk(U)×H l(U)→
Hk+l(U),

([ω], [τ ]) 7→ [ω ∧ τ ],

is well-defined and bilinear.

See e.g. [6, p. 241] for a proof. The next result is known, in its general form
for connected orientable manifolds, as the de Rham’s theorem.

14



Lemma 3.6. The map∫
Rn

:Hn
c (Rn)→ R, [ω] 7→

∫
Rn
ω,

is well-defined linear isomorphism.

Proof. We show first that the map is well-defined. Let ω, ω′ ∈ [ω]. Then there
exists τ ∈ Ωn−1

c (Rn) so that ω = ω′ + dτ . By Lemma 2.27 and the linearity of
integral, we have

∫
Rn ω =

∫
Rn ω

′. Hence the map is well-defined and linear.
To show injectivity, suppose

∫
Rn ω = 0 for some ω ∈ Ωn

c (Rn). By Theorem
2.28 ω is exact, i.e., [ω] = 0. We show then that

∫
Rn is surjective. Let a ∈ R

and choose any f ∈ C∞0 (Rn) so that c :=
∫
Rn fdmn 6= 0. Then for an n-form

ω = (a/c)fdx1 ∧ . . . ∧ dxn,

we have
∫
Rn ω = a. Since every n-form is closed and ω has compact support,

[ω] ∈ Hn
c (Rn) and the map

∫
Rn is an isomorphism.

Finally we introduce the push-forward of a compactly supported k-form via
inclusion.

Definition 3.7. Let U and V be open sets in Rn such that U ⊂ V and let
ι:U → V be the inclusion. The push-forward ι∗: Ωk

c (U)→ Ωk
c (V ) is the map

ω 7→ ι∗ω, where

(ι∗ω)p =

{
ωp, p ∈ U,
0, p /∈ U.

Also the push-forward can be generalized to the cohomological level.

Lemma 3.8. The map ι∗:H
k
c (U) → Hk

c (V ), [ω] 7→ [ι∗ω], is well-defined and
linear.

Proof. Since spt(ω) = spt(ι∗ω), we have that [ι∗ω] ∈ Hk
c (V ). Let ω, ω′ ∈ [ω].

So there exists τ ∈ Ωk
c (U) so that ω′ = ω + dτ . Then

[ι∗ω
′] = [ι∗ω + d(ι∗τ)] = [ι∗ω],

since ι∗(dτ) = d(ι∗τ). Hence the map is well-defined. For linearity, let
[ω1], [ω2] ∈ Hk

c (U) and a ∈ R. Then

ι∗([ω1] + a[ω2]) = ι∗[ω1 + aω2] = [ι∗(ω1 + aω2)] = [ι∗ω1 + aι∗ω2]

= [ι∗ω1] + a[ι∗ω2] = ι∗[ω1] + aι∗[ω2].

15



Together with Lemma 3.6, we get that we may define an integral of a
cohomology of any open set in Rn.

Lemma 3.9. Let U ⊂ Rn be an open set. The map∫
U

:Hn
c (U)→ R, [ω] 7→

∫
U

ω,

is well-defined and linear.

Proof. We argued above that the map ι∗:H
k
c (U) → Hk

c (Rn), [ω] 7→ [ι∗ω], is
well-defined. By Lemma 3.6 also

∫
Rn :Hn

c (Rn)→ R is well-defined. Since∫
U

ω =

∫
Rn
ι∗ω

for each ω ∈ Ωn
c (U), the map

∫
U

is a composition of two well-defined mappings∫
Rn and ι∗. Linearity follows immediately from linearity of the Lebesgue integral

and ι∗.
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4 Poincaré duality

We finally have all the necessary tools to formulate the statement of Poincaré
duality in Euclidean spaces.

Theorem 4.1 (Poincaré duality). Let U ⊂ Rn be an open set. Then the map

DU :Hk(U)→ Hn−k
c (U)∗, DU([ξ])[ζ] =

∫
U

ξ ∧ ζ,

is an isomorphism.

We first ensure that the mapping DU is well-defined. Let ξ ∈ Ωk(U) and
ζ ∈ Ωl

c(U). Then ξ ∧ ζ ∈ Ωk+l
c (U), since spt(ξ ∧ ζ) ⊂ spt(ξ) ∩ spt(ζ). Hence,

by Lemma 3.5, the map

∧:Hk(U)×Hn−k
c (U)→ Hn

c (U), ([ξ], [ζ]) 7→ [ξ ∧ ζ],

is well-defined. Lemma 3.9 gives us that also the map∫
U

:Hn
c (U)→ R, [ω] 7→

∫
U

ω,

is well-defined. Then also the composed mapping

F :Hk(U)×Hn−k
c (U)→ R, ([ξ], [ζ]) 7→

∫
U

ξ ∧ ζ,

is well-defined. Since DU([ξ])[ζ] = F ([ξ], [ζ]) for all [ξ] ∈ Hk(U) and [ζ] ∈
Hn−k
c (U), also the map DU is well-defined.

By Theorem 4.1, the map DU is an injection, which implies that for every
non-zero [ξ] ∈ Hk(U) there is [ζ] ∈ Hn−k

c (U) so that DU([ξ])[ζ] 6= 0. Also the
contrary holds: if [ζ] ∈ Hn−k

c (U) is non-zero, then there exists a linear map
φ:Hn−k

c (U)→ R for which φ([ζ]) 6= 0. Then, by surjectivity of DU , there exists
a form [ξ] ∈ Hk(U) so that DU([ξ]) = φ and DU([ξ])[ζ] 6= 0.

The proof of Poincaré duality consists of four parts. First, in Section 5, we
prove the Poincaré duality for open subsets of Rn that are diffeomorphic to Rn.
In Section 6 we show that if the Poincaré duality is true for open sets U and
V and it holds also for U ∩ V , then it holds for the union U ∪ V . After that,
in Section 7, we prove some linear algebraic results for de Rham cohomology
groups. We show that if pairwise disjoint open sets satisfy Poincaré duality, it
holds also for their union. Using these three results we can prove the Poincaré
duality for an arbitrary open subset U of Rn. This proof covers Section 8.
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5 Poincaré duality for Rn

In this section we show the Poincaré duality for those sets in Rn that are
diffeomorphic to Rn. Let us first consider the space Hk(U) when the open set
U ⊂ Rn is star-like. The set U is star-like if there exists a point x0 ∈ U so that
for every x ∈ U the line segment between x0 and x is contained in U . The
point x0 is called a center of U .

Theorem 5.1 (Poincaré lemma). Let U ⊂ Rn be an open star-like set. Then

Hk(U) ∼=

{
R, if k = 0

{0}, if k > 0.

Proof. Since every star-like set is connected, the case k = 0 follows from
Lemma 3.3. Suppose that k > 0. We need to show that

Ker(d: Ωk(U)→ Ωk+1(U)) = Im(d: Ωk−1(U)→ Ωk(U)).

In other words, if ω ∈ Ωk(U) is closed, we need to find η ∈ Ωk−1(U) such that
dη = ω. This follows immediately when we show that there exists a linear
operator Sk: Ωk(U)→ Ωk−1(U) for which

ω = d(Skω) + Sk+1(dω)

for each ω ∈ Ωk(U). Indeed, if also dω = 0, we get ω = d(Skω).
We use next the fact that U is star-like. Denote by x0 the center of U . Let

F :U × R→ U be a smooth map defined by

F (x, t) = x0 + λ(t)(x− x0),

where λ(t) is a smooth function such that λ(t) = 0 for t ≤ 0, 0 ≤ λ(t) ≤ 1
for 0 ≤ t ≤ 1 and λ(t) = 1 for t ≥ 1. This kind of function λ exists: choose
for example the integral function of the extension by zero of exp(−1/(1− x2))
defined on (−1, 1). Since U is star-like, we have that F (x, t) ∈ U for each
x ∈ U and t ∈ R. Additionally F (x, 0) = x0 and F (x, 1) = x for any x ∈ U .

Now the pull-back F ∗: Ωk(U)→ Ωk(U ×R) takes a k-form on U to a k-form
on U × R. Below we define an operator Ŝk: Ωk(U × R)→ Ωk−1(U) and verify
that Sk := Ŝk ◦ F ∗ satisfies the required properties. We observe that with this
definition

d(Skω) + Sk+1(dω) = d ◦ (Ŝk ◦ F ∗) + (Ŝk+1 ◦ F ∗) ◦ d

= (d ◦ Ŝk) ◦ F ∗ + Ŝk+1 ◦ d ◦ F ∗

= (dŜk + Ŝk+1d) ◦ F ∗

18



by Lemma 2.24.
Now each η ∈ Ωk(U × R) has a unique representation in the (standard)

basis of Ωk(U × R) as

η =
∑
I

aIdx
I +

∑
J

bJdt ∧ dxJ , (5.1)

where aI , bJ ∈ C∞(U × R) and the sums are over I ∈ {(i1, . . . , ik) : 1 ≤ i1 ≤
. . . ≤ ik ≤ n} and J = {(j1, . . . jk−1) : 1 ≤ j1 ≤ . . . ≤ jk−1 ≤ n}. We define
now the map Ŝk: Ωk(U × R)→ Ωk−1(U) by

(Ŝkη)y =
∑
J

(∫ 1

0

bJ(y, s)ds

)
dxJ

for η ∈ Ωk(U × R) and y ∈ U .
Let η ∈ Ωk(U × R). Then the definition of the exterior derivative and

dt ∧ dt = 0 gives us

dη =
∑
I

daI ∧ dxI +
∑
J

dbJ ∧ dt ∧ dxJ

=
∑
I

(
∂aI

∂t
dt+

n∑
l=1

∂aI

∂xl
dxl

)
∧ dxI

+
∑
J

(
∂bJ

∂t
dt+

n∑
l=1

∂bJ

∂xl
dxl

)
∧ dt ∧ dxI

=
∑
I

∂aI

∂t
dt ∧ dxI +

∑
I,l

∂aI

∂xl
dxl ∧ dxI −

∑
J,l

∂bJ

∂xl
dt ∧ dxl ∧ dxI .

So, for y ∈ U ,

Ŝk+1(dη)y =
∑
I

(∫ 1

0

∂aI

∂t
(y, s)ds

)
dxI −

∑
J,l

(∫ 1

0

∂bJ

∂xl
(y, s)ds

)
dxl ∧ dxJ .

On the other hand, for y ∈ U ,

d(Ŝkη)y = d
∑
J

(∫ 1

0

bJ(y, s)ds

)
dxJ =

∑
J,l

(∫ 1

0

∂bJ

∂xl
(y, s)ds

)
dxl ∧ dxJ .

Thus

(dŜk + Ŝk+1d)η(y) =
∑
I

(∫ 1

0

∂aI

∂t
(y, s)ds

)
dxI =

∑
I

(aI(y, 1)− aI(y, 0))dxI
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for every y ∈ U .
Our next goal is to show that (F ∗ω)(x,0) = 0 and (F ∗ω)(x,1) = ωx for each

ω ∈ Ωk(U) and x ∈ U . Let X1, . . . , Xk ∈ TF (x,t)(U × R). Then

Xl =
n∑
i=1

ail
∂

∂xi
+ atl

∂

∂t

for each l ∈ {1 . . . k}, where ail, a
t
l ∈ C∞(U × R). Hence we have that

(F ∗ω)(x,t)(X1, . . . , Xk)

= ωF (x,t)

 n∑
i=1

(X1)(x,t)F
i
∂

∂xi

∣∣∣∣∣
F (x,t)

, . . . ,
n∑
i=1

(Xk)(x,t)F
i
∂

∂xi

∣∣∣∣∣
F (x,t)

 ,

where each function (Xl)F
i is given by formula

(Xl)(x,t)F
i = (

n∑
j=1

ajl
∂

∂xj
+ atl

∂

∂t
)(xi0 + λ(t)(xi − xi0))

= ailλ(t) + atlλ
′(t)(xi − xi0).

Since λ is smooth and hence differentiable both at t = 0 and t = 1, the limit of
the difference quotient exists and we may calculate the derivative of λ at t = 1
by approaching this value from above. So λ′(1) = 0, since λ(t) is constant at
t ≥ 1. Similarly λ′(0) = 0. Thus for t = 0 and for t = 1 we have that

(F ∗ω)(x,t)(X1, . . . , Xk) = ωF (x,t)

 n∑
i=1

λ(t)ai1
∂

∂xi

∣∣∣∣∣
F (x,t)

, . . . ,
n∑
i=1

λ(t)aik
∂

∂xi

∣∣∣∣∣
F (x,t)


for x ∈ U . Since λ(0) = 0, we have

(F ∗ω)(x,0) = 0

for each x ∈ U . Also, since λ(1) = 1 and F (x, 1) = x, we obtain

(F ∗ω)(x,1)

(
n∑
i=1

ai1
∂

∂xi
+ at1

∂

∂t
, . . . ,

n∑
i=1

aik
∂

∂xi
+ atk

∂

∂t

)

= ωx

(
n∑
i=1

ai1
∂

∂xi
, . . . ,

n∑
i=1

aik
∂

∂xi

)
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for each x ∈ U . So at the point (x, 1) form F ∗ω ∈ Ωk(U ×R) can be considered
as ωx, an element of Ωk(U), with the identification given above. Hence if
(F ∗ω)(x,1) is written as in (5.1), all functions bJ would equal zero. Thus(

(dŜk + Ŝk+1d) ◦ F ∗
)
ω(x) = (F ∗ω)(x,1) − (F ∗ω)(x,0) = ωx,

which completes the proof.

In what follows we need the following corollary of the Poincaré lemma.

Corollary 5.2.

Hk(Rn) ∼=

{
R, if k = 0

{0}, if k > 0.

Above we were able to define precisely the nature of Hk(U) for a star-like
open subset U of Rn. A corresponding result can be obtained also for compactly
supported cohomology groups of Rn.

Theorem 5.3.

Hk
c (Rn) ∼=

{
R, if k = n

{0}, if k < n.

The proof of this theorem is based on the following fact on cohomology
groups, see e.g. [4, Example 9.29]. Note that in the following lemma and
forthcoming proof of Theorem 5.3 we rely on some general theory of differential
forms and de Rham cohomology on smooth manifolds. As this is the only such
case, we refer the interested reader to [6, Parts II and V] and [4, Ch. 9] for
details.

Lemma 5.4. Let n ≥ 1 and Sn = {x ∈ Rn : ‖x‖= 1} the unit n-sphere. Then

Hk(Sn) ∼=

{
R, if k = 0 orn

{0}, if 0 < k < n.

Proof of Theorem 5.3. We notice first that the case k = n follows immediately
from Lemma 3.6. Let then k = 0. Since Rn is not compact, any closed
f ∈ C∞0 (Rn) must be zero at some point in Rn. As we noticed in the proof of
Lemma 3.3, each closed 0-form is a constant function whenever U is connected.
Hence every closed 0-form is identically zero and H0

c (Rn) ∼= {0}.
Consider now the case 0 < k < n. We follow here the proof given in [4,

Lemma 13.2]. Like in the proof of Poincaré lemma, it suffices to show that for
every compactly supported closed k-form ω on Rn there exists a compactly
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supported (k − 1)-form η for which dη = ω. Instead of Rn we consider the
space Sn \ {p0}, which is diffeomorphic to Rn via stereographic projection.
Hence all the quantities defined via differential geometric objects are identical.
In particular Hk(Sn \ {p0}) ∼= Hk(Rn) and further Hk

c (Rn) ∼= Hk
c (Sn \ {p0}).

Below we use the notation that forms without a prime are in Ωk
c (S

n \ {p0})
and forms with a prime are in Ωk(Sn).

Let ω ∈ Ωk
c (S

n \ {p0}) be closed. Then there exists an open neighbourhood
U ⊂ Sn of p0 so that ω|U\{p0} = 0. Indeed, since p0 /∈ spt(ω) and spt(ω) is

closed, U = Sn \ spt(ω) is an open neighbourhood of p0. We define ω′ ∈ Ωk(Sn)
so that ω′p = ωp whenever p ∈ Sn \ {p0} and ω′p0 = 0. Then ω′ is well-defined
and smooth. Now ω′ is also exact by Lemma 5.4. Let τ ′ ∈ Ωk−1(Sn) be a form
for which dτ ′ = ω′. We find next a form κ ∈ Ωk−1

c (Sn \ {p0}) so that dκ = ω.
Let first k = 1. Then τ ′ ∈ C∞(Sn) and τ ′ is a constant function in U , since

dτ ′|U = 0. Let a ∈ R be that constant. Let also τ := τ ′|Sn\{p0}. We then have
that

κ := τ − a ∈ Ω0
c(S

n \ {p0}).

Indeed, since p0 /∈ spt(κ), the set spt(κ) is closed as a subset of Sn. So spt(κ)
is compact as a closed subset of a compact set. Also, dκ = dτ = ω and hence
ω is exact.

Let then 1 < k < n. We may assume that the neighbourhood U of p0,
U ⊂ Sn, is diffeomorphic to Rn. Then Hk−1(U) ∼= Hk−1(Rn) ∼= {0} by Lemma
5.1, since Rn is a star-like set. Hence τ ′|U is exact and there exists η′ ∈ Ωk−2(U)
so that dη′ = τ ′|U . We fix now a smooth function ϕ:Sn → [0, 1] such that
spt(ϕ) ⊂ U and ϕ|V = 1 for some open neighbourhood V of p0 contained in
U . Since U is diffeomorphic to Rn and such a function clearly exists in Rn, we
conclude that such a function also exists in U .

Define η ∈ Ωk−2(Sn \ {p0}) so that ηp = ϕ(p)η′p for p ∈ U \ {p0} and ηp = 0
otherwise. Let again τ := τ ′|Sn\{p0}. Then the form

κ := τ − dη ∈ Ωk−1(Sn \ {p0})

has a compact support by a similar deduction as in the case k = 1, since now
κ|V \{p0} = 0. Also

dκ = dτ − ddη = ω.

Hence every compactly supported closed k-form on Sn \ {p0} is exact whenever
0 < k < n. So Hk

c (Rn) ∼= {0} for 0 < k < n and the claim holds.

Proposition 5.5. Let U ⊂ Rn be diffeomorphic to Rn. Then DU :Hk(U) →
Hn−k
c (U)∗ is an isomorphism.
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Proof. Since U is diffeomorphic to Rn, we have that Hk(U) ∼= Hk(Rn) and
Hn−k
c (U) ∼= Hn−k

c (Rn). Hence we may apply the Corollary 5.2 and Theorem
5.3 directly to the set U .

Let k = 0. Now dimH0(U) = dimHn
c (U)∗ = 1 by Corollary 5.2 and

Theorem 5.3. Hence [χU ] ∈ H0(U) spans the space H0(U). We observe also
that DU([χU ]) is the integral

∫
U

, by definition. Since
∫
U

:Hn
c (Rn) → R is

nontrivial and dimHn
c (U)∗ = 1, we conclude that DU([χU ]) spans Hn

c (U)∗.
Thus DU is surjective. Similarly, since [χU ] spans H0(U), we conclude that DU

is injective. Thus DU an isomorphism.
For k > 0 we know by Corollary 5.2 and Lemma 5.3 that Hk(U) ∼= {0} ∼=

Hn−k
c (U) ∼= Hn−k

c (U)∗. So DU is trivially an isomorphism.
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6 Mayer–Vietoris sequence

6.1 Chain complexes

In this section we prove that if Poincaré duality holds for some open sets
U and V in Rn and for their intersection U ∩ V , it holds also for the union
U ∪ V . The proof takes heavily advantage of the Mayer–Vietoris sequence,
which is an important tool for calculating the cohomology groups of a given
space. We begin with briefly introducing some central definitions on general
chain complexes which we need for formulating the Mayer–Vietoris sequence.

Definition 6.1. Let Ak, k ∈ Z, be vector spaces and let dk:Ak → Ak+1 be
linear operators so that dk+1 ◦ dk = 0 for all k ∈ Z. Then the sequence
A∗ = (Ak, dk)k∈Z is called a chain complex.

For example, let U ⊂ Rn be an open set. Then the vector spaces of k-forms
Ωk(U) together with the exterior derivative d : Ωk(U) → Ωk+1(U) form a
chain complex Ω∗(U) = (Ωk(U), d)k∈Z. We next define some terminology for
sequences of linear maps between general vector spaces.

Definition 6.2. Let A,B,C be vector spaces and let f :A→ B and g:B → C
be linear maps. The sequence

A
f−→ B

g−→ C

is exact if Ker g = Im f .

In general we say that a sequence

· · · fk−2−→ Ak−1
fk−1−→ Ak

fk−→ Ak+1
fk+1−→ · · ·

is exact if Ker fk = Im fk−1 for all k ∈ Z. An important special case of the
exact sequences is the following.

Definition 6.3. Let A,B,C be vector spaces and f :A→ B, g:B → C linear
maps. Let also i : 0→ A be the inclusion and j : C → 0 the zero map. We call
an exact sequence

0
i−→ A

f−→ B
g−→ C

j−→ 0

a short exact sequence.

Usually one does not write the mappings i and j above the arrows, since they
are the only possible linear maps between those spaces. Beside the fact that
Ker g = Im f we can deduce that f is injective and g is surjective. Indeed, since
the sequence is exact, we have that Ker f = Im i = 0 and Im g = Ker j = C.

The next task is to lift the concept of sequence to the level of chain complexes.
First we define a map between chain complexes.
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Definition 6.4. Let A∗ = (Ak, d
A
k )k∈Z and B∗ = (Bk, d

B
k )k∈Z be chain com-

plexes. A chain map f :A∗ → B∗ is a sequence (fk:Ak → Bk)k∈Z of linear maps
satisfying dBk ◦ fk = fk+1 ◦ dAk .

Alternatively, if f is a chain map, we say that the diagram

· · · Ak Ak+1 · · ·

· · · Bk Bk+1 · · ·

dAk

fk fk+1

dBk

commutes.

Definition 6.5. Let A∗, B∗, C∗ be chain complexes and let f :A∗ → B∗ and
g:B∗ → C∗ be chain maps. The sequence

A∗
f−→ B∗

g−→ C∗

of chain complexes is exact if Ak
fk−→ Bk

gk−→ Ck is exact for each k ∈ Z.

Similarly as above, an exact sequence

0 −→ A∗
f−→ B∗

g−→ C∗ −→ 0

of chain complexes is called a short exact sequence of chain complexes.
We next consider an important special case of a short exact sequence of

chain complexes of differential forms. Let U1 and U2 be open sets in Rn. For
ν = 1, 2, let jν :U1 ∩ U2 → Uν and iν :Uν → U1 ∪ U2 be the inclusions. Now the
diagram

U1 ∩ U2

U1 U2

U1 ∪ U2

j1 j2

i1 i2

commutes. Let then I = (Ik)k∈Z : Ω∗(U1 ∪ U2)→ Ω∗(U1)⊕ Ω∗(U2) be a chain
map, where each Ik is defined as

Ik: Ωk(U1 ∪ U2)→ Ωk(U1)⊕ Ωk(U2), ω 7→ (i∗1ω, i
∗
2ω).

Let also J = (Jk)k∈Z : Ω∗(U1)⊕ Ω∗(U2)→ Ω∗(U1 ∩ U2) be a chain map with

Jk: Ωk(U1)⊕ Ωk(U2)→ Ωk(U1 ∩ U2), (ω1, ω2) 7→ j∗1ω1 − j∗2ω2,

25



for each k ∈ Z. The mappings I and J are chain maps when we define
dU1⊕U2 = dU1⊕dU2 . Indeed, since the pull-back and exterior derivative commute
by Lemma 2.24, we have

(d⊕ d)(I(ω)) = (d(i∗1ω), d(i∗2ω)) = (i∗1(dω), i∗2(dω)) = I(dω)

and similarly for J . The next theorem plays an important role in the rest of
this section.

Theorem 6.6. Let U1 and U2 be open sets in Rn and let I and J be defined
as above. The sequence

0 −→ Ω∗(U1 ∪ U2)
I−→ Ω∗(U1)⊕ Ω∗(U2)

J−→ Ω∗(U1 ∩ U2) −→ 0

is a short exact sequence of chain complexes.

We omit the proof here, see e.g. [4, Thm 5.1]. We define now homology of a
chain complex, which is a fundamental concept in algebraic topology.

Definition 6.7. Let A∗ = (Ak, dk) be a chain complex. The kth homology of
A∗ is the quotient space

Hk(A∗) =
Ker dk
Im dk−1

.

The elements of Hk(A∗) are called homology classes.

We notice that the kth homology of the chain complex Ω∗(U) for some
open U ⊂ Rn is just Hk(U), the kth de Rham cohomology group of U . The
next lemma implies that a chain map lifts to the homological level; we refer
to [4, Lemma 4.3] for a proof.

Lemma 6.8. Let f :A∗ → B∗ be a chain map. The induced map f∗:Hk(A∗)→
Hk(B∗), [c] 7→ [f(c)], is well-defined and linear.

The following theorem (Theorem 6.9) is the starting point of the upcoming
proof for the Poincaré duality. By above lemma we may build sequences
of homologies similarly as with chain complexes. The theorem tells that a
short exact sequence of chain complexes lifts to a long exact sequence of
homology classes. In other words, there exists a linear map called connecting
homomorphism ∂k:H

k(C∗)→ Hk+1(A∗) that connects the exact sequence of
kth homology classes to the sequence of (k + 1)th homology classes. Moreover,
the operator ∂k leaves the sequence exact. We refer to [4, Thm 4.9] for a proof.
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Theorem 6.9. Let 0 −→ A∗
f−→ B∗

g−→ C∗ −→ 0 be a short exact sequence of
chain complexes. Then there exist linear maps ∂k:H

k(C∗)→ Hk+1(A∗), k ∈ Z
so that the sequence

· · · ∂k−1−→ Hk(A∗)
f∗−→ Hk(B∗)

g∗−→ Hk(C∗)
∂k−→ Hk+1(A∗)

f∗−→ · · ·

is exact.

Now Theorems 6.6 and 6.9 together give a corollary, which is called the
Mayer–Vietoris sequence for de Rham cohomoloy.

Corollary 6.10. Let U1, U2 be open sets in Rn and let I: Ω∗(U1 ∪ U2) →
Ω∗(U1) ⊕ Ω∗(U2) and J : Ω∗(U1) ⊕ Ω∗(U2) → Ω∗(U1 ∩ U2) be the chain maps
defined in Theorem 6.6. Then the sequence

· · · ∂k−1−→ Hk(U1∪U2)
I∗−→ Hk(U1)⊕Hk(U2)

J∗−→ Hk(U1∩U2)
∂k−→ Hk+1(U1∪U2)

I∗−→ · · ·

where ∂k is the connecting homomorphism of the sequence in Theorem 6.6, is
exact.

The Mayer–Vietoris sequence gives a fairly simple solution for the coho-
mologies of the punctured plane.

Example 6.11. We show using the Mayer–Vietoris sequence that

Hk(R2 \ {0}) ∼=

{
R, if k = 0 or 1

{0}, if k = 2.

Let U+ := R2 \ {(x, 0) ∈ R2 : x ≤ 0} and U− := R2 \ {(x, 0) ∈ R2 : x ≥ 0}.
Now U+ ∪ U− = R2 \ {0} and U+ ∩ U− = R× (R \ {0}), the disjoint union of
the upper and lower half planes. Since Hk(R2 \ {0}) = 0 whenever k < 0 or
k > 2, by Corollary 6.10 we have that the sequence

0 H0(R2 \ {0}) H0(U1)⊕H0(U2) H0(U1 ∩ U2)

H1(R2 \ {0}) H1(U1)⊕H1(U2) H1(U1 ∩ U2)

H2(R2 \ {0}) H2(U1)⊕H2(U2) H2(U1 ∩ U2) 0

(I0)∗ (J0)∗ ∂0

∂0 (I1)∗ (J1)∗ ∂1

∂1 (I2)∗ (J2)∗ ∂2
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is exact. Since R2\{0} is connected, we have immediately that H0(R2\{0}) ∼= R
by Lemma 3.3. Also, the sets U+ and U− are star-like, so by the Poincaré
lemma 5.1 H0(U1) ∼= H0(U2) ∼= R. Hence

Hk(U1)⊕Hk(U2) ∼=

{
R⊕ R, if k = 0

{0} otherwise.

As we noticed above, U+ ∩ U− is a disjoint union of two star-like sets R× R+

and R×R−. Below we prove that the cohomology of a set is the direct product
of the cohomologies of each pairwise disjoint component (see Theorem 7.1).
Then Poincaré lemma gives us

Hk(U1 ∩ U2) ∼= Hk(R× R+)⊕Hk(R× R−) ∼=

{
R⊕ R, if k = 0

{0} otherwise.

With these results we may write the above exact sequence as

0 R R⊕ R R⊕ R

H1(R2 \ {0}) 0 0

H2(R2 \ {0}) 0,

f0 g0 ∂0

∂0 f1 ∂1

∂1 f2

where fk is the linear map that corresponds to (Ik)∗ for each k = 0, 1, 2 via the
isomorphisms, whose existence we observed above. Similarly g0 corresponds to
(J0)∗ with this identification. For example, f0 is the map for which the diagram

H0(R2 \ {0}) H0(U1)⊕H0(U2)

R R⊕ R

(I0)∗

∼= ∼=
f0

commutes.
Now we may deduce the dimensions of the sets H1(R2\{0}) and H2(R2\{0})

using, by turns, the exactness of the sequence and the rank-nullity theorem: if
f :V → W is a linear map between vector spaces V and W , then

dim(Ker f) + dim(Im f) = dimV.

Firstly, we notice that Im ∂1 = {0} and Ker f2 = H2(R2 \ {0}). Then, by the
exactness of the sequence, we have that H2(R2 \ {0}) ∼= {0}.
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Consider then the beginning of the sequence. By the exactness Im 0 =
0 = Ker f0, so dim(Ker f0) = 0. Hence dim(Im f0) = 1 by the rank-nullity
theorem. Using the exactness gives us further that also dim(Ker g0) = 1. Again
by the rank-nullity theorem dim(Im g0) = dim(R ⊕ R) − 1 = 1. Since now
Ker f1 = H1(R2 \ {0}) and on the other hand Ker f1 = Im ∂0, we deduce that
dim(H1(R2 \ {0})) = 1. Hence H1(R2 \ {0}) ∼= R and the claim holds.

A similar long exact sequence in homology exists for the dual spaces of
compactly supported cohomologies. We discuss this in the next section.

6.2 Exact sequences for compactly supported de Rham
cohomology and its dual

Theorem 6.12. Let U1 and U2 be open sets in Rn and let jν :U1 ∩ U2 → Uν
and iν :Uν → U1 ∪ U2, where ν = 1, 2, be inclusions. We define chain maps
J : Ω∗c(U1 ∩ U2)→ Ω∗c(U1)⊕ Ω∗c(U2) and I: Ω∗c(U1)⊕ Ω∗c(U2)→ Ω∗c(U1 ∪ U2) by

Jk:ω 7→ ((j1)∗ω,−(j2)∗ω) and Ik: (ω1, ω2) 7→ (i1)∗ω1 + (i2)∗ω2,

where the push-forward (iν)∗ induced by inclusion iν is as in Definition 3.7.
Then the sequence

0 −→ Ω∗c(U1 ∩ U2)
J−→ Ω∗c(U1)⊕ Ω∗c(U2)

I−→ Ω∗c(U1 ∪ U2) −→ 0

is exact.

Proof. There are three parts in the proof. We need to show that, for each k ∈ Z,
Jk is injective, Ik is surjective and Im Jk = Ker Ik. To show the injectivity of
Jk, let ω ∈ Ωk

c (U1 ∩U2) be so that Jk(ω) = (0, 0). Then ω is necessarily zero in
U1 ∩ U2, so ω is identically zero.

We show then that Ik is surjective. Let ω ∈ Ωk
c (U1 ∪U2) and let {ρ1, ρ2} be

a smooth partition of unity subordinate to U1 and U2. So ρν :U1 ∪ U2 → R are
so that spt(ρν) ⊂ Uν and ρ1(x) + ρ2(x) = 1 for all x ∈ U1 ∪ U2. Now

Ik((ρ1ω)|U1
, (ρ2ω)|U2

) = (i1)∗ (ρ1ω)|U1
+ (i2)∗ (ρ2ω)|U2

= ρ1ω + ρ2ω = ω.

It remains to show that Im Jk = Ker Ik. Let (ω1, ω2) ∈ Im(Jk). So there
exists ω ∈ Ωk

c (U1 ∩ U2) for which ((j1)∗ω,−(j2)∗ω) = (ω1, ω2). Then we have
that

Ik(ω1, ω2) = (i1)∗(j1)∗ω − (i2)∗(j2)∗ω = 0,
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since ((iν)∗(jν)∗ω)p = ωp for each p ∈ U1 ∩ U2 and zero otherwise for both
ν = 1, 2. Hence (ω1, ω2) ∈ Ker Ik and Im Jk ⊂ Ker Ik.

Let then (ω1, ω2) ∈ Ker(Ik). We need to find η ∈ Ωk
c (U1 ∩ U2) so that

Jk(η) = (ω1, ω2). Now (i1)∗ω1 = −(i2)∗ω2. This implies that (ω1)p = −(ω2)p
when p ∈ U1 ∩ U2 and (ω1)p = (ω2)p = 0 otherwise. Using these identities, we
obtain that

Jk(ω1|U1∩U2
) = ((j1)∗ ω1|U1∩U2

,−(j2)∗ ω1|U1∩U2
)

= ((j1)∗ ω1|U1∩U2
, (j2)∗ ω2|U1∩U2

)

= (ω1, ω2).

So Ker Ik ⊂ Im Jk and the sequence is exact.

Now Theorems 6.9 and 6.12 give us the following corollary.

Corollary 6.13. Let J : Ω∗c(U1 ∩ U2) → Ω∗c(U1) ⊕ Ω∗c(U2) and I: Ω∗c(U1) ⊕
Ω∗c(U2)→ Ω∗c(U1 ∪U2) be the chain maps defined in Theorem 6.12, J∗:H

k
c (U1 ∩

U2)→ Hk
c (U1)⊕Hk

c (U2) and I∗:H
k
c (U1)⊕Hk

c (U2)→ Hk
c (U1∪U2) their induced

maps and ∂∗:H
k
c (U1 ∪ U2) → Hk+1

c (U1 ∩ U2) the connecting homomorphism.
Then the sequence

· · · −→ Hk
c (U1∩U2)

J∗−→ Hk
c (U1)⊕Hk

c (U2)
I∗−→ Hk

c (U1∪U2)
∂∗−→ Hk+1

c (U1∩U2) −→ · · ·

is exact.

In order to obtain an analogous result for the dual spaces, we begin with a
lemma on dual sequences.

Lemma 6.14. Let A
f−→ B

g−→ C be an exact sequence of vector spaces. Then

C∗
g∗−→ B∗

f∗−→ A∗ is an exact sequence of dual spaces, where g∗ and f ∗ are the
dual maps of g and f as in Corollary 2.6.

This lemma is purely algebraic and it is proven in [3, p. 72]. To simplify
the notation in the forthcoming statements, we denote the dual map (ι∗)

∗ of
the push-forward ι∗: Ωk

c (U)→ Ωk
c (V ) by ι̃, that is, we set

ι̃: Ωk
c (V )∗ → Ωk

c (U)∗, (ι̃(L))(ω) = L(ι∗ω),

for each L ∈ Ωk
c (V )∗ and ω ∈ Ωk

c (U). Now Lemma 6.14 and Corollary 6.13 give
the following result as a consequence.
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Theorem 6.15. Let U1 and U2 be open sets in Rn. Let J∗:H
k
c (U1 ∩ U2) →

Hk
c (U1)⊕Hk

c (U2), I∗:H
k
c (U1)⊕Hk

c (U2)
I∗−→ Hk

c (U1∪U2) and ∂∗:H
k
c (U1∪U2)→

Hk+1
c (U1 ∩ U2) be homomorphisms as in Corollary 6.13. Then the sequence

· · · −→ Hk+1
c (U1∩U2)

∗ ∂̃−→ Hk
c (U1∪U2)

∗ Ĩ−→ Hk
c (U1)

∗⊕Hk
c (U2)

∗ J̃−→ Hk
c (U1∩U2)

∗ −→ · · ·

is exact, where

Ĩ:Hk
c (U1 ∪ U2)

∗ → Hk
c (U1)

∗ ⊕Hk
c (U2)

∗, α 7→ (̃i1(α), ĩ2(α)),

J̃ :Hk
c (U1)

∗ ⊕Hk
c (U2)

∗ → Hk
c (U1 ∩ U2)

∗, (α1, α2) 7→ j̃1(α1)− j̃2(α2),

and

∂̃ :Hk+1
c (U1 ∩ U2)

∗ → Hk
c (U1 ∪ U2)

∗, ∂̃ = (∂∗)
∗,

are homomorphisms.

6.3 Poincaré duality for unions

We have now obtained the Mayer–Vietoris sequence both for cohomology groups
and the duals of the compactly supported cohomologies. These two sequences
are connected with the maps DU1∪U2 , DU1 ⊕ DU2 and DU1∩U2 given by the
Poincaré duality. We next prove the main result of this section.

Proposition 6.16. Let U1 and U2 be open sets in Rn so that DUν :H
k(Uν)→

Hn−k
c (Uν)

∗ and DU1∩U2 :H
k(U1 ∩ U2)→ Hn−k

c (U1 ∩ U2)
∗ are isomorphisms for

each k ∈ Z and ν = 1, 2. Then DU1∪U2 :H
k(U1 ∪ U2)→ Hn−k

c (U1 ∪ U2)
∗ is an

isomorphism for each k.

We begin with some auxiliary results.

Lemma 6.17. Let V ⊂ U ⊂ Rn be open sets and i:V → U the inclusion.
Then the diagram

Hk(U) Hk(V )

Hn−k
c (U)∗ Hn−k

c (V )∗

i∗

DU DV

ĩ

commutes.

Proof. Let [ω] ∈ Hk(U) and [τ ] ∈ Hn−k
c (V ). Then

(DV ◦ i∗)([ω])[τ ] = DV ([i∗ω])[τ ] =

∫
V

i∗ω ∧ τ.
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On the other hand

(̃i ◦DU)([ω])[τ ] = (̃i(DU [ω]))[τ ] = DU [ω](i∗[τ ]) =

∫
U

ω ∧ i∗τ.

Now for each p ∈ V we have that (i∗ω ∧ τ)p = (ω ∧ i∗τ)p. Indeed, let
X1
p , . . . , X

k
p ∈ Tp(V ). Then

(i∗ω)p(X
1
p , . . . , X

k
p ) = ωi(p)(i∗X

1
p , . . . , i∗X

k
p ) = ωp(X

1
p , . . . , X

k
p ),

since (i∗(X
j
p))(u) = Xj

p(u ◦ i) = Xj
p(u) for each u ∈ C∞p and j = 1, . . . , k. Also,

by definition (i∗τ)p = τp whenever p ∈ V . Since (ω∧ i∗τ)p = 0 for all p ∈ U \V ,
we have that ∫

V

i∗ω ∧ τ =

∫
U

ω ∧ i∗τ.

The claim follows.

In the proof of Lemma 6.19 we use the duality of connecting homomorphisms.
See e.g. [4, p.131] for proof.

Lemma 6.18. Let U1 and U2 be open sets in Rn. Let ∂∗:Hk(U1 ∩ U2) →
Hk+1(U1 ∪ U2) and ∂∗:H

n−(k+1)
c (U1 ∪ U2)→ Hn−k

c (U1 ∩ U2) be the connecting
homomorphisms for the corresponding Mayer–Vietoris sequences. Then∫

U1∪U2

∂∗[ω] ∧ [τ ] = (−1)k+1

∫
U1∩U2

[ω] ∧ ∂∗[τ ]

for each [ω] ∈ Hk(U1 ∩ U2) and [τ ] ∈ Hn−(k+1)
c (U1 ∪ U2).

Lemma 6.19. Let U1, U2 be open sets in Rn. Then the diagram

Hk(U1 ∩ U2) Hk+1(U1 ∪ U2)

Hn−k
c (U1 ∩ U2)

∗ H
n−(k+1)
c (U1 ∪ U2)

∗

DU1∩U2

∂∗

DU1∪U2

(−1)k+1∂̃

commutes, where ∂∗ and ∂∗ are the connecting homomorphisms as in Lemma 6.18
and ∂̃ = (∂∗)

∗ is the dual map of ∂∗.

Proof. Let [ω] ∈ Hk(U1∩U2) and [τ ] ∈ Hn−(k+1)
c (U1∪U2). Following the upper

route in the diagram gives us

DU1∪U2(∂
∗[ω])[τ ] =

∫
U1∪U2

∂∗[ω] ∧ [τ ].
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Correspondingly the other route gives

∂̃(DU1∩U2([ω]))[τ ] = DU1∩U2([ω])(∂∗[τ ]) =

∫
U1∩U2

[ω] ∧ ∂∗[τ ].

By Lemma 6.18 we have that DU1∪U2 ◦∂∗ = (−1)k+1∂̃ ◦DU1∩U2 . Thus the claim
follows.

The proof of Proposition 6.16 takes advantage of the five lemma [2, Lemma
24.1].

Lemma 6.20 (Five lemma). Consider the commutative diagram

A B C D E

A′ B′ C ′ D′ E ′

f g h p q

If both rows are exact and homomorphisms f, g, p and q are isomorphisms, then
h is an isomorphism.

Proof of Prop 6.16. Consider the diagram

Hk(U1 ∪ U2) Hk(U1)⊕Hk(U2) Hk(U1 ∩ U2) Hk+1(U1 ∪ U2)

Hn−k
c (U1 ∪ U2)

∗ Hn−k
c (U1)

∗ ⊕Hn−k
c (U2)

∗ Hn−k
c (U1 ∩ U2)

∗ H
n−(k+1)
c (U1 ∪ U2)

∗

I∗

DU1∪U2

J∗

DU1
⊕DU2

DU1∩U2

∂∗

DU1∪U2

Ĩ J̃ (−1)k+1∂̃

By Corollaries 6.10 and 6.13 both rows in the diagram are exact. We state first
that this exact diagram commutes. By Lemma 6.17 both of the diagrams

Hk(U1 ∪ U2) Hk(Uν)

Hn−k
c (U1 ∪ U2)

∗ Hn−k
c (Uν)

∗

i∗ν

DU1∪U2 DUν

ĩ

and

Hk(Uν) Hk(U1 ∪ U2)

Hn−k
c (Uν)

∗ Hn−k
c (U1 ∪ U2)

∗

j∗ν

DUν DU1∪U2

j̃ν
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commute for ν = 1, 2. So the left part of the exact diagram commutes. On
the other hand, Lemma 6.19 gives directly the commutativity of the rightmost
part. So the whole diagram commutes.

By assumption each map DU1 ⊕DU2 and DU1∩U2 is an isomorphism. Thus
we may apply the Five lemma 6.20 to each four steps part in the long exact
sequence so that, using the notation in Lemma 6.20, f = p = DU1 ⊕ DU2 ,
g = q = DU1∩U2 and h = DU1∪U2 . Hence, by the Five lemma, DU1∪U2 is an
isomorphism.
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7 Cohomology of disjoint unions

In this section we consider the cohomology groups of an open set U ⊂ Rn in the
special case that U is a pairwise disjoint union of open sets Uα for α ∈ I, where
I is some countable index set. We start with some linear algebraic results. In
the end of this section we show that U satisfies Poincaré duality if it holds for
each set Uα.

7.1 Linear algebra for cohomology groups

Theorem 7.1. Let I be a countable index set and let Uα ⊂ Rn be pairwise
disjoint open sets for each α ∈ I. Let also U = tαUα. Then

Hk(U) ∼=
∏
α∈I

Hk(Uα).

Proof. Let ια:Uα → U be an inclusion. Recall that an element in
∏

α∈I H
k(Uα)

is a sequence ([ωα])α∈I , where [ωα] ∈ Hk(Uα). We show that the map

θ:Hk(U)→
∏
α∈I

Hk(Uα), θ([ω]) = (ι∗α[ω])α = ([ι∗αω])α, (7.1)

is an isomorphism of vector spaces. Clearly θ is linear. Suppose θ([ω]) = 0. Then
ι∗αω is exact for all α ∈ I. In other words, using the notation ω =

∑
J aJdxJ ,

then
ι∗αω = ω|Uα =

∑
J

aJ |Uα dxJ

for each α ∈ I. Therefore, for all α ∈ J , we find forms τα =
∑

J ′ bαJ ′dx
J ′ ∈

Ωk−1(Uα) such that

dτα =
∑
J

aJ |Uα dxJ .

Now for each J ′ ∈ {(i1, . . . , ik)} : 1 ≤ i1 ≤ . . . ≤ ik ≤ n}, let bJ ′ :U → R be the
function satisfying bJ ′(p) = bαJ ′(p) for p ∈ Uα and each α ∈ I. Since the sets
Uα are pairwise disjoint and cover the set U , function bJ ′ is well-defined. It
is also smooth, since each bαJ ′ is smooth on the component Uα of U . Hence
τ =

∑
J ′ bJ ′dx

J ′ is a (k − 1)-form for which dτ = ω. So ω is exact, i.e., [ω] = 0
and θ is injective.

To show surjectivity, let ([ωα])α ∈
∏

αH
k(Uα). Now each ωα is closed and

of the form
ωα =

∑
J

aαJdxJ ,
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where functions aαJ :Uα → R are smooth. Similarly as above we may define
smooth functions aJ :U → R as aJ(p) = aαJ(p) whenever p ∈ Uα. Defining
ω =

∑
J aJdxJ gives us then a well-defined k-form. Also for any p ∈ U holds

dωp = (dωα)p = 0 for some α, so ω is closed. So [ω] ∈ Hk(U) and clearly
θ([ω]) = ([ωα])α. Hence θ is also surjective and further an isomorphism.

Theorem 7.2. Let I be a countable index set and let Uα ⊂ Rn be pairwise
disjoint open sets for each α ∈ I. Denote U = tαUα. Then

Hk
c (U)∗ ∼=

∏
α∈I

Hk
c (Uα)∗.

The proof of this theorem consists of two steps. We introduce the direct sum
of vector spaces and show that both Hk

c (U)∗ and
∏

αH
k
c (Uα)∗ are isomorphic

to the dual of the direct sum of spaces Hk
c (Uα). The latter part follows from a

general statement for vector spaces, which we write as a lemma below.

Definition 7.3. Let I be a set and let Vα be a vector space for each α ∈ I.
The direct sum of vector spaces Vα is⊕

α∈I

Vα = {(vα)α ∈
∏
α∈I

Vα : #spt((vα)α) <∞},

where spt((vα)α) = {α ∈ I : vα 6= 0} is the support of (vα)α.

Since
⊕

α∈I Vα is a vector subspace of
∏

α∈I Vα, we may define two natural
operations between

⊕
α∈I Vα and the individual vector spaces Vα. The first one

is the inclusion

iβ:Vβ →
⊕
α∈I

Vα, v 7→ (vα)α, where vα =

{
v, if α = β

0, otherwise

and the second one is the projection

pβ:
⊕
α∈I

Vα → Vβ, (vα)α 7→ vβ.

We get as an immediate result that

pβ ◦ iα =

{
id:Vα → Vα, if α = β

0, otherwise
(7.2)

and ∑
α∈I

iα ◦ pα = id:
⊕
α∈I

Vα →
⊕
α∈I

Vα. (7.3)
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Lemma 7.4. Let I be a set and let Vα be vector spaces for each α ∈ I. Then
the map

δ:

(⊕
α∈I

Vα

)∗
→
∏
α∈I

V ∗α , L 7→ (L ◦ iα)α, (7.4)

is an isomorphism of vector spaces with the inverse

δ′:
∏
α∈I

V ∗α →

(⊕
α∈I

Vα

)∗
, (Lα)α 7→

∑
α∈I

Lα ◦ pα.

Proof. The map δ is clearly linear and since every L ◦ iα is a linear map
Vα → R, it is well-defined. Similarly δ′ is linear. To show that δ′ is well-defined,
let v ∈

⊕
α∈I Vα. Now v has finite support, so there are only finitely many

indices α for which (Lα ◦ pα)(v) 6= 0. Hence
∑

α(Lα ◦ pα)(v) ∈ R. Thus∑
α Lα ◦ pα ∈ (

⊕
α∈I Vα)∗ and also δ′ is well-defined.

Take then any (Lα)α ∈
∏

α∈I V
∗
α . By (7.2) we have that

(δ ◦ δ′)((Lα)α) = δ

(∑
β∈I

Lβ ◦ pβ

)
=

((∑
β∈I

Lβ ◦ pβ

)
◦ iα

)
α

=

(∑
β∈I

Lβ ◦ pβ ◦ iα

)
α

= (Lα)α.

Also, by (7.3), for any L ∈ (
⊕

α Vα)∗ holds

(δ′ ◦ δ)(L) = δ′((L ◦ iα)α) =
∑
α∈I

(L ◦ iα) ◦ pα = L ◦

(∑
α∈I

iα ◦ pα

)
= L,

since L is linear by the definition of dual space. We proved that δ′ = δ−1 and
hence δ is an isomorphism of vector spaces.

Since Hk
c (Uα) are vector spaces, the dual space

(⊕
αH

k
c (Uα)

)∗
is isomorphic

to
∏

αH
k
c (Uα)∗ by Lemma 7.4. For the last part of the proof, we use the push-

forward ι∗ introduced in Definition 3.7.

Proof of Theorem 7.2. We show first that

ρ:
⊕
α∈I

Hk
c (Uα)→ Hk

c (U), ([ωα])α 7→
∑
α∈I

(ια)∗[ωα] (7.5)

is an isomorphism. Suppose again ρ(([ωα])α) = 0, i.e.,
∑

α(ια)∗ωα is exact. We
show that each ωα is exact. Since any p ∈ U belongs to exactly one Uβ and
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hence at point p we have that
∑

α((ια)∗ωα)p = (ωβ)p in Uβ. So [ωα] = 0 for
each α and the map ρ is injective.

Take then any [ω] ∈ Hk
c (U). Since ω has compact support, it is nonzero

only on finitely many sets Uα. Then the sequence ([ωα])α, where ωα = ω|Uα , is
an element in

⊕
αH

k
c (Uα). Also

ρ(([ωα])α) =
∑
α∈I

(ια)∗[ω|Uα ] =
∑
α∈I

[χUαω] = [ω],

so ρ is surjective. Hence by Corollary 2.6 the dual map

ρ∗:Hk
c (U)∗ →

(⊕
α∈I

Hk
c (Uα)

)∗
, L 7→ L ◦ ρ,

of ρ is an isomorphism. Thus Lemma 7.4 gives us that

δ ◦ ρ∗:Hk
c (U)∗ →

∏
α∈I

Hk
c (Uα)∗

is an isomorphism, which proves the claim.

7.2 Poincaré duality for disjoint unions

Proposition 7.5. Let {Uα}α∈I be a pairwise disjoint collection of open sets in
Rn, where I is a countable index set. Suppose that DUα :Hk(Uα)→ Hn−k

c (Uα)∗

is an isomorphism for each k ∈ Z and α ∈ I. Then DU :Hk(U)→ Hn−k
c (U)∗

is an isomorphism for each k, where U = tα∈IUα.

Proof. Consider the diagram

Hk(U)
∏

αH
k(Uα)

Hn−k
c (U)∗ (

⊕
αH

n−k
c (Uα))∗

∏
αH

n−k
c (Uα)∗

θ

DU
∏
DUα

ρ∗ δ

where θ is as in (7.1), ρ∗ is the dual map of ρ introduced in (7.5) and δ is as
in (7.4). So each map θ, ρ∗ and δ is an isomorphism. Since we assume also
the map

∏
DUα to be an isomorphism, it suffices to show that the diagram

commutes. We begin with some observations.
Let α ∈ I and ια:Uα → U be the inclusion. By Lemma 6.17 the diagram

Hk(U) Hk(Uα)

Hn−k
c (U)∗ Hn−k

c (Uα)∗

ι∗α

DU DUα

ι̃α
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commutes. Hence we have that

DUα ◦ ι∗α = ι̃α ◦DU . (7.6)

Let then pα:
⊕

βH
n−k
c (Uβ)→ Hn−k

c (Uα) be the canonical projection. We argue
next that

ρ∗(L) =
∑
α∈I

ι̃α(L) ◦ pα (7.7)

for each L ∈ Hn−k
c (U)∗. Let ([ωα])α ∈

⊕
αH

n−k
c (Uα). Then

ρ∗(L)([ωα])α = L(ρ(([ωα])α)) = L

(∑
β∈I

(ιβ)∗[ωβ]

)
=
∑
β∈I

L((ιβ)∗[ωβ])

=
∑
β∈I

(ι̃βL)[ωβ] =

(∑
β∈I

(ι̃βL) ◦ pβ

)
([ωα])α,

where we used the linearity of L and the definitions of the maps ρ∗, ι̃α and pα.
Now for each [ω] ∈ Hk(U) we have by (7.6), Lemma 7.4 and (7.7) that(∏

DUα ◦ θ
)

([ω]) =
(∏

DUα

)
(ι∗α[ω])α = (DUα(ι∗α[ω]))α

= (ι̃αDU [ω])α = δ ◦ δ′(ι̃αDU [ω])α

= δ

(∑
α∈I

(ι̃αDU [ω]) ◦ pα

)
= δ(ρ∗(DU [ω]))

= (δ ◦ ρ∗ ◦DU)([ω]).

Hence the diagram commutes and DU is an isomorphism.
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8 Proof of Poincaré duality

Definition 8.1. Let I1, . . . , In be intervals in R. We call the set I1×· · ·×In ⊂
Rn an n-interval or an n-rectangle. If all the intervals Ij , j ∈ {1, . . . , n}, are of
the same length, we call it an n-cube.

We begin with the auxiliary result (Proposition 8.2) that an open set
U ⊂ Rn is a finite union of pairwise disjoint unions of open n-intervals. Then
the Poincaré duality follows for U . Namely, open n-intervals are diffeomorphic
to Rn, so they satisfy the Poincaré duality by Proposition 5.5 in section 5.
Section 7 gives us that Poincaré duality also holds for the disjoint union of
n-intervals. So the Poincaré duality holds for each pairwise disjoint union.
Two pairwise disjoint unions may overlap, but since their intersection is only
a pairwise disjoint union of n-rectangles, the Poincaré duality holds for their
union by section 6. By Proposition 8.2 we need only finite number of the
pairwise disjoint unions to cover U . Hence we may repeat the argument for
larger unions of pairwise disjoint unions and gain after finite number of steps
the whole set U .

Proposition 8.2. Let U ⊂ Rn be an open set. Then there is a countable
collection G := {Qi ⊂ Rn : i ∈ N} of open n-intervals so that U =

⋃∞
i=1Qi.

Moreover, these n-intervals can be divided to a finite number of subcollections
F1, . . . ,FP (n) of G so that in every Fj the n-intervals are pairwise disjoint.

The idea of the proof is to first obtain a Whitney decomposition for the set
U with closed n-cubes whose interiors are disjoint but the boundaries overlap.
Then we divide these cubes into pairwise disjoint subcollections. We show that
the closed n-cubes can be enlarged to open cubes so that they remain pairwise
disjoint within each collection. First we prove the proposition for a bounded
set U and after that in the general case.

Lemma 8.3 (Whitney decomposition). Let U ⊂ Rn be an open and bounded
set. Then there is a collection G of closed n-cubes Q such that the side length of
each Q is 2−k for some k ∈ N, U =

⋃
Q∈G Q, and the interiors of the n-intervals

in G are pairwise disjoint.

Proof. For each k ∈ N we define a grid of points with dyadic spacing

Ak := {(m12
−k, . . . ,mn2−k) ∈ Rn : m1, . . . ,mn ∈ Z}

and the corresponding n-intervals (or n-cubes)

Qk
x = [x1, x1 + 2−k]× . . .× [xn, xn + 2−k],
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where x = (x1, . . . , xn) ∈ Ak. Now
⋃
x∈Ak Q

k
x = Rn and int(Qk

x) ∩ int(Qk
y) = ∅

whenever x 6= y. We denote Qk := {Qk
x ⊂ Rn : x ∈ Ak}.

Let now G1 := {Q ∈ Q1 : dist(Q,Rn\U) >
√
n/2}. Then G1 is the collection

of all cubes of side length 1/2 contained in U , whose distance to Rn \ U is big
enough. Choose then

G2 := {Q ∈ Q2 : dist(Q,Rn \U) >
√
n/4, int(Q)∩ int(Q′) = ∅ for all Q′ ∈ G1},

all the cubes fitted well inside U with side length 1/4 that are not nested with
any of the cubes already chosen to G1. We continue by induction and obtain,
for an arbitrary k ∈ N, a collection

Gk := {Qk : dist(Qk,Rn\U) >
√
n 2−k, int(Qk)∩int(Q) = ∅ for all Q ∈

k−1⋃
l=1

Gl}.

Below we need the observation, that U is bounded and hence every Gk is finite.
We define a countable collection of n-intervals

G :=
∞⋃
k=1

Gk

and show that
⋃
Q∈G Q = U . By construction,

⋃
Q∈G Q ⊂ U . We still need to

ensure that this collection indeed covers the set U . Let x = (x1, . . . , xn) ∈ U .
Since U is open, there is r > 0 so that B(x, r) ⊂ U . Let then kr ∈ N be
such that 2−kr < r/

√
n. Now there is a point y = (y1, . . . , yn) ∈ Akr for which

0 < xi − yi < 2−kr for every coordinate i = 1, . . . , n. Hence x is contained in a
cube Qkr

y . Furthermore Qkr
y ⊂ B(x, r), since

max{d(x, z) : z ∈ Qkr
y } ≤

√
n 2−kr < r.

Since now Qkr
y ⊂ U , either Qkr

y belongs to the collection Gkr or there is k < kr
so that Qkr

y ⊂ Qk for some Qk ∈ Gk. We conclude that U is covered by the
collection of chosen n-cubes, which proves the claim.

Lemma 8.4. Proposition 8.2 holds for a bounded open set U ⊂ Rn.

Proof. Consider the dyadic n-cubes given by Whitney decomposition and the
collections Gk and G =

⋃∞
k=1 Gk in the proof of the lemma. We next construct

collections F1, . . . ,Fm ⊂ G, where each Fj, j = 1, . . . ,m, consists of pairwise
disjoint n-intervals and G = tmj=1Fj. We start with the collection F1. The
idea is to choose cubes starting from the largest ones and make the collection
maximal. So we aim that for all Q ∈ G \ F1 there exists Q′ ∈ F1 so that
Q ∩Q′ 6= ∅.
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Choose now any cube Q1 ∈ G1 to the collection F1. Pick then any other
cube Q2 ∈ G1 so that Q1 ∩Q2 = ∅, if possible. Continue inductively by taking
cubes in G1 so that the chosen cubes do not intersect any of the already picked
ones. This process ends after finite number of steps, since G1 is finite. Then
we have obtained a collection {Q1, . . . , Qh}, h ∈ N, that is maximal in G1. In
other words, for every Q ∈ G1 there is Qj, j = 1, . . . , h, so that Q ∩Qj 6= ∅.

Then pick a cube Q ∈ G2 that does not intersect any of the cubes
{Q1, . . . , Qh} chosen into F1, if there exists one. Keep choosing cubes from
collection G2 until no cubes can be chosen so that the collection F1 remains
pairwise disjoint. Again this happens after finitely many steps. Continue
similarly with the collections G3,G4, . . . . We end up with a maximal collection
F1 where all the cubes are pairwise disjoint. Indeed, the collection F1 clearly
has the property that for each Q ∈ G there exists Q′ ∈ F1 so that Q ∩Q′ 6= ∅.

We next form collection F2 by repeating the above procedure for the sets
Q ∈ G \F1. Choose any cube Q ∈ G1 \F1 into collection F2. Then pick another
Q′ ∈ G1 \ F1 so that Q ∩ Q′ = ∅, if possible. Continue until no other cubes
can be chosen from collection G1 \ F1. Then proceed to collection G2 \ F1 and
continue inductively for each Gk \ F1, k ∈ N.

The collections F3,F4, . . . ,Fm are obtained like above, where each collection
Fj , j = 1, . . . ,m, consists of cubes Q ∈ G \ (

⋃j−1
l=1 Fl). In this way every Q ∈ G

is chosen to some Fj. Indeed, for each Q′ ∈ G, the set

G ′ := {Q ∈ G : diam(Q) ≥ diam(Q′)}

is finite. Denote l := #G ′. Then we pick Q′ to some collection Fj, j ≤ l + 1,
since we choose cubes to collections starting from the biggest ones. If there
exists cubes Q1 ∈ G ′ and Q2 ∈ G ′ so that Q1 ∩ Q2 6= ∅, we have j < l + 1.
Namely, then some collection Fi, i ≤ l, contains both of the cubes Q1 and Q2

by construction.
We next show that with above procedure we may choose only finitely many

collections Fm. Pick a cube Qk ∈ Fm for some large m, where k denotes the
side length 2−k of Qk. Now there exists Qk1 ∈ F1 for which Qk1 ∩Qk 6= ∅ and
k1 ≤ k, so Qk1 is larger than or of equal size to Qk. Otherwise we would have
picked Qk to collection F1. Similarly for each j = 1, . . . ,m− 1 there is a cube
Qkj ∈ Fj so that Qkj ∩Qk 6= ∅ and kj ≤ k. So there are m− 1 cubes, which
intersect Qk and whose side length is at least the side length of Qk. But since
the interiors of all the cubes are disjoint, there is a maximum number of cubes
that can be fitted around Qk. The number of surrounding cubes is maximal
if the side length of these cubes is as small as possible, i.e., kj = k for all
j = 1, . . . ,m− 1. Then there are S(n) cubes that can intersect Qk, where S(n)
is the number of all l-faces of an n-cube, l = 0, . . . , n− 1. Hence m− 1 ≤ S(n)
and we get an upper bound L(n) = S(n) + 1.

42



We have now obtained a finite number of collections of closed n-intervals
that are pairwise disjoint in each collection and decompose the bounded open
set U . The next task is to find open n-intervals with the same properties.
We are going to enlarge the closed n-intervals to open cubes so that there
will not happen new overlaps. Take any cube Qk ∈ Gk chosen in Whitney
decomposition and define d = dist(Qk,Rn \ U). By construction d >

√
n 2−k.

Let then Qk′ ∈ Gk′ be such that Qk ∩Qk′ 6= ∅. We show next that k′ ≤ k + 1,
or in other words, diam(Qk′) ≥ diam(Qk)/2.

In Whitney decomposition we start the construction with biggest appropriate
cubes and continue to smaller ones. Then Qk′ is the largest cube that has
distance at least

√
n 2−k

′
to the boundary of U . Now if k′ = k + 1, then Qk′

has this property, since

dist(Qk+1,Rn \ U) ≥ d− diam(Qk+1) >
√
n 2−k −

√
n 2−(k+1) =

√
n 2−(k+1).

The first inequality follows form the fact that Qk+1 ∩Qk 6= ∅. So a cube with
side length 2−(k+1) can always be fitted beside Qk and chosen to collection Gk+1.
Therefore any smaller cube does not intersect Q and hence k′ ≤ k + 1.

By definition Qk is of the form

Qk = [x1, x1 + 2−k
′
]× . . .× [xn, xn + 2−k

′
]

for some (x1, . . . , xn) ∈ U . We define

Q̃k = (x1−2−(k+2), x1 +2−k +2−(k+2))× . . .× (xn−2−(k+2), xn+2−k +2−(k+2)).

Then Q̃ reaches less than half of the smallest cube intersecting it. If every
n-interval given by Whitney decomposition is enlarged in this way, those cubes
that in the beginning did not intersect each other, remain disjoint. Since also
each Q̃ ⊂ U , replacing the closed cubes Q with the corresponding open cubes Q̃
gives us the desired collections F1, . . . ,FL(n) for any bounded open set U .

It still remains to generalize the result of Lemma 8.4 to hold for an un-
bounded open set U . We formulate as a lemma the following useful result.

Lemma 8.5. The n-intervals Qj = [j1, j1 + 1] × . . . × [jn, jn + 1], where
j = (j1, . . . , jn) ∈ Zn, cover Rn. Also, they can be divided into collections
F1, . . . ,F2n so that in every Fi the n-intervals are pairwise disjoint.

Proof. We prove the lemma by induction. If n = 1, the claim clearly holds:
choose the collections I1 = {[2j, 2j + 1] : j ∈ Z} and I2 = {[2j + 1, 2(j + 1)] :
j ∈ Z}. Suppose then that there are collections K1, . . . , K2n of n-intervals
Qj given by the induction assumption. Now every (n + 1)-interval Q′j =
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[j1, j1 + 1]× . . .× [jn+1, jn+1 + 1] in Rn+1 is of the form Qj × [jn+1, jn+1 + 1],
where Qj = [j1, j1 + 1]× . . .× [jn, jn + 1] ⊂ Rn and jn+1 ∈ Z. Define collections

K1 × I1, . . . , K2n × I1, K1 × I2, . . . , K2n × I2,

where
Ki × Il = {Q× J : Q ∈ Ki, J ∈ Il}.

Now each collection Ki × Il consists of pairwise disjoint (n+ 1)-intervals, since
we assumed that in each collection Ki the cubes Q ∈ Ki are pairwise disjoint.
Also each (n+ 1)-interval [j1, j1 + 1]× . . .× [jn+1, jn+1 + 1] belongs to one of
these collections. Hence we found 2 · 2n = 2n+1 collections that partition the
(n+ 1)-intervals covering Rn+1.

Proof of Prop. 8.2. Let U be any open set in Rn and let Qj be a closed n-
interval of side length 1 in Lemma 8.5 for j ∈ Zn. We replace Qj for each
j ∈ Zn with an open n-interval Q̃j = (j1 − 1/10, j1 + 1 + 1/10)× . . .× (jn −
1/10, jn + 1 + 1/10). Then collections K1, . . . , K2n remain pairwise disjoint and
the cubes Q̃j, for j ∈ Zn, cover Rn.

For j ∈ Zn, let Uj = U ∩ Q̃j . Then each Uj is an open and bounded set. By
Lemma 8.4 we find for each j ∈ Zn pairwise disjoint collections F j1 , . . . ,F

j
L(n)

of open n-cubes so that Uj =
⋃L(n)
k=1

⋃
Q∈Fjk

Q. Note that since L(n) is only

an upper bound, some of the collections F ji may be empty. We define, for
l = 1, . . . , 2n, the collection

Fli =
⋃

{j :Qj∈Kl}

F ji

of n-cubes. Then each collection Fli for l = 1, . . . , 2n and i = 1, . . . , L(n) is
countable and pairwise disjoint. By renaming each Fli we obtain collections
F1, . . . ,FP (n), where P (n) = 2n · L(n). Also

P (n)⋃
j=1

⋃
Q∈Fj

Q = U,

where each Q is an open n-cube. The proof is complete.

It only remains to collect the results and apply Proposition 8.2.

Proof of Theorem 4.1 (Poincaré duality). Let F1, . . . ,FP (n) be the collections
of open n-cubes Q ⊂ U given by Proposition 8.2. So we may present U as

U =

P (n)⋃
k=1

Uk,
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where each
Uk =

⊔
Q∈Fk

Q.

The open n-cubes Q are diffeomorphic to Rn, so by Proposition 5.5 each Q
satisfies the Poincaré duality. Then Proposition 7.5 gives us that the Poincaré
duality holds for each Uk.

We prove next by induction that the set U1 ∪ · · · ∪Um satisfies the Poincaré
duality for m ≤ P (n). Consider first the set U1 ∩ U2. It is a union of pairwise
disjoint n-rectangles, which are also diffeomorphic to Rn. By Propositions 5.5
and 7.5 the Poincaré duality holds for the set U1 ∩ U2. Hence by Proposition
6.16 also the union U1 ∪ U2 satisfies the Poincaré duality.

Suppose now that the set U1 ∪ · · · ∪ Um−1 satisfies the Poincaré duality. In
order to use Proposition 6.16 we need to show that the set

(U1 ∪ U2 ∪ · · · ∪ Um−1) ∩ Um = (U1 ∩ Um) ∪ (U2 ∩ Um) ∪ · · · ∪ (Um−1 ∩ Um)

satisfies Poincaré duality. Now

(U1 ∩ Um) ∩ (U2 ∩ Um) = U1 ∩ U2 ∩ Um,

which is a pairwise disjoint union of n-rectangles as a finite intersection of
pairwise disjoint n-intervals. So it satisfies the Poincaré duality. Hence also the
set (U1 ∩ Um) ∪ (U2 ∩ Um) satisfies the Poincaré duality by Proposition 6.16.
Consider then the set

((U1 ∩ Um) ∪ (U2 ∩ Um)) ∩ (U3 ∩ Um) = (U1 ∩ U3 ∩ Um) ∪ (U2 ∩ U3 ∩ Um).

Again the set

(U1 ∩ U3 ∩ Um) ∩ (U2 ∩ U3 ∩ Um) = U1 ∩ U2 ∩ U3 ∩ Um

satisfies the Poincaré duality by Propositions 5.5 and 7.5. So the union (U1 ∩
U3 ∩ Um) ∪ (U2 ∩ U3 ∩ Um) and further the set

((U1 ∩ Um) ∪ (U2 ∩ Um)) ∪ (U3 ∩ Um)

satisfy Poincaré duality by Proposition 6.16. We may repeat argument for
each set (Uk ∩ Um), k < m. Thus the Poincaré duality holds for the set
(U1 ∪ U2 ∪ · · · ∪ Um−1) ∩ Um. Then by Proposition 6.16 the Poincaré duality is
true for U1 ∪ · · · ∪ Um. Choosing m = P (n) gives us that the Poincaré duality
holds for

U1 ∪ · · · ∪ UP (n) = U,

which proves the claim.
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9 Punctured plane

We give an illustrative example of the Poincaré duality in the punctured plane
R2 \ {0}. We are about to find out explicit representatives for the cohomology
classes in Hk(R2 \{0}) and Hk

c (R2 \{0}), and see how the isomorphism DR2\{0}
connects the basis elements.

In Example 6.11 we proved using the Mayer–Vietoris sequence that

Hk(R2 \ {0}) ∼=

{
R, if k = 0 or 1

{0}, if k = 2.

Now the Poincaré duality (Theorem 4.1) states that

Hk(R2 \ {0}) ∼= Hn−k
c (R2 \ {0})∗.

On the other hand, by Theorem 2.7, we have that

Hn−k
c (R2 \ {0})∗ ∼= Hn−k

c (R2 \ {0}).

Hence

Hk
c (R2 \ {0}) ∼=

{
{0}, if k = 0

R, if k = 1 or 2.

The duality of H2(R2 \ {0}) and H0
c (R2 \ {0}) is thus trivial. We find next the

basis elements for the non-trivial cohomology groups.
As we have argued in the proof of Lemma 3.3,

H0(R2 \ {0}) ∼= {f :R2 \ {0} → R : f is constant}.

Thus we have
H0(R2 \ {0}) = span([χR2\{0}]).

Consider then the compactly supported 2-forms on R2\{0}. Since dim(H2
c (R2\

{0})) = 1, any non-trivial element forms a basis for this space. Now

Ω2
c(R2 \ {0}) = {f dx ∧ dy : f ∈ C∞0 (R2 \ {0})}.

Hence the function f must be zero in some neighbourhood of the origin. To
simplify the notation, let us take into use the polar coordinates. We treat the
coordinates x and y from now on as smooth functions R+×R→ R of variables
r and θ such that

x(r, θ) = r cos θ

and
y(r, θ) = r sin θ. (9.1)
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By the definition of differential, we have that

dx = cos θ dr − r sin θ dθ

and
dy = sin θ dr + r cos θ dθ. (9.2)

A direct calculation shows that dx ∧ dy = r dr ∧ dθ, so dr and dθ are indeed
linearly independent and the elements of Ω2(R2 \ {0}) can be written as
f(r, θ) dr ∧ dθ.

Let now f ∈ C∞0 (R+) such that
∫∞
0
f(t)dt =: C > 0. We claim that

[f(r) dr ∧ dθ] spans H2
c (R2 \ {0}). Since any 2-form defined on R2 \ {0} is

closed, the class [f(r) dr ∧ dθ] is indeed an element in H2
c (R2 \ {0}). By

Lemma 3.6 a compactly supported 2-form ω is exact if and only if the integral∫
R2 ω = 0. Since the form f(r) dr ∧ dθ can now be pushed forward to R2 via

inclusion, we deduce that f(r) dr ∧ dθ is exact in R2 \ {0} only if the integral
vanishes. However, by Fubini’s theorem for polar coordinates∫

R2\{0}
f(r) dr ∧ dθ =

∫ 2π

0

(∫ ∞
0

f(r) dr

)
dθ = 2πC > 0.

Hence
H2
c (R2 \ {0}) = span([f(r) dr ∧ dθ]).

To study the duality of H0(R2 \ {0}) and H2
c (R2 \ {0}), let [aχR2\{0}] =:

[a] ∈ H0(R2 \ {0}) and [bf(r) dr ∧ dθ] ∈ H2
c (R2 \ {0}), where a, b ∈ R. Now

DR2\{0}([a])[bf(r) dr ∧ dθ] =

∫
R2\{0}

a · bf(r) dr ∧ dθ = ab2πC.

We see that for any non-zero [a], the map DR2\{0}([a]) ∈ H2
c (R2 \ {0})∗ is

non-trivial. On the other hand, Let L be a linear map in H2
c (R2 \ {0})∗. Then

L([f(r) dr ∧ dθ]) = s

for some s ∈ R and we have that DR2\{0}([s/(2πC)]) = L.
We are now left with the case k = 1, which is perhaps the most interesting.

The spanning element of H0(R2 \ {0}) is any 1-form defined on R2 \ {0} that
is closed but not exact. Since any ω ∈ Ω1(R2 \ {0}) is of the form

ω = f1dx+ f2dy,

where f1, f2 ∈ C∞(R2 \ {0}), we have that the differential of ω is

dω = df1 ∧ dx+ df2 ∧ dy =

(
∂f2

∂x
−
∂f1

∂y

)
dx ∧ dy.
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Therefore a 1-form ω is closed whenever

∂f2

∂x
=
∂f1

∂y
. (9.3)

Let us consider the form

η :=
1

x2 + y2
(−y dx+ x dy).

Since
∂

∂x

x

x2 + y2
=

y2 − x2

(y2 + x2)2
=

∂

∂y

−y
x2 + y2

,

we have that η is closed and thus [η] ∈ H1(R2 \ {0}). If η is also exact, there
exists a smooth function g:R2 \ {0} → R such that dg = η. In other words, for
this g we have that

∂g

∂x
=

−y
x2 + y2

and
∂g

∂y
=

x

x2 + y2
.

However, there does not exist a smooth function that satisfies these conditions.
Suppose that this kind of g exists. Then we have by the fundamental theorem
of calculus that

g(x, y) =

∫
−y

x2 + y2
dx+ A(y) = −arctan

(
x

y

)
+ A(y),

where A(y) is some function depending only on y. On the other hand

g(x, y) =

∫
x

x2 + y2
dy +B(x) = arctan

(y
x

)
+B(x),

where B(x) is a function of x. Clearly this is a contradiction. Thus η is not
exact and

H1(R2 \ {0}) = span([η]).

To gain some intuition about the form η, we may again transfer to the polar
coordinates. Substitution of equations (9.1) and (9.2) into the definition of η
gives us

η = dθ. (9.4)

From this identity one could think that η is an exact form, since it can be
written as a differential of a function. This is, however, not correct reasoning,
since the function θ(x, y) is not continuous, much less smooth. Therefore the
notation dθ is misleading. In R2 \ {0} the 1-form η is well-defined and the
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equation (9.4) should be interpreted so that η agrees with the differential of θ,
when the branch of θ is correctly chosen. In complex analysis, the integral of
dθ over a line is the winding number of the line around the origin.

Now that we have found a non-trivial element [η] ∈ H1(R2 \ {0}), the
Poincaré duality suggests us immediately a basis element for H1

c (R2 \ {0}). Let
f ∈ C∞0 (R+) be the function in the basis element of H2

c (R2 \ {0}) for which∫∞
0
f(t)dt = C. Then for a compactly supported 1-form f(r) dr we have that∫

R2\{0}
η ∧ (f(r) dr) = −

∫
R2\{0}

f(r) dr ∧ dθ = −2πC.

We claim that f(r) dr defines a non-trivial compactly supported cohomology
class if it is closed. Indeed, the map DR2\{0}([η]) ∈ H1

c (R2 \ {0})∗ is linear, so
for any [τ ] ∈ H1

c (R2 \ {0}) we have that DR2\{0}([η])[τ ] 6= 0 exactly when [τ ] is
non-trivial. If f(r) dr is closed, the equivalence class [f(r) dr] is well-defined.
Then by the above calculation DR2\{0}([η])[f(r) dr] = −2πC 6= 0.

We show next that f(r) dr is closed. Now r(x, y) =
√
x2 + y2 is a smooth

function on R2 \ {0}. Therefore, in the Cartesian coordinates we have that

f(r) dr = f(r)

(
∂r

∂x
dx+

∂r

∂y
dy

)
=

f(r)√
x2 + y2

(x dx+ y dy).

Also, the chain rule gives us

∂f

∂x
=
∂f

∂r

∂r

∂x
=
∂f

∂r

x√
x2 + y2

and similarly
∂f

∂y
=
∂f

∂r

y√
x2 + y2

.

Using these identities we get after a straightforward calculation that

∂

∂x

f(r)y√
x2 + y2

=
xy

r2

(
∂f

∂r
+
f(r)

r

)
=

∂

∂y

f(r)x√
x2 + y2

.

By condition (9.3) we have that f(r) dr is closed and hence [f(r) dr] ∈ H1
c (R2 \

{0}). As we argued above, by Poincaré duality [f(r) dr] is non-trivial and thus

H1
c (R2 \ {0}) = span([f(r) dr]).

It is an interesting fact that the basis elements of H1(R2 \{0}) and H1
c (R2 \

{0}) have representatives which are pointwise linearly independent. One could
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think that the non-trivial elements in H1
c (R2 \ {0}) could be obtained from

the elements in H1(R2 \ {0}) by multiplying with a compactly supported
smooth function. This is, however, not correct reasoning. For example, a direct
calculation shows that the form g(r)η, where g ∈ C∞0 (R2 \ {0}), satisfies the
condition (9.3) if and only if the function g is constant. Hence the 1-form g(r)η
does not define a (non-zero) compactly supported cohomology class.

Let us finally study closer the exactness of f(r) dr. By the fundamental
theorem of calculus, we have that f(r) dr = dF for

F (r) =

∫ r

0

f(t) dt+ A,

where A ∈ R. Since F is a smooth function, [f(r) dr] is indeed trivial as
an element of H1(R2 \ {0}). Nevertheless, F is not compactly supported for
any A ∈ R. To show this, suppose it is. Since F must equal zero in some
neighbourhood of the origin, necessarily A = 0. Then, since f is compactly
supported, there exists r′ ∈ R such that F (r) =

∫∞
0
f(t) dt = C for all r > r′,

which is a contradiction. Hence the form [f(r) dr] is non-trivial as an element
of H1

c (R2 \ {0}).
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10 Conclusion

The Poincaré duality is one of the main theorems in algebraic and differential
topology. Its proof consists of several independent auxiliary results, which all
require different approach. The proof of Poincaré Lemma and the compactly
supported case in Rn (Section 5) are good exercises on differential geometry.
Section 6 is an outlook to the algebraic methods of algebraic topology. The
general definition of homology, exact sequences and working with commutative
diagrams are all basic tools in algebraic topology.

The rest of the thesis does not rely on the properties of de Rham cohomology
as much. The proof for disjoint unions in Section 7 was a lesson on linear
algebra and the actual proof of the Poincaré duality was totally different to the
other parts by nature. The proof of Poincaré duality was about basic analysis,
mimicing the proof of the Besicovitch covering theorem, and it took advantage
of the Whitney decomposition.

Most of all the proof to the Poincaré duality serves as an introduction to de
Rham cohomology. Especially the worked out example in a low-dimensional,
simple case clarified the difference between the cohomology groups and com-
pactly supported cohomologies.
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