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ABSTRACT

Fibres of various materials can be deposited to form planar mats of fibres. These
kinds of structures have gained substantial attention owing to their direct relation
to both large industrial fields, such as paper and nonwovens, and biological
structures, such as natural networks of fibrin, actin and collagen. In addition,
similar structures are important in new emerging fields such as flexible electronics
and tissue engineering. The physical properties of these structures are directly
related to the connectivity of the network, thus a thorough understanding of
the contact formation of the system is of great importance from both a scientific
viewpoint as well as for its application in the engineering of such structures.

In this Thesis we extend on the work regarding the structure of such random net-
works by considering, in more detail, the effect of the steric hindrance between the
constituents. Most notably, we find that even if the effect on averaged properties
in many cases can be negligible, its effect on statistical properties of the contact
formation remains substantial even for dilute systems.

Keywords: random networks, numerical simulation, porous material, X-ray to-
mography.
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YHTEENVETO (FINNISH SUMMARY)

Tasomaisista kuituverkoista koostuvia materiaaleja on runsaasti. Ne ovat herättä-
neet kiinnostusta varsinkin suurilla teollisuusaloilla, kuten paperi- ja kuitukan-
gasteollisuudessa, sekä biologian alalla, etenkin koskien luonnon aktiini-, fibriini-
ja kollageenirakenteita. Vastaavanlaisia rakenteita hyödynnetään myös nousevil-
la aloilla, kuten esimerkiksi joustavassa elektroniikassa ja kudosteknologiassa.
Yllämainittujen materiaalien fysikaaliset ominaisuuden riippuvat voimakkaasti
verkon kuitujen välisistä kontakteista, joten tarkka tieto kontaktien määrästä ja
jakautumisesta on keskeinen tekijä materiaalien ominaisuuksien ennustamisessa.

Tässä väitöskirjatutkimuksessa laajennetaan nykyistä ymmärrystä satunnaisverk-
kojen kontakteista ja tarkastellaan steerisen esteen vaikutusta kontaktien muodos-
tumisessa. Tärkeimpänä tuloksena voidaan todeta, aikaisempia tietoja tarkentaen,
että steerisen esteen vaikutus on havaittavissa myös hyvin harvarakenteisissa ver-
koissa. Tämä vaikutus näkyy kontaktien tilastollisia ominaisuuksia tarkasteltaessa,
jolloin huomataan selkeä kontaktien välinen korrelaatio.

Asiasanat: satunnaiset verkot, numeerinen simulaatio, huokoinen aine, röntgen-
tomografia.
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1 INTRODUCTION

Randomly packed materials are ubiquitous in our daily lives. Examples of such
range from naturally occurring piles, such as the soil we stand on, to every day
items such as the storage of dry foods. Stochastic structures are also present in a
wide range of practical application such as paper products, packaging materials,
tissues and filters. These are all examples of materials made from smaller con-
stituents, where the collective behaviour of the bulk is drastically different from
the behaviour of the single constituent.

One could say the simplest form of these random packings are those of granular
matter. They are collections of non-thermal particles, i.e., large enough so that
thermal fluctuations have a negligible effect on the system. Even though, at a
glance, these kinds of materials seem very simple (macroscopic classical dynamics)
the same collection of particles can express behaviour of a solid, fluid or gas
(Jaeger et al., 1996) depending on the environment. Granular matters also display
a wide range of collective complex behaviours such as jamming (Corwin et al.,
2005; Song et al., 2008; Ellenbroek et al., 2009), self-organized criticality (Bak et al.,
1988; Frette et al., 1996) and load-bearing force chains (Cates et al., 1998; Majmudar
and Behringer, 2005). Increasing the aspect ratio of the particles is known to have
an effect on the packing of these materials and e.g. piles of long aspect ratio rods
form entangled states that are very different from piles of sand (Philipse, 1996;
Desmond and Franklin, 2006; Blouwolff and Fraden, 2006) being more robust and
even withstanding stretching.

By adding flexibility to the elongated particles, we arrive on the field of macro-
scopic fibrous materials. Fibre networks of this kind have also been studied
extensively owing to their obvious application in big industrial fields, such as
nonwovens (Pan et al., 2007) and paper (Niskanen et al., 1997). These materials
include common household items such as paper, packaging materials, absorptive
tissue, various filters and insulating materials. With only a slight difference in
the materials used these types of structures can have highly different properties
depending on their end use including wetting behaviour, permeability, thermal
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conductivity, elastic stiffness and strength properties.

On an even smaller scale fibrous networks appear in biological structures
(Fletcher and Mullins, 2010), both in intracellular structures such as the cytoskele-
ton (Medalia et al., 2002) and extracellular networks of e.g. fibrin (Baradet et al.,
1995; Jockenhoevel and Flanagan, 2011) or collagen (Yurchenco and Ruben, 1987).
These biological networks are made of semi-flexible filaments, and are in a length
scale where thermal effects start to play a role. The materials are known to be
non-linear in their elastic response even for relatively low strain rates (Storm et al.,
2005; Broedersz et al., 2008). Numerical simulation also show that these kinds of
networks show a wide range of behaviour depending on the length scales and
geometry of the structure (Head et al., 2003; Wilhelm and Frey, 2003), an effect
which has also been reproduced on lattice based systems (Broedersz et al., 2011,
2012). Details in the connectivity also play a large role in the elastic response of the
network (Huisman et al., 2007). A recent surge of interest for random networks
has also risen owing to the applications of nanotubes in both composite materials
and as deposited films (Snow et al., 2003; Du et al., 2004; Hu et al., 2004; Dalmas
et al., 2006; Cao and Rogers, 2009; Hu et al., 2010; Sangwan et al., 2012).

The common factor in all these materials is that the interesting behaviour arises
from their interaction with each other. These interactions, in the static case, are
described by contacts (stabilized by either mechanical or chemical effects) and
give rise to the collective behaviour of the network, making the understanding of
the contact formation a fundamental link to the understanding of the macroscopic
behaviour of the material. Although the theoretical groundwork for modelling
the structures as random networks is well developed, a subject that has remained
unsettled is the effect of steric hindrance. Even recent reviews of the subject (Picu,
2011), although giving a very comprehensive summary of the current understand-
ing of random fibre networks, do not address the this effect thoroughly.

The main objective of this work was to investigate the effect of steric hindrance
on the structure of randomly deposited networks. As the physical properties
depend on the both mean and distributional properties of the network, the aim
was to investigate both. The distributional part was addressed by considering an
abstract model for sterically hindered contact formation in a linear space. This
resulted in candidate distributions for the segment length in actual networks. To
address the question of global averaged properties in these networks we turned to
numerical methods and developed a dynamic model of flexible rods.

This Thesis is structured as follows: we give an introduction to random networks
in Chapter 2 and to tomographic x-ray imaging in Chapter 3. The main body of
our work is introduced in Chapter 4, where we introduce our model for steric
hindrance. Chapter 5 is reserved for numerical and experimental methods and the
consequential results are presented in Chapter 6. A brief summary and outlook is
given in Chapter 7.



2 UNCORRELATED NETWORKS

Taking into account all the intricate details in the formation of a fibrous structure
is an extremely difficult task. Taking into account all the physical and geometrical
details of its constituents when trying to solve physical properties of the material is
also more often not possible. Fibrous structures are often thought of as a network
of their constituents i.e. they are formed by a collection of fibres confined in the
same space and which are connected in some way. By this notion we have already
decoupled two things: the geometry and the connectivity. This is a common
procedure in many fields i.e. breaking down problems into smaller pieces, which
can be individually solved and later combined for relevant information.

A good starting point is that of a randomly formed network, such that a random
variable X describing the relevant positional, orientation and geometrical features
of a single constituent is taken independent from a multivariate distribution fX(x)1.
This reduces the formation of the network to a problem of stochastic geometry. A
simple, yet powerful, example of such network is the random isotropic network
of line segments (fig. 1a). By drawing N lines of length L onto R2 we have a
family of well defined stochastic networks controlled by only two parameters, the
length scale L and a process density ρf = N/L2, yet these structures predict many
features of realistic materials and has been the underlying model for numerous
works on random networks e.g. (Åström et al., 2000a,b; Cheng et al., 2001; Wilhelm
and Frey, 2003; Yi et al., 2004; Berhan et al., 2004; Wu and Dzenis, 2005; Heussinger
and Frey, 2006; DiDonna and Levine, 2006; Heussinger et al., 2007).

The mathematical problem of random lines can be dated back to the Buffon
needle problem, and the general solutions to the problem of crossing lines can be
dated back to the 19th century by Crofton (1868) and Sylvester (1890). However,
studies addressing the problem of random network structures appear much later.
Although Goudsmit (1945) considered the polygons formed by infinite lines, the

1 Note that not all uncorrelated random processes are independent, but all independent
processes are uncorrelated. We choose to call these networks uncorrelated as the term
independent might confuse readers to assume they are non-interacting.
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(a) 2D line (b) 3D isotropic (c) deposition

FIGURE 1 Illustrations of three different kinds of a network. A 2D (zero-width) de-
posited network (a), a network of isotropically distributed cylinders (b) and a
deposited network of fibres with non-zero width (c).

works of Kallmes and Corte (1960) are regarded as the pioneering in modeling the
structure of fibrous materials as random (2D) line networks. Kallmes and Corte
(1960) derived a wide number of properties for these kinds of networks, most
notably the number of contacts and the free fibre length between them, i.e. the
segment length. Further work was done by Miles (1964) on the both distributional
and mean properties of the formed polygons. Miles (1964) is also one of the first
to consider the effect of non-zero width. One may find it surprising that the first
considerations of network structure in three dimensions (3D) appeared earlier and
was made by van Wyk (1946) in his seminal publication on the compressibility of
wool. Further work on uncorrelated 3D networks (fig. 1b) have been carried out
by e.g. Komori and Makishima (1977), Dodson (1996) and Toll (1998).

Theoretical estimations of structural properties have been especially important
in the study of paper, which have been nicely summarized by Deng (1994). In this
field, the measure of choice is usually relative bonding area (RBA)2. The reasoning
behind this originates from the difficulty in measuring a single contact directly,
requiring for other methods to address the relationship between network con-
nectivity and its mechanical properties (Ingmanson and Thode, 1959), and many
authors address the network properties in this light both theoretically (Samp-
son, 2003, 2004; Sampson and Sirviö, 2005; He et al., 2007) and experimentally
(Batchelor and He, 2005; Batchelor et al., 2008).

In this chapter we summarise some general features of uncorrelated random
networks relevant to our work and link them to properties of the physical systems.
A brief note on uncorrelated models is given at the end of the chapter.

2 Many also use the term fractional contact area (FCA), distinguishing it from RBA because
not all contacts between fibres bear any load.
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2.1 Properties of random networks

Regardless of the exact process of network formation, there are some properties
which we can define to hold true for all networks of our interest. Consider placing
a fibre in contact with an existing network so that it makes C contacts. Including
the dangling ends, the fibre itself will be divided into C + 1 segments, and all new
contacts divide an existing segment into two. In total every added fibre produces,
on the average, 2〈C〉+ 1 new segments, where the brackets denote an average
value. A network of Nf fibres thus has a total of Ns = 2Nc + Nf segments, where
Nc is the total number of contacts. Correspondingly,

ρs = 2ρc + ρf (1)

for the number densities ρc,f,s = Nc,f,s/V in a volume V. Global densities of the
system can now be described by the relations of the solids content by

Vφs = NfVf, (2)

where Vf is the volume of the fibres. For fibres with a constant cross-sectional area
e.g. non-capped cylindrical fibres, this can be expressed in the form

Vφs = NfLAc = Ns〈ls〉Ac, (3)

where L is the length of the fibres, Ac the area of the cross-section of the fibres, and
〈ls〉 is the mean segment length. If the fibres are not allowed to overlap (hard-core
case), this solids content φs is directly related to the apparent density ρ by the
relation ρ = φsρm, where ρm is the density of the fibrous (solid) material. Now the
relative solids content φs is given by

φs = ρfLAc = ρs〈ls〉Ac. (4)

This kind of scaled density is not directly suitable for soft-core networks, as it is
not restricted and can have values larger than unity. It has however an interesting
meaning in two dimensions i.e. by substituting the volumetric properties of the
fibres with the projected areal properties. This kind of density is more commonly
known as coverage

ρA = ρfA f , (5)

where A f is the projected area of the fibre.

In some cases it is natural to express the contacts of a single fibre. This is
expressed by the coordination number C of the fibre, which is the number of its
connected neighbours. The mean of this quantity can be expressed in the form

〈C〉 = 2
ρc

ρf
, (6)

where the pre-factor 2 takes care of the double-counting of the contacts, as a single
contact contributes to the coordination number of both fibres in contact.
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2.1.1 Contacts in uncorrelated networks

The assumption of an uncorrelated process leads to a simple way of solving the
contact formation. Consider the case of (randomly) adding the last fibre in a test
volume V. As each other fibre was added randomly, the expected value of contacts
this fibre forms is given by 〈Pcontact〉 (Nf − 1), where Nf is the total number of
fibres in the system. The problem then lies in properly determining the probability
Pcontact that two randomly selected fibres will cross. This probability is given by
the excluded volume.

The excluded volume of two particles i and j can be defined as ’the volume
which is denied to particle j by the condition that it must not intersect particle
i’ (Onsager, 1949). This volume depends on the geometry of the particles and
the relative orientation θij between them and can thus be expressed in the form
Vex(θij). In 3D we can define that θij is taken in the plane parallel to both fibres.
Examples of the excluded volume for common elongated objects of equal length
are shown in Table 1, but for a more comprehensive list, general solutions are
given by Onsager (1949).

Now conveniently, if our test fibre i would be placed randomly into a volume V,
where the first fibre j already was placed, the probability of making a contact is
Vex(θij)/V. For a system of Nf fibres, fibre i will have a total number of (Nf − 1)
such random pairs, and thus the mean coordination number 〈C〉 is given by

〈C〉 = (Nf − 1)
〈Vex(θij)〉

V
, (7)

where the brackets 〈 · 〉 denote the expected value of the given quantity. In
the special case of an isotropic orientation distribution, this expression can be
evaluated directly from the orientation distribution as θij can be fixed with respect
to an arbitrary vector.

As an example, let us consider a deposited network of Nf rectangles in an area
A, of length L and width W. Taking the excluded volume of a rectangle (table 1)
and taking the limit W → 0, we find that

〈C〉 = (Nf − 1)
L2〈sin θ〉

A
. (8)

Now taking the average of sin θ over a uniform distribution we find the result of
Kallmes and Corte (1960),

〈C〉 = 2L2

π

Nf − 1
A

. (9)

This approach is valid for any geometrical shape in both 2D and 3D when the
excluded volume and the orientation distribution is known.

Even though the interpretation of the solids content for a soft-core network is a
bit ambiguous3, for a large enough system (Nf � 1), it can be useful to express the

3 For example its relation to apparent density, see (Toll, 1998).
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TABLE 1 The excluded volume of some geometric shapes commonly used to describe
fibres in 2D and 3D (Balberg et al., 1984; Onsager, 1949). Here θ represents the
mean angular difference in the orientation of the objects 〈θij〉 .

Geometry Excluded volume

2D rectangle (L sin θ +W +W cos θ)(L+W sin θ + L cos θ)−
(L2 −W2) sin θ cos θ

2D capsule 4WL + πW2 + L2 sin θ

3D capsule (4π/3)W3 + πW2L + 2WL2 sin θ

behaviour as a function of solids content rather than the number of fibres, and a
substitution of Nf in eqn (7) using eqn (2), or equivalently eqn (5) in 2D, leads to

〈C〉 = φs
〈Vex〉

Vf
= ρA

〈Aex〉
Af

. (10)

2.1.2 Distributional properties

Distributional network properties are important in random networks, as they
are the ingredients which make the networks inhomogeneous. There are many
aspects for which these properties are important, and they can be observed in
many different measurements. Flow properties depend on the local void space
(e.g. Publication VI), strength depends on the distribution of contacts (Page, 1969;
Carlsson and Lindstrom, 2005) and the mode of deformation depends on the
distribution of segments (Heussinger and Frey, 2006; Heussinger et al., 2007).

If the fibre positions and orientations are thought to be drawn independently
from some underlying distribution, the contacts can considered to be formed by
successive Bernoulli trials with probability p. The probability of getting k successes
in n trials is given by the binomial distribution

P(X = k) =
(

n
k

)
pk(1− p)n−k. (11)

In such cases n = Nf is very large and p = 〈Vex〉/V is very small (and the expected
value np = 〈C〉 is moderate), and the binomial distribution can be approximated
by the Poisson distribution,

P(X = k) =
〈C〉ke−〈C〉

k!
, (12)

where the expected value of X is the mean coordination number 〈C〉.
Now consider a Poisson point process along a fibre. For a fixed interval at length

x, and the mean number of crossings per unit length µ, the probability of finding k
crossings in that interval is given by (Deng, 1994)

P(X = k) =
(µx)k

k!
e−µx; k = 0, 1, 2, . . . . (13)
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FIGURE 2 Regardless of the exact procedure of network formation, Poisson statistics
is an inevitable consequence if hard-core interactions are not accounted for
and thus, a negative-exponential distribution of segment length if contacts
are evenly distributed along the fibre centreline.

Starting at the end of the fibre, let the first contact on that fibre be at distance x1.
The probability that x1 > x is then given by

P(x1 > x) = e−µx; x > 0, (14)

from which the complement gives the cumulative distribution function (CDF) of
the process, giving us a PDF for the segment length in the form

P(ls ∈ [x, x + dx]) = µe−µxdx, x > 0. (15)

An example of the resulting distributions in eqs (13) and (15) is shown in fig 2.
These statistical properties are to some extent independent of the dimensionality
of the network. For P(C) we only need that the contact formation is described by
a common random process with a mean probability p. For the segment length
distribution it is sufficient that the fibres can be described by a 1D (straight)
centreline onto which this Poisson point process can be mapped. This is a very
useful result, as any deviation from these distributions, as seen e.g. in the works
of He et al. (2004); Blouwolff and Fraden (2006) and Wouterse et al. (2009), can be
directly interpreted such that some correlation must exist.

2.2 Voids properties

Equally important as the structure of the network is the structure of the comple-
ment i.e. that of the void space. Transport properties, such as fluid flow, show
a very different behaviour for different random structures with the same mean
properties depending on the details of the structure of the void space (Publication
VI).
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In the case of networks of infinite lines, the ’pores’ of the structure are well
defined as the space of R2 is divided into disjoint polygons. This problem was
first addressed by Goudsmit (1945) and further developed by Miles (1964), who
derived the distribution of sides in a random polygon, and noted that the average
polygon constructed is a rectangle. A common way to approximate this areal
distribution is to consider the area of a rectangle, that is constructed by two sides
drawn from the negative exponential distribution. The result of the PDF for the
area of such a random rectangle is often credited to Corte and Lloyd (1965), but
is actually found in the results of Goudsmit (1945). The effect of finite width, i.e.
networks of staples, has been considered by Miles (1964) and later by Eichhorn
and Sampson (2005).

In 3D the concept of ’pores’ is ill-defined. Whereas in 2D, random lines provide
an unambiguous tessellation of the space, the corresponding process of placing
lines (or cylinders) in R3 does not. It is thus not surprising that there does not
seem to be a consensus of the treatment of ’pores’ in 3D. Still some results are
given for both distributional (Pan, 1994) and mean values (Neckář and Ibrahim,
2003). One thing that seems to be agreed upon is that the local heights of the void
space follow very closely a negative exponential distribution (Hellen and Alava,
1997; Dodson, 2000).

2.3 Effective properties of random networks

Fibrous materials belong to a class of heterogeneous materials i.e. they consist
of mixtures of several material components, such as e.g. two different solids
(composites), solids and fluids (fibrous networks, solid foams), or fluid mixtures
(liquid foams, emulsions), to name a few (Torquato, 2001). It is often beneficial to
characterise these materials on a larger macroscopic scale.

On a larger scale, where microscopic details are much smaller than the typical
sample size, the macroscopic behaviour of the material can be described by its
average, or effective, properties (Torquato, 2001). We shortly introduce here two
of these effective properties related to random fibrous structures, viz.: the elastic
stiffness tensor Ceff and the fluid permeability tensor k.

2.3.1 Elasticity

Elasticity relates to the ability of the medium to withstand external forces applied
to the structure. A linear elasticity in continuous media is described by the
generalised Hooke’s law [e.g. (Saada, 2009)],

σ = −Cε, (16)
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where σ and ε are the second order stress and strain tensors respectively and C
is a fourth-order stiffness tensor. For small deformations the strain tensor can be
expressed in the form

εik =
1
2

(
∂ui

∂xk
+

∂uk
∂xi

)
. (17)

The coefficients of the strain tensor Cijkl can be reduced by the symmetries of
the stress tensor Cijkl = Cjikl, symmetries of the strain tensor Cijkl = Cijlk and
symmetries induced by existence of the strain density function, Cijkl = Cklij. As a
result, we have 21 independent coefficients describing the stiffness tensor C.

Further assumptions of symmetry reduce the number of independent coeffi-
cients. In the special case of an isotropic medium, they are reduced to just two,
and eqn (16) can be expressed in the form

σij = 2µεij + λδijεnn, (18)

where µ and λ are the Lamé parameters. Lamé parameter λ is more commonly
known as the shear modulus. With these parameters we can also express the more
commonly used Young’s modulus Y = µ(3λ+2µ)

λ+µ and Poisson ratio ν = λ
2(λ+µ)

,
where Y relates directly to the one dimensional extension/compression of the
material, whereas the Poisson ratio ν relates to the transverse strain transfer.

The first mean field theory of elasticity of fibre networks was developed by Cox
(1952), who derived the 21 coefficients of the stiffness tensor C of a random line
network consisting of non-interactive fibres that span the whole sample volume
(both 2D and 3D). The special case of 2D furthermore assumed that this bending
stiffness is negligible so that the elastic coefficients are now given by

Yeff =
1
3

ρfYAc

Geff =
1
8

ρfYAc

ν =
1
3

,

(19)

where Yeff and Geff are the effective Young’s and shear modulus of the network
respectively and Y is the Young’s modulus of the fibres.

The rise of paper science saw many models being developed during the 60s and
70s (see e.g. Baum (1984) for a survey). Cox also introduced the concept of stress
transfer from the surrounding matrix to the fibre which was extended by Page
et al. (1979) in their shear lag model by considering fibres of a finite length, so that
this stress transfer happened via contacts in the fibre network. Such a correction
deviated from that of the infinite line networks such that

Y =
1
3

YAc (ρf − Kρfc) , (20)

where ρfc is the fibre density at a stiffness percolation of the random network and
K is a constant related to the rate of stress transfer to the fibres. This correctly
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predicted a stiffness percolation of the network i.e. there exists a percolation
density in which the network starts to store elastic energy globally (Latva-Kokko
et al., 2001; Latva-Kokko and Timonen, 2001; Heussinger and Frey, 2006). The
concept of shear lag has also been considered in fracture mechanics (Carlsson and
Lindstrom, 2005).

Further work on the stiffness of random networks has been done by taking the
affine displacement field of Cox (1952), but considering the behaviour of single
segments, modelled by either Euler-Bernoulli beams (Åström et al., 2000a,b) or
Timoshenko beams (Wang and Sastry, 2000; Wu and Dzenis, 2005; Berhan and
Sastry, 2007). A notable requirement of these models is the full knowledge of the
PDF for the segment lengths fls .

Numerical studies on the elasticity of random networks have also revealed
an intermediate region (Wilhelm and Frey, 2003; Heussinger et al., 2007; Head
et al., 2003; Buxton and Clarke, 2007), where the elastic response is highly non-
affine. This relates to the deformation being governed by segment bending rather
than stretching (Heussinger and Frey, 2006; Heussinger et al., 2007) of the fibres.
Similar behaviour has also been observed on bond-diluted lattice based systems
(Broedersz et al., 2011, 2012). All these models, except for the noninteracting case
of (Cox, 1952), require detailed information of the connectivity. Moreover, the
affine to non-affine crossover can be directly linked to the segment lengths of the
network.

2.3.2 Permeability

At low Reynolds numbers, in the limit of Stokes flow, fluid flow through a porous
medium is well described by Darcy’s law (Bear, 2013),

q = −k
µ
∇p, (21)

where q is the flow velocity, µ the dynamic viscosity of the fluid and ∇p the fluid
pressure gradient. Permeability coefficient k, a second rank tensor, measures the
conductivity to fluid flow of the porous material and is usually a priori unknown.

The most widely used phenomenological expression which relates permeability
to structural characteristics of the porous material is the Kozeny-Carman law
(Kozeny, 1927; Carman, 1937),

k =
φ3

CS2 , (22)

where φ = (1− φs) is the porosity and S is the relative surface of the sample. C is
the Kozeny coefficient, which is a material dependent constant and includes the
effect of tortuous flow paths in the medium. Another form of the equation, which
is also common in the literature, is given by

k =
1

cS2
0

φ3

τ2 (1− φ)2 , (23)
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where S0 = S/φs is the specific surface area i.e. normalised by the solids content,
τ is the tortuosity, and c is now the Kozeny-Carman constant.

Although many models have been proposed for the flow in porous materials
(Jackson and James, 1986; Nilsson and Stenström, 1997; Higdon and Ford, 1996;
Tomadakis and Robertson, 2005; Soltani et al., 2014) there seems not to be a
consensus on how flow behaves in them. Numerical works on the subject include
e.g. uncorrelated soft core networks (Nabovati et al., 2009), deposited networks
(Koponen et al., 1998) and randomly grown hard core networks (Stylianopoulos
et al., 2008), which each have lead to a different empirical treatment of the subject
respectively.

The flow can also be related to the pore structure of the void space, where the
fluid actually flows. This idea dates back to Purcell (1949), who considered flow
systems of parallel capillaries with varying radii, and has also been extended to
include the effect of connectivity (Childs and Collis-George, 1950; Scheidegger,
1957; Marshall, 1958). Very recently Huang et al. (2015) linked the permeability
of fibrous structures with their local void sizes. In Publication VI we derive a
generalisation of the Kozeny-Carman model for fluid flow trough parallel disperse
capillary tubes. We notice that, in addition to a mean length scale (which is
embedded in the specific surface S0), the distribution of the void space is an
equally important factor in the permeability.

2.4 Steric models

By a steric hindrance we mean the geometric obstruction between fibres so that
they cannot overlap in space. This introduces restrictions to the positions and
orientations of the fibres, and thus introduces correlations between the constituents
of the network.

There are two main methods which have been used to incorporate this in the
models of random networks. One approach involves considering the reduction of
available configuration space [e.g. (Pan, 1993; Komori and Itoh, 1994)]. The other
involves taking the approximation of thin networks (Kallmes and Corte, 1960)
and applying the steric hindrace between multiple layers of such networks [e.g.
(Kallmes and Corte, 1961; Sampson, 2004; Bagherzadeh et al., 2012)]. For better
comparability we report here only results for planar random networks.

The effect of existing rods restricting the possible locations of others was con-
sidered by Pan (1993) who described this steric hindrance by reduction in the
probability of contacts P = Vex

V
(
1− d̄i

)
, where d̄i is the normalised ’forbidden

length’ owing to pre-existing contacts in the fibre,

ρc =
32

W3 (π3 + 16Aφs)
φ2

s , (24)
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FIGURE 3 Comparison of different models for the coordination number 〈C〉 (a) and
contact density ρc (b) for a random network with L/W = 30. The number of
levels in the model of Sampson (2004) was chosen arbitrarily as 10.

where A = log {cot [arcsin (W/L)]} is a constant only depending on the aspect
ratio of the fibre. This result was extended by Komori and Itoh (1994) who, by
correcting some mathematical and logical shortcomings, found that

ρc =
32

π3W3 hφ2
s , (25)

where h = 2/ (1 + 16πφs).

The effect of multiplanar steric hindrance was already considered by Kallmes
and Corte (1961) and Kallmes and Bernier (1962) addressing both the number of
contacts and correspondingly the relative bonding of the networks. The basic
principle was to consider stacks of thin networks (networks with a small coverage)
and account for the interlayer contacts separately. These kinds of models have been
extended later by e.g. Sampson (2004) and Bagherzadeh et al. (2012). Sampson
(2004) derives the contact number such that 〈C〉 = 2 (LW/A)Φ∗mp, where A is the
expected area of a contact, and

Φ∗mp =
1
n

[
(n− 2)

(
Φ2D + Φ∗

)
+ Φ∗

]
, (26)

where Φ2D and Φ∗ are respectively the relative contact area of thin networks
and interlayer contacts. In fig. 3 we plot the different models of steric hindrance
and compare them with results for the corresponding uncorrelated network of
capsules. It is evident, that the models differ substantially from each other and do
not even agree on the general shape of the function 〈C〉(φs).

A different field, in which steric hindrance is important is in the thermody-
namical treatment of hard rods (Onsager, 1949; Lekkerkerker et al., 1984). This
connection has indeed been done by e.g. Philipse (1996) who noted that the
random packing of hard rods produce dense isotropic networks. So dense, that
the metastable systems are only stable in a macroscopic limit, as colloidal fluids
would spontaneously seek a nematic order at similar density. Indeed, albeit the
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many analytically solved properties of these systems, their usefulness for solving
properties of macroscopic packed systems seem to be limited. To the author’s
knowledge contact formation in these kinds of statistical many-body systems
are zero-probability events, i.e. configurations that result of contacts between
particles belong to a zero-measure manifold of the allowed configuration space
and contacts would have to be defined by some arbitrary soft-core extension.
Moreover, deposited system tend to form planarly packed networks, a state that is
not present in the phase diagram for colloidal systems (Bolhuis and Frenkel, 1997;
Dijkstra et al., 2001). A rigorous treatment of these models is beyond the scope of
this Thesis and is not discussed here.



3 TOMOGRAPHY

The word Tomography (from the greek words tomos and graphō) simply means
the method of slice imaging. That is, the obtaining of a 3D image by combining
slices of 2D images from within the sample. X-ray tomography refers to the (non-
destructive) method of obtaining 3D images by reconstruction of radiographs of
the sample. Around the millennial shift the resolution of commercial desktop
scanners got into the µm scale and micro scale computed tomography (µCT) saw
a rise of popularity in materials science becoming a significant tool for structural
imaging (Stock, 1999; Maire et al., 2001; Salvo et al., 2003).

Although the mathematical tools and proof for the tomographic reconstruction
based on radiography were developed as early as 1917 by Radon, practical appli-
cations came much later. The first reported commercial devices were developed
during to 70s by Hounsfield. The development of the resolution of these kinds
of devices has allowed for utilization of µCT also in materials science including
fibrous materials such as metallic foams (Elliott et al., 2002; Maire et al., 2003;
Blacher et al., 2004; Montanini, 2005; Dillard et al., 2005), composite materials (Lux
et al., 2006; Miettinen et al., 2012) and granular piles (Seidler et al., 2000; Richard
et al., 2003; Moreno-Atanasio et al., 2010) only to name a few.

The tomographic imaging used for this work was done with the two µCT devices
located in the facilities of the Department of Physics at the University of Jyväskylä,
Finland. The paper fibre networks were all imaged using an Xradia Micro-XCT-400
device, while the images of randomly packed spaghetti strands were obtained
using a SkyScan 1172 µCT scanner.

3.1 X-ray imaging

In principle, the X-ray imaging used in µCT works in very much the same way
as in conventional radiography, the difference being that the either sample or
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detector-camera setup is mounted in such a way that projections from different
angles can be taken.

In most desktop µCT scanners the beam is generated with a traditional X-ray
tube. In a conventional X-ray tube the beam is generated by accelerating a focussed
electron beam on an anode (the most widely used material being tungsten). Upon
collision with the anode, the electrons deaccelerate and produce both a continuous
spectrum of Bremsshtrahlung and characteristic peaks depending on the material
of the target.

3.1.1 Interaction with matter

The method of X-ray imaging (be it 2D or 3D) is based on the attenuation of X-rays
passing through media, mainly by photoelectric absorption, inelastic Compton
scattering and Rayleigh scattering1. For a monochromatic beam passing through a
homogeneous material of thickness x, the intensity of the attenuated beam follows
the Beer-Lambert law

I = I0e−µx, (27)

where I0 is the intensity of the unattenuated beam and µ is the linear attenuation
coefficient. The linear attenuation coefficient µ is the (normalized) sum of the
interaction cross-sections of the target material and depends thus strongly on
the atomic number Z, and consequently approximately on the density. These
interaction probabilities, however, depend strongly also on the energy of the beam.
In most desktop scanners (also in our case) the beam has a broad energy spectrum,
and the recorded intensity is given by the integration

I =
∫

I0(E) e−µ(E)x dE. (28)

As many detectors record only absolute intensity, these polychromatic spectra
of the beams can cause reconstruction artefacts in the sample, such as e.g. beam
hardening, i.e. the increase of mean energy as the beam travels through a sample.
This is, however, a difficulty more related to the imaging of denser materials, such
as minerals, and the effect on the image quality in our work is negligible.

3.2 Reconstruction

For the sake of simplicity, let us assume a parallel monochromatic beam passing
trough a sample, which has a spatial distribution of attenuation described by the
function f : R2 → R. We can rewrite eqn (27) in the differential form, i.e., the

1 Generally the energies used in X-ray imaging are low enough so that the cross-section of
pair-production can be ignored.
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FIGURE 4 A sample described by its local attenuation coefficient f (x, y) and two exam-
ples of projection, i.e. its Radon transform R f (x, y) = Pθ(t). One at angle 0,
P0(t), and one at angle θ, Pθ(t).

attenuation that occurs within a small thickness element ds in the sample

dI
I

= −µ ds = − f (x, y)ds. (29)

The recorded attenuation in the radiographs are each given by a projection
(parallell line integrals) over this attenuation function f (x, y) (see fig. 4). By
defining the rotated coordinate system as

[
t
s

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
, (30)

we can describe these recorded attenuation images for an arbitrary rotation angle
θ as

Pθ(t) =
∞∫

−∞

f (t, s)ds. (31)

This function, mapping the density distribution function f (x, y) to its rotated
projections Pθ(t), is more commonly known as the Radon transform R f (θ, t). The
existence of the inverse of this function is the mathematical basis for modern
µCT imaging.

Consider now the Fourier transform of the projection data for one slice at an
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angle of θ, which can be written as

Sθ(ω) =

∞∫

−∞

Pθ(t)e−i2πωt dt. (32)

Substituting Pθ(t) with eqn (31) and transforming it into the (x, y) coordinate
system by relation eqn (30) we find that

Sθ(ω) =

∞∫

−∞

∞∫

−∞

f (x, y)e−i2πω(x cos θ+y sin θ) dxdy, (33)

which is conveniently just the two dimensional Fourier transform of a function
f (x, y)

F(u, v) =
∞∫

−∞

∞∫

−∞

f (x, y)e−i2π(ux+vy) dxdy, (34)

with the constraints u = ω cos θ and v = ω sin θ, which in this case is the line of
the projection. So for every Fourier transform of the projection Pθ(t) we fill the
frequency domain at an angle of θ. Consequently, collecting an infinite number of
projection data at different angles would result in the complete Fourier transform
of the object.

3.2.1 Filtered backprojection

The most commonly used reconstruction methods for tomographic images are
based on Filtered Backprojection. As the name suggests, the reconstruction is
obtained by backprojecting a modified, ’filtered’, projection image onto the recon-
struction volume. Although most desktop µCT devices do not have a parallel
beam, the underlying idea is very similar and reconstructions can be obtained
with slight modifications, see e.g. Feldkamp et al. (1984), Kak and Slaney (1999)
and Turbell (2001).

The inverse Fourier transform of F(u, v) in eqn (34) is given by

f (x, y) =
∞∫

−∞

∞∫

−∞

F(u, v)ei2π(ux+vy) dudv. (35)

By expressing this in polar coordinates by making the substitution u = ω cos θ and
v = ω sin θ in eqn (35) and by substituting the Fourier transform of the projection
at angle θ, Sθ(ω) for the Fourier transform F(ω, θ) one can write the transform as

f (x, y) =
π∫

0

∞∫

−∞

Sθ(ω)|ω|ei2πωt dωdθ. (36)
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(a) 2 projections (b) 10 projections

(c) 30 projections (d) 181 projections

FIGURE 5 A reconstruction of a spherical object using different number of projections.

By substituting eqn (32) for Sθ(ω) and rearranging, we get

f (x, y) =
π∫

0

∞∫

−∞

Pθ(t′)G(t− t′)dt′dθ, (37)

where G(t− t′) =
∫
|ω|ei2πω(t−t′) dω. This is the underlying idea of the filtered

backprojection. A filter, G (often called a ramp filter owing to the shape in the
Fourier space), is applied on the projections Pθ. The result is ’smeared’ or backpro-
jected onto the image as in fig. 5. The reconstructed image consists of contributions
of this backprojection from each angle θ.

In practice, the devices recording the data are naturally not continuous and
the exposure time sets limits on the amount of projections taken. Owing to this
imaging is always a balancing of available time and required quality. In fig. 5
we show an example of a tomographic reconstruction showing the effect of noise
(single pixel streaking), the number of projections (increasing detail of the spherical
boundary) and beam hardening (edges of the sample appear more dense).
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3.3 Image analysis

Although raw reconstructed 3D images as such can be a powerful tool to assess
many qualitative questions, they are not always directly suitable for quantitative
analysis. Moreover, the methods of extracting relevant data from the images are
computationally challenging. Modern µCT devices produce 3D images that are
roughly three orders of magnitude larger than corresponding 2D images. This
means that not all of the conventional image processing procedures are directly
applicable on 3D images. A recent review on 3D image processing, especially for
material research, is given by Turpeinen (2015).

3.3.1 Problems

Reconstructions are never without some defects (Stock, 2009). These may be
device specific artefacts, owing to improper scanner calibration, or faults in the
detector. They can also be sample specific errors caused by streaking of high-
density particles or inaccuracies owing to sample sizes larger than the field of
view. Moreover, pure statistical fluctuations both relating to the X-ray source,
attenuation, and detector cause random noise in the final image. Owing to these
effects, images may require a substantial amount of pre-processing before being
suitable for analysis.

Samples in our work were assumed homogeneous with respect to their material
density. This leads to a general problem in µCT given a gray-scale reconstruction
of a sample. How do we define what is considered solid and what is not? In
practice this definition is often problem dependent. With e.g. the granular piles of
short-cut spaghetti, we conducted a separate measurement of strand thickness,
which was then used as a proper criteria. In other samples, where it was imperative
that the voids of the sample did not contain single floating solids voxels, an stricter
threshold for solids was justified.

3.3.2 Mehtods

Although the focus of this Thesis is not on image processing, for clarity, we
introduce two image processing methods, as they were used in the studies.

Distance transforms (Borgefors, 1986) are operators on foreground voxels which
gives the shortest (local) distance to a chosen object. The distance here is defined
such that paths only travel along these foreground voxels. In our method (see
section 4) the shortest transverse path along fibre networks was done by applying
a distance transform on the solids voxels of the image using the solids voxels in an
xy-plane as the object. At that time, no fast implementation of Euclidian distance
transforms was available and thus the results were acquired by Chamfer masking
(Barrow et al., 1977; Remy and E, 2000).
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The local thickness (Hildebrand and Rüegsegger, 1997) is a local measure of the
void space which gives, for each point (x, y, z), the diameter of the largest sphere
that fits inside the void space containing the point (x, y, z). In our work we used
the implementation by Dougherty and Kunzelmann (2007).





4 THE EFFECT OF STERIC HINDRANCE ON THE
STRUCTURE OF NETWORKS

Although it is evident that realistic fibre networks do include steric effects in
their packing, as e.g. piles of spaghetti do not collapse into each other, the actual
quantifiable evidence of the effect is very sparse for elongated objects. Direct
measurements on networks and piles (He et al., 2004; Blouwolff and Fraden, 2006;
Marulier et al., 2012) reveal characteristics in their distributions that, in hindsight,
are clear indications of this effect, but have gone unnoticed.

The effect of the steric hindrance has often been neglected with the argument that
it should vanish at a large aspect ratio. This is partially true and well supported by
heuristic arguments (Toll, 1998) for global properties and by correct predictions of
uncorrelated models. For example in 3D the random packing of stiff constituents
is governed by their geometry. Famously, the random packing of identical spheres
reaches a random close packing1 of φs ≈ 0.64 with a mean coordination number
of 〈C〉 = 6. For prolate particles, this random packing fraction φs approaches 0 as
the aspect ratio increases. This was related to random uncorrelated networks by
Philipse (1996), who argued that for a random collection of rods, where

2φs
L
W

= 〈C〉, (38)

〈C〉 is restricted by requirements of global rigidity, i.e., a certain number of contacts
is required (regardless of the aspect ratio) for mechanical stability of the pile. This
agrees remarkably well with experimental results for rods of large aspect ratio with
a mean coordination number 〈C〉 = 10.8 and both numerical and experimental
studies show similar results (Williams and Philipse, 2003; Blouwolff and Fraden,
2006; Wouterse et al., 2009). The effect of steric hindrance on statistical properties
have, however, remained elusive.

1 The term ’random close packing’ has been criticised by Torquato et al. (2000), where they
introduce the concept of ’maximally random jammed state’, which in contrast to RCP is a
well defined criterion corresponding to the least ordered of all jammed states.



24

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty
de

ns
it

y

0 2 4 6 8 10
Segment length

a

bc

d

a)
b)
c)

d)

FIGURE 6 Schematic representation of different contact formation processes, viz.: A
Poisson process (a), a homogeneous Tonks gas (or equivalently a Gibbs point
process) (b), a disperse Tonks gas (c) and two superposed disperse Tonks
gases (d).

In this chapter we introduce our model for the sterically hindered contact for-
mation and extend it to a geometrical model of random fibre networks with
applications for measurement methods for real materials.

4.1 Steric model for contact formation

In order to understand how the steric hindrance affects contact formation we
reduced the complexity of the problem as much as possible, i.e. to a 1D point
process. We base our model on the approximation that the contacts on a fibre can
be divided so that they are either on its top or bottom side. This is justified if the
system meets two criteria. Firstly, the starting configuration needs to be dilute
enough, so fibres can be classified in an ordered set of deposition, this is trivially
met if the fibres are deposited one by one. Secondly, the friction must be high
enough, so sliding and rearrangement during the deposition does not alter this
order.

These two uncorrelated contact forming processes are modelled as separate
hard-core systems. If neighbouring fibres on one side would always cross in right
angles, this process would be sterically hindered such that P(ls < wf) = 0. A
system that follows this steric hindrance, but is otherwise random, is the Tonks
gas of hard spheres (Tonks, 1936) (fig. 6b).

We extend the result by Tonks (1936) extending this linear gas to particles of
an arbitrary size distribution (fig. 6c). Finally, the proposed model for a sterically
hindered contact formation proces is given by superposition of the two separate
hard-core systems (fig. 6d).
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4.1.1 Tonks gas of disperse particles

Tonks gas is a system of uniform particles with hard core repulsions confined into
a one dimensional space. Here we repeat the statistical analysis of the system,
following Tonks (1936), but extend it to arbitrary particle size distributions.

Let Xi be the (random variables of) point positions of N particles, each with a
separate diameter di confined in a linear space of length L. We denote in addition
the (continuous) positions of the particles by general coordinates xi. Without
loss of generality, we can number the particles according to their positional order.
Ordering of the particles gives rise to restrictions for the possible particle positions
xi. Here we use the same restrictions as Tonks (1936), but with individual di for
each particle, such that

x1 > xmin
1 = d1/2

xi > xmin
i =

i−1

∑
k=1

dk + di/2, for i > 1

xi < xmax
i = xi+1 − (di+1 + di)/2 for i < N

xN < xmax
N = L− dN/2.

(39)

The total volume of the configuration space of the system MN can now be found
by integrating over all possible point positions constrained with the hard-core
interactions,

MN =

xmax
N∫

xmin
N

. . .

xmax
2∫

xmin
2

xmax
1∫

xmin
1

dx1dx2 . . . dxN, (40)

and we find further that MN is now given by

MN = (L− N〈d〉)N/N!, (41)

where 〈d〉 is the average over di. The density of states MN−1(xN) relative to xN
can be found, exactly as in (Tonks, 1936), by skipping integration over the last
variable, such that

MN−1(xN) =

xmax
N−1∫

xmin
N−1

. . .

xmax
2∫

xmin
2

xmax
1∫

xmin
1

dx1dx2 . . . dxN−1

=

(
xN − dN/2− ΣN−1

1 di

)N−1

(N − 1)!
.

(42)

The probability density function (PDF) of the point position XN is then found by
normalising, and we find that

fXN(xN) = MN−1/MN

= N

(
xN − dN/2− ΣN−1

1 di

)N−1

(L− N〈d〉)N .
(43)
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Following further the derivation by Tonks (1936), we suppose that the boundary is
a fixed particle with its centre at L + dL/2, and thus the segment length ls between
the last particle and the boundary can be expressed by a variable

x = L + dL/2− xN, (44)

and we find that the probability density function for segment lengths is given by

fXL(x) =
N

L− N〈d〉

[
1− x− (dL + dN)/2

L− N〈d〉

]N−1

, (45)

which in the limit of large L, i.e. L� 〈d〉, becomes

fµ(x) = µ exp
[
−µ

(
x− dL + dN

2

)]
; x ≥ dL+dN

2 , (46)

in which µ := 〈C〉/(L− 〈C〉〈d〉). Assuming that particle sizes are independent,
but drawn from the same distribution, we can derive a single PDF for the steric
hindrance between the two adjacent particles. By denoting d12 := dl+dN

2 and by
the convolution fd12 = ( fd/2 ⊗ fd/2), where

P(d/2 ∈ [x, x + dx]) = fd/2(x)dx, (47)

we find that

P(ls ∈ [x, x + dx], d12 ∈ [y, y + dy]) = fd12(y)µe−µ(x−y) dxdy; x ≥ y. (48)

Distribution of segment lengths is finally given by the marginal distribution,

fls(x) =
x∫

0

fd12(y)µe−µ(x−y) dy. (49)

Notice that here integration extends only to y = x, as fµ(x) is only supported by
positive values of (x− y) and eqn (49) is simply a convolution of a distribution of
steric hindrances, fd12 , and a negative exponential distribution fµ, with a process
frequency of µ, i.e.

P(ls1 ∈ [x, x + dx]) = dx
(

fd12 ⊗ fµ

)
. (50)

This means that segment length can be thought of as a combination of two un-
correlated elements: An inter-particle distance from a Poisson point process in
a reduced configuration space, and a steric hindrance induced by two adjacent
particles.

4.1.2 Superposition of uncorrelated processes

For identical particles, the Tonks gas can be thought of as a renewal process with
inter-event times ls1 given by a random process with the PDF fls . With this analogy,
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the segment lengths of p superposed processes is readily given by Lawrence (1973),

1− Fp(x) = [1− F1(x)]


c

∞∫

x

1− F1(s)ds




p−1

, (51)

in which F1(x) is the cumulative distribution function (CDF) of segment lengths
of the Tonks gas, and c = 〈C〉/L is the contact density in 1D (along a fibre). The
cumulative distribution of a shifted exponential distribution is given by

F1(x) =
{

0 ; x ≤ d,
1− e−µ(x−d) ; x > d.

(52)

Combining eqns (51) and (52) we find that the superposed CDF of two-sided
contacts between particles, i.e. for contacts on the both top and bottom sides of
them, is given by

F2(x) =

{
1−

[
µ−1 + (d− x)

]
c ; x ≤ d,

1− c
µe−2µ(x−d) ; x > d. (53)

For c = 〈C〉
L and µ = 〈C〉

L−〈C〉d eqn (53) is continuous at d, F2(0) = 0 as expected, and
the distribution of segment lengths for two combined processes is given by

fls,2(x) =
d

dx
F2(x) =

{
c ; x ≤ d,

2ce−2µ(x−d) ; x > d.
(54)

For the superposition of the Tonks gas of non-identical particles, we have to
make a slight approximation as the renewal process requires independent intervals.
As is evident from fig. 7, modelling the gas with particles of non-zero size di is now
not suitable as the segment lengths on both sides of that particle Xi depend on
the same particle size, di, and are thus correlated. We thus have to assume, as for
the one-sided segment lengths, that the steric hindrances between neighbouring
particles are independent i.e. can be drawn from a distribution fd12(x).

With this assumption the segment lengths of the superposed process can be
determined from eqn (51) with CDF in the form

F1 =

x∫

0

fls(t)dt =
x∫

0

t∫

0

fd12(y)µe−µ(t−y) dydt. (55)

Denoting here h(x) = [1− F1(x)] and g(x) =
∫ ∞

x [1− F1(s)]ds the segment length
distribution fls,p for p superposed processes is finally given by

fls,p(x) = cp−1
[

fls,1(x)g(x)p−1 + (p− 1)h(x)2g(x)p−2
]

. (56)

Because particle centres in a disperse Tonks gas cannot be described by a renewal
process, we described the steric hindrance as a property between two neighbour-
ing particles instead. So as to test whether this approximation has any effect on
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d1 d2 d3
l1 l2

ls1 ls2

d12 d23 d34
l1 l2

x1 x2 x3

FIGURE 7 A system of disperse particles with centres xi cannot (strictly speaking) be
modelled as a renewal process. Segment lengths ls1 and ls2 shown here are
correlated as they depend on the same particle size d2. To circumvent this
problem, we approximatively consider the steric hindrance as an uncorre-
lated effect between two neighbouring particles dij. This approximation has,
however, no effect on the segment length distribution.

the derived distribution of segment lengths, simulated realisations of the Tonks
gas were done with particle sizes drawn from a negative-exponential distribution
(’true’ solution). This was done by sampling a 1D Poisson process in a config-
uration space with a reduced length L− C〈d〉, and ’inflating’ the zero-measure
points of the Poisson process to a finite size di drawn from a negative-exponential
distribution. As for the one-sided process, where the segment length distribution
is identical regardless of whether the steric hindrance is described as a property of
one particle or particle pairs, the approximation of independent steric hindrances
induced by particle pairs has no effect on the segment length distribution.

4.1.3 Choice of particle size distribution

The final part of our sterically hindered theory for the contacts is the actual
distribution of steric hindrance fd12 for which we have no obvious candidate. One
possibility is to incorporate the angular distributions of the fibres similar to (Kantor
and Kardar, 2009), who considered a linear gas of randomly aligned needles, but
as our fibres are flexible, the proper effective length of our needles may be both
disperse and non-symmetrical, making calculations difficult.

The sequential deposition in our model provided a numerical solution to deter-
mine a good candidate for this distribution. As shown in eqn (50), the segment
length distribution for one-sided contacts between particles is given by a convo-
lution of two positively supported functions f0 := µe−µx and g := fd12 . With the
one-sided distributions fls := h(x) = ( f0 ⊗ g)(x), it is possible to approximate the
particle size PDF fd12 . Using the convolution theorem for discrete functions2, we
can express this PDF in the form

fd12
:= g = DFT−1

[
DFT [h]
DFT [ f0]

]
, (57)

2 This can of course also be done for continuous functions, but our measured segment-length
distributions consisted of normalized discrete histograms.
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where DFT is the discrete Fourier transform. A solution of this kind is shown
in fig. 8a. As expected, an exact deconvolution is very sensitive to noise in the
data, and the result is neither smooth nor a proper PDF (as it contains negative
values). We used thus Gaussian smoothing of the simulated data to get a smoother
function h′ (and thereby respectively g′). Now we have a two parameter regression
problem to solve in order to find the g′, with arguments µ and σ. Regression was
made in a traditional ’least-squares’ manner, but we added two regularization
terms in the cost function, viz. one to ensure the smoothness of function g′ and
another to ensure process frequency µ = (〈ls〉 − 〈d〉)−1, such that

G = Σ
(
h′ − h

)2 − λ1Σ
(

g′n+1 − g′n
)2

+ λ2(µ− (EV[h]− EV[g])−1)2, (58)

where EV denotes an expected value and g′ is given by

g′ = DFT−1
[

DFT [h′]
DFT [ f0]

]
. (59)

A result of smoothing is shown in fig. 8b, where we show the original data
h, the ’smoothed’ data h′ and the steric PDF g′ = fd12 obtained by eqn (57). We
show furthermore a best fit to the obtained distribution of steric hindrances by the
expression

fd12(x) =
x
〈d〉2 e−

x
〈d〉 ; x ≥ 0, (60)

i.e. the convolution of two negative-exponential distributions. This type of distri-
bution is more commonly known as an Erlang distribution with a shape factor of
two.

In practice, the choice of a good candidate for the steric hindrance is ambiguous
and many different PDFs give reasonable or good results. The main reasons for
using a negative-exponential distribution for particle sizes were that a negative
exponential distribution is positively supported (use of e.g. a Gaussian distribution
is limited to its truncated version as particle sizes cannot be negative). Its functional
form is also close to that of the segment length distribution making an analytical
solution easier. In addition, perhaps coincidently, the PDF is now controlled by
only one parameter making regressions to experimental data more robust.
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FIGURE 8 (a) A non-regularised deconvolution of a one-sided segment length distribu-
tion. The result of a deconvolved steric hindrance, i.e. eqn (57), is shown as a
dashed line. (b) Least squares regression of the cost function of eqn (58) with
h (circles), h′ (solid line) and g (triangles) . The dashed black line shows the
best fit to the contribution of steric hindrances by eqn (60).

4.2 Coordination number distribution

For the coordination number distribution we could not find or derive a solution
for the disperse Tonks gas. However, the regular Tonks gas can still be used to
model a steric hindrance in the formation. The probability of finding N particles
of diameter d in a fixed length L can be expressed in the form (Robledo and
Rowlinson, 1986)

P(C = N) =
Z(N, L/d)ζN

Ξ(ζ, L/d)
, (61)

where (the reduced activity) ζ = n
n−1 exp

( n
1−n
)

with n = 〈C〉d/L. The grand
partition function is Ξ = (1− n) exp [(L/d + 1) n/(1− n)] in the limit L/d � 1
and the partition function Z is given by

Z =

{
( L

d − N + 1)N/N! ; N ≤ L
d + 1,

0 ; N > L
d + 1,

(62)

and we find that the distribution of coordination number C in the one-sided
process is given by

P1(C = N) =

[
( n

1−n )(
L
d − N + 1)

]N

(1− n)N!
exp [−n/(1− n)(L/d + 1− N)] . (63)

The exact solution for n = {2, 3, . . .} superposed processes are given by the
convolutions Pn(C = N) = P1(C = N)⊗ Pn−1(C = N) but are omitted here, as
no analytic solution was found for any n > 1. Eqn (63) seems to be a good approx-
imation as the convolution preserves the shape of the function. For reasonable
parameters, the one-sided distribution can be fitted to the two-sided distribution
with an accuracy of four digits. As a rule of thumb Pn(〈C〉, nd) ≈ P1(n〈C〉, d).
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4.3 Geometrical mapping of a Tonks gas

After establishing a theoretical model for the effect of the steric hindrance in
contact formation, we now proceed to discuss the effect it may have on mean
properties of the network.

The simplest way of mapping the sterically hindered process from a 1D process
into a geometric structure in R3 is to simply expand it in such a way that the
Point process is preserved. We thus consider a structure made of layers of parallel
(stiff and long) fibres stacked on top of each other, so that successive layers cross
each other in a right angle. When the network is constructed in this way, we can
introduce the same steric hindrance for each fibre as in the Tonks gas model (the
contacts in each fibre are formed by two independent sterically hindered point
processes) as long as fd12(x) = 0 for x < W.

4.3.1 Mean values

By dividing this (rectangular lattice structure) into cuboids, each cuboid containing
one contact, the contact density is given by the inverse of the average cuboid
volume,

ρc =
1

〈ls1〉2H
, (64)

where H is the height of the fibre (we keep the height as a separate variable, as
e.g. cellulose fibres with a collapsed lumen tend to be more or less flat) and 〈ls1〉 is
the mean one-sided segment length. The fibres of one layer will on the average be
separated by a distance of 〈ls1〉, and assuming that L�W, the solids content of a
layer is given by

φs =
Af

〈ls1〉H
. (65)

Combining this expression with eqn (64), we find that the contact density for this
type of structure is given by

ρc = φ2
s

H
A2

f
. (66)

We can now adjust the contact density by, instead of placing layers in a right
angle to each other, rotating successive layers by arbitrary angles θi ∈]0,π[, while
the point process is kept intact. This means that the cuboids deform into right
parallelogram prisms, and the contact density is now given by

ρc =
〈sin θ〉
〈ls1〉2H

=
1

4〈sin θ〉〈ls〉2H
, (67)

where 〈ls〉, the mean segment length between contacts from both sides of the
fibres, is now determined from the rotated layers. Note that now the distribution
of segment lengths is changed as individual one-sided segments between two
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(a) Random deposition network (b) Geometrical map

FIGURE 9 A numerically generated deposited network (a) and its corresponding geo-
metrical map of the ontact formation (b). Both structures have similar density
φs ≈ 0.1 and mean segment length ls ≈ 4W.

layers get longer by a factor of (sin θ)−1. As the point process was kept intact, the
density is the same and thus the contact density is given by

ρc = φ2
s

H〈sin θ〉
A2

f
, (68)

which is of the same form as for uncorrelated infinitely-long cylinders. The
difference is that now we have a geometrical structure that incorporates the steric
effects between the fibres.

The next step is to incorporate a finite length of the fibres in the model, and we
consider here its two modifications by cutting the infinite fibre into finite pieces.
The equations in the case that the cutting produces finite fibres which are not in
contact are identical to those of infinitely long fibres, otherwise, we introduce a
correction which depends on the number density of the fibres, i.e.

ρc = φ2
s

H〈sin θ〉
A2

f
+ ρf. (69)

This type of correction can also be made in our structure such that only a fraction
of the fibres are separated. In this way we have a way of constructing a general
polynomial of capped cylinders of finite length in the form

ρc = a
φ2

s

A2
f

H + b
φs

Vf
, (70)

where the two parameters (a ∈]0, 1] and b ∈ [0, 1]) can be adjusted by rotating
successive layers (a) and by separation of fibre ends (b).

4.3.2 Indirect measuring – shortest path analysis

With the geometrical mapping of the contact forming process to R3 we have well
determined the structure for which relevant characteristics can be adjusted to
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FIGURE 10 If the z-orientation in the fibre network is negligible, the only displacements
in the z-direction along a path through fibres appear at fibre-fibre contacts

those of real deposited fibre networks. This enables indirect measurements of the
structure, which one hopes to correlate with the corresponding properties in true
random networks.

One such method is introduced in Publication I. Regrettably, the theory of
contact formation was not fully developed, and a simplified version of the one-
sided segment length distribution was used. Even though we provide here a more
general solution, now including steric hindrance, results utilising this knowledge
are not available.

Consider paths along fibres in the structure through the network (perpendicular
to the fibre layers). As the layered structure of our structure produces a truly planar
fibre orientation it thus follows, that paths travel along segments and through
contacts to the next layer of fibres. Assuming that combinatorics play only a minor
role along these paths, we assume that they always follow the shorter of the two
possible segments to the adjacent contacts on the other sides of the fibres. For a
uniform distribution along the length between adjacent contacts on one side of the
fibre, excluding dangling ends, the expected value for the horizontal distance to
the nearest contact is ls1/4, where ls1 is the distance between the adjacent contacts
on the other side of the fibre.

The distribution of the segment lengths along which the shortest path will prop-
agate is not given directly by the segment length distribution, as the probability
for a contact to be located between two contacts on the opposite side separated by
distance X is proportional to the length of the segment. For a uniform distribution
of events along the fibre, this probability is given by fX = cx fls(x), where c is the
linear contact density. Assuming a constant contact depth z0, we find that the
expected value of pi is given by

〈pi〉 =
∞∫

0

fX(x)
√
(x/4)2 + z2

0 dx, (71)
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where fX(x) is the PDF for the geodesic curve between two contacts of length√
(x/4)2 + z2

0. We express the segment length distribution in the form

fls1(x) = ∑
j,k

aj,kxje−µkx. (72)

With the substitutions y = x
4z0

and tk = 4µkz0 we can express eqn (71) in the form

〈pi〉
z0

=

∞∫

0

[
∑
j,k

bj,kyje−tky

]√
y2 + 12 dy. (73)

So as to solve eqn (73), we begin by noting that (Gradshteyn and Ryzhik, 1965)

F(µ, β) :=
∞∫

0

xe−µx
√

x2 + β2
dx =

βπ

2
[H1(βµ)− N1(βµ)]− β, (74)

where H1(β, µ) is the first-order Struve function and N1(β, µ) is the first-order
Neumann function (Abramowitz and Stegun, 1972) with the constraints for the
constants | arg β| < π

2 and Re(µ) > 0. By choosing β = 1, µ = t and integrating by
parts, we find that

F(β, µ) =
[
e−tx

√
x2 + 1

]∞

0
+

∞∫

0

te−tx
√

x2 + 1 dx, (75)

from which we find the solution

∞∫

0

e−tx
√

x2 + 1 dx =
F(t, 1) + 1

t
≡ G(t, 1). (76)

The partial derivatives of G(t, 1) can now be expressed in the form

∞∫

0

xne−tx
√

x2 + 1 dx = (−1)n+1 ∂n

∂tn G(t, 1), (77)

and eqn (73) can be expressed in the form

〈pi〉
z0

=

∞∫

0

[
∑
j,k

bj,k
∂j

∂tj G(tk, 1)

]
. (78)

The needed derivatives of the modified Bessel functions are given by the recur-
sive relations (Abramowitz and Stegun, 1972, p. 361)

∂

∂x
Nn(x) = −Nn+1(x) +

n
x

Nn(x) (79)
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and (Abramowitz and Stegun, 1972, p. 496)

∂

∂x
Hn(x) =

1
2

(
Hn−1 − Hn+1 +

(1
2 x)n+1

√
πΓ(n + 3

2)

)
. (80)

For a simple negative-exponential distribution, we can express the solution eqn (78)
in the form

EV(pi)

z0
=

π

2

[
H1(t)−

t
2

(
H0 − H2 +

t
2
√
πΓ(5

2)

)
− tN2(t)

]
. (81)

These paths can then be measured from e.g. tomographic images of fibrous
structures as shown in section 5.





5 EXPERIMENTAL AND NUMERICAL NETWORKS

The applicability of a theoretical model is questionable without proper validation
against experimental data, as it is difficult to properly determine whether the
underlying assumptions are correct or sufficient to describe the problem at hand.

This chapter is dedicated to the experimental and numerical work. We introduce
our experimental samples, as well as the analysis made on them. Additionally
we go through our decisions and simplifications concerning the numerical work,
i.e. the computational deposition model built to address our problem. A short
description on the non-dynamical deposition used in Publications I and II is given
in the appendix of Publication I and is not covered here.

5.1 Fibrous networks

We first introduce the common image process analysis done for all the fibrous
samples in our study. All reconstructed tomographic images were filtered for
noise using a 3D variance based filter (Gonzales and Woods, 1993). This filter
measures the standard deviation of gray-values in a region of specified size in
the image. The executed convolution then depends on the variance so that, if it
is large compared to a set threshold, the executed convolution is small, and vice
versa. As a result of this kind of filtering edges are preserved, but the noise in
homogeneous areas is reduced.

The samples were then rotated manually so that the planar network lay parallel
to the xy-plane. From this processed image a region was manually selected
from the middle of the sample, so that the selection did not include any cut
marks, bended edges or otherwise unsuitable features. Finally the ’Magic Carpet
algorithm’ (Turpeinen et al., 2015) was used to detect the both top and bottom
surfaces of the sample, respectively.
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5.1.1 Cardboard samples

For Publication I our sample set consisted of a set of eight uncalendared, machine
made, cardboard samples. The calibration of a correct threshold gray value for
these samples was made by linking it to the grammage, i.e. the areal mass density
of the samples. As the samples were machine made, it provided a very reliable
measurement for calibration. The grammage of an image can be expressed in the
form

ρmρA = ρm ∑
i

φsis, (82)

where φsi is the solids content of the xy-plane i of the image, s is the voxel unit
length, and ρm is the fibre material (cell-wall) density. Based on literature values
(Niskanen et al., 1997) we chose a density of 1500 kg/m3.

After the binarisation of the images, the surfaces were detected using the method
described by (Turpeinen et al., 2015) resulting in two functions Ztop(x, y) and
Zbottom(x, y) describing the surface topology of the sample. The shortest path was
then taken between the two planes described by the mean values 〈Ztop(x, y)〉 and
〈Zbottom(x, y)〉.

The mean shortest path between any two planes in the sample is not necessarily
symmetric. This is obvious if the two planes have a different amount of solids
content, i.e. φsA < φsB, as the shortest paths from plane B to plane A will be
mapped on a subset A′ of the voxels in plane A. Now all the remaining voxels
A \ A′ will by definition have a longer path to plane B than any of the paths from B
to A, and thus than any of the paths from A′ to B. Owing to this, the measurement
of the shortest paths along the fibre materials used for the calculation of segment
length was taken as the average of the values for both directions.

5.1.2 Foam-formed samples

Publications (III; IV; VI) all deal with the same sample series. This series was a
test series using foam as the carrier fluid in the forming process of the sheets. The
sample series consisted of two different fibre materials (Kraft and CTMP) with
varying bubble radii of the suspending fluid. Both series had a reference sample
manufactured with water-forming.

In this sample series the main focus was on the void space distribution of the
networks. To this end, extra attention was paid to ensure that the void space was
clean. With this we mean that distance transforms in 3D images are very prone to
noise, and even a single solid voxel in the void space has a drastic effect on e.g. its
thickness.

The void structure of the networks was characterized with their local thickness
using the implementation by Dougherty and Kunzelmann (2007) (see section 3).
Additionally, the lattice-Boltzmann (LB) method (Chen and Doolen, 1998; Aidun
and Clausen, 2010; Mattila et al., 2016) was used for simulating fluid flows directly
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FIGURE 11 A cropped sample of a tomographic images of a foam-formed network. As
a local measure for the void space we used the local thickness, i.e. the size of
the largest sphere fitting completely into the void (left side). Numerical solu-
tions to the transverse fluid flow were determined for the same geometries
(right side).

in the pore structures given by the tomographic images.

5.2 Granular sample

Detailed information about short-cut spaghetti does, unfortunately, not yet have
any direct applications and the usefulness of its study may be questioned. Detailed
information on the connectivity of commonly used materials would of course be
more industrially applicable, but as of now, it seems that the image analysis is
not developed enough for accurate determination of contacts, and has only been
(reliably) done in very specifically manufactured samples (Marulier et al., 2012),
structures with high contrast (Tsarouchas and Markaki, 2011) and dilute systems
such as fibre reinforced composites (Shen et al., 2004; Lux et al., 2006) or foams
(Elliott et al., 2002; Montminy et al., 2004; Dillard et al., 2005).

The short-cut spaghetti strands were chosen as they were readily available,
industrially made (thus have a very consistent geometrical shape) and relatively
cheap. Similar tests were done with hand-cut copper wire but they proved to be
not as suitable. Moreover, this work follows the tradition on using food products
in the study of granular material (Frette et al., 1996; Donev et al., 2004; Blouwolff
and Fraden, 2006; Denisov et al., 2012; Kyrylyuk et al., 2011).
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5.2.1 Preparation

As de Gennes (1999) mentioned, even the simple task of sample preparation, ’We
fill a cylinder with sand’, hides many subtle but important details. Even with
spherical particles, one is able to produce many different densities of random
packing. With higher aspect ratio constituents, this becomes even more important,
owing to the additional problem of orientational ordering, especially near the
container walls. In our experiments our sample preparation consisted of pouring
the same amount of (short-cut) spaghetti into a cylindrical container while keeping
track of the bulk height of the pile. The final pile was chosen from such a pouring
that resulted in a relatively high pile. This was done to ensure that the chosen piles
were as isotropic as possible, as nematic ordering of strands lead to denser piles.

The final piles were imaged with a SkyScan 1172 µCT scanner. All the samples
were oversized and had to be scanned with parallel camera positions in three
different stacked scans making this probably the largest tomographic reconstruc-
tion of spaghetti ever to be done, the raw data being a bit short of 100 GB in size.
Needless to say, the actual analysis was made for scaled-down versions of this
original data.

5.2.2 Image analysis – binarisation

As discussed earlier, the edges around objects tend to be smooth, and proper
binarisation of the image is not always straightforward (Kerckhofs et al., 2008).
As an independent measurement, a separate set strands were measured for their
length and thickness. This measurement was then used to aid in the image
processing.

The binarisation process B(σ, T) consisted of a Gaussian convolution with a
kernel size σ and a gray-value thresholding of T into a binarised image (void
and solids). The final parameters were chosen so that the thickness of the strands
matched that of the calibration measurement Dcalib. The smoothing was a neces-
sary step to minimize the amount of holes (from both imaging noise and man-
ufacturing defects of the spaghetti) in the binarised image, as existence of these
kinds of holes complicates the segmentation process1. The thickness alone is not
sufficient to fix the parameters σ and T, as for large enough σ one can adjust the
mean local thickness almost arbitrarily. For each tomographic image an optimal
pair of parameters σ and T was chosen such that the resulting local thickness of
the binarised image was equal to the measured thickness of the spaghetti and its
standard deviation was minimized. An example of this calibration step is shown
in fig. 12.

1 A single pixel hole affects the EDT of the solids in such a way, that the strand is often cut
into two parts.
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(a) (b)

FIGURE 12 The binarisation of the tomographic images was done by measuring (sep-
arately) the thicknesses of the spaghetti strands. The binarisation process,
i.e. a Gaussian convolution with radius σ and a gray value thresholding
with value T resulted in an average value for the thickness of the strands
measured from the tomographic images (a). From the curve satisfying
D(σ, T) = Dcalib, shown in black, we chose the pair (σ, T) minimizing the
standard deviation (b) of the thickness distribution (red dot).

5.2.3 Image analysis – segmentation

The steps in the segmentation process are shown in fig. 13. After the binarisation
of the gray-scale imaging a Euclidean distance transform was applied on the solids
(distance to the void). This distance transform was thresholded such that most
contact boundaries were erased, but the center of the strands were intact. The
resulting disjoint set of voxels were labelled and then dilated (simultaneously) in
the binarised images.

As mentioned earlier, holes in the strands, both from actual structural defects
such as fractures and from imaging artefacts, make it difficult to obtain a set
of parameters such that the segmentation is without errors. This causes some
strands to be (falsely) divided into two or more parts, and some strands to be
fused together. We found that a good method to determine whether strands were
properly segmented was by comparing the lengths of their medial axes. All mean
values for the packing were then taken only using a subset of the fibres with
the condition, that it and all its neighbours lengths deviate no more than two
standard deviations from the mean. As shown in fig. 14, actual faults were rare,
and the errors were mainly caused by the limited field of view of the µCT device.
Nevertheless, the coordination numbers of those strands were systematically
smaller and thus, rightfully so, were discarded.

The contacts were determined from the labelled image by going through each of
the differently labelled strands in the image and listing all its unique 26-connected
neighbours. As all strands were given a different label, this list produces a sparse-
matrix representation of the connected graph of strands. Mapping these contacts
onto the centreline of the fibre was done by extracting the medial axis of each
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(a) (b) (c) (d)

FIGURE 13 (a) A gray scale image stack was (b) filtered and binarised. (c) A Euclidean
distance transform (EDT) was applied to the binarised image. Local maxima
of EDT were separated and diluted simultaneously in the existing binarised
image, resulting in (d) an image of separately labelled spaghetti strands.

(a) (b)

FIGURE 14 Vizualizations of a random pile of spaghetti showing (a) all strands and
(b) the ’good’ strands used for calculating the results. Colour indicates the
coordination number of the strands.

strand. Contact pairs between two strands were then determined by finding
the minimum distance between their medial axes. The segment lengths were
determined along these medial axes of the strands.

5.3 Numerical simulation

Experimental methods for contact detection in random piles are somewhat lacking
and require often substantial manual labour. The famous example of this was
reported by Bernal (1964), who conducted experimental work on the random
packing of spheres. The experiment involved pouring paint over a container,
letting it dry, and manually deducing the coordination number distributions from
the trace of the dried paint. The same kind of experiment has later been performed
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with both oblate (Donev et al., 2004) and prolate (Blouwolff and Fraden, 2006)
objects.

As the experiments are difficult, many have turned to numerical models and
these have been utilised for various purposes. A 3D version of drawing lines
on a plane is a sequential deposition of sterically hindered fibres. This has been
a starting point for many simulations. The fibres are deposited one by one on
a (initially flat) substrate, letting bend by some predefined manner. After the
fibre geometry is calculated, its position is fixed and it is added to the substrate.
These kinds of non-dynamical networks generation are fast and provide suitable
geometry for structural analysis (Niskanen and Alava, 1994; Hellen and Alava,
1997). Additionally they provide the structural geometry enabling determination
of properties such as permeability (Koponen et al., 1998), diffusivity (Hellen et al.,
2002) and elasticity (Åström et al., 2000a,b; Kulachenko and Uesaka, 2012). This
type of sequential packing was used in Publications I and II.

Dynamic models of fibre deposition are more challenging and, as they are com-
putationally more demanding, have usually been done on much smaller systems.
Even recent papers deem the simulation of flexible fibres as numerically impracti-
cal (Nan et al., 2014). Nevertheless, many different models have been developed
for many fields of research e.g. for fibre suspensions (Switzer and Klingenberg,
2004; Lindström and Uesaka, 2007, 2008) or for mechanical properties of networks
(Switzer et al., 2004; Rodney et al., 2005; Barbier et al., 2009a,b; Subramanian and
Picu, 2011). Although most numerical models of granular matter concern shorter
aspect ratio particles, some work has also been done in this field for longer rods
(Williams and Philipse, 2003; Wouterse et al., 2009).

Over the past years the numerical tools have been substantially developed in
the field of graphics simulation, and moreover, modern computers can nowadays
handle large systems enabling numerical modelling of systems of relevant macro-
scopic sizes. A nice overview on the subject can be found in the recent review
on rigid-body simulations by Bender et al. (2013) and frameworks for fibres are
readily available (Spillmann and Teschner, 2007, 2008; Bergou et al., 2008; Bertails-
Descoubes et al., 2011; Daviet et al., 2011). This section is dedicated to presenting
the underlying choices and details in the implementation used in our numerical
model.

5.3.1 Kirchhoff rods

The Kirchhoff rod can be thought of as a geometrically non-linear generalization
of an Euler-Bernoulli beam. It is a mathematical representation of a 3D elastic
body with a large aspect ratio (two of its dimensions are much smaller than the
third).

We will present here a short theoretic overview adapted from Singer (2008). The
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configuration of an arbitrary rod can be described by a curve

Γ = {γ(s), T(s), M1(s), M2(s)}, (83)

where γ is the parametrized curve in R3 and T(s), M1(s), M2(s) form an orthonor-
mal material frame. The material frame is adapted to the centreline of the fibre,
such that

γ′(s) = T(s). (84)

The behaviour of the material frame along the curve is described by the Darboux
vector Ω = mT −m2M1 + m1M2 satisfying

T ′ = Ω× T ,
M ′1 = Ω×M1,
M ′2 = Ω×M2,

(85)

and the strain along the material frame curve is given by

m1 = T ′ · M1,
m2 = T ′ · M2,
m = M ′ · M2,

(86)

and the total energy is given by the integration

E(Γ) =
1
2

∫
α1(m1)

2 + α2(m2)
2 + β(m)2 ds, (87)

where α1, α2 and β are the material constants.

5.3.2 Discretisation

In our work we used the discretisation of the Kirchhoff rod as presented by Bergou
et al. (2008) as it provided a simple framework containing all the necessary tools
for our simulation. Here we describe the discretisation of the system of rods in a
special case, i.e. for an initially straight twist-free rod, of the general Kirchhoff rod.
The initially straight capped cylinder of length L and width W was discretised
into n points xi and line segments ei = xi+1 − xi (fig. 15) of length l0 = L/(n− 1).
The elastic energy of a rod is taken as a combination of a bending energy,

Eb =
1
2

YI
n−2

∑
i=1

(κbi)
2

l0
, (88)

where Y is the Young’s Modulus and I is the area moment of inertia, and a
stretching energy,

Es =
1
2

YAc

l0

n−1

∑
i=1

(|ei| − l0)2. (89)
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x0

x1

x2

x3

e0 e1
e2

(κb)1

FIGURE 15 A discrete capped cylinder. The dotted areas represent the volume of inter-
action with other rods.

The curvature binormal at each vertex (κbi) is defined as by Bergou et al. (2008),
i.e.

(κbi) =
2ei−1 × ei

|ei−1| |ei| + ei−1 · ei . (90)

The forces that arise from the stretching are now given by one or both of the
terms

Fi+ = k
ei

|ei| (|e
i| − l0) for i ≤ n− 1,

Fi− = k
ei−1

|ei−1| (l0 − |e
i−1| ) for i ≥ 1,

(91)

with k = YAc
l0

, and the forces owing to bending energy are a sum of up to three
contributions

Fi = −
YI
2l0

(∇i(κb)j)
T(κb)j, (92)

with

∇i−1(κb)i =
2
[
ei]+ (κb)i(ei)T

|ei−1| |ei| + ei−1 · ei

∇i+1(κb)i =
2
[
ei]− (κb)i(ei)T

|ei−1| |ei| + ei−1 · ei

∇i(κb)i = − (∇i−1 +∇i+1) .

(93)

5.3.3 Fibre-fibre interactions

To implement the actual steric hindrance between our flexible fibres we need
to incorporate fibre-fibre interactions between them. As our focus was on static
(relaxed) states of the network our collision detection and handling need to fulfil
two criteria: A hard-core repulsion, such that fibres do not overlap, and a static
friction, so that a stable network is achieved.
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Our solution was an energy based repulsion. The contacts were equipped with
an harmonic potential

Ec =
1
2

YAc

W
∆c2, (94)

where ∆c is the depth of the overlap of the rods. A benefit of this kind of contact
definition is, that it directly defines a normal force for sliding friction between the
segments. This kind of friction was mainly added to prevent nematic ordering of
fibres, as shown in fig. 16. The model was adapted from Bridson et al. (2002).

The static friction was modelled by tangential springs that were added upon
contact, and removed with the criteria of Coulomb friction. This kind of static
friction was first introduced by Cundall and Strack (1979) and have been used by
many others since [see e.g. (Shäfer et al., 1996) and (Zhu et al., 2007)]. Essentially
it involves adding a friction force

Fs = −min (|ksζ| , |µFn| ) · sign ζ, (95)

where Fn is the normal force of the contact, µ the friction coefficient and ζ denotes
the relative tangential displacement between the two particles since they first
made contact. With the criteria of Coulomb friction, we mean that this tangential
spring is deleted if |ksζ| > |µFn| (slip) and if |µFn| = 0 (lift off).

Constrain based hard-core interactions, such as in Goldenthal et al. (2007) and
Spillmann and Teschner (2008), were tested but were found unsuitable. In a stable
network of rods (by applying either a gravitational field or sufficient compressional
force) the fibre network percolates, and the inversion of the constraint matrix
dominated the simulation time. More exact methods for friction are also available,
such as e.g. Bertails-Descoubes et al. (2011) and Daviet et al. (2011), but were
found unsuitable for excessive computational demands.

The collision detection was made pairwise between fibre segments using the
algorithm described by Vega and Lago (1994) using spatial hashing of the sim-
ulation space (Teschner et al., 2003). As collision detection was made pairwise,
an additional filtering of contacts was needed so as to remove duplicate contacts
owing to the overlapping ’contact volume’ at the vertices xi (see fig. 15). Duplicate
contacts at these overlapping areas were removed by maintaining the contact with
a larger overlapping distance.

A non-linear contact force, such as a Herzian contact, could easily be incorpo-
rated, but as our current version was developed to extract geometrical effects, this
was not prioritised. For contacts between two cylinders, the relevant response is
given by Puttock and Thwaite (1969).

An example of a compression of xy-periodic network of fibres is shown in fig. 17.
In fig. 18 we show a simulated deposition of spaghetti strands compared to that of
a tomographic reconstruction of an actual granular pile.
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(a) Negligible friction (b) Friction

FIGURE 16 Example of the effect of the friction parameter on packing. (a) With neglible
friction (µ = 2 · 10−4) the rods are free to slide and thus the assembly tends to
form a nematic ordering. (b) Introducing friction between the fibres (µ = 0.2)
preserves the isotropy of the orientation in the xy-direction.

(a)

(b)

(c)

FIGURE 17 (a) Randomly packed networks generated by compressing an initial config-
uration of isotropically placed rods (L/W=20) between two plates. In (b),
φs = 0.16, and in (c), φs = 0.36.
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8
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FIGURE 18 A random pile of short-cut spaghetti (left side) and a similar numerically
generated random packing (right side). The colour indicates the coordination
number of each individual object.



6 RESULTS

It this chapter we go through the results in the included publications most relevant
to the theme of this Thesis, namely the effect of the steric hindrance.

We first summarise the results of contact formation, namely the resulting statisti-
cal distribution (Publication II). The properties of the global means are addressed
(Publication V) after which the result of indirect measurement of one such prop-
erty (Publication I) is presented. Lastly the steric effect by other factors than the
network constituents themselves (Publication III,IV,VI) is addressed briefly.

6.1 Sterically hindered contact formation

In Publication II we presented a theoretic model for contact formation as a combi-
nation of two sterically hindered point processes on a 1D space. The developed
theory was validated against both experimental and numerical results for random
networks of both stiff and flexible fibres.

An effect noticed (which we address in more detail in Publication V) was that
contacts at the ends of the fibres behaved differently compared to the other ones.
As it is evident from fig. 19, the segment lengths including at least one fibre end (or
a contact located at the fibre end) differ from the segments located more centrally
in the fibres. An interesting observation was that this effect would go unnoticed
without a detailed knowledge of the segment lengths as with a larger binning
of the histogram, steric effects are concealed. All the distributions of segment
lengths presented here are on the modified measurements, where end contacts are
discarded, unless specifically mentioned otherwise.
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FIGURE 19 An example of the effect of the dangling ends on the segment length distri-
bution for two networks of randomly deposited fibres. The segment length
distribution of all segments (including the dangling ends) show a distinct
peak of segments of vanishing length. After removing the segments which
are located at the end of the fibres, the steric hindrance between the fibres is
evident.

6.1.1 Segment length distribution

The numerically generated (sequentially deposited) networks provided a unique
way to validate our theory, as the both one and two sided segment lengths were
unambiguously determinable. An example of these two distributions is shown
in fig. 20b and compared with that of a Poisson process. It is evident that the
distribution for the one sided process is in excellent agreement with the measured
segment lengths and that, moreover, both distributions show the behaviour of a
negative-exponential tail, but a clear deviation from it at short segment lengths.

The effect of fibre flexibility on the distribution is shown in fig. 21. As expected,
an increased flexibility of the fibres decreases the mean segment length, as the
fibres can more easily bend to form more contacts. Flexibility also reduces the
steric effect of fibres, which is also not surprising. Regardless of the flexibility, it is
evident that all the observed distributions deviate substantially from that of an
uncorrelated process, i.e. a negative exponential distribution.

The assumption for our model was that contact formation takes place in two
processes. This is, as stated, well justified for strictly planar networks, where
contacts form on the either top or bottom side of the fibres. This is not necessarily
true for isotropic networks, as contacts in them can form also on the sides of the
fibres. This is also true for an increasing flexibility, as single segments can have
a non-planar orientation even if the fibre,on the average, will not. It is evident
from fig. 22 that the two-sided approximation becomes progressively worse with
increasing flexibility.

As new results (not included in the attached Publications II or V) in fig. 23 we
report here also the segment length distribution taken from a compression cycle
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FIGURE 20 (a) An example of numerically generated networks of sequential deposition
utilised in Publications I and II. Upon contact with already deposited fibres
(or the substrate), the lateral position of the deposited fiber was fixed, while
it was allowed to bend to a pre-determined curvature. The chronological
deposition of the fibers allowed us to distinguish contacts on the top (blue)
and bottom (green) side of the deposited fibre considered (red). (a) Distri-
butions of segment lengths between contacts on one side of a fibre and on
both sides of fibres in a deposited network. The solid lines show the best
fits to the numerical distributions of segment lengths as proposed in Publi-
cation II. The inset shows a comparison between the numerical two-sided
distribution (all contacts) and a negative-exponential distribution. Although
the numerical distribution has the characteristic negative-exponential tail,
there is a notable deviation from it at small segment lengths. This deviation
can be attributed to some kind of correlation between contacts, caused by
the steric hindrances of fibres.

of the dynamic simulations. As the fibres in this case are allowed to slide and
rearrange, the assumption of two-sidedness does not necessarily hold. Never-
theless, the distribution was very well described by the same functional form. A
notable feature in the dynamical simulations, where fibres are allowed to slide,
move and rearrange simultaneously, was the significantly lower steric hindrance.
This is expected, as the neighbouring fibres can both rotate and bend to align more
parallel to each other.

6.1.2 Coordination number distribution

In fig. 24 we show the coordination number distributions for networks made by
sequential deposition. It is clear that the contact formation of the networks deviate
significantly from that of an uncorrelated network. With this distribution we also
fitted the data of Blouwolff and Fraden (2006) and these fits together with the data
are shown in fig. 25. Fits of the experimental coordination number allow us to
examine the steric effects in the contact formation of stiff rods. Fitting parameters
are shown in table 2.

The theory was also tested against piles of short-cut spaghetti. Fits with theoreti-
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FIGURE 21 Segment length distributions and the corresponding best fits for a series of
flexible fibres of aspect ratio L/W ≈ 100. Stiffer fibres have a larger steric
hindrance.
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FIGURE 22 Fitted one- two- and three-sided segment length distributions for fibre net-
works for a stiffness increasing from the most flexible (a) to the most stiff
(d) fibre. The one-sided distribution is in good agreement with all mea-
sured segment length distributions, while the two-sided distribution gets
progressively worse for more flexible fibres.
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FIGURE 23 Segment length of the dynamic numerical model shows that compression
decreases the steric hindrance between the fibres. This is an effect caused by
both an increasing bending of the fibres as well as orientational ordering of
fibre segments.

TABLE 2 Average coordination number (data from Blouwolff and Fraden (2006)) and
particle size of the fitted two-sided Tonks gas distributions for uncompressed
(unc.) and compressed (comp.) packings of rods shown in fig. 25.

L/W 50 32 16
unc. comp. unc. comp. unc. comp .

C 8.1 9.7 7.4 9.7 6.5 7.0
d 4.2 2.7 3.4 2.8 2.1 1.7

cal distributions of the observed frequencies are shown in fig. 27. It is evident that
both the segment length distribution and the coordination number distribution
agree well with the measured results. Especially they both deviate significantly
from that of an uncorrelated process.

It is evident from the results shown in table 2 that the steric hindrance 〈d〉 is
larger than the rod diameter for rods of high aspect ratios. This implies that,
although the non-zero diameter of the rods induces hard-core restrictions, the
actual steric hindrance has a fibre orientation dependent component. As the rods
are stiff and do not bend, the decrease of this hindrance upon compactification
of the packing is suggestive of some kind of orientational ordering of adjacent
crossing rods, i.e. neighbouring rods become more parallel on the average. So as to
test the existence of local orientational order, we determined the distribution of the
difference between the crossing angles in two adjacent contacts along individual
fibres. In fig. 26 we show this distribution for both the numerical networks and
the random pile of spaghetti. All these distributions indicate that there exists
local nematic order between adjacent contacts along a rod even though the global
orientation of the packings is isotropic.
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FIGURE 24 Coordination number distribution for the same series of numerically gen-
erated deposited networks as in fig. 21. Steric effects are evident by the
deviation from a Poisson distribution (dashed lines).
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FIGURE 25 Coordination number distributions for the results of Blouwolff and Fraden
(2006) for both their uncompacted and compacted piles. The fitting pa-
rameters of the Tonks gas are shown in Table 2. It is evident, that the
compactification of the packing both increases the amount of contact, but
also decreases the steric effect betweent he rods, thus suggesting a local
nematic order between neighbouring rods.
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FIGURE 26 Distribution of the difference between the crossing angles in adjacent con-
tacts along a rod of short cut spaghetti. So as to verify that no global cor-
relation exists, a similar distribution was also determined for randomly
selected pairs in the pile. Such a check was unnecessary for the numerically
generated networks, as the planar orientation is isotropic by definition.
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FIGURE 27 Distribution of segment lengths (left side) and coordination number (right
side) for a pile of raw short cut spaghetti.
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6.2 Geometric availability of fibre ends

As shown in fig. 28a a more detailed analysis of the spatial contact formation
on the fibres reveal an abundance of contacts located at the ends of the fibres. It
is evident from fig. 19 that this has a drastic effect on the segment lengths. We
believe, that this is the most significant finite length effect of random packings of
flexible fibres, an issue which we address in Publication V.

6.2.1 End crowding

We considered two theoretical comparisons to see if this end crowding effect
could be claimed to be abundant. The most straightforward comparison is that
with a 2D Poisson point process in the area of the fibre. This leads, trivially, to
a probability of W/(L + W) for a contact along a capsule to be located at either
of the spherical caps (ends). The other was a sterically hindered placement of
capsules in R3, which can be solved by considering the excluded volume of the
cylinders (fig. 28b). These two cases are compared with the observed fraction of
ends contacts as determined by numerical deposition (fig. 28c).

The phenomenon of abundant contacts at the ends of a fibre is also determinable
from overlapping soft-core capsules. With soft-core capsules, the mapping of the
’contact’ is not as straightforward, but e.g. by defining the contact location as two
points of the capsule centre lines closest to each other, the same kind of behaviour
is a direct corollary.

Note, that this is not only an effect of the spherical end caps, as cylinders with
straight cut edges are trivially overcrowded. By this we mean that the effect is
present also for a Poisson point process along the area of the fibre, a feature which
is not present for capsules where the overcrowding arises only from a geometric
availability.

6.2.2 Segment length

A consequence of this kind of end crowding is the ambiguity of segment lengths.
A natural choice for segment length would be the length that defines the solids
content,

φs − ρfVs = ρs〈ls〉Af = (2ρc + ρf) 〈ls〉Af, (96)

where the correction ρfVs takes care of the spherical caps with Vs the combined
volume of the capped ends. This kind of definition is a natural extension to line
networks, every contact divides the fibre (or the segment) into two parts, thus
every fibre consists of C + 1 segments, including two dangling ends. If such a
contact now lies at the end of the fibre, it produces a zero length segment.

An effect of this is evident in the mean segment lengths of the two definitions.
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FIGURE 28 (a) Probability density function fx for the location of contacts along the
extended centre line of a cylinder which is part of a numerically simulated
network of capped cylinders of length L = 10. Contacts show a significant
end crowding effect as the corresponding PDF for a Poisson point process
in the fibre area is uniform, when projected onto the extended centre line.
(b) A projection of the excluded volume of two capsules consisting of four
spherical wedges (grid), four half-cylinders (striped) and a parallelepiped
(gray). (c) The observed average end contact fraction 〈Ce〉/〈C〉 as a function
of aspect ratio L/W compared with that of a Poisson point process in the
surface area, and a random sterically hindered contact between two capsules.
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FIGURE 29 The ratio of inter contact distances, excluding all end contacts, with the
segment length for numerical networks of a varying aspect ratio.

We show in fig. 29 a comparison between the mean segment length taken over
segments containing no end contacts with the mean segment length satisfying the
relation in eqn (96).

6.2.3 Long fibre limit

For stiff fibres, in the limit of L/W → ∞, the density φs goes to 0. Moreover,
characteristic length scales of the both segments and void structure diverges. It
seems that adding flexibility to the network has quite the opposite effect. For
flexible fibres the global properties are not dominated by the aspect ratio, but
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FIGURE 30 Deposited network (in a gravitational field) with fibres of different flexibility
and aspect ratio. We notice a convergence of the resulting solids content as a
function of aspect ratio.

rather by the local packing and flexure of the constituents. In this case, short fibres
cause finite size effects which diminish for an increasing aspect ratio .

This can be observed by making deposition networks with varying aspect ratios
but with the same physical parameters for the fibres and the environment and
keeping the total mass of the fibres constant. In fig. 30 we show the resulting
solids content of this kind of test series for fibres of a varying aspect ratio and
flexibility. The results show, that short fibres, regardless of their flexibility, are
packed more densely that fibres of larger aspect ratio. This is owing to the fibre
geometry, as the excluded volume effect is larger for longer fibres. This effect is
however substantially reduced by adding flexibility to the fibres.

The same kind of convergence can be seen in the compression series of rods of a
varying aspect ratio. In fig. 31 we show the contact density ρc as a function of φs
and 〈ls〉 respectively. The geometric availability is evident from the contact density
ρc as shorter fibres are packed with more contacts. This effect is substantially
smaller for longer fibres, and most spectacularly the long rod limit seems to
coincide with that of an uncorrelated process.
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6.3 Indirect measurement of network properties

For the indirect measurement of segment length, four sets of networks of different
flexibilities were generated using the sequential packing algorithm introduced in
Publication I. Two examples of networks of this kind are shown in fig. 32.

As seen from fig. 33a all the initial assumptions did not hold, as the model
systematically underestimated the segment length of the sample, i.e. paths were
shorter than expected. Although there may be several reasons for this, we found
quite good agreement by assuming that fibres were tilted, and thus paths would
gain an extra z-component along the segments. Assuming independent distri-
butions of ls and the ’tilt’ angle α, this effective z distance can be given in the
form

zeff = 〈ls〉〈sin α〉+ z0〈sin α〉. (97)

This provided a tunable calibration parameter. In practice, this parameter was
approximately constant, and produced on the average a prefactor of 1.7± 0.1 in
the measured paths. As shown in fig. 33b, the model is in fairly good agreement
with the numerical networks. We belive that the general form given in section 4,
now including the steric effects, will substantially enhance the method.
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(a) (b)

FIGURE 32 Examples of networks used to calibrate the indirect measuring method. (a)
A flexible and (b) stiff network.

(a) (b)

FIGURE 33 Results of the indirect measurement of segment length. (a) The assumption
of a planar network seems to fail, and this model systematically underes-
timates the mean segment length of the networks. (b) With a correction of
the tilt angle of the segment, good agreement with the measured segment
lengths is found.

6.4 Steric effects of foam-forming

Steric effects can also arise from other sources than the fibres themselves. One such
effect was studied in Publications III and IV in which we studied the resulting
microstructure of fibrous networks with added steric effects during the manu-
facturing of them. This was done by using foam as the carrier liquid during the
forming, and it seems that the bubbles in the foam left a trace on the microstructure
of the network.
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TABLE 3 Fitting parameters for the best fits by eqn (98) on the local thickness of the void
space for the numerically generated void space test.

a µ1 µ2 σ1 σ2

0.1249 3.8582 0.6803 0.0561 0.6440
0.1503 9.8266 0.6107 0.0439 0.6473

6.4.1 Void size distribution

An example of the effect of foam forming on the void thickness distribution is
shown in fig. 34. The effect is evident as an appearance of a clear second local
maximum in the void thickness distribution. This kind of bimodal distribution is
a common sign of some mixture of random processes, i.e. the observed random
variable is unlikely to be a product of a single stochastic process.

Owing to this bimodal feature of the distribution of void thickness, our trial
function was a linear combination of two distinct distributions, i.e. a function of
the form

fT = aN (µ1, σ1) + (1− a) Nlog (µ2, σ2) , (98)

where N(µ, σ) is a Gaussian PDF with mean µ and a standard deviation of σ, and
Nlog(µ, σ) is a lognormal distribution, where µ and σ represent the conventional
position and scale parameters. The reasoning behind this was that the underlying
assumption of a log-normal distribution of voids is correct and that foam forming
has left some trace on the structure modelled by the inclusion of the second
distribution. Of course, the shape of this function is a priori unknown, but as the
actual bubble size distribution of the foam was measured to be nearly Gaussian, it
was a good trial function.

To test the justification of the fitting function we also conducted numerical
simulations with added spherical repulsive objects (bubbles). This served two
purposes: firstly, and trivialy, that steric effect can modify the structure of the
void space, and secondly that we can test the validity of our assumption that a
Gaussian fit extracts information about these steric inclusions. An example is given
in fig. 35, where we show both the fitted function of eqn (98) and visualisations of
the structure. The fitting parameters are shown in table 3. It is evident that the
mean of the Gaussian peak describes very well the mean of the added repulsive
objects.
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7 CONCLUSIONS / SUMMARY

The main objectives of this Thesis was to investigate how steric hindrance affects
the structure in packing of fibrous (flexible) fibres. This problem was addressed in
several different ways, i.e. on a theoretical, a computational and an experimental
level. Here we present a summary of the most notable results of our work.

7.1 Summary

The theoretical work resulted in a mathematical way to describe the steric hin-
drance between he packed objects. This was done by noting the underlying
planarity of many deposited structures and modelling the contact formation as
a two-sided sterically hindered point process. The model was validated by both
experimental and numerical results and seems to be able to, very precisely, de-
scribe the observed deviation from earlier theoretical results. Most notably, the
contact formation process deviates from an uncorrelated one both in the segment
length and coordination number distributions. To simplify, the absence of short
segments lies in the inability for two fibres to be next to each other, but contact on
opposite sides of a fibre seem to have no such restriction. This steric restriction
also decreases to possible configurations of fibres, making the distribution of
coordination more narrow.

As a side effect of studying the segment length distributions we found that
contacts on the ends of the fibres are abundant. The existence of such effect was
validated by both experimental and numerical results, both displaying similar
results. The abundance itself can be easily explained by geometric arguments as
the ends of the fibres are more available for contact. Its effect, however, leads to
some ambiguity of determining the mean segment length, a measure that is linked
directly to many physical properties of random networks. Moreover, contacts
on ends of fibres are likely to contribute differently to global properties of the
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network.

The theoretical model for fibre networks also led to a simple geometric mapping
of the point process to form a 3D sterically hindered structure. From this structure,
an indirect way of measuring the segment length could be derived. The method,
in its pure form, was not suitable for accurate measurements, but with an effective
calibration parameter the method was able to predict, with fairly good accuracy,
the segment lengths of numerically generated networks.

The numerical study shows, that even if random packing of flexible fibres show
finite-length behaviour, the effect scales away very rapidly with increasing aspect
ratio. Surprisingly, at larger aspect ratio, both the contact density and the segment
length behave in exactly the same way as an uncorrelated process would predict.

The structure of random networks can also be altered by introducing other steric
effects than the fibres themselves. This can be achieved in practice by e.g. using
foam instead of water as the carrier fluid in the forming process of paper. The
resulting effect is evident from the local structure of the resulting void spaces in
the network. How this affects the actual network structure is unclear, but one
would assume that it may also alter the process of contact formation.

7.2 Outlook

This Thesis is by no means exhaustive on the subject it addresses, and much work
is still to be done. Every answered question has led to a new problem. What form
should the distribution of the pairwise steric hindrance take? If the mapping of
fibres can match many of the relevant properties of the network (φs, fls and ρc), can
it be used to predict other properties such as permeability or elasticity? Can one
work out the carrier fluid of the networks by simply studying the void structure?
How does the excessive void space affect the network structure? If the shortest
path through a sample can be linked to the segment lengths, can one measure it in
faster ways, e.g. by electric conductivity or wave propagation?

Both numerical and experimental work on structural aspects of fibre networks
are sparse. µCT provides a very good way for analysing granular particles, as
the segmentation process is fairly simple and very accurate. The same cannot be
said for flexible objects. A significant amount of work has been invested trying
to gain experimental knowledge of soft fibres but, for the time being, proper
segmentation methods seem to be out of reach. On the numerical side, both the
computational capability and numerical methods are developed rapidly providing
fast and accurate assessment tools for theoretical models. On the theoretical
level the results, however, provide an evident direction of focus and it would be
appealing to explore the effect of the results on existing models of elasticity.
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