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The abnormally large collectivity of neutron-rich magnesium isotopes in the “island of inversion” has not been
well understood. It has been commented that the unexpectedly large deformations observed in the magnesium
isotopes are attributed to the neutron f7/2 intruder orbits involved remarkably even in the ground states, which
points to nuclear force directly. Recently, a new isospin-dependent Nilsson potential was suggested to improve
the calculations of the ground states of magnesium isotopes. With the improved Nilsson potential, in the present
work we investigate the collectivity of excited states by using the projected shell model. To avoid the collapse of
the BCS pairing, which occurs in weak pairing, we improved pairing calculations by using the Lipkin-Nogami
approach. The collectivity and the erosion of the N = 20 shell in neutron-rich magnesium isotopes are discussed
by calculating spectra and electric quadrupole transitions. The gyromagnetic factors are calculated and compared
with existing data to get insight into the configurations of collective states at different spins. A two-quasineutron
Kπ = 6+ state in 38Mg is predicted to be a possible isomer with an excitation energy lower than the Iπ = 6+

member of the ground-state band.

DOI: 10.1103/PhysRevC.88.024328 PACS number(s): 21.10.Re, 21.10.Ky, 21.60.Cs, 27.30.+t

I. INTRODUCTION

Whether the magic numbers established in the valley of sta-
ble nuclei exist in exotic nuclei is still an open question [1]. The
first indication of the vanishing of shell closures was revealed
around the neutron magic number N = 20 [1–3]. It has been
pointed out that the N = 20 gap is no longer large enough to
hinder the cross-shell excitations for magnesium isotopes [4],
and a considerable prolate deformation was observed for the
ground state of 32Mg through the measurements of the E2
transition strength [4–6] and rms charge radii [7]. The low-
lying excited states contain significant intruder configurations,
i.e., configurations outside the sd shell [4,8–10]. The normal
and intruder configurations are even inverted in energies [10].
The neighboring nuclei with the inversion form an “island of
inversion” [11].

There have been many theoretical efforts to understand
the anomalously large collectivity of magnesium isotopes,
e.g., by shell models [12–17] and mean-field approaches
[18–20]. The shell model is advantageous in the study of
interaction between normal and intruder configurations, while
the mean-field theory is more straightforward for describing
collective properties. It has been shown that the projected shell
model [21] is a bridge connecting these two models and can
provide useful information about the exciting mechanism and
configurations of rotational states.

The evolution of shell closures has attracted great interest
from both theorists and experimentalists. It was pointed
out that the erosion of the magic numbers established near
stable nuclei can be caused by the neutron-proton interaction
[14,22–24]. In the present work, we investigate the structures
and collectivities of magnesium isotopes using the projected
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shell model (PSM) which is built up by the spatial-symmetry-
conserved multi-quasiparticle (multi-qp) configurations pro-
jected from the Nilsson model [25]. However, the standard
Nilsson parameters (which are isospin independent and were
usually fitted to experimental properties of nuclei near the
stability line) are not able to give a proper description of
deformations of neutron-rich magnesium isotopes. Recently,
a special set of the parameters of the Nilsson potential was
suggested to describe the ground-state deformations of the
chain of magnesium isotopes [26]. It was emphasized that the
isospin dependence should be added to the Nilsson parameters
in order to take the effect of the neutron-proton interaction into
account [26]. In this paper, the improved Nilsson parameters
are taken for the PSM calculations of collective rotations of
the magnesium isotopes.

II. THE MODEL

The details of the PSM can be found in Ref. [21] where
the angular-momentum projection was performed within the
Nilsson model with BCS pairing. In the present calculation,
we improved the pairing calculations by using the Lipkin-
Nogami approach [27–29] to avoid the collapse of the BCS
pairing method, which can occur in weak pairing due to
broken-pair excitations. One can perform the PSM calculation
with the mean-field ground state only, without any excited
configuration considered. However, it has been pointed out
that the inclusion of excited quasiparticle (qp) configurations is
important [21], and it is a difficult task to include various qp ex-
citations. In even-even nuclei, they can be two-qp, four-qp, and
higher even-number qp configurations, while for odd nuclei,
they are one-qp, three-qp, and higher odd-number qp excited
configurations. In the present PSM calculation in which we
investigate even-even nuclei, lowly excited two-quasiproton
and two-quasineutron configurations are considered.

024328-10556-2813/2013/88(2)/024328(7) ©2013 American Physical Society
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The configuration space is (for even-even nuclei)

{|0〉, a†
νi
a†

νj
|0〉, a†

πi
a†

πj
|0〉, a†

νi
a†

νj
a†

πk
a†

πl
|0〉}, (1)

where |0〉 is the Nilsson-BCS qp vacuum in which all neutrons
and protons are paired giving the lowest energy with zero
spin and positive parity, a†

νi
a†

νj
|0〉 and a†

πi
a†

πj
|0〉 indicate

two-quasineutron and two-quasiproton excited configurations,
respectively, with two quasiparticles occupying the ith and
j th Nilsson orbits, and a†

νi
a†

νj
a†

πk
a†

πl
|0〉 are low-lying four-qp

(two quasineutrons and two quasiprotons) configurations.
The basis configurations are made within deformed Nilsson
single-particle orbits, with the Nilsson deformation parameters
taken from Ref. [26]. The deformations, which vary from
nucleus to nucleus, are determined by potential-energy-surface
calculations [26]. The authors of Ref. [26] suggested new
isospin-dependent parameters of the Nilsson potential spe-
cially for nuclei in the island of inversion, giving large
quadrupole deformations which agree well with observations.
We will discuss deformations in more detail later.

The PSM wave functions can be expressed in terms of
angular-momentum-projected multi-qp states [21]

|ψI 〉 =
∑

ξ

f I
ξ P̂ I

MKξ
|φξ 〉, (2)

where |φξ 〉 is a basis state given in Eq. (1). P̂ I
MKξ

is the

angular-momentum-projection operator and the coefficient f I
ξ

is the corresponding weight factor, which is obtained by
diagonalizing the eigenvalue equation

∑

ξ ′

(
HI

ξξ ′ − EIN
I
ξξ ′

)
f I

ξ ′ = 0, (3)

where HI
ξξ ′ and NI

ξξ ′ are the matrix elements of the Hamiltonian
and the norm, respectively, defined by

HI
ξξ ′ = 〈φξ |Ĥ P̂ I

Kξ K
′
ξ ′ |φ′

ξ 〉, NI
ξξ ′ = 〈φξ |P̂ I

Kξ K
′
ξ ′ |φ′

ξ 〉. (4)

The weight factor f I
ξ reflects the mixing amplitudes of

different qp configurations. An axially symmetric shape is
assumed, and thus each basis state can be labeled by the good
quantum number of the spin projection K onto the symmetry
axis. The state |ψI 〉 is a linear combination of various K states,
i.e., K mixing.

The Hamiltonian takes the following form, which in-
cludes quadrupole-quadrupole interaction and monopole plus
quadrupole pairings [21]:

Ĥ = Ĥ0 − 1

2
χ

∑

λ

Q̂
†
λQ̂λ − GMP̂ †P̂ − GQ

∑

λ

P̂
†
λ P̂λ, (5)

where Ĥ0 = ∑
α eαc†αcα with eα for spherical Nilsson single-

particle levels [21]. The monopole pairing strengths are taken
to be GM = [G1 ∓ G2(N− Z)/A]/A, where the signs “+”
and “−” are for protons and neutrons, respectively, with G1 =
18.52 and G2 = 11.74 [30]. The quadrupole pairing strength
GQ is assumed to be proportional to GM , with a constant factor
of 0.40, i.e., GQ = 0.4GM [30].

III. CALCULATIONS AND DISCUSSION

The magic number N = 20 is well established in stable
nuclei [1]. It is normally expected that a closed shell leads to a
spherical shape of the nucleus. However, experiments indicate
large quadrupole deformations in 32,34Mg [4,31]. We focus on
even-even Mg isotopes with neutron numbers from 12 to 28.

A. Single-particle orbits in the isospin-dependent
Nilsson potential

With the mean-field parameters obtained by fitting to the
nuclear properties near the β-stability line, a spherical ground
state for 32Mg with N = 20 was obtained [18,32–34], which
contradicts with the experimental measurements of a large
quadrupole deformation [5,6]. It has been found that the
inclusion of the isospin dependence of mean-field potentials
can improve the calculations of neutron-rich nuclei [26,35]
by providing an effective neutron-proton interaction. The
simplest way to include the isospin correlation in the Nilsson
model is to consider isospin dependence in the Nilsson
parameters. In Ref. [26], the authors suggested a set of
isospin-dependent Nilsson parameters which can remarkably
improve the calculations of the deformations and binding
energies for the ground states of magnesium isotopes.

In the present work, we use the adjusted Nilsson parameters
for the sd shell, which are [26]

κπ = 0.105 × (1 − 1.1 × |I|), μπ = 0.0 × |I| for protons,

κν = 0.105 × (1 + 1.1 × |I|), μν = 0.8 × |I| for neutrons,

(6)

where I = (N − Z)/A, giving isospin dependence, and the
parameters κ and μ are the coefficients of the spin-orbit
and �l2 terms in the Nilsson potential [25]. The adjusted κ and
μ values are close to the standard parameters for nuclei near
the line of stability, but they deviate from the standard values
when going to the neutron drip line. It is stated in Ref. [26]
that the isospin-dependent parameters give large quadrupole
deformations for the magnesium isotopes listed in Table I,
which is consistent with experimental observations.

In the present PSM calculations, three major shells (N =
1, 2, 3) for both neutrons and protons are considered; these
should be enough for the calculations of low-lying states in
the magnesium isotopes. Figure 1 displays the Nilsson levels
against the ε2 deformation, calculated at 32Mg. It is seen that
the adjustments of the Nilsson parameters for the sd shell
results in clear shifts of the single-particle levels. Note that
no adjustments are needed for other shells [26], e.g., the f7/2

shell. In Fig. 1(a), we see that the N = 20 neutron gap is

TABLE I. Deformation parameters (ε2 and ε4) used in calcula-
tions for Mg isotopes. They are taken from Ref. [26] for prolate
deformations of these nuclei.

N 12 14 16 18 20 22 24 26 28

ε2 0.374 0.237 0.231 0.400 0.460 0.351 0.273 0.252 0.327
ε4 0.069 0.026 0.048 0.024 0.066 0.018 − 0.004 0.044 0.062

024328-2
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FIG. 1. (Color online) Nilsson diagrams for neutrons (a) and
protons (b), calculated at 32Mg. The black lines (solid for positive
parity and dashed for negative parity) are for single-particle levels
calculated by using the standard Nilsson parameters, while the red
solid curves denote the sd-shell levels (positive parity) obtained using
the adjusted parameters [cf. Eq. (6)].

reduced due to the adjustments of the parameters, leading
to earlier crossings between the f7/2 and d3/2 orbits with
increasing deformation. This increases the probabilities of
neutrons occupying the f7/2 intruder orbits, driving nuclei to
be more prolate for neutron-rich isotopes of this mass region.
For the proton system of magnesium, the variation of the
Z = 20 shell gap has less effect on the properties of the Mg
isotopes because the Z = 12 Fermi surface is far from the
Z = 20 closed shell. In Ref. [26], it has been clearly shown
that the adjusted Nilsson parameters can well describe the
ground states of the neutron-rich Mg isotopes in the island
of inversion. In the present work, we adopt the new set of
parameters to investigate the collective properties of excited
states of these isotopes.

B. Level scheme and electric quadrupole transitions

We have calculated level schemes for even-even Mg
isotopes by using the PSM; these are shown in Fig. 2. It is seen
that the present calculations can reproduce well experimental
data, except for the case of 30Mg. This exception may be
explained by the experimental ratio of E(4+

1 )/E(2+
1 ) being 2.3

in 30Mg, which is close to the value of 2.5, the limit of the
nonaxial γ -soft rotor [41]. The nonaxial degree of freedom is
not included in the present model.

From Fig. 2, we see that the excitation energies of the
I = 2 states decrease gradually from 26Mg to 36Mg, and the
excitation energies of the I = 4 states decrease even faster.
This implies that the collectivity increases with increasing
neutron number in the Mg isotopes. This trend is reproduced
in our calculations. From the calculated spectra of 38Mg,
we see that a clear deviation from the collective rotational
characteristic occurs at spin I = 6. This would indicate a

FIG. 2. (Color online) Calculated and experimental spectra of the
Mg isotopes. The experimental data are taken from Refs. [36–40].

structure change, which will be analyzed in more detail in
the following section by using the language of band diagrams.

The B(E2) transition probability is an important observable
to probe nuclear structure. In the PSM model, the B(E2) value
from an initial state with spin I − 2 to a final state at spin I is
calculated by [21]

B(E2; I − 2 → I ) = 1

2I − 3
|〈ψI‖eτz

r2Y2‖ψI−2〉|2, (7)

where ψI is the PSM wave function defined in Eq. (2). The
effective charges eτz

take the standard values eπ = 1.5e and
eυ = 0.5e for all Mg isotopes in the present calculations.
The B(E2) values from the 0+ ground states to the first 2+
states have been calculated (see Fig. 3) and reproduce well the
experimental data. For 32Mg, different experimental groups
give quite different data. Our calculation supports GANIL
data [9], which gives the largest value compared to other
groups. The calculated B(E2) values reach a maximum at

FIG. 3. (Color online) Calculated B(E2; 0+
1 → 2+

1 ) values for
the Mg isotopes. Experimental data from different groups are labeled
with GANIL [9], RIKEN [4,31], MSU [8,42], CERN [43], and
Raman [44].
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32Mg in the whole chain of isotopes, which would imply large
collectivity and the erosion of the N = 20 shell gap. Our results
are in general consistent with the other theoretical calculations,
e.g., the shell model [12,45], the quantum Monte Carlo shell
model [13], and the angular-momentum-projected generator
coordinate method with a Gogny force [19].

In Ref. [26], B(E2; 0+
1 → 2+

1 ) was calculated by using a
phenomenological formula with the quadrupole moment of the
ground state. The present microscopic PSM calculations give
very similar results to those given in Ref. [26]. This can be
easily understood since we are using the same deformations
and the same Nilsson single-particle potential as in Ref. [26].
For a well-deformed nucleus, the collective rotation should
not change significantly the intrinsic property of the nucleus,
at least for the first 2+ state, which implies that the calculated
B(E2; 0+

1 → 2+
1 ) value from the PSM wave functions should

be close to that from the phenomenological calculation based
on the ground-state property.

C. Band diagrams

The band diagram, which is the ensemble of different
rotational bands plotted in one figure [21], is used to intuitively
show the rotational behavior of each multi-qp configuration
as well as its relative energy compared to other configu-
rations. From the diagram we can directly learn how these
configurations contribute to the structure of yrast states. At a
certain spin I , the mixing amplitude of a specific quasiparticle
configuration, which is described by the weight factor f I

ξ [see
Eq. (2)], can also be illustrated in the language of the band
diagram. A large weight factor indicates a large component
(mixing amplitude) of the configuration in the wave function.
For example, if a quasiparticle rotational band is close in
energy to the yrast line, the mixing amplitude (i.e., weight
factor f I

ξ ) of the quasiparticle configuration is large in the
wave function of the yrast state.

As the deformed basis maintains axial symmetry, we use
the quantum number K (the projection of angular momentum
onto the symmetry axis of the deformed body) to classify
the configurations. For even-even nuclei, the 0-qp band has
K = 0, whereas the K number of the multi-qp band is given
by the sum of the quasiparticle K values. The band diagram
for a given configuration is defined by [21]

EI
ξ =

〈φξ |Ĥ P̂ I
Kξ Kξ

|φξ 〉
〈φξ |P̂ I

Kξ Kξ
|φξ 〉

, (8)

where |φξ 〉 is a quasiparticle configuration obtained from the
Nilsson potential [cf. Eq. (1)].

For the magnesium isotopes investigated, the neutron d3/2

and f7/2 and proton d5/2 and s1/2 orbits are located near the
Fermi surfaces (see Fig. 1). Quasiparticle configurations based
on these orbits should be the most important components
for low-lying rotational bands. Figure 4 displays the calcu-
lated low-lying band diagrams for 26−40Mg. For an simple
presentation, we only plot the most important configurations
in the band diagram. We see that there exists no evident
band crossings at I � 10, except for the case of 28Mg. For
26,30−36Mg, the yrast bands have dominant components of the

0-qp ground-state bands. With increasing spin, low-K two-
quasineutron configurations formed by the intruder orbitals of
the νf7/2 shell start to compete with the 0-qp configuration
in the yrast wave functions in 30−36Mg, whereas in 26Mg a
two-quasiproton configuration formed by the orbitals of the
πd5/2 shell plays a role. Strong K mixing occurs in the I � 8
range where different rotational bands have energies close
to each other. It was commented that the large-amplitude
quadrupole-shape fluctuations would play an important role
for the inversion of two low 0+ states in 30−34Mg [46]. As a
result of deformations fixed in our calculations, we cannot
include the shape fluctuation apparently, but the effect of
the dynamical correlation could be partly included by the
configuration mixing in the PSM [21,47].

In the band diagrams of 28,38,40Mg, evident band crossings
and low-energy high-K quasiparticle excitations appear at
I ≈ 4−6. In 28Mg, K = 1 and 2 bands formed by the
two-quasineutron 1/2[330] ⊗ 3/2[321] configuration cross
with the 0-qp band (i.e., the ground-state band) at I ≈ 5
and become lower in energy than the ground-state band. In
40Mg, at spin I = 4 a two-quasineutron 1/2[321] ⊗ 7/2[303]
configuration appears at an excitation energy close to that of
the ground-state band. 38Mg is an interesting nucleus in which
our calculations give low-lying multi-qp high-K states with
excitation energies lower than that of the ground-state band.
In this nucleus, the high-� orbits 7/2[303] and 5/2[312] that
belong to the f7/2 shell are near the neutron Fermi surface,
which can lead to low-energy high-K quasipartcle excitation.
The two-qp 7/2[303] ⊗ ν5/2[312] K = 6 state appears below
the Iπ = 6+ member of the ground-state band [see Fig. 4(g)].
Due to the high K and low energy, the K = 6 state would be an
isomer. The low-lying high-K multi-qp excitations influence
the regularity of the collective rotation of the yrast band in this
nucleus. As we shall discuss later, the influence can also be
seen in g factors.

By analyzing the band diagrams, we see that the f7/2

intruder orbitals have significant effects on the low-lying states
of Mg isotopes within the island of inversion. The interplay
between normal and intruder configurations is embodied in
the present model through the mixing of different multi-
quasiparticle configurations, which is similar to some extent
to the shell-model calculations.

D. Gyromagnetic factors

The g factor which reflects the magnetic property of a state
is a sensitive probe of the configuration. It is defined by

g(I ) = μ(I )

μNI
= 1

μNI
[μπ (I ) + μν(I )], (9)

where μN is the nuclear magneton and μτ (I ) is the magnetic
moment of a state �I , obtained by [48]

μτ (I ) = I√
I (I + 1)

〈�I ||μ̂τ ||�I 〉

= I√
I (I + 1)

[
gτ

l 〈�I ||ĵ τ ||�I 〉

+ (
gτ

s − gτ
l

)〈�I ||ŝτ ||�I 〉], (10)
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FIG. 4. (Color online) Calculated low-lying band diagrams for Mg isotopes. The configurations are {2π1: π 3
2 [211] ⊗ π 5

2 [202]}, {2π2:
π 3

2 [211] ⊗ π 1
2 [211]}, {2ν1: ν 3

2 [211] ⊗ ν 5
2 [202]}, {2ν2: ν 1

2 [330] ⊗ ν 3
2 [321]}, {2ν3: ν 3

2 [321] ⊗ ν 5
2 [312]}, {2ν4: ν 1

2 [321] ⊗ ν 5
2 [312]}, {2ν5:

ν 5
2 [312] ⊗ ν 7

2 [303]}, and {2ν6: ν 1
2 [321] ⊗ ν 7

2 [303]}.

where τ = π or ν denotes protons or neutrons, respectively. In
our calculation, the standard values for gl and gs are taken as

gπ
l = 1, gπ

s = 5.586 × 0.75,
(11)

gν
l = 0, gν

s = −3.826 × 0.75.

The neutron alignment of one pair of neutrons results in
a more negative value for the g factor, while the proton
alignment leads to an increase of the g factor.

The calculated g factors for the yrast states of the Mg
isotopes compared with experimental data [49] are shown in
Fig. 5. We see that the g factor is a good indicator of the
configuration. In 28Mg [see Fig. 4(b) for its band diagram], the

FIG. 5. (Color online) Calculated g factors for the yrast states of
Mg isotopes compared to data [49].

two-quasineutron 1/2[330] ⊗ 3/2[321] bands with K = 1 and
2 cross the ground-state band at spin I ≈ 5, and they become
dominant components in the yrast band after the crossing. This
corresponds to a sudden drop at I = 6 and 8 for the g factors
in Fig. 5. For 30−36Mg, the g-factor values are close to zero.
Compared with the lighter isotopes 24−28Mg, the small g-factor
values in 30−36Mg imply an increase of components of neutron
configurations in the yrast bands. This would indicate shell
erosion around N = 20, which is consistent with the indication
from the B(E2) evolution, shown in Fig. 3. The weakening
of the N = 20 shell gap increases the ease of producing
quasineutron excitations. An abrupt drop of the g factor occurs
at I = 6 in 38Mg. This can be explained from the band diagram
in Fig. 4(g) in which we see that a two-quasineutron K = 6
state appears below the 0-qp ground-state band and dominates
in the yrast band. These g factors can supply important
information about the structures of the yrast states. Further
experiments are needed for the predictions.

E. The Kπ = 6+ band

The above analysis of band diagrams and g factors points
to the possible existence of a low-lying high-K isomeric state
in 38Mg. For an isomeric state, besides excitation energy, the
electric quadrupole transition is another interesting and useful
observable, particularly for transitions into low-K states,
which would be highly hindered. Figure 6 shows the calculated
energies of the predicted Kπ = 6+ (ν 5

2 [312] ⊗ ν 7
2 [303]) band,

024328-5
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FIG. 6. (Color online) Predicted energies of ground-state, yrast,
and Kπ = 6+ (ν 5

2 [312] ⊗ ν 7
2 [303]) bands for 38Mg (upper panel) and

calculated B(E2) values along the yrast line (lower panel).

compared with ground-state and yrast bands, and the B(E2)
values along the yrast line for 38Mg. It is seen that the Kπ = 6+
state appears at an energy lower than the Iπ = 6+ member of
the ground-state band, and it becomes the yrast state actually.
Calculated B(E2) values between the Kπ = 6+ state and the
Iπ = 4+, 8+ members of the ground-state band are much
smaller than the in-band E2 transitions of the ground-state
band, showing high hindrance for transitions from high-K to
low-K states. The low excitation energy and low transition
rate lead to the prediction that the Kπ = 6+ state would be an
isomer.

F. The second 0+ states

It was pointed out that shape coexistence would be evident
in nuclei around the island of inversion [50], mainly in
30,32,34Mg for magnesium isotopes. Nowadays the investiga-
tion of the shapes of the first and second 0+ states is still
an interesting topic from both theoretical [12,13,19,46,51]
and experimental [52–54] viewpoints. As the fluctuation of
different intrinsic shapes is not considered in the present
framework, we analyze qualitatively 0+ states which appear
at different deformations through the expectation value of the
PSM Hamiltonian,

E0(ε2) = 〈ε2|Ĥ |ε2〉
〈ε2|ε2〉 , (12)

where Ĥ is the Hamiltonian as given in Eq. (5), and |ε2〉 ≡ |0〉
is the BCS qp vacuum at deformation ε2. The calculated results
for 30,32,34Mg are shown in Fig. 7. We see shape coexistence
of the spherical and the deformed 0+ states in 30Mg, which is
consistent with experimental observation of the small electric
monopole transition B(E0; 0+

2 → 0+
1 ) [53]. It is also seen that

deformed 0+ states become more favored energetically than

FIG. 7. (Color online) Variation of the energy E0(ε2) [defined by
Eq. (12)] with deformation ε2. In the plot, the energy of the spherical
state is set at zero.

the spherical state in 32,34Mg, making deformed and spherical
0+ states reversed in energy, which leads to the phenomenon
of the island of inversion.

IV. SUMMARY

In this paper, based on the new set of isospin-dependent
Nilsson parameters, we have employed the projected shell
model for a systematical investigation of the collectivity of
excited states for neutron-rich magnesium isotopes within the
island of inversion. To avoid the BCS pairing collapse, we have
improved the pairing treatment by using the Lipkin-Nogami
approach for the PSM calculations.

The calculated excitation energies of low-lying states
reproduce well the experimental data. Calculated E2 transition
probabilities from the 0+ ground states to the first 2+ states
in 24−40Mg are in reasonable agreement with experimental
measurements. For nuclei around 32Mg, we obtained large
B(E2) values, which would indicate erosion of the N = 20
shell gap. This is consistent with some other theoretical
calculations.

By analyzing the band diagrams, we have found that,
for 28,38Mg, two-quasineutron configurations formed by the
orbitals of the νf7/2 shell dominate in the yrast states at
spins I � 6, which changes the collective rotational regularity
of the yrast bands. Especially for 38Mg, a two-quasineutron
5/2[312] ⊗ 7/2[303] Kπ = 6+ state with a low excitation
energy was predicted to be an isomer. The neutron f7/2 intruder
orbitals have significant effects on the low-lying states of Mg
isotopes within the island of inversion. As we have seen, these
effects occur in the g factors. The small nearly zero g-factor
values in 30−36Mg imply an increase of components of neutron
configurations in the yrast bands, compared with the lighter
isotopes 24−28Mg. This would indicate shell erosion around
N = 20. For 28Mg, the g factor drops abruptly at I = 6, which
is explained by band crossings between two-quasineutron and
ground-state bands. Existing experimental g factors have been
reproduced well, and more measurements of g factors for
neutron-rich Mg isotopes are desired.
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[17] F. Maréchal et al., Phys. Rev. C 72, 044314 (2005).
[18] J. Terasaki, H. Flocarda, P. H. Heenen, and P. Bonche, Nucl.

Phys. A 621, 706 (1997).
[19] R. Rodrı́guez-Guzmán, J. L. Egido, and L. M. Robledo, Nucl.

Phys. A 709, 201 (2002).
[20] Z. Z. Ren, Z. Y. Zhu, Y. H. Cai, and G. O. Xu, Phys. Lett. B 380,

241 (1996).
[21] K. Hara and Y. Sun, Int. J. Mod. Phys. E 04, 637 (1995).
[22] T. Otsuka, Nucl. Phys. A 722, C347 (2003).
[23] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi,

Phys. Rev. Lett. 95, 232502 (2005).
[24] V. I. Isakov, K. I. Erokhina, H. Mach, M. Sanchez-Vega, and

B. Fogelberg, Eur. Phys. J. A 14, 29 (2002).
[25] S. G. Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29, 16

(1955).
[26] Q. J. Zhi and Z. Z. Ren, Phys. Lett. B 638, 166 (2006).

[27] H. C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys. A 201, 357
(1973).

[28] W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys. A
512, 61 (1990).
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