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Density gradient expansion of correlation functions

Robert van Leeuwen
Department of Physics, Nanoscience Center, University of Jyvdskyld, Survontie 9, 40014 Jyvdskyld, Finland and
European Theoretical Spectroscopy Facility (ETSF)
(Received 26 March 2013; published 23 April 2013)

We present a general scheme based on nonlinear response theory to calculate the expansion of correlation
functions such as the pair-correlation function or the exchange-correlation hole of an inhomogeneous many-
particle system in terms of density derivatives of arbitrary order. We further derive a consistency condition that is
necessary for the existence of the gradient expansion. This condition is used to carry out an infinite summation
of terms involving response functions up to infinite order from which it follows that the coefficient functions of
the gradient expansion can be expressed in terms of the local density profile rather than the background density
around which the expansion is carried out. We apply the method to the calculation of the gradient expansion
of the one-particle density matrix to second order in the density gradients and recover in an alternative manner
the result of Gross and Dreizler [Gross and Dreizler, Z. Phys. A 302, 103 (1981)], which was derived using the
Kirzhnits method. The nonlinear response method is more general and avoids the turning point problem of
the Kirzhnits expansion. We further give a description of the exchange hole in momentum space and confirm the
wave vector analysis of Langreth and Perdew [Langreth and Perdew, Phys. Rev. B 21, 5469 (1980)] for this case.
This is used to derive that the second-order gradient expansion of the system averaged exchange hole satisfies
the hole sum rule and to calculate the gradient coefficient of the exchange energy without the need to regularize

divergent integrals.

DOI: 10.1103/PhysRevB.87.155142

I. INTRODUCTION

Since the ground breaking work of Hohenberg and Kohn,'
we know that the external potential of any inhomogeneous
quantum many-body system is a functional of its ground-state
density n. This implies that the many-body ground state |W[n])
and hence any ground-state expectation value

Aln] = (W[n]|A|¥[n]) (1)

for any operator A is a functional of the density. This idea has
inspired an enormous amount of work in a research field that
is now known as density-functional theory. Density-functional
theory>™ is currently one of the main approaches used in
electronic structure theory. Over the years, many extensions
beyond its original formulation have been developed and
currently itis widely applied in solid state physics and quantum
chemistry, both for ground-state and time-dependent systems.’
Especially a large activity has gone into finding explicit
expressions for the ground-state energy E[n] as a functional
of the density for many-electron systems. The ground-state
energy is obtained by minimizing this functional on an appro-
priate set of electronic densities, which is of great importance
in determining structures and geometries of molecules and
solids. By use of the Kohn-Sham method,® this minimization
problem is reduced to solving effective one-particle equations.
The construction of the effective potential in these equations
requires the knowledge of the so-called exchange-correlation
energy functional Ey.[n]. This functional can be expressed
as78

n(r) pxc(r'r)
[r —r'|

Ei[n] = %[drdr/ , 2)

where py(r’|r) is the coupling constant integrated exchange-
correlation hole. The exchange-correlation hole has a physical

interpretation as the difference between the conditional and the
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unconditional probability [which is simply the density n(r’)]
to find an electron at r’, given that we know that there is
an electron at r. Equation (2) is an important relation since
it expresses the exchange-correlation energy in terms of a
quantity that has a local physical interpretation and can be
studied by accurate wave function and many-body methods
or modeled based on physical intuition. It has therefore
played an important role in the development of approximate
density functionals.>'* One of the simplest and already very
successful approximations has been the local density approx-
imation (LDA) in which the exchange-correlation hole is
taken from the homogeneous electron gas and applied locally®
to systems with arbitrary density profiles. The accuracy of
the LDA has been considerably improved by means of the
so-called generalized gradient approximations (GGAs).!> A
large class of commonly used GGAs is based on the so-called
real-space cutoff of the straightforward gradient expansion for
the exchange and correlation hole. The first such functional for
exchange was proposed by Perdew.” He noted that the gradient
expansion of the exchange hole to second order in the density
gradients violates the negativity condition and the hole sum
rule by which the exchange hole integrates to a deficit of one
electron. By enforcing these physical constraints, a density
functional was obtained that greatly improved on the LDA
for binding energies of molecules. This procedure was later
simplified'? using the fact that the exchange correlation energy
(2) can be written as

N XC
%m=3fw£§1

where N is the number of electrons in the system and

1
(oxe()) = f dr n(r)pxc(r + yIr) 3
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is the so-called system-averaged exchange-correlation hole.
This averaged hole still obeys the negativity condition as well
as the sum rule and can therefore be subjected to the real-space
cutoff procedure. One advantage of using the system averaged
holes was to reduce the order of the derivatives in the gradient
expansion. Furthermore, it also allowed for the real-space
cutoff procedure to be applied to the correlation hole since
there is a known gradient expansion for the system averaged
correlation hole in the random phase approximation (RPA) but
no known expansion for the correlation hole itself. This was the
basis for a GGA for the correlation energy.>!%'8 These GGAs
relied heavily on the pioneering work by Langreth, Perdew,
and Mehl'%?! who performed a wave-vector decomposition
of the system averaged hole of Eq. (3) and calculated the
Fourier transform

(pre(k)) = / dy (pre(y))e ™

from which the exchange correlation energy can be calculated
as

N dk 4

Excln] = > W(ch(k)>w~

We are not aware of any work that goes beyond Refs. 19-21
and improves on the straightforward gradient expansion of
the system averaged correlation hole. The knowledge on the
gradient expansion of the correlation hole is very limited
indeed. As mentioned before, in contrast to the work on the
exchange hole,>® there are no known expressions for the
gradient expansion of the non-system-averaged correlation
hole.

Part of the problem is that there has been no clear
derivation on how to expand the expectation value of a
general operator as in Eq. (1) in terms of density gradients.
A well-known expansion method for a two-point function
is the Kirzhnits expansion,2 which is, however, specifically
adapted to expanding the noninteracting one-particle density
matrix in powers of density gradients and can not be used for
more general correlation functions. The first goal of this paper
is, therefore, to present a scheme based on nonlinear response
theory that can be used to expand general correlation functions
(such as the correlation hole) in terms of density gradients.

The second goal of the paper is to clarify a point that
is often overlooked in carrying out gradient expansions.
We will illustrate the problem by considering the standard
gradient expansion for a global quantity, namely the exchange-
correlation energy FEy.. The starting point of any gradient
expansion is the consideration of a density profile n(r) =
no + én(r), which consists of a small density variation én(r)
around a homogeneous density ny. By considering the limit
of slow density variations one then finds that the lowest
gradient correction to the exchange-correlation energy is
an integral over a function of the form By.(no)[Vén(r)]?,
where the coefficient By.(no) is calculated from the static
exchange-correlation kernel of the homogeneous electron gas
of density ng.* Since Vén(r) = Vn(r), we can replace the
density variation under the derivative operator by the full
density profile n(r). However, the coefficient By.(ng) still
depends on the background density ng. This is a problem in
application of the formula to general inhomogeneous systems
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such as molecules or surfaces in which a background density
cannot be unambiguously defined (assuming that a low-order
gradient expansion makes sense in such systems).’>?3 The
usual argument to get rid of the background dependence, is that
the replacement By (19) — Bxc[no + dn(r)] can be made since
the difference between these two quantities is or order §n(r).
However, it is not clear that this is consistent with gradient
coefficients that arise from terms of order [8n(r)]>. The point
was discussed clearly by Svendsen and von Barth’> who
checked that the replacement of n( by the full density profile
was consistent to third order in the density variation. This
derivation was based on a specific relation between response
functions that describe the change in the exchange energy to
second and third orders in the density variations. In Ref. 24,
this derivation was extended by showing that the replacement
of no by the full density profile is consistent to all orders in
the density variation. In this paper, we will show that this
is the case as well for the gradient expansion of correlation
functions rather than scalar functions. This relies on certain
relations between the response functions that must be satisfied
for the gradient expansion to exist.

The paper is divided as follows. In Sec. II, we derive the
basic equations and consistency conditions for the density
gradient expansion of correlation functions. In Sec. III, we
derive the gradient expansion of the one-particle density
matrix for a noninteracting system with density n(r) (which is
therefore equal to the density matrix of the Kohn-Sham system)
and discuss its symmetry properties. We further calculate the
gradient expansion of the exchange-hole to second order in
the density gradients, both in real and in momentum space.
The momentum space description is used to demonstrate
that the system averaged exchange hole satisfies the sum
rule (but not the negativity condition) and to calculate the
gradient expansion of the exchange energy without the need to
regularize divergent integrals. Finally, in Sec. IV, we present
our conclusions and outlook.

II. GRADIENT EXPANSION OF CORRELATION
FUNCTIONS

A. Expansion in density variations

Let us consider an arbitrary correlation function F[n](r’,r)
for a system with ground-state density n(r). Since the
correlation function can be calculated from the many-body
ground state, by virtue of the Hohenberg-Kohn theorem, this
function is a functional of the density. At this point, it will
not be important what the specific form of the correlation
function is as the structure of its gradient expansion will
be independent of its specific form. Correlation functions
of common interest are, for instance, the pair-correlation
function, the exchange-correlation hole, or the one-particle
density matrix.

When the density is constant in space, i.e., when n(r) =
ng, we are describing the homogeneous electron gas and
due to translational and rotational invariance we have that
Fnl(',r) = FOng,|r — r’'|) where F° is a function of the
homogeneous density and the distance between its spatial
arguments. When the density n(r) = ng + én(r) deviates from
the constant density ng by a small amount §n(r), we can expand
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F in powers of this density variation. To derive compact
expressions, we first introduce the notation

l_.mz(rlﬂ"-’rm)9 dl_.m Zdrl"'drm

for the collection of m position vectors and the corresponding
integration volume elements. We further define

m
sn(r,) = [ [ ontr)).
j=1
With these conventions, the expansion of F in density
variations is given by

Fn](r',r) = F'(ng,|r' —r|)
Ea
m -
+Z,:ﬁ f dr,, F™(no;v',r.r,)én(r,,),

where we defined
s§m F(rl’ r)

Sn(r) - dn(ry) ®

F™"(no;r',r,r,) =

no
The ny dependence of the functions F”* will be important for
the gradient expansion, but to shorten notation, we suppress
this dependence in the notation for the time being and will
reintroduce it later. Here, we assume that the derivatives
F™ exist, which means that we assume that F is a smooth
functional of the density. In the electron gas, two Taylor
expansions around two different values of ny have very
likely the same mathematical convergence properties since
the two systems have the same physical properties (unless we
are close to a very low density corresponding to a Wigner
crystal transition). The point n is therefore unlikely to be a
nonanalytic point. When the derivatives F™ do exist we can
therefore expect the Taylor series (4) to converge whenever
[6n(r)|/ng < 1 or when they are integrable with a small
integral norm. The density variations are therefore assumed to
be small but we do not need to put any constraint on how rapid
they can vary in space and therefore their spatial derivatives
can be large. We note, however, that the notion of the existence
of the functional derivative is closely related to the allowed
domain of densities and the norm defined on this function
space. The smallness or integrability of |6n(r)| implies the
use of a supremum norm or possibly an L’-integral norm
(i.e., requiring |8n(r)|? to be integrable). Other norms may
induce weaker constraints on the derivative functions F™ but
stronger constraints on the density variations §n(r). A rigorous
discussion on the issue of functional differentiability for the
case of the energy functional is given in Refs. 25-28.

Let us now look at the symmetry properties of the functions
F™. As follows directly from the definition (4) of the functions
F™ and the assumption of differentiability, we have the
permutational symmetry

F'(r'rey...ry) = F™ (X0, 0) - Trgm)

for all permutations 7 of the integers 1, ... ,m. Since the func-
tions F™ are evaluated at the homogeneous density ng, they
also have the spatial symmetry properties of the homogeneous
electron gas. These symmetries are the translational symmetry
over an arbitrary vector a, rotational symmetry under arbitrary
rotations by a rotation matrix R, and inversion symmetry. If
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we denote by

a=(a,...,a), Rr, =(Rr,...,Rry,)

the m-tuples of translation vectors and rotated position vectors,
we can write

Fer,) = Ff +ar+ar, +a),
Fm(r/,r,Em) = Fm(Rr/’RraRl_.m)’ (5)
Fm(l‘/,l‘,Em) = Fm(—l'/,—I',—Em)

Since in Eq. (5) the vector a is arbitrary, we can in particular

choose a = —r and define a new function N depending on
m + 1 independent vectors by the relation
F"@'rry...tp) =F"@ —r,0ry —r,...,rp — 1)

=N"(r' —=r,ry—r,....,x,, —1). (6)

The difference vector r' — r will appear several times in our
equations, and it will, therefore, be convenient to define the
short notationy = r’ — r. We will further use y = |y| to denote
the length of this vector. Our interest will be in the functions
N'™ and, in particular, their Fourier transforms

Nm(y’gm) — /dfm Nm(y,[m)e_iq"rl_”'_iq”"r'" (7)

with Fourier inverse

dq . .
N™ Y, T — —m_ N\ , iyt Fiqpy Ty .
(no;y.r,,) / 2o (y.q,)e
With these definitions, we obtain the following expansion for
F in powers of the density variations:

/ 0 = L/ / dgm m
Fln)(t',;r) = F (no’yHm;m! a, | G N'Ya,)

% @l =)t i (v _r)5n([m)

= P+ 30 / Y iy )
= nO,y ot m‘ (277,')3'" y’ﬂm
X e—i(q|+»--+qm)-r5n(_gm). 8)

This equation forms the basis of the gradient expansion. To
proceed, we further derive a consistency condition that is
necessary for the existence of the gradient expansion. It follows
directly from the definition (4) of the functions F™ that

SF™(',r,r,) = /dr” F™H e’ r, )8n@”).

Taking én(r”) = §ny then to be a uniform shift in the density
(which means that we look at a compression or decompression
of the electron gas) yields

m

1
(.rr,) = / ar’ P e ).

3]1()
We can translate this condition to a condition on N™ using its
definition (6) and the definition (7) of its Fourier transform.
This gives the condition

m

V) = N (y,0,q1 ... qun). ©)
no

This relation is of key importance for the existence of the
gradient expansion. Without it we would not be able to
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eliminate the dependence of the gradient coefficients on the
homogeneous density n¢ in favor of a dependence on the actual
density profile. As we will see, this requires a summation
over response functions F'™ to infinite order. There is another
important advantage of this resummation. It will allow us
to relax the constraint that the density variations be small
(but varying arbitrarily fast) and replace it with the constraint
that the density variations vary slowly but with an arbitrary
amplitude. This is discussed in the next section.

B. The gradient expansion

In order to expand F in density gradients, we have to
assume that the density gradients are small. This constraint
is most easily phrased in momentum space by requiring that
the Fourier coefficients én(q) of the density variation have
their main contribution from small wave vectors q. If this
is the case, then the main contribution to the integrals in
Eq. (8) comes from this region of small vectors and we
can expand the functions N™ in powers of the wave vectors.
Subsequently carrying out the integrals in Eq. (8) then leads
to an expansion in density gradients, since powers in wave
vectors correspond to orders of derivatives in real space. Since
the response functions N typically vary very rapidly for
wave vectors close to the Fermi surface (or multiples thereof),
we require that the Fourier coefficients én(q) of the density
variation have their main contributions from wave vectors
that satisfy |q| < kp where kg is the Fermi wave vector. Note
that the procedure of interchanging integration and summation
requires absolute convergence of the wave vector expansion. It
is hard to prove this property for the general response functions
that we consider here, and we, therefore, have to assume its
validity.

The next task is then to expand the functions N in powers
of wave vectors. This task is simplified when we exploit the
symmetry of these functions. As follows directly from Eqgs. (6)
and (7) the functions N™ in Fourier space inherit the symmetry
properties of F™. They are symmetric functions of their wave
vectors, i.€.,

N"(y,qi ... qun) = N"(¥,9z(1) - - - Qre(m))

for any permutation 7 of the integer labels, and are invariant
under rotations and inversion

Nm(RY5Rq1 AR qu)7
Nm(—y,—(h ) _qm)~

N"(y,qi...qn) =
N"(y.qi...qn) =

From these equations, we therefore see that any power
expansion of the functions N must lead to an expansion in
terms of the spatial vector y and the wave vectors q;, which is
invariant under rotations and inversions of these vectors. The
mathematical question is then which polynomials have these
properties. This was answered in the classic book by Weyl;?’
every such polynomial must be a function of the variablesy -y,
Y - q; and q; - q;. We see that these inner products are indeed
invariant under rotations and inversions. Since any polynomial
in powers of y> =y - y can be resummed to a function of y,
we find that the general expression for N™ to second order in
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the wave vectors q; is given by

N"(y.q1 .. qw) = Ny D)+ N D)y - Y@

+NIOD) Y4+ NPG) Y- q)

i=1 i=1

+NI() ) (@i -q))

>

+NSG) Y (Voady g+, (10)

i>j

where q? = q; - q; and where we took into account that this
expansion must be invariant under permutations of the wave
vectors ;. This expansion is readily extended to higher order
powers in the wave vectors. For a given choice of correlation
function F, the practical task will be to determine the explicit
form of the coefficient functions N7(y) as a function of y and
the background density n. If we insert Eq. (10) into Eq. (8) and
Fourier transform back to real space, we obtain the expansion

oo 1 oo
FO'r) = Fog.y) + 3 — 3 NJOAT(r). (D)

m=1""" j=0

Letus analyze the explicit form of the first six coefficients A"’
for j =0,...,5 of this expansion, since these are exactly the
terms that we need for a gradient expansion to second order
in the density derivatives. The first term for j = 0 is simply
given by

A = én(r)".
The terms with j = 1,2,3 in Eq. (11) involve according to

Eq. (10) the Fourier transforms of m symmetry equivalent
terms and acquire the following forms in real space:

AT = im[8n()]" "y - Vén(r),
AT = —m[8n()]"" VZsn(r),

2
—m[8n(r)]m_1y2(§ : v) Sn(r).

In the derivation of the last term, we used that for an arbitrary
function f

( >f Z < )(l‘) Z%Biajf,

ij

m
A3

where with r = (x1,x2,x3) we used the notation 9; = d/dx; as
well as y; = x; — x;. This expression is readily checked using

31‘(&) = —% + —yi{j.
y y Y-

Finally, the terms with j = 4,5 in Eq. (11) involve according
to Eq. (10) the Fourier transforms of m(m — 1)/2 symmetry
equivalent terms, which yields

A} = —3m(m — D[sn@®)]"* [Vén(r)P,
AL = —im(m — D[Sn(0)]" [y - Vén(r)]*.
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We see that a general coefficient function A’ depends on the
density variation and gradients thereof. The functions dn(r)
that appear under the gradient operators can be replaced by the
actual density profile n(r) = ng + dn(r). However, we see that
we are still left with powers of §xn(r), which are unprotected by
derivative operators and which therefore can not be replaced
by the full density profile n(r). It is precisely at this point that
the consistency conditions (9) play a crucial role. If we use
these conditions in Eq. (10), then we see that

m

oN"
m+1 _ J
N () = e - (12)

F(r'r) = F°<y)+2 i (y)an(r>m+2—8n( )"
m=0

——Z—M)’"{

"N m a2

[V OF +

0
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This equation relates certain coefficients coming from higher-
order response functions N™ to those of lower order ones. In
particular, it tells us that by iteration,

m 0 3m71Nl
m m .] .
Ny (y) = o ., N/ =—=50 (=123,
ony
. 9m— 2N2
N (y) = —— L(y) (j=4.5).

If we insert these expressions together with the explicit form
of the coefficient functions A;’? back into Eq. (11) and shift
some indices, we obtain the expansion

1 m 1 2
{ PN ) = TN g - N (Z-V> n(r)}
ong ong ony y

Sy- w(r)F} 4. (13)

In this expression, we recognize several Taylor series of the coefficient functions N ;"(no + 8n(r),y) in powers of dn(r). These

Taylor series can be resummed to finally give

2
F(r',r) = F'(n(r),y) + iN{ (n(r),y) y - Va(r) — N; (n(r),y) Vn(r) — N3 (a(r),y) yz(g : V) n(r)

1 1
- ENZ(n(rxy) [Vam)]* — §N§(n<r>,y) [y - VamP* +-- -, (14)

where the implicit dependence on ny of the coefficient
functions is now replaced by a dependence on the full density
profile. We see that this is achieved by summing over response
functions N™ to infinite order. For clarity, we reinstated the
explicit density dependence of the coefficients in Eq. (14) to
indicate that they are local functions of the density n(r) and
therefore have a nontrivial spatial dependence on both r and y.
We stress again that the derivative condition (9) was essential
in eliminating the dependence of the gradient coefficient on
the reference density ng in favor of a dependence on the full
density profile. Having obtained the general form of gradient
expansion, we can wonder about its convergence. In order
for the gradient expansion to be useful, it at least needs to
be an asymptotic series. This is known to be the case for the
gradient expansion of some commonly studied functionals. For
instance, for small densities variations very accurate results for
the exchange energy are obtained by summing all terms up to
fourth order in the density derivatives.*?

Having obtained the general gradient expansion Eq. (14)
it remains to find explicit expressions for the coefficient
functions N7". We will describe how to do this in detail for the
coefficients needed for a gradient expansion to second order in
the density derivatives. To calculate the coefficients N|, N},
and N31, we need to calculate the function N'(n,y,q) for the
homogeneous electron gas and expand it in powers of q:

Ny (no,y) + N{(n0,y)y - q + N, (n0,y)q’
+ N (o, y)(y - @)% + -+ -. (15)

N'(no,y,q) =

The determination of the coefficients N} and N52 requires
knowledge of the second-order response function

N*(no,y.q1.92)
= N§(no.y) + Ni(no,y)y - (qi + q2) + N3 (no.y)(q} + ¢3)
+ N3(no. (¥ - 41)” + (v - 42)>) + Nj(n0.y)(q1 - )
+ N3 (no.y)(y - a)(y - q2) + - - (16)

The expression (14) together with Egs. (15) and (16) determine
completely the gradient expansion of an arbitrary correlation
function F to second order in the density gradients. These
equations form the main result of the present work. If
expansions to higher-order gradients are required, they can
be derived without difficulty along the lines described above.
To do this, one needs to construct higher order symmetric
polynomials in the wave vectors and carry out the required
Fourier transforms. The consistency conditions (9) or equiv-
alently Eq. (12) then allow for a complete resummation and
lead to gradient coefficients depending on n(r). What is needed
to determine the explicit form of the gradient coefficients in
practice is the determination of the functions N™. How to do
this for N' and N? is described in the next section.

C. Determination of N! and N?

A practical calculation of the coefficients of the gradient
expansion of Eq. (14) requires the knowledge of the functions
N' and N2. According to Egs. (4) and (6), these are defined
as the first- and second-density derivatives of the correlation
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function F with respect to the density, i.e.,
SF(',r)
3n(r'")
SF(r',r)
sn(r”)én(r’")

= N'(y,r" =),

no

— Nz(y,r” _ l’,l'm _ l').

no

To derive useful expressions for these functions, it is con-
venient to transform derivatives with respect to the density
to derivatives with respect to the external potential as such
derivatives appear naturally in perturbation theory. We can then
use the well-developed tools of perturbation theory to calculate
these functions. Let us therefore define the new functions

SF(r',r)
1 , " — 7 , 17
Flyr' —n =~ i (17)
82F(r',r)
2 , /" , Z/ — ) ) 18
Fyr' —rrx” —r) S0 . (18)

Since we evaluate these functions for the homogeneous
electron gas, they only depend on differences between the
spatial coordinates. It will, therefore, be convenient to also
define their Fourier transforms by

dpd .
e = f (2131)27 H(p.g)eP T,

dkdpdq
2n)°

as well as their partial Fourier transforms

fz(rl,rz,r?,) — f2(k,p’q)eik-l‘1+ip-r2+iq-r3’

d .
Fow= / (2:)3 Flp.@e™,

dk A
.7:2,, :/ .7:21(,, €lk'y.
(y:p.9) ) (k,p,q)
The chain rule of differentiation gives a connection between
the derivatives with respect to the density and the derivatives
with respect to the potential of the correlation function F. We
have

3F(l‘1,l‘2) —/dl‘ 8F(l‘1,l‘2)8l’l(l‘4) (19)

surs) ) Tt sn(ry) su(rs)’
§2F(ry,r2) —/dr §F(ri,ry)  8°n(rs)
surdu(ry) ) © 0 en(rs) Su(rs)du(rs)

82F(ry,ry) 8n(rs) dn(re)
+ dl’sdl‘f, .
8n(rs)én(re) Sv(rs) sv(ry)
(20)
We see that in these expressions the first- and second-order

derivatives of the density with respect to the potential appear.
We therefore define the linear density response function by x

Sn(ry) f dq a2 r)
=x(r,—r) = R
50(r2) |, x(r2—ry) (2n)3x(q)e
as well as the second-order density response function x? by
82n(ry) )
—— | =x“(r,—r,r3—r
Su(r)du(rs) |, x (ry —ry,r3—ry)

dpd 4 .
N / ﬁxz(p,q)e""('f"”“1'(“*').
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Using these definitions, we find by Fourier transforming
Egs. (19) and (20) that

1
x(@)
Npq = FGPO-NEP+OCED] )
x(P)x(q)

These equations give the desired relation between the density
derivatives N' and N? and the potential derivatives F' and
F? of the correlation function F. Relations between the
higher-order derivatives N™ and F™ can be derived in a
completely analogous way. From Egs. (21) and (22), we
see that to calculate the functions N' and N2, and hence
the gradient expansion coefficients of F to second order
in the gradients, we need to calculate the density response and
the change in F' to second order in a perturbing potential §v.
The problem is thereby reduced to doing perturbation theory
on the electron gas. This is a well-developed field of research.
One option is to use diagrammatic perturbation theory.*
In the following section, we will use standard perturbation
theory to obtain these response function for the case that F
is the one-particle density matrix and use that to calculate the
gradient expansion of the exchange hole.

III. GRADIENT EXPANSION OF THE ONE-PARTICLE
DENSITY MATRIX AND THE EXCHANGE HOLE

A. The one-particle density matrix

As an application of our formalism, we carry out the
gradient expansion of the one-particle density matrix for a
noninteracting system with density n(r). This problem has
received large interest in the past since both the exchange
energy Ex[n] as well the Kohn-Sham kinetic energy 7;[n] are
explicit functionals of such a noninteracting density matrix.>>
Therefore a gradient expansion of this density matrix directly
leads to a gradient expansion of these two functionals. Such
a gradient expansion was first carried out by Gross and
Dreizler’! using the Kirzhnits expansion.”*? This expansion
is adjusted to the specific form of the noninteracting one-
particle density matrix and can not be generalized to arbitrary
correlation functions. The method presented in this work can,
on the other hand, be applied to arbitrary correlation functions,
but to demonstrate the soundness of our formalism we will use
it to provide an alternative derivation of the result obtained
earlier by Gross and Dreizler using the Kirzhnits expansion.
An advantage of our derivation based on nonlinear response
theory is that it avoids the turning point problem encountered
in the Kirzhnits approach.?

Let us start by defining the one-particle density matrix in
second quantization as

y(r'r) =Y (W[§i o)) w),

o

where o is a spin coordinate. We will consider the case of
spin-compensated systems. Then, in a noninteracting system
with 2N electrons, the density matrix is given in terms of
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one-particle wave functions ¢;(r) by

N
D 20, (23)

j=1

y(@',r) =

where the prefactor 2 is a spin factor. The one-particle states
are eigenstates of a one-particle Schrodinger equation

[—3V2+ v®)]e;(r) = €;0;(r), 24

where v(r) is the external potential. To determine the gradient
expansion coefficients of y we need to determine how the
density matrix changes if we make small changes v(r) —
v(r) + Sv(r) in the external potential. More precisely, we need
to calculate the functional derivatives

82y (ry,ra)
Sv(r3)dv(ry)’

Sy (ry,r2)
)/l(r],rz,r3) = uv

2
Il r3,1) =
Su(rs) Yy (ri,ra,rs,ry)

which are the equivalents of the functions F' and F? of
Egs. (17) and (18) for the specific choice of correlation
function F' = y (note that they become functions of two and
three independent vectors respectively when evaluated for a
homogeneous system). To do this, it is sufficient to know the
functional derivatives of the orbitals ¢; and eigenvalues ¢;
with respect to the potential v. These are simply given by doing
first-order perturbation theory on the one-particle Schrodinger
equation (24). We find

5€j _ . 2

o) lp; ()], (25)
3¢;(r) (D)@ (r)p; (r
Su(r’) Z € — € (26)

With these relations, we can differentiate Eq. (23) twice with
respect to the potential. Afterwards, we then need to insert the
plane-wave states ¢k (r) and their eigenvalues € appropriate
for the homogeneous electron gas into the final expressions.
In order not to interrupt the presentation, these calculations
are given in Appendix A and we simply present the results of
these calculations here. If we define the Fermi factors by

ng = 0(kp — |K),

where 0 is the Heaviside function and where kp = (37%n)'/3
is the Fermi wave vector, then the resulting expressions are
given by

dp nppq—n
1 Prq p
y (y,q>=2/ Mo =M vy (g7
(2m)} €piq — €p
Y2y.p.q) =2 / K otk 4 p+ ak+p)
@ny
+ 00k +p+ak+ql, (28)

where

1 Ng — Nk Ny — Nxg
d(k.p.q) = ( 4 - ) (29)
Eq—ép Eq—ék Ep—Gk

In this expression, €, = |k|?/2 are the one-particle energies.
It remains to calculate the first- and second-order density

response functions x(q) and x2(p,q) to evaluate the functions

N' and N? of Egs. (21) and (22). Fortunately, for the specific
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choice F = y that we made, these density response functions
are simply given by

x(@ ="'y =0.q), (30)
x*(p.q) = y'(y = 0,p.q). 31)

They are therefore obtained directly from Eqgs. (27) and (28)
so that we do not need to do any extra work to calculate them.

To calculate the gradient coefficient to second order in
the gradients, we now need to expand y' and y? to second
order in the wave vectors p and q. Since these calculations are
somewhat lengthy, we do not present them here and refer to
Appendix B for a description of the main steps. The resulting
expansions are given by

Ly q) = _ KE [sinz _iq-y_(q~y)2}
Yy (y.qQ = 712{ e [1 5 5
2
12k2 cos(z)} (32)

1
yi(y.p.q) = e (cos(z)——(p+q) y cos(z)

+——= P+ 4 +p - Qlcos(z) + z sin(2)]
12kF

1 2 2 2
530 Y+ @+ 3+ ) vP)
y cos(z)), (33)

where we defined z = kpy. The expansions for the first and
second-order response functions x and x2 of Egs. (30) and (31)
are obtained by taking y = O in these expressions. Together
with Egs. (32) and (33), these expression then immediately
determine the functions N' and N? from Egs. (21) and (22).
The final result of this calculation to second order in the wave
vectors is given by

sinz iq-y (q-y7
N'(y.q) = 1 - -
(y.9 - [ 5 5 }
q® sin(z) — z cos(z)
12k2 z ’
2 .
N*(y.p.q) = %([Cos(z) - SIH(Z)]
kg Z

i 1 ) )
X{l—z(p+q)-y—g[(p~y) +(q-y)]}

P +q +p-qQ

* 12k

X |:3 cos(z) + zsin(z) — 3 sinz(z)i|
1 in(z)
+ E(p -Y)(q-y) 4— — 3cos(z)

By comparison of these two expression to the expansions (15)
and (16), we can directly read off the gradient coefficient
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functions of Eq. (14) to be

i, 1
N) = =5jo@), Ny(y) = 12k2z11<z>
1 1 . 2 2
N3 (y) = —gjo(z), N;(y) = 126 —3zj1(2)],
7.[2
N3(y) = e @+ 32711
F

where now we replaced ny — n(r) and hence the Fermi wave
vector kg = [372n(r)]'/3 that appears in these expressions is a
spatially varying function. We further introduced the spherical
Bessel functions

sinz — zCos z

W@ = 3

. sin z
Jo(2) = —,
Z Z

By inserting the gradient coefficient functions into Eq. (14),
we find the following explicit gradient expansion for the one-
particle density matrix:

y(@'r) = k—‘;L
T Z

1 2
6k2z ]0(Z)<y ) n(r)

1. 1
EJO(Z)y - Vn(r) — Tkéz J1(2)V2na(r)

2
— 2
24k} 3z @NVA)]
7 ' i
_ Fkl':l[]()(Z) + 3Z]1(Z)] [y - Vam)] +---. (34)

This expression is the main result of this section. After some
manipulations, we can rewrite it in an equivalent form as

1 1 V2k2
y(r',r) = —2{ Jl—@—ﬁ kFFZjl(Z)

Uy (vez. Y)Y 2

+ Zk[ (VkF y>] yz Jo(2)
1 1 (VK2 :

+ 4Vk2 %ZJO(Z) 96( k3) Lio@)z* — zji(@)]
11 2. 3.

+32k3 VkF [z Jo(@) =z i@ (35)

This expression becomes identical in form to that derived
by Gross and Dreizler’' using the Kirzhnits method after
eliminating the effective Fermi vector of their work in favor of
the density [this requires inversion of Eq. (19) of Ref. 31]. We
close this section with a final remark on our result. We note
that the gradient expansion to finite order breaks the symmetry
y(r,r') = y(r',r)*. However, the full gradient expansion as
described by Eq. (11) has this symmetry, which means that
the symmetry is restored by taking all higher order gradients
into account whenever the series converges. The symmetry
violation has clearly consequences for the quantities that are
derived from it, such as the exchange hole, as it introduces
ambiguity in defining such functions. To be in accordance
with existing literature, we will in the next section adopt the
definition of the exchange hole that was used by Perdew.’
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B. The exchange hole and energy

We finally stress a few points on the properties of the
exchange hole as derived from the gradient expansion and
present an alternative derivation of the gradient expansion
for the exchange energy compared to that of Dreizler and
Gross, which has the advantage of avoiding the regularization
of divergent integrals.’! In doing so, we confirm a result
obtained by Langreth and Perdew.'® The exchange hole can be
calculated directly from the one-particle density matrix as

ly(r+y,n)
2n(r)
Inserting the expansion (34) of for the one-particle density

matrix and retaining terms to second order in the gradients
yields the expression

px(r + Y|r) = -

px(r +ylr)
9 i@ 3 @)
= —5n0)= = =3[y Va(r)]
1 \Y ! \Y% ’
+Eh(z) ”(r)_ZkZZJO(Z)Jl(Z)<y ) n(r)
nz
+ — 1@lzjo(x) — 3/ @I Vn@E)]?
8k2
2 . .
o [—] KON L 322 - 3jo(Z)2]
8k;
X[y-Vam]P +---. (36)

As was pointed out by Perdew,’ the second-order gradient
expansion of the exchange hole does not satisfy the negativity
and sum rule constraints

px(r+ylr) <0 /dy px(r+ylr) = —
The violations of the negativity constraint is readily verified.
However, the violation of the sum rule is not immediately
obvious from Eq. (36). The sum rule can, however, be
conveniently analyzed in momentum space. To do this, we
define the Fourier transformed exchange hole to be

px(K[r) = / dy px(r + ylr)e Y. (37)
This function has the form
px(kIr) = p2(k|r) 4+ a1 (k,n) Kk - Va(r) + aa(k,n) Vn(r)
+as(k,n) [k - Va(©)]? + ask,n)[Va(r)]*
+astk,n) (K- V)2n@) +---, (38)

where we defined the unit vector k = k/k and k = |k|. The
explicit form of the functions p? and «; follow directly by
Fourier transforming Eq. (36) and are given in Appendix C.
The coefficient functions o, are tempered distributions,**
which have mathematically well-defined Fourier transforms.
As follows directly from Eq. (37), the sum rule condi-
tion in momentum space translates to the requirement that
px(k = 0Jr) = —1. Since px(k Ojr) = —1 [see Eq. (C1)]
this implies that the sum rule would be fullﬁlled whenever
a;(k = 0,n) = 0. However, as is clear from Egs. (C2)-(C6) in
Appendix C, this is not satisfied for «;, whereas o3 and o5 even
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diverge for k — 0 when interpreted locally as functions rather
than distributions. The gradient expansion of the exchange
hole does therefore indeed not satisfy the sum rule. These
divergencies, however, cancel when we calculate the system
averaged exchange hole in momentum space, which is given
by the expression

N{px(k)) = /drn(r)px(klr)

= N{pd(k)) +k - / dr n(r)e (k,n(r))Va(r)

3
+ 3 / dr n(r)B; (k,n(r)d;n(r)d;n(r), (39)

i,j=1

where N is the number of electrons. In this expression ( ,o,? (k))
is the system average of p2(k|r) and, in the last term under the
integral sign, we defined the tensor

kr )

This tensor has a longitudinal part with coefficient o and
a transverse part with coefficient oy, which describe the
contributions to the system-averaged hole of density gradients
Vn parallel and perpendicular to the momentum vector k.
These coefficients are calculated from the functions «; as

1 0(nay) 1 d(nas)
or =04 — — , oL =0ar+oaz— — on

n on
as a short calculation on the basis of Eq. (38) will show. From
these equations and the explicit expressions for o; given in
Appendix C, we can readily calculate the explicit expressions
for ap, 7. If we define the dimensionless variable k=k /(2kp),
then we have

kik;
Bij(n,k) = ozL(n,k)k—zj + aT(nak)<8ij -

2 2

= TnngT(k), oL = 320K

where the functions Z, r have the explicit form
Zr(x) = —4x 0(1 — x) + 28(x — 1),

Zi(x) = —4x0(1 —x) + 8(x — 1)+ 18'(x — 1).

ar Zy.(k),

These expressions are in accordance with the results of
Langreth and Perdew [see Eq. (3.55) of Ref. 19], and this
independent result therefore confirms the correctness of our
alternative derivation. The interesting observation is now that

lim Z 1(k) = 0,
k—0

and hence B;;(k,n) — 0 when k — 0. This implies that the
last term in Eq. (39) does not contribute to the sum rule of
the system averaged hole. The same conclusion can be derived
for the second term in Eq. (39). Since «j(k = 0,n) = i /(4nkg)
[see Eq. (C2)] is a local function of the density the integrand
of the first integral in Eq. (39) is a total derivative and vanishes
(assuming either vanishing densities at infinity or periodic
boundary conditions). We therefore find that

. _ . 0 _
lim (o (k) = lim {p0(k)) = 1.

This implies that system averaged exchange hole obtained
from the second-order gradient expansion does fulfill the
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sum rule, although the exchange hole itself does not. We
note, however, that this is only achieved by integrating over
both positive and negative contributions. When the positive
contributions to the exchange hole are removed the sum
rule is only recovered for a finite hole radius.”!° We finally
note that with Eq. (39) it is now a simple matter to calculate
the exchange energy from

E.[n] = N dk K 4
W= | Gy ) 5

We insert Eq. (39) and do the angular integrations first. It
is therefore convenient to define the spherical and system
averaged hole in momentum space by

1
(o) = - f A (pe(X)).
TT

such that
N o0
Edn =~ / dk (px()). (40)
T Jo

From Egq. (3), we then find that
N{(px(0)) = N((p(%)))

+ / drn(r)[%aL(k,n)—i— %aT(k,n)](Vn)z

2

_ 0 T 7 2
= N((py(K))) + / dr i Z. (V) (41

where we defined
Zy(k) = 1 Z,.(k) + 3 Z(k). (42)

The exchange energy is obtained by inserting the expression
for the averaged hole of Eq. (41) into Eq. (40). This then finally
gives the expression

En] = —;‘(%)3 /drn%(r)+/dr B, [n(0)][Vr(r)]%,
(43)
where
B.(n) = fooauzzaz)——;L
= Tekd o = T B Gr ) i

and where to calculate the first term in Eq. (43) we used
Eq. (C1). The coefficient By is the same gradient coefficient
as obtained by Gross and Dreizler’! and earlier by Sham.**
However, the correct analytic exchange gradient coefficient
is known*3 to be a factor 10/7 larger. The reason for this
discrepancy is clearly described by Svendsen and von Barth3®
who showed that the Coulomb interaction is too singular to
allow for the interchange of the operations of integration and
the expansion in wave vectors. The problem does, for instance,
not appear when Yukawa-screened Coulomb interactions are
used.?® The conclusion is that there is nothing wrong with the
Kirzhnits method, or the nonlinear response theory derivation
of the gradient expansion of the exchange hole presented
here, but one has be aware that for Coulomb interactions
the procedures of expanding correlation functions in terms of
density gradients followed by integrations involving Coulomb
potentials may not yield the same result as directly expanding
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the integrated quantity in terms of density gradients. For
this reason the original GGA of Perdew and Wang'® based
on the gradient expansion of the exchange hole was later
reparameterized'®*’ to accommodate the correct gradient
coefficient for the exchange energy.

IV. CONCLUSIONS AND OUTLOOK

We derived a general scheme based on nonlinear response
theory to calculate the density gradient expansion of general
correlation functions and showed that in order to express
the gradient coefficients in terms of the full density profile,
summations to infinite order must be carried out over response
functions of arbitrarily large order. A consistency condition
was derived to do this. The formalism was used to derive the
gradient expansion of the one-particle density matrix and the
exchange hole to second order in the gradients. We confirm
the derivation of Dreizler and Gross that used the Kirzhnits
expansion method. We further analyzed the exchange hole in
momentum space to derive that the system averaged hole to
second order in the gradients satisfies the sum rule and to
derive the gradient expansion of the exchange energy without
the need to regularize divergent integrals.

The scheme that we presented is very general and can
be applied to more general correlation functions. A natural
application of the scheme would be to calculate the gradient
expansion of the correlation hole p.. Regarding the gradient
terms of the correlation hole little is known. We essentially only
have some detailed information on the long-range properties
of the spherically and system averaged hole. This information
comes from the work of Langreth and Perdew who calculated
{(pc(k))) within the RPA. In our notation, their results (see also
Appendix C of Ref. 19) can be summarized as

72
Nlou) = Nl + [ dr szindom
F

where the function z. has been parameterized by Langreth and
Meh1?%?! as
/3 e 2% )

Zc(l’l,k) = 5

T (44)

where k, = (4kg/m)"/? is the Thomas-Fermi or screening wave
vector. We can transform to real space to obtain the following
expression for the spherically and system-averaged correlation
hole

k2
Nl = Nl + [ d S

2
"6k [T+ oy /izp

(45)

We see from Eq. (44) that z.(n,k = 0) # 0 and as a conse-
quence the sum rule {(p.(0))) = O for the correlation hole is not
satisfied. We know, however, that the RPA becomes accurate
in the high-density limit and since from Eq. (45) the gradient
coefficient of the correlation hole depends on k;y we see that
high densities are equivalent to large separations y. Similarly,
low density corresponds to short-distance behavior. However,
RPA can not be trusted in this region and we have no precise
knowledge on the small distance behavior of the gradient
coefficient of {(p.(y))). A model for the general short-range
behavior was proposed'®~'® on physical arguments (it should
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not affect the Coulomb cusp of and the on-top value of the LDA
hole) after which the real-space cutoff procedure was applied
(see, e.g., Fig. 4 in Ref. 17 and Fig. 5 in Ref. 18) to obtain a
GGA for correlation. It would, however, be desirable to have a
first-principles approach to the calculation of the short-range
properties of the gradient coefficient of the correlation hole.
As follows from our derivation, this requires the knowledge
of the functions (17) and (18), or at least their expansion to
second order in wave vectors, for the case that F represents the
pair-correlation function or the correlation hole of the electron
gas. It may, therefore, be worthwhile to use our current scheme
to explore these response functions beyond the RPA. For
short-range correlation, an approach based on diagrammatic
summation of ladder diagrams suggests itself. Of course, for
the development of density functionals for general systems
beyond the weakly inhomogeneous regime it is not sufficient
to use the straightforward gradient expansion.”> However,
general short-range features, such as the way the exchange-
correlation hole deforms close to the reference electron in
the presence of a density gradient can be transferred to
more general systems than the weakly inhomogeneous ones.
Perhaps, in combination with truly nonlocal functionals for the
exchange-correlation hole,*! this can lead to the development
of more accurate density functionals. This will be a topic of
our future research.

Finally, we would like to make some general remarks on the
extension of our derivations to temperature- or time-dependent
systems. In the case of temperature-dependent systems, the
expectation values of observables are traces over a grand
canonical ensemble. By Mermin’s theorem*? such expectation
values are still functionals of the density and, therefore the
derivations in this work can be carried out unchanged. In
fact, the dependence on temperature is probably going to
improve the convergence properties of the gradient series
by smoothening of the sharp Fermi functions, which, for
instance, were the cause of the oscillatory nature of the
gradient coefficients of the one-particle density matrix. The
situation of time-dependent systems is more delicate. Although
the existence of a density-potential mapping has been well-
established*° and hence a density functional theory can be
formulated, the time variable induces severe complications.
As was shown by Vignale and Kohn,*’*8 the temporal and
spatial nonlocality of time-dependent density functionals are
intimately correlated. Any temporal nonlocality (or frequency
dependence in the language of equilibrium response functions)
induces long-range spatial properties that prevents the gradient
expansion from existing. A way out of this problem is to use
new variables such as the current density*’*® or the local
density deformation density in a Lagrangian frame*-! for
which a local density approximation and a corresponding
gradient expansion does exist. This has been exploited in
Ref. 52 to construct a GGA functional within time-dependent
current density functional theory. The study of correlation
functions in the same fashion remains a challenge for the
future.
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APPENDIX A: CALCULATION OF y! AND »?

In this Appendix, we will derive the expression for the first
and second derivatives of the one-particle density matrix y
with respect to the potential v. For a clearer interpretation
and compactness of notation, we will only put a comma
between the variables representing the original coordinates
of the density matrix and the variables that appear as argument
of the potential variations. Direct differentiation of Eq. (23)
using Eq. (26) then gives

1 _ 3y (23)
y (23,1) = So(l)
= (D7 (e (2)e7(3)
=2 (fj—f,-)% AR AN
i.j A

where we used the short notation j = r; and introduced the
occupation numbers f; = 1 for an occupied state and f; =0
for an unoccupied state. Inserting plane wave states appropriate
for the electron gas, we find that

dqdp npiq = M ipryrs)tiaie )

1
y (rar3,ry) =2
(2m)°® €piq — €p

We therefore find that the function ' has the simple form

Hptq — 1
y'(pg=2"20—"

€p+q — €p
in Fourier space. This is precisely the integrand of Eq. (27).
The function y2 can be calculated by straightforward differ-

entiation of Eq. (A1) with respect to the potential

5y1(23,1)
Sv(4)

To obtain the explicit form of this function, we have to
differentiate both the orbitals and the eigenvalues using
Egs. (25) and (26). Let us denote the term that arises from
the differentiating the orbitals by X and the term that arises
from differentiating the eigenvalues by Y. Then we find that

y2(23,14) =

y2(23,14) = X(23,14) + Y(23,14),

where

X(23,14) =2 Z @i(2)p; )P k) (Dgp (4)p;(4)
ij.k

+ ®(jik)e; (D@, (De; (4ee(4)], (A2)

Y(23,14) = =2 Z i (2)<pj(3)<1>(iji)
ij
x [lo; @ — lo;®*lp;(Dpi(1), (A3)
and where we further defined

o1 fe—fi  fi—fi
Ok = ek—ej<ek—e[ ej—e;>'

(A4)
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The function ® has the useful properties ®(ijj) =0 and
®(ijk) = ®(ikj). The function y2(23,14) = y2(23,41) is
symmetric in the indices 4 and 1 due to the fact that the
differentiations with respect to the potential commute. This is,
however, not obvious from Eqgs. (A2) and (A3). We therefore
want to rewrite the form of the function 2 in such a way that
this symmetry is obvious. To do this, we first note that since
®(iji) = —D(jij) the terms with k =i and k = j in Eq. (A2)
sum up to a function Z of a similar form as Y in Eq. (A3),
namely,

Z(23,14) = =2 ) ¢i(2)p(3)(iji)
ij
x [lg; (D> = lg;(DI*1p; (g (4).  (AS)
We can therefore write y2(23,14) as

Y314 =2 > p@eiGIe>ike el (Dei)
ijkk#3, j)
X 0;(4) + O(jik)p;(Dgf (Dl @)pe(d)]
+Y(23,14) + Z(23,14). (A6)

It is easily seen that the sum of Y and Z is symmetric under
interchange of 1 and 4. However, this is not obvious in the first
term of the equation above since at first sight ®(jik) does not
appear to be equal to ®(ijk) since

o | fi—fi  fi— i
(D(Jlk)_ek—e[(ek—ej 6;—€‘>

which seems to be different from expression (A4). However,
this is just appearance. The reason is that the occupations can
only attain the values zero and one. For the case f; = f; = lor
fi = fj = 0 we see directly that Eq. (A4) and (A7) attain the
same value. A little inspection shows that this is also true for
cases f; =0,f; =1 and f; =1, f; = 0. We, therefore, find
that ®(ijk) = ®(jik) for k # i, . Therefore Eq. (A6) can be
simplified to

(A7)
j

Y2314 =2 > @i jble (el (Def @)
ijk.k#£(, j)
x @;(@) + 9;(DgE (D} D]
+Y(23,14) + Z(23,14). (AS8)

This expression is now explicitly symmetric in the indices 1
and 4. Let us now evaluate this expression for the homogeneous
electron gas. In the electron gas, the one-particle states are
plane waves,

eik-r
(r) = ;
Pk \/V

where V is the volume of the system. Since |¢x|> =1/V,
it follows from Egs. (A3) and (AS5) that the terms Y and Z
are identically zero, and the function y(23,14) of Eq. (AS8)
therefore attains the form

2
2
y2(23,14) = R Z
k.p.q.q#(k,p)
% [ei(q—k)-r1+i(p—q)-r4 + ei(p—q><r1+i(q—k)~r4]

D(k,p,q)e’ P
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where we defined

1 Ng — Nk Np — N
d(k,p.q) = 1 - )
k.p.@) eq—ep(eq—ek ep—ek)

In this expression, n, = 0(61: — €p) is the zero-temperature
Fermi function and g = k2 /2 is the Fermi energy. When we
replace the sum by an integral, the restriction q # k,p is a
region of measure zero and we can therefore freely integrate
over all wave vectors. After a few substitutions, we obtain

dkdpd
e = [ Sy pa

% eik'(l‘2 —r3)+ip-(ri—r3)+iq-(rs—r3) ,

where we defined

y*(k.p,q)
=2[®(k,k+p+qk+p + Okk+p+qk+q]

This gives the integrand of Eq. (28).

APPENDIX B: EXPANSION OF y! AND »?

1. Expansion of y!

To determine )/1 to second order in the wave vectors, we
have to expand the function

_dp npiq—np P (B1)

1
y (y.q9) =
2m)3 €p+q — €p

to second order in powers of q. This can be done by expanding
the integrand in powers of q. If we denote A = €p g —€p =P -
q + ¢?/2 with ¢ = |q, then we can expand the Fermi function
Np+q in a distributional Taylor series as

A d’n
6 de’|,

A% d*n
Toae,
P

dn

n =n,+ A—
p+q p de

Since n, = 6(eg — ;) is the Heaviside function, we have
2

AT
Np+q = Np — Ad(ep — €p) + 78 (er — €p)

A3
— e )

Inserting this into Eq. (B1) then gives

dp ip
vy = —2/ ) S(er — €p) Y

dp )
—AS — Py
+ / 2ny (er —€p)e
1 dp
(2m)}
We see that in these integrals, several derivatives of the

§ function appear. We now use the general mathematical
expression

) — A
M y(x)] = (d} dx) Z (x —x;)

A8 (ep — €p)ePY +---. (B2)

~ |2 (x)

where the sum runs over all zeros of the function y(x), i.e.,
y(x;) = 0. Using this equation in spherical coordinates with

PHYSICAL REVIEW B 87, 155142 (2013)

y(p) = (k% — p?)/2, we find

1
8(er — €p) = —3(p — kg), (B3)

kg

/ 1 ’
8'(ep —€p) = ———8(p — kp), (B4)
pkg
§'(p—ke)  8"(p — kp)

8" (ep — = — , B5
(er — &) e (B5)

1[1 3
8///(6 —€ ):__[_8///( _k )__5//( _k )
F p ke | p? P F o p F

3
+8(p — kF)}, (B6)
p

where in Eq. (B6) we also evaluated the third derivative of the
8 function as we will need it later in the expansion of y2. With
Egs. (B3)-(B5), we can readily evaluate the three integrals in
Eq. (B2). Let us denote these integrals by A, B, and C. Then
we find for the first integral,

2 dp kg sinz

A= | Gatp — ke = — 25
2y (p—kp)e i

where z = kry. The second integral gives
dp 2 / ip-
— [ o a2 e — e

: dp in
=<q2/2—zq-vy>/ms (c5 — ) P

=(¢*/2—iq-V ) COS(kFy)
2
q iq-y, sinz
=9 kgl
kg ST

where in the second step we used Eq. (B4). It therefore remains
to calculate the last integral

1 dp 2 N2 ip-
c=—§/(2n)3<p-q+q 1228 (€5 — ) €Y.

However, up to order q2, it suffices to calculate

1 dp 2 in.
C= —gfm(P'Q) 8"(er — €p) P

1 2 dp /7 ip-
=§(qu) /m(g (EF—Ep)epy

1 1 :
— _§(q ) Vy)ZTZkg[cos(z) + zsin(z)]
2 2§
q (q-y)*, sin(z)
= 6 zk COS( ) + 67‘[2 kF Z s

where in the second step we used Eq. (B5). Adding the results
y! = A+ B + C gives the expression (32).

2. Expansion of y2

Analogously to y! we can expand y(y,p.q) of Eq. (28) in
powers of p and q. To reduce our effort, we note that we can
write

y3(y.p.q) = A(y,p.q) + A(y.q.p),

155142-12
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where
dk k.
Ay p.@=2 | —5okk+p+qk+p).
(2m)

We, therefore, only need to expand A(y,p,q) in powers of the wave vectors and symmetrize with respect to p and q afterwards.
To do this, we first need to expand the function

n —n n —n
dkk+p+qk+p = ktp — 7k Tkiptg k).

1 <
€k+p ~ €k+p+q \ €k+p — €k €k+p+q — €k
If we denote

2 2
P p+q
A1=€k+p—€k=7+l"k, A2=6k+p+q—€k=—2 +(P+q-k

we find by expanding the Fermi functions in a distributional Taylor series that
DKK+p+q.k+p) = 38(r — &) — (A1 + A2)8" (e — ex) + 55 (AT + A1As + AF)8"(ep — ) + - - -
With this expression, we find that the function A(y,p,q) can be calculated as

dk o

A(Yap7Q)=/(zﬂ)S(S(eF_Ek)eky_gf
_1 dk n 2 2 ik

Jrlz/(znp‘S (er — @) (AT + A1 Ay + AS)e™ Y + -

The three integrals appearing on the left-hand side of this expression are sufficient to extract the powers to second order in p and
q. Let us call these three integrals A;, A,, and A3 in order of appearance. The first integral gives

8"(er — @ )(A) + Ag) ™Y

(2m)}

dk . CcOS Z
A= | —=8(er—e) e = :
! / Gy T = S

The second integral is given by

1 [ dk 2 2
5 (er — ek)[p +(P+9

A=—3 +(2p+q)-k}e"‘y

2m)3 2
2 2 .
[ PP+e+q? i ] COS(Z) + zsin(z)
= |- )V [
6 —27r2k13:
_ cos(z) +zsin(z) . , N i .
=T ok (p"+@®+q97) T (2p +q) -y cos(z),

where we used Eq. (B5) in the second step. Finally, the third integral has the explicit form

2 2 2 2 2 2
1= 35 [ { (5 p) (5 40) [ PET w0 k] | PEY ok Jor - aoe,

Q) 2 2
However, we only need the terms to second order in p and q. Therefore it is sufficient to calculate
1 dk A
B=12) Gap® k) + (p - WIP + @) - Kl + [(p + q) - KI*}8" (ep — &) Y

—i{(p~V)2+(p~V)[(p+q)~V]+[(p+q)~V]2}/£8’”(e — €)™Y
12 y y y y (27'[)3 F k

3 cos(z) — z% cos(z) + 3z sin(z)i|
272k '

where to evaluate the integral over the § function we used Eq. (B6). To perform the derivatives in the last term, we use that for

an arbitrary function f(z),

1
—E{(p V)2 +(-Vlp+9q -Vl +[(p+q) - Vy]2}|:

d*f 1df ke df
(P-Vy@Q-Vyf@=(/- -yq- Y)—<E—Zd—z) (p )——

With this expression, we find that

{(p-y)+@ -VIpP+q - yl+I(p+q-yl*}cos).

1 1
Ay = — [p*+p- (P+q +(p+q?1cos(z) + z sin(z)] — YT
T k}:

2472k
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Collecting our results A = A; + A, + Az, we therefore obtain the following expression for y2(y,p,q):

y*(y.p.@) = A(y,p.q) + A(y.q.p)

o 7'[2](1:

(cos(z) — %(p +q) - ycos(z) +

1
1242

(P> + q* + p - @lcos(z) + zsin(z)]

1
—Eﬂ@~wkuqyf+ﬂm+q%ﬂﬁumw>

This is equal to expression (33).

APPENDIX C: EXCHANGE HOLE IN MOMENTUM SPACE

Here, we present the explicit expressions for the coefficient functions «; of Eq. (38), which are calculated by Fourier
transforming Eq. (36). If we define the dimensionless quantity k = |k|/[2kgr(r)], then p? is given by

poklr) = (— 1+ 2k — 1&3)0(1 — k),

(ChH

which is simply the Fourier transform of the LDA exchange hole. We see that p4(0|r) = —1 and, therefore, the LDA hole satisfies

the sum rule. The functions «; are given by
i

o = 4nkF9(1_k), (CZ)
“ =R -
_ 1 o(1 —k) 18E 1 35’]} 1 C4
“3—‘W[T+Z(‘”Z(_)]’ -
@ = 25 BEO0 =B =& — D) ©
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