
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Timbre and affect dimensions: Evidence from affect and similarity ratings and
acoustic correlates of isolated instrument sounds

Eerola, Tuomas; Ferrer Flores, Rafael; Alluri, Vinoo

Eerola, T., Ferrer Flores, R., & Alluri, V. (2012). Timbre and affect dimensions:
Evidence from affect and similarity ratings and acoustic correlates of isolated
instrument sounds. Music Perception, 30(1), 49-70.
https://doi.org/10.1525/mp.2012.30.1.49

2012



Timbre and Affect Dimensions    49

Music Perception volume 30, issue 1, pp. 49–70. issn 0730-7829, electronic issn 1533-8312. © 2012 by the regents of the university of california all 
rights reserved. please direct all requests for permission to photocopy or reproduce article content through the university of california press’s  

rights and permissions website, http://www.ucpressjournals.com/reprintinfo.asp.DOI: 10.1525/mp.2012.30.1.49

Tuomas Eerola, Rafael Ferrer,  
& Vinoo Alluri

University of Jyväskylä, Jyväskylä, Finland

considerable effort has been made towards 
understanding how acoustic and structural features 
contribute to emotional expression in music, but 
relatively little attention has been paid to the role of 
timbre in this process. Our aim was to investigate the 
role of timbre in the perception of affect dimensions 
in isolated musical sounds, by way of three behav-
ioral experiments. In Experiment 1, participants 
evaluated perceived affects of 110 instrument sounds 
that were equal in duration, pitch, and dynamics 
using a three-dimensional affect model (valence, 
energy arousal, and tension arousal) and preference 
and emotional intensity. In Experiment 2, an 
emotional dissimilarity task was applied to a subset 
of the instrument sounds used in Experiment 1 to 
better reveal the underlying affect structure. In 
Experiment 3, the perceived affect dimensions as 
well as preference and intensity of a new set of 105 
instrument sounds were rated by participants. These 
sounds were also uniform in pitch, duration, and 
playback dynamics but contained systematic 
manipulations in the dynamics of sound production, 
articulation, and ratio of high-frequency to low-fre-
quency energy. The affect dimensions for all the 
experiments were then explained in terms of the 
three kinds of acoustic features extracted: spectral 
(e.g., ratio of high-frequency to low-frequency 
energy), temporal (e.g., attack slope), and spectro-
temporal (e.g., spectral flux). High agreement among 
the participants’ ratings across the experiments sug-
gested that even isolated instrument sounds contain 
cues that indicate affective expression, and these are 
recognized as such by the listeners. A dominant por-
tion (50-57%) of the two dimensions of affect 
(valence and energy arousal) could be predicted by 
linear combinations of few acoustic features such as 
ratio of high-frequency to low-frequency energy, 
attack slope, and spectral regularity. Links between 

these features and those observed in the vocal expression 
of affects and other sound phenomena are discussed.
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N umerous studies have investigated how 
individual features of music contribute to its 
emotional expression. These typically range from 

psychoacoustic features such as loudness and roughness 
(e.g., Leman, Vermeulen, De Voogdt, Moelants, & Lesaffre, 
2005) to structural features such as mode and harmony 
(e.g., Gabrielsson & Lindström, 2010) and performance 
features such as tempo and articulation (e.g., Baraldi, De 
Poli, & Roda, 2006; Juslin, 2000). Composers and arrangers 
take great care in selecting different instruments to bring 
out desired characteristics and emotional colors in the 
musical structure (Schutz, Huron, Keeton, & Loewer, 2008). 
In light of this, it seems surprising that little attention has 
been paid to timbre in communicating emotions in music 
despite its role as a “major structuring force in music and 
one of the most important and ecologically relevant features 
of auditory events” (Menon et al., 2002, p. 1742). Only re-
cently few studies have bordered the issue in the context of 
recognition of emotions from brief excerpts of music 
(Filipic, Tillmann, & Bigand, 2010; Krumhansl, 2010), al-
though the actual qualities of the timbre with respect to 
emotional expression has not yet been considered. Although 
timbre is resistant to unambiguous definition, being often 
defined in comparison to what it is not (pitch, rhythm, 
harmony, structure), there is nevertheless a great deal 
known about the psychological representation of timbre 
(Hajda, Kendall, Carterette, & Harschberger, 1997; Caclin, 
McAdams, Smith, & Giard, 2008). While the exact formula-
tion of timbre dimensions are still a matter of debate, con-
sensus exists on which psychoacoustic aspects of sounds 
these three dimensions represent, namely the temporal (e.g., 
attack time), spectral (e.g., spectral energy distribution), 
and spectro-temporal (e.g., spectral flux). These dimensions 
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have been commonly found in behavioral studies employ-
ing similarity ratings (Grey, 1977; Lakatos, 2000; McAdams, 
Winsberg, Donnadieu, De Soete, & Krimphoff, 1995), and 
have been further explored and (for the most part) cor-
roborated in a series of meta-analytic overviews (Burgoyne 
& McAdams, 2008; Caclin, McAdams, Smith, & Winsberg, 
2005). Several studies have also recently traced the neural 
underpinnings of these timbre dimensions (Caclin et al., 
2008, 2006; Menon et al., 2002).

Much research on music and emotions investigates the 
links between perceived emotions and music (e.g., Juslin 
& Sloboda, 2010), but the precise definition of those 
emotions has been notoriously difficult to pin down, even 
if there is agreement over their general characteristics and 
subcomponents (Sloboda & Juslin, 2010; Zentner & 
Eerola, 2010). Here we prefer to use the term affect, since, 
according to Juslin and Sloboda, it is an ”umbrella term 
that covers all evaluative–or ’valenced’ (positive/negative)–
states” (2010, p. 10) and the emotional expressions 
represented by short instrument sounds falls more 
appropriately within the scope of this term. Affects evoke 
emotional responses, but unlike basic emotions, they are 
not always emotional indicators themselves.

Connections between certain aspects of physical 
properties of timbre and emotional expression have 
already been found in research on expressive speech (e.g., 
spectral energy distribution and formant structure, Juslin 
& Laukka, 2003; Laukka, Juslin, & Bresin, 2005; Scherer & 
Oshinsky, 1977) and have recently been explored with 
nonverbal affect vocalizations (Belin, Fillion-Bilodeau, & 
Gosselin, 2008; Bradley, 2000; Redondo, Fraga, Padron, & 
Pineiro, 2008). The acoustical attributes of environmental 
sounds have also been found to affect the pleasantness and 
appeal of such sounds (Kidd & Watson, 2003; Maffiolo, 
Castellengo, & Dubois, 1999; Ohta, Kuwano, & Namba, 
1999). However, whereas the identity of the sound source 
may not be quite as important for a musical sound as it is 
for an environmental one, its affective expression (whether 
the performance is aggressive, tender, etc.) is likely to have 
greater significance (Scherer, 1995; Juslin & Laukka, 2003). 
Timbre holds the key in both these respects.

Timbre has a history of relevance to the field of 
emotions in music. Scherer and Oshinsky (1977) 
conducted a pioneering factorial rating study with 
synthetic tone sequences, where timbre was one of the 
factors that was systematically varied through simple 
spectral filtering and envelope manipulation. Later, 
Peretz and colleagues (1998) demonstrated that emotion 
categories may be reliably discriminated from 250 ms 
segments of music, which highlights the importance of 
timbre since many other musical elements (e.g., 
harmony, structure, melody) would require a longer 

time frame. Similar results, though with an entirely dif-
ferent model of emotions, were obtained by Bigand and 
colleagues (2005) using a similarity rating paradigm to 
study the emotional distances between music excerpts 
that were 1 s in length. The results using these short 
versions were nearly identical to the inter-item distances 
obtained with longer excerpts (approximately 25 s long). 
These results show a similarity to those obtained in 
perceptual genre discrimination tasks where extremely 
short excerpts (250 ms) are used, and where timbre is 
thus equally important (Gjerdingen & Perrott, 2008; 
Schellenberg, Iverson, & McKinnon, 1999). More 
recently, Krumhansl (2010) explored how well musical 
content can be recognized from very short clips of 
familiar popular music (400 ms). Interestingly, the 
emotional content of these polyphonic and familiar 
excerpts was rated by the listeners as well, but it was done 
in a relatively cursory fashion using a forced-choice 
paradigm of the basic emotions. Also, there were no 
acoustic correlates reported for the various kinds of 
emotional content, but this did not detract from the 
overall positive result, which further underlines the 
importance of timbre in music recognition. Another 
recent study by Filipic and colleagues (2010) investigated 
the degree of perceptual information needed to reliably 
attribute familiarity and emotionality towards brief 
excerpts of music. Intriguingly, they found that the 
distinction between neutral and emotionally moving 
music content occurred as early as 250 ms into the 
segment. However, this particular study treats the 
broader concept of emotionality rather than specific 
emotions, and while acoustic measures were used, no 
consistent patterns were found to explain the distinction 
between neutral and moving sound examples.

Using neurophysiological methods, Goydke, 
Altenmüller, Möller, and Münte (2004) demonstrated that 
violin tones representing happy or sad expression could 
be preattentively discriminated by listeners. And lastly, the 
link between timbre and affects has been observed in both 
infant and cross-cultural studies. The auditory system of 
infants is maximally sensitive to spectral slope differences 
(a central component in the vocal expression of affect), 
and this sensitivity is in the same range in both speech and 
music (Tsang & Trainor, 2002). Analysis of the musical 
features of emotions perceived in music across cultures 
has demonstrated the importance of timbre in addition 
to psychophysical dimensions such as tempo, pitch range, 
and rhythmic complexity (Balkwill & Thompson, 1999). 
Although these previous studies highlight the importance 
of timbre for emotional expression in both speech and 
music, efforts towards a more refined analysis of this con-
nection in music have not been carried out.
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Aim of the Study

The aim was to investigate the role of timbre in the percep-
tion of broad affect dimensions in music. To focus on 
timbre, we chose monophonic instrument sounds that 
would mainly vary in terms of the envelope and spectrum. 
This would reduce the confounding effect of other 
features of the music that are known to influence the 
perception of emotions, such as mode, tempo, register, 
harmony, and loudness. Whereas the monophonic sounds 
are seldom experienced without a context in music, they 
nevertheless provide examples of instances — where 
musicians practice their instruments — that can offer 
detailed information about musical expressivity.

To explore the affect structure of timbre, three 
experiments were designed to address the topic step by 
step. In the first experiment, the participants rated the per-
ceived affects of a selection of instrument sounds. The 
second experiment then explored the structure of affect in 
these ratings by subjecting a subset of them to an emo-
tional similarity task. In the final experiment, the affect 
dimensions of instrument sounds were again rated but 
these 105 additional instrument sounds contained 
systematic manipulations of the acoustic features.We 
decided not to focus on the basic emotion categories 
(happiness, sadness, fear, anger, etc.), as they would perhaps 
not have reflected the more subtle variations of timbre. 
Instead, we adopted a dimensional approach, and more 
precisely, the three-dimensional model of affect advocated 
by Schimmack and Grob (2000), which attempts to capture 
the core affects using the three bipolar dimensions, Valence, 
Energy arousal, and Tension arousal. The reason this model 
was chosen was because, unlike the two-dimensional 
variants (Russell, 1980; Thayer, 1989), it has a strong 
physiological basis, and accounts for empirical data from 
previous studies (Schimmack & Grob, 2000; Schimmack 
& Reisenzein, 2002), including perceived emotions in 
music (Eerola & Vuoskoski, 2011; Ilie & Thompson, 2006). 
The three-dimensional model still offers the possibility to 
revert back to commonly used two-dimensional models 
and even to collapse the affects into the basic categories 
(see Eerola & Vuoskoski, 2011). We also considered the 
intensity of affects and the listeners’ preference for sounds 
that capture those aspects that are thought to be relevant 
for affective evaluation (see Kreutz, Ott, Teichmann, 
Osawa, & Vaitl, 2008; Rawlings & Leow, 2008).

Experiment 1: Affect Ratings of Plain  
Instrument Sounds

An experiment was designed to obtain affect ratings of 
sound examples that had timbre as their main variant 
characteristic. Affect dimensions were taken from the 

three-dimensional model of affect (Schimmack & 
Grob, 2000).

Experiment Details

Stimuli. The stimuli were chosen to be real instrument 
sounds instead of artificially created sounds because 
of their high ecological validity. One hundred and ten 
instrument samples from the McGill University 
Master Samples (MUMS) collection (Opolko & 
Wapnick, 2006) were selected (see also Eerola & 
Ferrer, 2008). These sounds included most of the 
common instruments (piano, guitar, flute, clarinet, 
horn, oboe, etc.) as well as more exotic instruments 
such as Shawm and Crumhorn. A diverse selection of 
the different instrument families (horns, strings, 
woodwinds, etc.) of the MUMS collection was taken. 
The samples were chosen to be identical in pitch 
(D ♯ 4), not only because it lies in the vicinity of aver-
age pitch (Huron, 2001) but because it allowed for a 
maximal overlap between the registers of instruments 
available in MUMS. The durations were set for all 
instrument sounds to 1 s with a 23 ms fade-out at the 
end of the each sample. The loudness was equalized 
manually. A full list of instrument names, their articu-
lations, and the actual sounds are given in Appendix A 
and distributed online.1

Participants. The participants consisted of 17 females 
and 13 males (age M = 25.37, SD = 4.05). Thirteen 
percent reported having no formal music education, 
while 26.67% had received formal training. The rest had 
a mean of 11.55 years of formal music training (theory 
and/or practice). All of them reported having had music 
as a hobby for an extensive period. Music involvement 
was calculated according to the estimated number of 
hours per week spent listening to music (M = 11.2), 
together with the number of years spent playing music 
(M = 10.6).

Procedure. Participants were asked to rate the perceived 
affect qualities of individually presented sounds using five 
concepts, each represented by a bipolar, 9-point Likert 
scale. The words used to depict the extremes of each 
concept represented by a scale were: pleasant and 
unpleasant for the Valence scale (miellyttävä/
epämiellyttävä in Finnish), awake and tired for Energy 
arousal (virkeä/väsynyt in Finnish), tense and relaxed for 
Tension arousal (jännittynyt/rentoutunut in Finnish), 
like and dislike for Preference, and high and low for the 
Intensity scale. The words were displayed in two lan-
guages (Finnish and English) and the words for three 
affect dimensions were taken from a previous study 
(Schimmack & Reisenzein, 2002). The order of sounds 

1 https://www.jyu.fi/music/coe/materials/emotion/timbre/
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was random for each participant and the experiment was 
carried out using high-quality headphones in a quiet 
room.

Results

Consistency and Structure of Affects

One participant was removed due to low inter-subject 
correlation (3 SDs below the mean inter-subject corre-
lation). The removal resulted in an acceptable consis-
tency in the participants’ ratings (Cronbach’s a = .96 
for Valence, .92 for Energy Arousal, .94 for Tension 
Arousal, .75 for Intensity, and .93 for Preference). For 
Intensity ratings, the agreement between the partici-
pants was lower than the usually accepted threshold for 
high reliability (a > .80, McGraw & Wong, 1996) and 
hence this concept was discarded from all further 
analyses. High consistencies among the rest of the affect 
ratings suggest that isolated instrument sounds contain 
adequate cues for perceiving the emotional expression. 
Individual ratings were collapsed into the mean rating 
for each concept, due to their high agreement, and then 
were checked for the assumption of normality using 
Lilliefors test with p < .05 as the criterion level. No data 
transformations were necessary.

First we looked at the relationships between the rating 
scales, shown in Table 1. As in Experiment 1, correlations 
indicate how Preference and Valence were considered to be 
virtually identical by the participants, r(108) = .97, p < .001. 
Also, the two dimensions of arousal (Energy and Tension 
arousal) were highly collinear, r(108) = .84, p < .001, 
suggesting that one of the affect dimensions could be 
eliminated without significant loss of the overall affect 
structure, which resembles the findings obtained by Eerola 
and Vuoskoski (2011) in their comparison of emotion 
models using film soundtracks. However, this will be 
explored later in more detail using another task to minimize 
terminological and semantic confusions. At this stage, we 
are mainly interested in finding out to what degree the 
acoustic features can be linked to the two most independent 
affect dimensions, Valence and Energy arousal.

From these correlations it may be inferred that the affect 
space delineated by Valence and Energy arousal, shown in 
Figure 1, offers the least redundant portrayal of affect 
ratings for the sounds. A number of the instrument 
sounds have been labeled and circled in the Figure to help 
the reader to discern the pattern of affects better. These 
identified sounds will form the subset to be used in a 
follow-up experiment. It is particularly interesting to note 
that the instrument families (brass, strings, percussion, 
etc.) do not seem to relate to the observed linear relation 
between the affect dimensions. To qualify this observation, 

a one-way ANOVA with instrument family (6 levels) as 
the independent variable was conducted separately for the 
listeners’ mean ratings for each of the three concepts. No 
differences in Valence, F(5, 104) = 1.87, ns, Energy arousal, 
F(5, 104) = 1.67, ns, and Tension arousal, F(5, 104) = 1.02, 
ns, emerged. It is of course possible that another classifica-
tion of sounds (e.g., plucked, bowed, and steady-state 
sounds) might have yielded differences across the classes 
but such differences can also be analyzed by comparing 
the ratings with the acoustic features. Differences related 
to articulations will be more systematically studied in the 
Experiment 3.

Acoustic Features

Literature on the subject of acoustic features mentions 
several that characterize spectral, temporal, and spectro-
temporal aspects of instrument sounds. As a starting 
point, the present study used common timbre-related 
computational features (Grey, 1977; McAdams et al., 

Figure 1. M ean ratings of valence and energy arousal of all instrument 

sounds in Experiment 1 (N = 110). The circles mark the sounds used in 

Experiment 2.
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Table 1.  Correlations Between the Affect Ratings in Experiment 
1 (N = 110).

Concept Valence Energy Tension

Energy -.60**
Tension -.88**  .84**
Preference  .97** -.52** -.81**

** p < .001, df = 108.
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1995; Tzanetakis & Cook, 2002). A total of 26 such 
features were initially extracted to provide a sufficiently 
detailed yet compact account of the acoustic qualities of 
the 110 instrument sounds (see Table 2 for an overview).

Most of the features listed in Table 2 were gathered 
from the pertinent literature (cited in the table). Two 
additional acoustic features, however, were the Envelope 
Centroid and Envelope Fluctuation, which represented 
the centroid and standard deviation of the temporal 
envelope, respectively. The motivation for including 
these two features was to capture additional information 
about the temporal envelopes of the sounds, which may 
affect the Valence or Preference of the sounds.2 All 
acoustic features were checked for the assumptions of 
normality using Lilliefors test, and those features that 
violated the assumption were transformed using a Box-
Cox transformation (Box & Cox, 1964).

The feature extraction process was preceded by a 
trimming operation for eliminating silences at the ends 
of the soundfiles. The parts of the audio file with RMS 
energy values below 3% of the median RMS value were 
eliminated. All features were computed using 25 ms 
frames with 50% overlap. In this way, the feature set 
consisted of the mean of each acoustic feature across all 
frames. The entire analysis was carried out in the 
MATLAB environment using the MIRToolbox 1.2.4 
(Lartillot & Toiviainen, 2007).3

To simplify the results and construct reliable linear 
models between the features and affect ratings, a prun-
ing of the 26 acoustic features was necessary. For this, 
we applied Principal Components Analysis (PCA) to 
all 26 of the Z-score transformed features (extracted 
from the 110 instrument sounds). This yielded a 
seven-component solution that explained 83.4% of 
variance of the original matrix (using eigenvalues > 1). 
This number of components (seven) is also compatible 
with the notion of the maximum amount of predictors 
usable in regression modeling with 110 cases (a 
minimum recommendation of 10 or 20 times more 
observations than predictors, see Hair, Black, Babin, 
Anderson, & Tatham, 2006).

However, instead of relying solely on the components 
(PCs) as predictors, the individual acoustic features were 
taken into account. This is because they are more 

straightforward to explain than the PCs, which are less so, 
as a linear combination of the whole initial matrix is needed 
to account for them. Therefore, the selection of optimal 
individual features representing the seven PCs was carried 
out using feature selection principles as outlined by Jolliffe 
(see Al-Kandari & Jolliffe, 2001). In other words, the highest 
correlating feature for each PC was chosen (these 

Table 2. L ist of Initial Acoustic Features (26 in Total).

D† Feature Description

T Attack Slope Slope of the attack portion of the 
sound

T Envelope Centroid Centroid of the temporal 
envelope

T Envelope Fluctua-
tion

Standard deviation of the 
temporal envelope

T Zero-Crossing 
Rate

Number of time-domain zero-
crossings (Tzanetakis & Cook, 
2002)

S Spectral Centroid Geometric center of the 
spectrum (McAdams, 
Winsberg, Donnadieu, 
De Soete, & Krimphoff, 1995)

S Ratio of HF-LF 
energy

High-energy to low-energy ratio 
(Juslin, 2000)

S Spectral Spread Standard Deviation of the 
spectrum

S Spectral Skewness Skewness of the spectrum
S Spectral Kurtosis Kurtosis of the spectrum
S Spectral Flatness Ratio between the geometric 

and the arithmetic mean of the 
spectrum

S Spectral Roll-off The frequency boundary where 
85% of the total power spec-
trum energy reside (Tzanetakis 
& Cook, 2002)

S Spectral Entropy Measure of disorder of the 
spectrum

S Spectral Regularity Degree of uniformity of the 
successive peaks of the 
spectrum, also called Spec-
tral Smoothness (McAdams, 
Beauchamp, & Meneguzzi,1999)

S Inharmonicity Deviation of partials from the 
harmonic frequencies (Jensen, 
1999)

ST Roughness Estimation of the sensory 
dissonance (Sethares, 1998)

ST Spectral Flux Change between the consecutive 
spectral frames (McAdams et al., 
1995)

ST Sub-Band No. 1-10 
Flux

Spectral flux within particular 
frequency bands (Alluri & 
Toiviainen, 2010)

†S = Spectral, T = Temporal, ST = Spectro-Temporal Domain.

2 The MFCCs were also tried out but were excluded due to their low 
correlations with the perceptual dimensions and interpretational difficulties.

3 In addition to analyzing the sounds as a whole, separate descriptors 
for different parts of the envelope, i.e., the onset and steady state, were 
extracted. However, the difference between the features extracted from 
the steady state and the entire sound was marginal (±.02 in correlation 
coefficients between the acoustic features and the participants’ ratings) 
and thus the entire sound files were utilized in the analysis.
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correlations are marked in bold in Table 3). This operation 
resulted in seven acoustic features, roughly divisible into 
temporal (Attack slope and Envelope Centroid), spectral 
(Ratio of high-frequency to low-frequency energy, Spectral 
Skewness, Spectral Regularity), and spectro-temporal 
(Spectral Flux and Sub-Band No. 6 Flux). These features 
are not only representative and compact, but also nearly 
orthogonal. This is because they are based on orthogonal 
PCs, and the mean absolute correlation between the fea-
tures is low, r(108) = .23, p < .05.

Results

Acoustic correlates of the affect ratings. The correlations 
between the acoustic features and affect ratings were first 
visualized in order to discover any nonlinear relationships 
or outliers in the variables, but no such trends or outliers 
were found. Instead, high linear relationships between the 
acoustic features and the ratings were visible. For instance, 
r(108) = −.74, p < .001, between Valence and Ratio of 
high-frequency to low-frequency energy and r(108) = 
−.42, p < .001, between Energy and Spectral Regularity 
exemplify these interrelationships. An example is shown 
in Figure 2 and all correlations are shown in Table 7.

To investigate whether linear combinations of the 
features could explain the ratings of two affect dimen-
sions, multiple regression analyses were conducted for 
each affect dimension. Robust regression was chosen as 
the form of multiple regression, due to its resilience 
against outliers and distributional problems (Street, 
Carroll, & Ruppert, 1988). The multiple regression used 
the seven aforementioned individual acoustic features. 
The results are displayed in Table 4, where the normalized 
regression coefficients are given for the regression models, 
together with the individual acoustic features. The overall 
explanation rate of the models was good (> 50% variance 
is explained), and all the regression models were significant 
at the p < .001 level, where F(7, 102) > 40.00.

A high proportion of Valence ratings were explained 
(approximately 60% of variance) using mainly just three of 

the seven acoustic features. The significant normalized beta 
coefficients that represent these features in Table 4 suggest 
that positively valenced sounds have a high envelope cen-
troid. In other words, they are not percussive, but more likely 
to be sustained sounds, and contain more energy in the lower 
frequencies compared to high frequencies. Energy arousal 
ratings could also be explained (≈ 60% of variance) using 
another combination of the three acoustic features. Sounds 
that are energetic tend to have fast attacks, an emphasis on 
the early part of the envelope and with the dominant 
distribution of energy in the high frequencies. The internal 
cross-validations (5-fold) of the models indicate only minor 
decreases (0 and 2% for Valence and Energy arousal) in the 
fit of the models, suggesting that the pattern is stable within 
this particular set of data. We will later explore to what degree 

Figure 2. M ean ratings of valence (x-axis) and ratio of high-frequency to 

low-frequency energy measurements (y-axis) of all instrument sounds in 

Experiment 1 (N = 110).
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Table 3.  Correlation of Selected Seven Acoustic Features with the Principal Components.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7

Variance explained 33.4% 15.8% 12.8% 7.3% 6.5% 4.5% 3.3%
Attack Slope -.47 .50 -.10 .46 -.29 -.06 .28
Envelope Centroid .39 -.51 .33 -.56 -.00 -.13 -.06
Ratio of HF-LF energy .89 -.02 -.12 -.01 .10 .12 .11
Spectral Skewness -.06 -.67 .44 .08 -.49 .16 .15
Spectral Regularity -.34 .05 .32 -.53 -.07 -.40 -.05
Spectral Flux -.00 .32 .51 .44 .09 .13 -.28
Sub-Band No. 6 Flux .30 -.21 .69 .25 .38 -.01 .04
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these particular regression models can predict another set of 
data, by conducting a follow-up experiment to gain a more 
conservative estimate of the generalizability of the models. 

Discussion

The results of the regression analysis are interesting in 
terms of the previous studies. For example, Scherer and 
Oshinsky (1977) observed that the activity dimension 
correlated with the number of harmonics and the 
sharpness of the envelope. This is consistent with the 
results of the present study, in which the relevant 
measures are ratio of high-frequency to low-frequency 
energy, spectral centroid, and attack slope. Pleasantness, 
in their study, was linked to a low number of harmonics 
and sharp envelope, although a direct comparison is dif-
ficult as their study was a factorial one, with synthetic 
stimuli and manipulation of several other features (con-
tour, pitch height, volume, tempo) that may have 
contributed to the ratings. Nevertheless, some parallels 
can be drawn. In a speech and emotion study by Laukka, 
Juslin, and Bresin (2005), Valence was connected with 
ratio of high-frequency to low-frequency energy in the 
same (negative) fashion as in our study, and activation 
was positively linked with ratio of high-frequency to 
low-frequency energy and attack slope, again consistent 
with the results of the current study. Also, articulation 
differences (Attack Slope and Envelope Centroid) in 
happy and sad emotional expressions have been docu-
mented in a number of expressive performance studies, 
where staccato articulation is related to more active emo-
tions such as happiness and anger, whereas legato articu-
lation is typically used for tender and sad emotions 
(Bresin & Friberg, 2000; Gabrielsson & Lindström, 1995; 
Juslin, 1997, 2000). 

It is perhaps worth noting that previous studies of 
emotions in music related to timbre have used a 

considerably richer set of stimuli. These stimuli typically 
have been varied in several different dimensions (F0, speech 
rate, tempo, mode, dynamics, etc.) in comparison with the 
isolated instrument sounds in this experiment that had 
identical pitch height and loudness. Considering the 
paucity of the available information for the listeners, it is 
remarkable that in the present study such clear patterns of 
results could be observed. However, it may be premature 
to draw conclusions about a general pattern in the acoustic 
correlates of affects since the actual structure of affects  
(2 to 3 dimensions and intensity) was applied to the data 
on purely theoretical grounds. A more robust follow-up 
experiment was therefore devised to explore what kind of 
affect dimensions would be most appropriate to describe 
the affective qualities of the instrument sounds.

Experiment 2: Structure of Affect Using Emotion 
Similarity Rating Task

Since Valence, Energy arousal, Tension arousal, and 
Intensity operated in a collinear fashion in Experiment 1, 
we felt that a separate, non-theory-driven investigation of 
the structure of affects provided by the sounds was 
needed. An emotion similarity rating task would identify 
the critical dimensions of affects without resorting to any 
explicit labelling of the affects. This method has been used 
successfully in past music and emotion research as a 
means to uncover the dimensions of emotions for 
complete, polyphonic excerpts of music (Bigand et al., 
2005; Vieillard et al., 2008) and also to reveal the emotional 
processes involved in the mental representation of music 
(Barrett & Fossum, 2001; Russell, 1980) and perception of 
affects (e.g., facial perception, Hamann & Adolphs, 1999).

Experiment Details

Stimuli. The eighteen instrument sounds used in 
Experiment 1 were used in Experiment 2. The sounds 
were sampled by taking randomly two sounds from 
Experiment 1 using an evenly spaced grid (3 × 3, 
defined by 33.3% and 66.6% percentiles in the data) 
overlaid to the valence - energy arousal space. These 
chosen examples are identified with circles in Figure 1.4 
For a similarity rating experiment, this resulted in 153 
paired comparisons using a single item pairing order.

Participants. The participants consisted of four female 
and nine male music students (mean age = 26.21  

Table 4.  Summary of Regression Analysis in Experiment 1 
(N = 110).

Valence Energy

R2adj R2adj

Prediction rate .58 .59
β β

Attack Slope  .04  .28** 
Envelope Centroid  .33*  -.50*** 
Ratio of HF-LF energy  -1.09***  .91*** 
Spectral Skewness  -.28* -.01 
Spectral Regularity  -.01  .01 
Spectral Flux  -.15 -.04 
Sub-Band No. 6 Flux  .03  .11 

* p < .05, ** p < .01, *** p < .001 

4 Acoustic bass, acoustic guitar, alto flute with vibrato, alto shawm, 
archlute, organ (baroque plenum), trumpet with bucket mute, bassoon, 
cello (vibrato), electric guitar harmonics, harpsicord (8 stop), lute 
(renaissance 8 course), piano, oboe, tenor recorder, treble cornett, trom-
bone (tenor, muted), viola (non vibrato). Reference numbering to the 
Experiment 1 sounds is also noted in Appendix A.
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SD = 3.16), all of whom were extensively trained in music 
(> 10 years of music training, including proficiency with 
several instruments).

Procedure. The participants were asked to rate the 
affective similarity of each pair of sounds on a similarity 
scale of 1 to 9, where 1 indicated the minimum and 9 the 
maximum. The two sounds were separated by 800 ms of 
silence. The order of sounds was individually randomized 
and the experiment was carried out in a sound isolated 
booth and presented on a computer.

Results 

Underlying affect structure of sounds. High inter-rater 
consistency in the similarity ratings was observed 
(Cronbach’s a = .93). The individual similarity ratings 
were converted into individual distance matrices by 
subtracting the ratings from 10 and reorganizing them 
into matrix shapes. These individual matrices were 
subjected to individual multidimensional scaling 
(SMACOF, De Leeuw & Mair, 2009), which yielded 2, 3, 
and 4 dimensional solutions with a reasonable stress 
(.27, .11, and .05, respectively).5 To compare the resulting 
scaling solution with the results obtained from the 
ratings of the two affect dimensions (Valence and 
Energy arousal) for the same sounds in Experiment 1, 
procrustes analysis was carried out to rotate, scale, and 
translate the scaling solution in an optimal way with the 
coordinate positions of the two affect dimensions (Cox, 
2001). This analysis yielded highly significant symmetric 
correlation between the solutions, r(16) = .86, p < .001 
(estimated using 1000 permutations). In effect, the 
multidimensional scaling solution was simply rotated 
40 degrees clockwise to obtain the maximal fit between 
the two two-dimensional solutions.

The rotated two-dimensional solution (Figure 3) is 
directly comparable with the ratings for Valence and 
Energy arousal for the same sounds (the highlighted 
markers in Figure 1). Similarities between the scaling 
solution and affect ratings are clearly evident, since the 
extremes of the X-axis show the same instrument sounds 
in both representations (viola, alto shawm on the left; 
lute and tenor recorder on the right). Equally, the 

positions of the sounds in both the y-axes portray 
underlying similarities. Trombone, cornett, alto flute, 
and bassoon are among five of the lowest scoring sounds 
in both datasets, while viola and electric guitar harmonics 
are among the top five highest scores. There are also 
some differences between the datasets, such as the 
acoustic bass, which was situated in the middle of the 
Valence-Energy affect space, and yet on the extreme right 
of the x-axis in the scaling solution. The differences are 
probably explained by the fact that the two datasets are 
based on different methodologies and subsets of data. 
Perhaps the pair-wise comparison method nevertheless 
emphasizes a higher similarity between the acoustic bass 
and other plucked string instruments.

The dimensions were interpreted by first correlating 
the axis coordinates for each sound with their respective 
affect ratings from Experiment 1, then with their acoustic 
features. The first result implies that the dimensions of 
the rotated scaling solution could equally represent 
valence and energy arousal, as the first dimension 
correlated highly with the valence ratings for each 
excerpt, r(16) = .83, p < .001, while the second dimension 
positively correlated with the energy arousal ratings, 
r(16) = .89, p < .001. The third dimension did not 
correlate with any of the ratings collected in Experiment 
1, r(16) < |.16| for all. Bigand and colleagues (Bigand 
et al., 2005) tentatively interpreted this third dimension 
as kinetic since it could be connected to melodic 
movement, and more generally to body postures, ges-
tures, and movement. Because the added variance of this 
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ratings of instrument sounds.

5 Since the sample size is small (N = 13), we explored the reliability of 
the MDS solution by leaving out one participant across all possible can-
didates, and calculating the correlation between this new solution and 
the one obtained with 13 participants. This analysis yielded high correla-
tions (r[16] = .997 and .985 for dimensions 1 and 2). Similar analysis was 
repeated by leaving out two participants (78 combinations), which 
resulted again in correlations, r(16) = .995, p < .001, and r(16) = .98, p < 
.001. Omitting randomly three participants for 1,000 times, the correla-
tions were still at the level, r(16) = .99, p < .001, and r(16) = .98, p < .001, 
for dimensions 1 and 2). From this additional analysis it can be con-
cluded that the initial solution offered is robust.
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dimension was relatively small (≈ 10%) in both studies 
and neither Bigand nor we provide additional data to 
characterize the semantic qualities of this dimension, we 
can only speculate about it. In their analysis of short 
excerpts of Indian music, Alluri and Toiviainen (2010) 
found fullness to best represent the third factor of the 
perceptual dimensions, a characteristic already suggested 
by Von Bismarck (1974). Fullness was described by such 
bipolar scales as empty-full and compact-scattered and 
was connected to fluctuations in the lower end of the 
spectrum. This is, in our opinion, a closer match with 
the third dimension in the present study than the kinetic 
dimension in Bigand’s study, which seemed to capitalize 
on melodic movements not present in our study using 
identical pitch heights.

We believe this interpretation of the dimensions is 
justified, since the fit of all alternative formulations in a 
procrustes analysis resulted in a lower fit between the two 
coordinate solutions. Energy and tension arousal 
correlated only moderately with all possible combinations 
of the dimensions in the scaling solution (between .41 and 
.80). In addition, Valence is more compatible with previ-
ous studies of emotion that have been conducted in a 
purely music context (Bigand et al., 2005; Vieillard et al., 
2008). In both of these studies, Arousal was associated 
with the second dimension, as it is here.

When the dimensions were compared to the acoustic 
features of the examples, the first dimension was found 
to correlate highly with the Ratio of HF-LF energy, r(16) 
= .–82, p < .001. Meanwhile the second dimension 
correlated both with the Spectral skewness, r(16) = –.71, 
p < .001 and to a lesser extent with Spectral flux, r(16) = 
-.58, p < .05. Both of these results are to be expected, as 
the analyses in Experiment 1 showed that these particu-
lar acoustic features already correlated with the rating 
dimensions obtained from a larger set of data. The third 
dimension is more difficult to explain, since it correlated 
only moderately with Spectral flatness, r(16) = .45, 
p = .059. Finally, the fourth dimension, which adds 
another 6% to the explained variance in the similarity 
ratings, correlated best with Sub-Band Flux No. 4 (r(16) 
= .61, p < .01). It seems imprudent however to come up 
with labels for the third and fourth dimensions based on 
these analyses, since the patterns within these higher 
dimensions remain somewhat unclear, with only a minor 
portion of variance accounted for.

Discussion

The emotional similarity task based on instrument sounds 
allowed us to uncover an underlying affect space without 
resorting to any postulated semantic concepts. Individual 
multidimensional scaling analysis revealed a familiar affect 

structure based on the two dimensions of Valence and 
Energy Arousal. This interpretation was supported by 
maximal correlations of these dimensions to the ratings in 
a procrustes analysis between all possible permutations of 
the three dimensions originally used for rating and scaling. 
A simplification of the affect space into two dimensions 
(Valence and Energy arousal) was therefore justifiable on 
the grounds that it keeps the model parsimonious, with the 
focus of research on the precise nature of the link between 
perceived affects in music and its physical attributes.

To investigate whether we could validate and replicate 
the results observed in the previous two experiments, and 
also extend the scope of the findings, a third experiment 
was created.

Experiment 3: Affect Ratings of Manipulated 
Instrument Sounds

For the third experiment, we turned our attention to the 
Vienna Symphonic Library (VSL6), which is a colossal 
(550 GB) collection of sampled classical music instrument 
excerpts, performed by high-level musicians using a wide 
variety of articulations, in all registers, and at several 
dynamic levels. Our smaller set of high-quality sounds 
explored more subtle differences between the timbres 
than in Experiment 2. Two variant versions of the sounds 
were made by altering the apparent source of the sounds. 
This was done by using different dynamic levels, and by 
filtering the sounds in terms of one of the main features 
contributing to affective evaluations in Experiment 2; 
namely, ratio of high-frequency to low-frequency energy.

Experiment Details

Stimuli. A total of 105 instrument samples representing dif-
ferent sections of the symphony orchestra were chosen as 
stimuli from the Vienna Symphonic Library (VSL). The 
library includes sounds played at different dynamic levels, as 
well as in different registers. The samples were then split into 
three subsets of 35 samples each. Subset 1 was chosen from 
the forte dynamic level. These included 11 unique instru-
ments (violin, cello, trombone, trumpet, bassoon, flute, 
oboe, marimba, clarinet, horn, vibraphone) with up to 
seven articulations (plain, staccato, vibrato, legato, sforzato, 
marcato, and pizzicato; see Appendix B for details). Based 
on the results of Experiment 1, we predicted that sustained 
sounds, in other words, those with a higher Envelope 
Centroid (plain, vibrato, legato) would lead to higher rat-
ings of Valence and lower ratings of Energy. Articulations 
with a faster Attack Slope (sforzato, marcato, and staccato) 
would also be rated higher on Energy. However, more subtle 

6 http://www.vsl.co.at
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differences within the percussive type of articulations (stac-
cato, sforzato, and marcato) or sustained articulations (le-
gato, vibrato, and plain) were difficult to predict beforehand.

The instruments were chosen to maximize compatibility 
with the previous experiment, and the pitch for all was set 
to D ♯ 4. This time however, only 9 of the 35 sounds were 
1 s long (0.8-1.0 s to be precise). The maximum was 2 s 
long, and most of them were exactly this length (the 
median of sound duration for the entire set was 1.99).

Subset 2 comprised of the same 35 sounds but were 
taken from a different initial dynamic level (mezzo-
forte) in the sample library. Nevertheless, they were 
equalized to the same level as the Subset 1 sounds. The 
result of producing sounds at a lower dynamic level 
should have resulted in fewer higher harmonics, less 
spectral fluctuation, and less alterations in the temporal 
envelope (Pitt & Crowder, 1992; Strong & Clark, 1976). 
This should have particularly affected instruments such 
as the trumpet and cello, as these features of timbre are 
known to be a substantial part of their sound (e.g., 
Fletcher & Tarnopolsky, 1999).

Finally for Subset 3, we wanted to take the same 35 sounds 
from Subset 1, and make a straightforward alteration to the 
spectrum to see whether such a manipulation of ratio of 
high-frequency to low-frequency energy modified the affect 
ratings in the predicted direction.

For this purpose, a two-pole IIR filter with a resonant 
frequency at 2,000 Hz was applied to each sound. The 
difference equation for this filter can be seen below. It 
describes what the filter output signal is in relation to its 
input signal, at any given point in time. 

y(n)=.05*x(n)+1.78* y(n-1)-.86* y(n-2)	 (1)

where y(n) refers to the output and x(n) to the input, at 
a given time n. The coefficients were calculated 
according to the transfer function of a two-pole IIR 
filter (Rocchesso, 2004) with an altered gain factor G of 
0.05 and a bandwidth of 1,000 Hz.
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The magnitude response can be viewed in Figure 4.
The two-pole IIR filter was applied to the sounds in 

Subset 1 to create Subset 3 (35 sounds). The result of this 
filtering operation was an increase in the values of ratio 
of high-frequency to low-frequency energy for most 
examples due to its peak being in the vicinity of 2,000 Hz. 
Apart from increasing the ratio of high-frequency to low-
frequency energy, the filtering also led to alterations in the 

spectrum above 2,000 Hz due to the high attenuation 
slope following the peak in magnitude response.

We hypothesized that this manipulation would lead to 
decreased Valence and increased Energy arousal ratings 
due to the importance and the direction of the ratio of 
high-frequency to low-frequency energy coefficients 
received in Experiment 1. It is also possible that the 
attenuation of the high-frequencies (above 2,000 Hz) also 
counteracts some of the predicted effects since absence of 
high-frequency energies may also be interpreted as 
imparting distance cues of the sound source. To verify that 
our two manipulations would actually create differences 
in terms of acoustic features, we conducted a one-way 
ANOVA on ratio of high-frequency to low-frequency 
energy across the three subsets, which resulted in 
significant differences, F(2, 102) = 18.79, p < .001, between 
all of them in post-hoc tests, and mean values of .44 (95% 
confidence intervals .37-.51), .30 (.23-.36), and .58 (.52-
.64) for the Subsets 1, 2, and 3, respectively. The subsets 
also differed in terms of Spectral Skewness, F(2, 102) = 
30.92, p < .001, Spectral Regularity, F(2, 102) = 8.27,  
p < .001, and Spectral Flux, F(2, 102) = 5.64, p < .01. These 
features all showed the lowest mean values in Subset 2 
(except Spectral Regularity, operating in a reverse fashion), 
which was just as predicted (Pitt & Crowder, 1992; Strong 
& Clark, 1976). In other words, the sounds generated with 
lower dynamics should prove to be less chaotic for most 
of the spectro-temporal features. In total, Experiment 3 
had 105 sounds that were equalized in terms of loudness, 
using peak RMS value normalization and careful 
subjective evaluation. A 23 ms fade-out at the end of each 
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sample was also made to prevent any abrupt termination 
of the sound.

Participants. The participants consisted of 14 females 
and 17 males (age M = 26.35, SD = 6.04). Only 6.45% of 
them had no formal music education, and 16% described 
themselves as being trained formally for more than the 
half of their lives. The rest had a mean of 8.06 years of 
formal music training.

Procedure.Experiment procedures (task, instructions, 
scales, and adjectives) were identical to those used in 
Experiment 1.

Results

Acoustic correlates of affects. As in Experiment 1, similar 
pre-processing operations were carried out, and the same 
seven acoustic features were used. The only exception was 
Ratio of high-frequency to low-frequency energy, due to 
alterations caused by the IIR filter described in the previ-
ous section. In Experiment 3 the cut-off frequency for 
calculating Ratio of high-frequency to low-frequency 
energy was increased from 1,500 Hz to 2,000 Hz. The 
behavioral ratings were first screened to eliminate outliers 
using the same criteria as in Experiment 1, ultimately 
resulting in the removal of four participants owing to 
their low inter-subject correlations (3 SDs from the group 
center). After this, the inter-rater reliabilities were a = .88 
for Valence, .93 for Energy arousal, .92 for Tension, .85 for 
Preference, and .83 for Intensity. Again, a reasonable con-
sensus existed for most of the affect dimensions, which 
suggests that even this limited set of sounds was enough 
to create affective connotations for most listeners. Ratings 
of preference and intensity were also less homogeneously 
distributed across participants and these concepts were 
not used in the analyses. The pattern of correlations for 
these four concepts, displayed in Table 5, was almost iden-
tical to the ones obtained in Experiment 1 (see Table 1), 
corroborating earlier general findings.

Again, correlations between the acoustic features and the 
ratings of affect dimensions revealed moderate correlation 
coefficients mainly for Ratio of high-frequency to low-
frequency energy, r(103) = –.55, p < .001 for Valence, 
r(103) = .45, p < .001 for Energy but also with other fea-
tures such as Sub-Band No. 6 Flux (see Table 7 for all the 

correlations between acoustic features and ratings in both 
experiments). Before looking at the similarities between 
these results and those of Experiment 2 (Table 6), we will 
first replicate the analysis of the ratings by constructing 
linear combinations of the acoustic features, using robust 
regression and cross-validation.

In these analyses, robust and predictive models could 
be built to explain variance in the participants’ ratings. 
More specifically, Valence ratings could be explained (≈ 
55% variance explained) using a linear combination of 
the features. Although the important features contributing 
significantly to the regression equation were slightly 
different to those in Experiment 2, the overall pattern was 
similar: positively valenced sounds tended to have a slower 
attack and higher Envelope Centroid, both again showed 
higher positive valence when instruments had long decay 
and low attack slopes. In line with Experiment 2 (and 
Experiment 1 for that matter), a high Ratio of HF-LF 
energy was negatively associated with Valence. The 
measurements of flux also affected the Valence ratings, the 
overall Spectral Flux in a positive fashion and the flux 
within a selected sub-band in a negative fashion. This is 
somewhat harder to interpret since the two features 
correlate, r(103) = .40, p < .001, whereas in the robust 
regression, the two variables are related to different aspects 
of the residual variance. If we explore this in more detail, 
we can compare the unique contribution of these variables 
within the regression by using the squared semipartial 
correlations. Thus, by partialing out the contribution of 
all the other six features, we notice that the Spectral Flux 
has almost twice the unique contribution (sr 2 = .196) to 
that of the Sub-Band No. 6 Flux (sr 2 = .106). Thus, 
pleasant sounds also have a temporally dynamic spec-
trum, possibly linked to vibrato, but not to the frequency 
region around 800-1,600 Hz, which is the frequency 
region of the Sub-Band No. 6 Flux.

Table 5.  Correlations Between the Ratings in Experiment 3 (N = 105).

Valence Energy Tension

Energy -.45**
Tension -.66** .84**
Preference .93** -.23* -.50**

* p < .01, ** p < .001, df = 103.

Table 6.  Summary of Regression Analysis in Experiment 3 (N = 105).

Valence Energy

R2adj R2adj

Prediction rate .54 .74
β β

Attack Slope  -.17*  .32*** 
Envelope Centroid  .71***   -.42*** 
Ratio of HF-LF energy  -.52***   .71*** 
Spectral Skewness  -.30***   -.30** 
Spectral Regularity  .03  -.13 
Spectral Flux  .81***   -.09 
Sub-Band No. 6 Flux  -.75***   .33** 

* p < .05, ** p < .01, *** p < .001 
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Over 70% of variance in Energy arousal ratings could 
be explained by the regression. Energetic sounds were 
characterized by sharp attacks and bursts of energy in 
the initial parts of the envelope. Spectrally energetic 
sounds tended to have a dominant proportion of energy 
in the high-frequency regions and have particular 
dynamic fluctuation of the spectrum within the 800-
1,600 Hz region, which is consistent with the results of 
Experiment 2. It is worth noting, when speaking of the 
internal validity of the models, that the cross-validation 
of the two regression models results in only minor 
decreases (1-2%) in prediction rates.

Before attempting to draw connections between our 
results and those of past studies, we shall first explore in 
more detail manipulations in the dynamics and Ratio of 
HF-LF energy that were made, as well as the articulation 
differences within the sounds used in Experiment 3.

Results of acoustic manipulations and articulation 
styles on affect ratings. The differences across the three 
subsets (35 sounds in each) and the articulation styles 
(7) within the subsets will be explored using tradi-
tional analyses of variance. A visualization of the three 
affect ratings across the subsets is shown in Figure 5, 
implying notable differences in the ratings as a func-
tion of subset.

Separate two-way repeated measure ANOVAs were 
conducted for each concept using Subset (3 levels) and 
Articulation (7 levels) as within-subjects factors. For 
Valence, significant main effects of Subset, F(2, 46) = 
24.99, h2 = .52, p < .001, and Articulation, F(6, 138) = 
18.38, h2 = .44, p < .001, were evident. There was also a 
significant factor interaction, F(12, 276) = 9.35, h2 = .29, 

p < .001. A post-hoc comparison (Tukey, adjusted for 
multiple tests) showed that Subset 2 was the one that 
differed significantly from the other subsets (p < .001). We 
hypothesized that Subset 3 would show lower Valence 
ratings due to the increase in Ratio of HF-LF energy but 
this was not borne out by the analysis. Although the 
Valence ratings are somewhat lower in Subset 3 than in 
Subset 1, the difference is minor and not significant 
(p = .73). In line with our predictions, Subset 2 sound had 
elevated levels of Valence in comparison with Subset 1, as 
Subset 2 had the intention of being phenomenally softer 
and smoother, due to their lower initial dynamics. These 
differences were also evident in the acoustic summaries of 
the subsets. The Articulation differences in Valence ratings, 
demonstrated graphically in the upper panel of Figure 6, 
indicated mainly that the string sounds, particularly the 
pizzicato ones, were the most favorably rated in terms of 
Valence and the rapid onset sounds were at this end of the 
continuum. A planned contrast between the sustained 
(plain, legato, vibrato) and impulse-type envelope sounds 
(pizzicato, staccato, sforzato, marcato) was not significant 
(Z = 1.31, p = .19) despite the significant differences 
between pizzicato, staccato/sforzato/marcato, and plain/
legato/vibrato articulations.

For Energy arousal, another two-way repeated ANOVA 
yielded a significant main effect for Subset, F(2, 46) = 32.48, 
h2 = .59, p < .001, Articulation, F(6, 138) = 45.54, h2 = .66, 
p < .001, and Interaction, F(12, 276) = 13.35,  
h2 = .37, p < .001. According to the predictions, the Energy 
ratings should have been lower in Subset 2 and higher in 
Subset 3 when compared to Subset 1. Only the first 
hypothesis received support, since the Energy arousal 
ratings were in fact significantly lower in Subset 2 than in 
Subset 1 (p < .001 in Tukey contrasts), while Subset 3 
received significantly lower ratings than Subset 1  
(p < .001). The articulation differences in Energy arousal 
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were mostly as predicted, since we hypothesized that the 
impulse-type envelopes (staccato, sforzato, pizzicato, 
marcato) would lead to higher ratings of Energy arousal 
than those with sustained envelopes (plain, legato, 
vibrato), and this was supported by the statistically 
significant planned contrast (Z = 11.90, p < .001).

To summarize these findings, Subset 2 sounds were 
initially generated at a lower dynamic level that resulted 
in longer attacks and generally more energy on lower 
frequencies and less time-varying spectra, as was 
witnessed when features from Subsets 1 and 2 were 
compared. Although the dynamic level of these sounds 
was normalized to the level of other subsets, the ratings 
indicated that listeners were treating these sounds as 
being softer and hence, as originally intended, more 
pleasant, less energetic, and more relaxed: trends that are 
familiar from the studies of expressive performance (e.g., 
Bresin & Friberg, 2000; Juslin, 2000). Moreover, the 
findings concerning articulations produced interpretable 
differences related to the attack slope and the shape of 
the temporal envelope (for both impulse and sustained 
types) that have been characterized in terms of staccato-
legato articulations in many of the expressive perfor-
mance studies (e.g., Bresin & Friberg, 2000; Gabrielsson 
& Lindström, 1995; Juslin, 1997, 2000), and particularly, 
in a study of an expressive performances using only 
single piano notes (Baraldi et al., 2006).

The ratio of high-frequency to low-frequency energy 
manipulations in Subset 3 did not, however, have the 
predicted effects of decreasing Valence and increasing 
Energy Arousal. There are several possible explanations 
for this. First, the Ratio of high-frequency to low-fre-
quency energy manipulation may have been too subtle. 
Acoustically measured Ratio of high-frequency to low-
frequency energy values of Subset 3 were significantly 
higher than those for Subset 1 but this is not a guarantee 
of its perceptual salience. The filtering was performed 
for the entire spectrum, which perhaps led to other, un-
wanted psychoacoustic effects for the sound qualities. 
Since we are accustomed to filtered sounds in our every-
day contexts (phone, room acoustics, sound source dis-
tances), the effect of the actual filtering may be small and 
mostly reflect the dampened part of the perceptually 
salient frequencies (around 3,000 Hz), which gives the 
impression of being subdued or distant in its character 
since the high-frequency components lose energy due to 
air absorption faster than the low-frequency components 
(Middlebrooks & Greenhaw, 1991). The second alterna-
tive explanation is that the instrument templates are 
stronger than we assumed. In other words, the listeners 
had no problems recognizing the instruments and used 
the instrument itself as the main source of their affect 

ratings and adjusted it according to sound qualities, such 
as richness, which was in fact reduced by the filtering in 
comparison to the sounds of Subset 1.

Further work is needed to disentangle these possible 
explanations. With respect to the main aim of 
Experiment 3, failing to accurately predict the direction 
of the manipulations is of minor concern since the pur-
pose was to explore the acoustic correlates of affects in 
isolated instruments sounds using a more varied set of 
sounds, and this was achieved with the manipulations. 
The analyses regarding the articulations also have a 
caveat: articulations are specific to particular instru-
ments that conventionally produce the sounds. For 
instance, the string instruments responsible for the stac-
cato articulations tended to receive high Valence and 
Energy ratings also in Experiment 2, and hence the 
elevated levels may again relate to the instrument itself, 
rather than to the articulation. A factorial design would 
be needed to fully explore the separate contribution of 
each of these aspects.

Comparison of the affects in Experiments 1 and 3. 
Experiment 1 had 110 sounds that represented a large 
variety of real instruments from different eras, music 
genres, and sound generation types. Experiment 3 relied 
on a more restricted palette of sounds (35 sounds with 
three manipulations), representing the most common 
instruments in the classical orchestra. One could say that 
Experiment 1 had a larger variety of sounds than 
Experiment 3. Therefore it is crucial to test whether the 
models created with linear regression, and thus the 
features and their weights, are valid for both experiments. 
To this end, we devised two comparisons: the first was a 
simple table of correlations between the ratings and 
features for both experiments (Table 7) and the second 
is a new cross-validation of the regression models. For 
most of the acoustic features, correlations appear to be 
stable across the two experiments: For Valence, which is 
nearly identical, significant correlations for Ratio of 
HF-LF energy, Spectral Regularity, and Sub-Band No. 6 
Flux are displayed. For Energy, most acoustic features 
(Ratio of HF-LF energy, Spectral Skewness, Envelope 
Centroid) also exhibit similar correlations. The most 
notable difference between the experiments concerned 
the Attack Slope, in which the difference was not a large 
one and concerned only the magnitude of the correlation, 
and not a reversal of a sign and the relationship. From 
these comparisons, we could infer that the acoustic 
features selected, and the affect ratings given for sounds 
in both experiments, were relatively stable and operated 
consistently across the dimensions. 

In Experiments 1 and 3, a five-fold cross-validation 
was used to assess the degree of overfit of the models 
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within the experiments. This new cross-validation was 
to address the issue of validating regression models 
between the experiments. In other words, to ensure that 
we could predict the results of Experiment 3 using the 
regression model from Experiment 1 and vice versa. This 
resulted in considerable correlations between the model 
from Experiment 1 and the ratings of Valence, r(108) = 
.43, p < .001, and Energy, r(108) = .80, p < .001, from 
Experiment 3. Although we can see the Valence ratings 
suffered the most in this comparison, it proved to be the 
most difficult concept to predict and its features across 
both the experiments differed the most. The high success 
in the cross-validation for Energy attests to the overall 
robustness of the observations. When the reverse 
situation is considered, these cross-validations yield the 
following correlations between the model from 
Experiment 3 and prediction of ratings from Experiment 
1: Valence, r(103) = .45, p < .001, and Energy, r(103) = 
.77, p < .001. Again, both are statistically significant at 
p < .001 and the pattern is nearly identical to that of the 
previous comparison. These cross-validations of the 
regression models further underline the high correspon-
dence of the results obtained in both experiments. In 
sum, the relationships between the acoustic features and 
the behavioral ratings in both these experiments seem 
to share an underlying structure.

The correlations between the acoustic features and the 
affect ratings show interesting connections with the 
previous studies. To start with the observations from out-
side the domain of  music, the most preferred 
environmental wind sounds have a higher concentration 
of energy in the lower portions of the spectrum and the 
harsh sounds were associated with a concentration of 
energy in the higher frequencies (Kidd & Watson, 2003). 
This compares favorably to our results, where there was 
also a negative relationship between the Valence ratings 
and Ratio of high-frequency to low-frequency energy 

values for the sounds. Also, Kidd and Watson reported 
that appealing sounds were characterized by a high spec-
tral variation, akin to positive correlations between 
Valence ratings and Spectral Flux. In the pioneering study 
by Scherer and Oshinsky (1977), filtration cut-off level 
was found to relate to Pleasantness ratings for the syn-
thetic stimuli in a negative fashion, and to Activity ratings 
with a positive coefficient in the regression model, which 
are both in high agreement with the results of the present 
study. In general, the pattern of results also resembles the 
findings from the expressive performance studies, 
particularly for the acoustic features of Ratio of high-
frequency to low-frequency energy and Articulation, 
which have been linked to systematic differences between 
the basic emotions expressed in music (e.g., Bresin & 
Friberg, 2000; Gabrielsson & Lindström, 1995; Juslin, 
1997, 2000). These observations, in turn, have been linked 
with similar patterns of results in expressive speech (e.g., 
Ilie & Thompson, 2006; Juslin & Laukka, 2003; Laukka, 
Neiberg, Forsell, Karlsson, & Elenius, 2011).

General Discussion

First, listeners are able to consistently rate brief, isolated 
instrument samples in terms of affect dimensions. This 
is something that previous studies within the context of 
emotions (Bigand et al., 2005; Filipic et al., 2010; Peretz 
et al., 1998) using short excerpts of actual music pas-
sages or production studies (Juslin, 1997, 2000) have 
hinted at though not studied separately. Recent results 
(Krumhansl, 2010), which show agreement between 
the evaluated emotional content in both long and short 
clips, further endorses the importance of timbre in 
emotion perception, even if this study did not investi-
gate the specific acoustic cues that contributed to those 
emotions being communicated. Although the recogni-
tion of songs or genres is different from emotional 
communication, it could be argued that emotional 
communication in general benefits from such aspects 
that are immediately perceptible and do not require 
long preparation time.

Second, affect ratings of such short instrument timbres 
were moderately well explained using a small set of 
acoustic features. A compact set of seven acoustic features 
(spanning spectral, temporal, and spectro-temporal 
characteristics of the sounds) was used to predict the 
listeners’ ratings across affect dimensions. For most 
concepts, a dominant part of the variance was explained 
with two to four acoustic features. These models were then 
cross-validated across the two experiments and the 
common underlying features were identified. Many of the 
successful acoustic features have been identified as salient 

Table 7.  Correlations Between Features and Affect Ratings in Experi-
ments 1 and 3.

Valence Energy

Expt. 1 Expt. 3 Expt. 1 Expt. 3

Attack Slope .25** .10 .04 .25*
Envelope Centroid -.10 -.04 -.25** -.44***
HF - LF energy ratio -.74*** -.56*** .56*** .46***
Spectral Skewness -.11 -.07 -.23* -.38***
Spectral Regularity -.26** .21* -.42*** -.18
Spectral Flux -.15 .09 .12 .22*
Sub-Band No.6 Flux -.23* -.26** .13 -.04

* p < .05, ** p < .01, *** p < .001; df = 108 in Experiment 1 and df = 103 in Experiment 3.
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expressive features in previous studies relating to 
expressive content of speech and music (Juslin & Laukka, 
2003; Scherer & Oshinsky, 1977).

Third, our attempt was to control the timbre without 
resorting to artificial sound generation schemes. This was 
achieved by preserving the natural variation within the 
common instrument timbres and having listeners rate the 
instruments in isolation. In Experiment 3 we also explored 
more systematically how articulation and dynamic 
variation contributed to the perceived affective dimen-
sions. However, further studies of timbre should probably 
employ radically different timbre spaces as the current 
exploration emphasized classical music instruments in 
isolation. For instance, an experiment using synthetic 
sounds in the style of Grey and Moorer (1977) and 
McAdams, Beauchamp, and Meneguzzi (1999), or that 
morphed the existing sets of sounds (Haken, Fitz, & 
Christensen, 2007) could more clearly disambiguate the 
learned associations of the instrument characteristics from 
the acoustic features relating to the emotional expressions.

Fourth, the most consistently clear affect structure 
throughout the experiments was best represented in the 
two affect dimensions of Valence and Energy arousal. 
These two dimensions provided the least redundant 
descriptions of the affects when they were directly rated. 
Furthermore, they were retrieved by means of a 
multidimensional scaling of data obtained from an 
emotional similarity task. The affect ratings in 
Experiments 1 and 3 were initially gathered using the 
three dimensional model, due to its specific advantages 
in terms of capturing emotions in music (Ilie & 
Thompson, 2006) and because it was good for particular 
self-reported affects (Schimmack & Grob, 2000). 
However, this model failed to produce distinct results for 
each of the three dimensions, as was found in a previous 
study by Eerola and Vuoskoski (2011), and so it was 
eventually dropped. Nevertheless, it would be premature 
to conclude that the affect structure provided by 
instrument sounds is always two dimensional, since the 
coverage of possible sounds was not exhaustive. These 
concerns can all be easily addressed in future studies.

The results of the present study do raise a number of 
questions related to the timbral characteristics 
of emotional expression. The fact was that a number of 
essential music parameters such as alterations in 
dynamics, pitch, and harmony were predominantly 
missing from the stimulus materials, and yet the affective 
nuances of the instrument sounds were nevertheless 
communicated to the participants in a consistent 
manner. This attests to the importance of timbral 
features in conveying affects.

Future research could look at the effect of orchestra-
tion on affect by making empirical evaluations of 

certain classical instrument combinations. These could 
be, for example, a brass quintet or a string quartet, or 
they could be whole sections from an orchestra (e.g., 
strings, woodwind, or brass). Interesting hypotheses for 
the presumed affect dimensions could be obtained 
from orchestration manuals (Piston, 1955; Read, 2004), 
which Kendall and Carterette (1993) already used for 
evaluating the verbal attributes of simultaneous 
instrument dyads.

A stronger argument about the importance of timbre 
and particularly specific timbral characteristics, can be 
expressed by drawing attention to the underlying 
physiological mechanisms that reflect the body-states 
related to affective experiences. These so-called push 
effects (Scherer, Johnstone, & Klasmeyer, 2003) have 
been documented widely. Pleasant affective states are 
reflected in faucal and pharyngeal expansion that 
manifest in relatively more low- than high-frequency 
energy (Scherer, 1986), whereas the high-arousal 
emotions (anger and joy) are related to an increase in 
high-frequency energy (Banse & Scherer, 1996; 
Johnstone & Scherer, 2000). Even the xylophone can be 
interpreted as being unable to mimic the speech cues 
used to convey sadness and depression due to its 
physical characteristics (Schutz et al., 2008). In our 
opinion, this argument is more consistent with the 
results observed in the present three experiments since 
the patterns are easier to connect to findings in the 
vocal expression of emotion (Scherer et al., 2003; Juslin 
& Laukka, 2003), and even to infant-directed singing, 
than to the conventions of music. For example, infant-
directed singing has relatively more energy at lower 
frequencies (Trainor, Clark, Huntley, & Adams, 1997), 
rendering it more pleasant to the listener (infant and 
adult), which is consistent with the observations of the 
present study concerning the Valence dimension. Also, 
the few studies dealing with aspects of timbre in 
communicating emotions in music (Goydke et al., 
2004; Juslin, 2000; Scherer & Oshinsky, 1977) have 
drawn mutually consistent observations about the role 
of high-frequency energy content and articulation type 
relating to different emotional expressions.

The timbral cues available in short, isolated 
instrument sounds may partly capitalize common cues 
of emotional expression in addition to being subject to 
the conventions of culture. Although further research 
is required to obtain answers to these fundamental 
issues, it is clear that timbral cues to affects in music 
are relatively strong, and they follow a distinct pattern 
that resemble findings made in other domains. More 
importantly, the results provide a number of tantalizing 
new prospects for studying the pivotal role of timbre 
in the perception of emotional expression in music.
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Appendix A:  Selected Sounds from the McGill University Master Samples (MUMS). 

N Disc Folder Subfolder 1 Subfolder 2 Subfolder 3 Filename

1 1 Accordion Accordion Treble 
Notes

Accordion Treble

2 1 Brass Cornet Cor
3 1 Brass French Horn French Horn Fhrn
4 1 Brass French Horn French Horn Muted Fhrn
5 1 Brass Trombones Trombone Tenor TTbn
6* 1 Brass Trombones Trombone Tenor 

Muted
TTbn

7 1 Brass Trumpets Trumpet in C CTpt
8 1 Brass Trumpets Trumpet in C 

Harmon Mute
CTpt

9 1 Brass Trumpets Trumpet Bach BachTpt
10 1 Brass Trumpets Trumpet Bucket 

Loud
BbMuTpt

11 1 Brass Trumpets Trumpet Bucket Soft BbMuTpt
12* 1 Brass Trumpets Trumpet Cup Loud BbMuTpt
13 1 Brass Trumpets Trumpet Hard 

Attack
BbTpt

14 1 Brass Tuba Tba
15 1 Guitars Acoustic Guitar Harmonics Acoustic Gtr 

Harmonics
16* 1 Guitars Acoustic Guitar Normal Ac Gtr Normal
17 1 Guitars Acoustic Guitar Pizzicato Gtr Pizz
18 1 Guitars Acoustic Guitar Sul Ponticello Acoustic guit sulpont
19 1 Guitars Acoustic Guitar Sul Tasto Acoustic Gtr Sul Tasto
20 1 Guitars Electric Guitar Electric Guitar Electric Guitar
21 1 Guitars Electric Guitar Electric Guitar 

Harmonics
Egtr Harm

22* 1 Guitars Electric Guitar Electric Guitar 
Stereo Chorus

Egtr Stereo

23 1 Harp Harp Harmonics Harp Harmonics
24 1 Harp Harp Single Notes Harp
25* 2 Keyboards Harpsichord Harpsichord 8 Stop Harpsichord 8 Stop
26 2 Keyboards Harpsichord Harpsichord 8/4 

Stops
Harpsichord

27 2 Keyboards Harpsichord Harpsichord Buff 
Stop

Harpsichord Buff Stop

28* 2 Keyboards Organ Baroque Plenum Baroque Plenum-
29 2 Keyboards Organ Crumhorn Crumhorn
30 2 Keyboards Organ Gemshorn Gemshorn
31 2 Keyboards Organ Solo Trumpet Trumpet
32 2 Keyboards Organ SymPlenum _56 Symphonic Plenum
33 2 Keyboards Pianos Concert Hall 

Steinway Soft
Steinway Grand Soft

34 2 Keyboards Pianos Hamburg Steinway 
Loud

Hamburg Grand Loud

35 2 Keyboards Pianos Piano Harmonics Piano Harmonics
36 2 Keyboards Pianos Piano Mpp Loud Mpp Piano Loud
37* 2 Keyboards Pianos Piano Mpp Medium Mpp Piano Medium
38 2 Keyboards Pianos Piano Mpp Soft Mpp PianoSoft

(continued)
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N Disc Folder Subfolder 1 Subfolder 2 Subfolder 3 Filename

39 2 Keyboards Pianos Piano Rigth pedal 
Vol9

Piano Right Pedal

40 2 Keyboards Pianos Steinway Piano 
Plucked

Steinway Pno Plucked

41 2 Percussion Marimba Grand Symphonic 
Marimba

Grand Symphonic 
Marimba

42 2 Percussion Marimba Marimba Crescendo 
Roll

Marimba Roll

43 2 Percussion Marimba Marimba Soft Mallet Marimba Soft Mallet
44 2 Percussion Steel Drum Steel Drum Loud Steel Drum Loud
45 2 Percussion Steel Drum Steel Drum Rolls Steel Drum Rolls
46 2 Percussion Steel Drum Steel Drum Soft Steel Drum
47 2 Percussion Tubular Bells Tubular Bells
48 2 Percussion Vibraphone Vibraphone Bowed Vibraphone Bowed
49 2 Percussion Vibraphone Vibraphone Hard 

Mallet
Vibe Hard Mallet

50 2 Percussion Vibraphone Vibraphone Soft 
Mallet

Vibe Soft Mallet

51* 3 Strings Bass Acoustic Bass Acoustic Bass 
Amplified

Dbs

52 3 Strings Bass Acoustic Bass Acoustic Bass 
Bowed Vibrato

Dbs

53 3 Strings Bass Acoustic Bass Acoustic Bass Muted Dbs
54 3 Strings Bass Acoustic Bass Acoustic Bass Pizz Dbs
55 3 Strings Bass Electric Bass Bright Electric Bass Bright
56 3 Strings Bass Electric Bass Deep Electric Bass Deep
57 3 Strings Bass Electric Bass 

Harmonics
Electric Bass 

Harmonics
58 3 Strings Cellos Cello Cel
59 3 Strings Cellos Cello Martelé Cel
60* 3 Strings Cellos Cello Muted Vibrato Cel
61 3 Strings Cellos Cello Non-Vibrato Cel
62 3 Strings Cellos Cello Pizzicato Cel
63* 3 Strings Lutes Archilute Archilute
64* 3 Strings Lutes Renaissance 8 

Course Lute
Lute

65 3 Strings Violas Viola Martelé Vla
66 3 Strings Violas Viola Muted Vla
67* 3 Strings Violas Viola Non-Vibrato Vla
68 3 Strings Violas Viola Pizzicato Vla
69 3 Strings Violas Viola Vibrato Vla
70 3 Strings Violins Violin 1 Non 

Vibrato
Vln

71 3 Strings Violins Violin 2 Non 
Vibrato

Vln

72 3 Strings Violins Violin 3 Non 
Vibrato

Vln

73 3 Strings Violins Violin Martelé Vln
74 3 Strings Violins Violin Muted 

Vibrato
Vln

75 3 Strings Violins Violin Pizzicato Vln

Appendix A:  Continued. 

(continued)
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N Disc Folder Subfolder 1 Subfolder 2 Subfolder 3 Filename

76 3 Strings Violins Violin Vibrato Vln
77 3 Strings Violins Vln Ensemble 

Dry-Bright
Vln

78 3 Strings Violins Vln Ensemble Soft 
Attack-Wet

Vln

79 3 Strings Viols Bass Viol Bass Viol
80 3 Strings Viols Tenor Viol Tenor Viol
81 3 Strings Viols Treble Viol Treb Viol
82* 3 Woodwinds Bassoons Bassoon Bsn
83 3 Woodwinds Clarinets Clarinet Bflat BbCla
84 3 Woodwinds Clarinets Clarinet EFlat EbCla
85 3 Woodwinds Flutes and Piccolo Flute Alto Non Vib Aflt
86* 3 Woodwinds Flutes and Piccolo Flute Alto Vib Aflt
87 3 Woodwinds Flutes and Piccolo Flute Bass Flutter BFlt
88 3 Woodwinds Flutes and Piccolo Flute Bass Vib BFlt
89 3 Woodwinds Flutes and Piccolo Flute Flutter Flt
90 3 Woodwinds Flutes and Piccolo Flute Non Vib Flt
91 3 Woodwinds Flutes and Piccolo Flute Vibrato Flt
92* 3 Woodwinds Historical Wind 

Instr.
Alto Shawm Alto Shawm

93 3 Woodwinds Historical Wind 
Instr.

Crumhorns Tenor Crumhorn Tenor Crumhorn

94 3 Woodwinds Historical Wind 
Instr.

Oboes Baroque Oboe 
(in C)

Baroque Oboe (in C)

95 3 Woodwinds Historical Wind 
Instr.

Oboes Baroque Oboe (with 
flatterment)

Baroque Oboe 
(flattermnt)

96* 3 Woodwinds Historical Wind 
Instr.

Oboes Classical Oboe Classical Oboe

97 3 Woodwinds Historical Wind 
Instr.

Oboes Oboe d’Amore Oboe d’Amore

98* 3 Woodwinds Historical Wind 
Instr.

Recorders Baroque Tenor 
Recorder

Baroque Tenor Rec

99 3 Woodwinds Historical Wind 
Instr.

Recorders Renaissance 
Bassinet Recorder

Renaiss Bassinet Rec

100 3 Woodwinds Historical Wind 
Instr.

Recorders Renaissance Quart 
Recorder

Renaiss Quart Rec

101 3 Woodwinds Historical Wind 
Instr.

Recorders Renaissance Tenor 
Recorder

Renaiss Tenor Rec

102* 3 Woodwinds Historical Wind 
Instr.

Treble Cornett Treble Cornett

103 3 Woodwinds Oboe and English 
Horn

English Horn Ehrn

104 3 Woodwinds Oboe and English 
Horn

Oboe Obo

105 3 Woodwinds Saxophones Alto Sax Sounds Alto Sax Asax
106 3 Woodwinds Saxophones Alto Sax Sounds Alto Sax Growls Asax
107 3 Woodwinds Saxophones Baritone Sax BarSax
108 3 Woodwinds Saxophones Soprano Sax SSax
109 3 Woodwinds Saxophones Tenor Sax Sounds Tenor Sax TSax
110 3 Woodwinds Saxophones Tenor Sax Sounds Tenor Sax Growls TSax

Appendix A:  Continued. 
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Appendix B:  Selected Sounds from the Vienna Symphonic  
Library (VSL), Subset 1 

Nro Instrument Articulation

  1 Bassoon Staccato
  2 Oboe Vibrato
  3 Bassoon Legato
  4 Bassoon Sforzato
  5 Cello Legato
  6 Cello Marcato
  7 Cello Pizzicato
  8 Cello Sforzato
  9 Clarinet Legato
10 Clarinet Sforzato
11 Clarinet Staccato
12 Clarinet Plain
13 Flute Legato
14 Flute Sforzato
15 Flute Vibrato
16 Horn Legato
17 Horn Sforzato
18 Horn Staccato
19 Horn Vibrato
20 Marimba Plain
21 Oboe Legato
22 Oboe Sforzato
23 Oboe Staccato
24 Trombone Sforzato
25 Trombone Staccato
26 Trombone Vibrato
27 Trumpet Sforzato
28 Trumpet Staccato
29 Trumpet Vibrato
30 Vibraphone Plain
31 Vibraphone Vibrato
32 Violin Legato
33 Violin Marcato
34 Violin Pizzicato
35 Violin Sforzato


