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The conventional Skyrme interaction is generalized by adding zero-
range charge-symmetry-breaking and charge-independence-breaking terms,
and the corresponding energy density functional is derived. It is shown that
the extended model accounts for experimental values of mirror and triplet
displacement energies (MDEs and TDEs) in sd-shell isospin triplets with,
on average, ~100 keV precision using only two additional adjustable cou-
pling constants. Moreover, the model is able to reproduce, for the first
time, the A = 4n versus A = 4n + 2 staggering of the TDEs.

PACS numbers: 21.10.Hw, 21.60.Jz, 21.30.Fe, 21.20.Dr

1. Introduction

Mean-field (MF) method based on isospin-invariant Skyrme [1] inter-
action is proven to be extremely successful in reproducing bulk nuclear
properties, see [2] and Refs. cited therein. There is, however, a clear exper-
imental evidence that the strong nucleon-nucleon (NN) interaction violates
the isospin symmetry. Based on the differences in phase shifts and scatter-
ing lengths, it was shown that the nn interaction is ~1% stronger than pp
interaction and that the np interaction is ~2.5% stronger than the average
of nn and pp interactions [3].

The Coulomb force plays very important role in the formation of nu-
clear structure. At the same time, acting only between protons, it is the
main source of breaking of the isospin symmetry. A systematic study by
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Nolen and Schiffer [4] showed that the experimental differences between the
binding energies (BE) of the mirror nuclei, mirror displacement energies
(MDEs):

MDE = BE(T,T,=-T) - BE(T,T, = +T), (1)

cannot be reproduced with the Coulomb interaction as the only source of the
isospin-symmetry breaking (ISB), see also [5, 6, 7]. Another effect which
cannot be reproduced by means of an approach involving only isoscalar
strong force is the so called triplet displacement energy (TDE) [8]:

TDE=BE(T=1,T,=-1)+ BE(T =1,T, = +1)
—2BE(T =1,T,=0), (2)

which measures the curvature of binding energies of isospin triplets. The
MDEs and TDEs are related to the charge-symmetry breaking (CSB) and
charge-independence breaking (CIB) components of the NN interaction,
respectively. The aim of this work is to present the preliminary results of
the generalized Skyrme approach that includes the CSB and CIB zero-range
terms and quantifies their impact on the MDEs and TDEs.

2. Classification of the ISB interactions

On a fundamental level, the isospin symmetry is broken due to (i) dif-
ferent masses and electromagnetic interactions of w and d quarks (which
translates at a hadronic level into differences of the masses of hadrons within
the same isospin multiplet), (ii) meson mixing, and (iii) irreducible meson-
photon exchanges. The CSB mostly originates from the difference in masses
of protons and neutrons, leading to the difference in the kinetic energies and
influencing the boson exchange. For the CIB, the major cause is the pion
mass splitting. For more details see Refs. [3, 9].

Henley and Miller introduced a convenient and commonly used classi-
fication of various ISB terms [9, 10]. According to this classification, the
isospin-invariant (isoscalar) NN interactions are called the class I forces.
The class II isotensor forces preserve the charge symmetry, breaking charge
independence at the same time. The class III forces break both the charge
independence and charge symmetry, staying fully symmetric under inter-
change of nucleonic indices in the isospace. Finally, forces of class IV break
both symmetries and mix isospin already at the two-body level. The clas-
sification is commonly used in the framework of models based on boson-
exchange formalism, like CD-Bonn [3] or AV18 [11]. So far, apart from
Ref. [5], it has not been directly used within the DFT formalism, which is
usually based on isospin-invariant strong forces.
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3. Extended Skyrme model

To account for the CIB and CSB effects, we have extended the conven-
tional Skyrme interaction by adding zero-range interactions of class II and
class III:

PGg) = gtbh s (ri—ry) (1= 2l Bg) [3350030) — 7() 0 7)) . ®)

2
ST 1 N T
VUG, 5) = S0 (i =) (1= bl PG) [7a(D) + 7()] (4)
where t%]l, ¢ xg, and :céH are adjustable parameters and f’g is the spin-

exchange operator. The corresponding contributions to energy density func-
tional (EDF) read:

HH = %I%I (1 - CL'%)I) (pi + /712, - 2Pan - 2Pnpppn
—SEL — Si =+ 2871 . Sp + 23np : spn)7 (5)
Hin= 5t (1—20") (0h — pp — 50+ 53) (6)

where p and s are scalar and spin (vector) densities, respectively. Note,
that the effect of spin exchange leads to a trivial rescaling of the coupling
constants, and can be omitted by setting xg = x%ﬂ = 0. Hence, the extended
formalism depends on two new coupling constants.

The contribution to EDF from the class III force depends entirely on
the standard nn and pp densities and, therefore, can be taken into account
within the conventional pn-separable DFT approach. The contribution from
the class II force, on the other hand, depends explicitly on the mixed densi-
ties, pnp and s,,, and requires the use of pn-mixed DFT [12, 13], augmented
by the isospin projection to control this degree of freedom.

The proposed extension was implemented within the code HFODD [14]
that allows for the pn-mixing in the particle-hole channel. The isospin de-
gree of freedom is controlled using the isocranking method — an analogue of
the cranking technique, which is widely used in high-spin physics [12]. The
method allows us to calculate the entire isospin multiplet, T', by starting
from an isospin-aligned state |T,7T, = T') and isocranking it by an angle
around the z-axis in the isospace. The isocranking can be regarded as an
approximate method to perform the isospin projection. The rigorous treat-
ment of the isospin quantum number within the pn-mixed DFT formalism
requires full, three-dimensional isospin projection, which is currently under
development.

4. Numerical results

To investigate the influence of new terms on the ground-state (g.s.) bind-
ing energies, we first performed a test calculation without Coulomb for a
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Fig.1. Calculated g.s. energies of the A = 30 isospin-triplet nuclei. Calculations
were performed without Coulomb interaction. Full squares in the left and right
panels show the results obtained using the class IT and III forces, respectively. The
dashed lines show the g.s. energies calculated without any ISB terms included. The
solid line indicates an almost perfect linear trend of points calculated with the class
IIT force only.

case of the isospin triplet in the A = 30 isobars. By adding to the isospin-
invariant Skyrme interaction either the class II or class III forces we were
able to delineate the influence of hadronic ISB forces on the binding en-
ergies and TDE and MDE energy indicators. The results are depicted in
Fig. 1. As anticipated, the CIB class II force changes the curvature (TDE)
of binding energies within the triplet but almost does not affect the MDE
of its T, = +1 members. Conversely, the class III force, which breaks the
charge symmetry, strongly affects the values of MDE, introducing only mi-
nor corrections to the TDE, which are due to the self-consistency.

The test shows that the ISB forces of class II and III contribute almost
exclusively to TDEs and MDEs, respectively. It justifies our strategy of
fitting the ¢ and t{! coupling constants to the TDE and MDE residuals —
the differences between experimental and theoretical results obtained using
the conventional MF model that involves only the isospin-invariant Skyrme
and Coulomb forces. Moreover, since the residuals are relatively small,
the fit can be done in a perturbative way what leads to: t(I)I = 20MeV and
il = —8 MeV. These values were subsequently used to calculate MDEs and
TDESs for isospin triplets in the sd-shell nuclei. The results are presented
in Fig. 2. Without the hadronic ISB forces, the discrepancies between the
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Fig. 2. The upper panels display the values of MDEs (left) and TDEs (right) cal-
culated for the isospin triplets in the sd-shell nuclei. Circles show experimental
points, squares represent results of calculations involving isospin-invariant Skyrme
force SV [15] only, and triangles show results obtained using the extended model
with the hadronic ISB terms (3) and (4) included. Coulomb interaction was in-
cluded. The lower panels show differences between the theoretical calculations with
the ISB terms included and experimental values.

experimental and the theoretical values of MDEs (dubbed the Nolen-Schiffer
anomaly [4]) are of order of 1 MeV. For TDEs, they are on average 0.3 MeV.
Moreover, the conventional model cannot reproduce a very characteristic
staggering of TDEs between the A = 4n and A = 4n + 2 triplets.

The inclusion of the hadronic ISB terms of class II and class I1I allows
us to reduce the average disagreement between experiment and theory to a
level of about 100 keV for TDEs and 130 keV for MDEs. Moreover, as shown
in the figure, the extended model allows to account, for the first time, for
the A = 4n and A = 4n + 2 staggering of TDEs. It is worth underlying that
the results obtained for the 4n + 2 triplets were obtained by isocranking
the isospin-aligned |T' = 1,7, = 1) MF solutions in even-even nuclei, which
are uniquely defined and represent the J = 0™ ground states. The isospin-



6 KAZIMIERZ'V8 PRINTED ON OCTOBER 15, 2015

aligned |T'= 1,7, = 1) MF solutions in the 4n triplets, on the other hand,
refer to odd-odd nuclei. These solutions are, in general, aligned in space
and represents the J # 0 states. Due to the shape-alignment ambiguity, see
Ref. [16], the MF solutions in odd-odd nuclei are not uniquely defined. The
results shown in Fig. 2 represent arithmetic averages over the MF solutions
that correspond to spin alignments along the short, middle, and long axes
of the nuclear shape, respectively.

5. Summary

The conventional MF model involving the isospin-invariant Skyrme force
with Coulomb interaction included has been extended by adding two zero-
range terms that break charge symmetry and charge independence. The two
free parameters were adjusted to reproduce the experimental values of the
MDEs and TDEs. This allowed us reduce the discrepancy between experi-
mental and theoretical values to, on average, ~100 keV, and to reproduce,
for the first time, the A = 4n and A = 4n + 2 staggering of the TDEs.
We plan to apply the extended model to study phenomena sensitive to the
isospin symmetry.
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