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Abstract

Analysis methods for X-ray microtomographic images of short fibre composite
materials were developed. The methods enable estimation of microstructural
properties of the material, e.g., aspect ratio and orientation of fibres. Being
based on X-ray microtomography and image analysis, the methods are non-
destructive and do not require user intervention.

In particular, a method for determination of the aspect ratio of fibres was
first developed. The method contains an assumption about similarity of the
shape of the fibres. The assumption was relaxed in an improved method that
can estimate cross-sectional properties of fibres, too, e.g., cross-sectional area.
Additionally, the effect of finite image volume on the results of the measure-
ments was discussed. It was concluded that fibre length is the quantity that
is most biased by it. A method for correcting the bias was proposed.

The developed algorithms were tested and applied in estimation of param-
eters for a micromechanical model and in quantification of morphological
degradation of wood fibres in injection moulding process.

It was demonstrated that the methods can be used to measure the param-
eters of a specific micromechanical model for Young’s modulus of flax fibre
composites. The modelling results were compared to those calculated with
parameters determined manually, and to results of tensile tests.

Morphological degradation of wood fibres in injection moulding process was
studied. It was observed that both the length and the aspect ratio of the
fibres decrease considerably during processing.

i



Finally, a special sample holder was fabricated for studying the hygroex-
pansion of fibres in a wood fibre composite material. Tomographic images
acquired with the sample holder were used to estimate expansion parameters
of the fibres. The parameters were applied in validating a finite element
model.

In all cases discussed above, results obtained using the developed methods
are in agreement with those from independent reference measurements.
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Chapter 1

Introduction

Composite materials consist of distinguishable domains of two or more con-
stituents. They often contain a fibrous reinforcing phase and a binder phase
that is referred to as matrix. Composite materials occur both naturally and
in man-made form. For example, glass fibre composite materials are often
used in applications such as boats, gas cylinders and wind turbine blades.
Car tyres are made from a composite material comprising reinforcing fibres
in rubber matrix. A common example of natural composite material is wood,
consisting of cellulose fibres in lignin and hemicellulose matrix. Lately, con-
cern has grown on environmental impact and availability of non-biodegradable
materials like glass or carbon fibres. Natural fibres, e.g., flax, hemp or wood,
have been suggested as an environmentally friendlier alternative [11].

The shape of the fibres, their orientation, their distribution in the matrix
and properties of contacts between matrix and fibres affect the mechanical
properties and processability of the composite material. Information about
the geometry of the material and factors affecting it could thus be used in,
e.g., designing tailored composite materials with specific properties.

Often the size of the fibres and the size of the matrix domains between the
fibres are in the range 1 µm – 1000 µm. The structure of the material at
that size scale is referred here as the microstructure. Within the traditional
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sectioning method for characterization of microstructure, the sample is cut
into thin slices, each one containing a part of the internal structure of the
material [12–16]. The slices are imaged using suitable two-dimensional imag-
ing modality, e.g., light microscopy or scanning electron microscopy (SEM).
When stacked together, the images of the individual slices form a three-di-
mensional volume image of the sample. If the sample cannot be cut into thin
slices as such, it may be embedded into supporting material and the slicing
process substituted by grinding or polishing [17].

The sectioning process destroys the sample and thus rules out studying the
same sample again, e.g., in varying environmental conditions. Additionally,
the sectioning and polishing processes apply large forces to the sample, mak-
ing those techniques most suitable for rigid materials, such as many glass
fibre composites. Natural fibres are often soft and fragile and thus potentially
deform in the sectioning process. Hence, it may be difficult to produce clean
sections of natural fibre composites.

X-ray tomography is a nondestructive imaging method, where the three-
dimensional structure of the sample is computationally reconstructed from
two-dimensional X-ray projection images. The structure of the sample can
then be quantified by applying image analysis algorithms to the reconstructed
three-dimensional image. Lately, various algorithms have been developed for
determination of, e.g., volume fractions of constituents, various correlation
functions [18], diameters of material domains [19, 20] or orientation of their
surfaces [21] from three-dimensional volume images. Such algorithms often
form the basis for more advanced and specialized analysis methods, including
those that are discussed in this work.

Recently, algorithms that deal with segmentation of individual fibres have
been proposed [22–35]. Although such algorithms provide detailed informa-
tion about the structure of the material and the relations of the individual
fibres, they often contain assumptions about the shape of the fibres or about
the way the fibres are packed together. The irregular shape of natural fibres
may not conform to the assumptions made, and thus such segmentation al-
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gorithms may be difficult to apply to tomographic images of natural fibre
composites.

In this thesis methods are developed for determination of fibre length, diam-
eter, orientation, and related quantities. Only methods that do not require
segmentation of individual fibres from each other are considered. Focus is
on methods whose results can be validated with independent measurements.
The algorithms discussed in this thesis form a toolbox for analysis of three-
dimensional tomographic images of short-fibre composite materials. Some
methods discussed in this thesis may be used to analyse also other types of
materials, e.g., textile composites and heterogeneous materials in general.

The rest of this thesis is organized as follows. In Section 2 the basics of
X-ray tomography are reviewed, including the basic design of a microtomo-
graphic scanner, the filtered backprojection reconstruction algorithm and
preprocessing of the three-dimensional images. In Section 3 algorithms for
determination of the geometrical properties of composite materials are dis-
cussed, including methods for determination of multivariate distributions of
geometrical properties of fibres. The effects of finite volume of the tomo-
graphic image are also covered. Examples of applications of the methods
are discussed in Section 4. The focus is on quantification of materials that
contain natural fibres as the reinforcing phase. Finally, Section 5 concludes
the thesis with a summary.
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Chapter 2

X-ray microtomography

2.1 Principles of X-ray microtomography

X-ray microtomography (X-µCT) [36–45] is based on taking a large num-
ber of two-dimensional X-ray projection images of the sample from various
directions. The three-dimensional structure of the sample is reconstructed
computationally from the two-dimensional projections. Notable advantages
of the method are that the sample is not destroyed in the imaging process
and that only very little sample preparation is typically needed. It is nor-
mally enough to cut the sample into a shape that approximately fits into the
field-of-view of the tomographic scanner.

A typical microtomographic device (Figure 2.1) contains an X-ray source that
produces radiation directed towards the sample. The sample, mounted on a
rotation stage, attenuates the radiation before it hits a scintillating plate that
converts X-rays into visible light. The light is imaged by a digital camera
mounted on a microscope that provides additional magnification.

In X-µCT imaging process, the sample is placed into the device and the first
X-ray projection image is recorded. The rotation stage rotates the sample
slightly and the next X-ray projection image is recorded. The process repeats
until the sample has rotated at least 180 °. Finally, a computer reconstructs
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(a) (b) (c)

(d) (e)

Figure 2.1: Schematic illustration of a cone beam X-µCT scanner. (a) X-ray
source, (b) sample mounted on a rotating sample holder, (c) scintillating
plate, (d) microscope objective and (e) camera. The dashed lines represent
a cone of X-rays.

the three-dimensional structure from the projections. The contrast in the
three-dimensional image may originate from X-ray absorption in the region-
of-interest or from the phase shift of the X-rays, the former being the most
commonly used imaging modality in tabletop-scale devices.

The type of the X-ray source classifies X-µCT devices into two categories
based on imaging geometry: cone beam and parallel beam. Cone beam de-
vices are typically based on a microfocus X-ray tube, where an electron beam
is accelerated and focused into a small spot on a metal target. The X-rays,
formed by the decelerating electrons, emanate from the spot to all directions.
Part of the radiation exits the tube through a window, forming a cone-shaped
beam. The shape of the beam can be utilized to tune the magnification by
simply changing the position of the sample relative to the X-ray source: as
the sample is moved towards the X-ray source, the size of its projection on
the scintillating plate increases, thereby increasing magnification.

Parallel beam X-µCT devices are typically based on a synchrotron light
source [46]. In a synchrotron, electrons are accelerated to relativistic energies.
The electron beam is routed through insertion devices (undulators, wigglers)
that force it to move on a curved path thus producing radiation. Due to
relativistic effects, the observed frequency of the emitted radiation is in the
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X-ray regime, and the beam contracts into a very sharp cone. As the angular
divergence of the X-rays is close to zero, the source is said to produce parallel
beam radiation. The properties of the insertion device and monochromators
control the spectrum of X-rays. The intensity of the X-ray beam is very high,
allowing an order-of-magnitude faster X-µCT scans than a system based on
a microfocus X-ray tube.

The resolving power of an X-µCT device is fundamentally limited by the reso-
lution of the scintillating plate, the microscope-camera system used to record
the projection images, the quality of the X-ray beam and the mechanical
stability of the system. However, in cone-beam devices, the limiting factor
is often the size of the spot where the X-rays are emitted from. For a hypo-
thetical singular source, there would be only a single ray path between any
point in the scintillating plate and the source. For a real finite source, there
are multiple such ray paths for each point at the scintillating plate. Thus,
each point in the plate receives X-ray attenuation information from multiple
paths through the sample, smearing out small details. Typically, source spot
sizes in microfocus tubes are near 5 µm [47, 48] and the corresponding image
resolutions near 2.5 µm.

2.2 Reconstruction and image preprocessing

2.2.1 Attenuation of X-rays

X-rays entering the sample may pass directly through or interact with the
material in various ways. In the X-ray energy range often applied in X-ray
microtomography (. 100 kV), the most relevant phenomena are Photoelectric
effect and Compton scattering [49]. For the purpose of this thesis, one can
ignore the details of the interactions and study only the effective attenuation
of X-rays in the sample. Denote one ray path through the sample by C, x
being the position on the path. Denoting X-ray intensity by I, the change in
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I on a small piece of the path is

dI = −µeff(x)I(x)dx, (2.1)

where µeff is the effective linear attenuation coefficient. Integration gives

− ln
I

I0

=

∫
C

µeff(x)dx, (2.2)

where I0 is the X-ray intensity before entering the sample. Equation (2.2) is
also known as the Beer-Lambert law. It should be noted that this equation
is strictly true only for monochromatic X-rays, but in practice the artefacts
resulting from its application to polychromatic radiation can be relatively
well corrected for [49].

The I/I0 term on the left side of Equation (2.2) is measured by the X-µCT
scanner on a large number of straight ray paths from the X-ray source to the
scintillating plate. The reconstruction process then estimates the values of µeff
based on the measured data, thus producing a three-dimensional volumetric
image of the sample.

2.2.2 Reconstruction

There are various algorithms for reconstructing the spatial distribution of
µeff, which constitutes the X-µCT image [50]. Here, only the filtered back-
projection algorithm for parallel beam geometry will be briefly discussed
[38, 40, 41]. For a cone beam geometry, the algorithm is essentially the same,
but substantially different weighting of the projection images must be applied
[44, 45].

It is first assumed that the X-ray beam is parallel and the directions of the
ray paths from the X-ray source to the camera are normal to the rotation axis.
Consider a single plane perpendicular to the rotation axis. By the assumption
above, all the ray paths that intersect the selected plane are confined into it.
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Figure 2.2: Coordinate systems in the filtered backprojection algorithm.
(t, s)-coordinates are rotated by θ with respect to (x, y)-coordinates.

All the planes perpendicular to the rotation axis are thus independent from
each other and it is sufficient to consider only one of them at a time.

Denote by (x, y) coordinates on the selected plane, origin being placed on the
rotation axis. Furthermore, denote by (t, s) coordinates rotated by θ around
the origin (Figure 2.2),

t = x cos θ + y sin θ

s = −x sin θ + y cos θ.
(2.3)

In the (t, s)-coordinates, the s-axis is parallel to the direction of the ray paths.
The projection of µeff to the t-axis is

pθ(t) =

∫ ∞
−∞

µeff(t, s)ds, (2.4)
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whose Fourier transform is given by

p̃θ(ω) =

∫ ∞
−∞

pθ(t)e
−2πiωtdt. (2.5)

Substituting Equation (2.4) into Equation (2.5), and noting that the Jacobian
determinant of the coordinate transformation in Equation (2.3) is unity, gives

p̃θ(ω) =

∫ ∞
−∞

∫ ∞
−∞

µeff(x, y)e−2πiω(x cos θ+y sin θ)dxdy. (2.6)

On the other hand, the two-dimensional Fourier transform of µeff is given by

µ̃eff(u, v) =

∫ ∞
−∞

∫ ∞
−∞

µeff(x, y)e−2πi(xu+yv)dxdy. (2.7)

Comparing Equation (2.6) and Equation (2.7) gives

p̃θ(ω) = µ̃eff(ω cos θ, ω sin θ) ≡M(ω, θ). (2.8)

This results is known as the Fourier slice theorem or the Projection slice
theorem. Equation (2.8) suggests a way to reconstruct µeff from the pro-
jections pθ. According to Equation (2.8) the values of the one-dimensional
Fourier transforms of the projections could be used to approximate specific
values in the two-dimensional Fourier transform of the image. Inverse Fourier
transform would then yield the image µeff. In practice such a reconstruction
requires sophisticated interpolation schemes as the Fourier transforms of the
projections do not sample the two-dimensional Fourier space evenly. How-
ever, it is possible to continue from the Fourier slice theorem to arrive in an
algorithm that does not require such interpolation.

Write the inverse Fourier transform of µ̃eff(u, v) as

µeff(x, y) =

∫ ∞
−∞

∫ ∞
−∞

µ̃eff(u, v)e2πi(xu+yv)dudv (2.9)
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and change to polar coordinates using the transformation

u = ω cos θ (2.10)

v = ω sin θ. (2.11)

The Jacobian determinant for this transformation is ω, so that

µeff(x, y) =

∫ 2π

θ=0

∫ ∞
ω=0

M(ω, θ)e2πiω(x cos θ+y sin θ)ωdωdθ. (2.12)

Using M(ω, θ + π) = M(−ω, θ) and dividing the θ-integration into 0 → π

and π → 2π gives

µeff(x, y) =

∫ π

θ=0

∫ ∞
ω=−∞

M(ω, θ)e2πiω(x cos θ+y sin θ)|ω|dωdθ. (2.13)

Substituting Fourier slice theorem Equation (2.8) into Equation (2.13) gives

µeff(x, y) =

∫ π

θ=0

∫ ∞
ω=−∞

p̃θ(ω)e2πiω(x cos θ+y sin θ)|ω|dωdθ (2.14)

=

∫ π

0

p′θ(x cos θ + y sin θ)dθ, (2.15)

where
p′θ(t) =

∫ ∞
−∞

p̃θ(ω)|ω|e2πiωtdω. (2.16)

This result is known as the filtered backprojection algorithm. First, Equa-
tion (2.16) indicates that prior to further processing, the projection data
must be filtered with a filter whose frequency response is |ω|. Equation (2.15)
describes the backprojection phase. It means that µeff(x, y) can be written
as a sum of relevant values of the filtered projections p′θ. The relevant values
are those that would contain a contribution of µeff(x, y) if the projection was
calculated. On the other hand, a value of a filtered projection contributes
equally to µeff at all (x, y) for which it is relevant. Thus, the backprojection
process can be understood as smearing the projections onto the image and
summing over all the smears, see Figure 2.3.
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Figure 2.3(a) shows a computer-generated test structure, whose projections
pθ(t) are shown in Figure 2.3(b). The projections filtered according to Equa-
tion (2.16) are shown in Figure 2.3(c). Reconstructions obtained with 2, 8
and 180 filtered projections are shown in Figures 2.3(d), (e) and (f), respec-
tively. It is easy to see how the reconstructed µeff approaches the original as
the count of projections increases.

2.2.3 Image preprocessing

In many practical cases, the images obtained using X-µCT contain spurious
noise and artefacts that must be attenuated before further processing. Ad-
ditionally, for some image processing algorithms presented in the following
sections, the different material phases must be partitioned from each other
into separate images. These processes, referred to as filtering and segmen-
tation, respectively, are discussed in detail in many textbooks and other
treatments like Gonzalez and Woods [51] and Turpeinen [52]. Thus, only the
most basic methods will be reviewed in this section.

Let us begin by modelling a typical image degradation process by

µeff = h ∗ µ′eff + n, (2.17)

where µeff is the degraded image, µ′eff is the undegraded image, h is a degra-
dation function, n is random noise and ∗ denotes convolution (see e.g. [51]).
The purpose of filtering is to estimate µ′eff based on the measured data µeff.
The functions h and n are unknown, and additionally, n typically varies from
image to image, although its statistical properties may remain constant.

In the context of this thesis, attenuating the noise term n is the most crucial
part. Let us thus assume that h is identity and simplify the Equation (2.17)
to

µeff = µ′eff + n. (2.18)

It is easy to see that simple ensemble averaging over multiple realizations µieff
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Figure 2.3: (a) Original sample geometry, (b) projections and (c) filtered
projections. (d) Reconstruction with 2 filtered projections at θ = 0 ° and
θ = 90 °, (e) reconstruction with 8 filtered projections, and (f) reconstruction
with 180 filtered projections. (g) Denoised and semi-binarized version of (f).
Dark and bright colors indicate small and large value of µeff, pθ, p′θ and f in
(a, d–f), (b), (c), and (g), respectively.
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gives

1

N

N∑
i=1

µieff =
1

N

N∑
i=1

µ′eff +
1

N

N∑
i=1

ni (2.19)

= µ′eff + n̄. (2.20)

In other words, the undegraded image can be recovered up to an additive
constant by averaging multiple degraded images, and the constant n̄ is an
estimate of the mean of the noise distribution. However, multiple µeff of the
same sample are rarely available, and one must resort to some kind of spatial
processing.

The images obtained using X-µCT are digital, i.e. the value of the underlying
function µeff is known at discrete locations that are referred to as pixels. A
simple spatial filtering method is averaging over the neighbourhood of a pixel,
i.e.,

µ̂eff(~x) = E(~x) =
1

N(Ω(~x))

∑
~p∈Ω(~x)

µeff(~p), (2.21)

where µ̂eff is an estimate of µ′eff, Ω(~x) = {~p : ‖~p−~x‖ ≤ r} is the neighbourhood
of position ~x, containing all the pixels that are nearer to ~x than a parameter
r, and N(Ω(~x)) denotes the count of pixels in Ω(~x). Weighting the pixels of
the neighbourhood by a Gaussian function in the distance to the center pixel
results in Gaussian filtering, where

µ̂eff(~x) =

∑
~p∈Ω(~x)Gσ(‖~x− ~p‖)µeff(~p)∑

~p∈Ω(~x)Gσ(‖~x− ~p‖)
≈ (Gσ ∗ µeff)(~x), (2.22)

where
Gσ(r) =

1

σ
√

2π
exp(− r2

2σ2
), (2.23)

and Ω(~x) must be large enough so that the value of Gσ(‖~x− ~p‖) is negligible
at the boundary of Ω(~x).

A disadvantage of simple spatial averaging or Gaussian filtering is the in-
evitable smoothing of sharp edges. Such blurring can be reduced by, e.g.,
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weighting the pixel values in the neighbourhood by difference to the value of
the center pixel. The weighting results in so-called bilateral filter, where

µ̂eff(~x) =

∑
~p∈Ω(~x)Gσ(‖~x− ~p‖)Gτ (µeff(~x)− µeff(~p))µeff(~p)∑

~p∈Ω(~x)Gσ(‖~x− ~p‖)Gτ (µeff(~x)− µeff(~p))
(2.24)

and Gτ is defined analogously to Gσ above.

The probability of existence of a sharp edge near ~x can be quantified by
comparing the local variance σ(~x)2 to the variance of noise σ2

η, where

σ(~x)2 =
1

N(Ω(~x))

∑
~p∈Ω(~x)

(µeff(~p)− E(~x))2 (2.25)

with N(Ω(~x)) and E(~x) defined as in Equation (2.21). If the local variance
at ~x is higher than the variance of noise, it is probable that there is a sharp
edge near ~x and thus the image should not be averaged extensively near that
location. This idea is formalized in variance-weighted mean filtering, where
the ratio of σ2

η and σ(~x)2 is used to decide how much the image should be
averaged near ~x [51]. In variance-weighted mean filtering

µ̂eff(~x) =


σ2
η

σ(~x)2
E(~x) + (1− σ2

η

σ(~x)2
)µeff(~x), σ2

η ≤ σ(~x)2,

E(~x), otherwise.
(2.26)

Also other, more sophisticated filtering methods designed to preserve edges
have been suggested, e.g. SUSAN smoothing [53], anisotropic diffusion [54],
and non-local mean filtering [55]. The common denominator in all of these
methods is the effort to perform less averaging near the edges of structures.

The filtering methods discussed above attenuate noise, but do not affect
variations of the local mean intensity across the image. Such global bias
can be removed based on the observation that Gaussian filtering attenuates
variations whose radius is less than σ. By subtracting a Gaussian filtered
image from the original, a high-pass filter that removes large variations is
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established:
µ̂eff = µeff −Gσ ∗ µeff. (2.27)

All of the filtering methods discussed above contain one or more parameters,
e.g. radius of a neighbourhood, standard deviation of a Gaussian function or
variance of noise. Often the values of the parameters cannot be qualitatively
derived from the image µeff, and a trial-and-error approach is used instead.
The image is filtered using initial values of the parameters and the goodness
of the filtering result is evaluated. If the filtering result is inappropriate, the
values of the parameters are tuned. The process is repeated until satisfactory
results are obtained.

A simple, yet subjective, way to judge between proper and improper filtering
is to study the noise that the filtering process removed from the image, i.e.
the residual µ̂eff − µeff [55]. If the residual image seems to contain something
else than noise, the filtering operation has probably been improper. The
filtering methods discussed above and the corresponding residuals for a test
image are visualized in Table 2.1.

The composite materials studied in thesis often contain only two phases of
interest, e.g., fibres and matrix. In that case they can be separated from each
other by simple mapping

f(~x) =


0 if µ̂eff(~x) < µ̂min

µ̂eff(~x)−µ̂min
µ̂max−µ̂min if µ̂min ≤ µ̂eff(~x) ≤ µ̂max

1 if µ̂max < µ̂eff(~x)

(2.28)

that can be interpreted as a semi-binary image, where f(~x) is identified as
the local volume fraction of the denser phase near ~x (see e.g. Figure 2.3(g)).
The mapping is called thresholding and the function f is called binary image
when µ̂min = µ̂max such that the codomain of f is {0, 1}. Equation (2.28)
can be easily generalized for more than two phases.
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Table 2.1: Comparison of filtering methods on an X-µCT slice through wood
fibre – lignin composite [1]. Dynamic range is 1500 gray values in all the µ̂eff
images, and 700 gray values in all the µ̂eff − µeff images. The bright regions
in the µ̂eff images are cross-sections of wood fibres.

Method,
parameters

Estimate µ̂eff Residual µ̂eff − µeff

Original µeff
no filtering

Mean
r = 2

Gaussian
σ = 2

Continued on next page
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Table 2.1: Comparison of filtering methods

Method,
parameters

Estimate µ̂eff Residual µ̂eff − µeff

Bilateral
σ = 2

τ = 150

Variance
weighted mean

r = 2

ση = 150

High-pass
σ = 40
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Chapter 3

Characterization of the 3D
microstructure of composite
materials by image analysis

3.1 Composite materials

The subject of this thesis is fibrous composite materials, i.e. composite mate-
rials consisting of fibres and some condensed matter as matrix. As the image
processing methods presented in the later sections are mainly designed to
estimate quantities related to fibres, the subject is limited to such compos-
ites where the fibres are short enough such that they approximately fit into
the field of view of tomographic image. Hence, the focus is on short-fibre
composites and especially on those materials where wood fibres are used as
the reinforcing phase.

Wood fibres and many other natural fibres are tubular, i.e. a typical, ideal
cross-section of the fibre contains a void surrounded by fibre wall. Many image
processing algorithms designed for solid fibres cannot be directly applied to
hollow fibres. For example, algorithms based on finding the centerline of the
fibre may instead find an arbitrary line through the fibre wall, or an algorithm
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(a) (b)

(c)

Figure 3.1: (a) Microscopic image of wood pulp fibres. (b) Extruded gran-
ulates containing wood fibres and lignin. The diameter of the granulates is
approximately 5 mm. (c) Injection moulded tensile test specimen made of
wood fibre – lignin composite. The length of the specimen is approximately
17 cm. Parts of the specimen in both ends and in the middle have been cut
away into samples for X-µCT imaging.

for determining the cross-sectional diameter of the fibre may instead find the
thickness of fibre wall.

The natural fibre composites studied in this thesis are manufactured using
injection moulding technique. The process begins by extraction of fibres from
plants using standard processes, e.g., pulping of wood (see Figure 3.1(a)). In
the subsequent steps, the fibres are mixed with the matrix material and fed
into a moulding device that forms the final product.

Mixing the fibres with the matrix is done either by extruding or by com-
mingling. In the former process, the fibres are first processed into pelletized
form using specific equipment. The fibre pellets are mixed with matrix pel-
lets and fed through an extruder and chopper, producing relatively irregular
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(a) (b)

Figure 3.2: (a) Optical micrograph of wood fibres extracted from polylactic
acid matrix by dissolution in chloroform [2]. (b) Three-dimensional X-µCT
visualization of fibres in a wood-fibre – polylactic acid composite. Gary
Chinga-Carrasco is acknowledged for providing the image in (a).

granulates consisting of fibres and matrix (see Figure 3.1(b)).

Another technique for mixing is commingling, where wood fibres and defi-
brated matrix are formed into a paper-like sheet where the two kinds of fibres
are evenly mixed. The sheet is chopped into small pieces that are fed through
an extruder such that the mix forms similar granulates than in the extruding
process [3, 8].

After mixing, the granulates are fed into the injection moulding device. The
device melts the granulates, mixes them between screws and finally com-
presses the mix into a mould. The mould shapes the material into the
desired form (see Figure 3.1(c)).

In the extruding and moulding processes the fibres must travel through screws,
nozzles, and other volumes where shear force and temperature is potentially
high. If the durability of the fibres against those harsh conditions is limited, as
may be the case with natural fibres, the procedures may change the geometry
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of the fibres considerably. As the geometry affects the mechanical properties
of the composite material, it is of interest to seek for processing conditions
where the fibres survive as intact as possible. Typically the survival of fibres
is quantified by fibre length- and fibre diameter distributions.

The traditional method for characterization of fibre geometry is optical mi-
croscopy. The matrix material is dissolved [2] or burnt away such that the
fibres are left more or less intact. The remaining fibres are collected and
placed on glass slides. Optical micrographs (see Figure 3.2(a)) of the fibres
are acquired and the geometry of the fibres is characterized either manually
or by some image analysis routines. Another possibility is to mix the fibres
with suitable liquid and run the suspension through a fibre analyzer (e.g.
kajaaniFiberLab, Metso Automation OY [56]).

Another method for characterization of fibre shape is microscopy of polished
cross-sections [57]. A cross-sectional cut is made into the composite material
and the cut surface is polished such that the cross-sections of the fibres are
visible. Micrographs of the surface are acquired using optical microscope
or scanning electron microscope. The cross-sections of the fibres can then
be analyzed from the images as desired. A three-dimensional image can be
obtained if the cutting-imaging or polishing-imaging process is repeated many
times [13, 14, 16, 17].

The methods above are accurate but laborious. Both of them apply large
chemical or mechanical forces to the sample, thus potentially altering the
shape of the fibres. The dissolution method also destroys information about
the locations of the fibres in the material such that, e.g., fibre orientation
and spatial distribution of the volume fraction of fibres are lost. Thus, non-
destructive method such as X-µCT is desirable as it makes unnecessary several
processing steps that may increase uncertainties in the analysis process. Ad-
ditionally, in the X-µCT image all the information about the structure of the
material is recorded, allowing also assessment of the geometrical relations of
the individual fibres (Figure 3.2(b)).

In addition to optimization of manufacturing processes, micromechanical
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modelling is a discipline where information about the structure of composite
material is required. The purpose of micromechanical modelling is to esti-
mate the physical properties of bulk material based on information about
its microstructure [4, 7, 58]. Typical quantities that are required in a mi-
cromechanical model are volume fractions of different constituents, length
and diameter of fibres and their orientation distribution, all of which can be
measured from X-µCT images. The X-µCT images could also be used to
provide a grid geometry for numerical simulations as has been done in the
field of flow analysis [59, 60].

3.2 General structural properties

In the semi-binary image formalism (see Section 2.2.3), an estimate of the
volume fraction of fibres φf is obtained by taking an average over the values
of the pixels of the semi-binary image,

φf =
1

N

∑
i

fi, (3.1)

where f is the semi-binary image of fibres and the sum is taken over all the
N pixels.

Variations in the local volume fraction are indicative of the dispersion of the
fibres in the matrix. An estimate of the local volume fraction is developed
by replacing the sum in Equation (3.1) by a sum over a local neighbourhood
Ω(~x) of point ~x,

φf (~x) =
1

N(Ω(~x))

∑
~p∈Ω(~x)

f(~p), (3.2)

where N(Ω(~x)) denotes the count of pixels in the neighbourhood Ω(~x) as in
Equation (2.21). The variations in φf (~x) may then be studied, e.g., from the
distribution of values φf (~x) obtained by statistical binning over all ~x.

Another possibility to quantify the dispersion of the fibres is the distribution
of inter-fibre distance. Following definition of local thickness in Hildebrand
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and Rüegsegger [19], inter-fibre distance d(~x) at point ~x is the diameter of the
largest sphere that fits into the matrix and contains the point ~x. Statistical
binning of d(~x) over all points in the matrix can be used to determine the
inter-fibre distance distribution of matrix volume (Figure 3.4).

The local thickness is defined for binary images only. A method for determin-
ing inter-fibre distance d(x) from semi-binary images is granulometry [51].
It is based on removing small matrix structures from the image based on a
specific size criterion, and recording the volume of the remaining structures.
Repeating the process by removing matrix structures of increasing size gives
the unnormalized complementary cumulative size distribution of matrix vol-
ume. The process is analogous to sieving by a series of sieves with increasing
hole size and determining the amount of material that remains in each sieve.

In granulometry, the removal of small structures is performed by opening
operation that consist of erosion followed by dilation. Given a semi-binary
image g and a structuring element function b, dilation of g by b is defined as

(g ⊕ b)(~x) = max{g(~x− ~r) + b(~r)} (3.3)

where the maximum is taken over all ~r. Similarly, erosion of g by b is defined
as

(g 	 b)(~x) = min{g(~x+ ~r)− b(~r)}. (3.4)

Finally, the opening of g by b is defined as

(g ◦ b)(~x) = ((g 	 b)⊕ b)(~x). (3.5)

The effect of erosion and opening operations on a one-dimensional function
is demonstrated in Figure 3.3. In the example, the original function g consist
of a narrow bump and a wide bump. The structuring element b is a one-
dimensional sphere whose radius is 0.05, i.e.

b(x) = B0.05(x) =

0, −0.05 < x < 0.05,

−∞, otherwise.
(3.6)
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Figure 3.3: Demonstration of opening of one-dimensional function g by b,
where b(x) = 0 when −0.05 < x < 0.05 and −∞ otherwise. (a) Original
function g, (b) erosion of g by b and (c) opening of g by b. Notice that the
narrow bump at x = 0.2 is removed but the wide bump at x = 0.6 is retained.

In the erosion of g by b the narrow bump is completely zeroed and the size
of the wide bump is decreased. Dilation by the same structuring element
restores the size of the wider bump but the narrow bump is still missing, as
it was completely removed in the erosion phase. Roughly speaking, opening
of g by Br is g with those locations zeroed where Br does not fit.

Based on the above example, it is easy to see that for a semi-binary image g,
the total volume of structures locally thicker than diameter d = 2r is given
by

V (d) = V1

∑
i

(g ◦ Br)i, (3.7)

where V1 is the volume of a single pixel (compare to Equation (3.1)). Nor-
malizing Equation (3.7) by its maximal value gives the cumulative diameter
distribution of volume as

P (d) = 1−
∑

i(g ◦ Br)i∑
i gi

. (3.8)

Differentiation of both sides yields the probability density function

p(d) = − ∂

∂d

∑
i(g ◦ Br)i∑

i gi
, (3.9)
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which can be interpreted as the diameter distribution of g. Further, defining
g = 1−f , p(d) becomes an estimate of the diameter distribution of inter-fibre
space. Alternatively, defining g = f gives the diameter distribution of fibres
or fibre walls for solid or hollow fibres, respectively.

Figure 3.4 shows the results of calculating diameter distribution of a triangle
using both the local thickness algorithm of Hildebrand and Rüegsegger [19]
and the granulometry as discussed above. Based on the figure, it is evident
that the two methods give similar estimates in this case. The algorithm
in [19] is computationally less demanding, in general. On the other hand,
the granulometry algorithm is relatively easy to adjust to fit into specific
situations, as will be demonstrated later.

The local orientation can be determined using the structure tensor method
[21]. The structure tensor is defined for each point in an image f as

Sij = Gσt ∗ (
∂f

∂xi

∂f

∂xj
), (3.10)

where Gσt is a Gaussian function defined in Equation (2.23). By doing a
Gaussian pre-smoothing on the image, the partial derivatives can be approx-
imated by

∂f(~x)

∂xi
≈ ∂

∂xi
(Gσs ∗ f)(~x) =

(
∂Gσs

∂xi
∗ f
)

(~x). (3.11)

Finally, the orientation of fibres near ~x is given by the eigenvector of Sij(~x)

corresponding to the smallest eigenvalue.

The interpretation of Sij can be demonstrated by considering a neighbour-
hood in a two-dimensional image containing a linear ramp of values in direc-
tion ∇f = (c1, c2), see Figure 3.5. In that case, the eigenvalues (λ1, λ2) and
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Figure 3.4: Comparison between results of granulometry and local thickness
methods. (a) The original image, (b) its diameter map and (c) the diameter
distribution of area estimated using the two methods. In (b), black and white
colors correspond to diameters of 0 and 71 pixels, respectively.
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Figure 3.5: Determination of local orientation in two-dimensional image. The
local neighbourhood contains a gradient, whose direction is determined by
eigenvector (c1, c2) of the structure tensor.

-vectors (~v1, ~v2) of Sij are

λ1 = 0, ~v1 ∝

(
−c2

c1

)
(3.12)

λ2 = c2
1 + c2

2, ~v2 ∝

(
c1

c2

)
. (3.13)

The eigenvector corresponding to the largest eigenvalue, ~v2, is parallel with the
gradient vector. If the gradient represents, e.g., interface between an object
and the background, the vector ~v2 estimates the direction of the normal of
the interface. On the other hand, ~v1 estimates direction of the tangent of the
interface. The estimates are robust in the sense that negating the direction
of the gradient does not affect the eigenvectors.

Consider now a three-dimensional local neighbourhood containing a small
part of the wall of a cylinder. In that case the eigenvector corresponding
to the largest eigenvalue is parallel with the normal of the cylinder wall.
The eigenvector corresponding to the smallest eigenvalue is parallel with the
direction of the main axis of the cylinder.
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The above example generalizes to the case of fibres in composite materials.
The fibres are long structures and resemble cylinders, whose local orientation
can be determined as the eigenvector corresponding to the smallest eigen-
value of the structure tensor. However, it must be noted that this kind of
orientation estimate is valid only near the surfaces of the fibres and should,
in particular, be regarded as the orientation of the fibre surfaces. Conse-
quently, the distribution of local orientation determined using the structure
tensor method does not necessarily coincide with the orientation distribution
of individual fibres.

3.3 Properties of dispersed particle phase

In this section, the term ’particle’ refers to any object of interest in an image.
The particle may be, e.g., a fibre in a three-dimensional X-µCT image or a
cross-section of a fibre in a two-dimensional image of a polished cross-section
of a composite material sample. It is assumed that the particles are not
connected to each other and are thus seen as separate regions in the image.
Furthermore, the treatment in this section is limited to binary images f ,
where

f(~x) =

1, if ~x is inside a particle and

0, otherwise.
(3.14)

Given a binary image of particles that are not connected to each other, the
pixels belonging to each particle can be determined with labeling algorithms
[61]. A labeling algorithm, such as that in Algorithm 1, assigns a distinct
value to each particle such that all the pixels belonging to the same particle
have the same value.

Consider one of the particles in an n-dimensional image and denote by column
vectors ~xi, i = 1, . . . ,m the positions of the pixels of the particle. The volume
of the particle is given by

V = mV1, (3.15)

where V1 is the volume of a single pixel.
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Algorithm 1 Labeling algorithm
Input: Binary image f , where pixels belonging to any particle have value 1

and other pixels have value 0.
Output: Image f where pixels belonging to a single particle have equal value

and pixels belonging to different particles have distinct values.
1: Initialize E ← {~x : f(~x) = 1}
2: Initialize current label c← 2
3: for all ~x ∈ E do
4: if f(~x) = 1 then
5: floodfill(f , ~x, c)
6: c← c+ 1
7: end if
8: end for
9: return f

10: function floodfill(f , ~x, c)
11: Initialize t← f(~x)
12: Initialize Q← {~x}
13: while Q 6= ∅ do
14: ~x← some element of Q
15: Q← Q \ {~x}
16: if f(~x) = t then
17: f(~x)← c
18: Q← Q ∪ Ω(~x)
19: end if
20: end while
21: end function

The surface area of the particle may be approximated, e.g., by the marching
cubes algorithm [62, 63]. Consider a binary image h defined by

h(~x) =

1, ~x ∈ {~xi, i = 1, . . . ,m}

0, otherwise.
(3.16)

The image h is first divided into separate blocks of size 2× 2× . . .× 2 = 2n

pixels, where n is the dimensionality of the image. As each pixel in a block
has two possible values (either zero or one), there are 22n possible pixel value
configurations for a single block. Each configuration corresponds to a location
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Figure 3.6: Principal component analysis for determination of fibre orienta-
tion. The white area depicts a fibre. The vectors ~v1 and ~v2 are parallel to the
principal components of the fibre. The first principal component ~v1 estimates
the orientation of the fibre.

either completely inside the particle, completely outside of it or at the edge
between the particle and the background. Each of the configurations has
a pre-calculated surface area associated with it, determined analytically or
by numerical simulations. To estimate the surface area of the particle, the
configuration of pixel values in each block is determined and the corresponding
surface area is looked up from a pre-calculated table. The surface areas
corresponding to the blocks are then summed, giving an estimate of the
surface area of the particle.

The marching cubes algorithm has the drawback of not being multigrid con-
vergent, i.e., the result of the algorithm does not necessarily converge to the
true value of the surface area as the resolution of the image is increased. In
the cases encountered in this thesis the error is not significant, but it is worth
to mention that several multigrid convergent algorithms have been developed
[64, 65].

The orientation of the particle can be determined with principal component
analysis [66]. The first principal component of {~xi, i = 1, . . . ,m} is ~v1 that
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satisfies

~v1 = arg max
~u,||~u||=1

m∑
i=1

((~xi − ~µ) · ~u)2, (3.17)

where the mean vector ~µ is given by

~µ =
1

m

m∑
i=1

~xi. (3.18)

In other words, the ~v1 is the unit vector for which the variance of the scalar
projections (~xi − ~µ) · ~v1 is maximal. The second and higher principal com-
ponents have similarly maximal projected variance but under the constraint
that their direction is orthogonal to all the previous principal components.
Thus, principal component analysis gives an orthogonal coordinate system
where the first axis estimates the direction of the particle, see Figure 3.6.

To conveniently determine the principal components, we begin by forming
an n×m data matrix

X =
(
~x1 − ~µ ~x2 − ~µ . . . ~xm − ~µ

)
. (3.19)

The n× n covariance matrix C is given by

C =
1

m
XXT (3.20)

and its eigenvectors are the principal components of ~xi. The eigenvector
corresponding to the largest eigenvalue is the first principal component, the
eigenvector corresponding to the second largest eigenvalue is the next princi-
pal component etc.

The convex hull of the particle is the smallest convex set that contains all
the points {~xi, i = 1, . . . ,m} of the particle. As the set of points is discrete,
the boundary of the convex hull can be expressed as a set of triangular faces.
The faces can be determined using, e.g., the gift-wrapping algorithm [67]. In
the three-dimensional case the algorithm is outlined as follows.

1. Denote by {~yi, i = 1, . . . ,m} projections of points {~xi, i = 1, . . . ,m}
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to the xy-plane. Find a point ~yj with minimum y-coordinate. Find a
point ~yk such that

(~yk − ~yj)⊥ · (~yl − ~yj) ≥ 0 (3.21)

for all l, where ~A⊥ denotes ~A rotated 90 ° counterclockwise. Add line
~xj~xk to a set of edges.

2. Take an unprocessed edge ~xj~xk from the set of edges. Find a point ~xl
such that

(~xl − ~xj)× (~xk − ~xj) · (~xi − ~xj) ≥ 0 (3.22)

for all i. Add edges ~xk~xl and ~xl~xj to the set of edges if they have not
been added to it before. Add a triangle ~xj~xk~xl to the boundary of the
convex hull.

3. Repeat step 2 until no edges can be processed.

The triangles forming the boundary of the convex hull may be used to deter-
mine, e.g., the surface area or the volume of the convex hull. In particular,
convex particles can be separated from concave ones by studying the value
of

C =
VC
V
, (3.23)

where VC is the volume of the convex hull and V is the volume of the particle
(see also Section 4.2).

In order to quantify voids or cavities in a particle, pixels belonging to each
cavity must be determined. Consider a binary image g defined by

g(~x) =

0, ~x ∈ {~xi, i = 1, . . . ,m}

1, otherwise.
(3.24)

The value of g is one in all the cavities inside the original particle and in
the background around the original particle. The image g thus contains
cavities and background as new non-connected particles that can be labeled
and analyzed with the methods discussed above. The results corresponding
to the background can be discarded by noticing that the background is the
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only such particle that touches the edge of the image g.

3.4 Properties of interconnected particle phase

For interconnected particles, the methods of Section 3.3 cannot be used
unless the individual particles are identified from each other. In the context
of composite materials the particles are often fibres. Several attempts for
identifying individual fibres from each other have been recently made [22–
28, 30–33, 35]. The identification methods are applicable if the structure of
the fibres is regular or if the fibres form a layered network structure whose
properties can be utilized in the identification process.

Natural fibres, on the other hand, have more irregular structure than, e.g.,
glass fibres. Additionally, processing may crush the fibres such that their
shape becomes highly irregular, e.g., partially solid and partially hollow. The
irregular shape hinders application of identification algorithms. Thus, in this
section methods will be proposed for estimating properties of fibres without
identification of individual fibres.

3.4.1 Fibre length

In Section 3.2, granulometry was presented as a method to estimate the diam-
eter distribution of structures in a semi-binary image without segmentation
of individual objects. In granulometry, structures smaller than a given size
are removed from the image using an opening operation. In the opening
operation, all the structures where the the structuring element does not fit
are zeroed. Thus, by using a suitable structuring element, granulometry can
be applied in estimating the length of structures instead of their diameter.

Traditionally, length has been estimated using a linear structuring element
consisting of a thin line with predefined length and orientation [68]. An
opening by a linear structuring element is dependent on the orientation of
the structuring element. To overcome the orientation dependency one must
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consider openings with linear structuring elements in all possible orientations.
If any of the openings is nonzero at some location, at least one of the struc-
turing elements fits into the structure at that location. It thus turns out that
pointwise maximum of the openings has nonzero value only where there are
structures where some of the structuring elements fit. In other words, the
points with nonzero value belong to structures whose size in some direction
is larger than or equal to the length of the linear structuring elements.

Such a composite operation consisting of pointwise maximum of openings
can be used to estimate the length of fibres with granulometry process as
in Section 3.2. Theoretically, pointwise maximum of openings with varying
structuring elements can still be considered as an opening, although no single
structuring element can be associated with it [20, 68, 69].

The practical usability of a method taking a maximum of a large number of
openings is limited. To achieve rotationally invariant estimator, the count of
orientations of structuring elements must be increased linearly with respect to
line length in two-dimensional images, and quadratically in three-dimensional
images, leading to unreasonable computational complexity. The problem can
be partially overcome by using path openings [70], where the structuring
element is a flexible line that is fitted into the fibre pixels.

Path openings

To facilitate definition of a path through pixels in a binary image, let us write
~x 7→ ~y if pixel at ~y is adjacent to pixel at ~x in such a manner that a path
starting at ~x can continue at ~y. Given a binary image of fibres, define E as
the set of positions of all fibre pixels. A path of length L in E is denoted
by δL and is defined as a set of positions {~a1, ...,~aL} where ~ai 7→ ~ai+1 for
i = {1, ..., L− 1} and ~aj ∈ E for j = {1, ..., L}.

By choosing the adjacency of pixels appropriately, paths of different orien-
tations can be constructed. For the purposes of length measurement it is
beneficial to construct paths that cannot turn back into the direction where
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Figure 3.7: Left: Graphs of two adjacency relations, west-to-east (top) and
northwest-to-southeast (bottom). The arrows are drawn from each pixel to
all adjacent pixels. Right: Examples of arbitrary paths corresponding to the
adjacency relations at left, marked with arrows. The boundary of the set E
is highlighted.
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they came from. As all the positions in a path must be contained in E, the
existence of such a directed path through a pixel can be used as an indication
that the length of E must be at least the length of the path.

For example, to construct a path from west to east in a two-dimensional
image, the adjacency of pixels must be chosen so that pixels at ~x+ (1,−1),
~x + (1, 0) and ~x + (1, 1) are adjacent to pixel at ~x, as visualized in the top
row of Figure 3.7. In two-dimensional images there are a total of four natural
adjacency relations that can be used to form directed paths, characterized
by their main directions north-to-south, west-to-east, nortwest-to-southeast,
southwest-to-northeast. Two of these are visualized in Figure 3.7. In three-
dimensional images there are 13 natural adjacency relations.

A path opening of a binary image I is a binary image αL, where [71]

αL(~x) =

1, ~x ∈
⋃
δL

0, otherwise.
(3.25)

In other words, αL(~x) = 1 if there are any paths of length L going through
the point ~x in I, and zero otherwise. As shown in Heijmans et al. [71], αL
or pointwise maximum of multiple αL can be used in the place of opening in
a granulometry.

Talbot and Appleton [72] introduces an algorithm to compute the path open-
ing using an opening transform. Opening transform assigns to each pixel
the length of the longest path through it. The pixels that would be nonzero
in a path opening with path length L are those whose value in the opening
transform is greater than or equal to L. The length distribution of fibre
volume is the distribution of values of the opening transform.

For a single adjacency relation, the opening transform can be calculated
with a dynamic programming method (see Algorithm 2). Two temporary
images, λ+ and λ−, are required. The value of λ+ at ~x is the length of the
longest path beginning at ~x and, correspondingly, λ−(~x) is the length of the
longest path ending at ~x. The total length of the longest path through ~x is
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λ+(~x) + λ−(~x) − 1. In the algorithm, λ+ and λ− are calculated one-by-one
as follows.

First, λ+ is initialized such that λ+(~x) = 0 for all ~x. The pixels of the image
are processed in such an order that if ~x 7→ ~y, then ~x is processed before ~y.
At each pixel, the value of λ+ is calculated as

λ+(~x) =

1 + max~y 7→~x λ
+(~y), ~x ∈ E,

0, otherwise.
(3.26)

The temporary image λ− is calculated similarly but by inverting the process-
ing order of pixels and the adjacency relation in the maximum operation.

To finally determine the opening transform, the above algorithm is run for
all the relevant adjacency relations and a pointwise maximum of the results
is taken.

The above definitions and algorithms are given for binary images only. Path
opening for a semi-binary image can be calculated by means of threshold
decomposition [72]. The opening of a semi-binary image is determined by
first thresholding the image to binary form by threshold level t. The path
opening is then calculated for the thresholded image with Algorithm 2 as
above. The process is repeated for all values of t and each pixel is assigned
the highest value of t for which the corresponding value of the binary opening
is nonzero.

Constrained path openings

An apparent problem in using simple path openings for measuring length
of structures is zig-zagging, i.e. a long path can fit into a short structure
by forming a zig-zag pattern. For example, consider a straight two-pixel
wide line from west to east. In addition to straight paths, the west-to-east
adjacency relation allows also paths consisting of repeated {north-east, south-
east}-steps, leading to over-estimation of the length of the structure (see also
Figure 3.7). The problem can be partially overcome by constrained path-
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Algorithm 2 Opening transform algorithm
Input: Binary image f
Output: Opening transform P of f
1: Initialize Ψ← relevant adjacency relations
2: Initialize P ← 0
3: Initialize E ← {~x : f(~x) 6= 0}
4: for all Adjacency relation R ∈ Ψ do
5: λ+ ← createlambda(E, R)
6: λ− ← createlambda(E, −R)
7: P ← max(P, λ+ + λ− − 1)
8: end for
9: return P

10: function createlambda(E, R)
11: Initialize λ← 0
12: for all Pixel ~x ∈ sort(E,R) do
13: λ(~x)← 1 + max~yR~x λ(~y)
14: end for
15: return λ
16: end function

openings where every other step of the path must be in the main direction
of the adjancency relation (i.e. east for west-to-east adjacency) [70].

The implementation of a constrained opening transform algoritm is based
on an observation that a path that has not proceeded to its main direction
has to do so in the next step. The count of paths ending (or starting) at
a single pixel increases compared to the non-constrained case. In addition
to the path that has arrived to the present pixel from any direction, there
is also a path that has arrived to the present pixel from the main direction.
Hence, we define

• λ−c (~x) as the length of longest path that ends at ~x and has arrived to
~x from the main direction,

• λ+
c (~x) as the length of longest path that begins at ~x and continues from
~x in the main direction,

• λ−(~x) as the length of longest path that ends at ~x and has arrived to
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Algorithm 3 Constrained opening transform algorithm
Input: Binary image f
Output: Constrained opening transform P of f
1: Initialize Ψ← relevant adjacency relations and main directions
2: Initialize P ← 0
3: Initialize E ← {~x : f(~x) 6= 0}
4: for all Adjacency relation R and main direction ~v ∈ Ψ do
5: λ+, λ+

c ← createlambda(E, R, ~v)
6: λ−, λ−c ← createlambda(E, −R, −~v)
7: P ← max{P, λ+

c (~x) + λ−(~x)− 1, λ+(~x) + λ−c (~x)− 1}
8: end for
9: return P

10: function createlambda(E, R, ~v)
11: Initialize λ← 0
12: Initialize λc ← 0
13: for all Pixel ~x ∈ sort(E,R) do
14: λc(~x)← 1 + λ(~x− ~v)
15: λ(~x)← 1 + max~yR~x λc(~y)
16: end for
17: return λ, λc
18: end function

~x from any direction and

• λ+(~x) as the length of longest path that begins at ~x and continues from
~x to any direction.

The longest constrained path through ~x is

max{λ+
c (~x) + λ−(~x), λ+(~x) + λ−c (~x)} − 1. (3.27)

The temporary images λ±c and λ± are determined as in the non-constrained
path transform in Algorithm 2, except that in each iteration step the con-
strained length must be determined based on non-constrained length and vice
versa, as is also shown in Algorithm 3.
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3.4.2 Multivariate size distributions

Having determined the length- (Section 3.4.1) and wall thickness (Section
3.2) distributions of fibres separately, let us assess also the correlations of the
two distributions. To that end, recall that opening operation by a structur-
ing element b1 removes all structures where b1 does not fit. Thus, the size
distribution of the remaining structures, with respect to structuring element
b2, can be estimated with granulometry on opening by structuring element
b1. By choosing the two structuring elements appropriately, a bivariate size
distribution is obtained.

In Miettinen et al. [2] and Miettinen and Kataja [6] such a method was used
to determine the bivariate length-diameter distribution of wood fibres in a
biodegradable composite material. The volume of particles whose longest
dimension is less than L and smallest dimension is less than D was written
as

V (L,D) =

∫
S(P (f, L), D)d~x, (3.28)

where S(f,D) is an opening with a spherical structuring element (Section
3.2) and P (f, L) is a constrained path opening (Section 3.4.1). On the other
hand, if the volume of a single fibre is given by V1(L,D), the volume V can
be written as

V (L,D) =

∫ L

0

∫ D

0

n(L,D)V1(L,D)dDdL, (3.29)

where n(L,D) is the bivariate distribution of number of fibres with respect
to L and D. Differentiation gives

n(L,D) =
1

V1(L,D)

∂2V (L,D)

∂L∂D
, (3.30)

that is the desired result. The problem in the present formulation is that it
may not be possible to formulate the volume of a single fibre, V1, as a function
of L and D. For example, for fibres that have a lumen D corresponds to
the thickness of fibre wall. To formulate V1 one has to, e.g., assume that all
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Figure 3.8: (a) Slicing a single fibre. Slice T is taken such that its normal ŝn
is parallel with the local fibre orientation vector. (b) Small part of X-µCT
image of a composite material. A slice taken from the shaded region is shown
in the inset. [1, 7]

fibres in the present material are geometrically similar such that

V1(L,D) ∝ LD2, (3.31)

which may not always be appropriate, especially for many natural fibres.

The assumption (3.31) has been relaxed in Miettinen et al. [1] and in Miet-
tinen et al. [7], where another method for determination of cross-sectional
properties of fibres has been proposed. The basic idea of the method is to use
the constrained path transform for determination of fibre length but to assess
the cross-sectional properties of fibres by slicing them based on information
on their orientation.

Begin by sampling the image f at random locations such that N points
~xn inside the fibre phase are found. At each of the points, the local fibre
orientation is determined using the structure tensor method as described in
Section 3.2. A slice around ~xn is extracted such that the normal of the slice is
parallel with the local fibre orientation vector. Consequently, a cross-section
of the fibre containing ~xn is visible near the center of the extracted slice, as
visualized in Figure 3.8. Desired geometrical properties of the fibre cross-
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section may then be determined from the two-dimensional slice using, e.g.,
techniques discussed in Section 3.3.

The length of the fibre at ~xn is determined from the constrained path trans-
form of the original image f , as discussed in Section 3.4.1. The length of the
fibre at ~xn is taken to be the mode of the values of the opening transform at
the cross-section of the fibre.

Having now determined fibre length and cross-sectional properties ξni for a
statistically significant number of random locations, we may construct the
multivariate distributions of the measured quantities by statistical binning.
As the probability to sample a fibre is proportional to its volume, the distri-
butions will be of type

p(ξ1, ξ2, ..., ξK) =
1

V

∂KV

∂ξ1∂ξ2...∂ξK
, (3.32)

i.e., ξk -distributions of fibre phase volume V . The result may be transformed
into the distribution of number of fibres by using Equation (3.30), but now
the volume of a single fibre V1 does not have to depend solely on its length
and wall thickness. Instead, any of the quantities that appear in p may be
arguments of V1, e.g.,

V1(L,A) ∝ LA, (3.33)

where A is the measured cross-sectional area. Thus the assumption about
geometrical similarity of fibres with respect to fibre wall thickness (Equa-
tion (3.31)) is significantly relaxed.

In [1] the method discussed above was tested on a specially fabricated material
where hollow steel capillary tubes and solid copper wire served as fibres. The
fibres were cut into predetermined lengths and mixed with molding rubber.
The material was X-µCT imaged with SkyScan 1172 device and the method
discussed above was applied on it. Furthermore, the two types of fibres were
separated from each other by considering the geometry of their cross-sections:
simply connected cross-sections (i.e. those with no holes) were attributed to
copper wire and others to capillary tube. Finally, aspect ratio distributions
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Figure 3.9: Aspect ratio distribution for (a) hollow fibres and (b) solid fibres
in the model composite. The bar plot is the distribution as estimated by the
X-µCT method and the solid line is the reference distribution obtained from
the independent manual counting method. [1]

for both types of fibres were constructed, see Figure 3.9.

To obtain a reference data set, the molding rubber was teared off and the
two types of fibres were separated manually. The fibres were spread over a
white background and photographed. The length of the fibres was measured
manually from the images, facilitating determination of reference aspect ratio
distributions.

The X-µCT results and the reference distributions are plotted in Figure 3.9.
Based on the results, the X-µCT method seems to reproduce the peaks in the
reference distribution at correct positions, but in a somewhat wider shape.
The difference in the full width at half maximum between peak given by the
X-µCT method and the reference distribution is approximately 10 % of the
position of the respective peak.
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Figure 3.10: Sampling problem. Probability of a fibre (thin lines) to intersect
with the sampling volume (rectangle) depends on the size of the fibre.

3.5 Finite size corrections

In Miettinen et al. [2] it was noted that the probability of a single particle to
intersect the image volume depends on size, shape, orientation and spatial
distribution of the particles. For example, in Figure 3.10 the longer lines
intersect the edge of the sampling volume more often than the short ones do.
If the length distribution of the lines is determined based on a finite sampling
volume, the result is biased towards small line length.

In the field of stereology, special counting rules have been formulated to
remove the bias [73]. The rules are based on omitting some of the particles
during the measurement process. While analysing interconnected particles
it is impossible to omit some of the particles as the individual particles have
not been identified. Thus, other techniques are required in that case.

Based on results in Miettinen et al. [2] one can conclude that in the present
context, the fibre length is the main quantity that may be affected by fi-
nite sampling volume, and thus we focus solely on that. To this end, we
approximate the biased sampling process by a linear model

n̄ = αn+ ε, (3.34)
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where n̄ is the biased fibre length distribution, n is the non-biased fibre length
distribution, α is a measurement matrix describing the sampling process and
ε is an error vector. The problem of estimating n is reduced into determining
α and inverting Equation (3.34).

It turns out that the components αij are proportional to the probability that
a fibre whose length is lj has a segment of length li in the sampling volume.
Such a probability can be determined analytically for a given sampling volume
[2], but it is much simpler to use a Monte Carlo simulation instead. To that
end, a large space containing a sampling volume is first defined. The shape
of the sampling volume must be similar to the shape of the tomographic
image. A large number of lines of length lj are deposited into the space and
their length distribution in the sampling volume is determined. The length
distribution, with proper binning and normalization, is the j:th column of α
[2]. Repeating the procedure for all j yields all columns of α.

Equation (3.34) cannot be solved for n simply by inverting matrix α because
of the error vector ε. The problem is clearly ill-posed, whereby the generalized
Tikhonov regularization is used instead [74] and the solution is written in the
form

n = arg min
m

(‖αm− n̄‖2 + λ ‖Lm‖2), (3.35)

where L is a differencing operator

L(m) = (m2 −m1,m3 −m2, ...). (3.36)

In Figure 3.11 [2] the correction method dicussed above has been applied to
X-µCT analysis of wood fibre composite material made of Kraft pulp fibres
and polylactic acid (PLA) matrix. For reference, the fibre length distribution
has been determined using an independent method based on dissolving the
matrix in hot chloroform. As seen in the figure, the correction is rather
minor, mostly because the mean fibre length (approximately 50 µm) is small
compared to the diameter of the tomographic image (approximately 1 mm).
Based on this and results shown in [2] it can be concluded as a rule-of-thumb
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Figure 3.11: Correction for bias in fibre length caused by finite sampling
volume for injection moulded Kraft pulp – polylactic acid composite material.
[2]

that it is not necessary to perform the correction unless the uncorrected mean
length is more than approximately 20 % of image diameter.
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Chapter 4

Applications

4.1 Micromechanical modelling

Within micromechanical modelling of composite materials, quantities related
to the microscopic structure of the material are combined with the mechanical
properties of the constituents, to arrive in estimates of mechanical proper-
ties of the composite material. Micromechanical models may be used, e.g.,
to estimate the amount of reinforcement required for having given tensile
properties in the final material.

In Miettinen et al. [1] and Miettinen et al. [7] we have demonstrated the use
of X-µCT analysis to estimate the parameters of a micromechanical model
for the Young’s modulus of flax fibre composites. The Young’s moduli given
by the model are compared to those from mechanical tests [75, 76].

Within the micromechanical model, the Young’s modulus of the composite
is estimated using a rule-of-mixtures equation [77]

Ec = (ηoηlφfEf + φmEm)(1− φv)2, (4.1)

where Ec, Em and Ef are Young’s moduli of the composite, the matrix and
the fibres, respectively; φf , φm and φv are the volume fractions of fibres,
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matrix and void, respectively; and ηo and ηl are the orientation and the
length efficiency factors, respectively [78, 79].

For determination of the orientation efficiency factor, the reinforcing fibres
are divided into groups such that in each group all the fibres have the same
orientation. The orientation efficiency factor ηo is then given by

ηo =
∑
n

an cos4(αn), (4.2)

where αn is the angle between the loading direction and the direction of fibres
in group n, and an = φfn/φf , where φfn is the volume fraction of fibres in
group n.

The length efficiency factor is defined by

ηl = 1− tanh(L∗)

L∗
, (4.3)

where

L∗ = 2
〈L〉
〈d〉

√
Gm

Ef ln(κ/φf )
(4.4)

and 〈L〉 is mean fibre length, 〈d〉 is mean fibre diameter, Gm is the shear
modulus of matrix and κ is a geometrical packing pattern constant.

In the present case, the volume fractions of fibres, matrix and void for the test
composites are determined using an independent gravimetric method. The
shear modulus of matrix is determined from the Young’s modulus by assuming
isotropic material with Poisson’s ratio 0.3. The Young’s modulus of fibres is
assumed to be Ef = 50 GPa [80]. Furthermore, the fibres are assumed to be
packed hexagonally, implying κ = π

2
√

3
≈ 0.907. The remaining parameters,

〈L〉, 〈d〉 and ηo are determined using the X-µCT method of Section 3.4.2 and,
for comparison, an independent reference method.

The independent reference method is based on dissolving the matrix in hot
chloroform and determining the lengths of the remaining fibres manually
with help of a microscope [81]. Small particles of fibre wall, i.e. fines, are
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discarded from the analysis by visual inspection. The orientation efficiency
factor is hard to determine using the reference method, so we have fitted the
results of Equation (4.1) into the results of mechanical tests using ηo as a
free parameter.

In the X-µCT method visual inspection cannot be used to discard fines, but an
algorithm must be used instead. Therefore we identify L∗ as a dimensionless
fibre length parameter and calculate its value for each fibre cross-section,
replacing average length and diameter with those of the cross-section. A
natural cut-off is obtained by excluding cross-sections with L∗ < 1 from the
calculation of ηo and ηl.

The Young’s modulus given by Equation (4.1) is shown in Figure 4.1 for
parameters determined using the X-µCT method and the reference method.
The results from mechanical tests are also shown. The correspondence be-
tween the Young’s moduli estimated using the different methodologies is very
good. However, the volume fraction of fibres discarded as fines is high (near
50 %), highlighting the need to develop micromechanical models that can
tolerate the presence of fines in addition to intact reinforcing fibres. If such
a model was available, the X-µCT method could likely be used to estimate
all of its parameters.

4.2 Morphological degradation of fibres in in-

jection moulding process

In an injection moulding process, the reinforcing fibres are subjected to
large temperature and stress. If the fibres are fragile they may disintegrate
longitudinally or transversally and thus their aspect ratio may change. As
the length and the aspect ratio of fibres are important parameters affecting
the mechanical properties of the composite material (see also Section 4.1),
quantification of their changes during processing is of interest.

The reinforcing fibres in different processing stages of wood fibre – polylactic
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Figure 4.1: Estimates of Young’s modulus of flax fibre – polylactic acid
composites.
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Figure 4.2: (a) Fibre length distribution and (b) average aspect ratio in
different processing phases. ’Intact’, ’Comm.’, ’E’, and ’I’ stand for intact
fibres, commingled fibres, extrusion and injection moulding, respectively. [3,
8].
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acid (PLA) composite were studied in Joffre et al. [3] and in Gamstedt et al.
[8]. Bleached sulphite wood fibres were first commingled with fibrous PLA.
To reduce porosity, the mix was extruded once or twice and chopped into
pellets to ease processing. The wood fibre – PLA pellets were then injection
moulded into tensile test specimens. Samples for X-µCT analysis were taken
after each processing phase.

X-µCT images of the samples were taken with XRadia microCT-400 device.
The images were binarized and the length and the cross-sectional area of fibres
was determined as described in Section 3.4.2. In the case of commingled fibre
mat containing both wood fibres and fibrous PLA, cross-sectional samples of
the two phases had to be separated. Therefore the convex area AC of each
fibre cross-section was also determined. All the cross-sectional samples not
satisfying

AC − A > 0.1A, (4.5)

where A is the area of the fibre cross-section, were classified as PLA fibres
and were not included in the results shown in Figure 4.2. An example of
cross-sectional slices of a wood fibre and a PLA fibre are shown in Figure 4.3.

The resulting length distributions in Figure 4.2(a) show that the fibre length
is retained in the commingling process. The most significant fibre length
reduction occurs in the the extrusion step. However, the twice extruded
sample does not show any further reduction in fibre length compared to the
sample extruded once. The insignificant difference between once and twice
extruded samples suggests that the fibres could stay longer without compro-
mising quality of the pellets if the extrusion was performed multiple times
but in gentler processing conditions. Anyway, in the present manufacturing
process, efforts to retain fibre length should be placed on the extrusion step.

The average aspect ratio of fibres in Figure 4.2(b) shows somewhat different
trend. The aspect ratio decreases already in the commingling process, but in
the injection moulding the aspect ratio stays approximately constant. This
hints that in the injection moulding process the fibres are disintegrated ap-
proximately equally both in the longitudinal and in the transverse directions.
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(a) (b)

Figure 4.3: Cross-sectional slice of (a) wood fibre and (b) PLA fibre in
commingled wood fibre – PLA fibre mat. The cross-section has been colored
gray. The black parts are cross-sections of neighbouring fibres. The dark
border around the gray part shows the edges of the convex hull of the cross-
section.
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Based on the results, X-µCT techniques seem to be applicable in quantifica-
tion of microstructural parameters of materials for the purpose of optimization
of processing conditions. It is particularly important to notice that the ma-
terial could be assessed with the same algorithm in all the processing phases,
ensuring comparability of the results. The possibility to quantify the effect of
various manufacturing processes on the microstructure of the material could
assist in developing novel processes that do not degrade fibres as much as
traditional methods.

4.3 Swelling of fibres

Although cellulose fibres are an inexpensive, light and biodegradable alter-
native to synthetic fibres, one of the primary drawbacks in using them is
their ability to absorb water from the environment. Water intake leads to
dimensional instability and weakening of composite structures.

In Joffre et al. [4] X-ray microtomography was shown to be a practical tool
in assessing the moisture sensitivity of wood fibres and composite structures.
X-µCT images were taken from samples of free fibres and fibres embedded
in matrix, both in dry (regulated room humidity, approximately 35 % rel-
ative humidity) and in wet (nominal 100 % relative humidity) atmosphere.
An operator marked perimeter of 30 fibres from each X-µCT image. The
identified perimeters were used to determine the swelling coefficient of the
fibres. Finally, a finite element model of fibre swelling was constructed and
validated using the measured swelling coefficients.

It is of interest to notice that the fibres exhibit many sizes and cross-sectional
shapes. In addition, in the manual method the amount of samples taken from
each image is relatively small and thus statistics of fibre shapes is limited. It is
thus advantageous to sample the same locations both in dry and in wet state.
To facilitate such sampling, the X-µCT images were taken from the same
sample in both states by applying a special sample holder (Figure 4.4(a)).
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Figure 4.4: (a) Schematics of a sample holder used to scan samples in reg-
ulated 35 % relative humidity and in nominal 100 % relative humidity. (b)
Schematics of a sample holder that could be used to study imbibition of water
into a sample from single direction.

The sample holder is constructed such that the sample can be enclosed in an
air-tight chamber during the X-µCT scan. The sample is first imaged in a
dry state and the top cap of the sample chamber is open. Thus, the sample
is in the room humidity. After the first scan, a drop of water is added to
the bottom of the sample chamber and the top cap is installed, causing the
relative humidity inside the chamber to increase to nominal 100 %. After the
sample has stabilized into the changed environment, it is imaged again. Two
images of the very same sample in wet and dry state are thus obtained.

To reduce X-ray attenuation into the chamber, its walls are made of light
material as thin as possible. In Joffre et al. [4] 0.1 mm thick poly(methyl
methacrylate) tube (i.e. PMMA drinking straw) was used, but later it was
found out that polyether ether ketone (PEEK) has favorable machining prop-
erties, enabling manufacturing of more complex systems. For example, in
Miettinen et al. [82] a sample holder made of PEEK tube was demonstrated,
with wall thickness 0.1 mm and tube ends connected to threaded fittings. The
sample chambers discussed here cause approximately 10 % decrease in X-ray
intensity, thereby increasing image acquisition time only a little.
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The sample holder applied in Joffre et al. [4] could be easily modified for other
kind of wetting processes, too. For example, a one-dimensional imbibition
process could be realized with sample and holder geometry shown in Fig-
ure 4.4(b), where liquid water touches the sample only at a single face. Such
extensions are left as topics for future work, together with related algorithms
for determination of, e.g., local water concentration.
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Chapter 5

Summary

Measurement methods for estimating microstructural properties of short fibre
composite materials were developed. The methods are based on analysing
X-ray microtomographic images of composite material samples. In particular,
the focus was on methods to determine the length and the cross-sectional
property distributions of fibres. The developed methods were validated us-
ing experimental data and applied in estimating properties of natural fibre
composites.

The experimental validation of the algorithms was performed using a model
composite made of metallic fibres and rubber. The aspect ratio distribution
in the model composite was estimated both manually and using the developed
methods. Comparison of the results showed good correspondence between
the two methodologies.

The effect of finite size of the image volume was discussed. It was concluded
that the fibre length distribution is the quantity that is most affected by
the finite volume. A method to correct the bias caused by finite volume
effects was introduced. Finally it was noted that the correction is virtually
unnecessary for the short-fibre composites analysed in the rest of the thesis.

It was shown that the developed algorithms can be used to successfully esti-
mate the parameters of a particular micromechanical model. Modelling re-
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sults were compared to those from mechanical tests, showing good agreement.
It was noted that many rule-of-mixtures-based micromechanical models disre-
gard fines, i.e., particulate material smaller than reinforcing fibres. Such fines
often occur in natural fibre composites, partially caused by naturally wide
size distribution of the fibres and partially by disintegration of fibres in the
manufacturing process. In manual measurements fines are often discarded
by visual inspection. On the other hand, X-µCT images contain information
on all particles discernible within the limits set by resolution and sample
size, typically including a large part of fines. Such information could support
the design of more advanced models that account for the presence of a fine
particulate material phase.

The image processing algorithms were also applied in studying the degrada-
tion of wood fibres in an injection moulding process. Significant decrease was
observed in fibre length and aspect ratio, occurring mostly in the extrusion
phase. As both quantities affect mechanical properties of the composite, it
was concluded that gentler manufacturing processes would be desirable for
this type of composite material.

Finally, the non-destructive nature of X-µCT was applied in studying the
hygroexpansion of fibres in wood fibre – polylactic acid composite materials.
The same material sample was imaged twice, first in room humidity and then
in nominal 100 % relative humidity. Correlation between the images was used
to find the same wood fibres in dry and wet states. The geometrical prop-
erties of the fibres were determined manually and used to calculate swelling
coefficient of the fibres. Finally, results on the swelling coefficient were used
to validate a finite element model.

Based on results discussed in this thesis, methods relying on X-µCT imaging
seem to be well suited for analysis of natural fibre composites. In particular,
X-µCT methods allow assessing the material with high precision. Such a
possibility may assist in achieving future advances both in manufacturing
and in modelling of composite materials.

60



Bibliography

[1] A. Miettinen, A. Ojala, L. Wikström, R. Joffe, B. Madsen, K. Nättinen,
and M. Kataja. Non-destructive automatic determination of aspect
ratio and cross-sectional properties of fibres. Composites: Part A, 77:
188–194, 2015.

[2] A. Miettinen, C. L. Luengo Hendriks, G. Chinga-Carrasco, E. K. Gam-
stedt, and M. Kataja. A non-destructive X-ray microtomography ap-
proach for measuring fibre length in short-fibre composites. Composites
Science and Technology, 72(15):1901–1908, October 2012.

[3] T. Joffre, A. Miettinen, F. Berthold, and E. K. Gamstedt. X-ray micro-
computed tomography investigation of fibre length degradation during
the processing steps of short-fibre composites. Composites Science and
Technology, 105:127–133, 2014.

[4] T. Joffre, E. Wernersson, A. Miettinen, C. L. Luengo Hendriks, and
E. K. Gamstedt. Swelling of cellulose fibres in composite materials:
Constraint effects of the surrounding matrix. Composites Science and
Technology, 74:52–59, 2013.

[5] T. Joffre, A. Miettinen, E. Wernersson, P. Isaksson, and E. K. Gamstedt.
Effects of defects on the tensile strength of heterogeneous composite
materials. Mechanics of materials, 75, 2014.

[6] A. Miettinen and K. Kataja. Non-destructive analysis of fiber properties
using 3D X-ray microtomographic data. In S. Fæster, D. Juul Jensen,
B. Ralph, and B.F. Sørensen, editors, Proceedings of the 32nd Risø

61



International Symposium on Materials Science: Composite materials for
structural performance – towards higher limits. Risø National Laboratory
for Sustainable Energy, Technical University of Denmark, 2011. ISBN
978-87-550-3925-4.

[7] A. Miettinen, R. Joffe, B. Madsen, K. Nättinen, and K. Kataja. Quanti-
tative analysis of length-diameter distribution and cross-sectional proper-
ties of fibers from three-dimensional tomographic images. In B. Madsen,
H. Lilholt, Y. Kusano, S. Fæster, and B. Ralph, editors, Proceedings of
the 34th Risø International Symposium on Materials Science: Process-
ing of fibre composites – challenges for maximum materials performance.
Department of Wind Energy, Risø Campus, Technical University of Den-
mark, 2013.

[8] E. K. Gamstedt, T. Joffre, A. Miettinen, and F. Berthold. Monitoring
of fibre length degradation during processing of short-fibre composites
by use of X-ray computed tomography. In B. Madsen, H. Lilholt, Y. Ku-
sano, S. Fæster, and B. Ralph, editors, Proceedings of the 34th Risø
International Symposium on Materials Science: Processing of fibre com-
posites – challenges for maximum materials performance. Department
of Wind Energy, Risø Campus, Technical University of Denmark, 2013.

[9] A. Miettinen, R. Joffe, L. Pupure, and B. Madsen. Identification of
true microstructure of composites based on various flax fibre assemblies
by means of three-dimensional tomography. In Proceedings of the 20th
International Conference on Composite Materials. International Com-
mittee on Composite Materials, 2015.

[10] A. Miettinen, A. Ekman, G. Chinga-Carrasco, and M. Kataja. On the
intrinsic thickness of nanocellulose films. Journal of Materials Science,
50(21):6926–6934.

[11] S.V. Joshia, L.T. Drzalb, A.K. Mohantyb, and S. Arorac. Are nat-
ural fiber composites environmentally superior to glass fiber reinforced
composites? Composites Part A, 35:371–376, 2004.

62



[12] C.-F. Yang, A.R.K. Eusufzai, R. Sankar, R.E. Mark, and R.W. Jr.
Perkins. Measurements of geometrical parameters of fiber networks.
Part 1. Svensk Papperstidning, 81(13):426–433, 1978.

[13] D. Gelber. Thin sectioning: Details of techniques. The Journal of
Biophysical and Biochemical Cytology, 3(2), 1957.

[14] O. W. Richards. The effective use and proper care of the microtome.
American Optical Company, 1959.

[15] M. Aronsson, O. Henningsson, and Ö. Sävborg. Slice-based digital
volume assembly of a small paper sample. Nordic Pulp and Paper
Research Journal, 17(1), 2002.

[16] W. Denk and H. Horstmann. Serial block-face scanning electron mi-
croscopy to reconstruct three-dimensional tissue nanostructure. PLoS
Biology, 2(11), 10 2004.

[17] G. Chinga, P. O. Johnsen, and O. Diserud. Controlled serial grinding for
high-resolution three-dimensional reconstruction. Journal of Microscopy,
214(1):13–21, 2004.

[18] S. Torquato. Random Heterogeneous Materials. Springer, 2002.

[19] T. Hildebrand and P. Rüegsegger. A new method for the model-
independent assessment of thickness in three-dimensional images. Jour-
nal of Microscopy, 185(1):67–75, 1997.

[20] J. Serra. Image analysis and mathematical morphology. Academic Press,
1982. ISBN 0-12-637240-3.

[21] B. Jähne. Practical handbook on image processing for scientific and
technical applications. CRC Press, 2004.

[22] A. Clarke and C. Eberhardt. The representation of reinforcing fibres in
composites as 3D space curves. Composites Science and Technology, 59
(8):1227–1237, 1999.

63



[23] H. Yang and W. B. Lindquist. Three-dimensional image analysis of
fibrous materials. In Proceedings of SPIE, volume 4115, pages 275–282,
2000.

[24] C. N. Eberhardt and A. R. Clarke. Automated reconstruction of
curvilinear fibres from 3D datasets acquired by X-ray microtomography.
Journal of Microscopy, 206(1):41–53, 2002.

[25] J. C. Tan, J. A. Elliott, and T. W. Clyne. Analysis of tomography
images of bonded fibre networks to measure distributions of fibre segment
length and fibre orientation. Advanced Engineering Materials, 8(6):495–
500, 2006.

[26] T. Walther, K. Terzic, T. Donath, H. Meine, F. Beckmann, and H. Thoe-
men. Microstructural analysis of lignocellulosic fiber networks. In
Proceedings of SPIE, volume 6318, pages 631812–631812–10, 2006.

[27] M. Axelsson. 3D tracking of cellulose fibres in volume images. In IEEE
International Conference on Image Processing, 2007, volume 4, pages
IV–309–IV–312, 2007.

[28] E. L. G. Wernersson, A. Brun, and C. L. Luengo Hendriks. Segmen-
tation of wood fibres in 3D CT images using graph cuts. In P. Foggia,
C. Sansone, and M. Vento, editors, Image Analysis and Processing –
ICIAP 2009, volume 5716 of Lecture Notes in Computer Science, pages
92–102. Springer Berlin Heidelberg, 2009.

[29] S. Kärkkäinen, J. Nyblom, A. Miettinen, T. Turpeinen, and P. Pötschke.
Stochastic shape model for fibres with an application to carbon nan-
otubes. In V. Capasso et al., editor, Proceedings of the 10th European
Congress of ISS, Bologna, Italy, 2009. ESCULAPIO Pub. Co. The
MIRIAM Project Series.

[30] M. Teßmann, S. Mohr, S. Gayetskyy, U. Haßler, R. Hanke, and
G. Greiner. Automatic determination of fiber-length distribution in
composite material using 3D CT data. EURASIP Journal of Advanced
Signal Processing, 2010, 2010.

64



[31] J. Lux, C. Delisée, and X. Thibault. 3D characterization of wood based
fibrous materials: an application. Image Analysis & Stereology, 25(1),
2011.

[32] F. Malmberg, J. Lindblad, C. Östlund, K. M. Almgren, and E. K. Gam-
stedt. Measurement of fibre-fibre contact in three-dimensional images
of fibrous materials obtained from X-ray synchrotron microtomography.
Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment, 637(1):
143–148, 2011.

[33] D. Tsarouchas and A. E. Markaki. Extraction of fibre network architec-
ture by X-ray tomography and prediction of elastic properties using an
affine analytical model. Acta Materialia, 59(18):6989–7002, 2011.

[34] S. Kärkkäinen, A. Miettinen, T. Turpeinen, J. Nyblom, J. Timonen, and
P. Pötschke. A stochastic shape and orientation model for planar fibres
with an application to carbon nanotubes. Image Analysis & Stereology,
31(1):17–26, 2012.

[35] J. Viguié, P. Latil, L. Orgéas, P. J. J. Dumont, S. Rolland du Roscoat,
J.-F. Bloch, C. Marulier, and O. Guiraud. Finding fibres and their
contacts within 3D images of disordered fibrous media. Composites
Science and Technology, 89:202–210, 2013.

[36] J. Radon. Über die bestimmung von funktionen durch ihre integralwerte
längs gewisser manningfaltigkeiten. Berichte der Sächsischen Akadamie
der Wissenschaft, 69:262–277, 1917. Translated to English by P. C.
Parks to appear in On the determination of functions from their integral
values along certain manifolds, IEEE Transactions on Medical Imaging,
5(4), 170-176, 1986.

[37] M. S. Kaczmarz. Angenäherte auflösung von systemen linearer gle-
ichungen. Bulletin International de l’Académie Polonaise des Sciences
et des Lettres A, 37(355–357), 1937. Translated to English by J. P.

65



Stockmann, to appear in PhD thesis New strategies for accelerated spa-
tial encoding with quadratic fields in magnetic resonance imaging, 2012,
Yale University, New Haven, Connecticut, USA.

[38] R. N. Bracewell and A. C. Riddle. Inversion of fan-beam scans in radio
astronomy. Astrophysical Journal, 150:427–434, 1967.

[39] Z. V. Maizlin and P. M. Vos. Do we really need to thank the beatles for
the financing of the development of the computed tomography scanner?
Journal of Computer Assisted Tomography, 36(2):161–164, 2012.

[40] G. N. Ramachandran and A. V. Lakshminarayanan. Three-dimensional
reconstruction from radiographs and electron micrographs: Application
of convolutions instead of fourier transforms. Proceedings of the National
Academy of Sciences of the United States of America, 68(9):2236–2240,
1971.

[41] L. A. Shepp and B. F. Logan. The fourier reconstruction of a head
section. Nuclear Science, IEEE Transactions on, 21(3):21–43, 1974.

[42] Nobel Media. The nobel prize in physiology or medicine
1979. http://www.nobelprize.org/nobel_prizes/medicine/

laureates/1979/, 1979. Accessed 28 Aug 2014.

[43] J. C. Elliott and S. D. Dover. X-ray microtomography. Journal of
Microscopy, 126(2):211–213, 1982. ISSN 1365-2818.

[44] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam
algorithm. Journal of Optical Society of America A, 1(6), 1984.

[45] A. C. Kak and M. Slaney. Principles of computerized tomographic
imaging. IEEE Press, 1988.

[46] A. C. Thompson, editor. X-ray data booklet. Center for X-ray op-
tics, Advanced Light Source, Lawrence Berkeley National Laboratory,
University of California, Berkeley, California, USA, 3 edition, 2009.

[47] Hamamatsu Photonics KK. Marketing material, 2014.

66



[48] Excillum AB. Marketing material, 2014.

[49] S. R. Stock. Microcomputed tomography. CRC Press, 2009.

[50] W. van Aarle. Tomographic segmentation and discrete tomography
for quantitative analysis of transmission tomography data. PhD thesis,
Vision Lab, Department of Physics, University of Antwerp, 2012.

[51] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-
Hall, 2 edition, 2002.

[52] T. Turpeinen. Analysis of microtomographic images of porous heteroge-
neous materials. PhD thesis, Jyväskylä, Finland, 2015.

[53] S. M. Smith and J. M. Brady. SUSAN – a new approach to low level
image processing. International Journal of Computer Vision, 23(1):
45–78, 1997.

[54] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(7):629–639, 1990.

[55] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image
denoising. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 2, pages 60–65.
IEEE, 2005.

[56] Metso Automation OY. Marketing material, 2014.

[57] P. A. Reme and T. Helle. Assessment of transverse dimensions of wood
tracheids using SEM and image analysis. Journal of Pulp and Paper
Science, 28(4), 2001.

[58] R. Joffe, B. Madsen, K. Nättinen, and A. Miettinen. Strength of cellu-
losic fiber/starch acetate composites with variable fiber and plasticizer
content. Journal of Composite Materials, 49(8):1007–1017, 2014.

67



[59] V. Koivu, M. Decain, C. Geindreau, K. Mattila, J. Alaraudanjoki, J.-F.
Bloch, and M. Kataja. Flow permeability of fibrous porous materials.
Micro-tomography and numerical simulations. In S. I’Anson, editor,
Proceedings of the 14th Fundamental Research Symposium, pages 437–
454. The Pulp and Paper Fundamental Research Society, 2009.

[60] V. Koivu, M. Decain, C. Geindreau, K. Mattila, J.-F. Bloch, and
M. Kataja. Transport properties of heterogeneous materials. Combining
computerised X-ray micro-tomography and direct numerical simulations.
International Journal of Computational Fluid Dynamics, 23(10):713–721,
2009.

[61] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture
processing. Journal of the association for computing machinery, 13(4):
471–494, 1966.

[62] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
1987, pages 163–169, New York, NY, USA, 1987. ACM.

[63] J. Lindblad and I. Nyström. Surface area estimation of digitized 3D
objects using local computations. In Proceedings of the 10th Inter-
national Conference on the Discrete Geometry for Computer Imagery,
pages 267–278, Bordeaux, France, 2002. Springer.

[64] R. Klette and H. Sun. Digital planar segment based polyhedrization
for surface area estimation. In C. Arcelli, L. P. Cordella, and G. San-
niti di Baja, editors, Visual Form 2001, volume 2059 of Lecture Notes
in Computer Science, pages 356–366. Springer Berlin Heidelberg, 2001.

[65] D. Coeurjolly, F. Flin, O. Teytaud, and L. Tougne. Multigrid con-
vergence and surface area estimation. In T. Asano, R. Klette, and
C. Ronse, editors, Geometry, Morphology, and Computational Imag-
ing, volume 2616 of Lecture Notes in Computer Science, pages 101–119.
Springer Berlin Heidelberg, 2003.

68



[66] K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2:559–572, 1901.

[67] R. A. Jarvis. On the identification of the convex hull of a finite set of
points in the plane. Information Processing Letters, 2:18–21, 1973.

[68] C. L. Luengo Hendriks and L. J. van Vliet. A rotation-invariant mor-
phology for shape analysis of anisotropic objects and structures. In
C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Proceed-
ings of the 4th International Workshop on Visual Form, pages 378–387.
Springer-Verlag Berlin Heidelberg, 2001.

[69] G. Matheron. Random sets and integral geometry. John Wiley and
Sons, New York, 1975.

[70] C. L. Luengo Hendriks. Constrained and dimensionality-independent
path openings. IEEE Transactions on Image Processing, 19(6):1587–
1595, 2010.

[71] H. Heijmans, M. Buckley, and H. Talbot. Path openings and closings.
Journal of Mathematical Imaging and Vision, 22(2-3):107–119, 2005.

[72] H. Talbot and B. Appleton. Efficient complete and incomplete path
openings and closings. Image and Vision Computing, 25(4):416–425,
2007. International Symposium on Mathematical Morphology 2005.

[73] P. R. Mouton. Principles and Practices of Unbiased Stereology: An In-
troduction for Bioscientists. Johns Hopkins University Press, Baltimore,
MD, USA, 2002.

[74] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems.
Winston & Sons, 1977.

[75] B. Madsen, R. Joffe, H. Peltola, and K. Nättinen. Short cellulosic
fiber/starch acetate composites – micromechanical modeling of Young’s
modulus. Journal of Composite Materials, 45(20):2119–2131, 2011.

69



[76] K. Nättinen, S. Hyvärinen, R. Joffe, L. Wallström, and B. Madsen.
Naturally compatible: Starch acetate/cellulosic fiber composites. I. Pro-
cessing and properties. Polymer Composites, 31(3):524–535, 2010.

[77] B. Madsen, A. Thygesen, and H. Lilholt. Plant fibre composites –
porosity and stiffness. Composites Science and Technology, 69(7–8):
1057–1069, 2009.

[78] H. Krenchel. Fibre reinforcement. PhD thesis, Copenhagen, Denmark,
1964.

[79] H. L. Cox. The elasticity and strength of paper and other fibrous
materials. British Journal of Applied Physics, 3:72–79, 1952.

[80] H. Lilholt and J. M. Lawther. Natural organic fibres. In A. Kelly
and C. Zweben, editors, Comprehensive composite materials, volume 1,
chapter 10, pages 303–325. Elsevier Science, Amsterdam, 2000.

[81] H. Peltola, B. Madsen, R. Joffe, and K. Nättinen. Experimental study
of fiber length and orientation in injection molded natural fiber/starch
acetate composites. Advances in materials science and engineering,
2011.

[82] A. Miettinen, G. Chinga-Carrasco, and M. Kataja. Three-dimensional
microstructural properties of nanofibrillated cellulose films. Interna-
tional Journal of Molecular Sciences, 15(4):6423–6440, 2014.

70


