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Abstract

This thesis describes a study into the eigenvalues and eigenstates of two-
dimensional (2D) quantum systems. The research is summarized in four scientific
publications by the author. The underlying motivation for this work is the grand
question of quantum chaos: how does chaos, as known in classical mechanics,
manifest in quantum mechanics? The search and analysis of these quantum finger-
prints of chaos requires efficient numerical tools and methods, the development
of which is given a special emphasis in this thesis.

The first publication in this thesis concerns the eigenspectrum analysis of a
nanoscale device. It is shown that a measured addition energy spectrum can
be explained by a simple confinement of interacting electrons in a potential
well. This result is derived using density-functional theory (DFT) and numerical
optimization, guided by the asymmetric geometry of the device. The calculations
also show that an observed decrease in the conductance can be explained by a
change in the shape of the quantum wave function.

The study of quantum chaos by statistical properties of eigenvalues requires
a way to solve the eigenvalue spectrum of a quantum system up to highly
excited states. The second publication describes a numerical program, itp2d,
that uses modern advances in the imaginary time propagation (ITP) method
to solve the eigenvalue spectrum of generic 2D systems up to thousands of
eigenstates. The program provides means to sophisticated eigenvalue analysis
involving long-range correlations, and a unique view to highly excited eigenstates
of complicated 2D systems, such as those involving magnetic fields and strong
disorder.

After the spectrum is solved, the next step in the eigenvalue analysis is to
remove the trivial part of the spectrum in a process known as unfolding. Unless
the system belongs to a special class for which the trivial part is known, unfolding
is an ambiguous process that can cause substantial artifacts to the eigenvalue
statistics. Recently it has been proposed that these artifacts can be mitigated by
employing the empirical mode decomposition (EMD) algorithm in the unfolding.
The third publication describes an efficient implementation of this algorithm,
which is also highly useful in other kinds of data analysis.

Quantum scarring refers to the condensation of quantum eigenstate prob-
ability density around unstable classical periodic orbits in chaotic systems. It
represents a useful and visually striking quantum suppression of chaos. The
final publication describes the discovery of a new kind of quantum scarring
in symmetric 2D systems perturbed by local disorder. These unusually strong
quantum scars are not explained by ordinary scar theory. Instead, they are
caused by classical resonances and resulting quantum near-degeneracy in the
unperturbed system. Wave-packet analysis shows that the scars greatly influence
the transport properties of these systems, even to the extent that wave packets
launched along the scar path travel with higher fidelity than in the corresponding
unperturbed system. This discovery raises interesting possibilities of selectively
enhancing the conductance of quantum systems by adding local perturbations.
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Conventions

Numerical values and mathematical formulas in this thesis are given, unless
explicitly specified otherwise, in the natural units of the Schrodinger equation.
In these units, the mass of the studied particle m = 1, its charge g = 1, the Dirac
constant 77 = 1 and the Coulomb constant 1/4meg = 1. In the context of electrons,
these units are known as Hartree atomic units. As a result of the choice of units,
many expressions are simplified. For example, the Hamiltonian of an electron in
the hydrogen atom is

1 1
H=--V>+=.
2 r
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Chapter 1

Introduction

1.1 Chaos and classical dynamics

Chaos is a powerful word. Its original meaning is the primal void, a formless state
that precedes the creation of the Universe. In ancient mythology and modern
fiction alike chaos is a hostile, destructive force — a natural enemy or order, an
embodiment of human reasoning. In science, chaos has a more specific and
less sinister meaning, but a certain aura of mystique continues to surround the
subject.

In a scientific context, chaos represents unpredictability. More specifically,
it describes evolution in time that is fully deterministic, but still practically
unpredictable due to extreme sensitivity to initial conditions. In a famous
metaphorical example by E. N. Lorenz, the flap of a butterfly’s wings can change
the course of a hurricane occurring a few weeks later. A mathematically rigorous
definition of chaos is a more complicated matter that is still discussed today!'%],
but for purpose of this introduction such definitions are unnecessary details!.

Before the 20th century, chaos did represent a kind of a primal void that
manifested in “unsolvable” systems such as the three-body problem of plane-
tary motion. Its existence was acknowledged by influential scientists such as
H. Poincaré, but not much was known about it. In the first half of the 20th century,
chaos started to appear whenever nonlinear differential equations were applied
to a problem. An explosion of chaos research — and the establishment of chaos
as a separate field of study — occurred in the latter half of the century, when
the electric computer allowed the simulation of systems that are too tedious to
study by hand. Suddenly chaos was everywhere except for the small confine of
analytically solvable models.

One famous example of chaos was given by E. N. Lorenz!’l, who studied a
simplistic weather model consisting of three coupled first-degree differential
equations, two of them nonlinear. He noticed that small changes in the initial

1When discussing chaos, mathematics can become a hostile force that opposes human reasoning,
when it should be a tool that aids it.
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parameters of the model, represented by a truncation of decimal values to three
decimal places, changed the long-term behavior of the model completely.

Chaotic behavior is not a special case of dynamical behavior — it is the
typical case. An undergraduate physicist does not necessarily encounter chaotic
dynamics or the word “chaos” in their studies, but this can be considered as a
consequence of physicists preferring models that can be solved with a pen and
paper, not as a property of nature. Chaos is everywhere in nature, from the
motion of planets to the fluctuations of animal populations.

The fundamental mathematical model for expressing evolution in time, chaotic
or otherwise, is the dynamical system. A gentle introduction to this topic is given,
e.g., in Ref 11. A dynamical system consists of a phase space that is the collection
of all possible states of a system, and a rule that determines how a given state
evolves in time. This rule can be in the form of a first-order differential equation
(continuous time parameter) or a function that maps a state to the succedent state
(discrete time parameter). The rule establishes, for a given initial phase space
point x(0), a unique trajectory x(¢) that deterministically describes the state of
the system at any future time ¢.

An special subclass of dynamical systems is given by classical mechanics. In
its Hamiltonian formulation, the state of the system is given by n generalized
coordinates q; and the corresponding generalized momenta p;, creating a 2n-
dimensional phase space. The time evolution rule is given by Hamilton’s equations
of motion

AR
qi = apz an pi = aqi/

where H is the Hamiltonian function of the system. If the initial coordinates
and momenta (g, p) are known, the equations of motion define precisely the
coordinates and momenta of the system at any future time — although solving
the equations analytically or numerically can be difficult. Hamiltonian dynamics
has special properties, such as conservation of the phase space volume, but the
dynamics can still be chaotic.

In a generic dynamical system, extreme sensitivity to initial conditions occurs
when the distance between two phase space points, initially arbitrarily small,
grows exponentially in time. That is, for an initial state x(0) and another initial
state y(0) arbitrarily close to it, the distance A(t) := [[x(t) — y(¢)|| grows as
A(t) = exp(At)A(0). The exponent A, which sets the rate of the exponential
divergence, is known as the Lyapunov exponent. It is a measure of the predictability
of the system at this particular initial state x(0). Its inverse is the Lyapunov time,
which expresses the time scale of the chaotic behavior. For some chaotic systems,
such as the solar system, the Lyapunov time is large, so that a fundamentally
chaotic system can behave in a seemingly orderly fashion for a long time.

It is easy to see that an exponential divergence leads to practical unpredictabil-
ity. If in the description above x represents the position of a particle, and the
initial position can be measured with an accuracy of A(0) = 1 um, predictions
of its position at time f up to an error tolerance of A(t) = 1 mm are possible if
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At <log(A(t)/A(0)) = 7, or up to seven times the Lyapunov time. To double the
time span of predictions with the same error tolerance the precision of the initial
measurement would need to be increased by a factor of a thousand to 1nm. In
general, multiplying the initial precision only brings a small additive increase in
the predictable time. A long-term forecast for time-scales much larger than the
Lyapunov time will quickly end up requiring an initial measurement precision
that is beyond any conceivable technology.

By the existence or non-existence of exponential divergence the points in a
phase space can be classified into chaotic or not chaotic. A system with no chaotic
states is said to be regular (or integrable), and a system where all states are chaotic
is said to be fully chaotic. Both of these are exceptional limiting cases of the generic
case of a mixed system, where both regular and chaotic motion coexist. In some
sources, fully chaotic and mixed behavior are also referred to as hard and soft
chaos, respectively. In a mixed system a natural measure of the overall chaoticity
is the relative size of the chaotic fraction of the phase space.

It is intuitively understandable that a sufficiently complicated system, such
as the weather on planet Earth, can display such unpredictable behavior. With
enough moving parts, accurate predictions on the behavior of any system tends
to become more difficult. The truth is, however, that even very simple systems
can be chaotic. For this property chaos deserves a certain degree of mystification.
How can complicated behavior arise from simple rules?

For a dynamical system, there are certain minimal requirements that are
required for chaos. In particular, the system needs to be nonlinear, as any linear
system can be broken into parts that are too simple to exhibit chaos. For this
reason the study of chaos is inseparably connected with the study of nonlinear
systems. For smooth continuous-time dynamics another constraint is given by
the Poincaré-Bendixson theorem!!2], which states that for chaos the dimension of
the phase space needs to be at least three.

As long as these two conditions, nonlinearity and at least a three-dimensional
phase space, are satisfied, chaos can be found in continuous time dynamics. A
particularly simplistic example of chaos is the differential equation[!?!

X+Ai+x—|x|+1=0.

As a dynamical system it has a three-dimensional phase space, each point being
a triplet z = (x, X, ¥), and the only source of nonlinearity in the time-evolution
rule Z = (%, %, -1+ |x| — x — AX) is the term |x|. Nevertheless, for certain ranges
of the parameter A, the solution of the differential equation is chaotic.

Even simpler chaotic systems can be found if the prerequisites of the Poincaré-
Bendixson theorem are broken. In discrete time, even one-dimensional systems
can display chaos. One famous example of this is the logistic map!'*l, where an
initial state x¢ € ]0, 1] evolves according to

Xn+1 = X (1= xp).
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When the parameter r increases over a threshold approximately at r = 3.56995
the resulting sequence of values x; is chaotic. Even though being a second-order
polynomial, this mapping has enough curious properties to fill a thesis.

For Hamiltonian mechanics with smooth forces the Poincaré-Bendixson
theorem states that the number of generalized coordinates needs to be at least
two (in which case the phase space has four dimensions). For classical mechanics
the minimal models of chaos therefore involve motion in two dimensions.

A common model of Hamiltonian chaos is the billiard: a particle moving
without friction in a two-dimensional domain and bouncing from its boundaries
by specular reflection? (see Fig. 1.1). The dynamics of a billiard is particularly
simple because it is determined only by the shape of the boundary curve. The
billiards can still exhibit chaotic behavior even for a simple boundary shape.

Start

Figure 1.1. Chaos in a Sinai billiard. The Sinai billiard!!] consists of a circular scatterer
inside a rectangular outer boundary. The lines inside the billiard depict the trajectories of
two particles that differ in initial position by five millionths of the square length. After
a few reflections this difference is amplified by several orders of magnitude. The final
position of the particle depends sensitively on its initial position, i.e., the motion of the
particle is chaotic.

Another surprising property of chaos is its universality. In many ways, chaos is
similar wherever it occurs. An example of such universality is that many systems
that become chaotic as a control parameter is changed do so through a cascade of
period doublings, which occur at a certain universal rate set by the Feigenbaum
constant!!®l. For studying chaos this universality is very encouraging. Chaos is
not a formless state where no information can be extracted. It can be studied -
with simple models, pleasing the reductionist scientist — and this information can
be applied to natural phenomena.

2Note that the Poincaré-Bendixson theorem does not apply to the discontinuous dynamics given
by the reflections, but two dimensions are enough for chaos even with smooth billiard walls.
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1.2 “There is no quantum chaos”

The first rule of quantum chaos is that there is no quantum chaos. This rule can
be derived by applying the concept of a dynamical system to a system governed
by quantum mechanics. For the time evolution of a quantum system, the phase
space is some Hilbert space H of state vectors, and the time-evolution of a state
vector |) is given by the time-dependent Schrodinger equation (TDSE)

.
i==1y) = HIp), (1.1)

where H is the Hamiltonian operator of the system. The form of Eq. (1.1) already
suggests a problem for chaos, as it is a linear equation. Can there be extreme
sensitivity to the initial state vector |¢(0)) in quantum mechanics?

The formal solution of the TDSE for a time-independent Hamiltonian is

l()) = UH)[(0)), with U(t) = exp(itH). (1.2)

In the above solution, because H is self-adjoint, the time-evolution operator U is
unitary. The time-evolution is unitary even if the Hamiltonian is time-independent.
The time-evolution operator U only becomes a time-ordered exponential of a
continuous family of Hamiltonians at different times.

The unitarity of quantum time-evolution severely limits the sensitivity of a
quantum system. Let [¢1(0)) and [12(0)) be two initial quantum states. Their
distance at time ¢ is the norm of the vector |6(¢)) = [i1(t)) —|2(t)) = U()][6(0)).
The squared norm is

SO = (6(1)[6(H) = (5(0)| U (1) U(#) 16(0)) = [16(0)][*.
=1

As it should be, a unitary operator U preserves the inner product and thus the
norm. Not only does quantum mechanics exclude extreme sensitivity to initial
conditions, the distance between two state vectors is constant in time.

In the limit of large quantum numbers quantum mechanics needs to reproduce
classical results, including chaotic behavior. So how does chaos enter quantum
mechanics? This question was the starting point of research initiated in the 1970s.
This research is what is now called quantum chaos®: the research of quantum
systems whose classical counterparts are chaotic.

In general, quantum mechanics suppresses chaos in some way, which is
beneficial for applications in the quantum regime. This suppression is evident in
phenomena such as dynamical localization!'®! and quantum scarring. In dynami-
cal localization the diffusion of a periodically disturbed system is suppressed in
quantum mechanics. In quantum scarring, which is introduced in Sec 2.3, wave
packets launched along unstable periodic orbits keep following the orbit while a
corresponding classical probability density is lost in phase space.

3There was some disputem] over naming a field after something that is proven not to exist, but
the name remained.
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Everything derived above for the TDSE applies also to some other systems
governed by linear wave equations, such as electromagnetic waves. For this
reason quantum chaos is also studied under the blanket term wave chaos.

Because the main issue of quantum chaos concerns the correspondence
between classical and quantum mechanics, quantum chaos is usually studied in
the semiclassical limit. This is sometimes denoted as the limit# — 0, which involves
some abuse of the mathematical concept of a limit*, as quantum mechanics is not
a perturbative extension of classical mechanics!!”l. What the semiclassical limit
means is that the quantum systems are studied when quantum numbers are large
(not infinite) and the correspondence of the two theories starts to develop. There
is nothing especially interesting in, e.g., the ground states of chaotic systems.

The problem of chaos was already present in the early days of quantum
theory when quantum mechanics was developed by quantizing Hamiltonian
mechanics. This was done by separating the motion of a particle into distinct
periodic oscillations, represented by the action-angle coordinates, and quantizing
the classical action of each of these oscillations. However, not all Hamiltonian
systems are separable in this way. This was pointed out by none other than
A. Einstein, but the full implications of the problem of reconciling classical and
quantum mechanics in the presence of chaos were forgotten for decades!'"l.

Chapter 2 is largely devoted to introducing the theory of quantum chaos,
especially the statistical analysis of energy levels, so more will not be said here. A
more thorough introduction to the field of quantum chaos can be found, e.g., in
Refs. 20-23.

1.3 Physics in two dimensions

Physical space consists of three dimensions. Because of this empirical fact the
restriction of the number of dimensions to two, as inscribed on the title of this
thesis, calls for a short rationale.

In the context of chaos, restricting the number of dimensions to two is justified
by two being enough to find chaos in classical mechanics, as discussed in Sec. 1.1.
For studying chaos two dimensions is the natural sweet spot, with the third
dimension only bringing more complexity but little new insight.

However, two-dimensional systems are not just a convenient theoretical
model. In semiconductor heterostructures electrons can be confined to a two-
dimensional system[?*]. This allows not only new fundamental physics such as
the quantum Hall effect?®! but also very practical applications. In fact, in metal-
oxide-semiconductor field-effect transistors (MOSFETs), which are the basic
building blocks of modern computers, electrons move along a two-dimensional
interfacel?*]. In the current age of graphenel?®! and topological insulators!?”! there
is hardly any need to defend two-dimensional physics.

4This limit is especially hard to consider in equations presented in this thesis, since by the choice
of units 2 = 1.



Chapter 2

Theoretical background

2.1 Spectral statistics as quantum fingerprints of chaos

As explained in Sec. 1.2, there is no hope of finding chaos in the perfect unitary
time-evolution of a quantum system, at least not as extreme sensitivity to initial
conditions!. It is then natural to assume that the quantum fingerprints of chaos
can be found in the static, time-independent, properties of the system.

As discovered by early quantum chaos researchers, a mark of chaos can be seen
in the sequence of real numbers formed by the eigenvalues of the Hamiltonian,
i.e., the energy levels of the system. This was a key discovery that directed much
of the active quantum chaos research in the 1980s and 1990s. It is curious how
the study of chaos in the quantum realm became quite different than in classical
mechanics — in the latter, it involves studying points in a phase space and their
time-evolution, and in the former it is the statistical analysis of a sequence of
numbers.

The rest of this section is devoted to introducing briefly the statistical analysis
of energy spectra in the context of quantum chaos, while the next section describes
a method for computing the energy spectrum numerically. A more detailed
introduction to the topic can be found in any standard text of quantum chaos!2*-23,

The main finding of the statistical analysis of quantum eigenvalues is a curious
universality. Once the quantum spectrum is properly unfolded to remove its
smooth (non-universal) part, the regularity or chaoticity of the classical system
seems to describe the quantum statistics in a simple parameter-free way. This
happens regardless of whether the energy spectrum comes, e.g., from an atom, a
nucleus, or a numerical model system.

Firstly, if the classical counterpart is integrable, the quantum eigenvalues
seem to follow Poissonian statistics, i.e., they behave as uncorrelated random
variables!??l. There are notable counterexamples to this statement, such as the

I This should not be understood as a statement that there is nothing scientifically interesting in
the time-evolution of quantum systems whose classical counterparts are chaotic. This is proven false

by phenomena such as dynamical localization[1828],

7
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harmonic oscillator, so it should be understood to refer to the typical integrable
system.

Similarly, if the corresponding classical system is completely chaotic, the
eigenvalues seem to follow statistical distributions derived from random matrix
theory (RMT) — the statistical theory of eigenvalues of matrices with random
elements!®). Most notably, spectra of systems with time-reversal symmetry
follow the Gaussian orthogonal ensemble (GOE) spectrum, while the Gaussian
unitary ensemble (GUE) applies in the absence of time-reversal symmetry. In
the presence of spin-orbit interactions, the Gaussian symplectic ensemble (GSE)
applies. This characterization of regular and chaotic systems using Poissonian
and RMT statistics is known as the Bohigas-Giannoni-Schmit conjecture (BGS)®!l.
While originally a conjecture, although supported by a vast array of experimental
and numerical evidence, the BGS is also backed by an increasing amount of
semiclassical theory!2132331,

RMT was originally introduced to physics as a way to model the spectra of
complex nucleil®3234, Tt was developed substantially in a five-part article by
F.]. Dyson and M. L. Mehta!®*!. The RMT model was based on a simple working
assumption — once the quantum system is complicated enough, with a large
number of particles entangled in an intractable web of interactions, the best one
can do is to take a Hamiltonian, enforce required symmetry (e.g., time-reversal),
and fill the remaining elements with random numbers. This turned out to be a
surprisingly successful concept that described well the statistical properties of
nuclear spectral3®37]. What the BGS showed is something even more surprising —
that even very simple, but chaotic, systems follow the same statistics.

While the BGS classifies fully chaotic and regular systems very well in terms
of their statistical properties, a similar universal description of mixed systems
is not known. There are several ways to develop statistics of mixed systems
by interpolating between the Poisson and RMT spectra. Examples of such
interpolated spectra are the Brody!®¥! and Berry—-Robnik!*’! interpolations, latter
of which has a better theoretical foundation (for others, see Sec. 3.2.2 in Ref. 21).
Fitting such an interpolation on a measured or computed spectrum can be used
to extract an interpolation parameter that describes, ideally, how chaotic a system
is. Unfortunately the agreement to classical chaoticity measures is often only
qualitative, and the interpolation that gives the best agreement is somewhat
system-specific. Of course, it is entirely possible — or even likely — that a simple
universal theory for mixed systems does not even exist.

Deviations from the universal behavior of RMT can be described in the
framework of periodic orbit theory. This theory is culminated in the Gutzwiller trace
formulat®l, which expresses the quantum spectrum completely as a sum over
periodic orbits of the classical system. Using this formula to actually calculate the
quantum spectrum is quite difficult, as the number of periodic orbits in a chaotic
system increases exponentially with their length. However, knowledge of even
only the shortest periodic orbits provides an accurate description of deviations
from the universal limit (see, e.g., Ref. 41). Besides the eigenvalues, the short
periodic orbits also have a profound effect to the eigenstates of quantum systems,



2.1. SPECTRAL STATISTICS AS QUANTUM FINGERPRINTS OF CHAOS 9

as discussed later in Sec. 2.3.

A curious connection, that warrants mentioning whenever spectral statistics
are discussed, is that the nontrivial zeros of the Riemann (-function (or rather,
their imaginary parts) follow GUE statistics with an astonishing precision (see
Sec. 8.3.2 in Ref. 21), with corrections given by periodic orbit theory, each prime
number representing a periodic orbit!*?l. Is there a chaotic quantum system,
whose eigenvalues are the imaginary parts of the nontrivial zeros of the Riemann
C-function? That is, literally, a million dollar question[43].

2.1.1 Unfolding the spectrum

Before any universal properties can be inferred from a spectrum of eigenvalues,
such as to detect a fingerprint of chaos, the spectrum needs to be unfolded to
remove the non-universal contributions!?*34l. The details of this process are
often omitted in the literature2. For example, the monograph by H.-]. Stockmann
ignores the issue completely?!l. However, these details do have an effect on
the statistical measures that are used to detect chaos, and subtle mistakes in the
unfolding can make a spectrum appear too regular or too chaotic/***8l. Thus,
describing the statistical fluctuations of energy spectra simply as “universal” is
somewhat simplifying, as the universal behavior is often revealed only after the
non-universal parts have been carefully removed, and subtle ambiguities in this
removal process can cause the universal behavior to look very different.

Even before the unfolding, a few preparatory issues need to be addressed.
First of all, if the system under study has symmetries (operators that commute
with the Hamiltonian), the analysis needs to be carried out for eigenvalues in
each symmetry class separately. That is, the entire spectrum must have common
good quantum numbers?®. If different subspectra are mixed together, the total
spectrum will appear too regular, because the eigenvalues in different subspectra
are uncorrelated. This condition can be difficult to arrange if the symmetries of
the system are not fully known.

A similar symmetry-related issue is that non-generic spectra, most notably
the harmonic oscillator, can cause misleading results. For example, a separable
Hamiltonian constructed from harmonic oscillators and other integrable parts
can produce a seemingly “chaotic” spectrum, because the equidistant harmonic
oscillator levels produce an imitation of level repulsion[*].

Eigenvalues near the ground state are also discarded, as they are very non-
universal. Typically, a few hundred lowest eigenvalues are discarded, depending
on how many are available. This causes pressure to develop numerical methods
that can compute many eigenvalues of a given system — an issue that we address
in Publication II.

Finally, the obtained spectrum needs to be complete, i.e., there must be no
missing eigenvalues in the range of the spectrum. The danger of missing (or

2For a rare exception, see Ref. 44.
3This issue evokes a question — what if there is near-symmetry? This question was the starting
point of a line of research discussed in Sec. 3.4.
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spurious) levels was already pointed out by F. J. Dyson!**dl. This is especially

important for experimental studies with a finite resolution, but also for some
numerical methods that have difficulties in separating near-degenerate eigenval-
ues. Missing near-degenerate eigenvalues can cause spectra to look too chaotic,
especially if short-range correlations are studied™l.

Even after these conditions are met, there is still plenty of non-universal
information in a spectrum of eigenvalues. As a trivial example, an overall energy
scale obviously tells nothing about chaoticity. Also, in some systems the density
of energy levels increases at higher energies (e.g., a hydrogen atom), for some it
decreases (e.g., a particle in a box). This also has no bearing on the issue of chaos.
In general, the average, smooth behavior of the density of states is system-specific
and not relevant — the universal behavior is seen in the fluctuations around this
mean behavior.

The unfolding process attempts to produce a spectrum that only contains the
fluctuating part of an initial spectrum E, with Ey < E; < E; < ---. How it is
done in practice is best described using the spectral staircase function

N(E) := #{E,, | E. < E}. @.1)

As the name suggests, the graph of N (E) is a staircase function, with unit jumps
at the eigenvalues E,,. If the average behavior of N(E) is known, the spectral
staircase can be separated into its average and oscillating part,

N(E) = N(E) + Nosc(E). (2.2)
After this separation is done, the unfolded energy spectrum is defined as
en = N(Ep). 23)

This standard exposition of unfolding often leaves the reader somewhat
puzzled - and rightfully so. If the purpose of unfolding is to remove N, why the
final form only depends on N? For this reason we clarify that, from Eq. (2.2),

N(En) = N(E;) = Nosc(Ey) =1+ 1~ Nose(Ey). (24)

That is, the unfolded spectrum (2.3) contains the fluctuations of the original spectrum,
grafted on an artificial background of the sequence of integers. From this property we
also immediately see that the average spacing between values in the unfolded
spectrum is one.

The unfolding process is fairly unambiguous if N is known accurately from
theory. This is the case for, e.g., billiards, where Weyl’s law[?>!], expresses N as a
function of the billiard surface area, perimeter, curvature, edges, etc.

If an analytic expression is not known, N is estimated from the original
spectral staircase. This is when ambiguity creeps into the unfolding process, as
the division of an arbitrary curve into a smooth part and an oscillating part is
not a mathematically well-defined problem. In the context of statistics, such a
division is known as detrending.
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Traditional ways to extract N from N include polynomial fitting, moving
averages and low-pass filters. The common weakness in all these methods is that
they include an arbitrary external parameter that sets a frequency threshold (or
equivalently, a correlation range threshold) that separates N from Nosc. If N is
set to follow N too well (a high degree polynomial fit, a small moving average
window, or a high frequency cutoff), parts of Ny start to leak to N. Vice versa,
if, e.g., the polynomial degree is too small, Nos. will contain parts of N. The
improper separation of N and Ngg causes spurious long-range correlations,
which quite easily cause misleading results!*>l. Where the correct parameter
value lies needs to be determined by trial and error, and it can be that no such a
correct value exists — for example, a certain degree of a polynomial fit might be
too low, and the next one too high.

Recently I. O. Morales et al.l*! have suggested that this weakness can be
cured - and the ambiguity of the unfolding process greatly reduced — by learning
from advances in statistical theory. In the field of time-series analysis, robust,
data-adaptive methods have been developed to extract a trend from a sequence
of datal®?l, most notably the empirical mode decomposition (EMD)!*¥ and its
various offsprings. Here data-adaptive means that the detrending is done with as
few assumptions of the global behavior of the signal as possible, and using the
data itself to separate different frequency scales without cutoff parameters. In
addition to EMD, it has been recently proposed that ensembles of spectra can be
data-adaptively unfolded using the singular value decomposition (SVD)!4].

Empirical mode decomposition

EMD is a data-adaptive statistical method that decomposes a signal into oscillatory
components separated by the magnitude of their local frequencies, and a residual
non-oscillating trend. As such it is useful for detrending the spectral staircase
in the unfolding procedurel*®l. This method is also the topic of Publication III,
which introduces a fast and extensible implementation of EMD and its most
popular derivatives. This publication is discussed in more detail later in Sec. 3.3.
A more complete introduction to EMD can also be found in Refs. 53, 55, and 56.

The oscillatory components extracted from a signal by EMD are called intrinsic
mode functions (IMFs). In comparison to a Fourier decomposition, the oscillatory
components are not necessarily sinusoidal. Instead, a much weaker condition is
enforced, namely that an IMF is required to have a meaningful local frequency*.

4For the following discussion a rigorous definition of a local frequency is not required, but for
completeness we summarize it here. The local frequency of a signal x(t) is defined by its Hilbert
transform. Let x,(t) = x(t) + i%(¢), where ¥ is the Hilbert transform of x. This is known as the
analytic representation of x. The Hilbert transform is defined by
1
E(t) = = / LICO

T t—u

where the integral is to be understood as a Cauchy principal value. Expressing x, in polar form,

xa(t) = A(t) exp(i0(t)), defines the local amplitude A(t) and local phase O(t) of the original signal.
Subsequently the local frequency of the signal is defined as w(t) = 6’ (t).
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Figure 2.1. In the sifting process, an initial signal is separated into a local mean, and the
oscillations around the local mean. The original signal (roughly sinusoidal for sake of
illustration) is shown in the left panel as a solid line. First, local extrema (open squares) of
the signal are located and connected by splines to form the upper and lower envelopes
(dotted lines). The mean of these envelopes is designated as the local mean (dashed line).
By subtracting the local mean from the original data, a new signal is recovered, as shown
in the right panel. This new signal contains the highest frequency oscillations of the
original signal in a more symmetric form. The same sifting process is repeated until some
stopping criterion is fulfilled, and the result is designated as an IMF.

This is ensured!®®! by requiring that for an IMF (1) the number of extrema and
the number of zero crossings differ by at most one, and (2) the local mean is zero.
In the above definitions (1) is equivalent to requiring that all local maxima of the
function are positive and all local minima are negative. These requirements also
make an IMF agree with the intuitive picture of what constitutes as “oscillation”
around zero.

The IMFs are extracted from the signal in a process known as sifting. This
proceeds by defining for the signal a local mean, and subtracting the local
mean from the original signal to produce a new signal. This new signal, which
represents the oscillations around the local mean, is not necessarily symmetric
enough to be an IMF, but it is more symmetric than the original one. The sifting
process is continued until some stopping criterion is fulfilled, e.g., until the
requirements of an IMF are fulfilled, and the number of zero crossings and
extrema no longer changes in the process.

In EMD, the local mean of a function is defined by its local extrema. The
upper and lower envelopes of a function are formed by connecting the maxima
and minima, respectively, with a smooth spline function. The arithmetic mean
of these envelopes is then designated as the local mean of the function. This
definition and the sifting process are also illustrated in Fig. 2.1. What constitutes
as local is therefore not defined by a cutoff parameter, but by the rapidity of the
oscillations in the data, adhering to the idea of data-adaptive analysis.

Because of how the local mean is defined, the first IMF extracted from a signal
will correspond to the highest frequency oscillations. This IMF is then subtracted
from the original data, and the remainder is sifted again to recover the next
highest frequency oscillations. This process continues until the remainder is
monotonic, at which point the remainder is designated as the trend of the signal.
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As seen already from the brief introduction given above, EMD does not
completely remove the ambiguity in the detrending process. There are still
parameters to be selected, such as the stopping criterion for the sifting and the
choice of smooth functions for the envelopes of the signal. However, it is a notable
improvement over arbitrarily assuming a low-order polynomial form for the
trend, or setting an arbitrary frequency threshold.

Several improved variants of EMD have been developed, most notably ensem-
ble EMD (EEMD)®! and complete EEMD with adaptive noise (CEEMDAN)[58591,
Both variants attempt to create a method that more robustly separates components
with different frequency scales from the input signal. For example, the methods
try to avoid “mode mixing”, where two IMFs get suddenly swapped at some
point in the time variable due to an accidental local resonance. As such they
might not crucially improve the use of EMD for detrending, but as of this writing
this has not been studied in the context of energy level statistics. Both of these
variants have been implemented in the code described in Publication IIL

Both EEMD and CEEMDAN increase the robustness of EMD by employing
noise. In EEMD, an ensemble of input signals is created by adding different
realizations of small-amplitude white noise to the original signal. After all IMFs
have been extracted from each ensemble member, the results are averaged across
the ensemble. In the limit of a large ensemble size, the direct effect of the noise is
thus removed from the final result. What remains is an indirect smearing effect
that helps to remove accidental local effects that can cause, e.g., mode mixing.
The downside is that EEMD is no longer a complete decomposition, i.e., the sum
of the recovered IMFs and the residual is not exactly equal to the original signal.
This is cured in CEEMDAN by performing the averaging over the ensemble for
each IMF separately.

2.1.2 Statistical measures of quantum chaos

Several statistical measures have been developed to compare observed energy
level spectra to predictions given by the BGS. Typically the measures take the
form of a univariate probability distribution, so that the comparison can be made
simply by comparing graphs in a two-dimensional plot. The traditional statistics
introduced briefly in the following section are discussed in more detail in, e.g.,
Chap. 16 of Ref. 30, which also gives the reference values for the RMT ensembles.
In addition to the traditional statistics, we mention some new developments that
stem for the association of the fluctuating part of the spectral staircase, Nosc, with
a time series.

The simplest statistical measure of chaos is the nearest neighbor level spacing
(NNLS), i.e., the distribution P(s) of distances s between neighboring energy
levels. The NNLS statistic stems from the most easily seen effect of a chaotic
spectrum: level repulsion. In chaotic systems the energy levels appear to avoid
each other, creating a hole in the NNLS distribution at small s. For regular systems
the energy levels are uncorrelated, so the NNLS is the exponential distribution
P(s) = exp(—s), which is strongly peaked at small s. Thus the NNLS provides an
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easy way to differentiate between chaotic and regular behavior, which explains its
early success. Its main weakness is that, by definition, it probes only short-range
correlations between the energy levels. The unexpected benefit of this weakness
is that the NNLS is fairly insensitive to the unfolding process.

Analytic formulas for NNLS distributions for the Gaussian ensembles of RMT
are knownl®l, but quite unwieldy. Typically the NNLS distributions used for
comparing results with RMT are approximations, colloquially known as the
Wigner surmisel*’l. These approximations are

Pgog(s) = gs exp (—gsz) (2.5)

2

3 4
Poue(s) ~ 225% exp (——52) , 2.6)
TC T

i.e., for small spacings P(s) ~ s for GOE and P(s) ~ s for GUE. Even though the
Wigner surmise is in both cases substantially simpler than the full RMT result, the
approximations are very accuratel3*®l. Plots of NNLS distributions for various
RMT ensembles can be seen in Fig. 2.2a.

For probing more long-range correlations in the energy spectra, the simplest
measure is the number variance X*(L). Let n(E, L) denote the number of energy
levels in an interval of size L at energy E. Since the spectrum is unfolded so
that the average spacing of energy levels is one, the average of n over all such
windows is simply L. The number variance is defined to be the variance of 7, i.e.,
I*(L) =((n(E,L) ~ L)*).

The window size L gives directly the length of the correlations probed by
X2. On the other hand, it can be shown that X2 only depends on the two-level
correlation function (the joint probability distribution of two energy levels), and
not on higher order correlations. On the other hand, this makes it easier to
calculate RMT predictions for X2.

For uncorrelated levels X%(L) = L, and again for RMT spectra somewhat
cumbersome analytical formulas exist. At L < 1, all distributions give almost
the same X2(L). At large L the RMT results give approximately X2(L) ~ In(L),
so the number variance differs significantly for regular and chaotic systems at
large L (see Fig. 2.2b). The intuitive picture is that because of the level repulsion,
it is lot less likely that an atypically large amount of levels are packed together in
a given interval, so the variance is much smaller.

A historically often-used statistic is the spectral rigidity Az, introduced by F. J.
Dyson and M. L. Mehtal®>d], which is closely related to the number variance. Like
X2, it probes the correlations in an energy interval of size L. The definition of A3
is, at first sight, somewhat odd. It is derived by fitting straight lines to the spectral
staircase in an energy window of size L. As explained in Sec. 2.1.1, the unfolded
spectral staircase is a straight line with a unit slope, plus the fluctuations present
in the original spectrum. Thus, the discrepancy in a linear fit to the spectral
staircase provides a measure on the strength of the fluctuations. With this in
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Figure 2.2. Three traditional eigenvalue statistics, the nearest neighbor level spacing
(NNLS), the number variance and the spectral rigidity, evaluated for the cases of un-
correlated energy levels (Poisson statistics), the Gaussian orthogonal ensemble (GOE)
and the Gaussian unitary ensemble (GUE). The plot for the NNLS shows the Wigner
surmise approximation, and the plots for the number variance and the spectral rigidity
use approximate forms valid at large L.

mind, the spectral rigidity is defined as

E+L/2
As(L) = <mibn / (N(E) —a — bE)? dE>, (2.7)

E-L/2

i.e., it is the integrated residual of the linear fittings, averaged over all intervals of
size L.

Similar to the number variance, the spectral rigidity is a linear function of L for
regular systems, but grows logarithmically for chaotic systems (see Fig. 2.2¢). It
can be shown that A3 is essentially a smoothed version of 2. The spectral rigidity
was calculated from semiclassical theory by M. V. Berry using the Gutzwiller
trace formula*!! with results that support the BGS. These results also showed



16 CHAPTER 2. THEORETICAL BACKGROUND

how short periodic orbits cause a saturation of A3 to a finite value at large L,
where the saturation value depends on the periods of the orbits.

In 2002 A. Relafio et al.l®!! proposed that the fluctuating part of the spectral
staircase Nosc can be studied directly® using methods developed for time-series
analysis. In particular, one can study the power spectrum S(k) = [Nosc(K)1?,
where N (k) is the Fourier transform of Nos.. The power spectrum reveals very
simple and universal power laws: S(k) ~ k=2 for regular systems and S(k) ~ k1
for chaotic systems. These results were also derived from RMT by E. Faleiro
et al.lo2],

As demonstrated!®®! for the Robnik billiard[®¥, in a mixed system the power
spectrum follows a power law S(k) ~ k™%, where a changes smoothly from
a =2 to a = 1 as the system transitions from fully regular to fully chaotic. This
makes the power spectrum exponent a very useful measure of chaoticity in mixed
systems, especially as a seems to correlate nicely with the classical chaoticity
measure, at least for the Robnik billiard. The discovery of a k™! power spectrum
in chaotic quantum spectra is also curious on its own right, since the same power
spectrum, known as 1/ f noise or “pink noise”, is famously ubiquitous in physics
(see, e.g. Ref. 65), which can be attributed to self-organized criticality®®].

Identifying the oscillations in the spectrum with a time series invites the
study of energy level spectra also with other methods commonly used in time
series analysis®. An example of such a method is detrended fluctuation analysis
(DFA)[%] (for an introduction see, e.g., Ref. 68 or Ref. 69). For spectra, DFA is
shown to be roughly equivalent to the spectral rigidity!”"!, except that DFA is
somewhat simpler to calculate.

2.2 Solving the energy spectrum in real space

Solving the energy spectrum of a quantum system amounts to solving the
eigenvalues of the Hamiltonian operator H. This problem can be turned into a
linear algebra one by expanding H in some countable basis of state vectors {¢;};,
and truncating the basis by only including the first N basis vectors. If the truncated
basis is sufficiently complete in the sense that the lower energy eigenstates of H
are accurately representable as linear combinations of the vectors of the truncated
basis, the lower energy eigenvalues of H are very close to the eigenvalues of
the N X N matrix H with elements H;; = (@;|H|@;). The matrix can be further
simplified by, e.g., discarding small elements in order to make the matrix more
sparse, or to force the matrix to some kind of special symmetry. Solving the
eigenvalues of a matrix is a standard linear algebra problem, for which an entire
zoo of different algorithms — which will not be discussed here in detail — has been
developed (see, e.g., Ref. 71).

5In their original article, A. Relaiio et al. study a quantity they call 6,, which gives the cumulative
deviation of the first 1 level spacings. However, as pointed out by E. Faleiro et al.l%], it can be shown
from Eq. (2.4) that this 6, is the same as —Nosc(E;; ), modulo some constants.

6 With this idea in mind, it would be interesting to see what information EMD could extract from
the spectral staircase, in addition to its trend.
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If one wants to use as small matrices as possible, selecting a good basis is
essential. Optimizing the basis in this way for each particular problem can be
quite time-consuming, especially in systems that lack easy symmetry properties
that can be exploited. In the real-space basis, quantum states are represented
simply as an array of values of the wave function on a spatial grid. Superficially,
the real-space basis is a simple-minded choice that ignores clever system-specific
properties. However, the real-space basis is flexible, so that no special symmetry
is required of the problem, which can then include, e.g., different length scales,
complicated geometries or strong disorder. Thus, a computational method
formulated in the real-space basis can be used for a wide range of systems with
little preparation. The real-space basis also includes a simple systematic way to
improve accuracy by making the grid finer. The downside is that a real-space
basis is quite large — for solving the N lowest eigenvalues of a Hamiltonian
accurately, the number of grid points needs to be much larger than N, typically
by a factor of 10 or more.

Luckily, modern eigenvalue solving for large systems uses iterative methods
that do not solve all the eigenvalues of a matrix, and do not require that the matrix
is stored in memory explicitly. One example of such a matrix-free method is the
popular Lanczos method[”?]. In the Lanczos method, trial vectors are represented
in the basis, but the matrix only enters as a routine that computes a product of
the matrix with a vector.

In billiard systems the Hamiltonian is simply the Hamiltonian of a free
particle, and the only nontrivial dynamics happens at the boundary of the billiard.
For these systems special computational methods are availablel”®l. With these
methods extremely high energy states can be solved. However, this section is
concerned with the more general (and physically more realistic) case of a smooth,
spatially varying potential function.

In this thesis, Sec. 2.2.1 is devoted to introducing imaginary time propagation
(ITP), which is a modern iterative method used to solve the N lowest energy
eigenstates of a quantum Hamiltonian. The ITP method forms the basis of the
numerical program developed in Publication II, and used in Publication IV. In the
ITP method, the Hamiltonian is also not expressed in a matrix form, and it only
appears in a routine that operates to a trial state vector with exp(—¢H), where
€ > 0. This operation is handled efficiently with the help of the real-space basis,
Fourier transforms, and the separability of the Schrodinger equation. This makes
the ITP method a natural real-space method, and a method that is specifically
tuned for quantum mechanical Hamiltonians.

When solving the Schrodinger equation numerically for a system of many
particles, one quickly hits an exponential wall of computational complexity. This
is a result of the vast information content of the many-body quantum state. A
particularly clever way to get around this wall is represented by density-functional
theory (DFT), introduced later in Sec. 2.2.2. In DFT, the many-body wave function
is replaced by the total particle density n(r), and the solution of the many-body
problem is returned to an effective single-particle problem. This method was
used in Publication I to solve the energy spectrum of a many-electron quantum
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dot. In DFT, the real-space basis is also a natural choice, as the key quantity is
the spatially varying density, and several quantities are naturally expressed as
spatial integrals.

2.2.1 Imaginary time propagation algorithm

Imaginary time propagation (ITP) is in principle a very general method of solving
the lowest eigenvalues and corresponding eigenvectors of any matrix, but its
efficient implementation in the context of quantum energy spectra relies on the
typical form of single-particle quantum Hamiltonians, and the real-space basis.
It was originally described by R. Kosloff and H. Tal-Ezer in 1986/74, based on
earlier ideas by M. D. Feit et al.l’>!,

The basic idea of ITP is simple: for a quantum Hamiltonian H with eigenvalues
E; (with Ep < E; £ ---) and corresponding orthonormal eigenstates |¢;), an
arbitrary state |@) can be expanded in basis formed by the eigenstates of H as

P} = il

]

where {c;}; is some set of (complex) coefficients. Unless the eigenspectrum of H
is known (in which case there is no need for ITP) these coefficients are unknown.
Nevertheless, operating on the trial state | ) with a cleverly chosen linear operator
T =exp(—¢eH), with ¢ > 0, gives

Tlp)y = > ¢iT1wp = > (¢ exp(=¢Ep) 19y), (2.8)

] ]

where the last equality follows from [¢;) being the eigenstates of H.

Whatever the initial coefficients c; are, it can be seen from Eq. (2.8) that 7~
causes the coefficients to approach zero”. The components with higher energies
are diminished exponentially faster than the ones with a lower energy. By
repeatedly operating on the same state with 7~ and normalizing the result, the
higher-energy components gradually disappear, leaving only the ground state
behind. A similar idea is used in the inverse iteration method, in which eigenstates
are propagated with an operator that is essentially the inverse of H[7°.

The procedure of propagating and orthonormalizing can be continued until
some desired notion of convergence is achieved. For example, the expectation
value of the Hamiltonian (¢|H|¢) can be calculated after each step, and the itera-
tion can be stopped when the value changes only by a negligible amount. Another
choice is to follow the decrease of the standard deviation of the Hamiltonian,
V(@lH2|@) — (p|H|p)2.

The only property that is required from the initial trial state |¢) is that it is not
orthogonal to any of the wanted eigenstates, i.e., none of the initial coefficients c;
are zero. This condition can be fulfilled with practical certainty by setting the

7 Assuming Eg > 0, which we can always choose by adding a constant term to H.
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initial state |@) to random noise. Alternatively, an approximate solution obtained
by some other means can be used, if such is available. In practice, a random
noise initial state is a perfectly suitable choice due to the exponential speed of the
convergence.

In order to recover more eigenstates besides the ground state the same
operator 7 is applied to each member of a linearly independent ensemble of N
initial states. Instead of normalizing each state at each step the whole ensemble
is orthonormalized, which preserves the norms of N linearly independent
components in the ensemble. Together with the imaginary time propagation, this
causes the ensemble to converge towards the N lowest energy eigenstates of H.

Another option would be to solve the ground state first, and then project it
out from the initial state, obtaining an initial state that converges to the next
eigenstatel’#l. This can then be repeated to obtain the next eigenstate, and so
forth. However, tiny numerical inaccuracies will cause nonzero coefficients for
the lowest energy eigenstates to reappear!’4), requiring that the projections are
applied at each iteration. This quickly becomes infeasible for a large number of
eigenstates.

Since the step involving 7 is done individually to each trial state it is trivially
parallelizable, and in practical computations the orthonormalization step is the
computational bottleneck that limits the number of states that can be solved in
a given time. It is therefore crucial that the number of iterations (and thus the
number of orthonormalizations) is kept minimal. It is also useful to find an
orthonormalization algorithm that does not disturb the trial states more than
necessary, to not interfere with the convergence.

The name imaginary time propagation comes from the operator 7~ = exp(—¢H),
which is similar to the standard Schrodinger picture time-evolution operator
U = exp(—itH), except for an imaginary value for time, = —¢i. For this reason
the operator 7 is also called the imaginary time propagation operator, and the
value ¢ the imaginary time step. ITP is also sometimes referred to as the diffusion
algorithm, due to the way the Schrodinger equation becomes a diffusion equation
when transformed to imaginary time.

Publication II deals with the implementation of an efficient eigenvalue solver
for two-dimensional single-particle systems. It can routinely solve several
thousands of accurate eigenvalues and eigenstates, which can then be used,
e.g., to look for fingerprints of quantum chaos. This implementation and its
development are described in more detail later in Sec. 3.2.

Factorization of the imaginary time propagation operator

The theoretical basis of ITP is simple and easy to state, but a major part of the work
required to implement it in practice is hidden in the imaginary time propagation
operator 7 (¢) = exp(—¢H). This operator cannot be turned into a numerical
routine without approximations, and in these approximations the so far arbitrary
imaginary time step ¢ plays a role.
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Unless approximations such as pseudopotentials are involved, the quantum
Hamiltonian is of the separable form H = T + V. Here operator T is the quantum
analogue of the classical kinetic energy, and V' includes the external potential
and (in a many-particle calculation) possible interactions between particles. This
separable form is highly useful because V is diagonal in position space and T
is diagonal in k-space, and switching between these two spaces is a matter of
a simple Fourier transform. Exponentials of both operators V and T are easy
to implement, since their exponentials are also diagonal in the same respective
bases, and thus they correspond to a simple pointwise multiplication.

To apply ITP in practice we would therefore like to apply the operator
T =exp(—¢(T + V)) to a quantum state, while we only know how to apply oper-
ators exp(—¢T) and exp(—¢V) separately. This algebraic problem of factorizing
exponentials of non-commutative variables is a very general onel”]. It is also
encountered, e.g., when the time-propagation operator in Hamiltonian mechanics
is factorized to obtain symplectic integrators. The formal solution of the problem
is given by the Baker-Campbell-Hausdorff formula (BCH)”8! and the related
Zassenhaus formulal”®! which express the exponential exp(—&(T + V)) as an
infinite product of exponentials of T and V alone. Truncating these formulas can
then be used to obtain approximate exponential factorizations that are accurate
to some order in the parameter «.

The simplest nontrivial approximation is a second-order approximation,

T (¢) = Ta(e) + O(&”),

(2.9)
with  T2(e) = exp(—3eV) exp(—eT) exp(—3¢V),

which corresponds to the common Verlet integrator in classical dynamics. The
approximate ITP operator 7; is easy to apply to a real-space wave function.
The rightmost operator is simply a pointwise multiplication, after which the
wave function is Fourier transformed to k-space, where the middle operator is
exp(—3¢k?), i.e., also a multiplication. After Fourier-transforming back to real
space the leftmost operator is also a multiplication. In total, each application
of 7, requires three multiplications and two Fourier transforms.

Other approximations for 7 similarly involve an error term proportional to
some power of ¢. Effectively, an approximate 7~ propagates states towards not
the eigenstates of H, but towards the eigenstates of an approximate Hamiltonian.
Now the imaginary time step ¢ is no longer arbitrary. Propagation with a small
value for ¢ requires several iterations in order for the higher-energy terms to
properly vanish, but the results are very accurate. Vice versa, a high value for ¢
causes fast convergence, but towards inaccurate results. Practical calculations
take this trade-off into account by decreasing the time-step as the calculation
progresses. The necessity for approximate propagation operators also creates
the need for developing higher-order approximations, in order to use larger
time-steps and thus reduce the amount of time-consuming orthonormalization
steps.
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Arbitrary high order approximations, represented as a product of exponentials,

T(e) = | [exp(cieV) exp(dieT) (2.10)

1

can be derived from the fundamental BCH. The unfortunate side-effect is that the
number of terms in the expansion — and thus the amount of computation required
for each ITP step — grows exponentially with the order of the expansion. There is
another more subtle limitation: in a product expansion of the form (2.10), all the
coefficients ¢; and d; need to be negative. Otherwise the particular piece of the
propagator propagates the system backwards in imaginary time, i.e., the unwanted
high-energy terms are explosively amplified. Unfortunately, it has been shown
that beyond a second-order approximation, such as Eq. (2.9), no higher-order
approximation exists with only negative coefficients!”%8%.

Several ways to circumvent this problem and derive higher-order propagator
approximations have been developed. One possibility is to include in the
expansion higher-order commutator terms from the BCH. A particular example
is the fourth-order expansion!®!!

Ta(e) = exp(—teV) exp(—3eT) exp(—3cW) exp(—3eT) exp(—z¢V), (2.11)

where W =V + %[V, [T,V]]=V+ % |[VV 2. The new operator W is also diagonal
in real space, making this expansion useful in practice. Another option is to
generalize the expansion (2.10) to involve complex coefficients (with negative real
parts)!®?], but this approach already introduces more terms in the fourth order
expansion than expansion (2.11)182°1,

A particularly attractive higher-order factorization is possible when the
expansion is relaxed from a product to a sum of products. Such a relaxation
in the context of classical or quantum real-time propagation would cause the
loss of symplecticity or unitarity, respectively, but a similar loss of fundamental
mathematical structure does not affect ITP. Such an expansion is derived by
S. A. Chin using the second-order expansion (2.9) as a basis and removing error
terms with systematic extrapolation!®l. This leads to the arbitrarily high order
expansion

T(e) = ) beT (e/k) + O(e2™*Y), (2.12)
k=1

where the coefficients by for each n are given by
n 2

bi = l_[ izl_]'z'

j=1, j#i

In the case of expansion (2.12), the growth of computational complexity as a
function of the order is not exponential but quadratic, making it possible to use
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very high order approximations in order to reduce the number of time-consuming
orthonormalization steps. The quadratic growth is sufficiently modest so that the
orthonormalization remains the computational bottleneck, as the propagation
part, however complicated for each state individually, is trivially parallelized.

While the expansion (2.12) allows, in principle, arbitrarily high order approx-
imations for 7, the applicability of the expansion in practical calculations is
limited by finite-precision arithmetic. As the order is increased, at some point
the increase in round-off errors from more and more arithmetic operations is
larger than the corresponding increase in theoretical accuracy. This saturation
order is empirically determined to be approximately 12 for double precision
arithmeticl®4].

Including a magnetic field

Including a magnetic field in the Schrédinger equation amounts to replacing the
usual spatial derivative V in the momentum operator by the gauge covariant
derivative V — igA, where g is the charge of the particle, and A is the magnetic
vector potential. This is known as minimal coupling. For an electron with g = -1,
this means that the kinetic energy operator becomes T = 1I1? with a gauge
covariant momentum operator 1 = —iV + A.8

The new kinetic energy operator is no longer diagonal in k-space, which
means further factorization is required to apply exp(—¢T) in ITP calculations
involving a magnetic field. Luckily, in a uniform magnetic field and with a
suitable choice of gauge, the exponential kinetic energy operator can be factorized
exactlyl®]. Assuming a constant magnetic field B in the z-direction and choosing
A = (-By,0,0),

exp (—eT) = exp (—%Cx(sB)Hi) exp (—%Cy(sB)Hﬁ) exp (—%CX(EB)Hi)

tanhz(uw/Z) and C, (w) = sinh w

|| with Cy(w) =

= exp (Const- (ky — By)z) exp (Const . k;) exp (const- (ky — By)z) .
(2.13)

The factorized form (2.13) of exp(—¢T) can be applied in practice. To operate
on a 2D wave function with the rightmost term the wave function is first partially
Fourier transformed from (x, ) coordinates to (ky, y). After this transform the
rightmost operator is again a simple pointwise multiplication. To apply the
middle term, another partial Fourier transform is used to go to (ky, ky), and for

8With this change the Schrodinger equation acquires the necessary U (1) symmetry of electro-
magnetism — multiplying wave functions with a phase factor exp(i/l) amounts to adding a curl-free
term VA to A (choosing a gauge), and vice versa, without changing any observable quantities. In the
case of a time-dependent A, the potential also acquires an extra term —d; /. In fact, this symmetry is
why quantum wave functions even have complex values, i.e., that they have a phase. This means that
ordinary quantum mechanics is fundamentally a theory about the electromagnetic interaction alone.
This well-guarded secret is rarely uttered aloud in introductory quantum mechanics courses.
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the leftmost term a transform back to (ky, y). After a final transform back to (x, )
the full operator has been applied and the wave function is back in real space.
The whole ordeal requires the equivalent of two complete Fourier transforms
and three multiplications. The version without a magnetic field requires only
one multiplication but the same amount of Fourier transforms, so including
a magnetic field only adds a relatively small increase in the computational
complexity.

One especially appealing property of ITP and the factorization Eq. (2.13) is that
the resulting numerical procedure regains at least some of the gauge symmetry
of the theory, even taking into account real-space discretization. For example, the
choice of coordinate origin in the definition of A can be freely changed, without
affecting the calculation!®l. Most numerical schemes involving magnetic fields
do not have this property, requiring elaborate selection of the “correct gauge”®
for each problem, or even for each wave function (see, e.g., Sec. V in Ref. 87).

The factorization in Eq. (2.13) is also exact, in principle, meaning that there
are no limits to the strength of the magnetic field. In practice, extremely high
magnetic field values can be used. After a certain point finite precision arithmetic
starts to create problems, such as numerical underflow due to extremely large
negative numbers appearing in the exponentials.

Subspace orthonormalization

In addition to propagating the eigenstates in imaginary time, the ITP procedure
requires that the eigenstates are orthonormalized after each propagation. In
a calculation with many eigenstates, the orthonormalization step is the most
computationally intensive one, especially since it is much harder to parallelize
efficiently. There are several algorithms available for orthonormalizing a set
of vectors. In Publication II we selected subspace orthonormalization (SO)Is8l,
following the advice of previous ITP implementations!348%°0].

The SO algorithm is most succinctly expressed in a matrix form. Let the
input vectors v; be the columns of a m X n matrix V. For the orthonormalization
to make sense, it is assumed that the input vectors are linearly independent.
First, let A = V'V, i.e,, the elements of A are Ajj = (vilvj). The n X n matrix A,
known as the Gramian matrix of the vectors v;, is Hermitian, and also positive
definite because the vectors are linearly independent. Therefore it has a spectral
decomposition A = UDU", with a unitary matrix U and a diagonal matrix D
with positive diagonal elements. Finally, let W = VUD™V/2, where D~'/2 is a
diagonal matrix such that Di_il/ z = (Dii)"Y2. Now the column vectors of W
span the same space as the initial vectors v; because UD~'/? is invertible. The
column vectors of W are also orthonormal, which can be checked directly by

9A categorically absurd concept from the point of view of what a gauge means in the theory.
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calculating WTW:
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Computationally, the SO algorithm requires:

* n(n +1)/2 inner products to form the matrix A

¢ The diagonalization of the n X n matrix A

¢ A matrix product of a m X n matrix and a n X n matrix
Highly optimized implementations of all these steps are readily available in
standard linear algebra libraries. All steps can also be performed without having
to store both V and W in memory at the same time, and many parts of the steps
can be parallelized. It might seem odd that in order to diagonalize a matrix
(to solve the eigenspectrum of a Hamiltonian) we need to diagonalize a matrix
(the matrix A). However, these two matrices have very different sizes. For n
propagated vectors, each having m elements (i.e., the real-space grid has m points),
the full Hamiltonian matrix is m X m. The matrix A is n X n. Typically m > n,
making the diagonalization of A a small task compared to the full problem.

As opposed to commonly used Gram-Schmidt orthonormalization (GS), SO
is an egalitarian method in a sense that all vectors are treated in the same level of
accuracy. In GS one vector is arbitrarily chosen as a reference, and other vectors
are orthonormalized sequentially with respect to already treated vectors. This
is convenient for some applications since the first output vectors become ready
very early into the algorithm. However, this procedure causes numerical errors
to distribute quite unevenly across the output vectors. In a test specific to the ITP
algorithm, SO was found to cause faster convergence of eigenstates than GSI#1.

SO is closely related to the symmetric or Léwdin orthonormalization (LO),
which uses W = VUD~2U*. LO has the special property that during the or-
thonormalization the vectors are changed as little as possible!!l. More specifically,
among orthonormalization algorithms where the output vectors w; are a linear
transformation of the input vectors v;, LO minimizes the sum Y; ||v; — w;||?. This
might be useful for ITP as some orthonormalizations are performed at a point
when most eigenstates are already almost converged, and it is important that
they are not disturbed too much.

2.2.2 Density-functional theory: From single to many particles

On a fundamental level, solving the Schrédinger equation for more than one
electron is not very different from the single-particle case. One needs to be careful
about the correct symmetry properties of the wave function, enforced by the
indistinguishability of electrons. This also requires taking into account the spin
degree of freedom. Otherwise, it is an eigenvalue equation for a linear operator
with a simple form. In a typical case, the full Hamiltonian is separable into
H=T+V + W, where T is the kinetic energy, V is an external potential, and W
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is the interaction between particles. In principle, this Hamiltonian could be, for
example, plugged into the machinery of ITP, if only the symmetry requirements
are taken into account.

A direct approach is however computationally quite intractable, except for
the case of only a few electrons. This is due to the massive size of the many-body
wave function. For N particles, the wave function ¥ is a function of N spatial
coordinates. If the spatial coordinates were to be represented by a grid with K
points, the wave function would be a multidimensional array of KN complex
numbers. Taking into account the antisymmetry of the wave function reduces
this number somewhat, but nevertheless for many particles there is no way to
even store the full real-space many-body wave function on a computer, let alone
to do operations on it. Due to this explosive growth of required information, it
can be argued that the many-body wave function is not even a legitimate scientific
concept for a large amount of particles2l.

Luckily it turns out that most of the information contained in the full wave
function is quite redundant, and most quantities can be calculated using much
simpler objects only. In DFT, it is shown that instead of the wave function,
it is sufficient to work with the particle density n(r), which is a real-valued
function of a single spatial coordinate only. This simplification from KV to K is
computationally quite remarkable.

The basics of DFT are introduced in the following paragraphs for the case of
static, or ground-state DFT. This forms a theoretical background for computations
performed for Publication I. Extensions and reformulations of DFT to time-
dependent problems!®®l, magnetic fields etc. exist, but will not be discussed
here.

At the core of DFT is a seemingly very abstract notion about the functional re-
lationships between the external potential V, the ground-state wave function |'¥)
and the ground-state density ny. First of all, each V' determines a particular |'¥)
that is the solution of the Schrédinger equation for the ground state. This equation
may be computationally intractable, but the mathematical relationship still exists.
Secondly, each |¥)) obviously determines a particular ng. Pictorially, there are

mappings
Vi W) - nyp.

What is somewhat surprising, but not particularly difficult to prove, is that
each of these mappings is in fact injective. Here two potentials are considered
different if they differ by more than a constant. This means that there are

mappings
no — |lI/()> — V.

This result is known as the Hohenberg-Kohn theorem (HK) (941 Tt should be noted
that since the mapping from V to |¥p) represents the solution of the Schrédinger
equation, there is also an implicit dependence on the form of the interaction.
Typically the interaction is simply the two-particle repulsive Coulomb interaction.



26 CHAPTER 2. THEORETICAL BACKGROUND

Despite its abstract nature, the HK has far-reaching consequences. As the
ground-state wave function |¥) is uniquely determined by the ground-state
density, the ground-state expectation value (O) = (Wp|O|¥y) of any operator O
is also uniquely determined by the ground-state density. Therefore, there
exists a function that maps a given ground-state density (also a function) to the
corresponding value of (O). There is no longer any need for the complicated
many-body wave function!

Mathematically, functions that map functions to values are called functionals,
giving DFT its name. The values of such functions are denoted in the following
with square brackets to remind that the elements mapped by the particular
functions are themselves also functions.

In particular, the HK tells that the ground-state energy Ey — a quantity of
utmost importance in electronic structure calculations — is a functional of n:

Eo[no] = (WolnollH|Wo[nol)- (2.14)

Moreover (assuming a unique ground state for simplicity), if some other density n
(not the true ground-state density) were used in this functional, it would produce
a different wave function and a larger expectation value for the energy, since Ey is
by definition the lowest energy eigenstate. Therefore, the ground state energy of
any many-body system can be found by minimizing the functional (2.14).

However, the HK is something what a mathematician would call an existence
proof — it provides no way of actually computing values of the functionals. What
follows is that the functional Ey is broken into pieces, subtracting dominating
contributions that can be calculated from exact theory and proceeding with
approximations.

The first simplification comes from the fact that the role of the external
potential V in Ey is quite trivial:

Vin] = (W[n]|VIWI[n]) = /n(r)V(r) dr. (2.15)

The remaining part of the energy functional, the Hohenberg—Kohn functional,
Frax[n] == (WolnollT + W|¥[nol) = Eo[n] — V[n] does not depend on the external
potential, so it is universal for all many-body problems with a particular form of
the interaction.

The next term that can be subtracted is the classical part of the interaction,
i.e., the electrostatic energy of a classical charge density n. This is known as
the Hartree term, after D. R. Hartree. Denoting the form of the two-particle
interaction by w(r, r’), this term is

Eu[n] = %/n(r)n(r’)w(r,r’) drdr’ (2.16)

The last remaining challenge is to approximate the kinetic energy part. This
can be done using the Kohn-Sham (KS) formalism[®®!, which uses the HK to
return the many-body problem to an effective problem of non-interacting particles.
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Keeping in mind that the mappings in the HK exist separately for every kind of
interaction W, they exist also for the case W = 0. So by the HK, for a given external
potential V in the interacting problem there is a unique ground-state density n,
and again by the HK, there is a unique external potential V;[ng] in the non-
interacting problem that produces exactly the same ground-state density n¢. This
non-interacting problem is known as the Kohn-Sham system of the interacting
system.

Being non-interacting, the Schrodinger equation for the KS system separates
to a single-particle equation

(—3V? + Vilnol) ¢i = eigps, (2.17)

which can be solved numerically for a given V using, e.g., ITP.1° The full ground-
state wave function @5 of the KS is then a Slater determinant of the single-particle
wave functions @;, occupied so that the Pauli exclusion principle is satisfied.

It is important to remember that the single-particle states ¢; and energies ¢;
solved from the KS are purely auxiliary quantities, that might not necessarily
have any resemblance to corresponding quantities in the interacting problem. In
practice there usually is at least a qualitative agreement. By design, the single-
particle states do however produce exactly the correct density. Additionally, the
KS system provides a useful approximation of the kinetic energy part in the
ground-state energy functional. The kinetic energy of the ground state in the KS
system is

T, = Z/lV(pilzdr. (2.18)

This quantity is also a functional of the density, since the density determines the
effective potential of the KS system, and thus the wave functions ¢;.

What remains of the energy functional after the contributions from the external
potential, the Hartree term, and the KS kinetic energy have been subtracted is
denoted the exchange-correlation energy Ey.:

Eyc[n] := Eo[no] = V[n] — Eu[n] - Tg[n]. (2.19)

With DFT, all the complications of a many-body quantum problem are hidden
in the functional Ey.. The remaining problem is to find good approximations
for E,c.

What has not been addressed so far is how the KS potential V; is calculated.
Without going too much into detail, it can be derived from Eq. (2.19) by applying
variational calculus. Since the ground-state density n is, by definition, a density
that minimizes the functional Eg[n], the functional derivative of Ey[n] with
respect to # is zero at np. The functional derivatives of V[n] and Ey[n] are easily

10This shows that advances in solving the single-particle equation are useful for solving the
many-body problem as well.
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calculated,
oV[n] _
on(r) v
OEu([n] _ /n(,/)w(r, r')dr’ = Via(r)
on(r)

The remaining derivative of Ts[n] is more involved, since Ts depends on the
density implicitly through the solution of the KS system. The result is, however,
very useful:

6Tyln] _

on(ry - Vo)

Taking functional derivatives of both sides of Eq. (2.19) therefore gives that at
the true ground-state density,

Vs(r) = V(r) + Vua(r) + Vi(r), (2.20)

where the functional derivative of E,. is denoted Vi, the exchange-correlation
potential. If a good approximation for Ex.[n] (and thus V() is known, Eq. (2.20)
gives a practical way to calculate V. This makes it possible to solve the ground-
state density by iterating Eqs. (2.17) and (2.20). That is, an approximate density
is used to derive a KS potential from Eq. (2.20), which is then plugged into the
single-particle Schrodinger equation (2.20), producing an improved density. This
density is then improved further, until a convergence is reached. This so-called
Kohn-Sham scheme is how DFT is typically used in computations.

The derivation of better and better approximations for E,. is a large and active
field of research, and it will not be discussed here in detail. The simplest approxi-
mation is the local density approximation (LDA). In LDA E,. is calculated for a
homogeneous gas of electrons with constant density #onst, and an approximation
of the general E,. functional is given by using the same homogeneous result
locally, by substituting for nenst the true spatially varying density n(r). This
approximation can be considered applicable when there are no sudden variations
in the density. Even though the homogeneous electron gas is a vast simplification,
the derivation of a LDA functional requires some fitting to quantum Monte Carlo
results. This has been carried out both in 2Dl and 3DI7!. In practice, LDA works
surprisingly well, taking into account its simplicity!®®). The DFT calculations
presented in Publication I were also calculated mostly with LDA.

More complicated approximations of Ey. are built up by, e.g., including, in
addition to the local density, dependencies on the local gradients of the density, or
on the KS eigenstates. This again requires extensive fitting to accurate results on
the homogeneous electron gas, other model systems, or experimental data. The
resulting functionals are much more computationally intensive to use compared
to LDA, but often also more accurate. Unfortunately, this development does
not necessarily lead to systematically better approximations to Ey. in a general
sense. Some functionals are best suited for particular types of systems, such
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as molecules, and some functionals produce accurate predictions of particular
physical quantities. Even DFT cannot completely escape from the fact that the
many-body quantum problem is a complicated one.

DFT is an extremely popular formalism for studying many-body quantum
systems, especially in condensed matter physics and quantum chemistry. By
abstracting away the complicated many-body wave function, DFT allows even
complex physical and chemical systems to be studied accurately with available
computational resources. This is made even easier by the existence of feature-rich
publicly available DFT program packages. Some notion about the popularity
of DFT is given by citation counts; the original article by P. Hohenberg and
W. Kohn!®*! has been cited over 17000 times and the article by W. Kohn and
L. J. Sham!*! over 23 000 times — and neither of these are the most cited articles in
the field of DFT. W. Kohn shared the 1998 Nobel Prize in Chemistry for his part
in the development of DFT.

2.3 Quantum scars

Quantum scarring!®’! is a phenomenon where the eigenstates of a chaotic quantum
system have enhanced probability density around the paths of unstable classical
periodic orbits!!%. The instability of the periodic orbit is a decisive point that
separates quantum scars from a more trivial finding that the probability density
is enhanced near stable periodic orbits. The latter can be understood as a
purely classical phenomenon!'%l, whereas in the former quantum interference
is important. As such, scarring is both a visual example of quantum-classical
correspondence, and simultaneously an example of a (local) quantum suppression
of chaos!!1¢P1.

A classically chaotic system is also ergodic, and therefore almost all of its
trajectories eventually explore evenly the entire accessible phase space. It is
therefore natural to assume that the eigenstates of the quantum counterpart
would fill the quantum phase space evenly (up to random fluctuations) in the
semiclassical limit. Scars are a significant correction to this assumption. Scars
can therefore be considered as an eigenstate counterpart of how short periodic
orbits provide corrections to the universal RMT eigenvalue statistics.

There are rigorous quantum ergodicity theorems proving that the expectation
value of an operator converges in the semiclassical limit to the corresponding
microcanonical classical average[w”. However, these theorems do not exclude
scarring, as the phase space volume of the scars also gradually vanishes in this
limit!?9100],

The strength of the scarring effect is determined mainly by how unstable the
periodic orbitis. This is expressed by the dimensionless stability exponent y = AT,
where A is the Lyapunov exponent of the orbit — the rate of exponential divergence
of trajectories near the orbit — and T is the period of the orbit. How the scarring
strength depends on y depends on how the strength is defined, but as a general
rule of thumbl?"! scarring is significant when x < 27, and the strength of the
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Figure 2.3. Examples of scarred eigenstate wave functions (left) with comparisons to
the corresponding classical periodic orbits(right) for the stadium billiard. Reprinted
figure with permission from: E. ]J. Heller, “Bound-state eigenfunctions of classically
chaotic Hamiltonian systems: scars of periodic orbits”, Phys. Rev. Lett. 53, 1515 (1984)[%°1.
Copyright 1984 by the American Physical Society.

effect scales as y!. Therefore, strongly scarring periodic orbits are unstable, but
not too unstable, and relatively short.

First examples of scarred wave functions!! and a theoretical explanation for
their existence were published by E. J. Heller in 1984/, The original theory
of scarring by E. ]. Heller is based on extracting the quantum spectrum by
propagating a Gaussian wave packet |¢p) along the periodic orbit. This theory,
which is outlined in the following paragraphs, was later referred to as the linear
theory of scarring!!04l.

In the semiclassical limit, and for a moderately unstable orbit, the Gaussian
wave packet remains for short times in a region around the periodic orbit where
the dynamics can be linearized. The wave packet will remain centered on
the classical orbit for a few periods and only change its shape. In a linear
approximation, its width will increase at each iteration by a factor of exp(x)
in one direction, and shrink by a factor exp(—y) in the orthogonal direction

'What is now known as scarring was described in 1983 by S. W. McDonald in his doctoral thesis
on the stadium billiard™%?, but only as a potentially interesting numerical observation without a
theoretical explanation. It is quite unfortunate for S. W. McDonald and A. N. Kaufman that these
findings were not reported in their high-profile article concerning wave functions and NNLS spectra
for the stadium billiard(103].
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because of phase space volume conservation. The autocorrelation function of the
wave packet, A(t) = (@|@(t)), will show peaks at the multiples of the period T,
signifying a return of the wave packet to near its initial position. Calculating
the overlap of a Gaussian with the same Gaussian stretched by the linearized
dynamics gives!1%

|A(t = nT)|? ~ 1/ cosh(ny), (2.21)

i.e., the periodic recurrences die out exponentially with a rate set by x.

The periodic recurrences in A(t) require that the local density of states (LDOS)
near the energy of the initial wave packet is strongly peaked. The LDOS near the
initial wave packet |@) is defined as

S(E) = " Kulg)? S(E ~ Ey),

where |1),;) and E,, are the eigenstates and corresponding eigenenergies of the
system. The Fourier transform of S(E) is A(t):

/ S(E) exp(—iEt) dE = Y (@[u} (@) exp(~iEy 1)

= (ol (Z(zl)nl<p>eXp(—iEnt)l¢n>) = (plp(t)).

If the linearized approximation Eq. (2.21) holds for A(t) at short times, the
LDOS, obtained by Fourier transforming the linear approximation, will show!!%"!
a sequence of peaks separated by 2m/T with widths scaling as x/T. As shown by
E.]. Heller®], even if the probability amplitude in the LDOS peaks is distributed
evenly among the eigenstates near the peak, some of the eigenstates need to
have an unusually large overlap with the initial wave packet. As the absolute
overlap between an eigenstate |{’,,) and the wave packet, | (', |@(t)) 2, is time-
independent, the eigenstate needs to have a large overlap with the wave packet at
all times. Since at least up to T the wave packet follows the path of the classical
periodic orbit, the eigenstate needs to have a continuous path of enhanced
probability density all along the periodic orbit — a scar.

The linear scarring theory was later extended to include nonlinear effects
that occur after the wave packet leaves the linear region around the periodic
orbit!!%l. These effects can further increase the scarring strength at long times.
Alternative theoretical approaches to the wave-packet (or Husimi space) methods
employed by E. J. Heller and L. Kaplan include a position-space method by
E. B. Bogomolny!'%! and a phase-space approach by M. V. Berry!!%l.

From a computational point of view it is curious that a quantum simulation,
even with approximations such as a coarse real-space basis, “senses” the unstable
periodic orbits, whereas a classical calculation for locating the orbits requires
high numerical accuracy. If simplifying properties such as symmetries are not
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available, locating a moderately unstable periodic orbit from a classical system
might be simplest to do by solving the time-independent Schrédinger equation!

The first experimental confirmations for scarring were obtained from mi-
crowave billiards!'%”) in 1991. Further experimental results were later obtained for,
e.g., quantum wells!'%, optical cavities!'®! and the hydrogen atom!'!). Recent
numerical results also show scars in graphenel''!l and atomic gases!!!?l.

There are several phenomena connected — by theory or only by appearance
— to quantum scarring. First of all, even random linear combinations of plane
waves tend to produce distinct paths of enhanced probability density!!13], which
needs to be taken into account if scars are to be identified visually. In addition,
there are two distinct kinds of scars caused not by actual periodic orbits, but by
“ghosts”. These ghosts can be periodic orbits that exist in a nearby system, in
terms of some external parameter, to the one that is studied!!!*!. This kind of
scarring has also been attributed to almost-periodic orbits!''>l. Another type of
ghosts come from complex periodic orbits that exist near bifurcations!!°l.

In Publication IV we extend this list by describing a new kind of scarring,
present in symmetric systems disturbed by local perturbations. These scars are
not explained by ordinary scar theory. Instead, they are caused by classical
resonances in the unperturbed system, as described later in Sec. 3.4.



Chapter 3

Main results

This chapter provides a summary of the results presented in the publications
included in this thesis. The following sections also provide some more detail —
more than the space-constrained articles — on the work that was done to produce
the results, and on the background of the research projects. The following sections
can therefore be considered as an extra commentary track for the published
articles.

3.1 Explaining the addition energy spectrum of quantum
dashes

The first publication in this thesis!!l represents a step away from the more
theoretically oriented world of quantum chaos research. In this work we reproduce
numerically the energy spectrum of an actual 2D quantum device, and provide a
theoretical explanation for some experimentally observed properties.

The device in question is an indium arsenide (InAs) quantum dash (QDH)!!!7!
—a quantum dot!!'®! with an elongated shape!. Such nanostructures are formed
by self-assembly (caused by a lattice mismatch), when InAs is deposited on a
suitable crystal surface of a gallium arsenide (GaAs) substrate!'?). The typical
size of a QDH is a few hundred nanometers, which is relatively large for a
quantum dot. In addition to being elongated along the surface, the QDHs are flat
in the vertical direction (approx. 15nm), making the electronic system inside the
device effectively two-dimensional. The typical shape of a QDH as imaged by a
scanning electron microscope (SEM) can be seen in Fig. 1b of publication L. In
particular the vertical height of the QDHs is also rather asymmetrical.

An experimental group in the University of Tokyo had manufactured the
QDH devices and measured their properties. When coupled to electrodes, a
QDH operates as a single-electron transistor (SET) — a transistor operating so
deep in the quantum regime that the electric current is clearly quantized into

1The name dashl'!?l presumably comes from the device shape, which resembles less a dot (.)
and more the neighboring character on the keyboard, a dash (-).
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individual electrons. From conductance measurements of a QDH SET and the
characteristic Coulomb blockade oscillations, they could deduce the changes
in total energy of the dot as it is charged with electrons. For smaller samples
they could also resolve the actual number of electrons in the dot, producing a
spectrum of addition energies?

Ay(n) = E(n+1) —2E(n) + E(n - 1), (3.1)

i.e., the second difference of the n-particle ground-state energies E(1).

The experimentalists had observed that the conductance of the device de-
creases suddenly for electron numbers n = 7 and n = 8. Their hypothesis was
that this is caused by the anisotropic QDH shape. This idea can be explained
by a simple particle-in-a-box model. For a rectangular single-particle quantum
billiard, some eigenstates will be at the ground state of the longitudinal degree of
freedom. If the aspect ratio of the box is high, the probability density in these
eigenstates will be very low near the ends of the box. If such a system is connected
to a circuit by leads at the ends, the conductance will be low, since an electron in
the box is only weakly coupled to the leads.

Our task in the collaboration was to check whether the measured addition
energy spectrum could be reproduced by a calculation with interacting electrons
in an effective potential. This would show that the observed addition energy
spectrum could be explained by the confinement of the electrons to a simple static
potential well with a similar asymmetric shape as the QDH. Similar calculations for
quantum dots with a more symmetric shape are known to reproduce experimental
spectra quite welll!'8]. We also wanted to see whether the hypothesis for the drop
in conductance is supported by a more realistic calculation.

Experimental setup

For completeness, we start with a brief review on what the SET setup is, and how
the addition energy spectrum was measured from the device. A more complete
introduction to SET devices and the Coulomb blockade can be found, e.g., in
Ref. 121, Sec. IIB of Ref. 118, and Ref. 122. More details of the sample fabrication
and the experimental setup can be found in Publication 1.

The classical SET setup (see Fig. 3.1) contains an “island” electrode (in this
case, a quantum dot) that is sufficiently decoupled from its environment so that
the charge (excess electrons) in the island is clearly quantized in units of the
elementary charge. The island is connected to the source and drain electrodes
by two tunnel junctions. Electrons can move through the tunnel junctions
by quantum tunneling. This process is fast enough that it can be considered
instantaneous. A gate electrode is coupled capacitively to the island and is used

2In some sources the term addition energy is used for E(n + 1) — E(n) and A»(n) in Eq. (3.1) is
called the addition energy difference, but a different choice is used here to keep the terminology in
line with Publication I. This confusion in the terminology relates to how “energy” is sometimes used
to refer to the ground-state energy of the complete n-particle system, and sometimes to the energy
levels of some effective single-particle system.
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Source Island Drain

Figure 3.1. Schematic circuit diagram of a single-electron transistor (SET). Electrons move
by quantum tunneling from the source electrode to the island and from the island to the
drain electrode, driven by a bias voltage Vsq. The electrostatic potential inside the island
is controlled by a gate voltage Vg, coupled capacitively to the island.

to modulate the electrostatic potential inside the island via a gate voltage V. In
addition, a bias voltage Vsq can be applied between the source and drain in order
to cause a net flow of electrons through the island.

Due to the quantization of charge inside the island, electrons need to overcome
an energy barrier to transfer through the SET. This barrier is the Coulomb blockade,
and it can be explained with simple classical electrostatics!'??l. Assuming that
the coupling of the island to its environment can be expressed as a single
capacitance C, and that the electric potential inside the island is set by the gate
voltage Vy, the electrostatic energy of the island at charge g is

qZ

E=qVg+ Toh (3.2)
It is assumed that the bias voltage V4 is just large enough to measure conductance
through the system, but tiny enough to be ignored in the electrostatics.

The equilibrium charge g of the island at given Vj is the value that minimizes
the energy in Eq. (3.2). The energy as a function of g is a parabola with a
minimum at go = —CVg. Due to the quantization of charge, g is restricted to
integer multiples of the elementary charge, g = —ne. This means that there
typically is a nonzero energy barrier that must be overcome to add or remove
an electron to the island. In this case — and in this simple approximation — no
current flows through the system and the measured conductance is zero.

The Coulomb blockade is lifted when charges g = —ne and g = —(n +1)e have
an equal energy. From Eq. (3.2), this occurs when V; = (n +1/2)e/C. At these
specific values, electrons can tunnel in and out of the island with no additional
energy barrier, and current flows through the system. If the conductance is
measured as a function of Vg, this causes periodic peaks separated by e¢/C, with
plateaus of near-zero conductance in between. In terms of energy, between
successive peaks in conductance where the occupation of the island increases by
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a single electron, there is an energy gap of e?/C, which is known as the charging
energy.

Anonzerobias voltage V4 helps the electrons overcome the Coulomb blockade.
As the bias voltage gives the electrons an additional energy boost proportional
to [Vsal, the length of the Coulomb blockade regions in Vy decrease linearly
with |Vsq|. This means that in a two-dimensional plot where the conductance is
measured when both Vg and Vg4 are varied — known as a Coulomb stability plot —
the regions of Coulomb blockade have a characteristic thombic shape, known as
Coulomb diamonds.

The previous, simple theory for the Coulomb blockade is essentially a classical
one, only requiring the quantization of charge in the island. As such it can be
observed even at relatively high temperatures and large sample sizes, as long
as the capacitance C is small enough. When the island becomes very small and
the temperature is low enough, the island becomes a true quantum dot with
a discrete energy spectrum. This means that for an electron to tunnel into the
dot, in addition to the charging energy ¢2/C caused by the “classical” Coulomb
blockade, it needs energy to cross the gap to the next available energy level of the
dot (see, e.g., Ref. 123). This additional energy is called the orbital (quantization)
energy. Measuring the spacings of the conductance peaks in the Coulomb stability
plot and subtracting the charging energy therefore provides a convenient way to
measure the single-particle energy spectrum of the quantum dot!!?4].

The extra energy cost imposed by the discrete level spacing of the dot is
E(n)—E(n—1), where E(n) is the ground-state energy of the dot with n electrons.
Therefore the spacing between the conductance peaks gives (once the charging
energy is subtracted) the second difference of the ground-state energies, i.e. the
addition energy in Eq. (3.1). This spectrum of measured addition energies can then
be compared with numerical results that use addition energies from numerically
calculated values for E(n), obtained, e.g., with ground-state density-functional
theory (DFT).

Numerical calculations

The first step in the numerical work was to derive a numerical model that could, if
possible, reproduce the measured addition energy spectrum. Since the confining
potential of the electrons in such an asymmetric quantum dot was not known,
we decided to simply start with a semi-realistic parametrization of the potential,
deduced from the QDH shape as observed by SEM imaging. In this we decided
to aim for simplicity instead of accuracy, as in any case modeling the system as
a static potential well is a substantial approximation. For example, the changes
in the potential resulting from changes in the gate voltage are ignored in this
model. After finding a suitable parametrization of the potential, an optimized
potential that reproduced the measured addition energy spectrum as accurately
as possible was found by a numerical search algorithm.

The approximate physical size of the QDH sample was measured as 160 nm X
130nm X 15nm. As usual, the vertical (z-direction) size of the device was small
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enough so that the system was assumed to be effectively two-dimensional. The
asymmetric height profile of the QDH was assumed to cause an asymmetric
confinement potential in the y-direction.

As a simple model for the confinement in each direction, we assumed the
potential has a power-function form, i.e., V ~ |2x/L,|?, where a is an adjustable
exponent giving the hardness of the confinement and L, gives a characteristic
length-scale. To model the varying hardness of the confinement, other works
have used, e.g., a combination of a soft potential and a hard wall'®!. After
experimenting with various models we decided to fix the confinement exponent
to a = 2 in the y-direction. Optimized potentials typically settled to a value close
to this, and fixing the value helped to reduce the parameter space. A parabolic
confinement, i.e., a harmonic oscillator, is a traditional choice for modeling
quantum dots!'8]. The confinement exponent in the x-direction was left as a free
parameter to account for effects arising from the source and drain electrodes. The
characteristic length scales were set by fixing Ly to the physical size 160 nm and
leaving the aspect ratio r = Ly/L,, as a free parameter.

To account for the asymmetric shape in the y-direction, the bottom of the
parabolic potential well was shifted from the origin by a factor of ¢ € [0,1]
towards the edge, while keeping the confinement parabolic and keeping potential
values at the edge fixed. This was considered as a simple way to model the
asymmetry by a single parameter, while keeping the confinement parabolic.

After fixing the overall energy scale by adding an overall multiplicative
parameter V), the functional form of the potential was

) ) (3.3)

where the sign in the term 1 + ¢ is the sign of 2y /L, + 0. By fixing L, = 160nm
and L, = L,/r, the potential is fixed by four parameters, (Vo, 7, a, 0). We wanted
to keep the parameter space relatively small to speed up the optimization process
— when the parameters were optimized to reproduce the experimental spectrum,
each evaluation of the fitness of a trial potential required the calculation of its
ground-state energies for each particle number. A plot of the model potential,
with optimized parameters, can be seen in Fig. 3.2.

Calculating the ground-state energy for various particle numbers to get the
addition energy spectrum was performed using the DFT formalism introduced
in Sec. 2.2.2. An effective-mass approximation was used to take into account
the potential of the InAs crystal lattice. Since the ground-state of the system
could be spin-polarized (i.e., with nonzero total spin), the calculations were
performed in a spin-resolved form. This means that for a given particle number,
the calculations were performed for different spin configurations, and the lowest
energy configuration was designated as the true ground state.

For approximating the exchange-correlation functional we used the 2D local
density approximation (LDA) (or more specifically local spin-density approxima-
tion (LSDA), since some calculations involved nonzero total spin). Even though
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Figure 3.2. Contour plot of the optimized asymmetric potential well (3.3) used to model
the quantum dash (QDH) confinement in Publication I. Potential values on the contour
lines are expressed in meV. The panel on the right shows 3D renderings of the potential
shape.

being a relatively simple approximation, it was known to produce accurate results
for the addition energy spectra of similar quantum dots!'?®l. The DFT calculations
were performed using the versatile open-source Octopus code packagel'?].

Ready methods for optimizing the potential to an addition energy spectrum
did not exist in Octopus, so the optimizing routine was added in by hand. Due to
the lack of a better application programming interface (API), this was done by
writing a Python program that provided an interface for programmatic Octopus
calculations. The Python program prepared input files for the Octopus program
for calculating the ground-state energy of a trial potential for each required N and
total spin, waited for the Octopus calculations to finish, and parsed the textual
output messages of Octopus to find the ground-state energies. The potential
parameters were optimized by minimizing the root mean square (RMS) difference
between the experimental and numerical addition energy spectra, weighted by
the inverse of experimental error estimates of each data point.

The minimization of the fitness function was performed using the Nelder—
Mead downbhill simplex algorithm!!?8], as implemented in the Scipy toolkit!!?].
The algorithm locates a minimum of a function in a d-dimensional space by
moving a simplex (the convex hull of d + 1 points) around in the parameter space
with a simple heuristic procedure. It is a simple algorithm that rarely provides
the fastest or most robust convergence, but for this particular problem it has
the advantage that it does not require any knowledge (or approximation) of the
derivatives of the fitness function.
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Results

The numerical search for a suitable potential function did produce a good fit to
the experimental addition energy spectrum (see Fig. 3.3), especially considering
the uncertainties of the measured values. At the regime of low electron numbers
n <5 there is substantial discrepancy, which is somewhat understandable as in
this regime the effect of the top-gate potential and possible inhomogeneities in
the QDH are substantial. In this regime the experimental uncertainties were also
very large.

The optimized potential had a slightly asymmetric shape (¢ = 0.11), which
suggests that the asymmetric height profile of the QDH really plays a role in the
addition energy spectrum. The potential also had a slightly larger aspect ratio
(r = 1.46) than the exterior of the device (7 = 1.2), suggesting that the effects of
asymmetry (e.g., the lack of a clear shell structure as in a symmetric harmonic
potential) are even greater than expected from the device shape alone.

The optimized potential also supported the hypothesis that the decrease of
the conductance at n = 7. .. 8 is related to a sudden change in the shape of the
highest occupied single-particle orbital to a form that is more weakly coupled to
the leads (see Fig. 4c in Publication I). This comparison was made by studying
the highest occupied Kohn—-Sham (KS) wave functions. Similar conclusions could
be made by studying the difference in the total density®. Naturally, estimating
the conductance from a static calculation is qualitative at best, and a conclusive
proof of the decrease of conductance would require a full quantum transport
calculation.

The potential optimization procedure from Publication I was repeated for
another sample in a follow-up project!’], which studied the QDHs in high magnetic
fields. For this sample the experimental addition energy spectrum was much
more accurate. The quality of the sample can also be seen clearly by comparing
the Coulomb stability diagram in Fig. 1a of Ref. 7 to Fig. 3a of Publication I

For the new sample, the asymmetric potential well in Eq. (3.3) did not provide
the best fit to the addition energy spectrum. Instead, a simpler symmetric
potential well with the confinement exponents as free parameters produced an
almost perfect fit (see Fig. 3.4). Naturally this does not rule out asymmetry in the
actual confinement, but suggests that its role in the addition energy spectrum is
small. In the limit where the asymmetry is small in the area where the electrons
are confined, it can become a simple shift of the potential well location, which
does not affect the energy spectrum. In the article this difference in the qualitative
confinement was attributed to a backgate electrode being used to provide the
gating field, whereas Publication I used a top-gate. An inconvenient but possible
explanation is that the fit is accidental, especially as in Ref. 7 the parameter space

3 Assuming a single-particle orbital picture, the difference in the total density when increasing n
from 6 to 7 is equal to the squared absolute value of the highest occupied orbital. In this case this
difference is very close to the squared absolute value of the corresponding KS wave function. However,
the DFT calculation is guaranteed to produce a meaningful total density, whereas the individual KS
wave functions are auxiliary quantities that can produce misleading results in some cases.
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Figure 3.3. Comparison of experimental and numerical addition energies from Publica-
tion I. The numerical spectrum was calculated with DFT, using LDA and the Octopus code,
with a model potential optimized as described in the text. The model potential is also
shown in Fig. 3.2. In the experimental spectrum, error bars are not shown for experimental
uncertainties below 0.5 meV.

of the potential is five-dimensional.

For Ref. 7 we also attempted to reproduce the experimental results as a
function of an external magnetic field. This produced some qualitatively correct
features, but not a quantitative match. A better agreement would have required
modifying the model to take into account secondary effects from the magnetic
field. For example, the effect of the ferromagnetic leads was not taken into
account.

Conclusions

Even though reproducing the addition energy does not prove that the numerical
model reflects the true confinement in the QDH device, the numerical results did
fulfill their goal and supported the conclusions made from experimental data.
The observed addition energy spectrum could be explained by static confinement
in a potential well with an asymmetric shape. In addition, the observed decrease
in conductance could be attributed to a change in the physical extent of the
electronic wave function.

For a theorist, the project also provided a very enlightening view into the
world of experimental physics, where the number of unknowns is typically much
greater than the number of equations.

In retrospect, the biggest flaw in the potential modeling was that the varying
gate potential was not taken into account, i.e., the confinement potential is
actually different for each n. Substantial improvements could probably be made,
especially in the low-n regime, by including these effects even in a simple way.

The method of finding a functional form of the potential by numerical
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Figure 3.4. Comparison of experimental and numerical addition energies, as Fig. 3.3, but
for the QDH sample used in Ref. 7. For this sample the experimental uncertainties are
much smaller, and the agreement between the experimental and numerical data is also
much better. For this case the numerical spectrum for n < 3 was not calculated, as the
results from Publication I showed that the model fails for very small .

optimization to a measured addition energy spectrum is something that, to
our knowledge, has not been performed elsewhere. It would be interesting to
try a similar approach to other systems, and see whether it could be used to
produce more insight into the actual confinement of electrons inside real devices.
Naturally, such studies would need to make sure that the models also have some
predictive power, i.e., that the potential obtained by reproducing an addition
energy spectrum would also provide quantitatively correct results for some
other quantity. After all, a sufficiently complicated model can be fitted to any
experimental data.

3.2 ITP implementation: itp2d

For applying the quantum chaos methodology introduced in Sec. 2.1, we first
needed a code that could solve a large number of eigenvalues for various
interesting 2D systems. The purpose was to develop a general solver for 2D
systems, essentially a piece of code that takes a potential function and produces
as many eigenvalues and eigenstates as possible, without, e.g., tailoring basis
expansions for each particular problem. We knew imaginary time propagation
(ITP) was such a general method, and it could incorporate a strong magnetic field.
We also knew that it is suitable for solving a large number of eigenstates.

There were existing ITP codes available, but they were either for 3D systems,
or did not include support for a magnetic field. In addition, they were usually
designed for a specific purpose, such as solving the Kohn-Sham equations in
DFT, and it would have been difficult to modify them for our purposes.

The itp2d code was written from scratch using the C++ programming
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language. We had previous experience with C++ from writing the bill2d code
(which was later published!®!). In that project, C++ had proven itself as a useful
language to write clearly structured, object-oriented simulation tools, without
compromising numerical efficiency. In addition to the C++ core, several data
analysis tools and auxiliary tools were written in Python. Python is an interpreted
language, making Python code much slower to run, but on the other hand Python
is much more modern and flexible. What Python loses in execution time it usually
wins, by a landslide, in programming time.

Most of the technical details about the implementation of i tp2d can be found in
Publication II and will not be repeated here. The ITP algorithm was implemented
essentially as described in Sec. 2.2.1, using the arbitrarily high order operator
factorization (2.12) and using the factorization (2.13) to include a magnetic
field. These two recent advances in the ITP method had not been previously
implemented in the same publicly available code. State orthonormalization was
performed using the subspace orthonormalization (SO) algorithm described
in Sec. 2.2.1. The propagation of separate eigenstates and other parts of the
algorithms easily amendable to shared-memory parallelization were parallelized
using OpenMPI130],

A specific new feature of itp2d is the possibility to select Dirichlet boundary
conditions instead of the usual periodic ones. This is accomplished by using the
discrete sine transform (DST) in place of the usual Fourier transform, as the sine
functions are zero at the grid boundary. However, as explained in Publication II,
this approach creates a problem. DST still implies periodicity. Even though the
values of the wave function at the opposite ends of the grid are the same (i.e., zero),
the derivatives are not necessarily the same. This means that when derivatives
are computed near the grid boundary with DST, high-frequency ringing artifacts
are produced. This is essentially the Gibbs phenomenon. Luckily the artifacts
have high frequency, so they are dampened by ITP iterations. However, they
still slow convergence, and computing the energy of the eigenstates using the
standard deviation of the Hamiltonian becomes inaccurate.

Using the same trick to enforce boundary conditions in the presence of a
magnetic field creates further problems, since then the Hamiltonian includes also
single derivatives, and therefore sine functions are no longer a good basis. This
was taken into account in itp2d in a rather ad hoc manner by taking care of the
cosine terms arising from the single derivatives with the discrete cosine transform
(DCT). Again, the resulting Gibbs phenomenon causes slower convergence.

In Sec. 4 of publication II we presented tests on the accuracy of itp2d and
benchmarks that compare itp2d against other publicly available eigensolvers
PRIMME3Y and SLEPc'®2]. These tests show that itp2d can attain a very high
accuracy of eigenvalues, and that it is faster than its competitors by a noteworthy
margin — although it is unlikely that a single simple benchmark can show this
conclusively.

Calculations involving several thousands of eigenstates confirm that the
orthonormalization step indeed dominates the computational cost of ITP at
this limit. For example, in a calculation with 10000 eigenstates 97% of the
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computational time is spent on performing orthonormalization. If significant
performance improvements are required in the limit of many eigenstates, the
number of orthonormalization steps needs to be reduced further, and any code
optimization should focus on the orthonormalization code.*

After completion, itp2d became a very useful all-purpose eigenstate solver
for following research projects, such as the work on disordered quantum dots
that is discussed in Sec. 3.4. In the future, itp2d will hopefully find use in
the general computational physics community. Besides researchers working on
eigenspectrum statistics, there are many fields that would benefit from a fast
general-purpose eigenstate solver. One option that has been discussed is the
inclusion of itp2d as an eigenstate solver for DFT programs such as Octopus[lm.
The source code of itp2d was published under an open source license and is
available at https:/ /bitbucket.org/luukko/itp2d.

There are several ways the ITP method could be developed further. The itp2d
code is a useful testbed for such development, since it is open source and the
different parts of the ITP algorithm are clearly separated in an object-oriented
structure. For example, many of the general parameters of the ITP process, such
as selection of the imaginary time step ¢ and convergence criteria would benefit
from a more systematic performance analysis.

As another example, the inclusion of a magnetic field by the exact factor-
ization (2.13) has the displeasing property that the two coefficient functions Cy
and C y are quite unsymmetric®. As the magnetic field increases, C, approaches
zero while C,, diverges. The divergence of C, in the exponential causes problems
with finite-precision arithmetic at very large magnetic fields. The factorization
was developed in Ref. 85 in a quite indirect manner by noticing an analogy with
the density matrix of a harmonic oscillator. This raises the question whether
there exists a more symmetric factorization for exp(—¢T).

One interesting future prospect would be to use ITP in a basis formed by
B-splines instead of a real-space grid. If the exponentiated operator exp(—¢T)
could be efficiently implemented in this basis, the resulting algorithm would be
free from the enforced periodicity and possible Gibbs phenomenon resulting
from the use of Fourier transforms.

3.3 EMD implementation: 1ibeemd

After the itp2d project was finished and we had access to energy spectra of a
fairly general class of 2D systems, we started to look into energy level statistics
with more detail, especially to statistics involving long-range correlations. At
this time we learned of the idea by I. O. Morales et al.*¢! to use the empirical
mode decomposition (EMD) to help with the ambiguity problems inherent in the

4In retrospect, many optimizations present in itp2d are not terribly useful in the limit of many
eigenstates. In fact, itp2d could have probably been written entirely in Python since most of the
time-consuming calculations are delegated to external linear algebra and fast Fourier transform (FFT)
routines. As D. E. Knuth famously put it, “premature optimization is the root of all evil 11331,

5Note that the factor Cy is shown in a simpler form in (2.13) than in Ref. 85 or Publication II.
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unfolding process, and decided to employ EMD for detrending spectral staircases
in our analysis. In addition, our research group was already involved with other
research involving time series analysis!® 13!, where EMD could be highly useful.

There were several existing implementations of EMD. However, these im-
plementations were usually written in Matlab or R, and thus would have been
very difficult to incorporate to our existing analysis tools written in Python. In
addition, most of the implementations were left in an unfinished state, with
outstanding bugs, convoluted code designs and missing documentation. Since
EMD is a very active topic of research beyond energy level statistics or even
beyond physics, an improved EMD implementation could be very useful for a
large audience. This was the beginning of the 1ibeemd project.

Several best practices developed in the EMD literature, such as improved
stopping criteria and improved EMD variants, were also scattered among different
codes. With 1ibeemd we wanted to establish a common baseline that collected
these improvements to a single code and provided a solid basis for studying and
implementing future enhancements.

The libeemd library was written using the C programming language, using
facilities provided by the GNU Scientific Library (GSL)'®!. C is a usual “lowest
common denominator” of programming languages, in the sense that most high-
level languages provide ways to call code written in C. Thus writing 1ibeemd
in C made it easy to write interfaces for calling 1ibeemd from other languages.

Using a low-level language also brings a level of speed that is very hard to
attain by high-level languages. Although for the purpose of detrending spectral
staircases the computational speed is not at all important, for general use speed
is often useful. Later benchmarking showed that this difference in speed is quite
substantial.

Originally libeemd implemented EMD and its most popular variant, ensemble
EMD (EEMD). During the reviewing process of Publication III, by request of the
anonymous referees, an implementation of a new variant, complete EEMD with
adaptive noise (CEEMDAN), was also added. Although libeemd was not the
first to implement any of these methods, it collected them together and applied
several of the best practices discussed in the EMD literature. These included a
stopping criterion based on the S-number!'3®! and an extrapolation method for
avoiding spurious effects near the ends of the datal®’].

Compared to, e.g., the reference EEMD implementation[®’], the code also
corrected an error regarding the detection of extrema when there are equal
consecutive data points in the input signal. Although a numerical corner case,
this problem was found to occur in the intermediate steps of EMD with a
non-negligible frequency even with random input data.

The processing of separate ensemble members in EEMD and CEEMDAN is
trivially parallelized. This was implemented in libeemd with OpenMPI['3%l, Ag
such, libeemd provided the first parallel implementation of CEEMDAN.

As an example of a high-level interface for 1ibeemd, the library was distributed
with a Python interface called pyeemd. Python, which we were already very
familiar with, provides a standard interface, ctypes, to call code written in C.
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Together with the numerical facilities provided by the NumPy!'¥! package,
this made it possible to hide the low-level 1ibeemd code behind a simple and
succinct high-level interface, without losing any of the benefits of a low-level
implementation. The pyeemd interface was also used to write extensive unit tests
to ensure that the underlying code is correct.

By request of the referees of Publication III, an interface to R was also developed.
Since neither of the original authors had any experience in R, we delegated the
task to J. Helske, who was added as a co-author. Since R is very commonly used
in the field of statistics, having a ready R interface will hopefully attract even
more users to libeemd.

As suspected, by writing the core algorithm in a low-level language such as C,
the routines provided by libeemd are substantially faster than routines written
directly in interpreted languages such as R. In Publication III we benchmarked
libeemd against two existing R packages®, EMD['*¥] and hht[13°]. In these tests
libeemd was found to be two to three orders of magnitude faster. Even in use
cases where EMD is not the bottleneck, this magnitude of improvement is very
beneficial.

Although the libeemd project grew significantly beyond simply using EMD
for unfolding spectra, the implementation will hopefully prove useful far beyond
energy level statistics. Hopefully this will justify the scientific detour that was
made to create libeemd. It is the author’s suspicion that EMD and related
methods have not nearly reached their full potential, both in the development
of the methods, and in the application of the methods to various problems in
science.

3.4 Strong quantum scars in symmetric systems with local
perturbations

Publication IV describes the discovery of a new kind of quantum scarring. This
scarring is present in separable systems perturbed by local impurities, and it is
not explained by ordinary scar theory as introduced in Sec. 2.3. The road to this
discovery was quite long and indirect, so in addition to summarizing the results
the steps taken to obtain them are also discussed in the following section.

Project background

Quantum scarring was not the original topic of the research project. The original
goal was to extend the research done in Ref. 140 and study in more detail
and in a larger scale how local perturbations (e.g., impurity atoms) affect the
energy level statistics of quantum dots. The local perturbations were modeled by

6Several existing implementations were written in Matlab. However, as is standard in commercial
codes, the Matlab user agreement includes a vague noncompetition clause. This clause seemingly
forbids, among other things, benchmarking Matlab against competing products. These kinds of legal
shackles are one reason why the author prefers free software.
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adding randomly scattered bumps (e.g., Gaussian or Coulombic) to an otherwise
separable and classically integrable potential well.

A large number of bumps scattered around in space guarantees that the
classical system is, in terms of phase space volume, almost completely chaotic. If
the strength of the individual bumps is very low, the Lyapunov time of the system
can still be relatively long, placing the system in the realm of weak chaos. On the
other hand, the quantum spectrum will be close to the unperturbed spectrum
if the perturbation is small. For example, for some range in the perturbation
strength the spectrum will be accurately described by first-order perturbation
theory corrections to the unperturbed spectrum, and it will not be close to a
universal random matrix theory (RMT) spectrum.

Since there needs to be a significant discrepancy between the classically chaotic
phase space fraction and quantum measures of chaos at small bump strengths,
our goal was to study how the correspondence to the RMT spectrum develops
as the strength of the impurities is increased, and what is the dependence on
the Lyapunov exponent. With itp2d this could be studied for a large class of
quantum dot potentials and bump shapes, in external magnetic fields, and with
different distributions for placing the bumps.

A natural basis for solving the energy spectrum of a perturbed system is
the eigenstates of the unperturbed system. However, we decided to use itp2d
since it was more than capable of solving enough eigenstates for statistical
analysis, and trying different systems was quick as there was no need to solve the
unperturbed system separately. Even though higher energy eigenstates could
be solved by using the unperturbed basis, very high energies are not necessarily
very informative as the effect of the finite perturbation vanishes in the limit of
very large energies.

The energy level statistics confirmed our expectation that the effect of the
original symmetry lingers on for longer than one could expect from the chaoticity
of the corresponding classical system, especially in long-range correlations. This
also shows that in addition to taking into account symmetries (as discussed in
Sec. 2.1.1), near-symmetries need to be considered if chaotic properties of a system
are inferred by comparing energy level statistics to RMT. These preliminary
results, which are unpublished as of this writing, were however eclipsed by what
was seen in the eigenstates of the systems.

Scar observations

To our surprise, there was extensive and very strong scarring in the eigenstates
of the perturbed quantum dot potentials (see Fig. 3.5). This was surprising
as random bumps densely covering the potential should eliminate any short
periodic orbits. Even if there were some orbits remaining, they should be too
unstable to cause scars as strong as seen in the eigenstates. The effect also did
not seem to be specific to any particular unperturbed potential or impurity type.
Somehow the scarring was caused by the perturbation, as there were no scars
in the unperturbed system because of its symmetry. The following research
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Figure 3.5. Example of scarring in perturbed quantum dots. A plot of the potential
function is shown on the left. The unperturbed potential is V (r) = %rS ,and it is perturbed
with randomly scattered Gaussian bumps with amplitude A = 24. An example of a
strongly scarred eigenstate, eigenstate number n = 2720, is shown on the right, together
with a periodic orbit of the unperturbed system for comparison. The energy of the
eigenstate is approximately 489, so each individual bump is a small perturbation. There
are approximately a hundred bumps in the classically allowed region at this energy.

into what actually is causing the scars was carried out in collaboration with the
research group of E. ]. Heller and with L. Kaplan.

Of the various unperturbed potentials we had studied so far, the scarring
effect appeared to be particularly strong in the case of a circularly symmetric
potential well V() « r°. In this case, the dominant scars looked like rounded
five-pointed stars, or pentagrams (see Fig. 3.5), which was soon confirmed to be
the shape of the shortest non-trivial periodic orbit of the unperturbed potential
well. This potential and the pentagram-shaped scars are used in the following
discussion as an archetype of perturbation-induced scarring. Since the scarring
effect does not appear to be specific to the impurity potential shape, randomly
scattered Gaussians with a constant amplitude A and width w are used.

Unperturbed potentials of the form V (r) o« r* are especially useful for studying
the classical periodic orbits of the unperturbed system. Since the potential function
is a homogeneous function of r, classical trajectories with any total energy E
differ from each other only by a scaling in space and time. Therefore, the shape
of periodic orbits does not depend on E. Since the potential is also circularly
symmetric, its periodic orbits are easily enumerated (see, e.g., Ref. 141 or the
supplementary material of Publication IV).

The most natural potential explanation for the scarring was the existence
of short, moderately unstable periodic orbits in the perturbed system. This
would mean that some periodic orbits of the unperturbed system survive the
perturbation, potentially through some nontrivial cancellation of deflections
from separate bumps. However, this explanation became unlikely after it was
discovered that as a function of the bump amplitude A the scars in each eigenstate
did not appear to vanish or even change orientation (see Fig. 3.6). If a scar
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Figure 3.6. Scarred eigenstate shown in Fig. 3.5 shown as a function of the impurity
amplitude A. As A increases the scar becomes more pronounced, until reaching a
maximum visibility around A = 24 and fading away into a completely delocalized state.
During the lifetime of the scar its orientation does not appear to change.

was caused by a “miraculous cancellation” of deflections, the effect should be
extremely sensitive to the details of the impurity potential.

The angular orientations of the pentagram-shaped scars also appeared to be
fairly constant across a wide range of energies. For a given realization of the
random bumps, a few orientations were clearly preferred. This was another proof
that the scars were not caused by ordinary scar theory, but instead by some new
mechanism?’.

A simple explanation for the preferred orientations would have been that
there are gaps in the bumpy potential landscape at certain orientations. Naturally,
if an orientation would exist where the pentagram trajectory would not hit any
(or would hit atypically few) impurities, it would be much less unstable than the
others and thus preferred for scarring. However, this explanation was quickly
ruled out by studying systems with only a few bumps. In fact, the opposite of
this hypothesis appeared to occur in many cases — the scars often prefer to hit
as many bumps as possible. This behavior is quite counter-intuitive from the

“When discussing names for this apparently new breed of quantum scars the author proposed
“quantum scabs”, but this was considered too graphic. E. J. Heller used the term “Luukko scars” in
his talk given at the 2015 March meeting of the American Physical Society.
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point of view of classical stability, and further deepened the mystery of the scars.
From an application point of view, the “pinning” of the scars to the impurities is
encouraging, since it suggests that the preferred orientations can be selected in a
simple way.

Classical analysis

To conclusively rule out periodic orbits as the cause of the scars and to find
alternative explanations we spent an extensive amount of time studying the
classical phase space of the perturbed system. For performing the classical
analysis a new C++ code was written. For integrating the classical equations
of motion we used the sixth order symplectic integrator by S. Blanes and P. C.
Moan'*?l, which allowed accurate time-propagation even for relatively long
times.

Poincaré surface of section plots revealed that there are tiny island structures
in the classical phase space for small A, but they vanish before the scarring
phenomena even reaches its peak as a function of A. Moreover, the locations of
the last remaining islands did not correspond to the preferred orientations of the
scars.

We also investigated near-periodic orbits as a possible cause of the scarring.
This hypothesis was based on the general tendency of quantum mechanics to
smear details of the classical phase space. We also considered the possibility that
several near-periodic orbits, located close to each other, could conspire to create
the combined recurrence strength to cause scarring. Several near-periodic orbits
were found for small values of A, but their orientation did not appear to coincide
with the orientations of the scars except by accident, and their stability exponents
were too large to explain the scarring.

When studying near-periodic orbits in the system we discovered a new method
for locating such orbits. This method will be published separately and will not
be discussed here in more detail.

Wave packet analysis

As described in Sec. 2.3, the recurrence of Gaussian wave packets is a standard tool
for studying scars. Because the scars appear in the same preferred orientations
across a wide energy range, a single wave packet can localize on many scarred
eigenstates. Thus we expected that the recurrences would be exceptionally strong.

For preparing the initial wave packets we used position and momentum
coordinates that correspond to an exact periodic orbit in the unperturbed system.
The energy of the periodic orbit was set to the energy of the studied scarred
eigenstate, and its orientation, parametrized by a rotation angle o was matched
with the scar. Propagating the wave packets in time was performed by simply
expanding them in the eigenstates of the perturbed system, since they were
already available.
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To exclude tendency to recur simply due to classical effects (e.g., sticky areas
in phase space), we compared the wave packet recurrences to those obtained
with classical wave packets, i.e. the propagation of the corresponding classical
probability distribution. This distribution is given by the Wigner transform of
the quantum wave packet |p),

W(r,p;p) = /(p*(r +1)p(r—r")expQip - ') dr’. (3.4)

1
(2m)?
For a Gaussian |@) the Wigner distribution is a multivariate normal distribution.
The recurrence strength of W was calculated by sampling many classical initial
states (r,p) from the distribution W, propagating each in time, computing
Aw(t) = 3, W(ri(t), pi(t)), and normalizing so that Aw (0) = 1.
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Figure 3.7. Recurrence strength [{p|¢p(t)) |2 as a function of time for a Gaussian wave packet
|@) running along the scar shown in Fig. 3.5. Clear recurrences are seen with a period
that matches with the period T of the unperturbed periodic orbit. Classical recurrences
obtained by propagating the corresponding Wigner distribution are substantially weaker.

An example of a resulting recurrence plot can be seen in Fig. 3.7. As suspected,
there are clear periodic recurrences, and their period matches with the period T
of the unperturbed periodic orbit. The classical recurrences of the corresponding
Wigner distribution are much weaker even at short times, showing that the
recurrences are not caused by classical stickiness.

To assess the strength of the recurrences it is instructive to compare the heights
of the recurrence peaks to the ordinary linear scar theory result in Eq. (2.21). For
the recurrences shown in Fig. 3.7 the first recurrence peak is |[A(t = T) |2 ~ 0.64,
which in linear scar theory would correspond to x = 1.0. For comparison, the
least unstable near-periodic orbits found for a smaller bump amplitude A = 16
have xy = 5. The recurrences, and the scars, are indeed exceptionally strong
compared to the stability of the classical system.
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Figure 3.8. Heights of the recurrence peaks from Fig. 3.7 shown as a function of the wave
packet orientation angle a. The value of a used for Fig. 3.7 is marked with a blue cross.
The solid lines show the recurrences of the quantum wave packet, and the dashed lines the
classical Wigner distributions. Recurrences at t/T = 1,2, 4 are denoted by lines of different
colors. In an angular window of 21/5, after which the pentagram-shaped periodic orbit
will be the same, there are three peaks corresponding to the three preferred orientations
of scars seen in the particular system. The horizontal lines show the recurrence strengths
of the same wave packets without the perturbation, with dash-dotted lines showing the
quantum result and dotted lines the classical result.

One particularly interesting result from Publication IV was obtained by
looking at how the strengths of the quantum and classical recurrences depend on
the orientation angle « of the original wave packet. The resulting plot can be seen
in Fig. 3.8. As expected, the preferred orientations of the scars show up as strong
peaks at specific values of . What is much less obvious is that the quantum
recurrences are stronger than the classical ones even on average, regardless of a.

If the recurrence strengths are compared in the unperturbed system (these
values are shown as horizontal lines in Fig. 3.8) it can be seen that in that case
the classical recurrences are stronger than the quantum ones. Comparing the
perturbed and unperturbed recurrences together leads to an even more surprising
result — the quantum recurrences in the perturbed system, especially at later times,
are stronger than either classical or quantum recurrences in the unperturbed
system. It is quite peculiar that adding randomly placed dispersive impurities
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can enhance the coherent propagation of quantum wave packets. This property of
the scars is very promising for possible applications in quantum transport.

Perturbation theory explanation

After studying several much more complicated explanations for the scarring
seen in the perturbed quantum dot potentials, we found a simple answer in
quantum perturbation theory. This explanation, which is described in more
detail in Publication IV, is based on two key ingredients. Firstly, there are
special near-degeneracies in the eigenstates of the unperturbed system. Thus, a
sufficiently small perturbation will form eigenstates that are mostly localized to a
subspace spanned by these near-degenerate basis states. Secondly, the localized
nature of the perturbation selects scarred states from these subspaces.

The special near-degeneracies mentioned above are connected to classical
resonances in the unperturbed system. The classical motion in the unperturbed
system is separable to radial and angular oscillations, with oscillation frequencies
v, and vg, respectively. There is a periodic orbit whenever the oscillation
frequencies of the two motions are in resonance, i.e., when vg /v, is a rational
number a/b. Similar correspondence of resonances and periodic orbits exists in
any separable system.

The energy difference caused by the addition or removal of quanta in the
quantum system is approximately proportional to the corresponding classical
oscillation frequency. This results from the Bohr-Sommerfeld quantization
condition, which is an increasingly accurate approximation in the semiclassical
limit of high quantum numbers. Therefore, if a basis state with radial and angular
quantum numbers (#, m) is nearby in action to a periodic orbit corresponding
to a resonance of the oscillation frequencies vg/v, = a/b, the state (r + a, m — b)
will have approximately the same energy. This requires that both a2 and b are
relatively small integers. Thus shorter periodic orbits correspond to more accurate
near-degeneracy, which will lead to stronger scarring.

This classical resonance relation creates a “resonant set” of basis states defined
by (r + ia, m — ib) with integer i. As the classical oscillation frequencies do not
remain constant, all the resonant basis states are not nearly degenerate, but in
each resonant set there are some states that are very close to each other in energy.

A sufficiently small perturbation will form eigenstates that are mostly localized
to the near-degenerate part of some resonant subspace. Thus these eigenstates of
the perturbed system can be approximated by diagonalizing the Hamiltonian
in the basis of the nearly-degenerate states!'*?! - this is nothing but lowest-order
perturbation theory in the case of nearly-degenerate states. Since the basis states
are almost degenerate, the unperturbed part Hy of the Hamiltonian Ho + Vimp
is approximately only a shift in the eigenvalues, and thus the eigenstates can
be approximated further by only diagonalizing the perturbation part of the
Hamiltonian Vimp that comes from the impurities.

Because of how the quantum numbers of the resonant states are related to
the classical resonances, some linear combinations in the resonant subspace will
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trace out the path of the classical periodic orbit. This alone does not explain why
such scarred linear combinations are selected by the perturbation.

The scarred linear combinations are preferred because the perturbation Vimp
is localized in space into distinct bumps. By the variational principle, when
Vimp is diagonalized in the basis of the near-degenerate states, the eigenstate [¢)
that corresponds to the maximal eigenvalue maximizes the expectation value of
the perturbation (¢|Vimp[y). Similarly the minimal eigenvalue corresponds to
minimal (¢ |Vimp|1). When the perturbation is localized in space, an effective way
to extremize this quantity is to form a linear combination that is also localized in
space — by selecting a scarred state — and tuning its orientation so that it coincides
with as many or as few perturbation bumps as possible. This heuristic argument
is substantiated in Publication IV by reproducing the scarred eigenstates by
perturbation theory calculations and showing that their orientations extremize
O Vimpl ).

This theory is very different from the explanation of ordinary scarring, so
the two phenomena are connected by appearance but not by cause. The theory
explains well the observed properties of the scars that have been described
previously, such as the existence of preferred orientations that do not change
with A, and the observation that scars prefer to pin to the impurities. It also
provides an explanation to why the pentagram-shaped scars in the V() o r°
potential are so strong compared to scars seen in other systems. The pentagram
is the simplest star polygon with a self-crossing point. The probability amplitude
in a pentagram-shaped scar is concentrated near the self-crossing points, which
further strengthens the localization caused by maximizing (| Vimp|').

Possible connections to existing work

Since the scars are very distinctive and their explanation is fairly simple, we
had strong suspicions that we are not the first to come across the phenomenon.
However, no clear indication of a previous discovery was found in the literature.

Somewhat similar perturbation-induced scarring has been reported by C. C.
Liu et al. in Ref. 144. For a quantum billiard where an originally circular
boundary is deformed into a spiral, there are eigenstates with triangle-shaped
scars — periodic orbits of the unperturbed circular billiard. However, there is no
indication of preferred scar orientations in this case. In addition, it has later been
reported, although citing only unpublished data, that such scars are very rarel4].

The scars in the spiral billiard do contain the first ingredient for scars described
in Publication IV, namely the near-degeneracy resulting from the symmetry in the
circular system. Ref. 144 also discusses the role of degeneracy in the creation of
the scarred eigenstates. However, the second ingredient, the local perturbations,
is missing. This means that the scarring described in Ref. 144 is related to our
work, but substantially weaker.

The interest in the spiral billiard stems from experimental work with spiral-
shaped dielectric microcavities!'*®l, which show excellent lasing properties!!4”].
In these microcavities, resonances in the shape of periodic orbits of the cir-
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cular billiard, dubbed quasiscarred resonances, are found numerically'8l and
experimentally!!4].

Even though the existence of short periodic orbits — unstable or otherwise —in
the spiral billiard can be easily disproved!43] (hence the name quasiscars), more
recent analysis of the quasiscars has revealed that it is not a distinct phenomenon
to ordinary scarring. The quasiscarred resonances can be attributed to corrections
to ray dynamics that result from the openness of the system!!'®l. That is, the
quasiscarred resonances are real scars of a spiral billiard with a modified reflection
law, and they are not directly related to scarred eigenstates described in Ref. 144.

Another possibly connected observation is described in Ref. 151, where
scarring is studied in a slightly deformed rectangular billiard. Ref. 151 attributes
this to ordinary scarring, but it is possible that the scars are linked to the near-
degeneracy in the unperturbed system, similarly as in the spiral billiard. The
authors of Ref. 151 also do not rule out scarring caused by stable periodic orbits.

Conclusions

The new type of scarring described in Publication IV is the most important
result of this thesis. It is not common to find new physics in the stationary
Schrédinger equation. Although connections to existing research was found, the
strong scarring caused by symmetries broken by local impurities appears to be
overlooked by other researchers. On the other hand, we only found it when not
looking for it.

Much of the research on the scarring has so far been concentrated on the
prototypical example of the r° potential. Although instructive for explaining the
existence of scars and for presenting initial results, more detailed analysis of the
scarring in other systems is required. The theory that explains the scarring is very
general, requiring only a separable system and local impurities, so the scarring
might prove useful in systems well beyond the simple model systems tried so far.

The wave packet analysis performed for the scars sets the basis of applying
the scars in quantum transport, first with more realistic theoretical models and
possibly with experiments. From the point of view of applications in transport,
Fig. 3.8 summarizes the most interesting property of the scars: recurrences of a
wave packet are strengthened — greatly so at late times — in the presence of the
impurities. It is a peculiar finding that by adding randomly scattered impurities
the transmission of coherent wave packets can be enhanced.

Because the preferred orientations of the scars are selected by the impurity
positions by scar pinning, the preferred orientations are controllable. Many steps
remain between the present study and an application where a local perturbation
selectively enhances or suppresses conductance by the manipulation of scarred
states, but now the initial step has been taken.



Chapter 4

Conclusions and outlook

Concluding notes for each of the publications presented in this thesis were already
given in the previous chapter, so the general conclusions left for this chapter will
be brief.

The four publications in this thesis — although connected by a background
in spectral statistics and quantum chaos in two-dimensional nanostructures —
represent four distinct lines of future research.

The first line established that deriving a confinement potential that reproduces
ameasured addition energy spectrum of a quantum dash can be done with a direct
numerical search, thanks to the computational simplicity of density-functional
theory (DFT). The models used in Publication I and Ref. 7 are mainly useful for
explaining qualitative behavior — as was their purpose — but the same method
could be used in a more ambitious setting.

Two of the lines have produced program codes, itp2d and libeemd, for the
solution of common problems, the time-independent Schrédinger equation and
the decomposition of data to frequency components and a trend. Although for
the purpose of this thesis both Publication I and Publication III were intermediate
steps that arose from the need to solve these problems with more flexibility and
more efficiency, both projects have future prospects independent of the topic
of this thesis. Both codes represent a solid basis for future development of the
respective computational methods. Hopefully both itp2d and libeemd will
attract many users (and developers) in the years to come.

As a general remark, the scientific community would benefit from paying
more attention to the fostering of high quality, open source program codes, both
for the reliability and reproducibility of numerical results, and for avoiding
duplicate work.

The final, most vigorous line of future research is the further analysis of the
new scars described in Publication IV. Their generality, controllability, and the
transport applications hinted by wave packet analysis indicates a bright future
for this accidental discovery.
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2D

API

BCH
BGS

CEEMDAN

DCT
DFA
DFT
DST

EEMD
EMD

FFT

GaAs
GOE
GS
GSE
GSL
GUE

HK

IMF
InAs

two-dimensional
application programming interface

Baker—-Campbell-Hausdorff formula
Bohigas—Giannoni-Schmit conjecture

complete EEMD with adaptive noise

discrete cosine transform
detrended fluctuation analysis
density-functional theory
discrete sine transform

ensemble EMD
empirical mode decomposition

fast Fourier transform

gallium arsenide

Gaussian orthogonal ensemble
Gram-Schmidt orthonormalization
Gaussian symplectic ensemble
GNU Scientific Library

Gaussian unitary ensemble

Hohenberg—Kohn theorem

intrinsic mode function
indium arsenide
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ITP
KS
LDA
LDOS
LO
LSDA

MOSFET

NNLS
QDH

RMS
RMT

SEM
SET
SO
SVD

TDSE

imaginary time propagation

Kohn-Sham, used in terms relating to the Kohn-
Sham formalism of DFT

local density approximation
local density of states

Loéwdin orthonormalization
local spin-density approximation

metal-oxide-semiconductor field-effect transis-
tor

nearest neighbor level spacing
quantum dash

root mean square
random matrix theory

scanning electron microscope
single-electron transistor

subspace orthonormalization
singular value decomposition

time-dependent Schrédinger equation
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