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Analytical approach for the problems of dynamics and
stability of a moving web

Nikolay Banichuk, Juha Jeronen, Svetlana Ivanova, Tero Tuovinen1

Summary. Problems of dynamics and stability of a moving web, modelled as an elastic rod or
string, and axially travelling between rollers (supports) at a constant velocity, are studied using
analytical approaches. Transverse, longitudinal and torsional vibrations of the moving web are
described by a hyperbolic second-order partial differential equation, corresponding to the string
and rod models. It is shown that in the framework of a quasi-static eigenvalue analysis, for these
models, the critical point cannot be unstable. The critical velocities of one-dimensional webs,
and the arising non-trivial solution of free vibrations, are studied analytically. The dynamical
analysis is then extended into the case with damping. The critical points of both static and
dynamic types are found analytically. It is shown in the paper that if external friction is present,
then for mode numbers sufficiently high, dynamic critical points may exist. Graphical examples
of eigenvalue spectra are given for both the undamped and damped systems. In the examples,
it is seen that external friction leads to stabilization, whereas internal friction in the travelling
material will destabilize the system in a dynamic mode at the static critical point. The theory
and results summarize and extend theoretical knowledge of the class of models studied, and can
be used in various applications of moving materials, such as paper making processes.
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Introduction

Research into axially moving materials began in the last years of the 19th century, when
Skutch [34] published a paper on the transverse vibrations of a travelling elastic string
moving through two pinholes. The English-language literature in the area starts in the
1950s; among the first papers in English was the study by Sack [30], also on transverse
vibrations of travelling strings.

This field of research then gained momentum. Some classical early papers are e.g.
Archibald and Emslie [2], Miranker [15], Swope and Ames [35], Ames et al. [1], Simpson
[33], and Mujumdar and Douglas [22]; and the many papers by C. D. Mote, e.g. Mote
[16, 17, 18, 19]; and as a coauthor, Thurman and Mote [37]; Ulsoy et al. [40]; Ulsoy and
Mote [38, 39]; Mote and Wu [21].

Since then, the amount of research has grown tremendously. For a recent review focus-
ing on travelling strings only, see Chen [4], which alone cites 242 references. The range

1Corresponding author. tero.tuovinen@jyu.fi
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of topics has also expanded. The interest in moving materials has been fairly continuous
over the decades; for example, consider Chonan [5], Pramila [27, 28], Wickert and Mote
[44, 46, 45], Yang and Mote [47]; Mote and Wickert [20]; Lee and Mote [10]; Lin and
Mote [12, 13]; Renshaw and Mote [29]; Lin [11], Shen et al. [31], Parker [23], Marynowski
[14], Wang [42], Kong and Parker [7], Shin et al. [32], Wang et al. [43], Sygulski [36],
Kulachenko et al. [8, 9], and Vaughan and Raman [41]. The later studies have typically
investigated more complex cases, such as two-dimensional moving sheets (membranes and
plates), and moving materials with fluid–structure interaction. The latter is especially
important for lightweight materials, where the inertial contribution of the surrounding air
is significant.

From the viewpoint of analytical approaches, especially interesting of the early pa-
pers are Archibald and Emslie [2], where the relation between co-moving and laboratory
coordinates is briefly discussed; Swope and Ames [35], which goes into detail about the
natural vibration frequencies of a travelling string; and Simpson [33], where an analytical
solution based on factoring the characteristic polynomial is presented for the travelling
beam (but without external applied tension). Of the more recent ones, one should men-
tion at least Kong and Parker [7], where an approximate analytical solution is presented
for the eigenfrequencies of a travelling beam with small bending rigidity.

The present paper focuses on the fundamental questions of transverse, longitudinal and
torsional vibrations of a one-dimensional travelling web, modelled as a continuous elastic
element. These are all described by a hyperbolic second-order partial differential equation,
corresponding to the string and rod models. The critical velocities of one-dimensional
webs, and the arising non-trivial solution of free vibrations, are studied analytically using
a classical approach.

It will be shown that, in the framework of a quasi-static eigenvalue analysis based on
Bolotin’s concept of stability (see Bolotin [3]), for these models the critical point cannot be
unstable. Examination of the initial postcritical behaviour based on the explicit solution
of the stability exponent is seen to point to the same conclusion. This contrasts classical
wisdom (e.g. Wickert and Mote [45]), but Wang et al. [43] have obtained a similar result
for the ideal string using Hamiltonian mechanics.

The analysis will then be extended into the case where damping is included in the
model. It will be shown that if external friction is present, then for mode numbers
sufficiently high, dynamic critical points may exist.

Analyses of both the undamped and damped cases are presented with graphical exam-
ples of the obtained eigenvalue spectra. It will be seen that while external friction (such
as the viscosity of a surrounding medium) causes the vibration to decay, internal friction
in the travelling material will destabilize the system at the static critical point, leading
to a dynamic type of instability there.

Governing equations and reduction into general form

Consider a narrow thin web supported by rollers at x = 0 and x = ℓ (see Figure 1), mod-
elled by a continuous one-dimensional elastic element (rod or string), having rectangular
cross-section of given width and thickness.

At first, consider a small amplitude torsional vibration of the web, described by the
angle function ϑ(x, t), which represents the angle of torsion per unit length of the rod in
the segment 0 ≤ x ≤ ℓ. The dynamics of free torsional small-amplitude vibrations of a
classical, stationary (non-travelling) ideal elastic rod is governed by the partial differential
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Figure 1. Thin axially moving narrow web modelled as one-dimensional elastic element (rod or string)
and supported at x = 0 and x = ℓ. Here the transverse displacement w is shown.

equation

ρI0
∂2ϑ

∂t2
−GIk

∂2ϑ

∂x2
= 0 , 0 < x < ℓ (1)

with boundary conditions
(ϑ)

x=0 = 0 , (ϑ)
x=ℓ

= 0 , (2)

where ρ is the material density, I0 the moment of inertia of the web cross-section around
the x-axis, GIk is the torsional rigidity, G is the shear modulus and ϑ = ϑ(x, t) is the
angle of torsion and Ik is polar moment of inertia.

Consider now an ideal straight rod, which moves in the x direction and performs
torsional vibrations. The rod is travelling at a constant velocity V0 between rollers, which
are fixed at x = 0 and x = ℓ. We will set up the problem for the moving rod using
the Euler laboratory coordinate system (x, t), see Figure 1, and the co-moving coordinate
system (x̃, t), and the notion of the material derivative (also known as the Lagrange
derivative or the total derivative). We have

x = x̃+ V0t ,
∂ϑ ( x(x̃, t) , t )

∂x̃
=
∂ϑ

∂x

∂x

∂x̃
=
∂ϑ

∂x
, (3)

dϑ

dt
≡

(

∂ϑ

∂t

)

x̃=const.

=
∂ϑ

∂t
+ V0

∂ϑ

∂x
, (4)

d2ϑ

dt2
≡

(

∂

∂t
+ V0

∂

∂x

)(

∂ϑ

∂t
+ V0

∂ϑ

∂x

)

=
∂2ϑ

∂t2
+ 2V0

∂2ϑ

∂x∂t
+ V 2

0

∂2ϑ

∂x2
. (5)

In (4)–(5) and also in the rest of this paper, ∂/∂t without subscript denotes partial differ-
entiation with respect to time in the Euler coordinate system, i.e. ∂/∂t ≡ (∂/∂t)x=const..

Applying transformations (3)–(5), we obtain the equation of small torsional vibrations
of an axially travelling rod

ρI0
∂2ϑ

∂t2
+ 2ρI0V0

∂2ϑ

∂x∂t
+ ρI0V

2
0

∂2ϑ

∂x2
−GIk

∂2ϑ

∂x2
= 0 , (6)

The boundary conditions are those stated in the equation (2) i.e.

(ϑ)
x=0 = 0 , (ϑ)

x=ℓ
= 0 .
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Table 1. Definitions of state variable U , coefficients a, b and c, and critical velocities C, in the three
considered cases. The coefficients and critical velocities in each case satisfy the relation b2 − ac = a2C2.

Vibration type Eq. U a b c C

Torsional (6) ϑ ρI0 ρI0V0 ρI0V
2
0 −GIk

√

GIk/ρI0
Longitudinal (7) u ρS ρSV0 ρSV 2

0 − ES
√

E/ρ

Transverse (9) w m mV0 mV 2
0 − T0

√

T0/m

Vibrations can also arise in the longitudinal direction. If the travelling web performs
small-amplitude longitudinal vibrations (independent of the torsional vibrations and su-
perposed onto the axial travelling motion), then the dynamics of the rod can be described
by the analogous equation and boundary conditions

ρS
∂2u

∂t2
+ 2ρSV0

∂2u

∂x∂t
+ ρSV 2

0

∂2u

∂x2
− ES

∂2u

∂x2
= 0 , (7)

(u)
x=0 = 0 , (u)

x=ℓ
= 0 , (8)

where S is the cross-sectional area of the web, E the Young modulus of the material,
and u = u(x, t) the longitudinal displacement. Defined in the Euler coordinate system,
the value u(x, t) describes the longitudinal displacement, at time instant t, that the web
experiences at laboratory coordinate x, compared to a corresponding state where the only
axial motion is the uniform travelling motion at velocity V0.

Yet another type of small-amplitude vibrations of an axially moving elastic web are
transverse vibrations, described by the transverse displacement function w, which is gov-
erned by the following second-order partial differential equation and boundary conditions

m
∂2w

∂t2
+ 2mV0

∂2w

∂x∂t
+mV 2

0

∂2w

∂x2
− T0

∂2w

∂x2
= 0 , (9)

(w)
x=0 = 0 , (w)

x=ℓ
= 0 . (10)

Here m ≡ ρS is the mass per unit length of the web. This is the well-known one-
dimensional string model of the elastic web, axially moving in the x direction, subjected
to a constant tensile load T0 > 0, and having zero bending rigidity.

The first three terms in (9) come from the second material derivative (5), and the
term T0∂

2w/∂x2 represents the restoring force of the axial tension. The first three terms
physically represent, respectively, the accelerations of local inertia, the Coriolis effect, and
the centrifugal effect.

All three cases (6), (7) and (9) are of the same mathematical form. It is convenient to
write them as a general second-order constant-coefficient partial differential equation

a
∂2U

∂t2
+ 2b

∂2U

∂x∂t
+ c

∂2U

∂x2
= 0 , 0 < x < ℓ . (11)

See Table 1 for the definitions of U , a, b and c in each particular case.
Because the coefficients are constants, the type of equation (elliptic, parabolic or

hyperbolic) holds globally regardless of x and t. The discriminants

D ≡ b2 − ac (12)
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are, respectively,

Dϑ = ρI0GIk > 0 , Du = ρS2E > 0 , Dw = mT0 > 0 , (13)

and hence the equations (6), (7) and (9) are always hyperbolic regardless of the value of
axial velocity V0.

This observation reflects physical intuition; the introduction of axial velocity should
not change the basic vibrational nature of the mechanical response. Indeed, in the co-
moving (Lagrange) coordinate system, the mechanics is identical to that of the stationary
string or rod subjected to moving boundaries.

Equation (11) requires two initial and two boundary conditions. In the following free
vibration analysis, we set only the boundary conditions, and the solution will have free
parameters. Free vibration analysis is only concerned with determining possible motions
of the unloaded system, i.e. the nontrivial solutions of the homogeneous partial differential
equation (11).

The considered boundary conditions (2), (8) and (10) are, in each case, zero Dirichlet:

(U)
x=0 = 0 , (U)

x=ℓ
= 0 . (14)

Mechanical response at the critical velocity

From Table 1, we observe that for the problems studied in this paper, the coefficients a
and b in (11) are always positive, but the sign of c is indeterminate. The special case
where the coefficient c vanishes is of special interest. If the other problem parameters are
considered fixed, this can always be realized by choosing a particular value for V0 such
that the two different contributions to the coefficient c cancel exactly.

In the following, we will call this special value of V0 the critical velocity, denoted with
the symbol C. See the corresponding column in Table 1 for the critical velocities in the
different cases.

At the critical velocity, V0 = C, equation (11) simplifies into (after dividing by a and
noting b/a = V0)

∂2U

∂t2
+ 2C

∂2U

∂x∂t
= 0 . (15)

The equation (15) is still globally hyperbolic, since C2 > 0. From (15) it follows that

∂

∂t

(

∂U

∂t
+ 2C

∂U

∂x

)

= 0 , (16)

and if we introduce the notation

v ≡ ∂U

∂t
, (17)

equation (16) can be rewritten as

∂v

∂t
+ 2C

∂v

∂x
= 0 . (18)

Thus, the velocity-like quantity v obeys the (homogeneous) first-order transport equation
along the rod or string, with the transport of this quantity occurring at constant velocity
2C. Hence, we have

v(x, t) = g(x− 2Ct)
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for some differentiable function g. The function U(x, t) is defined as

U(x, t) = f(x) + h(x− 2Ct) . (19)

with some constant in time function f(x) and differentiable function h(x − 2Ct) related
with g(x− 2Ct) by the equation

v =
∂U

∂t
= (−2C)h′(x− 2Ct) ≡ g(x− 2Ct) . (20)

The boundary conditions (14) imply, by (17), that also

(v)
x=0 = 0 , (v)

x=ℓ
= 0 (21)

for all t. Hence, in order to avoid violation of the boundary conditions, we must have
v(x, t) = g(x − 2Ct) ≡ 0, and the considered rod or string, if travelling at the critical
velocity, must stay in a steady-state configuration. This very compact way to solve the
critical velocity case was discussed by Wang et al. [43].

It is possible to find the function f(x) explicitly by using a more direct approach.
First, let us integrate equation (16) with respect to t, obtaining

∂U

∂t
+ 2C

∂U

∂x
= h(x) . (22)

Equation (22) is the standard nonhomogeneous transport equation. Its solution is (Polyanin
[24])

U(x, t) =
1

2C

ˆ

h(x) dx+ g(x− 2Ct) . (23)

As above, this is a linear superposition of two components: a steady-state one, and one
being transported toward the +x direction at velocity 2C. Following the same argument
about boundary conditions as above, we find g(x−2Ct) ≡ 0. By differentiating (23) with
respect to x, and then setting t = 0, we can determine

h(x) = 2C
∂U

∂x
(x, 0) (24)

and finally, by substituting (24) back into (23), obtain

U(x, t) = U(x, 0) . (25)

Hence, when the axial motion occurs at the critical velocity C given in Table 1, the initial
condition for the position, namely

(U)
t=0 = f1(x) (26)

(where f1(x) is a given function), completely determines the solution for all t. Because
the solution (25) does not allow for time-dependent changes, the other initial condition,
namely

(v)
t=0 ≡

(

∂U

∂t

)

t=0

= f2(x) , (27)

must have f2(x) ≡ 0 in order to be compatible with the solution (25).
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We conclude that if this compatibility holds for our initial conditions, then, upon a
quasi-static transition to the limit state V0 = C, the state variable profile of a freely
vibrating axially travelling elastic element (rod or string) will “freeze” into the shape it
had when the limit state was reached.

In practice, the compatibility condition (v)t=0 ≡ 0, 0 < x < ℓ is reasonable for many
physically admissible situations for the considered model near V0 = C, because as we will
see below, all eigenfrequencies of the travelling elastic element tend to zero in the limit
V0 → C.

Nevertheless, the quasi-static analysis has its limitations. For example, consider the
case where we would like to initially set V0 = C − ε (with ε > 0 small), (U)t=0 ≡ 0,
(v)t=0 = f2(x) 6≡ 0, and then perform a transition to V0 → C. The quasi-static analysis is
not applicable, because the given initial condition for v violates the compatibility condition
f2(x) ≡ 0. If this category of cases is to be analyzed, a more general treatment of the
dynamics including the effects of accelerating motion (with constant V0 replaced by a
function V = V (x, t)) is required.

Transformation into canonical form

For the rest of the discussion in this paper, it is assumed that V0 6= C. Let us briefly go
through the derivation of an analytical solution for the free vibrations of the considered
travelling elastic element. We will proceed in a manner similar to Swope and Ames [35].

Consider equation (11). A systematic way to derive the solution is to diagonalize the
principal part of the operator (see e.g. Polyanin et al. [26] or references therein). Because
equation (11) contains only second-order derivatives, we have only the principal part to
consider.

It is known that the second-order partial differential equation in two variables can
always be transformed into one of the canonical forms, depending on its type. We start
with the characteristic equation of (11), namely

a (dx)2 − 2bdxdt+ c (dt)2 = 0 . (28)

Note that the coefficients a,b and c are constants. Because the discriminant (12) is positive
for the problems under consideration, and c 6= 0 (because V0 6= C), equation (28) can
be understood as a second-order algebraic equation in the variable dt/dx, with the real-
valued solutions

dt

dx
=

1

c

(

b±
√
b2 − ac

)

. (29)

From (29), we obtain

cdt−
(

b±
√
b2 − ac

)

dx = 0 ,

and by integrating both sides,

ϕ±(x, t) ≡ ct−
(

b±
√
b2 − ac

)

x = κ± (30)

for the + and − terms, respectively. Assigning a value to the constants κ± picks one
specific curve from the family of characteristics; equation (30) represents the whole family.
It is seen that the characteristics ϕ± of equation (11) are straight lines, as expected.

Performing a change of variables (leaving κ± free, taking only the left-hand side)

X ≡ ϕ+(x, t) , Y ≡ ϕ−(x, t) , (31)
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the original equation (11) transforms into the first canonical form of the wave equation
(i.e. hyperbolic second-order partial differential equation),

∂2U

∂X∂Y
= 0 .

Changing variables again, now to ξ and η such that

X = ξ − η , Y = ξ + η , (32)

i.e.,

ξ =
1

2
(X − Y ) , η =

1

2
(X + Y ) , (33)

we arrive at the second canonical form of the wave equation,

∂2U

∂η2
− ∂2U

∂ξ2
= 0 . (34)

The mixed derivative has been eliminated. The form (34) is particularly convenient,
because it admits a separable solution in the form U(ξ, η) ≡ g1(ξ)g2(η). The standard
separation technique can be used to carry out the rest of the solution process; however,
there is a more compact approach that we will use below.

Analytical solution of free vibrations of a travelling elastic element

In the following, we will use dimensionless variables. Let

x̂ = x/λ , t̂ = t/τ , Û = U/δ , (35)

where the hat indicates a dimensionless quantity. Here λ is a characteristic length, τ is a
characteristic time, and δ is a characteristic value of the state variable. The characteristic
values are arbitrary, and are usually chosen in some convenient manner for each problem
under discussion. A typical choice for the coordinate scalings is λ = ℓ, τ = ℓ/C, but for
the moment, we will leave these scalings free to be chosen later.

As for the state variable Û , we may insert U = Ûδ into (11), and cancel δ, since the
equation is linear in U and the right-hand side is zero. Hence δ can be dropped from
further consideration.

Let us insert the dimensionless variables (35) into (11), and multiply the equation by
τ 2/a. We will omit the hat from the notation. We obtain another equation of the form
(11),

α
∂2U

∂t2
+ 2β

∂2U

∂x∂t
+ γ

∂2U

∂x2
= 0 , 0 < x < 1 , (36)

where U , x, and t are now the dimensionless variables (35), and the constant coefficients
are

α = 1 , β =
τb

λa
=
τ

λ
V0 , γ =

τ 2c

λ2a
=
τ 2

λ2
(

V 2
0 − C2

)

. (37)

The last forms follow from Table 1. For the dimensionless coordinates x and t, we have
the coordinate transforms

ξ = −
(

√

β2 − γ
)

x , η = γt− βx , (38)
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Figure 2. The (x, t) and (ξ, η) coordinate systems in the plane. The shaded parallelogram indicates
an area delimited by constant values for the (ξ, η) coordinates. On the edges of such shapes, boundary
conditions (but not initial conditions) can be easily enforced by a solution separable in (ξ, η).

where (31)–(33) and α = 1 have been used. The transforms (38) bring (36) directly
into the form (34). Lines of constant x transform into lines of constant ξ, so a suitable
separable solution in (ξ, η) coordinates will satisfy boundary conditions at constant x.

It should be mentioned that this solution approach is only useful for free vibration
analysis, because initial conditions cannot be easily enforced. This is due to the fact that
η is a linear combination of x and t, and hence lines of constant η are not parallel to either
of the axes in the original (x, t) coordinate system. See Figure 2.

A compact way to find the free vibration solution of (34) in the transformed (ξ, η)
coordinates is to use the standard complex-valued time-harmonic trial function

U(ξ, η) = exp(sη)W (ξ) . (39)

Substituting (39) into (34) will result in

s2W −W ′′ = 0 , i.e., W ′′ = s2W . (40)

This is a linear eigenvalue problem for (s2,W ), where s2 is the eigenvalue and W ≡ W (ξ)
is the eigenfunction. Considering (40) and the corresponding boundary conditions, we see
that the eigenfunction must be

W (ξ) = sin(ωξ) . (41)

To obtain ω, recall the coordinate transform (38) between x and ξ. Observe that

β2 − γ =
τ 2

λ2a2
(

b2 − ac
)

, b2 − ac = a2C2 ,

which leads to
√

β2 − γ =
Cτ

λ
. (42)
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In order for (41) to satisfy the boundary conditions, for dimensional x = ℓ, i.e. dimen-
sionless x = ℓ/λ, we must have ωξ = kπ for the corresponding ξ, where k is a free nonzero
integer. In other words, for the kth vibration mode it must hold that

ω = − kπ
(

√

β2 − γ
)

· (ℓ/λ)
= −kπλ

Cτ
· λ
ℓ
= −kπℓ

Cτ
. (43)

The last form is obtained by choosing the characteristic length as λ = ℓ. Furthermore, in
order to satisfy the partial differential equation (34), we must have

s2 = −ω2 , i.e., s = ±iω . (44)

Thus, the complex-valued solution for the kth mode, expressed in (ξ, η) coordinates is

U(ξ, η) = exp(skη) sin(ωkξ) , (45)

where the subscript k denotes the dependence on the mode number k of both the exponent
s = sk and the mode shape parameter ω = ωk.

By transforming back using (44), (43) and (38), we obtain the solution in the dimen-
sionless (x, t) coordinates. To make the solution easier to follow, note that by using (37)
and λ = ℓ, equation (36) can be rewritten as

∂2U

∂t2
+ 2V0

τ

ℓ

∂2U

∂x∂t
+ (V 2

0 − C2)
τ 2

ℓ2
∂2U

∂x2
= 0 , 0 < x < 1 . (46)

The complex-valued solution for the kth vibration mode, with the considered zero Dirichlet
boundary conditions at x = 0 and x = 1, is

U(x, t) = E exp

(

±i
kπℓ

Cτ

[

(

V 2
0 − C2

) τ 2

ℓ2
t− V0

τ

ℓ
x

])

sin(kπx) , (47)

where the ± corresponds to the ± in (44), i ≡
√
−1, and the constant coefficient E is free.

As will be observed below, the real and imaginary parts of (47) are real-valued solutions.
It is seen that there is an exp factor in the solution (47), and it admits separation in

x and t. That is, U(x, t) = χ1(x)χ2(t) for some functions χ1 and χ2; specifically, the form
of both functions is exp.

Thus, equation (47) represents time-harmonic behaviour, and we can apply Bolotin’s
approach for determining the dynamic stability (see Bolotin [3]). The stability exponent
of the kth mode is the coefficient of t in the exp. For the kth vibration mode, we have

s∗
k
= ±i

kπτ

Cℓ

(

V 2
0 − C2

)

. (48)

We see that if V0 → C (or V0 → −C), s∗
k
→ 0 for all k. Hence the free vibration solution

agrees with the steady state solution obtained for the special case.
For all V0 6= C, the stability exponent s∗

k
is always pure imaginary. Thus, the axially

travelling elastic element will undergo undamped harmonic vibrations, as expected. The
fact that this is the case also for any |V0| > C suggests that, at least when judged by the
initial postcritical behaviour, the critical points V0 = ±C for the considered models are
neutrally stable.

The star in the symbol s∗
k
is a reminder of the fact that (48) is expressed in the original

(dimensionless) (x, t) coordinate system, instead of the transformed (ξ, η) coordinates
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used in (44). The exponent s∗
k
is the one that determines the elastic stability behaviour.

Because η = γt − βx, and no additional transformations were needed to produce the
solution U(x, t), the relation between the stability exponents in the two coordinate systems
is simply s∗

k
= γsk.

Now consider the problem (11), (14), augmented with some initial conditions matching
a free vibration solution, as an initial boundary value problem. Because a purely time-
harmonic vibration (Re s∗

k
≡ 0) never exceeds its original maximum amplitude (defined as

M ≡ max |U | taken over one period), we conclude that if the original maximum amplitude
at V0 = 0 was “small” (M = ε for ε > 0 small), so is the maximum amplitude at every
V0, as V0 is increased quasi-statically. This holds especially in the limit of the dynamic
free vibration solution as V0 → C (and also as V0 → −C). On the other hand, we have
seen that the limit solution is a steady state. Because the limit solution does not depend
on time, it cannot become unstable in the Bolotin sense.

Gathering these facts together, we conclude that by the performed quasi-static anal-
ysis, the critical point of the presently considered model at V0 = ±C cannot be unstable.
This contrasts classical wisdom (e.g. Wickert and Mote [45]), but Wang et. al. [43]
have obtained a similar result for the ideal string via a completely different route; their
argument was based on Hamiltonian mechanics.

This result is of fundamental theoretical importance. However, since no practical
physical system has exactly zero bending rigidity, its main practical relevance is as an
illuminating example underlining the significance of including in the model all relevant
aspects of system behaviour; in this case, bending rigidity, however small.

If one is interested only in an approximate value for the critical velocity for materials
with small bending rigidity, the string model considered here is already sufficient. The
introduction of small bending rigidity has no major effect on the value of the critical ve-
locity (see e.g. Kong and Parker [7] for an analytical approach), even though it completely
changes the qualitative behaviour of the model around the critical point.

Example and discussion

A plot of the eigenfrequency spectrum described by equation (48), as a function of the
axial velocity V0, is provided in Figure 3 up to mode number k = 10. The parameter values
correspond to the model of a narrow panel in the membrane limit with T0 = 500N/m,
m = 0.08 kg/m2, and ℓ = 1m. The characteristic time τ was chosen as τ = ℓ/C, which
leads to

√

β2 − γ = 1, see equation (42).
We observe that the eigenvalues (48) come in pairs. This is a common feature of

undamped gyroscopic systems, and is due to the structure of the characteristic equation.
If s is an eigenvalue of such a system, then −s is also an eigenvalue. For the relation of
axially moving materials to classical gyroscopic systems, see Wickert and Mote [45].

From (47), the real and imaginary parts of the solution follow easily, by using the fact
exp(a+ bi) = exp(a) exp(bi) and Euler’s formula exp(iφ) = cosφ+ i sinφ. We have

ReU(x, t) = E cos

(

±kπℓ
Cτ

[

(

V 2
0 − C2

) τ 2

ℓ2
t− V0

τ

ℓ
x

])

sin(kπx) , (49)

ImU(x, t) = E sin

(

±kπℓ
Cτ

[

(

V 2
0 − C2

) τ 2

ℓ2
t− V0

τ

ℓ
x

])

sin(kπx) . (50)

That these are indeed real-valued solutions of (46) can be easily verified by substitution.
By comparing (49) and (50), it is obvious that their only difference is a phase shift
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Figure 3. Eigenvalues of the axially moving ideal one-dimensional web, up to vibration mode k = 10.
Analytical result, equation (48). Re s∗

k
≡ 0 for all k and V0. At the critical point V0 = C, Im s∗

k
= 0 for

all k.

with regard to the variable η = γt − βx, because cosφ = sin(φ + π/2) for all φ ∈ R.
Observe that while the original complex-valued solution (47) is separable in x and t, i.e.
U(x, t) = χ1(x)χ2(t), its real and imaginary parts are not.

To finish this section, let us list some alternative representations for the solution, and
observe certain properties from them. A classical way to solve the free vibration problem
with constant coefficients is to directly substitute U(x, t) = exp(st)W (x) into (36), leading
to a homogeneous ordinary differential equation in W (x),

s2W + 2βsW ′ + γW ′′ = 0 . (51)

Equation (51) with the boundary conditions W (0) = W (1) = 0 is then solved. One way
is to substituteW (x) = exp(qx)Z(x) with constant q, and then choose the value of q such
that the substitution eliminates the first-order term. The resulting equation for the new
unknown Z(x) then becomes similar to (40), which is easily solved.

Once the general solution is obtained, the admissible values of s are determined from
the condition that a nontrivial solution W (x) 6≡ 0 must be possible. If the two linearly
independent solutions of (51) are denoted W1(x) and W2(x), the zero Dirichlet boundary
conditions require that

W (0) = a1W1(0) + a2W2(0) = 0 ,

W (1) = a1W1(1) + a2W2(1) = 0
i.e.

[

W1(0) W2(0)
W1(1) W2(1)

] [

a1
a2

]

= 0 ,

which, as is well known, can have nontrivial solutions (a1, a2) 6= (0, 0) if and only if the
determinant vanishes,

W1(0)W2(1)−W2(0)W1(1) = 0 .

The end result is

W (x) = E [exp(−ikπ [1 + ν] x)− exp(+ikπ [1− ν] x)] , 0 < x < 1 , (52)
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where

ν ≡ V0
C
, (53)

the complex-valued amplitude coefficient E is free, and x is the dimensionless space co-
ordinate. From (52), it is readily apparent that if V0 = 0, the space component reduces
to sin(kπx), by choosing E = −1/2i and again applying Euler’s formula. Nonzero V0
introduces a shift into the exponent in both terms, and in this general case, the space
component W (x) can no longer be reduced into a real-valued form.

After applying some trigonometric identities, (52) can be rewritten as

W (x) = F sin(kπx) exp(−ikπνx) , 0 < x < 1 , (54)

where the coefficient F = −2iE. From this representation, a velocity-dependent phase
shift along the web (as reported e.g. by Wickert and Mote [45]) is apparent.

When the time component is included into (52), the full solution is

U(x, t) = E exp(iC
τ

ℓ

[

ν2 − 1
]

kπt) [exp(−ikπ [1 + ν] x)− exp(+ikπ [1− ν] x)]

≡ E exp(iC̃t)
[

exp(iÃx)− exp(iB̃x)
]

= E
[

exp(i[Ãx+ C̃t])− exp(i[B̃x+ C̃t])
]

= E
[

exp
(

i
〈

(x, t), (Ã, C̃)
〉)

− exp
(

i
〈

(x, t), (B̃, C̃)
〉)]

, (55)

where we have defined the constants

Ã = −kπ [1 + ν] , B̃ = +kπ[1− ν] , C̃ = C[τ/ℓ][ν2 − 1]kπ ,

and 〈·, ·〉 denotes the usual scalar product. From this form it is easily seen that when
considered in the space-time plane, the complex-valued solution is a superposition of two
plane waves with different directions of propagation.

From (55) it is also directly obvious why the real and imaginary parts of the solu-
tion can satisfy equation (36) separately. The differentiation in the Coriolis term is of
the second order when considered in the (x, t) plane, which conveniently eliminates the
imaginary unit that would result from first-order differentiation of (55) with respect to
only either x or t.

An alternative and more general way to make this final observation is as follows. Let
us write the complex-valued function as U = Re (U)+ i Im (U). For any linear differential
operator L with real coefficients, observe that

Re (L(U)) = Re [L (Re (U) + i Im (U))]

= Re [L (Re (U)) + iL (Im (U))]

= L (ReU) (56)

and similarly for the imaginary part. For example, for (36), L is given by

L(U) ≡ α
∂2U

∂t2
+ 2β

∂2U

∂x∂t
+ γ

∂2U

∂x2
,

and we observe that in this case the requirement of real-valued coefficients holds. Similarly,
the requirement cannot hold for (51), where L is given by

L(W ) ≡ s2W + 2βs
∂W

∂x
+ γ

∂2W

∂x2
,

because s∗
k
is imaginary by equation (48).
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Travelling elastic element with friction

Internal or external friction is often modelled by adding first-order damping terms to
equation (36). See e.g. Vaughan and Raman [41] for the case of a travelling plate, where
the external friction caused by the viscosity of the surrounding medium plays a role.

It is fairly simple to generalize the above analysis to cover the case with damping. We
will also add a linear reaction term (elastic foundation of the classical Winkler type) to
the equation, because as we will see, the solution process will in any case generate one.
It is instructive to see how the generated reaction term relates to the original one, if one
was originally present. Consider the partial differential equation

a
∂2U

∂t2
+ 2b

∂2U

∂x∂t
+ c

∂2U

∂x2
+ A1

∂U

∂t
+ A2

∂U

∂x
+ BU = 0 , 0 < x < ℓ . (57)

Equation (57) follows the form of (36), but with damping and linear reaction terms added.
It is the general constant-coefficient second-order autonomous homogeneous partial dif-
ferential equation in two variables.

External friction in its most basic form appears as a nonzero value for A1. This occurs,
for example, when the travelling elastic element vibrates in a stationary surrounding
medium. If the surrounding medium is in axial motion, independent of the axial velocity
V0 of the travelling material, we have the case where both A1 and A2 are nonzero.

If the travelling material experiences internal friction, we will have A2 = V0A1, because
internal phenomena operate in the co-moving coordinate system. When we look at the
travelling material in the Euler coordinate system, the d/dt ≡ (∂/∂t)x̃=const. (related to
internal friction) will be transformed into the material derivative, as was discussed at the
beginning (equation (4)).

As above, we will use the zero Dirichlet boundary conditions for U , (14). Again, let
us introduce dimensionless variables and multiply (57) by τ 2/a to obtain

α
∂2U

∂t2
+ 2β

∂2U

∂x∂t
+ γ

∂2U

∂x2
+ ψ1

∂U

∂t
+ ψ2

∂U

∂x
+ ψ3U = 0 , 0 < x < 1 , (58)

where α, β and γ are given by (37) and

ψ1 = A1

τ

a
, ψ2 = A2

τ 2

λa
, ψ3 = B

τ 2

a
. (59)

Equation (58) can be reduced to the Klein–Gordon equation, which can be solved using
the same techniques as above. We begin by eliminating the mixed second derivative, as
was done for (36) earlier. It is easy to confirm that the coordinate transformation (38)
works also here. The first-order terms become, by the chain rule,

∂U

∂t
=
∂U

∂η

∂η

∂t
+
∂U

∂ξ

∂ξ

∂t
= γ

∂U

∂η
, (60)

∂U

∂x
=
∂U

∂η

∂η

∂x
+
∂U

∂ξ

∂ξ

∂x
= −β∂U

∂η
−
√

β2 − γ
∂U

∂ξ
. (61)

Note that ∂U/∂x will contribute to both ∂U/∂η and ∂U/∂ξ. By defining

κ1 ≡ ψ1γ − ψ2β , κ2 ≡ ψ2

√

β2 − γ , (62)
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we have
∂2U

∂η2
− ∂2U

∂ξ2
+ κ1

∂U

∂η
− κ2

∂U

∂ξ
+ ψ3U = 0 . (63)

The signs of κ1 and κ2 have been chosen so that the signs of the first-order terms match
the second-order ones. Next, to remove the first-order terms, we use the technique that
reduces the telegraph equation into the Klein–Gordon equation (Polyanin [25]). Let

U(ξ, η) ≡ exp(pη)Y (ξ, η)

with p = −κ1/2, and Y (ξ, η) an unknown function to be determined. This eliminates
∂U/∂η. A similar substitution can be used to eliminate ∂U/∂ξ. The result is

U(ξ, η) ≡ exp

(

−1

2
[κ1η + κ2ξ]

)

Z(ξ, η) , (64)

and (63) becomes the Klein–Gordon equation for the unknown function Z(ξ, η),

∂2Z

∂η2
− ∂2Z

∂ξ2
= rZ , (65)

with

r ≡ 1

4

(

κ
2
1 − κ

2
2 − 4ψ3

)

. (66)

If r = 0, the rest of the solution process reduces to the undamped case analyzed further
above. We will assume that r 6= 0. The final task is to find a free vibration solution for
(65). We will again use the classical time-harmonic trial function

Z(ξ, η) = exp(sη)G(ξ) , (67)

obtaining
s2G−G′′ = rG , i.e. G′′ = (s2 − r)G . (68)

Equation (68) differs from the previous eigenvalue problem only in that the eigenvalue
has shifted from s2 to s2 − r. Thus, by (68) and the boundary conditions (14) (which are
inherited by G(ξ)) we again have

G = sin(ωξ) , (69)

where ω is to be determined using (14). By the original argument, and again choosing
λ = ℓ, we have

ω = −kπℓ
Cτ

,

where k is any nonzero integer. Substituting (69) into (68) produces

−ω2G = (s2 − r)G ,

and hence
s2 = r − ω2 , i.e. s = ±

√
r − ω2 . (70)

Similarly as before,

s2 = r − k2π2ℓ2

C2τ 2
, (71)
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and
Z(ξ, η) = exp(sη) sin(ωξ) . (72)

Before we can make any elastic stability conclusions, we must transform back to (x, t)
coordinates by using (72), (71), (66), (64), (62), (43) and the coordinate transformations
(38).

Let us extract the stability exponent only. We start by combining (72) and (64),

U(ξ, η) = exp

(

−1

2
[κ1η + κ2ξ]

)

exp(sη) sin(ωξ) ,

which separates as

U(ξ, η) = exp

([

s− 1

2
κ1

]

η

)

· exp(−1

2
κ2ξ) sin(ωξ) .

Due to the fact that we use the coordinate transformations (38), only the part involving
η will contribute to the component that will eventually involve t. Because again we have
η = γt − βx, we see that for this problem the coefficient of t in the exp in the final
complex-valued solution in (x, t) coordinates is

s∗ = γ

[

s− 1

2
κ1

]

= γ

[

±
√
r − ω2 − 1

2
κ1

]

, (73)

where the last form follows from (70), r is given by (66), κ1 by (62), ω by (43), and γ by
(37).

Again, the star indicates that (73) refers to the stability behaviour in (x, t) coordinates
instead of the transformed (ξ, η) coordinates. Due to the −κ1/2 term, we see a global
(but V0-dependent) shift along the real axis for all eigenvalues. This is typical for damped
systems (see Bolotin [3]). As before, the eigenvalues come in pairs, corresponding to the
choice of sign in the ±, but due to the shift term −κ1/2, the pairs are no longer of the type
±s. Instead, each pair is centered on the shift value, with a pure real or pure imaginary
offset depending on the sign of r − ω2.

The contribution of the damping term is always purely real. Let us investigate the
external friction case, where the damping coefficients A1 and A2 do not depend on V0.

In the subcritical regime, γ < 0, and if A1 > 0 and A2 ≥ 0, then κ1 < 0 for positive
V0 (see equations (62) and (37)). If A2 = 0, this holds also for negative V0. If A2 > 0,
negative V0 will reduce the magnitude of κ1, but for V0 sufficiently near the origin, κ1

will remain negative. Hence γκ1 > 0, and −γκ1 < 0, at least near V0 = 0. Thus for
many practically interesting cases, −γκ1 < 0. If, in addition, r < ω2 (we will investigate
this condition below), then the square root in (73) is imaginary, and (73) represents
exponentially decaying time-harmonic vibrations.

In the limit V0 → C (or V0 → −C), we have s∗ → 0 just as for the undamped system,
which suggests the existence of a steady state there. However, the present analysis is only
applicable if γ 6= 0, i.e., |V0| 6= C, because at that point, the ∂2U/∂x2 term vanishes from
(58) and the coordinate transformation (38) becomes invalid. To determine the situation
at |V0| = C, a separate analysis for the case γ = 0 would be needed, as was done above
for the undamped case.

Note the dependence of the quantities in (73) on the axial velocity: γ = γ(V0), κ1 =
κ1(β, γ) = κ1(V0), and r = r(V0). Using (66), (62) and (37), the function r(V0) can be
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explicitly expanded as

r(V0) =
1

4

(

κ
2
1 − κ

2
2 − 4ψ3

)

=
τ 2

4ℓ2
[

V 2
0 − C2

]

[

ψ2
1

(

V 2
0 − C2

) τ 2

ℓ2
− 2ψ1ψ2V0

τ

ℓ
+ ψ2

2

]

− ψ3 , (74)

which is a fourth-order polynomial in V0. Expression (74) is written for the case of external
friction, where A1 and A2 (hence also ψ1 and ψ2) do not depend on V0. In the case of
internal friction, substituting ψ2 = V0 [τ/ℓ]ψ1 obtains the final form.

The quantity ω = ω(k) does not depend on the velocity, but it depends on the vi-
bration mode number k. Thus each mode k has a different base frequency at V0 = 0, as
expected. These frequencies also differ from the ones of the undamped system; if r > 0,
the frequencies of the damped system are lower than those of the undamped one; and if
r < 0, higher.

If r(V0) < ω(k)2, the quantity under the square root in (73) is negative, and hence
the contribution of the square root is purely imaginary (representing time-harmonic vi-
brations). From (43), we see that |ω(k)| increases monotonically as the mode number
k increases. Thus at V0 = 0, the criterion r(V0 = 0) < ω(k)2 is most easily violated
for the first few modes. If such an integer k0 exists that for all k = 1, . . . , k0 it occurs
that ω(k)2 < r(V0 = 0), these modes will not vibrate, but will either just decay or grow
exponentially, depending on the sign of the resulting s∗. The sign of s∗ is also affected by
the sign and relative magnitude of κ1.

The other possibility for the criterion r(V0) < ω(k)2 to be violated is when |V0| is large,
due to the κ

2
1 term in r(V0), which (in the case of external friction) leads to a fourth-

degree polynomial with a positive leading coefficient. This suggests that asymptotically,
we will have Im s∗ = 0 for large |V0|.

Stability analysis of the system with damping

Let us first show that the damped system may have steady-state solutions only at V0 =
±C. Upon expanding (73) by using (66), (62), (43) and (42), we have

s∗ = γ f±(V0; k) , (75)

where

f±(V0; k) ≡ ±
√

1

4

[

(ψ1γ − ψ2β)
2 − (ψ2C

τ

ℓ
)2 − 4ψ3

]

− k2π2ℓ2

τ 2C2
− 1

2
(ψ1γ − ψ2β) . (76)

Expression (75) may be zero if γ = 0 (V0 = ±C), or if f± = 0. Equation (76) defines a
set of two functions, each belonging to a different eigenvalue s∗.

Because the term outside the square root is always real-valued for real V0, we see that
f± = 0 is possible only if the square root term is real. Thus, a steady-state solution can
only exist if the square root term is nonnegative, r(V0) − ω(k)2 ≥ 0. The sign of the
square root term depends only on the sign chosen in the ±.

We observe that (76) is of the form

f±(a1, a2) = ±
√

a21 + a2 − a1 , (77)
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where a1 ≡ κ1/2 = (ψ1γ − ψ2β)/2, and we have collected the rest of the terms under the
square root into a2. If a1 > 0, then f± = 0 is possible only for f+, and additionally then
it must hold that a2 = 0, which (in general) is not the case here. Similarly, if a1 < 0, then
f± = 0 is possible only for f−, and again we must have a2 = 0, which (in general) does
not occur. In either case, f± = 0 has no solution.

Finally, if r(V0)−ω(k)2 < 0, the square root becomes imaginary and (76) has no (real)
solution. Therefore, in either case, we conclude that equation (76) has no (real) solutions
at all in terms of V0. We have thus shown that for the damped system, s∗ may pass
through the origin only at V0 = ±C.

This also completes the stability analysis of the case r(V0)−ω(k)2 ≥ 0, where the whole
expression (75) is real-valued. At parameter values where r(V0) − ω(k)2 < 0, dynamic
critical points may still exist. The question of finding such critical points becomes that
of determining the critical values of V0 where the real part Re s∗ becomes zero.

When r(V0)− ω(k)2 < 0, the square root term in (76) is purely imaginary, and it will
not affect the real part. We have

Re s∗ = −γ
2
(ψ1γ − ψ2β)

= − τ 2

2ℓ2
[

V 2
0 − C2

]

[(

ψ1

τ 2

ℓ2

)

V 2
0 +

(

−ψ2

τ

ℓ

)

V0 +

(

−ψ1C
2 τ

2

ℓ2

)]

, (78)

where we have used (37) and λ = ℓ. We have obtained a fourth-order polynomial in V0.
Two of its zeroes are, obviously, V0 = ±C. This is as expected; if s∗ = 0, then also
Re s∗ = 0.

For the case with external friction (ψ2 independent of V0), solving for the zeroes of the
second expression in brackets produces

V0 = V
dyn±
0 ≡M ±

√
M2 + C2 , (79)

where

M ≡ ψ2ℓ

2ψ1τ
=

A2

2A1

. (80)

The values of V0 given by (79) are the dynamic critical points. These are the only other
points, in addition to the static critical points V0 = ±C, where Re s∗ = 0 may occur for
the damped system with external friction.

If A2 = 0, as is the case for friction caused by a stationary external medium, we
observe from (79) that then the dynamic critical points coincide with the static ones at
V0 = ±C. If A2 6= 0, they will be distinct.

The existence of any distinct dynamic critical points is conditional on the validity of
(78) as a representation for Re s∗ at the particular values of V0 given by (79). The only
exception is if the dynamic critical points coincide with the static ones, because the static
critical points always exist by the analysis above.

If the dynamic critical points exist, their location on the V0 axis depends on the ratio
of the damping coefficients, and on those problem parameters which affect the value of
C. It does not depend on the mode number k, because (78) does not involve ω(k).

However, it may occur that the dynamic critical points do not exist for all modes,
but only for mode numbers higher than some limiting number. Because |ω(k)| increases
monotonically with increasing |k|, it follows that for any given value of V0, we can always
choose |kmin| such that the condition r(V0)− ω(k)2 < 0 (with the restriction |k| ≥ |kmin|)
is satisfied at the given V0.
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Summarizing, the system with external friction has two kinds of critical points: the
static ones at V0 = ±C, which are independent of mode number, and up to two dynamic
ones. The dynamic critical points may only exist for sufficiently high mode numbers, but
their location on the V0 axis is the same for all modes for which they exist.

Now let us consider internal friction. We insert ψ2 = V0 [τ/ℓ]ψ1 into (78), obtaining
(after cancellation)

Re s∗ =
ψ1C

2τ 4

2ℓ4
[

V 2
0 − C2

]

, (81)

which is valid whenever r(V0) − ω(k)2 < 0. When this condition holds, we see that the
real parts of all modes coincide, because (81) does not depend on k. It is seen that for
the system with internal friction, there are no dynamic critical points; the only zeroes of
(81) are V0 = ±C.

We observe from (81) that for V 2
0 < C2, the real parts are all negative, while for

V 2
0 > C2 (provided that the validity condition r(V0) − ω(k)2 < 0 still holds), the real

parts are positive. This strongly suggests that for the system with internal friction, the
static critical points V0 = ±C are unstable.

Finally, even if r(V0) − ω(k)2 > 0, we see that the real parts Re s∗ in the internal
friction case will be centered on the value (81), separated from it by plus and minus the
contribution of the square root term that has become real-valued.

One final remark concerning both external and internal friction cases is in order. We
have determined all zeroes of the real part Re s∗ for the damped system. It is obvious
that s∗ is continuous with respect to V0. Hence, Re s∗ can change sign only at its zeroes.

Therefore, if we determine s∗ at V0 = 0 (obtaining the sign of Re s∗ in the initial state),
and examine all the critical points, we will know the sign of Re s∗ for any V0 ∈ R. This
implies that the graphical examples below are conclusive; for the modes visualized, there
cannot be any stability surprises outside the plotting range.

Examples and discussion of the system with damping

To finish, we will show some examples of eigenvalues (75) for various types of damping.
The problem parameter values again correspond to the model of a narrow panel in the
membrane limit with T0 = 500N/m, m = 0.08 kg/m2, and ℓ = 1m. The characteristic
time τ was chosen as τ = ℓ/C, which leads to

√

β2 − γ = 1, see equation (42).
In the examples presented here, the reaction coefficient B = ψ3 = 0. It was found

that the elastic foundation (reaction term) has only a minor effect on the eigenvalues. If
B > 0, the imaginary parts pack much closer together, and there is more space between
the smallest imaginary part and the real axis. Otherwise the results with B > 0 are very
similar to the ones shown with B = 0, and are omitted for brevity.

Figure 4 represents the typical basic case of a moderate amount of purely time-
dependent damping, such as that generated by external friction when the elastic element
vibrates in a stationary surrounding medium. We see that Re s∗ ≤ 0 for all V0. When
Im s∗ vanishes, each eigenvalue pair settles onto a pair of purely real values diverging from
each other.

In Figure 5, we have a heavy amount of purely time-dependent damping. The physical
interpretation is the same as in the first case, only the amount of external friction is higher.
Also here Re s∗ ≤ 0 for all V0. This figure illustrates ω(k)

2 < r(V0) for the first few modes
near V0 = 0. Because the condition r(V0)− ω(k)2 < 0 is not fulfilled, the imaginary part
is zero, and these first few modes simply decay exponentially without vibrating.
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Figure 4. Eigenvalues of the axially moving one-dimensional web with damping, up to vibration mode
k = 10. Analytical result, equation (75). Typical basic case with only time-dependent damping term
present; damping parameters ψ1 = 1, ψ2 = 0. Physical interpretation is external friction in a stationary
surrounding medium. Sub-figure a and Sub-figure b: different zoom levels.
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Figure 5. Eigenvalues of the axially moving one-dimensional web with damping, up to vibration mode
k = 10. Analytical result, equation (75). Typical case with heavy but only time-dependent damping;
ψ1 = 20, ψ2 = 0. Note purely real eigenvalues near V0 = 0. Sub-figure a and Sub-figure b: different zoom
levels.
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Figure 6. Eigenvalues of the axially moving one-dimensional web with damping, up to vibration mode
k = 10. Analytical result, equation (75). Typical case with time- and space-dependent damping; ψ1 = 1,
ψ2 = 2. Nonzero ψ2 makes the spectrum asymmetric with respect to positive and negative values for V0.
Physical interpretation is external friction in a surrounding medium which is in axial motion, independent
of the axial velocity V0 of the travelling elastic material.
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Figure 7. Eigenvalues of the axially moving one-dimensional web with damping, up to vibration mode
k = 10. Analytical result, equation (75). Case with ψ1 = 1, ψ2 = V0ψ1. Physical interpretation is
internal friction in the travelling material itself. Sub-figure a and Sub-figure b: different zoom levels.
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Figure 8. Close-up view centered on the static critical point in Figure 7. Because the mode k = 1
is nearest the imaginary axis, it is seen that immediately after the critical point, the imaginary part
Im s∗ 6= 0 for all k.

Constant time- and space-dependent damping is illustrated in Figure 6. This type
may arise due to external friction in an axially moving surrounding medium, where the
axial velocity of the medium is independent of the axial velocity V0 of the travelling elastic
element.

In the final example, Figures 7–8, we have ψ2 = V0ψ1, which is of the form that is
generated by the material derivative. As was discussed at the beginning of the analysis of
the damped system, this case arises if the travelling material experiences internal friction.

In the case of internal friction, we observe an interesting phenomenon. Figures 7–8
indicate that the real parts Re s∗ of the eigenvalues cross the real axis at V0 = C, moving
into the unstable region Re s∗ > 0. The presence of internal friction has introduced an
instability, which did not exist in the undamped system! This general effect of dissipation-
induced destabilization is well-known; for its history, see Kirillov and Verhulst [6]. The
mathematics behind the topic, and the importance of including damping effects (however
small) in the model being analyzed, is discussed in several monographs by Bolotin; for
example, see Bolotin [3].

The type of this particular instability is curious in that it does not follow either of the
classical typical behaviours as described by Bolotin [3]. See Figure 9. Often the kind of
instability which is produced by s∗ passing through the origin leads to purely real values
of s∗ slightly above the critical point. This is called the divergence instability or static
instability. Slightly above the critical point, the state variable of the system will grow
exponentially without oscillating.

The other classical category is the flutter instability, also known as dynamic instability,
where s∗ crosses the imaginary axis at some nonzero value of Im s∗, and Re s∗ becomes
positive. Slightly above the critical point, the state variable of the system will oscillate
at an exponentially increasing amplitude.

In this system, the critical point is at the origin, but the initial postcritical behaviour is
oscillatory. Unlike in the usual static or dynamic instability types, the eigenvalues simply

157



a b c

Figure 9. a and b: Behaviour of the stability exponent s for the two types of instability, after Bolotin [3].
a: static (or divergence) instability. b: dynamic (or flutter) instability. c: schematic of present result.
Dynamic instability at a static critical point; eigenvalues pass through each other without interacting.
Both obtain a positive real part as they pass the critical point. Compare Figures 7–8.

pass through each other at this point without interacting. This behaviour is similar to that
of the undamped system, except that now the real parts of the eigenvalues are nonzero.
Compare behaviour near the static critical point in Figures 3 and 8.

In a sense, the instability is of the dynamic type, because of the type of its initial
postcritical behaviour. However, it is possible to find the critical value for V0 by a static
stability analysis (in which we insert the time-harmonic trial function, set s∗ = 0, and
solve the resulting steady-state problem), because at the critical point s∗ = 0.

In conclusion, for the system considered, the presence of internal friction destabilizes
the static critical point, leading to a dynamic instability there; whereas external friction
causes the vibrations to decay as expected.

Conclusion

We considered classical axially moving ideal one-dimensional elastic elements with zero
Dirichlet (pinhole) boundary conditions. Both undamped and damped cases were studied.

For both cases, at the critical velocity |V0| = C, one of the terms in the partial differen-
tial equation is eliminated, requiring a separate analysis. This analysis was performed for
the undamped case, and it was shown that at the critical velocity, a steady state occurs,
for any state function satisfying the boundary conditions is a solution.

The free vibrations for |V0| 6= C were solved following a classical approach. The
eigenfrequencies were found explicitly for both systems, and for the undamped system also
the eigenfunctions were determined. It was seen that for both systems, the eigenvalues
come in pairs, which agrees with existing knowledge.

Based on quasi-static transition and the maximum-amplitude preserving property of
time-harmonic vibration, it was argued that the ideal elastic web experiences no instability
at the critical velocity. The initial postcritical behaviour of the stability exponent was
seen to point to the same conclusion. This contrasts classical wisdom, but agrees with
the result of Wang et. al. [43], obtained via a completely different approach.

This result is of fundamental theoretical importance. However, since no practical
physical system has exactly zero bending rigidity, its main practical relevance is as an
illuminating example underlining the significance of including in the model all relevant
aspects of system behaviour; in this case, bending rigidity, however small.

But if one is interested only in an approximate value for the critical velocity for ma-
terials with small bending rigidity, the string model considered here is already sufficient.
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The introduction of small bending rigidity has no major effect on the value of the crit-
ical velocity (see e.g. Kong and Parker [7] for an analytical approach), even though it
completely changes the qualitative behaviour of the model around the critical point.

The present results lend themselves to the following interpretation. After a quasistatic
transition from an initial state (V0 = 0) to the present state (V0 nonzero), if the assump-
tion of small displacement has not been violated anywhere up to that point, the model
considered determines the behaviour of free vibrations in the present state.

Especially, the system is seen to be stable at V0 = 0. Hence, the governing partial
differential equation is valid at least for all |V0| < C. Whether the equation is valid
at supercritical velocities, |V0| > C, is therefore a question of whether there exists an
instability at the critical velocity, where the stability exponents s∗

k
vanish.

The argument given in the present paper leaves open two possibilities for instability at
the critical point. First, it is easy to construct such dynamic free vibration solutions that
are not compatible with the quasi-static transition into the steady state at V0 = ±C. An
analysis accounting for axial acceleration — in order to perform a fully dynamic transition
— may be needed to remove this limitation. The second open question is the behaviour of
the global coefficient multiplying the solution as V0 is changed; determining this requires
techniques beyond eigenvalue analysis.

Damping can be used to model both internal and external friction. It was found
that also for the damped system, static critical points always exist at V0 = ±C. In
the case of the system with external friction, it was additionally shown that for mode
numbers k sufficiently high, dynamic critical points may exist. It was also observed,
and demonstrated in the examples, that if the travelling material is subjected to heavy
external friction, the first few modes k, near V0 = 0, only decay exponentially without
vibrating.

It was seen that the presence of internal friction in the travelling material itself desta-
bilizes the static critical point, leading to a dynamic instability there, while external
friction (such as caused by the viscosity of an external medium in which the travelling
elastic element vibrates) exhibits no such effect.

The theory and results presented in this paper systematically summarize and extend
theoretical knowledge of the class of models studied. The models can be used as simplified
but powerful analysis tools in various applications of moving materials, for example paper
making.
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