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ABSTRACT

Tirronen, Maria

On Stochastic Modelling and Reliability of Systems with Moving Cracked Mate-
rial
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ISSN 1456-5390; 229)

ISBN 978-951-39-6443-6 (nid.)

ISBN 978-951-39-6444-3 (PDF)

Finnish summary

Diss.

In many industrial processes, such as printing paper, a material travels through
a series of rollers unsupported and under longitudinal tension. The value of the
tension has an important role in the system behaviour, such as fracture and me-
chanical stability. This thesis develops stochastic models for a system in which
an elastic, isotropic cracked material travels through a series of spans and studies
the probabilities of fracture and instability of the material.

The models focus on describing tension variations and initial cracks in the
material. Time-dependent tension fluctuations are modelled by the stationary
Ornstein-Uhlenbeck process, and the occurrence and lengths of the cracks are de-
scribed by a stochastic counting process and random variables or by a continuous
stochastic process. To study fracture, the theory of linear elastic fracture mechan-
ics is applied.

The failure probabilities are solved by exploiting simulation and analytical
expressions, when available. When the tension exhibits time-dependent random
fluctuations, considering fracture or instability leads to a first-passage time prob-
lem, and the series representation for the first-passage time distribution of the
scalar Ornstein-Uhlenbeck process to a fixed boundary can be exploited.

Although the impact of cracks on web breaks in pressrooms has gained at-
tention in the research, a few studies consider modelling of crack-induced frac-
ture in moving paper webs. These studies only estimate the fracture probability
from above or do not consider tension fluctuations. Stability of moving materials
is widely investigated, but the models do not take into account statistical features
of the process.

The results obtained with parameters typical to dry paper (newsprint) and
printing presses show that the distributions of tension, crack occurrence and
crack length have a significant impact on system reliability. Considering an up-
per bound for the fracture probability may lead to overconservative values for set
tension. The results also suggest that tension variations may affect the pressroom
runnability significantly, which agrees with previous results.

Keywords: stochastic modelling, reliability, fracture, stability, moving material
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PREFACE

The research presented in this thesis was conducted at the University of Jyvaskyld,
Department of Mathematical Information Technology from 2011 to 2015.

The research was done in a research group lead by professor Pekka Neit-
taanmaki from the University of Jyvaskyld and professor Nikolay Banichuk from
the Russian Academy of Sciences. The group focused on studying the mechanical
stability of moving materials, particularly for applications in the paper and print
industry.

The aim of the research presented in this thesis is to study the performance
of a system with moving material in terms of fracture when the material contains
initial defects. From the viewpoint of optimal conditions, fracture and instabil-
ity lead to opposite demands for the tension applied in the system. The models
presented in this thesis aim at taking into account the importance statistical be-
haviour has on the system’s performance. The stability of a moving material sub-
jected to tension fluctuations is also studied, based on the earlier results obtained
by the research group.
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1 INTRODUCTION

In many industrial processes, a material travels in a system of rollers. Such pro-
cesses can be found in the print industry and in the manufacturing of different
kinds of materials, such as textiles, plastic films, aluminium foils and paper (see
Figure 1 for example). This kind of configuration also appears in tape players,
power transmission belts and band saws (Figure 2). In paper machines and print-
ing presses, the material often moves between the rollers without support and un-
der longitudinal tension. In both the printing and manufacturing processes, the
path of the paper web is open and the tension is created by velocity differences of
the rollers. The relative speed difference of two successive rollers is called draw,
and the span between the rollers is called an open draw.

FIGURE1 Dryer section of an old paper machine. The paper web travels between the
rollers without support.
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FIG, 7 —MMPLE CODINED CIRODLAR AND BAND-AAY MACHINE,

FIGURE 2 A band saw. From Amateur work, Illustrated, Vol. 1, by Ward, Lock & Co.,
published 1883.

To achieve high productivity in systems with moving materials, the ma-
chine should run quickly but, at the same time, avoid errors in the process. When
talking about the performance of paper machines and printing presses, the term
runnability is often used. Runnability refers to the expected frequency of web
breaks for a given material under specified loading conditions (Roisum, 1990). It
is measured in units of breaks per a quantity related to production. This quantity
can be 100 rolls, the length of a sheet, the area of a sheet or day (Roisum, 1990).

On a printing press, the major runnability problems include web breaks,
register errors, wrinkling and the instability of the paper web (Parola et al., 2000).
Of these problems, web breaks particularly have been investigated in the indus-
try. Web breaks occur at random intervals and are rare events in pressrooms (Page
and Seth, 1982). Despite their rarity, web breaks may lead to remarkable econom-
ical losses as a consequence of wasted production time and material. Therefore,
reducing the number of web breaks is a major concern in the print industry.

Defects are one of the suspected causes of web breaks in pressrooms. De-
fects in a paper web can be classified into two categories (Uesaka, 2004). One
category is the natural disorder of paper, such as formation and local fibre orien-
tation (Uesaka, 2004). Paper has a stochastic structure due to its manufacturing
process in which a suspension of fibres and water is drained through a screen.
The other category is macroscopically visible defects, such as holes, cuts, bursts
and wrinkles (Uesaka, 2004). Macroscopic defects may emerge in paper webs in
the manufacturing and transportation processes.

Instability also may cause web breaks in systems with moving material.
When a thin sheet travels without mechanical support, it is subject to destabiliz-
ing effects, such as aerodynamic reaction forces and the centrifugal effect caused
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by the inertia of the moving material particles (Jeronen, 2011). When the moving
material is subject to non-negligible transverse vibrations and does not vibrate
harmonically with small amplitude, it is considered unstable. Brittle materials,
such as newsprint, will most likely break apart when stability is lost (Jeronen,
2011).

The causes of web breaks in the print industry usually are investigated ex-
perimentally or by conducting data analysis on pressroom data. Due to the rarity
of web breaks, experimental studies require data from a large number of rolls to
determine, with a reasonable level of confidence, the causes of the runnability
problems (Deng et al., 2007). There are often many dependent random variables
involved in the printing process, and controlling all of them may appear difficult
(Uesaka and Ferahi, 1999). Complementing experimental studies with mathe-
matical modelling may save effort and expenses.

Schuéller (2007) points out that, in order for a model to reflect physical phe-
nomena, it should also include the randomness of the phenomena. The occur-
rence of a web break in a pressroom is a random phenomenon. Most importantly,
the printing process includes factors that exhibit random fluctuations that are
known to affect the pressroom runnability.

The present study focuses on stochastic modelling of systems in which a
material with initial macroscopic cracks moves under longitudinal tension. Mod-
elling applies the theory of continuous-time stochastic processes, which provides
natural models for describing the time-dependent behaviour of many physical
systems.

This study is motivated by the paper and print industry. In modelling, we
consider a material with an open path. The material parameters in the numerical
examples are chosen to correspond to dry paper (newsprint). However, the mod-
els can be used for analysing the reliability of processes other than those in the
paper and print industry as well.

Combined with the data of defects and tension, the models developed in
this study can be used for predicting the reliability of systems with moving ma-
terial in terms of fracture and instability. For printing processes, such data can be
obtained by automated inspection systems developed for quality control (Jiang
and Gao, 2012) and devices designed for tension profile measurement (Parola
et al., 2000).

1.1 Objectives of the research

This study develops mathematical models for systems in which a moving cracked
material travels under longitudinal tension. The models focus on describing the
occurrence of defects in the material and the tension variations in the system, tak-
ing into account the stochasticity of defect occurrence and tension fluctuations.
The study is motivated by the paper and print industry, in which fluctuations in
the manufacturing and printing processes affect machine runnability. The study
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explores the reliability of the system in terms of fracture and instability by ex-
ploiting analytical solutions and simulation, and it investigates the effect of ten-
sion variations and defects on the reliability of the system. The developed models
complement empirical runnability studies by providing tools for predicting fail-
ure probabilities in systems with moving materials.

1.2 Structure of the thesis

Chapter 2 discusses previous studies on fracture and instability of moving mate-
rials as well as optimization of systems with moving materials in order to prevent
fracture and instability. The review of fracture is restricted to studies concern-
ing crack-induced web breaks in pressrooms. Mathematical modelling of crack-
induced breaks usually applies the theory of fracture mechanics; therefore, the
fracture mechanics of paper is discussed first. Chapter 2 also summarizes the
contribution of this work to the field.

Chapter 3 presents mathematical models for systems with moving cracked
material. The models focus on fracture and instability and describe random ten-
sion variations in the system and the occurrence of defects in the material. Chap-
ter 4 formulates the problems related to the performance of the system in terms of
fracture and instability. Numerical or analytical solutions to these problems also
are presented. Finally, Chapter 5 summarizes the key results of this work and the
applicability of the presented models.



2  FAILURE OF SYSTEMS WITH MOVING MATERIAL

In engineering terms, failure means that something does not perform its intended
function (Kortschot, 2002). This study focuses on special modes of failure, frac-
ture and instability. Fracture means that the considered material separates into
two or more pieces. In this study, instability refers to the situation in which the
moving material is subject to non-negligible transverse vibrations and does not
vibrate harmonically with small amplitude.

The following section discusses previous studies on fracture and instability
of moving materials. The discussion of fracture will focus on studies concern-
ing crack-induced web breaks in pressrooms. Mathematical modelling of crack-
induced breaks usually employes the theory of fracture mechanics. Therefore,
the fracture mechanics of paper will be discussed first. Mechanical stability of
moving materials is widely investigated, and the existing literature is briefly re-
viewed. Optimization of systems with moving materials concerning fracture and
instability is also discussed, and the contribution of this work to the field is sum-
marized.

2.1 Fracture

Early pilot-scale studies (Sears et al., 1965; Adams and Westlund, 1982) found de-
fects to be the major causes for web breaks in pressrooms, and therefore, research
began to focus more on the effect of defects on web breaks and the fracture me-
chanics of paper web (Uesaka, 2013). One of the main interests in the studies of
fracture mechanics of paper has been to develop means for predicting newsprint
runnability (Kortschot, 2002).

2.1.1 Fracture mechanics of paper

Fracture mechanics is a branch of solid mechanics which deals with the behaviour
of materials containing defects. Development in the fracture mechanics research
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tends to focus on metals due to their use in applications such as airframes and
nuclear reactors, where fracture is critical (Kortschot, 2002). According to the lit-
erature review by Gross (2014), the beginnings of fracture mechanics commonly
are associated with the work of Griffith (1921, 1924) on the theory of rupture.
However, Irwin (1957, 1958) usually is regarded as the father of modern fracture
mechanics. He complemented the theory of fracture and made it applicable to
real engineering problems. An extensive literature review on the history of frac-
ture mechanics is provided by Gross (2014) and Cotterell (2002).

The studies of the fracture mechanics of paper have followed the concepts
of the mainstream fracture research (Kortschot, 2002). According to the literature
review by Kortschot, research on applying the theory of linear elastic fracture me-
chanics (LEFM) to paper started in the 1960s with the study by Balodis (1963). The
difficulty encountered when using LEFM was that the fracture toughness param-
eters were not, for ductile paper grades, independent of the geometry of the test
specimen (for details, see Kortschot, 2002). To overcome this difficulty, Uesaka
et al. (1979) proposed the use of the J-integral for paper. However, Swinehart and
Broek (1995) advocated the use of the original LEFM approach for paper arguing
that the LEFM approach is more useful than the J-integral due to its simplicity
of testing and mathematics and that it has more predictive capability (Kortschot,
2002). Other proposed methods for predicting the fracture of paper include the
essential work of fracture, proposed by Seth et al. (1993), and the cohesive zone
model (Tryding, 1996). Fracture mechanics literature for paper is reviewed more
extensively by Kortschot (2002) and Mékeld (2002).

More recent studies have found that LEFM is accurate only for large cracks
in large paper structures and that the nonlinear J-integral method gives accurate
predictions for medium-sized and large cracks (Ostlund and Mékeld, 2012). The
cohesive zone modelling with parabolic strain-hardening accurately predicts the
load and strain at failure despite the crack size (Ostlund and Mikels, 2012).

2.1.2 Defects and web breaks

The relation between defects and web breaks can be investigated by simulating
the service conditions in a laboratory (experimental studies), conducting analysis
on pressroom data, or modelling the fracture of paper web by applying funda-
mental laws of physics. Also in the last approach, data of process parameters are
needed from pressrooms.

Examples of laboratory studies include the studies by Macmillan et al. (1965)
and Gregersen et al. (2000). Macmillan et al. studied the impact of shives on
web breaks by analysing break samples obtained with a dynamic web strainer.
Gregersen et al. investigated the effect of shives in newsprint by straining newsprint
sheets to fracture in a tensile apparatus. After the catastrophic fracture, the mi-
crocracks of the sheets were analysed in order to explore the characteristics of
crack-inducing shives. Stephens et al. (1971) and Laurila et al. (1978) studied the
effect of shives on paper machine runnability by employing the Von Alfthan shive
analyser to obtain shive data and then comparing these data with web breaks.
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Web breaks are rare events in pressrooms (Page and Seth, 1982). Therefore,
data from a large number of rolls is required to determine the causes of web
breaks with a reasonable level of confidence (Deng et al., 2007), and such data
is difficult to obtain under controlled conditions (Uesaka and Ferahi, 1999). In
addition to the rarity of web breaks, there are often many dependent random
variables involved in the printing process, and controlling them can be difficult
(Uesaka and Ferahi, 1999). To avoid these problems, Uesaka and Ferahi (1999)
suggested conducting data analysis on massive pressroom databases or investi-
gating the effect of different factors on web breaks by mathematical modelling.

Examples of investigations that exploit pressroom databases include the
study by Deng et al. (2007). They analysed several pressroom and mill databases
and examined the relationship between strength properties and break rate using
a chi-square analysis method.

Studies that predict the connection of macroscopic defects and web breaks
by mathematical modelling are harder to find than experimental studies and
those that exploit pressroom databases. Swinehart and Broek (1996) developed a
web-break model based on fracture mechanics that included the number and the
size distribution of flaws, web strength and web tension. Swinehart and Broek
regarded the tension as constant. Uesaka and Ferahi (1999) studied the effect of
cracks on web breaks by using a break-rate model based on the weakest-link the-
ory of fracture. The number of breaks per one roll during a run was derived by
considering the strength of characteristic elements of the web. Uesaka and Ferahi
assumed that there is a single crack in every roll and that the tension in the system
is constant. Later, Hristopulos and Uesaka (2002) presented a dynamic model of
the web transport derived from fundamental physical laws. In conjunction with
the weakest-link fracture model, the model by Hristopulos and Uesaka allows
investigating the impact of tension variations on web-break rates.

2.2 Instability

Vibration characteristics and stability of moving materials have been widely in-
vestigated. Studies have covered different mechanical models, such as strings,
beams, membranes and plates, with different boundary conditions and tension
profiles, and later studies also considered the surrounding fluid. Different mate-
rial models have also been applied in the studies of moving materials.

The first studies of moving materials considered the vibrations of elastic and
isotropic strings (Skutch, 1897; Sack, 1954; Archibald and Emslie, 1958). Later,
e.g., Wickert and Mote (1990) studied stability of axially moving strings and
beams using modal analysis and Green’s function method, extending the work
by Sack (1954).

Lin (1997) and Banichuk et al. (2010b,a) studied the stability and vibra-
tion characteristics of travelling two-dimensional, rectangular plates. Lin’s study
used linear plate theory and exact boundary conditions to predict the closed form
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solution of the speed at the onset of instability. It found that the string model al-
ways underestimates the speed at the onset of instability. In addition, both static
and dynamic analyses predicted the same speed at the onset of instability for an
axially moving plate. By assuming that travelling waves do not contribute to the
instability phenomenon, Banichuk et al. performed a static instability analysis to
find the basic relation that characterizes the behaviour of a rectangular moving
plate at the onset of instability.

Although there are various studies on vibrations of stationary cracked plates
(see the literature review by Dimarogonas, 1996), the effect of cracks on the sta-
bility of moving materials has not been studied much. Murphy and Zhang (2000)
studied the vibration and stability characteristics of a cracked beam translating
between fixed supports. The cracks in the beam were assumed to be shallow and
to remain open. The vibration and stability characteristics were examined using
an eigenvalue analysis, and the natural frequencies and the stability characteris-
tics were shown to fluctuate as the crack location moves.

To the author’s knowledge, vibrations of moving materials have not been
studied previously in a stochastic setup but studies of stationary plates with ran-
dom parameters exist. For example, Sobczyk (1972) considered the free trans-
verse vibrations of elastic rectangular plates with random material properties
and determined statistical characteristics of the random eigenvalues. Wood and
Zaman (1977) considered a collection of elastic rectangular plates with random
inhomogeneities vibrating freely under simply supported boundary conditions.
Soares (1988) discussed uncertainty modelling of plates subjected to compressive
loads.

In the recent studies concerning axially moving plates, material properties
such as orthotropicity (Marynowski, 2008b; Banichuk et al., 2011) or viscoelastic-
ity (Marynowski, 2010; Saksa et al., 2012) have been taken into consideration and
their effects on the plate behaviour have been investigated. For further reading of
vibrations and stability of moving materials, see literature reviews by Banichuk
et al. (2014), Saksa (2013), Jeronen (2011), Tuovinen (2011), Marynowski (2008a),
Chen (2005), Ulsoy et al. (1978) and Mote (1972).

2.3 Process optimization

Studies of instability of moving plates have shown that a moving plate experi-
ences instability at some critical velocity. The studies suggest that when tension
increases, the upper bound of safe velocity of the material increases (Banichuk
et al., 2010b). However, when tension is increased, the probability of fracture
increases.

Motivated by the paper industry, Banichuk et al. (2013a,b) studied an elastic
and isotropic plate that has initial cracks of bounded length travelling in a system
of rollers. In the first study, the plate was assumed to be subjected to constant or
(temporally) cyclic in-plane tension, and Paris’ law was used to describe the crack
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growth induced by tension variations. The optimal average tension was sought
for the maximum crack length by considering a productivity function which takes
into account both instability and fracture. However, the effect of the cracks was
not included in the vibration dynamics. In the second study, the analysis was
extended to cover the critical tension and velocity in case of constant in-plane
tension, and for the system with cyclic tension, the optimal average tension was
obtained by deriving the productivity criterion as a multi-objective optimization
problem, for which solutions were found in the Pareto sense.

The break-rate model used by Uesaka and Ferahi (1999) and Hristopulos
and Uesaka (2002) predicts the upper estimate of the break frequency. However,
considering an upper bound of fracture probability may lead to an overconser-
vative upper bound for a safe range of tension. From the viewpoint of maximal
production, an overconservative tension is undesirable as it underestimates the
maximal safe velocity.

2.4 Contribution of this work to the field

This work considers mathematical modelling of systems with moving material
by focusing on fracture and instability. The models of this work extend the pre-
vious break-rate models proposed for predicting the fracture probability of pa-
per webs by taking into account the randomness of defect occurrence and by
modelling tension as a continuous-time stochastic process. For a material with
sparsely occurring cracks, methods to directly estimate the fracture probability
predicted by the models are proposed. To the author’s knowledge, the theory of
continuous-time stochastic processes previously have not been applied in mod-
elling of fracture of moving materials. In addition, this study addresses the sta-
bility of a moving material subjected to randomly varying tension, which, to the
author’s knowledge has not been considered in the studies of stability of moving
materials.

PI studies the critical tension and velocity of a moving band in the presence
of a random length crack. The critical tension was derived from a constraint for
fracture using LEFM. The upper bound for a safe range of velocity was obtained
by applying the results for the critical divergence velocity presented by Banichuk
et al. (2010b). Banichuk et al. (2013b) previously combined fracture and stability
analyses to obtain optimal conditions for a system with moving material, but
with a constant crack length. PI gives some examples of the critical tension and
velocity for a band containing a central or edge crack when assuming a Weibull
distribution for the crack length. The critical values were the lowest for the edge
crack. Previous studies also have recognized edge cracks as more critical than
central cracks in terms of fracture (Uesaka and Ferahi, 1999).

PII extended the analysis presented in PI by including the uncertainty of
other problem parameters besides the crack length in the model. In PII, the pro-
cess parameters were assumed to be constant while a crack travels through an
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open draw. However, the constant values were assumed to include uncertainty
and were modelled by random variables. The critical velocity was derived from
the constraints for fracture and instability, and the effect of uncertainty of dif-
ferent problem parameters on the critical velocity was compared for a material
containing an edge crack perpendicular to the travelling direction. A Weibull
distribution was assumed for the crack length and normal distributions for other
random quantities. For parameters typical of (dry) paper material and paper ma-
chines, the randomness in crack length and tension were found to have the most
significant impact on the critical velocity.

PIII studied the critical tension in a system with random time-dependent
tension fluctuations and a material that continuously has a perpendicular crack
on the edge. The crack length and the tension were modelled by an exponential
Ornstein-Uhlenbeck process and an Ornstein-Uhlenbeck process, respectively.
PIII interpreted the criterion presented by Banichuk et al. (2010b) as momen-
tary and formulated the probability of instability as a first-passage time problem
of the tension process. PIII also noted that focusing on the probability of frac-
ture leads to a first-crossing time problem of the tension process and a stochastic
process describing the critical value of tension. The probability of fracture was
estimated from above by studying the first-passage time of the tension process to
the minimal critical value of tension obtained by the maximal crack length. The
numerical studies in PIII found that the mean values of tension and crack length,
as well as the coefficients of variation of these quantities, play important roles in
the reliability of the system. Despite the results being mainly qualitative, the com-
puted estimates were in agreement with the previous studies, which found small
cracks to play a minor role in the pressroom runnability (Uesaka, 2013). The re-
sults also suggested that tension variations may affect the pressroom runnability
significantly, which also agrees with previous results (Uesaka, 2004).

PIV presented a model for a system with a single span in which cracks oc-
cur one at a time. The occurrence of cracks was modelled by a stochastic count-
ing process and tension fluctuations were modelled by the Ornstein-Uhlenbeck
process. The lengths of the cracks were modelled by independent and identi-
cally distributed random variables. The probability of fracture was obtained by
applying conditional simulation. In case of tension fluctuations, the series repre-
sentation for the first-passage time distribution of the one-dimensional Ornstein-
Uhlenbeck process to a constant boundary was exploited in conditional simula-
tion. For special crack occurrence models, explicit representations for the relia-
bility of the system were derived. The numerical studies showed that the mean
tension had a remarkable impact on how tension dispersion and cracks affected
the reliability of the system. Crack frequency was found to be an important factor
in terms of fracture.

PV extended PIV by considering a system with several spans. The tension
in the system was modelled by the multidimensional Ornstein-Uhlenbeck pro-
cess. The probability of fracture was estimated by simulating paths of the tension
process and the crack model. For constant tension, the reliability of the system
was obtained as an explicit representation or by applying conditional sampling.
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As an example, the probability of fracture was computed for periodically occur-
ring central cracks. The numerical studies, as before, showed that small cracks are
not likely to affect the system reliability. The results also suggested that tension
variations may significantly decrease the reliability.



3 MODELS FOR SYSTEMS WITH CRACKED
MOVING MATERIAL

This section presents mathematical models for systems in which a moving cracked
material travels under longitudinal tension. The models describe random tension
variations in the system and occurrence of defects in the material. Moreover, the
models focus on modelling fracture and instability of the moving material.

3.1 Geometry and the material model

In this study, the moving material is modelled as a continuum which assumes that
the matter in the material completely fills the space it occupies. Moreover, solid
mechanics is applied to study the behaviour of the material in terms of fracture
and instability.

The moving string, beam, membrane and plate are commonly used models
when studying the mechanical behaviour of travelling materials. The model of a
moving string or beam describes the moving material as a one-dimensional ob-
ject while the moving membrane and plate are two-dimensional models. When
considering a fracture of a moving material travelling between two supports, the
plate model can be used to represent the part of the material that appears mo-
mentarily in the span. In the stability analysis of this study, the plate model also
is employed.

Consider a band that travels in a system of k spans in the x direction, sup-
ported by rollers located at x = 4y, ¢4, ..., in x,y coordinates, see Figure 3. For
simplicity, let /o = 0. At time ¢, the rectangular part of the band that is between
the supports at x = ¢;, {11,

Di={(xy): i <x</liy, —b<y<b}, 1)
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is modelled as a plate that has simply supported sides at
{x=14;, -b<y<b} and {x=1/¢y1, -b<y<b} )
and sides free of tractions at
{y=-b, li<x</li1} and {y=0b, {; <x</liq}. 3)

The width of the band is 2b, and its thickness is denoted by . When we consider
a system with a single span, the subscript of D; is omitted.

xzfo ngl .T:gg .Z‘ka

FIGURE 3 A band travelling in a system of rollers. (From PV.)

In solid mechanics, materials are divided into different categories based on
their behaviour when subjected to forces. When the forces are applied, an ob-
ject will deform, and a material model describes how it returns to its original
shape after removing the forces. Such models include the elastic and plastic ma-
terial models. An elastic material returns to its initial shape, while a plastic object
undergoes a permanent change of shape. Furthermore, materials of the former
category are divided into linear and nonlinear elasticity based on their stress-
strain relationships. Linearly elastic materials are either isotropic or anisotropic.
A material is said to be isotropic if its mechanical properties are the same in all di-
rections. An example of an anisotropic material is the orthotropic material which
has three mutually orthogonal axes so that its material properties are different
along each axis.

In this study, the moving material is modelled as elastic and isotropic. The
Poisson ratio and the Young modulus of the material are denoted by v and E,
respectively. Hamaéldinen et al. (2011) discuss the suitability of different material
models in describing paper.

AL: ‘ '_ ......... :
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FIGURE 4 The initial and last states of the system. (From PV.)
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The performance of the system is considered during the transition of a band
of length S through the series of open draws, see Figure 4. Before and after the
band, the material is assumed to continue and remain similar.

3.2 Stochastic models for system variations

When modelling the randomness of the system with moving material, the focus
of this study is on describing random tension variations and the occurrence of
defects in the material. For tension and defects, different models are applied.

3.2.1 Tension

The band travels in the system of rollers under longitudinal tension. When the
band travels through the system, it is subjected to tension

T(s) = (Tu(s), ..., Tk(s)) ", s >0, (4)

acting in the x direction. In (4), the vector element T; describes the tension in the

ith span. The subscript is omitted when k = 1. The parameter s in (4) denotes the

length of the band that has travelled past the first support at x = 0 (see Figure

5). The tension profile is assumed to be constant in the y direction, although in

printing presses, tension usually varies in the cross-direction (Linna et al., 2001).
y!

Travelling direction
- —

rz=0 r =10

FIGURE 5 Moving material in the first span. (Adapted from PV.)

In printing presses, tension fluctuates with respect to time. Tension fluctua-
tions are partly caused by the variations in draw (the relative speed difference of
two successive rollers) (Uesaka, 2013). In pressrooms, the draw variations contain
specific high/low frequency components as well as white noise (Uesaka, 2013).
In a printing press, cyclical tension variations may be caused by out-of-round
unwind rolls or vibrating machine elements such as unwind stands (Roisum,
1990). In addition to cyclical variations, tension may vary aperiodically due to
poorly tuned tension controllers, drives or unwind brakes (Roisum, 1990). The
net effect of such factors cause the tension to fluctuate around the mean value
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(Roisum, 1990). Moreover, tension surges are likely to occur during start-up and
shut-down operations (Hristopulos and Uesaka, 2002).

This study investigates the performance of the system with deterministic
and stochastic models for tension. In deterministic models, set

Ti(s) = To, (5)

for constants Tp, > 0. The subscript is omitted when k = 1.

The simplest stochastic model in PII describes the tension in the open draw,
when a crack travels through it, by a random variable

T(w), weQ (6)

in a probability space (Q2, F,P). With this model, the tension is regarded as con-
stant with respect to time when the crack travels through the open draw, although
the constant value includes uncertainty. Tension is set as

T="Ty(1+9), 7)
where 6 is a random variable that satisfies

-1<0(w)<1l, weq. (8)

The model above does not properly consider temporal random fluctuations
of tension. The reliability analysis, therefore, is extended by modelling the ten-
sion with a continuous-time stochastic process. Moreover, certain properties are
assumed for the stochastic process describing the tension.

In this study, the tension is modelled by a stationary stochastic process. A
stationary process describes the stochastic motion of a system which has settled
down to a steady state and the statistical properties of which do not depend on
time (Gardiner, 1983, Section 3.7). A stochastic process X = {X(s), s > 0},
X(s) € R* is called stationary if for all t > 0,

Fx(X(s1),X(s2), ..., X(s)) = Fx(X(s1+t), X(s24+1),..., X(sg + 1)), (9

where Fx(s1, 52, . .. sg) represents the cumulative distribution function of the joint
distribution of X at sy, sp, ..., Sk-

In addition, the tension is modelled by a Markov process. A Markov process
is a stochastic process the future states of which depend only on the present state
and not on the past. More precisely, a stochastic process X possesses the Markov
property if for all t > s > 0 and for all bounded and measurable functions f :
RF — R,

E(f(X(1) | F) = E(f(X() | o(Xs)) (10)

where {F;, s > 0} is a filtration to which the process X is adapted and ¢ (X)
denotes the o-algebra generated by X(s). In reality, many systems are not truly
Markovian, but their memory time is so small that the systems may well be ap-
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proximated by a Markov process (see Gardiner, 1983, Section 3.3 ).

Moreover, the tension process is assumed to be Gaussian. Gaussian random
variables approximate many real-life variables adequately due to the central limit
theorem (Gardiner, 1983, Section 2.8.2).

With these assumptions, a natural model for the tension is a stationary
Ornstein-Uhlenbeck process. The stationary one-dimensional Ornstein-Uhlenbeck
process is the only one-dimensional stochastic process that is stationary, Gaussian
and Markovian (Gardiner, 1983, Section 3.8.4). With this model, tension has a
constant mean value, the set tension, around which it fluctuates temporally. The
Ornstein-Uhlenbeck process can be considered as the continuous-time analogue
of the discrete-time vector autoregressive (VAR(n)) processes (Meucci, 2009). It
provides a mathematically well-defined continuous-time model for fluctuations
of systems in which measurements contain white noise (Gardiner, 1983, Chapter
4). The stationary Ornstein-Uhlenbeck process can be regarded as a simplified
model of tension variations in a printing press.

With the Ornstein-Uhlenbeck process, the tension T satisfies the stochastic
differential equation

dT(s) = C(To — T(s))ds + DAW(s) (11)

with T(0) Gaussian or constant. Above, T is a constant-value vector of length k,
and C and D are constant-value k x k and k x p matrices, respectively. The term
W is a standard p-dimensional Brownian motion. The vector Ty is the long-term
mean of the process T. The matrices C and D describe the rate by which the
process T returns to its long-term mean and the volatility around it, respectively.
In the following, we assume that p = k so that there are as many sources of
random fluctuations as there are spans in the system.

Tension variation
5% — 10%

450

350

T(s)

250 1 1 1 1 |

FIGURE 6 Simulated sample path of tension in a system of a single span with different
coefficients of variation of T(s) and with Tp = 350 (N/m), C = 1. (Adapted
from PIV.)
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The analytical solution of (11), the multidimensional Ornstein-Uhlenbeck
process, reads as

t
T(t) :e—C<f—S>T(s)+(1—e—C(f—S>)T0+/ e CDAW (1) (12)

for t > s > 0. The solution (12) can be obtained by introducing the integrator
(similar to Gardiner, 1983, Section 4.4.4)

X(s) = e (T(s) — To) (13)

and by applying the multidimensional Itd formula (Qksendal, 2007, Thm 4.2.1)
to X.

From (12), it follows that the expected value of T(s) reads as
u(s) = e CE[T(0)] + (I — e )T,. (14)

The covariance matrix of T(s), denoted by Z(s), is (Gardiner, 1983, Section 4.4)
S
Z(s) = e x(0)e € 5 + / e C—ppTeC s—u)gy, (15)
0

Moreover, it holds }
T(t)| )y ~ N ((t,5), E(t,5)) (16)

where N denotes the multi-variate normal distribution,
fi(ts) = e CUS)x 4 (1—e CU=9))T, (17)
and (see Gardiner, 1983, Section 4.4)
E(t,s) = /Stefc(tfu)DDTech(F”)du. (18)
When C @ C is invertible, the matrix (18) can be expressed as (Meucci, 2009)
vec(L(t,s)) = (C® C) (I — e~ (€2O=%))yec(DDT). (19)

Above, vec denotes the operator that stacks all the columns of a matrix, one un-
derneath the other, and the Kronecker sum C & C reads as

CHC=CoL+L®C, (20)
where I} denotes the identity matrix of order k and ® is the Kronecker product.

Although the stochastic differential equation (11) has a solution for a gen-
eral matrix C, the process is not stationary in all cases. According to (Sato and
Yamazato, 1984, Thm 4.1), the stochastic process defined by (11) is stationary if
the eigenvalues of C have positive real parts. In this case, the tension process has
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the long-term mean
lim u(s) = Ty. (21)

S§—00

Moreover, when the eigenvalues of C have positive real parts, it holds (Meucci,
2009)

lim Z(s) = Zo (22)
with
vec(Zo) = (C & C) 71V€C(DDT). (23)

The limits (21)—(23) can be obtained by applying Thm 2.49 in Kelley and Peterson
(2010).

Assume that the initial value of tension satisfies
T(0) ~ N (To, Zeo). (24)

Consequently, since the limiting covariance matrix satisfies (Gardiner, 1983, Sec-
tion 4.4.6)
CLe+ZooC' =DDT, (25)

it follows from (15) that with (24), the covariance matrix of the tension process
does not change with respect to s.

Although this study limits the case to where Ty is constant, the stochas-
tic differential equation (11) can also describe deterministic cyclic variations of
tension when Ty is made time-dependent. The process remains Gaussian and
Markovian if the vector Ty and the matrices C and D are made time-varying but
deterministic (Glasserman, 2003, Section 3.3.3).

3.2.2 Defects

Macroscopic defects are introduced in paper webs during the manufacture and
transportation processes. In papermaking, a condensation drip in the pressing
or drying section or a lump on press rolls or press felt can cause holes in the
paper web. Such defects occur randomly or in a fixed pattern. Stress formed
from running a high roll edge through a nip may cause cracks on the edge of the
paper web. Edge cracks of such origin typically occur randomly in the sheet. In-
sufficient roll-edge protection during handling and storage may also cause edge
cracks. A cut or nick in the edge of the roll cause multiple edge cracks in the sheet
in a localized area. (Smith, 1995)

In this study, defects of the material are modelled as cracks. Moreover,
straight-line through-thickness cracks are considered (see Figure 7). Of such de-
fects, edge cracks perpendicular to the travelling direction are most critical in
terms of fracture.

PI and PII analyse the effect of a single crack on the system reliability. In
these studies, the length of the crack is described by a random variable

f(w), weQ. (26)
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FIGURE 7 A central through-thickness crack in a tensioned plate perpendicular to the
travelling direction. (From PV.)

The articles PIII, PIV and PV extend the reliability analysis by studying the frac-
ture probability of a material that contains several cracks. For crack occurrence,
different models are considered.

PIII studies the reliability of a system with a single open draw. The part
of the band that occurs in the open draw is assumed to continually have a crack
on the edge from which fracture may propagate. The length of the crack is mod-
elled by a stochastic process with almost all paths continuous. The crack-length
process is assumed to be independent of the tension process. As an example, the
length of the crack is modelled by a stationary exponential Ornstein-Uhlenbeck
process

&=1{¢(s), s >0}, (27)
&(s) = ek, (28)

where L is the stationary one-dimensional Ornstein-Uhlenbeck process. With this
model, the crack length ¢(s) obeys the lognormal distribution. Although PIII
only considers edge cracks, the analysis applies for perpendicular cracks also in
an other cross-directional position.

In PIV and PV, the locations of cracks in the travelling direction of the band
are modelled by a stochastic counting process

Ni(w) = {Ng(w,s), s >0}, weQ. (29)

The location of the jth crack in the longitudinal direction of the band is denoted
by s;. It is assumed that

Sj+1 — Sj > l{nan b — 04 (30)
forall j = 1,... so that more than one crack does not occur in an open draw
simultaneously. This also can be regarded as modelling only the dominant one of
the cracks that occur momentarily in the open draw. The counting process (29) is
assumed to be independent of the tension process.
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PIV and PV study cracks perpendicular to the travelling direction. More-
over, the cracks are assumed to occur in the same cross-directional position of
the band. The lengths of the cracks are described by independent and identically
distributed (i.i.d.) random variables ¢;, j = 1,..., which also are assumed to
be independent of the tension process and the crack-occurrence process Ng. The
analysis can be generalized for cracks of random cross-directional position by in-
troducing random vectors that describe the crack lengths and the positions of the
cracks in y direction.

This study assumes that the existing cracks do not grow and that new cracks
do not arise when the material travels through the system of open draws. How-
ever, in real systems, tension fluctuations may lead to the growing of existing
cracks and to the arising of new macroscopic cracks in the material. This is known
as fatigue crack growth. The fatigue phenomenon originates in local yield in the
material (Sobczyk, 1986). Under changing stress conditions, there is a migra-
tion of dislocations and localized plastic deformation which lead to microscopic
cracks in the material. Eventually, microscopic cracks grow and join together to
produce macroscopic cracks. If a structure is subjected to time-varying random
loading, the fatigue process also has a random nature. Stochastic models for fa-
tigue crack growth are discussed by Sobczyk (1986).

Although this study mainly focuses on describing the stochasticity of ten-
sion and cracks, other variables are also likely to exhibit random fluctuations. PII
considers the randomness of other problem parameters than those related to the
tension and cracks. These parameters include the thickness /i, the mass m, the
Poisson ratio v, the Young modulus E and the strain-energy release rate G¢. Sim-
ilarly to the tension and crack length, these parameters are modelled in PII by
random variables.

3.3 Mechanics of moving materials

This study of system performance focuses on fracture and instability of the mov-
ing material, and it considers brittle fracture, applying linear elastic fracture me-
chanics. To investigate the stability of the moving material, a linear model is used
and a static stability analysis performed.

3.3.1 Fracture

The travelling material is assumed to contain initial cracks from which fracture
propagates if the tension is too high. Materials can be divided into two broad
categories based on how cracks propagate in them. In brittle fracture, little or
no plastic deformation occurs before the fracture, and the material separates into
pieces abruptly. An example of a brittle material is newsprint. In ductile fracture,
plastic deformation occurs before the fracture, and cracks propagate slowly. For
example, many metals are ductile. This study considers brittle fracture of the



33

moving material.

To study the fracture of the band, LEFM is applied. LEFM is based on the
assumption that inelastic (nonlinear) deformation at the crack tip is small com-
pared to the size of the crack (small-scale yielding). More complex models of
fracture mechanics exist for materials in which the behaviour in the crack-tip re-
gion cannot be regarded as elastic. Examples of such models are the J-integral
and cohesive zone models. For details of different fracture mechanics models,
refer to Ostlund and Mikeld (2012) and Kundu (2008).

Figure 8 shows the three basic types of crack deformation: the opening
(Mode I), the in-plane shear (Mode II), and the out-of-plane shear (Mode III).
Since the band is only subjected to in-plane tension while travelling in the system
of rollers, crack loadings are of Modes I and I1. Cracks perpendicular to the trav-
elling direction are of Mode I, and oblique cracks are of Modes I and II (mixed

mode).
f

'

Mode I: Mode II: Mode III:
Opening In-plane shear = Out-of-plane shear

FIGURE 8 Modes of fracture.

The crack-occurrence model assumes that more than one crack does not ap-
pear in a single span at the same time. When studying fracture of the material,
possible interactions of cracks in different spans are not taken into account, and
the nonfracture criteria for the cracks are formulated separately.

The concept of stress-intensity factor is used in fracture mechanics to predict
the stress state near the tip of a crack caused by loadings. When LEFM is applied,
the stress intensity factor of Mode I related to a crack of length ¢; that occurs at
s = s;j and is travelling between the supports at x = {;, {;;; is a function of the
form (see Fett (2008))

Ki(x,sj, ) = x4 Ti(&zsj ) 7'[@']', x € (0,411 — 4, (1)

where « is a weight function related to the geometry of the crack. The stress-
intensity factor of Mode I is a function of a similar form as (31).

The weight function « depends on the size and shape of the crack as well as
the geometry of the specimen. Throughout this study, the function « is assumed
to be constant with respect to the location of the crack in x direction:

a(x, &) = () (32)
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Perez (2004) and Fett (2008, 2009) provide weight functions for cracks in a rectan-
gular plate under constant tensile loading.

In order for a crack of Mode I to travel through the ith span in such a way
that the material does not fracture, the stress intensity factor should satisfy

Kl'<x,S]',§j) < KC V x € [0,€i+1 — gi], (33)

where K¢ is the fracture toughness of the material. For failure criteria for a mixed
mode crack, see Kundu (2008) and Zehnder (2012). The inequality (33) is equiva-
lent to

Ti(£i+s]-+x) < B(éj) V x€[0,¢i41 — 4, (34)
where 1K

C

For example, for edge and central cracks perpendicular to the direction of applied
tension, the function a(¢)+/¢ is strictly increasing with respect to ¢. Therefore, the
longer the crack, the lower the critical value (35) of tension is.

Although the boundaries of (1) are included into the model, the effect of the
pressure area between the rollers (nips) is not taken into account in the analysis
of fracture. The model assumes that the material is subjected to pure tension,
although, in reality, when a material element passes through a nip, its stress state
varies (Ostlund and Mikeld, 2012). In addition, the model for fracture does not
take into account out-of-plane deformation of the web (discussed in Section 3.3.2)
or the air surrounding the material.

The strength of a material describes its capacity to withstand an applied
stress without failure. Uesaka (2013) discusses the relevancy of different types of
strength for a paper web in the printing and manufacturing processes. Fracture
toughness (especially in-plane) is relevant for studying the effect of pre-existing
macroscopic defects on web breaks (Uesaka, 2013). For microscopic disorder,
tensile strength is more relevant than fracture toughness (Uesaka, 2013). Tear
strength has not been found to predict web breaks (Uesaka, 2013).

3.3.2 Stability

Vibration is a motion of a mechanical system, a particle, a rigid body or any other
particle system that repeats itself after a certain interval of time (Salmi, 2006).
Vibrations are present everywhere, and occasionally they are desirable. For ex-
ample, vibratory tumblers use vibration to finish surfaces. Usually, though, vi-
bration is undesirable. The repeating motion of machines causes vibration in
different parts of the machines which may, for example, increase the wear of ma-
chine elements and decrease efficiency (Salmi, 2006). This study considers the
transverse vibrations of a moving material. The purpose of the stability analysis
is to determine such values of the system parameters for which vibrations begin
to violate the runnability of the system.

This study describes the transverse vibrations of the moving material by a
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linear partial differential equation and uses a similar model as Banichuk et al.
(2010b), who studied transverse vibrations of an uncracked band moving at a
constant velocity and subjected to constant tension. In the stability analysis by
Banichuk et al. (2010b), the small vibrations of the band in a single span is de-
scribed by the partial differential equation

0w 0w , T\*w D,
W +2V04axa*t + (VO — m) ﬁ + %A w =\, (36)
where . . A
0w 0w 0w
ANw=— 42+ . 7
v=oa dx29y? + oy 57)

In (36) Vp > 0 denotes the velocity of the material and D is the bending rigidity
of the plate given by

En?
12(1—-v2)’
In (36) the deflection function w = w(x,y,t) describes the transverse displace-
ment of the travelling plate. For the use of the linear model (36), small transverse
displacements are assumed.

D= (38)

Banichuk et al. (2010b) assumed that the deflection function w and its deriva-
tives satisfy the classical simply-supported and free boundary conditions (Timo-
shenko and Woinowsky-Krieger, 1959). The simply supported boundary condi-
tions read as

o%w
(w)x:O,Z =0, <8X2> =0, —b < y< b, (39)
x=0,¢

and the equations for the boundaries free of tractions can be presented as follows:

*w 82w>
— V= =0, O<x</, (40)
<ay2 ax2 y==b
Pw Pw

This study focuses on the stability of the moving material in the case when
T exhibits time-dependent random fluctuations. If the dynamical effects of the
loading and unloading processes of the applied tension are excluded, the dif-
ferential equation (36) and the boundary conditions (39)-(41) also describe the
transverse vibrations of the system with tension fluctuations. In this case, the co-
efficient T/m in equation (36) is a stochastic process. This study assumes the ve-
locity Vj is constant, although in printing presses, tension fluctuations are partly
caused by variations in the relative speed difference of successive rollers (Uesaka,
2013).

The stability of a system, the behaviour of which is expressed by a linear
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partial differential equation, is often studied by using the trial function
w(x,y, 1) = W(x,y)e" @)

with the unknown function W to be determined and the complex characteristic
parameter
§=iw, (43)

where @ is the frequency of small transverse vibrations. This is known as dy-
namic (stability) analysis, or the Bolotin type of stability analysis after Bolotin
(1963). (Saksa, 2013)

The stability exponent 5 characterizes the behaviour of the system. If 5 is
pure imaginary and, consequently, @ is a real value, the plate performs harmonic
vibrations of small amplitude and its motion can be considered stable. If the real
part of 5 becomes positive, the transverse vibrations grow exponentially and the
behaviour of the plate is unstable. (Saksa, 2013; Jeronen, 2011)

A critical state of the system is the state at which the considered system
transforms from stable behaviour to unstable. Mechanical instabilities usually
are classified according to the imaginary part of 5 in the critical state. If the imag-
inary part of 3 is zero in the critical state, the system exhibits static instability.
Otherwise, the mode of instability is regarded as dynamic. For a more thorough
introduction to the stability analysis of systems with moving material, see Jero-
nen (2011) and Saksa (2013).

Banichuk et al. (2010b) performed a static analysis of instability. In the static
analysis, the trial function (42) was inserted to the equations (36)—(41) and the
case § = 0 was solved. The trial function

W(x,y) = f("}) sin ("f) (44)

was used with an unknown function f. If (42) represents the solution of (36) and
(39)—(41) in the case of randomly varying tension, the static analysis presented
by Banichuk et al. (2010b) holds for the system with tension fluctuations when
considered at a fixed time point.

The critical velocity obtained from the static analysis (the critical divergence
velocity) reads as (Banichuk et al., 2010b)

. | T m2D

In (45), v« denotes the unique physically admissible root of the equation

O(y,u) —¥(7,v)=0, (46)
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where

®(7,t) = tanh (\/1;1—77) cofh <m>
‘

}/[ 7
VI+y(r+v—1)? B
Y(y,v) = T —vii P (47)

The motion of the plate is stable when its velocity satisfies
0< Vo< V. (48)

Increasing tension increases the critical divergence velocity (45), since the root .
does not depend on the value of tension. When the tension exhibits temporal
fluctuations, the formula (45) provides a momentary criterion for stability.

In addition to the dynamical effects of tension variations, the model lacks
other features which may have a significant impact on the results of stability.
The tension profile is assumed to be homogeneous, although inhomogeneities
may significantly decrease the critical divergence velocity (Tuovinen, 2011). The
interaction between the travelling web and the surrounding air is excluded in
the model, and according to Pramila (1986), the critical velocity obtained with
the vacuum model may be even four times the value predicted by the model in
which the surrounding air is present. The effect of the cracks also was excluded
from the vibration dynamics.

This section proposed models for systems with a moving cracked material
and presented criteria for the fracture and instability of the material. In the fol-
lowing section, these criteria will be used to derive the probabilities of fracture
and instability.



4 SYSTEM PERFORMANCE

In order to find the critical average tension or the critical velocity, or to investi-
gate the effect of different problem parameters on the system performance, the
probabilities of fracture and instability of the moving material are studied. Dif-
ferent models of the parameters lead to different types of problems. Figure 9
illustrates the fracture problems with the models considered in this study. When
the tension and crack length are modelled by random variables, the probability of
fracture aligns with the probability that the tension will reach above a certain crit-
ical tension (top left). If the tension is modelled by a continuous-time stochastic
process, considering the fracture probability leads to a first-passage time problem
(top right and bottom left). In solving the first-passage time problems, an analyt-
ical expression for the first-passage time distribution of the Ornstein-Uhlenbeck
process to a constant boundary can be exploited.

When explicit solutions are not available for the failure probabilities, the re-
liability of the system can be estimated by applying Monte Carlo simulation. The
plain Monte Carlo method is easy to apply, but in some cases, the drawback is
computational inefficiency. To increase sampling efficiency, variance-reduction
techniques (Glasserman, 2003, Chapter 4; Rubinstein and Kroese, 2007, Chap-
ter 5) and quasi-Monte Carlo methods (Glasserman, 2003, Chapter 5) have been
developed. Variance-reduction techniques aim to reduce variability in simula-
tion inputs or to exploit the specific features of a problem in order to decrease
the variance of estimators. Quasi-Monte Carlo methods differ from Monte Carlo
simulation in that they do not aim at mimicking randomness when generating
points. This study especially exploits conditional sampling, which is one of the
most efficient variance reduction techniques (Rubinstein and Kroese, 2007, Chap-
ter 5).
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— Critical tension

FIGURE 9 Schematic figure of the fracture problems with a single open draw. Top left:
Tension and crack length are modelled by random variables (PI, PII). Bottom
left: Tension is modelled by an Ornstein-Uhlenbeck process, and a path-wise
continuous stochastic process describes the length of the crack (PIII). Top
right: Tension is modelled by an Ornstein-Uhlenbeck process, and cracks of
random length occur according to a counting process (PIV, PV).

4.1 Critical tension and velocity

PI and PII seek the critical average tension and the critical velocity of the moving
material in terms of fracture and instability. The problem parameters are mod-
elled by random variables, and the solution is obtained explicitly or by simula-
tion.

Considering both instability and fracture, the problem of critical velocity of
the moving band in the presence of a crack is formulated in PII as

mTax Vo such that (49)
IP<K(C) > KC) <p; and (50)
T 2D
>/ = 7)) <y
p(vz/L+r22) < ay

where py, p; denote the admissible probabilities of fracture and instability, respec-
tively. The length of the crack is assumed to be small compared to the width of
the band, and the constraint (51) assumes that small cracks do not affect stability.
Introducing a constraint for the probability of failure is a way to formulate sta-
tistical mechanical problems, previously applied by Banichuk and Neittaanméki
(2010).

In general, the events in the constraints (50)-(51) are not disjoint, although
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the probability of the combined event may be small. With this problem formu-
lation, the total failure of the system in terms of fracture and instability can be
approximated from above by pr + p;.

PII assumes that the weight function in (31) is an increasing, strictly positive
and continuous function of ¢. It also assumes that the support of random-valued
parameters other than 6 is {x € R : x > 0}. With these assumptions, the
maximal value of Tj that satisfies (50) is the following p¢th order quantile:

T§" = Fy " (pe), (52)

where Fy is the cumulative distribution function of the random variable Y,

Kch
Y = . (53)
(&) (14 6)
The probability of fracture in (50) does not involve V. The probability of in-
stability in (51) decreases when Tj increases. Thus, the solution of the problem
(49)-(51) reads as

Ve = pngsr (pi), (54)

where Fze is the cumulative distribution function of
0

TS (146 2D
Z%’:\/O(m )+%m£2. (55)

TABLE 1 Critical tensions and velocities for the problems in which only ¢, 8 and G¢ or
one of them is regarded as a random variable. (From PII.)

Random T5" Vst
variables
_ 1 _ . 2D
¢, 0,Gc Fyl(Pf) \/m<(F91(Pi)+1)T8 +'Y*£2>
hKc \/1 < B 72D
0 — —( (Fy (p1) + DTS + ys—5—
()G (Fy (1= pe) + 1) m\ 0 ‘ &
hK * cr
g - — Vg (TS
a(F; (L= pe))y/7F (1= py)
ho [Foo(po)E o
Ge o\ "z Vo (T5°)

Table 1 shows the solutions with models in which only the crack length,
tension variation and strain energy release rate, or one of them, is regarded as a
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random variable. When the only stochastic quantity in the model is ¢ or G¢, there
are no random variables in the constraint (51) and the critical velocity is simply
given by (45). In Table 1,

Fj/ ] = é/ 9/ GC/

denotes the cumulative distribution function of the random variable j.

Edge crack Center crack

0.008
Ter 1678.2
0 0.007 1471.4
0.006 1264.6
o 0005 1057.8 (N /m)
0.004 851.0
0.003 644.2
0.002 437.4
0.001 S PR
0.008 152.9
Vo* 0.007 140.5
128.1
0.006
0.005 1157 (m/s)
©  ooa 103.3
: 90.9
0.003 78.5
0.002 66.1
0.001 53.7

0.6 0.7 06 07

FIGURE 10 Critical tension and velocity for perpendicular cracks when the crack length
obeys the Weibull distribution. The critical values are shown with respect
to the shape (s) and scale (c) parameters of the Weibull distribution. The ad-
missible probability of fracture p; = 0.001. For comparison, current paper
machines run at approximately 30 (m/s). (Adapted from PI.)

If an analytical expression for a quantile function F ~1 cannot be obtained,
the quantile can be approximated by Monte Carlo simulation. Let Sy, ..., Sy be
a random sample from the distribution F, where M is the sample size. The order
statistics of the sample are

<sM <. <M (56)

where [ Mp] is the first integer > Mp. The estimator in (57) is a weakly consistent
quantile estimator of F~!(p) (Resnick, 2005, Theorem 6.4.1). This means that the
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(M)
[Mp]
size M increases indefinitely.

The constraint (51) may result in an overoptimistic upper bound for safe val-
ues of the running velocity (see Figure 10). A reason for this is that the interaction
between the travelling web and the surrounding air is excluded in the model. As
mentioned before, the critical divergence velocity obtained by the model in which
the surrounding air is present may be only one fourth of the value predicted by
the vacuum model (Pramila, 1986).

estimate S converges to the real value F~!(p) in probability, as the sample

4.2 System reliability

PIII, PIV and PV investigate the probability that a band of length S travels through
the system of rollers in such a way that failure does not occur during the transi-
tion. When the tension is modelled by a stochastic process, considering the prob-
ability of fracture or stability leads to a first-passage time problem. In solving the
failure probabilities, simulation as well as the series representation of the first-
passage time distribution of the one-dimensional Ornstein-Uhlenbeck process to
a constant boundary are exploited.

4.2.1 First-passage time of the Ornstein-Uhlenbeck process

PIII and PIV study the reliability of a system with a single span. In the reliability
analyses, the stochastic quantity of interest is

Ty i==inf{s > 0: T(s) = x [ T(0) =y}, (58)
where y denotes the value at which the process T starts and x is a critical value,

see Figure 11. The random variable (58) is called the first passage (hitting, cross-
ing, exit) time.

0 Tr 8

FIGURE 11 First-passage time.

The first-passage time of a scalar Ornstein-Uhlenbeck process to a constant
boundary has gained much attention in research. Darling and Siegert (1953) pro-
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vide the Laplace transform of the density of the first-passage time to one or two
constant barriers of the scalar Ornstein-Uhlenbeck process, and Siegert (1951)
achieved the result for the one-sided barrier. The moments of the first-passage
time can be obtained from its Laplace transform via computing the derivatives of
the Laplace transform at zero. Ricciardi and Sato (1988) provide series represen-
tations for the moments of the first-passage time.

Obtaining the probability density or distribution function of a random vari-
able from its Laplace transform usually is a more difficult task than computing the
moments. One prospective approach is to invert the Laplace transform numer-
ically. For numerical inversion of the Laplace transforms in probability models,
see Abate et al. (1999). Explicit expressions are also available for the first-passage
time of the scalar Ornstein-Uhlenbeck process to a single constant boundary. Re-
lying on the inversion of the Laplace transform, Keilson and Ross (1975), Ricciardi
and Sato (1988) and Alili et al. (2005) provide analytical expressions for its den-
sity. Similar representations for the distribution and density were obtained by
Linetsky (2004a,b) by applying spectral theory. Following the spectral expansion
approach to diffusions, Linetsky explicitly computed the eigenfunction expan-
sion series for the hitting-time distribution for the Ornstein-Uhlenbeck process in
terms of Hermite functions. Proposed methods for computing the first-passage
time density of the scalar Ornstein-Uhlenbeck process also include inversion of
the cosine transform and a Bessel bridge simulation (Alili et al., 2005).

This study uses the spectral expansion of the first-passage time distribution

to compute failure probabilities for a single span. According to Linetsky (2004a),
when y < x, it holds that

[e9)

Plt) > s] s s >0, (59)
Z

where {1} ; and {c, }$_; are obtained as follows:

Ap=CBn, T=— (y — To). (60)

The coefficients {B,}° 1,0 < 1 < B2 < ..., By — 0 as n — oo, are the positive
roots of the equation

Hg(x/V2) =0, (61)
where Hg is the Hermite function defined by (Linetsky, 2004a)
_B.1..2 1-$.3..2
Hﬁ(X)—Zﬁﬁ{]( ﬁ’_@’x)—Zx]( y ’Zﬁ’x)} (62)
r(=") r(-3)

with the Kummer confluent hypergeometric function

1Gmx) = Y ¢ (€)n (63)

n=0 7] n',
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where {op =1, ({)n = {({+1)...({ +n —1) are the Pochhammer symbols. The
equation (61) is solved with respect to . The Kummer confluent hypergeomet-
ric function (63) is defined for all x, { € Cand 7 € C\ {0,—1,—-2,...}. The
coefficients {c, };’_; are given by Linetsky (2004a)

- Hy, (7/V2)
usg{ Ha(5/v2) }

Cn = (64)

B=Bn

When y > x, the spectral expansion of IP[T; > S| is obtained from (59)-(64) with
the substitutions ¥ — —x and ¥ — —¥ in (60) (Linetsky, 2004a).

4.2.2 Fracture probability with a continuous crack

The article PIII studies the probability of fracture for a system with a single span
assuming that the material in the span continually has a crack. In this case,
computing the probability of nonfracture is a first-crossing time problem of two
stochastic processes (Figure 9, bottom left). The nonfracture probability is esti-
mated from below by the probability that the tension process does not reach the
minimal critical tension obtained by the maximal crack length in the considered
interval.

The probability that the material does not fracture in the open draw while a
band of length S travels through it is

=P |T6) < (8)1)3@ vselos]|, (65)
where ke
B = NS (66)
Assuming that a(¢)+/€ is increasing with respect to &, then
rp > Py, (67)
with
B

~—

a(maxge(o 5 §(t))/maxeepo,s) G (t)

_ B/OVE) B/ (a(x) ) s
= [ > S)fr (1) dydFS e (¥), (©9)

where FS ¢ denotes the cumulative distribution function of max;c(os ¢ (t)-
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A Monte Carlo estimate of (69) is provided by

M B/(a(x;)yx) g N
i = 3 ) B (V) S 5]y (y)ay, (70)
im

where x1, ..., x is a sample from the distribution of max;¢[os) ¢(#). The estimate
(70) can be regarded as a result of conditional Monte Carlo simulation (see Section
5.4 in Rubinstein and Kroese, 2007, for conditional sampling). When the cumu-
lative distribution function of the maximal crack length is known, such a sam-
ple can be obtained by the inverse transform method (Glasserman, 2003, Section
2.1.1). That is, we take a sample y;, i = 1,..., M from the continuous uniform
distribution on the interval [0, 1] and solve

Friaxg(xi) =VYi (71)

foreachi=1,..., M. For (71), note that Friax ¢ is strictly increasing.
The first-passage time is connected to the maximum and minimum of the

considered process. For the cumulative distribution function of max;c(o g ¢(#), it
holds that

Faws(®) = [ Plo? > Sl (2 72)

where

vy =inf{s > 0: ¢(s) =x|¢(0) =z} (73)

When the length of the crack is modelled by the stationary exponential Ornstein-
Uhlenbeck process, it holds that

v =1inf{s >0: L(s) =log(x) | L(0) =log(z)}, (74)

where L is the stationary Ornstein-Uhlenbeck process that appears in (28). In
this case, the series representation (59) can be applied to compute (72). The
presented analysis applies also for other crack-length processes for which an-
alytical expressions for the cumulative distribution function of the maximum
are known. For example, square-root diffusions provide models for Gamma-
distributed crack lengths, and a series expansion for the first-passage time dis-
tribution of the square-root diffusion can be derived (Linetsky, 2004a).

As usual, the statistical error of the estimate (70) is approximated by Tf,M /M,
where 0, ) is the sample standard deviation. To reduce variance of the estimate
(70), a variance reduction technique (e.g., stratified sampling) can be used in sam-
pling from the uniform distribution.

PIII studies the critical set tension in terms of fracture. The maximum value
of Ty is sought that satisfies

77 (To) > py (75)

for a desired nonfracture probability pf € (0,1). Thus, the lower bound of non-
fracture probability is of main interest in PIII. However, an upper bound for rg,
can be obtained similarly as the lower bound 7. Then, instead of the distribution
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FIGURE 12 Lower estimate of the nonfracture probability for a system with a continu-
ous crack. The dotted lines show the 99% confidence intervals for the esti-
mates. The mean reversion parameters of the tension (C) and crack-length
processes are 0.1, E[¢(s)] = 1 (mm) and the coefficient of variation of &(s)
is 1. (Adapted from PIII.)

of max;c(g,5 §(t), the distribution of the minimal crack length is considered. The
cumulative distribution function of min,¢(y 5 ¢(¢) has a similar connection to the

first-passage time distribution as F3 &

TABLE 2 Upper bounds for safe ranges of the set tension (N/m) with different nonfrac-
ture probabilities. The parameters of the tension and crack-length processes
correspond to Figure 12. The upper values are computed for S = 500 (km)
and the lower values for S = 5000 (km). For comparison, the tensile strength
of newsprint in the machine direction is approximately 1.8 (kN/m). (Adapted

from PIIIL.)
P
Tension variation | 0.99 | 0.90
0% |36 | 4712
0% |05 3487

A critical value of the set tension obtained from (75) can be lower than the
tensile strength of the considered material (see Table 2). The maximal tension
experienced by the material can be remarkably higher than the set tension due
to tension fluctuations, and the critical value of the set tension takes this into
account. With the same loading conditions, the presence of cracks may lead to
the fracture of the material at considerably lower values of tension than depicted
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by its tensile strength. However, it must be kept in mind that the critical value
is sought by considering the lower bound of the probability of nonfracture, and
using the exact nonfracture probability in (75) may lead to a significantly wider
range of safe values of the set tension. Moreover, the results depend on the dis-
tributions of the tension and crack-length processes as well as the length of the
band.

4.2.3 Fracture probability with separate cracks

When cracks occur in the material according to a stochastic counting process,
considering the probability of fracture in a system with a single span leads to a
first-passage time problem of the tension process to a boundary that consists of
random-valued constant parts with varying distance (Figure 9, top right). By us-
ing the properties of the tension process, the probability of fracture can be derived
in a form in which the series representation of the first-passage time distribution
can be applied. A similar problem is encountered when considering the probabil-
ity of fracture in a system with several spans, but in multiple dimensions. For a
multidimensional Ornstein-Uhlenbeck process, an explicit representation for the
first-passage time distribution is not available in the literature. In this study, the
fracture probability for several spans is estimated by simulation.

4.2.3.1 Single span

The article PIV focuses on the reliability analysis of a system with a single span
in which cracks occur according to a stochastic counting process. For a general
counting process, the nonfracture probability can be obtained by utilizing condi-
tional Monte Carlo sampling. The reliability of the system is considered in two
cases: the tension is constant and the tension is a stochastic process.

The nonfracture probability of a band of length S that travels through a
single open draw with constant tension reads as

gt =P[Ng(S) = 0] (76)
+P[Ng(S) > 1, To < B(gj) forall j=1,...,Ng(S)], (77)
where N is the stochastic counting process (29) describing crack occurrence and

_ hKc
RGN

Since N¢ is independent of the crack lengths, and the lengths are i.i.d., it holds
that

B(¢g) (78)

[e9)

rEnt = P[Ng(S) = 0] + ) P[Ng(S) = k]7* (79)

2

with
G ="P[Ty < B(Z1)]. (80)
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The probability rjcé’”“ can be estimated by exploiting the idea of conditional

Monte Carlo simulation. That is, we may estimate r}Z”St with

cons 1
g v BUSTR) (81)
1 M
+ 7 L X2 P[To < B(Z1), -, To < B(ny(s)) | Ne(S) = ki), (82)
i

where kq, ..., ky is a sample of size M from the distribution of Nz(S). Above, x 4
is the indicator of the event A. For the conditional probability in (103), it holds
that

P[Ty < B(G1),..,To < B(Eny(s) | Ne(S) = kj] = 7", (83)

When the tension exhibits random fluctuations, the probability that a band
of length S travels through the open draw without fracture is

ri =P[Ng(S) = 0] (84)
+P[Ng(S) > 1, T(s;j+x) < B(Z) (85)
Vxe[0dVj=1,...,N:S)]. (86)

Similar to the case with constant tension, this probability may be estimated by
exploiting conditional Monte Carlo simulation. First, estimate r}‘;”d with

d 1 ¢ 1§ q
7’;?311\4 =M ZX{§1-1>S} + M Zx{gilés}qi’ 87)
i=1 i=1
where
g, =P[T(sj+x) <B(&) Vxe[0, Vj=1,...,NgS) (88)
‘ S] - §i1/ . -/Sik = §ik' SikJr] = gikJrl] (89)

and the vectors (§i1, oo 8i +1)' i=1,...,M consist of simulated crack distances,
satisfying

§il+"‘+§l‘k§S<§i1+"'+§jk+1. (90)
By exploiting the Markov property and stationarity of T, and as the random vari-

ables §; are independent and identically distributed, the probability g; simplifies
to

1 i,
7, =m0 (q;) 11073(51' —5i1), (91)
]:



49

where
B(x) .
= /]R+ l N Plo) ™) > £fr(y) f(x)dydx ©2)
42 = P[T(0) < B(&1)] 3)
B(z)
q3(s) = /]R+ /]R+ /_oo FGauss(VGguss(M,S),O'Gauss(s)/B(x))'

.fT(u)fg(x)f;;(z)dudxdz (94)

with Fgauss (MGauss (14, S), 0Gauss(5), x) denoting the cumulative distribution func-
tion of the normal random variable with mean

.uGauss(u/s) = TO + (” - TO)e_C(S_Z) (95)
and standard deviation

1 — e—2C(s—¢)

2C (96)

OGauss(s) = D
at point x. In (92) and (94), fz and fr denote the probability density functions of ¢;
and T(s). The probability (94) applies the transition density of T (the conditional
density of T(t +s) given T(s) = x) that is obtained from (16).

Reliability
To: 200 (N/m) To: 350 (N/m) To: 500 (N/m)

lg——o—9o—9o loe —p=—o—o— le——o o o
0.8 F 081 - ogf —g ¢ ¢
06 06~ 061/ &
0.4 04¢ 0471/,
0.2 02t 0.2 ¢

O L 1 1 1 | O L 1 1 1 0 1 1 1

0125 5 75 10 0125 5 75 10 0125 5 75 10

Crack distance (km) Crack distance (km) Crack distance (km)

Mean crack length
— 0.005 —— 0.015 (m)

Tension variation
——————— 5% - 10%

FIGURE 13 Probability of nonfracture when a paper web of length S = 350 (km) travels
through a single open draw (b = 0.6 (m), { = 1 (m), C = 1). Constant
crack distances, perpendicular through-thickness edge cracks and Weibull
distributed crack lengths with the coefficient of variation 1.26. (From PIV.)
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4.2.3.2 Several spans

The article PV considers the nonfracture probability of a system with more than
one span and cracks that occur in the material according to a stochastic counting
process. Similarly as for a system with a single span, the reliability with con-
stant tension can be simulated by applying conditional sampling for a general
counting process. When the tension exhibits random fluctuations, the nonfrac-
ture probability is approximated by simulating sample paths of the tension and
crack-occurrence processes.

When the tension is constant in each span, the nonfracture probability of the
material when a band of length S travels through the series of open draws is

re"t =P[Ng(S) = 0] (97)
+P[Ng(S) > 1, T¢™ < B(&) ¥ j=1,...,Ng(S)] (98)

with
Ty&™ = max To,- (99)

Since N¢ is independent of the crack lengths and the lengths arei.i.d., it holds that

ront =P [Ng(S) = 0] + Z;IP [Nz(S) = j]d (100)
=
with
j=P[T5™ < B(&1)]. (101)

If (100) does not provide an explicit expression, the reliability of the system
with constant tension can be estimated by

1 M
THM =31 )3 X {kj=0} (102)
j=1

1

+ X0y P [T < B(1), -, To"™ < B(Eni(s))

1

M=

| Ne(S) =k;],  (103)

where ky, ..., ky is a sample of size M from the distribution of Nz(S). The condi-
tional probability in (103) simplifies to

P [T < B(G1), ..., o™ < B(Gx)] = 7. (104)
When the tension exhibits random fluctuations, the nonfracture probability

reads as
r;g"d =P[t, > S| (105)



51
with

T, =inf {éi,l + 5; +Xx: Ti(&'*l + §j + X) = B(gj)
for some x € [0,1; — I;_1]
for some (i,j) € {1,...,k} x N}. (106)

We estimate the nonfracture probability r}“”d by
3

a8 = P [T as > S| (107)

where Ty, A is a first-passage time as in (106) but with a discretized tension pro-
cess Tas = (Typss---, Txas). That is, we approximate the process T at points
0 <51 <5 <... by (see Glasserman, 2003, Section 3.1.2)

Txs(0) = To + y,, (108)
Tps(5) = e CE™0Ty (5_1) + (I — e €O Ty 4y, 1=1,2,... (109)

where y, is a random variate from A/ (0, £« ) and ¥, 5, . . . are independent draws
from the distributions A/ (0, £(51,0)), N (0, Z(52,51)), . . ., respectively. The initial
value (108) follows from (24), and the succeeding values (109) are obtained by
exploiting the property (16)—(18). The random variates y,,y,, ... can be obtained
by drawing z1, zp, . .. independently from A (0, I) and then setting

Yy =01z, (110)
where the matrix o satisfies
oio] =L(5,51) (111)
(see Glasserman, 2003, Section 2.3.3.).

The probability (107) is estimated by

rand

1 M
T As,M = 77 Z X sn>S}hr (112)
fa8s M= {tfy,85n>5}

where M denotes the number of simulated paths of the system and 7, 45, de-
notes the first-passage time in the nth such path. The estimate (112) contains both
statistical and discretization errors. The statistical error is estimated by the stan-
dard error ‘T}Z,’st, v/ VM, where U}Z,”Ads/ u 18 the sample standard deviation. The
discretization error is approximated by

rand rand

|1’ As,M T 005, M |7 (113)

where As is a step size and the estimates r}Z”lAds M r}‘;”lz"lA . 1 are obtained with suffi-

ciently small standard deviations. If (113) is sufficiently small, r};’,’fsl ar is regarded
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as being close enough to the real value.
4.2.4 Probability of stability

PIII considers the probability that the material becomes unstable during the tran-
sition of a band of length S through a single open draw. When the tension exhibits
random fluctuations but the velocity is constant, considering the probability of
instability leads to a first-passage time problem to a constant boundary.

By (45) and (48), the probability that instability does not occur in the open
draw while a band of length S travels through it is

- ]P{T(s) S AV selns], (114)
where )
=D
A=mV}— VETZ' (115)

It is assumed that A > 0. Further, (114) can be written as
ri= [ P> Sifr(vdx (116)

and computed by exploiting the series representation (59).

This section formulated the probabilities of fracture and instability for the
models proposed in Section 3. The obtained representations of the failure prob-
abilities can be used for optimizing the system performance in terms of fracture
and instability.



5 CONCLUSION

Although research has shown some interest in the impact of cracks on web breaks
in manufacturing and printing of paper, few studies have considered mathemat-
ical modelling of the crack-induced fracture of moving paper webs, and these
studies provide only upper estimates for the fracture probability or do not con-
sider tension fluctuations in the system. Stability of moving materials is widely
investigated, but the models of stability do not take into account statistical fea-
tures of the process. This study developed stochastic models for a system in
which an elastic and isotropic material with initial cracks travels through a series
of spans under longitudinal tension and studied the probabilities of fracture and
instability of the material. The models focused on describing tension variations
and the occurrence of cracks in the material.

Several different models were considered for the system. Time-dependent
tension fluctuations were modelled by the stationary Ornstein-Uhlenbeck pro-
cess, and for cracks, different models were studied. The latter models described
cracks to occur in a span continuously or according to a stochastic counting pro-
cess. In the former model, the length of the crack was modelled by a contin-
uous stochastic process. In the latter model, lengths of the separate cracks were
modelled dy independent and identically distributed random variables. To study
fracture, linear elastic fracture mechanics (LEFM) was applied. In stability anal-
ysis, a previous result on the critical divergence velocity of the moving material
was employed.

When the tension exhibits time-dependent random fluctuations, consider-
ing fracture or instability of the material leads to a first-passage time problem.
With the continuous crack, the probability of fracture was approximated from
above. When cracks occur in the material according to a general counting pro-
cess, the reliability of the system with a single span can be simulated by apply-
ing conditional sampling. When the tension exhibits random fluctuations, the
series representation for the first-passage time distribution of the scalar Ornstein-
Uhlenbeck process to a fixed boundary can be exploited in conditional sampling.
For some special crack-occurrence models, explicit representations for the system
reliability can be derived. When there is more than one span in the system, the
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solution of the first-passage time problem can be estimated by simulating paths
of the multidimensional Ornstein-Uhlenbeck process.

Computing the fracture probability with the models that describe tension
fluctuations is more time-consuming than with the earlier presented analytical
expressions but aims to provide more accurate estimates. However, the model of
fracture does not take into account the effect of rollers, the transverse vibrations
of the material or interactions of the cracks. The limitations of LEFM also must
be kept in mind.

The stability analysis presented in this work applies a linear model. Such
a model is limited to small deformations. The dynamical effects of tension vari-
ations and the effect of the cracks were excluded from the vibration dynamics.
Moreover, the model assumed that the velocity of the material is constant, al-
though in printing presses, both the tension and velocity fluctuate.

The results obtained by using material and machine parameters typical to
dry paper (newsprint) and printing presses show that the length of the damage
zone as well as the distributions of crack occurrence, crack length and tension
all play important roles in the system reliability. Thus, the results of this study
are mainly qualitative, and to estimate the reliability of a specific system, data
of the process are needed. However, the numerical results agreed with the pre-
vious studies, which found small cracks to play a minor role in the pressroom
runnability. The results also suggest that tension variations may affect the press-
room runnability significantly, which coincides with previous results. As the re-
sults depend remarkably on the distributions of tension, crack occurrence and
crack length, considering an upper bound for the fracture probability may lead
to overconservative values for set tension.
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YHTEENVETO (FINNISH SUMMARY)

Tyon otsikko: Saroytynyttd materiaalia kuljettavien systeemien stokastisesta
mallinnuksesta ja luotettavuudesta

Téssd tyosséd tarkastellaan sellaisten systeemien luotettavuutta, joissa kulje-
tetaan materiaalia kahden tai useamman tuen kannattelemana. Esimerkiksi paperi-
ja painokoneissa paperiraina liikkuu rullien ohjaamana. Rullien viélissd rainaa
kuljetetaan yleensd tuetta. Tallaisten vapaiden vetojen kohdalla systeemi voi olla
herkka vioille, kuten materiaalin murtumiselle tai mekaaniselle epavakaudelle.

Jotta paperiraina kulkisi rullalta toiselle, sen on oltava vetojannitetty. Veto-
jannitys saadaan aikaan rullien nopeuserolla, ja sen arvolla on suuri merkitys sys-
teemin toimivuuden kannalta. Vetojannityksen suuruuden muutoksella on esi-
merkiksi pdinvastaiset vaikutukset materiaalin epdvakauteen ja murtumisherk-
kyyteen. Kun vetojannitys kasvaa, materiaali on vakaampi, mutta murtumisen
todenndkoisyys kasvaa.

Vaikka sédrojen vaikutusta paperirainan ajettavuuteen on tutkittu paljon ko-
keellisesti, saroytyneen liikkuvan materiaalin murtumista on mallinnettu tieteel-
lisen tutkimuksen parissa vain vdahan paperiteollisuuden sovelluksia varten. Ko-
neessa kulkevan paperin murtumistodennékoisyydelle on aiemmissa tutkimuk-
sissa johdettu joitakin ylédrajoja. Liikkuvien materiaalien vakautta kuvaavia ma-
temaattisia malleja taas on kehitetty useiden vuosikymmenien ajan, mutta ndissa
tutkimuksissa ei ole huomioitu systeemin satunnaista kdyttaytymista.

Taman tyon pdatarkoituksena on kehittdad liikkuvan sdardytyneen materi-
aalin murtumista kuvaavia matemaattisia malleja. Malleissa pyritddn erityises-
ti ottamaan huomioon vetojdnnityksen ja sdrdjen satunnaisvaihtelu. Murtumista
tutkitaan lineaarielastisen murtumismekaniikan avulla. Tyossa késitellddn myos
lilkkkuvan materiaalin vakautta silloin, kun siihen kohdistuva vetojannitys vaih-
telee satunnaisesti ajan suhteen. Vakaustarkastelussa hyodynnetdan aiemmasta
tutkimuksesta tunnettua kriittisen divergenssinopeuden tulosta.

Téassa tyossa liikkuvaan materiaaliin kohdistuvaa vetojannitysta mallinne-
taan stationaarisella Ornstein-Uhlenbeckin prosessilla. Kyseisen mallin mukaan
vetojdnnityksen arvo vaihtelee satunnaisesti tietyn keskiarvon ympaérilld. Statio-
naarista Ornstein-Uhlenbeckin prosessia voidaan pitdd yksinkertaistettuna mal-
lina paperi- ja painokoneiden todellisista vetojannityksistd, jotka voivat sisaltaa
satunnaisen vaihtelun lisdksi deterministisid sykleja.

Ty0ssé tarkastellaan erilaisia siromalleja. Sardjen esiintymistd kuvataan sto-
kastisella laskuriprosessilla tai jatkuvalla stokastisella prosessilla. Edelliselld mal-
lilla kuvataan sardjen ilmestymistd vapaalle vedolle yksitellen, ja sdrdjen pituuk-
sia mallinnetaan satunnaismuuttujilla. Jalkimmaisessd mallissa oletetaan, ettd va-
paassa vedossa liikkuvassa materiaalissa on jatkuvasti olemassa siro, jonka pi-
tuutta mallinnetaan stokastisella prosessilla. Tutkimuksessa tarkastellaan paa-
asiassa sdrojd, jotka ovat kohtisuorassa materiaalin kulkusuuntaan ndhden. Tél-
laisia sdrdjd pidetddn paperiteollisuudessa kriittisimpina.

Kun liikkuvaan materiaalin kohdistuva vetojannitys vaihtelee satunnaises-
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ti ajan suhteen, paadytaan murtumis- ja epavakaustodennidkoisyyksien tarkaste-
lussa erilaisiin ensimmdisen osumishetken ongelmiin. T&lloin ollaan kiinnostu-
neita siitd, milloin vetojdnnitystd kuvaava stokastinen prosessi saavuttaa jollakin
ajanjaksolla tietyn kriittisen arvon ensimmaistéd kertaa. Taméan tyon murtumis- ja
vakaustarkasteluissa hyddynnetdan tunnettua sarjakehitelméaa jakaumalle, joka
kuvaa Ornstein-Uhlenbeckin prosessin ensimmadistd osumishetked vakioarvoi-
seen rajaan.

Murtumistodennékoisyyden laskemisessa hyodynnetdan analyyttisia tulok-
sia sekd Monte Carlo -simulointia. Kun sdrojd mallinnetaan jatkuvalla stokastisel-
la prosessilla, arvioidaan murtumistodennakoisyyttd ylhdaltapain todennakoi-
syydelld, ettd vetojannitys yltdd suurimman séron pituuden médradamaan kriitti-
seen arvoon. Kun sérot esiintyvit materiaalissa laskuriprosessin mukaan, materi-
aalin murtumistodenn&koisyys voidaan yleisessd tapauksessa laskea yhdelle va-
paalle vedolle kdyttden ehdollista otostusta. Tietyille laskuriprosesseille voidaan
murtumistodenndkoisyydelle johtaa analyyttinen esitys. Useamman vapaan ve-
don tapauksessa murtumistodennédkodisyytta arvioidaan tdssa tydssd simuloimal-
la vetojannitystd ja sdrdjen esiintymistd kuvaavien prosessien otospolkuja.

Virhetodenndkoisyyksid lasketaan painokoneille ja kuivalle paperille tyy-
pillisilla parametreilla. Tulosten mukaan vioittuneen materiaaliosan pituudella,
sdrdjen koon ja esiintymistiheyden jakaumalla sekd vetojannityksen jakaumalla
on suuri merkitys systeemin luotettavuuden kannalta. Tdstd syysté tulokset voi-
daan tulkita ldhinna laadullisiksi, ja tietyn systeemin luotettavuuden arvointiin
tyossa kehitettyjen mallien avulla tarvitaan dataa kyseisestd prosessista. Tulok-
set eivdt kuitenkaan ole ristiriidassa aiempien tulosten kanssa. Myos tédssa tyossa
pienten sdrdjen ei havaita vaikuttavan olennaisesti systeemin luotettavuuteen. Li-
sdksi huomataan, ettd vetojannityksen suuruuden vaihtelut voivat merkittavasti
kasvattaa virhetodennikoisyyttd, mikd on havaittu myos aiemmissa paperiteol-
lisuuden ratakatkotutkimuksissa.

Tuloksia tulkittaessa on pidettdva mielessd mallin rajoitukset. Lineaarielas-
tinen murtumismekaniikka ei vattimittd ennusta paperin murtumista tarkasti,
kun kyseessd ovat pienet sarot. Lisdksi tukien mekaanista vaikutusta ei huomioi-
da murtumisen mallintamisessa. Esitetyssd vakausanalyysissd kdytetddn lineaa-
rista mallia, jossa oletuksena on, ettd radan poikkisuuntaiset vardhtelyt ovat pie-
nid. Lisdksi mallissa ei huomioida tekijoitd, jotka voivat olla merkittdvia vakau-
den kannalta, kuten vetojannityksen vaihtelun dynaamiset vaikutukset, jannitys-
profiilin epdtasaisuus ja materiaalia ympéaroivan ilman vaikutus. Mallissa my6s
oletetaan, ettd materiaalin nopeus on vakio, vaikka paperi- ja painokoneissa seka
vetojdnnitys ettd nopeus vaihtelevat ajan suhteen.

Ratakatkot ovat paperiteollisuudessa harvinaisia tapahtumia, ja siksi ko-
keellisissa tutkimuksissa joudutaan ajamaan useita rullia ratakatkojen aiheutta-
jien selvittamiseksi. Lisdksi ilmioon liittyy usein toisistaan riippuvia muuttujia,
joiden kontrolloiminen voi olla haastavaa. Tdssédkin tyossd kasitelty matemaatti-
nen mallintaminen voi tarjota keinon tutkia ratakatkojen aiheuttajia silloin, kun
kokeellisten tutkimusten suorittaminen on hankalaa.
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Abstract

The reliability of processes with moving elastic and isotropic material
containing initial cracks is considered in terms of fracture. The material is
modelled as a moving plate which is simply supported from two of its sides
and subjected to homogeneous tension acting in the travelling direction.
For tension, two models are studied: i) tension is constant with respect to
time, and ii) tension varies temporally according to an Ornstein- hlenbeck J
process. Cracks of random length are assumed to occur in the material
according to a stochastic counting process. For a general counting process,
a representation of the nonfracture probability of the system is obtained
that exploits conditional Monte Carlo simulation. Explicit formulae are
derived for special cases. To study the reliability of the system with
temporally varying tension, a known explicit result for the first passage
time of an Ornstein-Uhlenbeck process to a constant boundary is utilized.

umerical exgmples are provided for printing presses and paper material.

Keywords: Moving material, fracture, stochastic model, first passage time,
Ornstein-Uhlenbeck process

1 Introduction

There are systems in industry in which material moves unsupportedly between
two rollers under a longitudinal edge tension. Such systems can be found, e.g.,
in manufacturing and printing of paper. In paper machines and printing presses,
the tension is essential for the transport of the material and it is created by a
velocity difference of the rollers. The relative velocity difference of the rollers is
call d draw, and the span between the rollers is called an open draw.

To achieve good productivity in systems with moving material, there is a
demand for running the system at a high speed but at the same time avoiding



runnability problems. In pressrooms, runnability problems include web breaks,
register errors, wrinkling and the instability of the paper web [12]. Of these
problems, especially web breaks have gained attention in the print industry
[24].

One of the suspected causes of web breaks in pressrooms are defects. Defects
in a paper web can be classified into two categories: microscopic and macroscopic
defects. Microscopic defects originate from the natural disorder in paper, such as
formation, local fibre orientation and variation of wood species [17]. Macroscopic
defects are introduced during the papermaking and transportation processes. In
papermaking, a condensation drip in pressing or drying section or a lump on
press rolls or press felt can cause holes in the paper web [20]. Such defects
occur randomly or in a fixed pattern. Stress formed from running a high roll
edge through a nip may cause cracks on the edge of the paper web [20]. Edge
cracks of such origin typically occur randomly in the sheet. Insufficient roll edge
protection during handling and storage may also cause edge cracks. A cut or
nick in the edge of the roll cause multiple edge cracks in the sheet in a localized
area [20].

‘Web breaks occur at random intervals and they are rare events in pressrooms
[11]. Thus, data from a large number of rolls is required for determining the
causes of web breaks with a reasonable level of confidence [3] and such data is
difficult to obtain under controlled conditions [25]. In addition to the rarity of
web breaks, there are often many dependent random variables involved in the
printing process, and controlling of them may appear difficult [25]. To avoid
these problems, two approaches for finding causes of web breaks have been
suggested [25]. One is to conduct data-analysis on massive pressroom databases
and the other is to investigate the effect of different factors on web breaks by
mathematical modelling.

Although the effect of macroscopic defects have gained attention in the re-
search (see, e.g., literature review in [24]), to the author’s knowledge, only
a few studies aim to predict the connection of macroscopic defects and web
breaks by mathematical modelling. Swinehart and Broek [21] developed a web
break model, based on fracture mechanics, which included the size distribution
of flaws, web strength and web tension. In [21], the tension was regarded as
constant. Uesaka et al. [25] studied the effect of cracks on web breaks by a
break-rate model based on the weakest link theory of fracture. The number
of breaks per one roll during a run was derived by considering the strength of
charateristic elements of the web. In [25] the tension in the system was assumed
to be constant and later, Hristopulos and Uesaka [7] presented a dynamic model
of the web transport derived from fundamental physical laws. In conjunction
with the weakest link fracture model, the model allows investigating the impact
of tension variations on web break rates.

The break-rate model used in [25, 7] predicts the upper estimate of the break
frequency. However, considering an upper bound of fracture probability may
lead to an overconservative upper bound for a safe range of tension. The studies
of mechanical instability suggest that the higher the tension, the higher the
velocity of the moving material can be [1]. Thus, from the view point of maximal



production, an overconservative tension is undesirable as it underestimates the
maximal safe velocity.

Motivated by paper industry, defects have also gained attention in the studies
of instability of moving materials. Banichuk et al. [2] studied an elastic and
isotropic plate that has initial cracks of bounded length travelling in a system of
rollers. In [2], the plate was assumed to be subjected to constant or (temporally)
cyclic in-plane tension and the Paris’ law was used to describe the crack growth
induced by tension variations. The optimal average tension was sought for
the maximum crack length by considering a productivity function which takes
into account both instability and fracture. Moreover, an attempt to take the
stochasticity of systems with moving material into account was made in the
study by Tirronen et al. [22] in which the safe transition of elastic and isotropic
material with initial cracks was analyzed by modelling the problem parameters
as random variables. In [22], critical regimes for the tension and velocity of the
material were sought by considering the probabilities of fracture and instability.

Although tension in a printing press is known to change in time due to draw
variations [24] and tension fluctuations have been suggested to cause web breaks
[23], the tension in the system was regarded as constant in [25, 21]. In [22], the
tension was assumed to be constant while a crack travels through an open draw
although the constant value was assumed to include uncertainty. In [2], only
deterministic variations of tension were considered although the draw variations
contain white noise in addition to specific high/low frequency components [24].
In a printing press, cyclical tension variations may be caused by out-of-round
unwind rolls or vibrating machine elements such as unwind stands (see [14] and
the references therein). In addition to cyclical variations, tension may vary
aperiodically due to poorly tuned tension controllers, drives, or unwind brakes
([14] and the references therein). The net effect of such factors cause the tension
to fluctuate around the mean value [14].

This study aims at developing mathematical models for systems in which
a moving cracked material travels under longitudinal tension. The material
is assumed to be elastic and isotropic, and the models of this study focus on
describing the occurrence of defects in the material and tension variations in
the system, taking into account the stochasticity of these phenomena. This
paper extends the study [22] by modelling the crack occurrence and temporal
variations of tension by stochastic processes, which enables examination of sys-
tem longevity. Instead of estimating the fracture probability from above, the
present paper aims at directly computing the fracture probability predicted by
the model.

Two different models are considered for temporal value of tension. The first
model describes tension as constant with respect to time. The second model
describes the tension as a stationary Ornstein-Uhlenbeck process. With the
latter model, tension has a constant mean value, the set tension, around which
it fluctuates temporally. The Ornstein-Uhlenbeck process can be considered as
the continuous-time analogue of the discrete-time AR (n) process. It provides a
mathematically well-defined continuous-time model for fluctuations of systems
whose measurements contain white noise [5, Chapter 4]. Moreover, a stationary



process describes random fluctuations of a system which has settled down to a
steady state and whose statistical properties do not depend on time [5, Sections
3.7]. The stationary Ornstein-Uhlenbeck process can be regarded as a simplified
model of tension variations in a printing press.

In this study, we consider straight-line through-thickness cracks perpendic-
ular to the travelling direction and located on the edge of the material. Sharp
edge cracks oriented in the cross direction of the paper web are most critical
in printing presses [15]. Other stochastic quantities in the presented model de-
scribe the occurence of cracks in the open draw and the lengths of the cracks.
The locations of the cracks in the travelling direction are described by a stochas-
tic counting process. The lengths of the cracks are modelled by independent
and identically distributed (i.i.d.) random variables.

The reliability of the system is studied in terms of fracture by applying
linear elastic fracture mechanics (LEFM). For a general counting process, the
nonfracture probability is obtained by utilizing conditional Monte Carlo simu-
lation which is one of the most effective techniques for variance reduction [16,
Section 5]. An explicit representation is derived for a few special cases. When
there is stochastic volatility in tension, considering the probability of a fracture
leads to first passage time problems which are solved by exploiting the spec-
tral expansion of the first hitting time of an Ornstein-Uhlenbeck process to a
constant boundary, as given in [9].

Numerical examples are computed for material and machine parameters typ-
ical of dry paper (newsprint) and printing presses. The reliability of the system
is studied with different models for crack occurrence. The impact of differ-
ent parameters of the stochastic quantities on the reliability of the system is
illustrated.

2 Problem setup

In this study, we consider a moving elastic and isotropic band containing initial
cracks during its transition through an open draw. Below, a mathematical model
for the moving band is presented. The model is similar to the one presented in

[1].
To study the behavior of the band in the open draw, consider a rectangular
part of it that occurs between the supports momentarily:

D={(z,y): 0<z<¥t —-b<y<b} (1)

in x,y coordinates, see Fig. 1. The length of the span between the supports is
¢ and the width of the band is 2b. The part D is modelled as an elastic and
isotropic plate that has constant thickness h and Young modulus E. The sides
of the plate

{r=0, -b<y<b} and {z=¢ —-b<y<b} (2)
are simply supported, and the sides
{fy=-b 0<z<{} and {y=>b, 0 <z <{} (3)



are free of tractions.
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Figure 1: The part of the band that is travelling in the open draw is modelled
as a plate tensioned at the supported edges with the homogeneous tension 7'(s).
The minimum distance between the ith crack and the first end of the band is
denoted by s'. The drawing is adapted from Fig. 1 in [22].

2.1 Tension

The plate element (1) is subjected to homogeneous tension acting in the x
direction. Two different models describing the temporal value of tension are
studied. In the first model, the value of tension is assumed to be a constant
To > 0. In the second model, the tension exhibits temporal random fluctuations.
In this case, the tension is described by a continous-time stochastic process

T ={T(s), s=0} (4)

in a probability space (£2,F,P). Above, s denotes the length of the part that
has travelled through the first end of the open draw, see Fig. 1.

Furthermore, temporal random fluctuations of tension are described by a sta-
tionary Gaussian Markov process. A stationary process describes the stochastic
fluctuations of a system which has settled down to a steady state and whose
statistical properties do not depend on time [5, Section 3.7]. Gaussian random
variables approximate many real-life variables adequately due to the central
limit theorem [5, Section 2.8.2]. Moreover, Markov processes can be used to
describe many real systems which have small memory times (see [5, Sections 3.2
and 3.3]).

With these assumptions, a natural model for the tension is a stationary
Ornstein-Uhlenbeck process. The stationary Ornstein-Uhlenbeck process is the
only one-dimensional stochastic process that is stationary, Gaussian and Marko-
vian [5, Section 3.8.4]. With the Ornstein-Uhlenbeck process, the tension changes
with respect to s according to the stochastic differential equation

dT(s) = ar(Ty — T(s))ds + opdW (s), (5)

where W is the standard Brownian motion (Wiener process) and Ty, ar and
or are strictly positive constants. The parameter Tj is the long-term mean of



the process, the coefficient ar is the rate by which the process T reverts toward
To and op describes the degree of volatility around 7j. In the following, the
long-term mean T is also called the set tension. Furthermore, the process T is
stationary if the initial value satisfies

T(0) ~N(To, %) (6)

where A is the normal distribution [6, Section 3.3.1].

Since T is stationary, the probability density function of T'(s) is time-independent.
We denote the probability density function of 7" by fr. By denoting the coeffi-
cient of variation of T'(s) (the mean of T'(s) divided by its standard deviation)

by cr, we have
ar

\/ 2(1,T
The transition probability density of T (the conditional density of T'(¢ + s)
given T'(s) = z) is given by the formula

1

= CTTO . (7)

p(t,z,y) =
V

no2. (1 — exp[—2art]) /ar ‘

(v—To ~ (@ ~ To) exp|~art])’
02.(1 — exp[—2art]) /ar

-eXP[— (8)

The representation (8) follows from the property that, given T'(s) = x, the value
of T'(t + s) is normally distributed with mean

exp|—art]r + To(1 — exp[—art]) (9)
and variance )
20‘1—7; (1 — exp[—2art]) (10)

(see [6, Section 3.3.1]).

2.2 Cracks

We consider a band containing straight-line cracks perpendicular to the travel-
ling direction. The positions of the cracks in the longitudinal direction of the
band are described by a counting process

Ne = {Ne(s), s> 0}. (11)

The number of cracks in a band of length S is given by the random variable
N¢(S). It is assumed that the process N is independent of the tension process
T.

Let s; denote the distance between the first end of the band and the ith
crack that appears in the draw (see Fig. 1). In the case of constant tension, we



assume that the crack distances are strictly positive so that more than one crack
does not appear in the same longitudinal position of the band simultaneously.
In this case, more than one crack may occur in the open draw simultaneously,
but the possible interactions of cracks are not considered in this study. In the
case of randomly varying tension, we assume that s; —s;_1 > £.

In this study, we consider a band containing only through-thickness edge
cracks (see Fig. 2). The length of the ith crack is described by the random
variable £. We assume that the random variables £* are independent and iden-
tically distributed (i.i.d.), and the common cumulative distribution and prob-
ability density functions of the crack lengths are denoted by F¢ and f.. The
random variables £' are assumed to be independent of the processes N¢and T

4
-] >
-] >
~0] [ x
- | >
44 N

Figure 2: An edge crack on the tensioned plate.

Although we consider only sharp edge cracks in this study, the reliability
analysis can be generalized for other crack geometries as well by modifying the
fracture criterion presented below. For example, instead of describing only the
length of a crack as a stochastic quantity, the geometry of the crack can be
described by a random vector, the elements of which describe the crack length,
the location of the crack in the y direction and the orientation of the crack in
the xy plane.

2.3 Nonfracture criterion

To study the fracture of the band, we apply linear elastic fracture mechanics
(LEFM), which assumes that the inelastic deformation at the crack tip is small
compared to the size of the crack. Crack loadings in the system are of mode I
(opening). When a crack £ travels through the open draw, the stress intensity
factor K related to the crack is a function of the form (see [4])

K(t, fz) — a(tvfi) T(‘: + t)\/"%, te [0,[]’ (12)



where a is a weight function related to the crack geometry. In this study, we
assume that the function « is constant with respect to the location of the crack
in x direction:

alt, €') = a(€). (13)

Weight functions for cracks in a rectangular plate under constant tensile loading
are provided, for example, in [13, 4].
The nonfracture criterion for the band when the crack £* travels through the
open draw reads as
K(t, &) < K¢ for all t € 0,4, (14)

where K¢ is the fracture toughness of the material. The nonfracture criterion
(14) is equivalent to _ _
T(s*+1t) < B('), te[0,4, (15)

with

hKeo
a(€)V/mE

The performance of the system is considered during the transition of a band
of length S through the open draw. In this, the initial and last states of the
system are regarded as the states at which the first and last ends of the band
are located at the supports to which the travelling material arrives first and
last, respectively (see Fig. 3). It is assumed that before and after the band the
material continues and remains similar. For simplicity, cracks that occur in the
open draw in the initial and last states are not considered in terms of fracture.

Vo
- ’_)‘
' ' =
=0 =1/

Figure 3: The initial and last states of the system.

B(¢') = (16)

3 Reliability in terms of fracture

In this section, representations for the reliability of the system are derived with
different tension models. For a general counting process describing the crack
occurrence, the reliability of the system can be obtained by utilizing conditional
Monte Carlo sampling. Explicit representations are derived for special cases.



3.1 Constant tension

When tension is constant and the possible interactions of the cracks that occur
in the open draw simultaneously are not taken into account, the reliability of
the system reads as

r1 =P[Ng(S) = 0] (17)
+P[Ne(S) > 1, Ty < B(€') forall i =1,...,Ng(S)]. (18)

Since N¢ is independent of the crack lengths, and the lengths are i.i.d., it holds
that

r1 =P[Ne(S) =0] + ) _P[Ne(S) = 5]@° (19)
Jj=1
with
7= P[T, < B(¢")]. (20)

The probability r; can also be estimated by exploiting the idea of conditional
Monte Carlo simulation (see [16, Section 5.4]). That is, we may estimate

M

1
X{k;=0} (2 1)
1

"
J

1

+t 7 X{k,#0)P[To < B(€"),...,To < B(ENeS) | N¢(S) = k],  (22)
J

M=

1

where ki, ..., ka is a sample of size M from the distribution of N¢(S), and for
the conditional probability in (22), it holds that

P[Ty < B(E"),...,To < B(ENe) | N¢(S) = k;] (23)
=]P[T0 < B(gl)v"-vTO < B(Sk")] (24)
=g, (25)

3.2 Stochastic volatility in tension

When there is stochastic volatility in the value of tension, the probability that
a band of length S travels through the open draw such that a fracture does not
propagate from any of its cracks is

ry =P[N¢(S) = 0] (26)
+P[Ne(S) > 1, T(si +t) < B(£Y) (27)
Vtelo,qVi=1,..., NeS5)]. (28)

Similar to Section 3.1, we may estimate r, by exploiting conditional Monte
Carlo simulation. First, we estimate

1 & 1 :
2~ 3 Zl Xial>s) T 31 le{z{ssﬁiw (29)
J= J=



where
i, =P[T(si+1) <BE) VY te[0,6] Vi=1,..,Ne(S) (30)

|51=1'{,---,5k,- =-Tij,5k,+1=ﬂ7i,+1] (31)

and the vectors (z{,...,z‘,ijﬂ), j = 1,..., M consist of simulated crack dis-
tances, satisfying

44w, <S<T+ T (32)

The probability 6{;’, above simplifies to

‘_If;j=P[T(zf+t)<B(§i) Vtel0,] Vi=1,... k; (33)
s =i, =Iii’skj+l=mij+1] (34)
=]P[T(a:f+t)<B(§i) Vtel[o,Vi=1,... k. (35)

Since s; > s;_1 + ¢, we obtain by using the Markov property of T' and the
independence of £'’s that

q, = P[T(z], +1) < B(E¥) ¥ t€ (0,4 | T(z],) < B(E™)]-  (36)
-P[T(},) < BE"), T(a] +1) < B(¢') (37)
Vtelo,Vi=1,... k—1], (38)

where the probability (37)—(38) is equal to
P[T(z},) < B(E") | T(x},_, +4) < BEY)]at, - (39)

By the stationarity of 7' and the assumption that £'’s are identically dis-
tributed, the probability on the right of (36) simplifies to

q1
0 (40)
with
¢ =P[T(t) < B(¢') V t€[0,4] (41)
and
g2 = P[T(0) < B(¢")]. (42)
Further, we may write
- /R P[T(t) < B@) ¥ t€ [0,0] fe(@)dz. (43)
Let
7y =1inf{s > 0:T(s) =z | T(0) = y} (44)

10



denote the first passage time (hitting time) of the tension process to the bound-
ary = given that the process started at y. With this notation we have

B(z)
q1 = Au /_oo P[Tf(z) > ) fr(y) fe(z)dydz. (45)

The spectral expansion of the survival function of 7/ is given in [9]. According
to [9], when y < z, it holds that

Plry >8] =) cae™™*, 5>0, (46)
n=1

where {A\,}52; and {c,};%, are obtained as follows: Let

Vv 2aT \/2(1.1'
T

ar

(.’B—To), y=-

(y — To). (47)

Ap =arvy, T= —

The coefficients {v,}52,, 0 < v1 < vy < ..., ¥, — 00 as n — 00, are the positive
roots of the equation

H,(z/V3) =0, (48)

where H, is the Hermite function, and the equation is solved with respect to v.
The coefficients {c, }22, are given by

BV |

Cp = —

v=vyn

Further, we may write

a3 (5’717:, =t xi,)

P[T(s,) < BE") | T(wh, 1 +0 < BE" ] = —— (50)
with
¢ (24,1, 71,) = P[T(a},) < B(EM), T(x},_, + ) < BE“ ™) (51)
- [ [ Plr6l) < BT, L + 0 < B@) 62
- fe(@) fe(2)dzdz. (53)
Moreover, we have
P[T(z},) < B(x),T(x},_, +{) < B(2)] (54)
-/ o / " o, — el by, fr()dudv, (55)
where p is the transition probability density defined in (8). Thus,
g (al,_y o)) = as(al, — =, _,) (56)

11



with

B(z) ,B(z)
as(s) = / / / / p(s — &,u,v)
R+ JRt J -0 —00

- fr(u) fe(@) fe()dudvdedz.  (57)
Finally, we notice that (57) is equivalent to

B(z)
Q3(S) = A+ [R+ </_°° FGausa(ﬂGauss(uaS)yoGauss(S)aB(z))'
- fr(u) fe(z) fe (2)dudzdz, (58)

where Fgauss (,ugau,,(u, 8), 0Gauss(8), :c) denotes the cumulative distribution
function of the normal random variable with mean

HGauss (u, S) =To+ (U - TO)e_aT(’_l) (’59)
and standard deviation

1 — e—2ar(s—¥)

UGauss(S) =aor 2a~T (60)
at point z.
By the same reasoning as above, it holds for all i = 2,...,k; — 1 that
L aes(@ —xly)
@ =—— (61)
a3
In addition, .
@ =aq. (62)
Accordingly, it holds that
) . kj—1 kj ‘ _
4, = ql(g) [Tasal - ai_y). (63)
i=2

3.3 Examples

As examples, we consider cases in which cracks occur in the band according to
renewal processes. For such a process, the distances between succeeding cracks
are independent and identically distributed.

As an example, we consider the reliability of the system when the tension
is constant, and cracks occur in the band according to a homogeneous Poisson
process with intensity A¢. In this case, the expected distance of two succeeding
cracks is 1/A¢. The representation (19) is equivalent to

o i
= e-,\esz (z\ef) 7. (64)
=0 7
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Noticing that the series in (64) is the Maclaurin series of the exponential function
at point A¢S¢, the formula (64) can be written as

r1 = exp(A¢S(g — 1)). (65)

Another example is given by the case in which defects occur (almost) pe-
riodically in some part of the band. When the possible crack locations in the
longitudinal direction of the band are

ilL, i=1,...,|S/L,], S<8, L>¢, (66)

and a crack occurs in location 7L with probability p, independently of other
cracks, the random variable N¢(S) follows the binomial distribution with num-
ber of trials | S/L| and a succes probability p, in each trial. The reliability of
the system with constant tension reads as

S/L) , &
5 S/L . = .
n=-p)®H 3 (W @ya-pssg e
j=1
= (1+ps(@— 1), (68)
To simulate the reliability with tension variations, we notice that
si — si-1 = LX, (69)

where X follows the geometric distribution with the success probability ps and
the support {1,2,...}. The expected distance between cracks is

]E[Si - si—l] = £ (70)

When the distance between two succeeding cracks is a constant L, the reli-
ability of the system is
=gt L>0 (71)

when tension is constant, and

L)\ LS/21-1
nea(P5E) T Lo (72)
2

when there is stochastic volatility in tension.

In the numerical examples, we also consider the case in which the distances
between two succeeding cracks obey the 3-parameter lognormal distribution
with the support (£,00). Denoting the common probability density function of
the crack distances by fs,, we have

B 1 (hl(:l:—lf)—us)2
NP N il T |

z >4, (73)
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with shape oy > 0 and log-scale ps € R. With the 3-parameter lognormal
distribution, the expected distance between cracks is

E[s; — si_1] = £ + et=:/2, (74)
and the variance of the distance is
Var[s; — si—1] = e2Hetol (e"Z —1). (75)

For all the models, we assume that the distance between the first crack and
the first end of the band has the same distribution, or is the same, as the distance
between the two succeeding cracks.

The reliability decreases when the tension increases, and thus we may seek
the critical value of tension such that the safe transition of a band of length S
through the open draw is guaranteed at a given level. In the case of constant
tension, the problem reads as

max T such that (76)
™ 2 q, (77)

where ¢ € (0,1) is the required reliability level. Let the crack length & obey
a continuous distribution with the support R*. Assuming that the function
g(z) = a(z)y/z is strictly increasing, it holds that

(e (35))

where g1 denotes the inverse function of g. When N¢ is a homogeneous Poisson
process, the solution of (76)—(77) is

O JUCIC D)) M

where F{l denotes the inverse function of Fz. When N¢(S) obeys the binomial
distribution, the critical velocity is

.. hK (g5t -1
TS = T:<9(F€ 1(p—s+1 (80)

when tension is constant.

4 Numerical examples and discussion

The reliability of the system was computed with different models for tension
and crack occurrence. The values of the material and machine parameters used
in the examples are typical of dry paper (newsprint) and printing presses.
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4.1 Numerical solution process and error approximation

The computations were carried out with Mathematica, in which a built-in func-
tion for the Hermite function appearing in the construction of the series (46) is
available. The roots {\,}52; of the Hermite function were sought by combin-
ing the plain bisection method and Mathematica’s FindRoot function using the
Brent method. Intervals that bracket the roots were found by starting from the
preceeding root, or zero in the case of the first root, and computing the values of
the Hermite function in (48) step by step until its sign had changed with such a
small step size that no roots were skipped. The series (46) was truncated after
the kth term that was the first to satisfy

cne” S < 10718, (81)

In computing the coefficients {c, }52;, a readily available numerical derivation
function in Mathematica was utilized.

Mathematica’s NIntegrate function was used to compute estimate for the
integrals g and ¢2. The probabilities ¢; and g3 were estimated by Monte Carlo
simulation. In the computations, the errors of the Monte Carlo estimates were
approximated by the standard error (see Section 1.1.1. in [6]).

The error in (63) that originates from the error of the integrals ¢;, ¢» and
q;»,(a:’ — xJ 1), © =2,...,k; was approximated by its total differential. That is,
when the computed estimates of these integrals differ from the exact values by
small quantities dg;, the corresponding error in (63) can be approximated by

g, O}, & o,

dg. = dgy + —2dgy + dgs(z? — zi_ 82
qk_, 3‘11 q1 aq2 q2 Z (q (J,‘J _1)) q3( 1) ( )

It holds that

dg}, < k; ’°’ |dq1|+2|1—k| |dq2| (83)
+2—3 = )|dq3(xf )| (84)
i=2 ¢

< kjldas| + 211 k;lldaal + (k; — 1) max|dgs(a! )| (85)
=&y.ykj

since the terms q,7c /@1, @, /g2 and q',’c Jas(x] —x}_)), i =2,...,k; can be re-
garded as conditional proi)ablhtles and thus are not more than one. Conse-
quently, when

day | + 2/daa) + _max_|das(a! — )| <€, (36)

we may approximate

J

M
1 )
d(ﬁ Zl X{ziSS}qij) <¢_max ks (87)
J=
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1 (m)

0.6 (m)
8-107° (m)
4 (GPa)
Gc | 6500 (J/m?)

s

Table 1: Deterministic parameter values.

Similarly, if the error in g is bounded above by ¢, the same upper bound as in
(87) is obtained for the error in (22). For the explicit formulae (65), (68), (71)
and (72), the error can be approximated in a similar manner.

4.2 Examples for printing presses

The values of the machine and material parameters used in computing the
examples of this section are typical of those of printing presses and dry paper
(newsprint). Values of the deterministic parameters are listed in Table 1. The
strain energy release rate G¢ was obtained from the results in [18], and the
fracture toughness was set to

Kc = \/GGE. (88)

The band length was given the value S = 350 (km). Uesaka [24] approximates
that an average distance between web breaks in a printing press is 350 km.

When the values of ¢ and ar are set, the volatility parameter o is obtained
from Equation (7). In the computations, it was set ar = 1, and the reliability
of the system was studied with T, = 200, 350, 500 (N/m) and c¢r = 0.05, 0.1.
For the tension values usually applied in printing presses, see the measurements
in [23, 10].

Single simulated sample paths of the tension process are shown in Figure 4
with different values of ep with T = 350 (N/m). Discretization of the Ornstein-
Uhlenbeck process is represented, for example, in [6, Section 3.3.1]. In the figure,
100 discretization points were used for the considered interval. For comparison,
see (14, Figure 2].

The weight function o that appears in the stress intensity factor (12) was
approximated from the results in [4, Section C8.1]. That is, it was set to

F'(&/(25))
(1 & /(20))**

where the function F’ was interpolated by using Mathematica’s Interpolation
function from the values in [4, Table C8.1].

The reliability of the system was studied with Weibull distributed crack
lengths. In [21], the distribution of holes in a paper web was represented by a
Weibull distribution. With this crack length model, the distribution function of

a(g') = (89)
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Tension variation
5%

10 %

T(s)

Figure 4: A sample path of the tension process with different values of ¢z with
To = 350 (N/m) and ap = 1.

the crack length is [19, Section 4]
Fe(z)=1- 2% g >, (90)

where A\¢ > 0 and k¢ > 0 are the scale and shape parameters of the distribution.
The mean and the variance of the crack length are [19, Section 4]

E['] = AL(1+ 1/k¢) (91)

Var[¢'] = A [I‘(l + k%) - (I‘(l e k%))z] (92)

The examples were computed with k¢ = 0.8 which is comparable to the
shape parameter of the hole size distribution in [21]. With this, independent of
A¢, the coefficient of variation (the standard deviation divided by the mean) of
the crack length is 1.26. The reliability of the system was studied with different
values of the expected crack length.

The reliability of the system with constant tension was studied with the
Poisson, binomial, lognormal and deterministic crack occurrence models intro-
duced in Section 3.3. The lognormal model was examined with two different
values for the coefficient of variation of the crack distances: one and ten. With
the binomial model, it was set L = 2 and p, = 0.9. The reliability of the sys-
tem with tension variations was considered with the binomial and deterministic
crack occurrence models.

In general, the sample size in computing ¢; and ¢3 and the accuracy goal for
g and g2 were chosen such that the estimated errors in r; and ry were approx-
imately 0.01 at maximum. However, for Ty = 350, 500 (N/m), the maximum
error of 0.035 was allowed in computing r2 for the binomial crack occurrence
model. In addition, for Ty = 350 (N/m), the maximum error 0.025 was allowed
in computing 72 for the deterministic crack occurrence model with the smallest
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crack distance 100 (m). In simulating the reliability with constant tension and
the lognormal crack occurrence model, a sample size of M = 100 in (21)—(22)
was used. With this sample size, the standard errors of the estimates for r,
were approximately 5 - 10~¢ at maximum. With the binomial crack occurrence
model and tension variations, the sample size M = 100 in (29) was used. This
produced standard errors for the estimates less than 2 - 10~4.

Figure 5 shows the reliability of the system with constant tension when cracks
occur according to a Poisson process. The impact of the mean crack length on
the reliability of the system increased when the tension increased. For the
studied values of tension, the change was notable: For example, with 7, = 200
(N/m) and E[s; — s;_;] = 10% (m), the reliability of the system decreased from
1.0 to 0.95 when the mean crack length increased from 0.005 (m) to 0.015 (m).
With Ty = 350 (N/m), the corresponding reliabilities were 1.0 and 0.01. Also,
the mean distance between cracks was a considerable factor in terms of the
system reliability: For example, with Ty = 500 (N/m) and E[¢!] = 0.01 (m),
the reliability was only 0.05 with E[s; — s;_1] = 5-10® (m) but increased to
1.0 when the distance increased to 10° (m). Moreover, it is seen that when the
mean crack length is only 0.005 (m), cracks do not affect the reliability of the
system, even when the mean distance between cracks is small or tension is high.
On the other hand, when the mean crack length is larger and tension is high,
cracks may affect the reliability of the system, unless the mean distance between
cracks is extremely large.

Reliability
Tp: 200 (N/m) To: 350 (N/m) To: 500 (N/m)

1 ———— 11— 1
0.8+ 081 "~ 08|
0.6 - 0.6 06
0.4+ 04 04
0.2+ 0.2} 02} p

10 10° 10 10° 10 10°

Mean crack distance (m) Mean crack distance (m) Mean crack distance (m)

Mean crack length
0.005 -------- 0.010 0.015 (m)

Figure 5: Reliability of the system with Poisson model for crack ocurrence.
Constant tension.

With the studied parameter values, no remarkable difference in the relia-
bility of the system with constant tension was found between the lognormal
and deterministic crack occurrence models when the average distance between
cracks in the lognormal model was set to be equal to the distance between cracks
in the deterministic model. Naturally, the difference between the deterministic
and lognormal models was larger with the higher coefficient of variation of the
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crack distances. The maximum difference was approximately 0.03.

In Figure 6, we see the reliability of the system with the deterministic model
for crack occurrence. For the studied crack distances, cracks of mean length
0.005 (m) did not affect the reliability of the system, even with high average
tension and remarkable tension fluctuations. The results suggest that larger
cracks (E[¢'] = 0.015 (m)) may have a greater impact on the system reliability,
and the effect of cracks increased significantly when the set tension increased.
With E[¢Y] = 0.015 (m) and Ty = 200 (N/m), the probability of fracture was
zero for all studied crack distances but, e.g., when the crack distance was 5 (km),
the reliability r; decreased to 0.87 when T increased to 500 (N/m). As with the
Poisson model, it was seen that the distance between cracks had a considerable
impact on the reliability. E.g., with T = 500 (N/m) and E[¢] = 0.015 (m),
the reliability r; increased from 0.76 to 0.91, when the crack distance increased
from 2.5 to 7.5 (km). Moreover, the results suggest that tension fluctuations
may significantly affect the system reliability. In this, the set tension played
an important role. E.g., when T = 350 (N/m), the crack distance was 5 (km)
and E[¢'] = 0.015 (m), the reliability of the system was close to one (0.97) even
with ep = 0.1. With T = 500 (N/m), the reliability of the system decreased
from 0.87 to 0.75, when tension fluctuations (¢ = 0.1) were introduced in the
system.

Reliability
To: 200 (N/m) To: 350 (N/m) To: 500 (N/m)

1'[—-—-—-—- lo—g—o—o— lp—o—o—o—»
0.8 0.8 | 0.8 g- ¢ ¢
0.6 - 0.6 06 /2
0.4+ 04¢ 04
0.2+ 02t 0.2 H

0 1 1 1 1 1 ] 0 ‘_I—]—A—]

— 0
0125 5 7510 0125 5 75 10 0125 5 75 10

Crack distance (km) Crack distance (km) Crack distance (km)

Mean crack length
—— 0.005 —— 0.015 (m)

Tension variation
5% 10%

Figure 6: Effect of stochastic volatility in tension on reliability. Deterministic
model for crack occurrence.

Figure 7 shows the reliability of the system with the binomial crack occur-
rence model. As with the deterministic crack occurrence model, cracks of mean
crack length 0.005 (m) did not affect the system reliability even with high av-
erage tension and tension fluctuations. Cracks with larger mean length may

19



affect the system reliability, at least if the tension is not low. For the studied
parameter values, the effect of cracks increased significantly when the set ten-
sion increased. With E[¢!] = 0.015 (m) and Ty = 200 (N/m), the reliability of
the system was one in the studied range of damage zone length. With the dam-
age zone length 5 (km), the reliability r; decreased to 0.70 when T} increased
to 350 (N/m). Also, the reliability of the system depended remarkably on the
length of the damage zone. E.g., with T = 350 (N/m) and E[¢] = 0.015 (m),
the reliability r; decreased from 0.84 to 0.58, when the damage zone length
increased from 2.5 to 7.5 (km). Again, it was seen that tension fluctuations
may significantly affect the system reliability. E.g., when T = 350 (N/m), the
damage zone length was 2.5 (km) and E[¢!] = 0.015 (m), the reliability of the
system with constant tension was (.84 but with ey = 0.1 the reliability was only
0.66.

Reliability
To: 200 (N/m) To: 350 (N/m) To: 500 (N/m)

1 1q lp—o o —o 0
0.8 - 08 " 08
0.6+ 06 * _e 06
04+ 04| e ... 04r
02 02} *“ -« 02}

00125 5 75 10 00125 5 75 10 00125 5 75 10

Damage zone (km) Damage zone (km) Damage zone (km)

Mean crack length
— 0.005 —— 0.015 (m)

Tension variation
-------- 5% --=-= 10%

Figure 7: Effect of stochastic volatility in tension on reliability. Binomial model
for crack occurrence.

Figure (8) shows the critical tension for the system with constant tension
with the Poisson, deterministic and binomial models for crack occurrence. In
the computations, the required reliability of the system was set to ¢ = 0.99.
To compare, the nominal level of tension in printing presses is [200, 500] (N/m)
(see [23]). When the mean crack length was 0.015 (m), the critical tensions were
close to the lower bound of the nominal tension. With the average crack length
0.005 (m), the critical tension can be higher than what is typically applied in
printing presses.

The computed examples suggest that the set tension has a significant impact
on the reliability of the system. When the set tension increases, the impact of
cracks becomes more pronounced. In addition, the impact of tension variations
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Critical tension (N/m)

Poisson Deterministic Binomial
700
500
300
100
0.01 500000 1000000 0.002 5 10 001 5 10

Mean crack distance (km)  Crack distance (km) Damage zone (km)

Mean crack length
0.005 -------- 0.010 0.015 (m)

Figure 8: Critical tension with ¢ = 0.99 when tension is constant.

increase remarkably when the set tension increases. With high average tension,
tension fluctuations may significantly affect the system reliability. The results
also show that crack frequency is a significant factor in terms of fracture.

4.3 Discussion

In this paper, the reliability of a system with moving cracked material was
studied in terms of fracture. Numerical examples were computed with material
and machine parameters typical of newsprint and printing presses. However, it
should be noted that the numerical results obtained in this study are mainly
qualitative, and more rigorous conclusions require data of defects and tension
from a real printing press. Such data can be obtained by automated inspection
systems developed for quality control [8] and devices designed for tension profile
measuring [12].

In this study, tension fluctuations were described by the stationary Ornstein-
Uhlenbeck process. For such process, a known explicit result for the distribution
of the first passage time to a counstant boundary exists and could be exploited
in computing. However, the results generalize for other stationary and Markov
processes at least via simulation of the first passage time distribution.

When the numerical results are considered, it should also be kept in mind
that the model lacks some features typical of a moving paper web in a printing
press, which may have an impact on the results: The study assumed the profile
of tension to be homogeneous, although in printing presses, the measured tension
varies in the cross-direction (see the measurements in [10, 23]). The results were
obtained with the elastic material model, although the paper material is known
to have orthotropic characteristics. The study considered the reliability of the
system in terms of fracture when the material travels between the supports, but
the effect of the rollers was not included in the model.

The present paper extends previous studies of break rate models by mod-
elling tension fluctuations and crack occurrence by a continuous time stochastic
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process and a stochastic counting process, respectively. The numerical results
suggest that tension variations may have a significant impact on the reliability
of the system. Thus, including tension fluctuations in the break rate model is
essential. The results also show that the fracture probability highly depends
on the crack frequency. Thus, upper estimates of the break rate obtained by
assuming that a crack exists, e.g., in every roll may lead to overconservative set
tension.

5 Conclusions

In this paper, the reliability of processes with moving elastic and isotropic ma-
terial containing initial cracks was studied in terms of fracture. The material
was modelled as a moving plate subjected to homogeneous tension acting in
the travelling direction. The reliability of the system was considered in two
cases: 1) the tension is constant with respect to time, and ii) the tension varies
temporally according to an Ornstein-Uhlenbeck process.

The cracks were assumed to occur in the travelling direction according to a
stochastic counting process. Edge cracks perpendicular to the travelling direc-
tion were considered. The lengths of the cracks were modelled by i.i.d. random
variables.

For a general counting process describing crack occurrence, a representation
for the reliability of the system was derived that exploits conditional Monte
Carlo simulation. Explicit formulae were obtained for special cases. In the case
of temporally varying tension, considering the fracture probability led to a first
passage time problem. Solving this, a known result for the first passage time of
an Ornstein-Uhlenbeck process to a constant boundary was utilized.

Numerical examples were provided for parameter values typical of printing
presses and paper material. It was seen that the effect of crack length distri-
bution on reliability increased significantly when the set tension increased. The
set tension had a remarkable impact on how tension dispersion affected the re-
liability of the system. Also, crack frequency was an important factor in terms
of fracture.
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Summary. This paper considers the probability of fracture in a system in which a material
travels supported by rollers. The moving material is subjected to longitudinal tension for which
deterministic and stochastic models are studied. In the stochastic model, the tension is described
by a multi-dimensional Ornstein-Uhlenbeck process. The material is assumed to have initial
cracks perpendicular to the travelling direction, and a stochastic counting process describes the
occurrence of cracks in the longitudinal direction of the material. The material is modelled as
isotropic and elastic, and LEFM is applied. For a general counting process, when there is no
fluctuation in tension, the reliability of the system can be simulated by applying conditional
sampling. With the stochastic tension model, considering fracture of the material leads to a
first passage time problem, the solution of which is estimated by simulation. As an example,
the probability of fracture is computed for periodically occurring cracks with parameters typical
to printing presses and paper material. The numerical results suggest that small cracks are not
likely to affect the pressroom runnability. The results also show that tension variations may
significantly increase the probability of fracture.
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Introduction

In many industrial processes there are stages at which a material travels in a system
of rollers. Examples of such processes can be found in the print industry and in the
manufacturing of different kinds of materials, such as textiles, plastic films, aluminium
foils and paper. In this kind of a system, the material moves between rollers unsupportedly
under longitudinal tension. The tension is essential for the transport of the material, and
in paper machines and printing presses, it is created by velocity differences of the rollers.

The mechanical behaviour of the moving unsupported material has gained interest in
research. For example, vibration charateristics and the mechanical stability of the moving
material is widely investigated (see literature reviews in [18, 41, 20]). From the studies
of instability it is known that increasing tension has a stabilizing effect. However, when
tension is increased, the probability of fracture increases and thus, it is of interest to study
the behaviour of the moving material from the view point of fracture.

In pressrooms, web breaks are an important runnability issue [4], and the effect of
cracks on web breaks has gained interest among researchers. Recently, researchers have
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approached the question of possible causes of web breaks by conducting data analysis on
press room data. Deng et al. [4] gathered data from several press rooms and found that
cracks were actually a minor cause of web breaks. Also, Ferahi and Uesaka [5] found,
by using special optics and a web inspection system, that most of the web breaks in
pressrooms are not uniquely related to the presence of obvious defects. According to
Uesaka [38], the concept that has begun to be accepted in the industry is that a web
break is a combined probabilistic event of high tension and low strength. However, earlier
studies found through pilot-scale experiments defects to be the major causes for web
breaks in pressrooms [38]. Recently, it has also been suggested that the lowest values of
tensile strength may be caused by defects [27].

As web breaks are statistically rare events, a large number of rolls is required to
determine the causes of web breaks with a reasonably high confidence level [4]. Thus,
mathematical modelling may provide an efficient tool to study the causes of web breaks.
Previously, Swinehart and Broek [32] studied the effect of cracks on web breaks by a
model, based on fracture mechanics, which included the number and the size distribution
of flaws, web strength and web tension. In [32], the tension was regarded as constant.
Uesaka and Ferahi [39] proposed a break rate model based on the weakest link theory of
fracture. The number of breaks per one roll during a run was derived by considering the
strength of characteristic elements of the web. In [39] it was assumed that there is a single
crack in every roll and the tension in the system was regarded as constant. Moreover,
Hristopulos and Uesaka [9] presented a dynamic model of web transport derived from
fundamental physical laws, and in conjunction with the weakest link fracture model, the
model allows investigating the impact of tension variations on web break rates.

The break rate model used in [39, 9] predicts the upper estimate of the break fre-
quency. However, considering an upper bound of fracture probability may lead to an
over-conservative upper bound for a safe range of tension. The studies of mechanical
stability suggest that, when tension is increased, the material can be transported with
a higher velocity [2]. From the viewpoint of maximal production, an over-conservative
tension is undesirable as it underestimates the maximal safe velocity.

Motivated by paper industry, Banichuk et al. [3] studied the optimal value of set
tension for a cracked band travelling in a system of rollers. The band was assumed to
have initial cracks of bounded length and to be subjected to constant or cyclic tension.
The optimal average tension was sought for the maximum crack length by considering a
productivity function which takes into account both instability and fracture. Moreover,
cracked moving plates with random parameters were studied by Tirronen et. al [35]. In
[35], critical regimes for the tension and velocity of the material in the presence of a crack
were obtained by considering fracture and instability. In [35], the tension was assumed to
be constant while a crack travels from one roller to another although the constant value
was assumed to be random.

Tension in a printing press is known to exhibit random fluctuations [38] and such fluc-
tuations may have a significant impact on web breaks [37]. Tension variations are partly
caused by draw (the relative speed difference between two succeeding rollers) variations
which contain specific high/low frequency components and white noise [38]. In a printing
press, out-of-round unwind rolls or vibrating machine elements such as unwind stands
may cause cyclical tension variations (see [25] and the references therein). In addition to
cyclical variations, tension may vary aperiodically due to poorly tuned tension controllers,
drives, or unwind brakes ([25] and the references therein). The net effect of such factors
cause the tension to fluctuate around the mean value [25].

117



A continuous-time stochastic model for tension fluctuations was proposed by Tir-
ronen [33], for a system with two rollers. In [33], the tension fluctuations were mod-
elled by a stationary one-dimensional Ornstein-Uhlenbeck process. With such a model,
tension has a constant mean value around which it fluctuates temporally. The one-
dimensional Ornstein-Uhlenbeck process can be regarded as the continuous-time analogue
of the discrete-time AR(n) process. It is a mathematically well-defined continuous-time
model for fluctuations of systems whose measurements contain white noise [7, Chapter
4]. The stationary Ornstein-Uhlenbeck process can be regarded as a simplified model of
tension variations in a printing press. Moreover, in [33], the fracture probability of the
moving material was studied in the case in which there continually exists a crack in the
material that occurs between the rollers. Furthermore, Tirronen [34] studied the fracture
probability of a moving band when cracks occur in the material according to a stochastic
counting process. The models proposed in [33, 34] differ from the ones presented in [35]
by allowing investigation of the system longevity, which is of practical interest.

This paper extends [33, 34] by considering a system with several spans. For the ten-
sion, we study deterministic and stochastic models. In the deterministic models, the
tension is described by a vector with constant values. The stochastic model describes
the tension as a multi-dimensional Ornstein-Uhlenbeck process. With the latter model,
the tension in each span has a constant mean value around which it fluctuates. Sim-
ilar to the one-dimensional Ornstein-Uhlenbeck process, the multidimensinal Ornstein-
Uhlenbeck process can be considered as the continuous-time analogue of the discrete-time
vector autoregressive (VAR(n)) process. Moreover, in this study, the material is assumed
to have straight line initial cracks perpendicular to the travelling direction, and the crack
occurence is modelled by a stochastic counting process as in [34]. The crack geometries
are described by i.i.d. random vectors.

In this study, the travelling material is modelled as elastic and isotropic, and linear
elastic fracture mechanics (LEFM) is applied. According to the literature review in [13],
Balodis [1] was the first to apply LEFM to paper material. Other fracture mechanics
theories have also been suggested for paper material. For example, Uesaka et al. [40] pro-
posed the use of the J-integral to paper. However, Swineheart and Broek [31] advocated
the use of LEFM to paper due to its simplicity [13]. They argued that in most cases
the paper is sufficiently elastic in the machine direction to justify the use of LEFM [13].
Other proposed methods for predicting the fracture of paper include the essential work
of fracture [30] and the cohesive zone model [36]. Fracture mechanics literature for paper
is reviewed more extensively in [13, 17].

When the tension in the system is constant, the nonfracture probability can be simu-
lated by applying conditional Monte Carlo sampling. For conditional sampling, see [26,
Section 5]. When the tension exhibits random fluctuations, considering the probability of
fracture leads to a first passage time problem. When there is only one span in the sys-
tem, a series representation for the first passage time distribution of the one-dimensional
Ornstein-Uhlenbeck process to a fixed boundary (see, e.g., [15]) can be exploited in esti-
mating the fracture probability [33, 34]. In this study, we focus on a system with more
than one span and approximate the reliability of the system with tension fluctuations by
simulating sample paths of the tension process and the crack model.

Examples are computed for a system with three spans and a material that has central
through thickness cracks of varying length that occur in the material (almost) periodically.
For example, in paper making, a condensation drip in pressing or drying section or a
lump on press rolls or press felt can cause holes in the paper web which occur in a fixed
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pattern. The material parameters used in computing the examples are typical of dry
paper (newsprint).

The paper is outlined as follows. In the following section, we present a mathematical
model for a band moving in a series of rollers. In the subsections, models for tension
and cracks are proposed, and an example of a system with three spans and periodically
occuring cracks is presented. In the next section, we first formulate the nonfracture
criterion for the material, after which the nonfracture probability is formulated. In the
last subsection, techniques for simulating the nonfracture probability are proposed. In the
following section, examples are computed for a system with three spans and periodically
occuring cracks by using parameters typical to paper. In addition, limitations of the model
are discussed. In the last section, the model presented in this study and the numerical
results obtained by the model are summarized.

Problem setup

This study considers an elastic and isotropic band that travels in a system in which
there are stages at which the material moves unsupportedly from one support (roller)
to another. The material has initial defects, and the band travels between the rollers
under a longitudinal tension. Below, a mathematical model for the moving cracked band
travelling in a system of rollers is presented. The model is similar to the one presented in
[35, 33, 34]. As an example, we consider a system with three spans and cracks occurring
(almost) periodically in the material.

Moving band

Consider a system of k+ 1, k > 2, rollers located at x = 0y, 01, ..., ¢ in x,y coordinates,
see figure 1. For simplicity, we set ¢y = 0. Let us study the behaviour of a band that
travels supported by the rollers in the x direction. For this, we consider a rectangular
part of the band that occurs momentarily between and on the supports at x = £; 1, {;:

Di={(z,y): lisg<ax<4l, —b<y<b} (1)
The part D; is modelled as a plate which has simply supported sides at
{r =41, -b<y<b} and {x=¢, —-b<y<b} (2)
and sides free of tractions at
{y=—-b, iy <x<{l} and {y=0b, (i1 <z <} (3)

Moreover, we assume that the band has constant thickness h and Young modulus F. The
width of the band is 2b.

Tension

The plate element in (1) is subjected to tension acting in the z direction. It is assumed
that the tension profile is homogeneous, that is, the tension is constant in the y direction.
For the time behaviour of tension, we consider different models. The simplest model
describes the values of tension in the considered k spans as constants:

T=T,=(Ty,....Ty,) - (4)
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Figure 1. A band travelling in a system of rollers.

Moreover, we consider the case in which the value of tension changes randomly with
respect to time. Random fluctuations of tension are described by a multi-dimensional
continuous-time stochastic process

T = {(Ti(s),..., Te(s)) ", s >0} (5)

in a probability space (2, F,P). In (5), s denotes the length of the band that has travelled
past the first support at x = £y, see figure 2. Futhermore, we describe the tension in
the system by a multi-dimensional Gaussian Markov process. That is, T' satisfies the
stochastic differential equation (Langevin equation)

dT(s) = C(Ty — T(s))ds + DAW (s) (6)

with T'(0) Gaussian or constant. Above, the factors C and D are deterministic k& x &k and
k X p matrices, respectively, and W is a standard p-dimensional Brownian motion. In the
following, we assume that p = k so that there are as many sources of random fluctuations
as there are spans in the system.

A

=0 $:€1

Figure 2. A cracked band travelling through the first open draw, in which it is subjected to tension T7.
The drawing is adapted from figure 1 in [35].

The analytical solution of (6), the multi-dimensional Ornstein-Uhlenbeck process,
reads as ,

T(t) = e €T (s) + (I — e CNT, + / e C DAW (u) (7)

S

for t > s > 0. The matrix exponential ¢“* in (7) is the k x k matrix given by the power
series _
t' .
9 =3 (C). (8)
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The solution (7) can be obtained by introducing the integrator (similarly as in [7, Section
4.4.4])

X (1) = @ (T(t) ~ To) (9)
and by applying the multi-dimensional It6 formula [217 Thm 4.2.1] to X. For this, note
that p

aeCt =Ce“". (10)

When Ty depends on s, the solution of (6) is obtained similarly and reads as [8, Section
3.3.3]
t t
T(t) = e €91 (s) —|—/ Cefc(““)Todu—F/ e~ DAW (u). (11)
S S
In this study, we consider a system that exhibits only random variations. However, the
stochastic differential equation (6) can also describe, e.g., deterministic cyclic variations of
tension when Ty is made time-dependent. The process remains Gaussian and Markovian
if the vector Ty and the matrices C and D are made time-varying but deterministic [8,
Section 3.3.3].
From (7) we see that the expected value of T'(t) reads as

p(t) = e CE[T(0)] + (I — e )T (12)

For the covariance matrix of T'(¢), denoted by 3(t), it holds that [7, Section 4.4.]

t
Y(t) = e_CtZ(O)e_CTt +/ e Cl—) DPTe=C (t=u) gy (13)
0

Especially, we notice that for the distribution of T'(¢) conditional to T'(s), it holds

(1), 0 ~ Nilt, ). 28, 5)) (14)
with the deterministic drift
fu(t,s) = e € g 4 (I — e €T, (15)
and the covariance matrix
S(t,s) = /t e Cl-pDTeC =gy, (16)

When C @ C is invertible, the matrix (16) can be expressed as [19]
Vec(f](t7 5)=(C@®C) (I — e €8O =) )yec(DDT). (17)

Above, vec and @ denote the stack operator and the Kronecker sum, respectively.
Although the stochastic differential equation (6) has a solution for a general matrix
C, the process is not stationary in all cases. According to [28, Thm 4.1], the stochastic
process defined by (6) is stationary if the eigenvalues of C have positive real parts. In
this case, the tension process has the long-term mean
lim p(s) = T. (18)

S§—>00
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Moreover, when the eigenvalues of C' have positive real parts, it holds [19]

8131010 3(s) =¥ (19)
with
vec(Eo) = (C @ C)flvec(DDT). (20)

For (18) and (19), first notice that the matrix C and its transpose C'' share the same
eigenvalues. Moreover, if all the eigenvalues of C' have positive real parts, also the eigen-
values of the Kronecker sum C' @ C' have positive real parts [this follows, e.g., from Thm
13.16 in 14]. Now, (18)—(20) are obtained by applying Thm 2.49 in [11]. When all the
eigenvalues of C' @ C are nonzero, C' ® C' is invertible.

In this study, we assume that the initial value satisfies

Consequently, since the limiting matrix satisfies [7, Section 4.4.6]
Cy,.+32.C'=DD", (22)

we see from (13) that the covariance matrix of the tension process do not change with
respect to s. Thus, with (21), the tension process is strictly stationary.

Cracks

We consider a band that contains straight line cracks perpendicular to the travelling di-
rection. The positions of the cracks in the longitudinal direction of the band are described
by a counting process

Ne = {Ne(s), s =0} (23)

Let s; denote the distance between the first end of the band and the jth crack that arrives
to the system of rollers (see figure 2). We assume that

Sj — Sj-1 > ‘max E, - g’i*h (24)
i=1,....k
so that no more than one crack occurs in a single span simultaneously. Moreover, the
crack geometry of the jth crack is described by the random vector §;. We assume that &;,
j=1,2,... areii.d and independent of N and T', and that the process V¢ is independent
of T.
The performance of the system is considered during the transition of a band of length
S through the system of supports. In this, the initial and last states of the system are
regarded as the states at which the first and last ends of the band are located at the
supports at = {y and x = {},, respectively (see figure 3). It is assumed that before and
after the band the material continues and remains similar. For simplicity, cracks that
may occur in the open draws in the initial and last states are not considered in terms of
fracture.
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Figure 3. The initial and last states of the system.

Periodically occurring cracks in a system of three spans

As an example we study a system with three spans for which we assume that random
fluctuations of tension in one of the spans occur as fluctuations of opposite value in the
span(s) next to it. Moreover, we assume that fluctuations in tension in other spans than
the ones next to the considered span do not affect directly the tension fluctuations in it.
That is, the reliability of the system is studied with

: (25)

where d > 0 determines the size of random variations in tension. Furthermore, the drifts
in the spans towards T’y are assumed to be independent. That is, we set

C=cl, (26)

where ¢ > 0 and I is the identity matrix. With (26), the matrix exponential (8) simplifies
to
eCt = eI (27)

Moreover, we study the reliability of the system in the case in which a failure in
the production process causes defects to occur (almost) periodically in some part of the
band. Let S be the length of the damage zone, and let the possible crack locations in the
longitudinal direction of the band be

iL, i=1,...,|S/L,], L>i§%axk€if€i,1. (28)

We assume that a crack occurs in the location i with probability p, independently of

other cracks. In this case, the random variable N¢(S) follows the binomial distribution

with number of trials |S/L| and a succes probability ps in each trial. The crack distance
satisfies

S; — Si—1 = LX, (29)

where X follows the geometric distribution with the success probability p, and the support
{1,2,...}. The presented crack occurrence model is a renewal process.

Furthermore, we consider through thickness cracks, located at the center of the band
in the cross direction. Let the random variable §; describe the length of the jth crack.
See figure 4 for the crack geometry.

Reliability

We study the reliability of the system during the time period in which a band of given
length travels through the system of rollers. To study fracture of the material, linear

123



yf
- fj/2f ~
.................................... 5
< @/2} - L
x =1/ x="Li11

Figure 4. A central crack on a tensioned plate.

elastic fracture mechanics (LEFM) is applied. For constant tension and a general crack
occurrence process, the reliability of the system can be simulated by applying conditional
sampling. For special crack occurrence models, explicit representations for the nonfracture
probability can be derived. When the tension exhibits random fluctuations, the reliability
of the system is approximated by simulating sample paths of the tension process and the
crack model.

Fracture criterion

The crack occurrence model assumes that more than one crack do not occur in a single
span at the same time. Moreover, when studying fracture of the material, we assume
that cracks in different spans do not interact. Thus, the nonfracture criterion can be
formulated separately for the cracks.

To study the fracture of the band, we apply linear elastic fracture mechanics (LEFM),
which assumes that the inelastic deformation at the crack tip is small compared to the
size of the crack. In the following, the fracture criterion is formulated for central through
thickness cracks which lengths are described by the random variables &;, j =1,...

Since the moving band is assumed to be subjected only to in-plane tension acting in the
travelling direction and the cracks are prependicular to the direction of applied tension,
crack loadings in the system are of mode I (opening). When the jth crack travels between
the supports at © = ¢;_1, ¢;, the stress intensity factor related to the crack is a function
of the form (see [6])

a(x, &) Ti(lioy + s; +x)\/7E; /2
Ki(x,s5,&5) = .

where « is a weight function related to the geometry of the crack. In this study, we assume

that the function « is constant with respect to the location of the crack in = direction

and approximate (see [24])

, T S [0,& — &,1], (30)

al) = (ﬁ)/ (31)

In order for the jth crack to travel from the support at x = ¢;,_; to the one at x = ¢; in
such a way that the material does not fracture, the stress intensity factor should satisfy

KZ‘(J), Sj,gj) <Ko Vaxe [O,& — &;1], (32)
where K¢ is the fracture toughness of the material. This is equivalent with

Ti(&fl + s + 513) < B(@) Vxe [07& - éi,ﬂ, (33)
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where
hK¢

B(&) = — e
(©) &)/ /2

Nonfracture probability

Consequently, by (33), the probability that a band of length S travels through the system
of rollers in such a way that fracture does not propagate from any of its cracks reads as

r =P[Ne(S) = 0] (35)
+P[Ne(S) > 1,
Ti(lioy +sj+x) < B(&) V 2 €[0,6; — ;4]
Vi=1,....k Vj=1,...,N(9)]. (36)

The reliability can also be written as
r="P[r>S9] (37)
with the first passage time

T :mf {éi,1 + 8]' + x: T;'(gifl —+ Sj —+ I') = B(fj)
for some x € [0,¢; — {; 1]
for some (i,j) € {1,...,k} x N}. (38)

When the tension is constant in each span, the reliability of the system simplifies to

ry =P[Ne(S) = 0] (39)
+P[Ne(S) > 1, TP < B(&) V j=1,...,Ne(S)] (40)

with
T = max, 1o, (41)

Since N is independent of the crack lengths and the lengths are i.i.d., it holds that

ri = P[Ne(S) = 0] + Z]P’[Ng(S) =jl7 (42)
with
7="P[T;"™ < B(&)]- (43)

In the example case of periodically occurring cracks, the reliability of the system with
constant tension simplifies to

LS/L]
r==pp e 3 (B gy - sy (44
= (1+ps(7— 1)/ (45)
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Simulation

The reliability of the system with constant tension can be estimated by conditional Monte
Carlo simulation (for conditional sampling, see [26, Section 5.4]). That is, we may estimate

TR — ZX{k 0} (46)
j=1

ZX{k L P[T5"™ < B(&1), ..., Tg™ < B(Eng(s))
| Ne(S) = kj], (47)

where ki, ..., ky is a sample of size M from the distribution of N¢(S). The conditional
probability in (47) simplifies to

P[T™ < B(&), ... T3"™ < B(&,)] =" (48)

When the tension exhibits random fluctuations, we estimate the nonfracture proba-
bility r by
r2 =P > 5], (49)

where 72 is a first passage time as in (38) but with a discretized tension process T2 =

(TPs, ..., TA%). That is, we approximate the process T at points 0 =< z; < 75 < ... by
(see [8, Section 3.1.2])

T2°(0) = To + y,, (50)
TAS(.TZ) _ e—C(Iz—zzfl)TAs(xl_l) + (I _ e_C(Il_IFl))To +y, [=1,2,... (51)
where y, is a random variate from N (0,X..) and y,,y,, ... are independent draws from

the distributions A (0, ¥ (xy, x0)), N (0, 3 (s, 1)), ..., respectively. The initial value (50)
follows from (21), and the following values (51) are obtained by exploiting the property
(14)—(16). The random variates y,,ys,,... can be obtained by drawing zi, zs,... inde-
pendently from N(0, I) and then setting

Y, =012, (52)

where the matrix o satisfies }
o] = (v, 11). (53)

Methods for finding such a matrix is discussed in [8, Section 2.3.3.].

The counting process N can be simulated by generating crack distances. When N
is a renewal process, the crack distances are drawn from their common distribution.
Similarly, the crack lengths are simulated by generating random variates from the common
distribution of the crack lengths.

When simulating a sample path of the system, the discretization points are chosen in
the following way: When there is at least one crack in the band, we choose z; to be the
location of the first crack. The following discretization points xg, x3,... are chosen such
that while there is at least one crack travelling between rollers, the value of tension is
computed at equidistant points with a distance As > 0. When the distance between two
succeeding cracks is more than £, we simulate the tension at equidistant points until the
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first crack exits the system and then compute the value of tension directly at the location
of the second crack.
The probability (49) is estimated by

A 1 M
r = M E X{.,."As>5}, (54)
n=1

where M denotes the number of simulated paths of the system and 72 denotes the first
passage time in the nth such path. This approximation contains both statistical and
discretization errors. As usual, the statistical error is estimated by the standard error

é.As
M (55)
vM
where 647 is the sample standard deviation
1 = ’
~As ~As
oM =\ -1 > (X{Tnés>5} — 7 > - (56)

n=1

The discretization error is approximated by comparing the estimates obtained by a step
size As and its double. That is, we consider

|7qu _ ,,g2As|' (57)

In (57), the estimates should be obtained with sufficiently small standard errors. If the
absolute difference above is sufficiently small, 72° is regarded as being close enough to the
real value.

As depicted by (55), the convergence rate of Monte Carlo simulation is O(v/M). How-
ever, the computational cost of the reliability estimate (54) depends remarkably on the
time taken to compute the random variates x(ras5gy, n = 1,..., M. The time required
to compute x;as-gy depends on the number and the lengths of the spans, the length of
the damage zone and the distribution of crack occurrence.

Numerical results for a printing press and discussion

As an example, we consider the reliability of a system with three spans and (almost)
periodically occurring cracks. The values of the material parameters are typical of paper.

Periodic cracks in a printing press

As an example we consider a system with three spans, each of them of length ¢. The values
of the material parameters used in the examples are typical of dry paper (newsprint), for
which the strain energy release rate G¢ was obtained from the results in [29]. The fracture
toughness of the material was set to

Ko =\/GoE. (58)

The values of the deterministic parameters used in computing the examples of this section
are listed in Table 1.
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Table 1. Parameters.

¢ 1 (m)

b 0.6 (m)

h 8-107° (m)
E 4 (GPa)

Gc 6500 (J/m?)

In the examples we set L = 2 and p; = 0.9. The crack lengths were assumed to be
lognormally distributed with the coefficient of variation 0.1.

Moreover, in the computations, we let the (average) tension to be the same in all of
the spans. The reliability of the system was studied with different values of the average
tension, denoted by Ty. The coefficients in (26) and (25) were set to ¢ = 1 and d = T/10,
To/5. With these parameters, the correlation matrix of T'(s) was

1 —082 05
pr=| —082 10 —082 |, (59)
05 —082 1.0

independent of Ty. Figure 5 shows a sample path of the tension process with To = 1500
(N/m) with different coefficients of variation of T'(s), denoted by cr.

The reliability of the system was simulated with As = 0.001 and As = 0.002. First,
the sample size M = 300 was used. If the obtained reliability estimate was not 0 or 1,
the sample size was increased to M = 10000. With this sample size, the standard error of
the reliability estimate was less than 0.005 for all the considered parameter values. The
difference between the estimates obtained by different discretizations was less than 0.01
for all the computed estimates.

Figure 6 shows the reliability of the system with respect to the average tension with
different values of mean crack length and damage zone length. According to [16, 37],
tension values usually applied in printing presses are in the range [0.2,0.5] (kN/m). From
figure 6 we see that, when tension is constant or ¢y = (0.1,0.12,0.1)" and Ty < 1000
(N/m), the nonfracture probability is one. Thus, the results suggest that, with the con-
sidered crack geometries and crack occurences, cracks do not affect the runnability of
system, unless the variation in tension is very large. Moreover, the results suggest that,
in this case, the upper bound of safe set tension is higher than what is usually applied in
printing presses.

Furthermore, figure 6 shows that tension variations may significantly affect the runnabil-
ity of the system. This effect becomes stronger when the average crack length, the damage
zone length or the average tension increases. For example, with S = 1 (km) and T, = 1250
(N/m), the reliability of the system with constant tension is 1 for E[¢;] = 0.01 (m) and
E[¢] = 0.03 (m). When er = (0.1,0.12,0.1)", the reliability of the system stays at 1
with E[¢;] = 0.01 (m) but decreases to 0.35 with E[§;] = 0.03 (m). See table 2. When
S = 0.1 (km), the reliability only decreases to 0.9 with E[¢§;] = 0.03 (m). When S =1
(km), er = (0.1,0.12,0.1) " and the average crack length is 0.03 (m), the reliability of the
system decreases to 0 when the average tension is increased to Ty = 1500 (N/m). On the
other hand, with the average crack length 0.01 (m), the reliability of the system stays at
1 even with Ty = 1750 (N/m). The computed estimates for the reliability with S = 1
(km) are gathered in table 2.

The results obtained in this study agree to some extent with the previous results,
in which tension variations were found to be a possible cause of web breaks [39]. The
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— ¢;=(0.1,0.12,0.1)"
— ¢;=(0.2,0.24,0.2)"

Figure 5. A sample path of tension with different coefficients of variation e with Ty = 1500 (N/m) and
As=10.01 (m).

computed examples also suggest that small cracks are not likely to affect the pressroom
runnability. Similar results have also been obtained in previous studies of web breaks
[39].

Discussion

In this paper, we studied the nonfracture probability of a moving material that travels
in a series of open draws and computed numerical examples for material parameters
typical of newsprint. However, it should be kept in mind that the numerical results
obtained in this study are mainly qualitative. For more rigorous results, data of defects
and tension are needed. For printing processes, such data can be obtained by automated
inspection systems developed for quality control [10] and devices designed for tension
profile measurement [23].

Although the fracture analysis of this paper is carried out for the Ornstein-Uhlenbeck
process, a similar analysis can be conducted also for other stochastic processes by applying
an appropriate simulation scheme. For simulation of stochastic processes, see [12]. Notice,
too, that although the tension in the system was assumed to have a constant mean-
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Figure 6. Reliability of the system in terms of fracture.

value, the stochastic differential equation (6) can be adapted to describe also deterministic
tension variations by making the average tension Ty time-dependent. In a printing press,
deterministic cyclic variations may occur, e.g., as a consequence of an out-of-round (OoR)
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Table 2. Reliability of the system with S = 1 (km). Upper values are computed with the mean crack
length 0.01 (m) while the lower values correspond to the mean crack length 0.03 (m).

To (N/m) \ ez 0 (0.1,0.12,0.1)7 (0.2,0.24,0.2)"

1000 1 1 1

1 1 0.12
1250 1 1 1

1 0.35 0
1500 1 1 0.95

1 0 0
1750 1 1 0.07

0 0 0
2000 1 0.96 0

0 0 0

roll.

It should be kept in mind that the mechanical model presented in this paper is simpli-
fied. When studying fracture, it is assumed that cracks in different spans do not interact
and the nonfracture criterion is formulated separately for the cracks. Numerical examples
are computed for paper modelling the material as isotropic and elastic, although paper
is orthotropic and have plastic characteristics. Furthemore, the model represented in this
paper describes the tension as constant in the cross-direction of the web, although tension
usually varies in the cross-direction of a printing press. Typically, the profile of tension is
convex [16]. The model also assumes that the band is subjected to pure tension although,
when a material element passes through the pressure area between the rollers (nips), its
stress state varies [22]. In addition, the model for fracture does not take into account
out-of-plane deformation of the band (see, e.g. [2]) or the air surrounding the material.
With the simplified model, crack loadings are of mode I. Including, e.g., the effect of
nips in the model may cause crack loadings of mode I71 (tearing). However, according
to [38], tear strength has not been found to predict web breaks in pressrooms. In-plane
fracture toughness is relevant for studying the effect of pre-existing macroscopic defects
on web breaks [38].

Motivated by the paper and print industry, the aim of this study was to develop a
mathematical model for the system that consists of a moving material and a series of
open draws, and estimate the reliability of the system in terms of fracture. Compared
to computing the break frequency by the formulae proposed in [32, 39], the simulation
that was applied in this study to estimate the nonfracture probability may appear time-
consuming. However, the model in [32] does not consider tension fluctuations which may
significantly decrease the reliability of the system. The break frequency formula in [39)
applies the maximal tension and the maximal crack length in a roll of paper, and thus, an
upper estimate of the break frequency is obtained. The model and analysis presented in
this study aim to take tension variations into account and to directly estimate the fracture
probability predicted by the model which is important in optimizing productivity.

Conclusions

In this paper, we studied the reliability of a system in which a cracked material travels un-
der longitudinal tension. Deterministic and stochastic models were considered for tension.
The deterministic model described the tension as a constant-valued vector while random
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fluctuations of tension were modelled by a multi-dimensional Ornstein-Uhlenbeck process.
The material was assumed to have initial cracks of random length perpendicular to the
travelling direction. The crack occurrence in the longitudinal direction of the material
was modelled by a stochastic counting process. The material was assumed to be isotropic
and elastic, and LEFM was applied to study fracture of the material.

For constant tension and a general counting process, the reliability of the system can be
simulated by applying conditional sampling. For some special crack occurrence models,
an explicit representation for the system reliability can be derived. When the tension
exhibits random fluctuations, considering fracture of the material leads to a first passage
time problem. In this study, we considered a system with more than one span, and the
solution of the first passage time problem was estimated by simulating sample paths of
the tension process and the crack model.

As an example, the probability of fracture was computed for periodically occurring
central through thickness cracks with parameters typical to printing presses and dry paper.
With this crack occurrence model, an explicit expression for the reliability of the system
with constant tension can be derived. The numerical results suggest that small cracks
are not likely to affect the pressroom runnability. The results also showed that tension
variations may significantly increase the probability of fracture.
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