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Abstract

Epidemiological studies can often be designed in several ways, some of which may be
more optimal than others. Possible designs may differ in the required resources or the
ability to provide reliable answers to the questions under study. In addition, once the
data are collected, the selected modeling approach may affect how efficiently the data
are utilized.

The purpose of this dissertation is to investigate efficient designs and analysis meth-
ods in follow-up studies with longitudinal measurements. A key question is how to select
optimally a subcohort for a new longitudinal covariate measurement if we cannot afford
to measure the entire cohort. Another key question we consider is how to determine the
reasonable number of longitudinal measurements. Different ways to utilize longitudinal
covariate measurements in modeling cardiovascular disease (CVD) mortality are also
studied.

Follow-up data are modeled using parametric or semiparametric proportional haz-
ards models. Subcohort selections are carried out using optimality criteria initially
developed for optimal experimental design. Measures of model discrimination are ap-
plied to plan the number of longitudinal measurements. The topics are studied using
simulations and the East—West data, which are Finnish part of an international follow-
up study in the field of cardiovascular epidemiology, the Seven Countries Study.

This work demonstrates that the cost-efficiency of follow-up designs can be improved
by careful planning. The proposed method for selecting optimal subcohorts is shown to
outperform simple random sampling and it is demonstrated how the number of longi-
tudinal measurements can be determined using simulated data and data from previous
similar studies. The results also indicate that individual-level changes and cumulative
averages of classical risk factors are good predictors of CVD mortality.

Keywords: follow-up study, time-varying covariates, longitudinal measurements, op-
timal design, data collection, risk prediction, cardiovascular disease mortality



Tiivistelma

Epidemiologiset tutkimukset voidaan usein toteuttaa monella eri tavalla, joista toiset
saattavat olla optimaalisempia kuin toiset. Mahdolliset tutkimusasetelmat voivat erota
niiden edellyttamissa resursseissa tai kyvyssa tarjota luotettavia vastauksia tutkimusky-
symyksiin. Lisaksi valittu menetelma aineiston mallintamiseen voi vaikuttaa siihen,
kuinka tehokkaasti kerattya aineistoa pystytaan hyodyntamaan.

Taman vaitoskirjan tavoitteena on tutkia tehokkaita tutkimusasetelmia ja analyysi-
menetelmia pitkittaismittauksia sisaltavissa seurantatutkimuksissa. Keskeisena kysy-
myksena on, miten alkuperaisesta kohortista valitaan optimaalisesti osajoukko uuteen
kovariaattien pitkittaismittaukseen, jos ei ole varaa mitata koko kohorttia. Toinen
kasiteltava kysymys on, miten valitaan riittava méaara pitkittaismittauksia. Tyossa
tarkastellaan myos erilaisia tapoja hyodyntaa kovariaattien pitkittaismittauksia sydan-
ja verisuonitautikuolleisuuden mallinnuksessa.

Seuranta-aineistoa mallinnetaan parametrisilla tai semiparametrisilla suhteellisen
vaaran malleilla. Osakohortin valinnassa kaytetaan alunperin optimaalisiin kokeellisiin
tutkimusasetelmiin kehitettyja optimaalisuuskriteereja. Pitkittaismittausten lukumaa-
ran suunnittelussa sovelletaan mallin erottelukyvyn mittareita. Tutkimuksessa kayte-
taan simulointikokeita ja Itd—Lansi-aineistoa, joka on suomalainen osa kansainvéalista
sydan- ja verisuonitauteihin keskittyvaa Seitseméan maan tutkimus -seurantatutkimusta.

Tuloksista nahdaén, etta seurantatutkimusten kustannustehokkuutta voidaan paran-
taa huolellisella suunnittelulla. Esitetty menetelma osakohortin optimaaliseen valin-
taan osoittautuu yksinkertaista satunnaisotantaa paremmaksi. Tutkimus havainnollis-
taa, miten simulointeja ja aineistoja aiemmista samankaltaisista tutkimuksista voidaan
hyodyntaa pitkittaismittausten lukumaaran valinnassa. Tulokset osoittavat myos, etta
klassisten riskitekijoiden yksilotason muutokset ja kumulatiiviset keskiarvot ovat hyvia
selittajia sydan- ja verisuonitautikuolleisuudelle.

Avainsanat: seurantatutkimus, aikariippuvat kovariaatit, pitkittdismittaukset, opti-
maalinen tutkimusasetelma, aineiston keruu, riskin ennustaminen, sydan- ja verisuoni-
tautikuolleisuus
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Chapter 1

Introduction

The efficient allocation of available resources is a common problem in the planning of
data collection. The precision of estimates can be improved by collecting more data,
but this usually increases the costs of the study, which has motivated researchers to
consider the cost-efficiency of different study designs. The study is often designed either
to maximize the precision for a fixed budget or to achieve the desired precision with
costs as low as possible.

In epidemiological research, the aim is usually to study the effects of different risk
factors on disease conditions or on lifetime in defined populations (Carneiro and Howard,
2011; Krickeberg et al., 2012). These kind of studies require the follow-up of individuals
and the measuring of potential risk factors. When the interest lies in the survival
of individuals, a prospective cohort study (Euser et al., 2009) may be appropriate.
Assume, for example, that we would like to investigate how certain risk factors, called
covariates in what follows, are related to lifetimes of individuals in some population.
The study could be conducted by carrying out measurements of the covariates for a
cohort of individuals and by following the cohort for mortality over a predetermined
period of time.

Many covariates are time-varying, which means that their values do not remain
constant in time (Dekker et al., 2008). For example, blood pressure, cholesterol and
body mass index are time-varying, whereas time and place of birth and sex are ex-
amples of time-fixed or time-invariant variables. Measuring time-varying covariates
repeatedly brings more information on them and may lead to a higher precision in the
estimation of the covariate effects. There are also other ways how the follow-up design
could be improved. Increasing the number of individuals in the cohort, lengthening the
follow-up period or measuring additional variables could increase the precision of the
estimates. However, all these actions would require more resources, and so they provide
opportunities for study design optimization.

The research problems of this thesis are based on epidemiological follow-up studies,
where time-varying covariates are present. The aim is to give answers to the questions
outlined below:

(A) Assume that longitudinal measurements are carried out for the covariates, but we



cannot afford to measure the entire cohort in re-measurements. How to select the
subcohort to be re-measured in order to obtain precise estimates of the covariate
effects in a survival model?

(B) How to choose the number of longitudinal covariate measurements cost-efficiently,
when the survival model will be used for risk prediction?

(C) How to utilize the longitudinal covariate measurements in the modeling of cardio-
vascular disease (CVD) mortality?

There are many other design problems that fall out of the scope of this thesis, such as:
the optimal combination of the number of individuals in the cohort and the number
of longitudinal measurements for each individual, finding the solution to Question (A)
when the aim is to obtain precise risk predictions, or answering Question (B) when
the model parameters rather than risk predictions are of interest. Moreover, we do not
consider questions related to the target population, the sampling frame, the size of the
original cohort, or the covariates to be measured.

Question (A) is studied in Articles I and II. First, Article I considers the subcohort
selection with two measurement times and one covariate and Article II extends the
results to cases where several covariates and measurement points are allowed. Arti-
cle IIT investigates Question (B) by considering how measures of model discrimination
(Steyerberg et al., 2010) can be used to help the decision about the reasonable num-
ber of longitudinal measurements. We propose measuring the improvement in model
discrimination between models that use different amounts of longitudinal information.
Questions (A) and (B) are about designing the study cost-efficiently, whereas Question
(C) concerns the analysis of collected data in a real follow-up study. This is further
studied in Article IV.

Figure 1.1 is a simplified illustration of the follow-up design we are considering and
exemplifies in which phases of a study the results and methods of Articles I-1V could
be applied. The figure presents all three research questions together although they are
addressed separately in Articles I-IV. In Articles I and II, it is assumed that the entire
cohort is measured at the baseline. The design is then constructed sequentially by
selecting a subcohort optimally just before each re-measurement from those individuals
still alive. All previously collected data can be utilized in the selections. In the figure,
a subcohort consisting of individuals 1 and 2 is selected for the second measurement.
Individual 3 could not have been selected, because he/she has already experienced the
event of interest. The subcohort for the mth measurement consists of individuals 2
and 5. At the end of the follow-up, individuals 2 and 4 have not experienced the
event, so their lifetimes are said to be censored (Collett, 2003). Article III considers the
problem of choosing the number of measurement points for both ongoing and completely
new studies, so it could have been placed as well before the baseline measurement in
Figure 1.1.

Follow-up studies create survival data, which we model using parametric or semi-
parametric proportional hazards models (Kalbfleisch and Prentice, 2002; Aalen et al.,
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Figure 1.1: A simplified example of a follow-up design, where five individuals are fol-
lowed and the covariates in subsets of two individuals are re-measured. The figure also
exemplifies in which phases of a study the results and methods of Articles I-IV could
be applied.

2008). In Articles I and II, only a subset of the cohort is measured in re-measurements,
which leads to a large amount of missing data. We use a likelihood-based approach with
numerical integration, multiple imputation and Bayesian data augmentation (Little and
Rubin, 2002) to handle missing data in the analyses. The subcohort selections are car-
ried out using optimality criteria based on the Fisher information matrix (Pukelsheim,
1993; Atkinson et al., 2007). These criteria were originally developed for the design of
experiments, but have later been applied also in observational studies (Karvanen et al.,
2009; Mehtala et al., 2011).

In Article III, the study planning is based on model performance comparisons. The
performance is evaluated using different measures of model discrimination: the area
under the receiver operating characteristic curve (Hanley and McNeil, 1982), the net
reclassification improvement index (Pencina et al., 2011), the integrated discrimination
improvement index (Pencina et al., 2008) and the net benefit (Vickers and Elkin, 2006).
Measures of model discrimination are also used in Article IV to compare different ways



of using longitudinal measurements in the analysis of CVD mortality. In Article IV,
we derive new time-varying covariates to study the use of individual-level cumulative
averages and changes in the classical risk factors of CVD. The cumulative averages
are calculated as averages of the most recent and all previous measurements and the
changes as differences of the latest two measurements.

In Articles I-1V, the research questions are approached using data from the Finnish
cohorts of the Seven Countries Study, and in Articles I-III also simulation studies are
employed. The Seven Countries Study was initiated in the late 1950s as one of the first
international follow-up studies in the field of cardiovascular epidemiology. Its objective
was to investigate the development of CVD and related risk factors in different countries
(Keys, 1970; Menotti and Puddu, 2013). The study had two cohorts in Finland, one in
Eastern and another in South—Western Finland, from which comes the name East—West
study (Karvonen et al., 1966). The cohorts consisted of all men born between 1900 and
1919 in two geographically defined areas, 1711 men in total. A large set of variables
thought to be possibly related to CVD was measured in 1959, 1964, 1969, 1974, 1984,
1989, 1994 and 1999. Data on individuals’ lifetimes and causes of death are available
up to the end of 2011.

The theoretical framework of this thesis is introduced in Chapters 2 and 3. Chapter 2
considers the analysis of survival data with some special issues, and Chapter 3 reviews
the theory of optimal experimental design and discusses its application in observational
studies. The theory in these chapters is presented mainly from the epidemiological
point of view with emphasis on the methods applied in Articles [-IV. The research
contribution of this thesis is summarized in Chapter 4. Finally, Chapter 5 summarizes
the results and discusses their implications and possible topics for future research.



Chapter 2

Survival models

Survival data arise in many fields where the time until the occurrence of an event is
of interest. These times may be called survival times, lifetimes, failure times, or event
times. The analysis of survival data has numerous applications in medical sciences,
where survival time can be defined as the time until death or the occurrence of some
disease, for instance. Other examples of survival times include the time until the failure
of a machine, time taken to complete a task in a psychological experiment and time
from the beginning of studies until graduation. Often the interest in survival analysis
is in the dependence of survival times on explanatory variables. This chapter first
introduces some models for survival data and then considers a few special issues in
survival analysis.

2.1 Parametric models

There are some special features in survival data, which set requirements for modeling.
Survival times are nonnegative and have often highly skewed distributions. However,
the main feature that characterizes survival data is the presence of censored obser-
vations. If an individual has not experienced the event of interest at the end of the
follow-up or has become lost during the follow-up, we know only that the survival time
is greater than some constant c¢. This is called right censoring and ¢ is a censored
survival time. See, e.g., Collett (2003) for discussion on other types of censoring.

We denote the random variable of survival time by 7; and the observed survival time
by t; for individual 7. In practice, a pair (¢;, ;) is observed, where §; is a status indicator,
which is 1 if the actual survival time is observed and 0 if it is censored. When §; = 0,
t; is the censoring time. Next, we define two basic functions used in survival analysis,
namely the survival function S(¢) and the hazard function A(¢). These functions and
their basic results form the basis for survival analysis and are presented, for example,
in textbooks by Cox and Oakes (1984), Kalbfleisch and Prentice (2002), Klein and
Moeschberger (2003), and Aalen et al. (2008)

Suppose that the continuous random variable T" has a probability density function

10



f(t). Then, the cumulative distribution function can be expressed as

F(t) = P(T < 1) = /O ' fu)du.

This is the probability that the survival time is less than ¢, whereas the survival function
gives the probability that the survival time is greater than or equal to ¢:

S(t)y=P(T>t)=1-F(t).
The hazard function is defined as the instantaneous rate at which the event occurs at
time t conditional on the individual has survived until time ¢

Pit<T AT >
M0 = i PSSR
—

The hazard can be interpreted as an instantaneous risk of the event.
From these definitions we obtain some useful results. The hazard function can be
written as
_f®

(t)—%

and the survival function as

where

is the cumulative hazard function. These results allow us to derive the density function,
survival function and hazard function once one of them is known.

There are many different models developed for survival analysis to assess the re-
lationship between survival times and covariates. Proportional hazards models play a
central role in practical survival analysis and are therefore mainly considered here. Two
other classes of survival models, namely accelerated failure time models and propor-
tional odds models, are treated briefly.

Assume that we have covariates © = (z1,...,zg)", upon which survival times may
depend. The covariate vector  may include continuous or binary variables, interac-
tions between them or quadratic terms of original variables, for instance. Proportional
hazards models (Collett, 2003), sometimes called relative risk models (Kalbfleisch and
Prentice, 2002), are of the form

Atx) = Ao(t)e® P, (2.1)

where \g(t) is a baseline hazard function and B = (B,...,8y)" are the regression
coefficients. In this model, the covariates have multiplicative effects on the hazard.
The baseline hazard function is left unspecified in the semiparametric Cox proportional
hazards model (Cox, 1972), which is considered in Section 2.2. For example, if we

11



assume the Weibull or Gompertz distribution (Bender et al., 2005) for the survival
times, we obtain a parametric proportional hazards model.
If we use Model 2.1, the density function is

F(the) = do(t)e™"? exp [—e=" P ()]
and the survival function is
S(t|lz) = exp [—ewTﬂAo(t)} .

For the Weibull distribution, parameterized as

0-30) ()]

where a > 0 is a shape parameter and b > 0 is a scale parameter, the hazard function,
survival function, and density function are written as

a(t ot T
waltle) = 5 (3) "

Sweib(t|) = exp [—e“‘Tﬁ (%) ] and
fwein(t]) = Awein(t|2) Swein (t|).

Accelerated failure time (AFT) models are log-linear models for the event time 7.
The model specifies that
logT =x" B+ W, (2.2)

where W is an error variable with density fy. Model (2.2) can also be written as

T == BV,

From this form we see that the covariates have multiplicative effects on the event times
rather than on the hazard. Assume that " has the hazard function A\o(t). It then
follows that

Atx) = e Pog(te™*"P).

The common choices for the distributions of survival times in Model (2.2) include
the Weibull, log-logistic and log-normal distributions. These lead to the Gumbel, lo-
gistic, and normal distributions for W, respectively. The only AFT models that are
also proportional hazards models are those which assume the exponential or Weibull
distribution for the survival times (Cox and Oakes, 1984).

The third class of survival models presented here is the proportional odds mod-
els (Collett, 2003). In these models the odds of an individual surviving beyond time ¢

are modeled as
S(t) _ 78 So(t)

1—-S(t) 1—So(t) (23)

12



In the proportional odds model, the covariates have multiplicative effects on the odds of
survival beyond ¢. A common choice for the distribution of survival times in Model (2.3)
is the log-logistic distribution. Actually, this is the only distribution which has both
the proportional odds property and the accelerated failure time property (Smithson
and Merkle, 2014).

The parametric models introduced above can be fitted using the maximum likelihood
method. The likelihood function for data with n individuals, in the presence of right
censored survival times, is of the form

n

L(0) = [ [ f(tilai) S(tilai) 7,

i=1

where 0 is a vector of the model parameters. In some applications, alternative def-
initions for the time-origin of survival times may be possible. In epidemiology, the
time-scale can be, for example, age, calendar time, time-on-study, or time since diag-
nosis. Kom et al. (1997) and Thiébaut and Bénichou (2004) recommend to use age as
the time-scale. If the survival times are not observed from the time origin, this must
be taken into account in modeling by using truncated distributions. When age is used
as the time-scale and the cohort members are 50 years old at the baseline of the study,
for instance, the distribution of survival times is left-truncated at 50 years. Let tq be
the truncation time. Then, the likelihood function becomes

oy [ flm) (S Ee)
L(“’)‘H(swm) (Se)
2.2 Semiparametric models

In the proportional hazards model (2.1), the baseline hazard function can be left unspec-
ified (Cox, 1972). This leads to the semiparametric Cox proportional hazards model
(briefly the Cox model), which is widely used due to its flexibility. The method for
estimating the parameters 3 is called partial likelihood (Cox, 1972, 1975).

Assume first that there are no ties in the data, i.e., only one individual dies at each
death time. The partial likelihood is

n €m?ﬂ 9
LB =1] (—) : (2.4)

T
€T
i1 \ 2ier() €

where R(t;) is a so-called risk set. The set R(¢;) includes individuals who are known to
be alive just before the time ¢;. Likelihood (2.4) is called partial likelihood, because it
is not a full likelihood as it does not use the actual survival times directly, but depends
only on the ranking of these times.

In practice, survival data often include tied observations. In order to estimate the
(B parameters in the presence of ties, the partial likelihood function (2.4) has to be

13



modified. Let s; be a sum of the covariate vectors for the individuals dying at the jth
death time from the ordered death times, ¢;), j = 1,...,r, where r is the number of
different death times. The number of deaths at ¢(;) is denoted by d;. If there are not
very many ties at any death time, an adequate approximation (Breslow, 1974) is given
by

r es}"ﬂ

L) =11

- I3

J=1 (ZlER(t<j))e ! >

Other approximations for the partial likelihood have been proposed, e.g., by Efron
(1977) and Kalbfleisch and Prentice (2002).

Semiparametric AFT models are not as commonly used as Cox models because
of computational difficulties. However, semiparametric AFT models can be estimated
using rank-based weighted generalized estimating equations (Chiou et al., 2014).

dj’

2.3 Time-varying covariates

In the previous sections, only the baseline characteristics of the study subjects were used
as covariates in survival models. Some variables, however, change over time during the
study, and taking this into account in modeling may improve the estimation of the
covariate effects. Such covariates are called time-varying or time-dependent.

Time-varying covariates are often classified as either to be internal or external (Col-
lett, 2003). A covariate is external, if its future path is not affected by the occurence of
the event of interest. If a covariate is not external, it is internal. Examples of internal
variables include blood pressure, cholesterol and smoking status. Usually, information
on internal variables is obtained by measuring them, and it requires the measured in-
dividual being alive. External variables do not necessarily require an individual being
alive for their existence. Policy changes, the dose of a drug, or the treatment group in
which a patient is assigned are examples of external variables.

The two main approaches for modeling survival data with time-varying covariates
are time-dependent Cox models (Therneau and Grambsch, 2000) and the joint modeling
of longitudinal and survival data (Wulfsohn and Tsiatis, 1997; Henderson et al., 2000;
Rizopoulos, 2012). We denote the vector of covariate values of the individual i at
time ¢ by «;(t), which may include both fixed and time-varying covariates. When the
proportional hazards model (2.1) is extended to incorporate the time-varying covariates,
it becomes

At (1)) = Ao(t)e® "8, (2.5)

Note that as the values x;(t) may vary in time, the relative hazard A(t|x;(t))/No(t)
does not remain constant over time. This means that the model (2.5) is actually not a
proportional hazards model.

For external covariates whose values are known at every time point, the time-
dependent Cox model (2.5) is appropriate. When we use this model, the partial likeli-

14



hood (2.4) becomes

0
n 6mi(ti)Tﬂ
L(B) = : :
Zl:_‘! (EZGR(Q) eml(tz)Tﬁ

Let us assume that the covariates change their values only at certain time points, i.e.,
the covariate processes are step functions. Now, we can write the likelihood contribution
of the individual 7 in a parametric model as

M; ‘ AN Omti, ] AN 1=0mt1,
LZ(O) _ H (f(tm+1,z’wm,z)) (S(tm+1,z’wm,z)) : (26)

m—=0 S(tm7z|mm,z) S(tm,i|wm,i)

where M, is the number of time points t,, ; where the covariate values @,,; change and
status indicators 0y ;,...,0x,, are zeros, and d,s,41,; may be zero or one. Note that the
denominators in the likelihood (2.6) are needed because we have to deal with truncated
distributions as the time scale is divided according to the intervals where the covariates
remain constant.

The estimates of the time-dependent Cox model (2.5) may be biased, when internal
time-varying covariates are observed in discrete time and measured with error (Prentice,
1982; Bycott and Taylor, 1998). In this case, the joint modeling of longitudinal and
survival data is an appropriate approach (Rizopoulos, 2012).

A central idea underlying the so called joint models is that the survival time data and
longitudinal covariate data are assumed to depend on the common set of latent random
effects (Tsiatis and Davidian, 2004). Originally, two-stage methods were proposed to
fit joint models (Tsiatis et al., 1995). The idea is to estimate first the parameters of the
longitudinal model and then to use the estimated model as a covariate in the survival
model. However, this kind of approach may lead to biased estimates (Dafni and Tsiatis,
1998). For this reason, nowadays the preferred method for fitting joint models is the
maximum likelihood method based on the joint distribution of the observed survival
and longitudinal data (Henderson et al., 2000; Hsieh et al., 2006).

Despite the major developments in joint modeling methodology (Brown and Ibrahim,
2003; Rizopoulos et al., 2009; Rizopoulos, 2011), it has been demonstrated that the
time-dependent Cox model should still be considered a candidate when selecting the
most suitable method for analysis (Hanson et al., 2011). In addition, when there are
multiple time-varying covariates, problems arise in fitting joint models due to increased
computational complexity (Rizopoulos, 2012), and therefore some specialized methods
have been developed for multivariate joint modeling (Brown et al., 2005; Proust-Lima
et al., 2009; Rizopoulos and Ghosh, 2011). Bayesian methods have been favored in the
estimation of complex joint models (Gould et al., 2015).

Whatever is the selected approach for modeling survival data with longitudinal
covariate measurements, the analyst should also consider whether to use the original
measurements or some derived variables. These derived variables may, for instance, be
averages of the most recent and all the previous measurements (Wilson et al., 1997),
differences of the latest two measurements (Farchi et al., 1981; Sesso et al., 2000),
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standard deviation of the measurements (Muntner et al., 2011), maximum value reached
(Rothwell et al., 2010), or lagged observations (Hanson et al., 2011). The averages and
differences of longitudinal measurements were used in the modeling of CVD mortality
in Article IV, whose contribution is summarized in Section 4.4.

2.4 Missing data

Missing data are encountered in follow-up studies for various reasons. An individual
may refuse to participate or is lost, for example, due to moving to another area. One
important type of missingness is data missing by design, which arises, for example,
if some measurements are carried out for only a subset of individuals due to budget
limitations. All these may lead to missingness in the covariates or in the response
variable. Removing individuals with missing information from the data set might lead
to loss of power and biased estimates, and thus several methods have been developed
to handle missing data. Three approaches for handling missing data will be briefly
introduced: likelihood-based approach, multiple imputation and Bayesian data aug-
mentation. These are applied in Articles I and II to handle data missing by design.

Rubin (1976) defined the following classes of missing data: missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR).
Under MCAR and MAR assumptions, the missing data mechanism is usually said to be
ignorable, which means that it is not necessary to specify a model for the mechanism of
missingness. If data are assumed to be MNAR, the missingness is said to be informative
and an additional model for missing data mechanism is required.

Let us assume that we have data Y = (Y ,ps, Y jnis), which consist of the observed
part Y ., and the missing part Y ,,;,. Missing data are assumed to be MAR or MCAR.
In the likelihood-based approach, the inference is based on the likelihood

L(0) = F(Y u]0) = / Y s ¥ is|0)dY s (2.7)

where the intergal is over the support of Y ;. Equation (2.7) specifies a likelihood of
the model parameters @. The missing data mechanism has been ignored here as we have
assumed that the mechanism does not depend on the missing values. In a case where the
variables including missing values are discrete, the integration would be replaced with
summation. In practice, it may not be possible to calculate the integrals analytically,
so numerical integration (Gautschi, 2012) can be applied. Alternative methods, such as
the expectation-maximization (EM) algorithm (Dempster et al., 1977; Shen and Cook,
2013), can also be used to maximize the likelihood.

The idea of multiple imputation is to generate imputations for missing values m
times (m > 2) using an imputation model, fit an analysis model with each imputed
data set, and then combine the results to obtain the final estimates and standard
errors (Rubin, 1987). Multiple imputation is usually preferred over single imputation
techniques, because it takes into account the uncertainty about the parameters of the
imputation model and also the uncertainty about the imputations.
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Multiple imputation can be thought of as being an approximate Bayesian method,
because the uncertainty of unknown parameters is expressed as posterior distributions.
The posteriors of the imputation model parameters n are estimated using data without
missing values. Then, realizations of these parameters n* are drawn from the posteriors.
Imputations are drawn from the conditional posterior distributions of missing values
(the imputation model) given the realizations n*. This procedure is repeated m times.
Then, the estimates for the parameters of the model of interest are obtained by fitting
the analysis model for each imputed data set. Finally, the estimates and their standard
errors are combined by applying Rubin’s rules (Rubin, 1987), which take into account
the within-imputation variance and between-imputation variance.

The most critical part in multiple imputation is the specification of the imputation
model. Different methods have been proposed for this, including multivariate normal
imputation (Lee and Carlin, 2010) and chained equations (White et al., 2011). White
and Royston (2009) showed that when the analysis model is the proportional hazards
model and the covariates include missing values, the status indicator §; and cumulative
baseline hazard Ag(¢;) should be used as predictors in the imputation model.

In the Bayesian approach, missing data values can be regarded as unknown param-
eters and treated in the analysis similarly to model parameters (Tanner and Wong,
1987). A prior distribution or model is specified for the missing values and their poste-
riors are calculated simultaneously with the posteriors for the model parameters, using,
for example, MCMC methods (Lunn et al., 2012).

In addition to those presented above, there are also other methods for handling
missing data, such as single imputation methods (Little and Rubin, 2002) and weight-
ing techniques (Seaman and White, 2013). The choice of an appropriate method de-
pends, e.g., on the research question, type and amount of missing data and the chosen
paradigm.

2.5 Model performance

The goodness of a survival model can be evaluated using many different measures,
which reflect different aspects of the model. If the model has been developed for risk
prediction, its performance should be assessed primarily by measuring the predictive
ability. The measures of predictive performance belong typically to one of the two
main categories: model discrimination or model calibration (Cook, 2007). Discrimina-
tion means the model’s ability to separate events and nonevents, whereas calibration
quantifies how well the estimated risk and the actual risk agree. Here, we present some
methods for evaluating the performance of survival models.

A well-known tool for investigating model discrimination is the receiver operating
characteristic (ROC) curve (Metz, 1978; Fawcett, 2006). Assume that all individuals
have either a positive (case) or negative (noncase) condition and a prediction model is
developed to classify the individuals as positives or negatives. Let TP and FP denote
the numbers of true positive and false positive classifications, respectively. The true
positive rate, TPR, is the proportion of true positives among all individuals with a
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Table 2.1: A contingency table showing how the true positive rate (TPR) and the false
positive rate (FPR) are calculated.

Condition
Positive Negative
Classification Positive  True positive (TP)  False positive (FP)
by the model Negative False negative (FN) True negative (TN)
True positive rate False positive rate
TPR = & FPR = 0

TP+FN FP+TN

positive condition and the false positive rate, FPR, is the proportion of false positives
among all individuals with a negative condition, as displayed in Table 2.1. TPR is also
known as sensitivity and (1— FPR) as specificity. The ROC curve is a plot of TPR
against FPR at various risk thresholds and is illustrated in Figure 2.1.

The area under the ROC curve (AUC) is a discrimination metric, which summarizes
the information of the ROC curve into a single value. The AUC can be interpreted as
the probability that a randomly selected case has higher predicted risk than a random
noncase (Hanley and McNeil, 1982). Two models can be compared by calculating the
difference in AUCs.

More novel metrics for comparing the discrimination of two models include the net
reclassification improvement (NRI) (Pencina et al., 2011) and the integrated discrimi-
nation improvement (IDI) (Pencina et al., 2008) indices. To estimate the NRI, we have
to define risk categories and check how the new model reclassifies individuals compared
to the old model. The estimate of the NRI is given by

NRI = (pup, events — pdown7 events) - (pup, nonevents pdown, nonevents)u

where Pup, events = (# events moving up)/(# events) and Paown, events = (# €vents moving
down)/(# events). An event moving up (or down) means here a reclassification to a
higher (or lower) risk category. Probabilities pup, nonevents ad Pdown, nonevents are defined
respectively. If there are no established risk categories, a category-less or continuous
NRI can be used, where any upward or downward change in predicted probabilities are

considered upward and downward “reclassifications”.
The IDI is defined as

IDI = (pnew, events — pnew, nonevents) - (pold7 events — pold7 nonevents)7

where ﬁnew, events 18 the mean of predicted probabilities of the event, based on the new
model for individuals who experience the event and ﬁnew, nonevents 18 the mean of predicted
probabilities of the event, based on the new model for individuals who do not experience
an event. The probabilities 5old, events and ]501d, nonevents are calculated respectively using
the old model.

The NRI and IDI have recently been criticized (Hilden, 2014; Pepe et al., 2014;
Vickers and Pepe, 2014) and so-called decision-analytic measures have been recom-
mended to be used instead, because they are considered to be clinically more meaningful
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Figure 2.1: An example of the ROC curves of two models. Model 1 has a larger
area under the curve (AUC) than Model 2, which means that Model 1 has a better
discriminative ability.

(Van Calster et al., 2013; Kerr et al., 2014). In decision-analytic measures, the relative
consequences of false positives and negatives are taken into account by a threshold T
for predicted risk, which is used to categorize individuals as positive or negative. The
threshold T is defined so that the odds 7'/(1 — T') equals to the ratio of the harm of
a FP decision to the benefit of a TP decision. Once the threshold T is defined, the
model performance can be measured using so called net benefit (NB) (Vickers and
Elkin, 2006), which is given by

where n is the total number of individuals and w = T/(1 — T'). The difference in
NB between two models can be interpreted as the difference in the proportion of true
positives at the same level of false positives.

Model calibration is often measured using the Hosmer—Lemeshow goodness-of-fit
test (Hosmer and Lemeshow, 1980; Hosmer et al., 2013). The predicted risks are cate-
gorized to, for example, deciles with respect to their values, and then the observed and
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expected numbers of events are compared in the subgroups. The Hosmer-Lemeshow
statistic is defined as o

4y = (Og — n9ﬁ9)27
=1 ngTg(1 — )
where G is the number of subgroups, Oy is the number of events in the gth group, n,
is the number of individuals in the gth group and 7, is the average predicted risk for
individuals in group g. The statistic x%; follows asymptotically a x? distribution with
g — 2 degrees of freedom. Calibration can also be evaluated using a calibration plot and
the measures related to it: calibration slope and calibration-in-the-large (Steyerberg
et al., 2010).

In addition to model discrimination and calibration, there are also measures indi-
cating the overall model performance, such as the Brier score (BS) (Brier, 1950). The
BS quantifies how close the predictions are to actual outcomes. For binary outcomes
the BS is written

i=1
where 7; is the predicted risk and O; is the outcome of the binary response for individual
1. The metrics discussed above have several extensions and modifications for different
types of data and models (Li and Fine, 2008; Chambless et al., 2011; Demler et al.,
2015).

Article III demonstrates that different measures of model performance can be used
to plan how many longitudinal covariate measurements are needed. In particular, this
is based on application of these measures to compare models with different amounts of
longitudinal information. The contribution of Article III is summarized in Section 4.3.

A different aspect in assessing the goodness of a survival model is checking the va-
lidity of the model assumptions. For example, in parametric models, the choice of the
distribution for survival times can be checked (Hollander and Proschan, 1979; Collett,
2003). For assessing the validity of the assumptions in proportional hazards models,
several residual-based procedures have been developed, including the Schoenfeld resid-
uals (Schoenfeld, 1982), the Cox-Snell residuals (Cox and Snell, 1968), and martingale
residuals (Barlow and Prentice, 1988). Collett (2003) provides a discussion on the use of
different residuals in examining the adequacy of the linear component x’' 3 of a survival
model and the validity of the assumption of proportional hazards.
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Chapter 3

Optimal study design

The selected study design affects on how well the parameters of interest can be esti-
mated. Different ways of data collection may also require different amounts of resources.
Thus, it is often of interest to consider how to design the study in order to achieve the
desired precision with costs as low as possible or to maximize the precision of results
with a fixed budget. This chapter presents some concepts and methods for study design
optimization.

3.1 Optimal experimental design methods in obser-
vational studies

This thesis deals with the cost-efficient planning of observational studies. In Articles
I and II, the principles of optimal experimental design are used. This methodology
will be reviewed in Sections 3.2-3.4. The central difference in constructing optimal
designs in experimental and observational studies is that in experiments the values
of the covariates (or design points) for each subject can be determined, whereas in
observational studies this is not possible.

When the covariate values cannot be determined, we have to select the subjects
whose covariate values can be expected to equal the desired values. Alternatively, the
expected covariate values of the candidate subjects can be thought to be the set of pos-
sible design points, from which the optimal design will be constructed. In practice, the
calculation of the expected values requires some prior knowledge or assumptions about
the processes that generate the covariates. For this reason, optimal design methods may
be used in longitudinal studies, for instance, where information on the same variables is
collected repeatedly and the study can be designed in different phases. Applications of
optimal design methods in subject selection problems are considered, e.g., by Karvanen
et al. (2009) and Buzoianu and Kadane (2009). Such a selection problem is also studied
in Articles I and II, whose contribution is summarized in Sections 4.1 and 4.2.

There are also other ways to apply optimal design methods in observational studies
than the optimal subject selection described above. These may be the determination of
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the optimal number of repeated measurements or the optimal time spacing of measure-
ments. Tekle et al. (2011) study these questions in the case of continuous longitudinal
response under budget constraints. Optimal time spacing has also been investigated
for categorical processes in various settings (Hwang and Brookmeyer, 2003; Quintana
and Miiller, 2004; Mehtila et al., 2015).

3.2 Optimal design theory

The optimality of a study design can be approached from many different viewpoints.
The aim of optimization may be, for example, maximization of precision for parameter
estimates or predictions, minimization of costs or time required to conduct the study
or a multi-objective function combining different goals. In epidemiology, designs such
as case-control design, nested case-control design, and case-cohort design (Wacholder,
1991; Kulathinal et al., 2007; Sun et al., 2010; Salim et al., 2014) have been used to
improve the cost-efficiency of studies. Optimal survey sampling techniques have been
developed in survey statistics (Chambers and Clark, 2012), and the so-called alphabetic
optimality theory (Atkinson et al., 2007), in which different optimality criteria are
identified with letters, has been used in experimental research. The treatment of the
topic is here restricted to the alphabetic optimality, which is presented in this section,
and to the Bayesian experimental design framework summarized in Section 3.3.

Let us consider a parameter vector @ = (6y,...,6,)". The amount of information
on parameters 6 can be expressed as a Fisher information matrix /(8), from which we
are able to derive a confidence ellipsoid for 8 under a normal distribution assumption
for the estimates. Some of the optimality criteria concern different properties of confi-
dence ellipsoids. A D-optimal design, which minimizes the volume of the ellipsoid, is
obtained by maximizing det(1(@)) or, equivalently, by minimizing the generalized vari-
ance det(7(0)!). A-optimality is defined as minimizing the trace(7(0)~!), which results
in minimizing the total variance of the estimates, equivalent to minimizing the average
variance. An E-optimal design minimizes the variance of the least well estimated linear
combination a’@, where a is a vector of coefficients and a’a = 1.

The three criteria introduced above can also be defined considering the eigenvalues
A1, ..., Ap of 1(0). In fact, the definitions make use of the eigenvalues of 1(0)~!, which
are 1/A1,...,1/),, and are proportional to the squared lengths of the axes of the con-
fidence ellipsoid. Now, the D-; A- and E-optimal designs are obtained by minimizing

P /N, Y0P 1/ and max;(1/);), respectively (Atkinson et al., 2007).

If we are only interested in a subset of s parameters, a variation of the D-optimality
called the D,-optimality criterion can be applied. Assume that the parameters have
been ordered so that the parameters of interest are the first s elements in @ = (64, ..., 0;,

..,0,)T. The D-criterion is defined as minimizing the determinant of the s X s upper
left submatrix of 7(8)~!.

D-optimal design has the advantage that it does not depend on the scales of the
variables, even though 7(0) does. Thus, if A-optimality is used, for instance, it may be
appropriate to scale the variables to have the same variance.

22



A complex issue is encountered with non-linear models, when 1(60), and hence the
optimal design, depends on the model parameters, which are usually unknown. Replac-
ing the unknown parameters with prior point estimates leads to locally optimal designs.
Taking into account the uncertainty about the parameters by using prior distributions
instead of point estimates is discussed in the next section.

In some cases, it is possible to improve the study design by considering sequential
(or multi-phase) designs. This means that the entire data collection is not designed at
once but in different phases. This allows us to utilize the information already collected
in the study in order to design the next phase possibly even more efficiently. Two-phase
designs are important special cases of sequential designs and have been widely examined
to improve the cost-efficiency of studies (Breslow and Cain, 1988; Reilly, 1996; Mclsaac
and Cook, 2015). Sequential designs may be particularly useful for non-linear models,
due to the dependency between the optimal design and the unknown model parameters.

3.3 Bayesian optimal design

The Bayesian approach may be natural in design optimization, as we usually have some
prior information which has motivated conducting a new study. On the other hand,
deriving optimal designs for non-linear models requires prior information on model
parameters, and the information can often be incorporated flexibly using prior distri-
butions. Bayesian experimental design (Chaloner and Verdinelli, 1995) is a framework
in which the aim is to find a design ¢ from a design space =, which maximizes the
expected utility U(&) of the experiment. The utility should describe the purpose of
the experiment and can be defined to be the precision of the parameter estimates or
predictions, for instance, analogously with the previous section.

Data y from a sample space ) are collected according to design &. The data are
assumed to follow a model p(y|@), where parameters € belong to the parameter space ©.
The observed utility is measured by a utility function u(0,¢,y). The Bayesian solution
to the design problem is obtained by finding the design &*, so that

— max / / (0, y¢)d0dy. (3.1)

£e=

The integrals in (3.1) average over what is unknown: data y have not yet been collected
and for the parameters 8 only a prior distribution is assumed.

When the goal is to obtain precise estimates for the parameters 8, it is common
to use the expected Shannon information of the posterior distribution as the expected
utility to be maximized:

- / / log [p(B]y, )] p(6, y|¢)d6dy.
yJo

This is equivalent to maximizing the expected Kullback-Leibler distance between the
posterior and the prior distributions, and it leads to Bayesian D-optimality under a
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normal linear model. In practice, the integrals in (3.1) are often replaced with ap-
proximations (Atkinson et al., 1995; Ryan, 2003). Article I applies the D- and D,-
optimality criteria in frequentist framework, and in Article IT we use Bayesian version
of Dg-optimality.

3.4 Optimal design for survival models

The application of optimal design methods in survival models has received relatively
little attention (McGree and Eccleston, 2010). Due to the non-linearity of survival mod-
els, the Bayesian approach has often been employed (Erkanli and Soyer, 2000; Zhang
and Meeker, 2006). McGree and Eccleston (2010) investigate optimal covariate values
for precise parameter estimation in frailty models and present a compound criterion,
which aims at maximizing simultaneously the precision of parameter estimates and the
number of failures in an experiment.

Rivas-Lopez et al. (2014) study optimal designs for the precise estimation of model
parameters in survival experiments using AFT models. They show that in a case of
one covariate with a linear effect, the D-optimal design is based on setting two covari-
ate values. When the interval of possible covariate values is [a,b] and the regression
parameter > 0 (the greater the covariate value, the longer the expected survival),
the design points are the minimum a and the so-called critical point ¢ > a. If ¢ ¢ [a, b],
then the design will consist of the extreme points a and b. Respectively, when § < 0,
the design points are b and ¢’ < b. The authors suppose that the explanation for such
critical points produced by the optimality criterion is that using them instead of the
extreme point where the expected survival time is the longest results in more events
that give more information than censored observations.

The majority of research on optimal design for survival models deals with para-
metric models. Although fitting semiparametric Cox models using partial likelihood is
rather straightforward, design optimization based on partial likelihood information is a
complicated task. Recently, Lépez-Fidalgo and Rivas-Lépez (2014) and Konstantinou
et al. (2015) have presented methods for finding optimal covariate values for the Cox
model. The designs based on partial likelihood seem to be similar to designs based on
the corresponding full likelihood (Konstantinou et al., 2015).
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Chapter 4

Research contribution

This section summarizes the contribution of Articles I-IV to the research questions
outlined in Chapter 1.

4.1 Optimal subcohort selection

Article T considers the selection of individuals for a re-measurement of a single time-
varying covariate when only a subset of the cohort can be selected due to budget
limitations. It is shown that in order to obtain a precise estimate of the covariate
effect in a survival model (2.5), the oldest individuals with extreme covariate values
should be selected. The proposed selection methods are based on functions of the Fisher
information matrix presented in Section 3.2, and the results indicate that these methods
lead to more precise estimates than simple random sampling. Two different approaches
of Section 2.4 are used in the handling of missing data: multiple imputation and a
likelihood-based approach with numerical integration. Numerical integration is seen to
perform well in a simulation study, but due to its sensitivity to model assumptions,
multiple imputation is recommended for analysis of real data.

4.2 Extensions of the optimal subcohort selection

The selection procedure introduced in Article I is generalized in Article II to allow
for several covariates and measurement points. The Bayesian approach introduced in
Section 3.3 is applied here and is found to be suitable for this kind of problem of
sequential study design, both from the theoretical and practical points of view. The
results are consistent with Article I: the optimal subcohort consists of old individuals
with extreme covariate values and the proposed selection method clearly outperforms
simple random sampling, when the precision of the regression parameters is compared.
Bayesian data augmentation appears to be a more flexible method for the handling of
missing data than the methods applied in Article I.
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4.3 Frequency of longitudinal measurements

In Article III, we study how the number of longitudinal covariate measurements can
be chosen cost-efficiently by evaluating the usefulness of the measurements for risk pre-
diction. Simulations as well as data from a previous study were used to illustrate the
importance of longitudinal measurements. We propose applying measures of model
discrimination, presented in Section 2.5, to compare models using different amounts of
longitudinal information. By performing analyses considering the usefulness of longitu-
dinal covariate measurements, we are able to conclude to what extent we could decrease
the number of the measurements without significantly losing the precision of the predic-
tions. These kind of comparisons seem applicable in both ongoing and completely new
follow-up studies. In a simulation study, we show how higher variability and a higher
hazard ratio of a time-varying covariate increase the importance of re-measurements.

4.4 Modeling of cardiovascular disease mortality

The use of longitudinal covariate measurements in modeling the risk of cardiovascular
disease (CVD) mortality in a long-term follow-up study is investigated in Article IV. The
research is based on the Finnish cohorts of the international Seven Countries Study.
New variables from the longitudinal measurements are derived as discussed in Sec-
tion 2.3, and their importance in statistical modeling is analysed. Changes in the
covariate values are modeled as the difference of the latest two measurements and the
cumulative average as a mean of the most recent and all previous measurements. The
use of these new time-varying covariates is compared to the traditional use of time-
varying covariates, in which only the most recent measurement is assumed to affect the
risk.

Individual level changes and cumulative values are strong predictors for cardiovas-
cular disease mortality. In particular, the long-term cumulative value of systolic blood
pressure is found to be a better predictor than the recent level alone. The change in the
body mass index predicted the risk of CVD mortality although the body mass index
itself did not. The article confirms the value of longitudinal risk factor information
in risk prediction. Moreover, we conclude that using a simplistic method in handling
longitudinal risk factor measurements in a prediction model may prevent researchers
from understanding the true importance of the risk factors.
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Chapter 5

Summary

This thesis dealt with efficient designs and modeling approaches for follow-up stud-
ies where time-varying covariates are present. We studied the optimal selection of
a subcohort for re-measurements of the covariates in order to estimate the covariate
effects on survival as precisely as possible (Article T and II). Another perspective to
cost-efficiency of follow-up studies was to consider the determination of the reason-
able number of longitudinal measurements for risk prediction (Article III). Different
ways to utilize longitudinal covariate measurements in modeling CVD mortality were
investigated in Article IV.

The problem of the optimal selection of a subcohort was solved using optimality
criteria developed for the design of experiments, and this approach was shown to out-
perform simple random sampling. The optimal subcohorts consisted of individuals with
extreme covariate values and high age. For choosing the number of longitudinal mea-
surements, we proposed utilizing data from previous studies and/or simulations and
applying measures of model discrimination to compare models using different amounts
of longitudinal information. Finally, we showed that individual-level changes and cu-
mulative averages of classical risk factors are good predictors of CVD mortality.

There has been relatively little research on the application of methods developed
for the optimal design of experiments to the design of observational studies. However,
our results encourage to further investigate this approach in study design. Although
the applications of this thesis were in epidemiology, similar approaches could be used
in other disciplines as well.

The results demonstrated that the cost-efficiency of follow-up designs can be im-
proved by careful planning compared to simple solutions. This work may help re-
searchers to conduct follow-up studies with time-varying covariates more efficiently.
We also showed that taking full advantage of the collected follow-up data with longitu-
dinal measurements may require deriving new covariates and comparing their use with
simpler methods.

In addition to simulations, the methods proposed for study design were also studied
with real data from the East—West study. This gives more reliability for the applicability
of the methods, as the processes which have generated the data are truly unknown.
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Nevertheless, our assumptions may not be valid with other data sets, and so caution is
required when generalizing our conclusions to other studies. It is also worth noting as
a limitation of our methods that the study is designed with respect to a specific model,
and it may thus give reduced power for fitting models with other variables. Thus the
proposed methods for designing a study are at their best when the use of the data can
be clearly defined before the data collection.

This dissertation considered only some aspects of cost-efficiency in follow-up studies
and the utilization of collected data in modeling. More work is needed to discover the
possibilities of design optimization in follow-up studies with time-varying covariates. A
topic for future research could be combining the methods and concepts of Articles [-1V
in different applications. Another interesting topic would be to explore the optimal
combination of the number of individuals in the cohort and the number of longitudinal
measurement for each individual. It was assumed in this work that the size of the
original cohort is fixed in advance and that the sizes of the subcohorts are the same in
each re-measurement. Relaxing these assumptions might allow the designs to be further
improved.
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