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Abstract
We present both theory and an algorithm for solving time-harmonic wave prob-
lems. The time-harmonic solutions will be achieved by computing time-periodic
solutions of the original wave equations. Thus, an exact controllability tech-
nique is proposed for the time-dependent wave equations. We discuss a first
order Maxwell type system, which will be formulated in the framework of al-
ternating differential forms. This enables us to investigate different kind of
classical wave problems at one fell swoop, such as acoustic, electro-magnetic
or elastic wave problems. After a sufficient theory is established we formu-
late our exact controllability problem and suggest a least-squares optimization
procedure for its solution, which itself is solved in a natural way by conjugate
gradient algorithm operating in a purely L2-type Hilbert space. Therefore, one
of the biggest advances of this approach might be that the conjugate gradient
algorithm does not need any preconditioning.
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1 Introduction

Time-harmonic wave propagation is an important phenomenon which has many
obvious applications in acoustics, electro-magnetics and elasticity, among others.
Traditionally, the numerical solution approaches have been based on finite differ-
ences, finite elements or boundary element techniques. As our goal is to consider
heterogeneous media as well, we pay attention to methods based on partial differ-
ential equations. Hence, some kind of tessellation of the spatial domain is necessary.

To obtain accurate results for wave propagation, the discretization mesh needs to
be adjusted to the wavelength. If the time-harmonic case is directly addressed, one
is faced with the solution of a large-scale indefinite linear system which is a difficult
task.

Instead of solving directly the time-harmonic problem for a given frequency
ω ∈ R+ , it is possible to find the solution by control techniques. Then the solu-
tion is found by searching for an appropriate initial data for the wave equation
which minimizes a quadratic functional that measures the difference between the
initial state and the final state after one time period T = 2π/ω . A natural quadratic
error functional is the squared energy norm of the system, allowing to minimize
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the cost by the conjugate gradient method operating in Hilbert spaces. This ap-
proach has been successfully applied to acoustics, electro-magnetics and elasticity
[10, 11, 12, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26]. In practice, the method seems to have
a good asymptotic computational cost. Even though no theory exists, the computa-
tional cost of the method seems to be of order O(n), where n is the number of spatial
degrees of freedom. The drawback of using the traditional (second order in time)
formulation of the wave equations is that the energy norm is then of H1-type, and as
such, the minimization problem is badly conditioned. This is handled by applying
preconditioning to the conjugate gradient minimization. Unfortunately, this means
that a discrete elliptic problem (linear system) still needs to be solved at every con-
jugate gradient iteration step. In recent papers, the linear system has been solved by
an algebraic multi-grid method which still maintains the good asymptotic perfor-
mance of the solution technique, but makes it quite more difficult to implement the
solver to utilize the computing power of modern parallel computers and multi-core
processors.

Hence, an alternative approach has recently been proposed in the short paper
of Glowinski and Rossi [21]. The idea is to formulate the control method for an
equivalent first order system which has an L2-type energy norm, and hence, a well-
conditioned minimization problem results. This eliminates the need for precondi-
tioning the conjugate gradient minimization and, thus, greatly simplifies the paral-
lel implementation of the method. This approach also has drawbacks as the spatial
discretization needs to be based, for example, on mixed finite elements like Raviart-
Thomas elements, which are more difficult to implement than standard finite el-
ements. Initial numerical experiments (still unpublished) support the hypothesis
that the cost of the new approach is also of order O(n).

In our project, we aim at generalizing the approach of [21] to generalized Maxwell
equations formulated in terms of differential forms. The same formulation covers
electro-magnetic, acoustic and elastic waves and it can be naturally discretized by
so-called discrete differential forms (DDF) or discrete exterior calculus (DEC) which
has recently been under very active research [29, 15, 14]. The goal of this is to de-
velop theory and software for efficiently solving the generalized Maxwell equations
using a control approach. We are planing to develop a new solution theory for the
generalized Cauchy problem at hand, such that we can be sure to have uniquely
determined solutions evolving in time. Here the papers [46, 47, 38, 39, 44, 45, 33]
and the work [37] as well as the reports [32, 40, 41, 42, 43] will be useful. More-
over, theoretical questions about the domain truncation procedure have to be con-
sidered. We are planing to use absorbing boundary conditions (ABC), generalized
Dirichlet-to-Neumann operators (DtN), i.e. electric-to-magnetic operators (EtM), as
well as perfectly matched layers (PML). All these techniques have to be developed
for differential forms. The resulting software is targeted to mid-frequency variable
coefficient wave propagation problems in 2D and 3D domains, where the dimen-
sion of the computational domain is 10-100 wavelengths. The software is targeted
for modern parallel computers and multi-core processors.
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In this first report we present and explain the basic ideas of the control approach
for wave equations formulated as first order systems using generalized Maxwell
equations formulated by differential forms. First in section 3 we investigate the
Cauchy problem (CP) and establish a solution theory which meets our needs uti-
lizing the spectral calculus for (unbounded) selfadjoint linear operators in Hilbert
space. Then in section 4 we introduce the least squares formulation and discuss the
derivative of the least squares functional, which is the essential ingredient in our
resulting algorithm, since we plan to use a conjugate gradient method (CGM). In
section 5 we discuss the conjugate gradient algorithm (CGA) in some detail. We
shortly explain a general CGA in Hilbert space and then present a CGA for our
problem at hand. In section 6 we translate our formalism using differential forms
to the classical framework of vector analysis and briefly demonstrate, which classi-
cal problems are formulated within our generalized theory. Finally in section 7 we
outline the ongoing work in this project.

2 Problem formulation and notations

Let I := (0, T ) with T > 0 be some interval, Ī = [0, T ] denote its closure and

Ω ⊂ RN , N ∈ N ,

be an exterior domain. In [21] Glowinski and Rossi tried to find time-T periodic
solutions u of the prototypical scalar linear wave problem

(∂2
t −c2∆)u = 0 in Ξ := I × Ω ,

γu = g on Γ := I × ∂ Ω , (1)
u(0) = u(T ) , ∂t u(0) = ∂t u(T ) in Ω ,

where they utilized a truncation of Ω introducing an artificial boundary (a sphere
containing RN \ Ω) and a homogeneous Neumann-type boundary condition on it,
i.e. just setting the translation of Sommerfeld’s radiation condition to the time de-
pendent formulation (c−1 ∂t + ∂r)u to zero. Here c is a positive real number and g is
a given right hand side time dependent boundary data. Furthermore, γ denotes the
usual scalar trace operator and r the Euclidean norm on RN .

They transformed the latter system via the well known substitution

E := ∂t u , H := ∇u

into the first order system of ‘linear acoustics’

(
∂t−

[
c2 0
0 1

] [
0 ∇ ·
∇ 0

] )
(E,H) = (0, 0) in Ξ ,

γE = ∂t g on Γ ,

(E,H)(0) = (E,H)(T ) in Ω ,
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which has a ‘Maxwell-type flavor’, albeit simpler. The advantage is that this second
system allows for its solution an algorithm using

L2(Ω)× L2(Ω)N

as control space. In former works there was always at least the first part of the
control space a closed subspace of H1(Ω) , which makes the corresponding numerics
much more difficult due to the need of preconditioning, for instance, in conjugate
gradient algorithms. Such preconditioning is not necessary if one uses a purely
L2(Ω)-control space.

We may generalize this problem using the framework of alternating differen-
tial forms of rank q , shortly spoken q-forms. For this purpose we consider our
exterior domain Ω a smooth N -dimensional differentiable Riemannian manifold
with boundary. Let (U, h) be a chart for Ω . We call a q-form u =

∑
J uJ dhJ (lo-

cally) smooth and write u ∈ C∞,q(U) , if the corresponding component functions
uJ := u(∂hJ) are C∞ . (If this holds for one chart h , then it holds true for all charts of
the atlas.) If u is locally smooth for all charts of the atlas we call u smooth and write
u ∈ C∞,q(Ω) . Here we utilized an obvious multi-index notation, i.e. for ordered
multi-indices J := (j1, . . . , jq) ∈ {1, . . . , N}q we define the tuples of chart tangential
vectors ∂hJ and the corresponding special (chart) q-forms dhJ by

∂hJ := (∂hj1 , . . . , ∂
h
jq) , dhJ := dhj1 ∧ · · · ∧ dhjq ,

where ∧ and d denote the exterior product and derivative, respectively. At most we
will use the identity chart, i.e. trivial coordinates, and its differentials {dxn}Nn=1 . But
also polar-coordinates or others coordinates are of course possible and sometimes

useful. In the same way we define the space
◦
C∞,q(Ω) of C∞-q-forms with compact

supports in Ω . This space admits a scalar product

(E,H) 7→ 〈E,H〉Ω :=

∫
Ω

E ∧ ∗H̄ ∈ C ,

where ∗ denotes the Hodge star operator and the bar complex conjugation. Using
this scalar product and its induced norm we may define L2,q(Ω) as the closure of
◦
C∞,q(Ω) . Then L2,q(Ω) equipped with the scalar product 〈 · , · 〉L2,q(Ω) := 〈 · , · 〉Ω be-
comes a Hilbert space, the Hilbert space of square integrable q-forms on Ω .

Following Hermann Weyl [49] and to remind of the electro-magnetic background
it has become customary to denote the exterior derivative d by rot (rotation) and the
co-derivative δ by div (divergence). Thus we have on q-forms

div = (−1)(q−1)N ∗ rot ∗ .

We note rot div + div rot = ∆ , where the Laplacian ∆ is to be understood compo-
nentwise in Euclidean coordinates.
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With respect to the latter scalar product the linear operators rot and div are for-

mally skew-adjoint to each other, i.e. for pairs of forms (E,H) ∈
◦
C∞,q(Ω)×

◦
C∞,q+1(Ω)

we have by the weak version of Stokes’ theorem

0 =

∫
Ω

rot(E ∧ ∗H̄) =

∫
Ω

rotE ∧ ∗H̄ + (−1)q
∫

Ω

E ∧ rot ∗H̄

=

∫
Ω

rotE ∧ ∗H̄ + (−1)q(N−q+1)︸ ︷︷ ︸
=(−1)qN

∫
Ω

E ∧ ∗ ∗ rot ∗H̄︸ ︷︷ ︸
=(−1)qN div H̄

= 〈rotE,H〉L2,q+1(Ω) + 〈E, divH〉L2,q(Ω) .

This yields the possibility of weak versions of rot and div using smooth, compactly
supported forms as test-forms. Hence, we may define rotE for a L2,q(Ω)-formE and
say E has weak rotation, if

∃G ∈ L2,q+1(Ω) ∀Φ ∈
◦
C∞,q+1(Ω) 〈E, div Φ〉L2,q(Ω) = −〈G,Φ〉L2,q+1(Ω) .

Of course, we may define a weak divergence in the same way. Then we put

Rq(Ω) :=
{
E ∈ L2,q(Ω) : rotE ∈ L2,q+1(Ω)

}
,

Dq(Ω) :=
{
H ∈ L2,q(Ω) : divH ∈ L2,q−1(Ω)

}
.

Equipped with their natural graph-norms these are Hilbert spaces. Furthermore,
we generalize the (electric) homogeneous boundary condition modeling a perfectly
conducting obstacle, i.e. vanishing tangential trace ι∗E of a differential form E ,
where ι : ∂ Ω → Ω denotes the natural embedding of the boundary manifold. For

this purpose we define
◦
Rq(Ω) to be the closure of

◦
C∞,q(Ω) in the norm of Rq(Ω) .

Indeed by Stokes’ theorem and a density argument one may easily check for suf-

ficiently smooth forms that a vanishing tangential trace is generalized in
◦
Rq(Ω) .

Surely
◦
Rq(Ω) is also a Hilbert space as a closed subspace of Rq(Ω) . An index 0 at the

lower left corners of the spaces
◦
Rq(Ω) , Rq(Ω) or Dq(Ω) indicates vanishing rotation

resp. divergence.
Let us define (formal matrix-) operators

M :=

[
0 div

rot 0

]
, Λ :=

[
ε 0
0 µ

]
, M := i Λ−1M ,

where ε resp. µ is a real, linear, symmetric, bounded and uniformly positive definite
(with respect to the L2,q(Ω)- resp. L2,q+1(Ω)-scalar product) transformation on q-
resp. (q + 1)-forms, which is independent of time, and i denotes the imaginary unit.
ε and µ model material properties, i.e. in classical electro-magnetic theory ε is the
dielectricity and µ the permeability of the underlying medium. We note that ε and
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µ are even allowed just to have L∞(Ω)-entries in their matrix representations νhJ ′,J
given by chart bases

νE =
∑
J ′,J

νhJ ′,JEJ dhJ ′ if E =
∑
J

EJ dhJ .

Another way to define these Hilbert spaces is to look at the densely defined linear
operator

ROT :
◦
C∞,q(Ω) ⊂ L2,q(Ω) −→

◦
C∞,q+1(Ω) ⊂ L2,q+1(Ω)

E 7−→ rotE

and its adjoints, which will be marked by a star. Then ROT = ROT∗∗ is the weak
rotation on its domain of definition

◦
Rq(Ω) := D(ROT) =

◦
C∞,q(Ω)

with closure taken in the graph-norm of ROT , i.e. in Rq(Ω) . The kernel of ROT is

just 0

◦
Rq(Ω) . Its adjoint operator ROT∗ = ROT

∗
equals by definition the negative

weak divergence −DIV on its domain of definition Dq+1(Ω) , i.e.

−ROT∗ = DIV : Dq+1(Ω) ⊂ L2,q+1(Ω) −→ L2,q(Ω)
H 7−→ divH

.

This is easy to see: Let H ∈ D(ROT∗) and ROT∗H = F . Then by definition

∀E ∈ D(ROT) 〈rotE,H〉L2,q+1(Ω) = 〈E,F 〉L2,q(Ω) ,

which is just the definition of the (negative) weak divergence. Therefore we have
H ∈ D(ROT∗) = Dq+1(Ω) and ROT∗H = − divH .

We note since div div = 0 and rot rot = 0 in the smooth case,

rot rot = 0 , div div = 0

still hold true in the weak sense and we also have

rot div + div rot = ∆ ,

where the Laplacian acts on each Euclidean component. Moreover, we get with
closures taken in L2,q(Ω)

rot
(◦)
Rq−1(Ω) ⊂ 0

(◦)
Rq(Ω) , div

(◦)
Dq+1(Ω) ⊂ 0

(◦)
Dq(Ω)

and for sufficiently smooth functions, i.e. C1 , and suitable q-forms E we obtain

rot(ϕE) = (rotϕ) ∧ E + ϕ rotE ,

div(ϕE) = (−1)(q−1)N ∗
(
(rotϕ) ∧ ∗E

)
+ ϕ divE .
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Since ROT and DIV are skewadjoint to each other in this setting the (unbounded)
linear operator

M : D(M) ⊂ L2,q,q+1
Λ (Ω) −→ L2,q,q+1

Λ (Ω)
(E,H) 7−→ M(E,H) = i(ε−1 divH,µ−1 rotE)

, (2)

where
L2,q,q+1

Λ (Ω) := L2,q,q+1(Ω) := L2,q(Ω)× L2,q+1(Ω)

as a set equipped with the weighted scalar product 〈 · , · 〉L2,q,q+1
Λ (Ω) := 〈Λ · , · 〉L2,q,q+1(Ω)

and
D(M) :=

◦
Rq(Ω)× Dq+1(Ω) ,

is selfadjoint and its spectrum equals the entire real axis. For more details please see
[37, 38, 40] or in the (classical) case of vector analysis [36].

In this paper we investigate T -periodic solutions in time of the following gener-
alized Maxwell controllability problem (GMCP)

(∂t + iM)(E,H) = (F,G) in Ξ ,

γτE = λ in Γ , (3)
(E,H)(0) = (E0, H0) in Ω ,

(E,H)(T )
!

= (E,H)(0) in Ω ,

where γτ denotes the tangential trace, i.e. γτ = ι∗ in the smooth case with the natural
embedding of the boundary ι : ∂ Ω ↪→ Ω regarding ∂ Ω as a (N − 1)-dimensional
Riemannian submanifold of Ω . Of course, the first equation may be written more
explicitly

∂tE − ε−1 divH = F in Ξ ,

∂tH − µ−1 rotE = G in Ξ .

Let us outline some heuristics: Assuming enough smoothness on the data we
may compute by the differential equation(

∂2
t −(Λ−1M)2

)
(E,H) = (∂2

t +M2)(E,H) = (∂t− iM)(∂t + iM)(E,H)

= (∂t +Λ−1M)(F,G) =: (F̃ , G̃)

and since the tangential trace and the exterior derivative commute we get

γτ ∂t µH = γτµG+ γτ rotE = γτµG+ Rotλ =: λ̃ ,

where Rot denotes the exterior derivative d on ∂ Ω . Moreover, if the right hand
side (F,G) is time-T periodic as well, i.e. (F,G)(T ) = (F,G)(0) , we have by the
differential equation

∂t(E,H)(T ) = − iM (E,H)(T )︸ ︷︷ ︸
=(E,H)(0)

+ (F,G)(T )︸ ︷︷ ︸
=(F,G)(0)

= ∂t(E,H)(0) .
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Thus, (E,H) solves also the (vector) wave equation-type controllability problem

(
∂2
t −
[
ε−1 div µ−1 rot 0

0 µ−1 rot ε−1 div

] )
(E,H) = (F̃ , G̃) in Ξ ,

(γτE, γτ ∂t µH) = (λ, λ̃) in Γ , (4)
(E,H)(T ) = (E,H)(0) in Ω ,

∂t(E,H)(T ) = ∂t(E,H)(0) in Ω .

Furthermore, because rot rot = 0 and div div = 0 we obtain by differentiation of the
first equation in (3)

∂t div εE = div εF , ∂t rotµH = rotµH .

Hence, div εE and rotµH must be constant (in time) for solenoidal data εF and
irrotational data µG . Therefore, in this case div εE and rotµH vanish, if and only
if the initial data div εE0 and rotµH0 vanish. Since div rot + rot div = ∆ we get for

constant Λ = Λ0 =

[
ε0 0
0 µ0

]
, ε0, µ0 ∈ R+ , as well as solenoidal F ,E0 and irrotational

G , H0 the (vector) wave equation controllability problem

(∂2
t −ε−1

0 µ−1
0 ∆)(E,H) = (F̃ , G̃) in Ξ ,

(γτE, µ0γτ ∂tH) = (λ, λ̃) in Γ , (5)
(E,H)(T ) = (E,H)(0) in Ω ,

∂t(E,H)(T ) = ∂t(E,H)(0) in Ω .

This means that for q := 0 , (F,G) := (0, 0) , λ := g , ε0 := µ0 := 1/c and u := E the
original problem (1) is recovered. Clearly in this case the assumption div εE = 0 is
trivial and always fulfilled.

On the other hand for a solution (E,H) of (4) we may set (Ẽ, Ĥ) := ∂t(E,H) and
(Ê, H̃) := − iM(E,H) = Λ−1M(E,H) . Then

∂t(Ẽ, Ĥ) + iM(Ê, H̃) = (F̃ , G̃) , ∂t(Ê, H̃) + iM(Ẽ, Ĥ) = (0, 0)

or equivalently

(∂t + iM)(Ẽ, H̃) = (F̃ , 0) , (∂t + iM)(Ê, Ĥ) = (0, G̃) .

Moreover, we obtain

γτ Ẽ = ∂t λ ,

γτµH̃ = Rotλ , γτµĤ = λ̃

and hence for (Ẽ, H̃) a Maxwell controllability problem is recovered.
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To start our analysis we first have to establish a solution theory for the boundary
value Cauchy problem (CP)

(∂t + iM)(E,H) = (F,G) in Ξ ,

γτE = λ in Γ , (6)
(E,H)(0) = (E0, H0) in Ω

with given right hand sides F , G and λ as well as initial data (E0, H0) belonging to
our control (Hilbert) space

H := L2,q,q+1
Λ (Ω) .

3 Solution theory for the Cauchy problem

Let us try to solve (6) for some exterior domain Ω ⊂ RN with a Lipschitz bound-
ary ∂ Ω , which will be fixed from now on. First we want to extend the boundary
data from Γ to Ξ .

3.1 Traces and extensions

Recently Weck [47] showed, how to obtain traces of differential forms on Lipschitz
boundaries. Let Ωb be a bounded Lipschitz domain in RN . Then by [47, Theorem 3]
there exists a linear and continuous tangential trace operator

γτ : Rq(Ωb) −→ Rq(∂ Ωb) :=
{
λ ∈ H−1/2,q

ρ (∂ Ωb) : Rotλ ∈ H−1/2,q+1
ρ (∂ Ωb)

}
.

Moreover, by [47, Theorem 4] γτ is surjective. Hence, there exists a corresponding
linear and continuous tangential extension operator (a right inverse of γτ )

γ̌τ : Rq(∂ Ωb) −→ Rq(Ωb) .

Applying the usual Helmholtz decomposition

L2,q(Ωb) = rot
◦
Rq−1(Ωb)⊕ε εHq(Ωb)⊕ε ε−1 div Dq+1(Ωb) ,

where we introduce the Dirichlet forms

εH
q(Ωb) := 0

◦
Rq(Ωb) ∩ ε−1

0Dq(Ωb) ,

and using γτ
◦
Rq(Ωb) = {0} we receive a linear and continuous tangential extension

operator

γ̌τ : Rq(∂ Ωb) −→ Rq(Ωb) ∩ ε−1 div Dq+1(Ωb) ⊂ Rq(Ωb) ∩ ε−1
0Dq(Ωb) .

Now we turn to our exterior Lipschitz domain Ω ⊂ RN . Using an usual cut-off-
technique we obtain the following
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Lemma 3.1 There exists a linear and continuous tangential trace operator

γτ : Rq(Ω) −→ Rq(∂ Ω)

and a corresponding linear and continuous tangential extension operator (right inverse)

γ̌τ : Rq(∂ Ω) −→ Rq(Ω) ∩ ε−1Dq(Ω) ,

which maps even to forms with compact supports and satisfies onRq(∂ Ω)

γτ γ̌τ = Id .

The kernel of γτ equals
◦
Rq(Ω) and γτ may also be defined even on Rq

loc(Ω) . γ̌τ may be
chosen, such that supp γ̌τλ ⊂ Ω ∩ Ur holds for all λ ∈ Rq(∂ Ω) and for a fixed r > 0 with
RN \Ω ⊂ Ur . Here Ur ⊂ RN denotes the open Euclidean ball with radius r > 0 centered at
the origin.

Remark 3.2 If the boundary is sufficiently smooth, i.e. Cm+1 , then even

γτE ∈ Hm−1/2,q(∂ Ω)

holds for all forms E ∈ Hm,q(Ω) or E ∈ Hm,q
loc (Ω) . Moreover, applied to smooth forms

from C∞,q(Ω) we have γτ = ι∗ and of course γτ commutates with the exterior derivative.
Contrarily if λ ∈ Hm−1/2,q(∂ Ω) we may choose an extension, such that γ̌τλ ∈ Hm,q(Ω)
holds and γ̌τλ is supported in Ω ∩ Ur . For details see [32, 33].

γτ and γ̌τ may also be defined on time dependent forms. We get bounded linear
operators

γτ : S
(
I,Rq(Ω)

)
−→ S

(
I,Rq(∂ Ω)

)
and

γ̌τ : S
(
I,Rq(∂ Ω)

)
−→ S

(
I,Rq(Ω) ∩ ε−1Dq(Ω)

)
with similar properties as mentioned above, where the function space S could be,
for instance,

C0 , C1 , L2 , H1 .

Finally we also need the corresponding normal trace and extension operators

γν := (−1)qN ~ γτ ∗ , γ̌ν := (−1)q(N−q) ∗ γ̌τ~

defined on (q + 1)- resp. (q − 1)-forms, where ~ denotes Hodge’s star operator on
the (N − 1)-dimensional submanifold ∂ Ω of Ω .

To get more information about traces of differential forms we refer, for example,
to [32].
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3.2 Solution theory

Now we return to the Cauchy Problem (6). Let λ ∈ C1
(
Ī ,Rq(∂ Ω)

)
. Then the ansatz

(Ẽ, H̃) := (E,H)− (γ̌τλ, 0)

leads to a problem with homogeneous boundary condition

(∂t + iM)(Ẽ, H̃) = (F̃ , G̃) in Ξ ,

γτ Ẽ = 0 in Γ , (7)

(Ẽ, H̃)(0) = (Ẽ0, H̃0) in Ω ,

where

(F̃ , G̃) := (F,G) + (− ∂t γ̌τλ, µ−1 rot γ̌τλ) , (Ẽ0, H̃0) := (E0, H0)−
(
γ̌τλ(0), 0

)
.

Since M from (2) is linear and selfadjoint the spectral theory suggests the solution
(Ẽ, H̃) of (7) defined by

(Ẽ, H̃)(t) := exp(− i tM)(Ẽ0, H̃0) +

∫ t

0

exp
(
− i(t− s)M

)
(F̃ , G̃)(s) ds

= exp(− i tM)
(
(Ẽ0, H̃0) +

∫ t

0

exp(i sM)(F̃ , G̃)(s) ds
)

, t ∈ [0,∞) .

Let us analyze this solution more thoroughly. For instance, for (Ẽ0, H̃0) ∈ H and
(F̃ , G̃) ∈ L2(I,H) we obtain (Ẽ, H̃) ∈ C0(Ī ,H) and thus a solution

(E,H) ∈ C0(Ī ,H) , (8)

if (E0, H0) ∈ H and (F,G) ∈ L2(I,H) . Assuming stronger assumptions on the data,
i.e. (Ẽ0, H̃0) ∈ D(M) and (F̃ , G̃) ∈ C0(Ī ,H) ∩ L2

(
I,D(M)

)
, we even get

(Ẽ, H̃) ∈ C1(Ī ,H) ∩ C0
(
Ī , D(M)

)
.

Hence, we achieve a solution

(E,H) ∈ C1(Ī ,H) ∩ C0
(
Ī ,Rq(Ω)× Dq+1(Ω)

)
,

if, for instance,

(E0, H0) ∈ Rq(Ω)× Dq+1(Ω) with γτE0 = λ(0) ,

(F,G) ∈ C0(Ī ,H) ∩ L2
(
I,Rq(Ω)× Dq+1(Ω)

)
with γτF (t) = ∂t λ(t) (9)

and µ−1 rot γ̌τλ(t) ∈ Dq+1(Ω)

hold for all t . Then of course (E,H) is a solution of the CP (6) in the strong sense.
Summing up we obtain:

12



Theorem 3.3 Let λ ∈ C1
(
Ī ,Rq(∂ Ω)

)
as well as (E0, H0) and (F,G) satisfy (9). Then the

Cauchy problem (6) is uniquely solved in C1(Ī ,H) ∩ C0
(
Ī ,Rq(Ω)× Dq+1(Ω)

)
by

(E,H)(t) = (γ̌τλ, 0)(t) + exp(− i tM)
(
E0 − γ̌τλ(0), H0

)
+

∫ t

0

exp
(
− i(t− s)M

)
(F − ∂s γ̌τλ,G+ µ−1 rot γ̌τλ)(s) ds , t ∈ Ī .

We call (E,H) a ‘strong solution of the Cauchy problem (6) with data (F,G, λ,E0, H0)’.

Proof: Existence is clear from the latter considerations. However, for the conve-
nience of the reader we have by definition

∂t(Ẽ, H̃)(t) = − iMΛ(Ẽ, H̃)(t) + exp(− i tMΛ) exp(i tMΛ)︸ ︷︷ ︸
=Id

(F̃ , G̃)(t)

and thus

∂t(E,H) = ∂t(γ̌τλ, 0) + ∂t(Ẽ, H̃)

= ∂t(γ̌τλ, 0)− iMΛ(Ẽ, H̃) + (F̃ , G̃)

= − iMΛ(Ẽ, H̃) + (F,G) + (0, µ−1 rot γ̌τλ)︸ ︷︷ ︸
=− iMΛ(γ̌τλ,0)

= − iMΛ(E,H) + (F,G) .

By linearity to prove uniqueness we look at (6) with homogeneous data (0, 0, 0, 0, 0) ,
i.e.

(∂t + iM)(E,H) = (0, 0) in Ξ ,

γτE = 0 in Γ ,

(E,H)(0) = (0, 0) in Ω .

By the second equation we have E(t) ∈
◦
Rq(Ω) for all t , i.e. (E,H)(t) ∈ D(M) holds

for all t . We compute for all t using the first equation

∂t
∣∣∣∣(E,H)(t)

∣∣∣∣2
H = 2<

〈
∂t(E,H)(t), (E,H)(t)

〉
H

= −2< i
〈
M(E,H)(t)︸ ︷︷ ︸

=M(E,H)(t)

, (E,H)(t)
〉

H = 0

since the scalar product is real because M : D(M) ⊂ H → H is selfadjoint. (Of
course the interested reader may calculate this once again by hand using partial
integration.) Hence, the norm

∣∣∣∣(E,H)(t)
∣∣∣∣

H is constant in time, i.e.∣∣∣∣(E,H)(t)
∣∣∣∣

H =
∣∣∣∣(E,H)(0)

∣∣∣∣
H = 0

for all t by the third equation. Thus, (E,H) = (0, 0) . �
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Actually we are interested in the Hilbert space H as control space and even not in
D(M) or Rq(Ω)×Dq+1(Ω) . Moreover, the constraints (9) are too complicated and the
assumptions on the data much too strong. Thus, we have to weaken our solution
concept. To approach weak solutions we first have to define test forms.

Definition 3.4 For (Φ0,Ψ0) ∈ D(M) and t ∈ R the family

(Φ,Ψ)(t) := exp(− i tM)(Φ0,Ψ0)

defines a strong solution of the homogeneous Cauchy problem

(∂t + iM)(Φ,Ψ) = (0, 0) in R× Ω ,

γτΦ = 0 in R× ∂ Ω ,

(Φ,Ψ)(0) = (Φ0,Ψ0) in Ω .

These solutions (Φ,Ψ) are elements of C1(R,H)∩C0
(
R, D(M)

)
and we will call them ‘test

forms with initial values (Φ0,Ψ0)’.

Next we present the idea of the definition of weak solutions. Thus, let (E,H) be
a strong solution of (6) and (Φ,Ψ) be a test form with initial value (Φ0,Ψ0) ∈ D(M) .
Then we may compute〈

(F,G), (Φ,Ψ)
〉

H =
〈
(∂t + iM)(E,H), (Φ,Ψ)

〉
H

=
〈
∂t(E,H), (Φ,Ψ)

〉
H −

〈
M(E,H), (Φ,Ψ)

〉
L2,q,q+1(Ω)

= ∂t
〈
(E,H), (Φ,Ψ)

〉
H −

〈
(E,H), ∂t(Φ,Ψ)

〉
H

− 〈rotE,Ψ〉L2,q+1(Ω) − 〈divH,Φ〉L2,q(Ω) .

Since Φ ∈
◦
Rq(Ω) we obtain

〈divH,Φ〉L2,q(Ω) = −〈H, rot Φ〉L2,q+1(Ω)

and assuming for these heuristic arguments thatE , Ψ and ∂ Ω are sufficiently smooth
we get by Stokes’ theorem∫

Ω

rot(E ∧ ∗Ψ̄) = 〈rotE,Ψ〉L2,q+1(Ω) + 〈E, div Ψ〉L2,q(Ω)

=

∫
∂ Ω

ι∗(E ∧ ∗Ψ̄) = (−1)qN
∫
∂ Ω

ι∗E ∧~~ ι∗ ∗ Ψ̄ = 〈γτE, γνΨ〉L2,q(∂ Ω) .

Putting all together yields〈
(F,G), (Φ,Ψ)

〉
H = ∂t

〈
(E,H), (Φ,Ψ)

〉
H −

〈
(E,H), (∂t + iM)(Φ,Ψ)︸ ︷︷ ︸

=(0,0)

〉
H

− 〈λ, γνΨ〉L2,q(∂ Ω) .

Hence, we only have to remove the time derivative from the forms (E,H) to get
our weak solutions.

(
Please compare to Weck [46].

)
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Definition 3.5 Let (E0, H0) ∈ H , (F,G) ∈ L2(I,H) and λ ∈ L2
(
I,Rq(∂ Ω)

)
. Then the

pair of forms (E,H) is said to be a ‘weak solution of the Cauchy problem (6) with data
(F,G, λ,E0, H0)’, if and only if (E,H) ∈ C0(Ī ,H) and〈

(E,H), (Φ,Ψ)
〉

H(t)−
〈
(E0, H0), (Φ0,Ψ0)

〉
H

=

∫ t

0

(〈
(F,G), (Φ,Ψ)

〉
H(s) + 〈λ, γνΨ〉L2,q(∂ Ω)(s)

)
ds

holds for all t ∈ Ī and all test forms (Φ,Ψ) with initial values (Φ0,Ψ0) ∈ D(M) .

Remark 3.6

(i) Since the integrand belongs to L1(I) the scalar product
〈
(E,H), (Φ,Ψ)

〉
H is weakly

differentiable, i.e. an element of W1,1(I) and then, of course, even of W1,2(I) . Hence,
we obtain an equivalent formulation in W1,1(I)〈

(E,H), (Φ,Ψ)
〉′

H(t) =
〈
(F,G), (Φ,Ψ)

〉
H(t) + 〈λ, γνΨ〉L2,q(∂ Ω)(t) ,〈

(E,H), (Φ,Ψ)
〉

H(0) =
〈
(E0, H0), (Φ0,Ψ0)

〉
H

(10)

for all test forms (Φ,Ψ) and almost all t . If the integrand is even continuous, which
holds, for example, if (F,G) ∈ C0(Ī ,H) and λ ∈ C0

(
Ī ,Rq(∂ Ω)

)
, then the scalar

product
〈
(E,H), (Φ,Ψ)

〉
H is even an element of C1(I) and (10) holds for all t .

(ii) The term 〈λ, γνΨ〉L2,q(∂ Ω) needs some detailed interpretation. The normal trace of a
(q + 1)-form from Dq+1(Ω) is only an element of

Dq(∂ Ω) :=
{
λ ∈ H−1/2,q

π (∂ Ω) : Div λ ∈ H−1/2,q−1
π (∂ Ω)

}
,

where Div = (−1)(q−1)(N−1) ~ Rot~ denotes the co-derivative on ∂ Ω applied to q-
forms. Please see again [47] for details. Hence, at first sight the scalar product

〈λ, γνΨ〉L2,q(∂ Ω)(s) =
〈
λ(s), γνΨ(s)

〉
L2,q(∂ Ω)

(11)

for almost all s makes only sense as an usual dual pairing

γνΨ(s)λ(s) =
〈
λ(s), γνΨ(s)

〉
H

1/2,q
π (∂ Ω),H

−1/2,q
π (∂ Ω)

.

Thus, λ(s) should be an element of H
1/2,q
π (∂ Ω) for almost all s . But since for (almost)

all s the boundary forms λ(s) ∈ Rq(∂ Ω) and γνΨ(s) ∈ Dq(∂ Ω) have more regularity
than just H

−1/2,q
ρ/π (∂ Ω) , the scalar product (11) still makes sense for almost all s . The

exact meaning of this will be clarified in the next lemma.

Lemma 3.7 The L2,q(∂ Ω)-scalar product may be extended as a continuous bilinear form
toRq(∂ Ω)×Dq(∂ Ω) (using Stokes’ theorem) by the following mapping:

b : Rq(∂ Ω)×Dq(∂ Ω) −→ C
(α, β) 7−→ 〈rot γ̌τα, γ̌νβ〉L2,q+1(Ω) + 〈γ̌τα, div γ̌νβ〉L2,q(Ω)
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Moreover, for all (E,H) ∈ Rq(Ω)× Dq+1(Ω) Stokes’ theorem

〈rotE,H〉L2,q+1(Ω) + 〈E, divH〉L2,q(Ω) = b(γτE, γνH)

remains valid. Further on we will denote b as usual by 〈 · , · 〉L2,q(∂ Ω) .

Proof: For α ∈ Rq(∂ Ω) and β ∈ Dq(∂ Ω) the respective extensions γ̌τα and γ̌νβ to Ω

are elements of Rq(Ω) and Dq+1(Ω) . Therefore, the definition of b makes sense. To
show that b is well defined, i.e. does not depend on the extensions, we pick some
(E,H) ∈ Rq(Ω) × Dq+1(Ω) with γτE = α and γνH = β . Since γτ (E − γ̌τα) = 0

and γν(H − γ̌νβ) = 0 we have E − γ̌τα ∈
◦
Rq(Ω) and H − γ̌νβ ∈

◦
Dq+1(Ω) . Thus, by

definition

0 =
〈

rot(E − γ̌τα), H
〉

L2,q+1(Ω)
+ 〈E − γ̌τα, divH〉L2,q(Ω) ,

0 = 〈rot γ̌τα,H − γ̌νβ〉L2,q+1(Ω) +
〈
γ̌τα, div(H − γ̌νβ)

〉
L2,q(Ω)

hold and addition gives 〈rotE,H〉L2,q+1(Ω) + 〈E, divH〉L2,q(Ω) = b(α, β) , which proves
also the asserted formula. Finally the continuity of b follows from the Cauchy-Scharz
inequality and the continuity of the extensions, i.e.∣∣b(α, β)

∣∣ ≤ 2||γ̌τα||Rq(Ω)||γ̌νβ||Dq+1(Ω) ≤ c||α||Rq(∂ Ω)||β||Dq(∂ Ω) .

�

Remark 3.8 From the latter lemma it is clear that the two mappings

α 7→ 〈α, β〉L2,q(∂ Ω) , β 7→ 〈α, β〉L2,q(∂ Ω)

are elements of the dual spacesRq(∂ Ω)′ and Dq(∂ Ω)′ , respectively, since for the norms

sup
α∈Rq(∂ Ω)\{0}

∣∣〈α, β〉L2,q(∂ Ω)

∣∣
||α||Rq(∂ Ω)

≤ c||β||Dq(∂ Ω) , sup
β∈Dq(∂ Ω)\{0}

∣∣〈α, β〉L2,q(∂ Ω)

∣∣
||β||Dq(∂ Ω)

≤ c||α||Rq(∂ Ω)

hold. Therefore, identifying β and α with these two respective mappings we have

Dq(∂ Ω) ⊂ Rq(∂ Ω)′ , Rq(∂ Ω) ⊂ Dq(∂ Ω)′ .

Of course, in the case of a smooth boundary these inclusions are improved by the well known
formulas

Dq(∂ Ω) = Rq(∂ Ω)′ , Rq(∂ Ω) = Dq(∂ Ω)′ .

We are ready to prove the main result of this section.

Theorem 3.9 There exists at most one weak solution of (6). If additionally

λ ∈ H1
(
I,Rq(∂ Ω)

)
then there exists always a unique weak solution of (6). In this case (since T is arbitrary)
there exists a unique weak solution in C0

(
[0,∞),H

)
.
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Proof: The difference (E,H) of two solutions satisfies
〈
(E,H), (Φ,Ψ)

〉
H(t) = 0 for all

t and all test forms (Φ,Ψ) . Since exp(i tM) is an unitary operator and D(M) dense in
H we obtain exp(i tM)(E,H)(t) = (0, 0) and thus (E,H)(t) vanishes for all t , which
proves uniqueness. To show existence we use the solution (E,H) from Theorem 3.3
suggested by spectral theory, which is still well defined and still belongs to C0(Ī ,H)
by (8) even for our weak assumptions. Note that we have replaced the stronger
condition λ ∈ C1

(
Ī ,Rq(∂ Ω)

)
by λ ∈ H1

(
I,Rq(∂ Ω)

)
⊂ C0

(
Ī ,Rq(∂ Ω)

)
. So it remains

to check, if (E,H) satisfies the integral equation of Definition 3.5. Let

(Φ,Ψ)(t) = exp(− i tM)(Φ0,Ψ0) , t ∈ R

be a test form with (Φ0,Ψ0) ∈ D(M) . We start with the second term in the sum of
the representation of (E,H) :〈

exp(− i tM)
(
E0 − γ̌τλ(0), H0

)
, (Φ,Ψ)(t)

〉
H

=
〈(
E0 − γ̌τλ(0), H0

)
, (Φ0,Ψ0)

〉
H

=
〈
(E0, H0), (Φ0,Ψ0)

〉
H −

〈
εγ̌τλ(0),Φ0

〉
L2,q(Ω)

The third term may be handled utilizing Fubini’s theorem as follows:〈∫ t

0

exp
(
− i(t− s)M

)
(F − ∂s γ̌τλ,G+ µ−1 rot γ̌τλ)(s) ds, (Φ,Ψ)(t)

〉
H

=

∫ t

0

〈
exp(i sM)(F − ∂s γ̌τλ,G+ µ−1 rot γ̌τλ)(s), (Φ0,Ψ0)

〉
H ds

=

∫ t

0

〈
(F − ∂s γ̌τλ,G+ µ−1 rot γ̌τλ), (Φ,Ψ)

〉
H(s) ds

=

∫ t

0

〈
(F,G), (Φ,Ψ)

〉
H(s) ds+

∫ t

0

〈
(− ∂s γ̌τλ, µ−1 rot γ̌τλ), (Φ,Ψ)

〉
H(s) ds

We proceed with calculating the last integral.

−
∫ t

0

〈∂s γ̌τλ, εΦ〉L2,q(Ω)(s) ds

= −
∫ t

0

∂s〈γ̌τλ, εΦ〉L2,q(Ω)(s) ds+

∫ t

0

〈γ̌τλ, ε ∂s Φ〉L2,q(Ω)(s) ds

= −〈γ̌τλ, εΦ〉L2,q(Ω)(t) +
〈
γ̌τλ(0), εΦ0

〉
L2,q(Ω)

+

∫ t

0

〈γ̌τλ, div Ψ〉L2,q(Ω)(s) ds

Hence, we get∫ t

0

〈
(− ∂s γ̌τλ, µ−1 rot γ̌τλ), (Φ,Ψ)

〉
H(s) ds

= −〈γ̌τλ, εΦ〉L2,q(Ω)(t) +
〈
γ̌τλ(0), εΦ0

〉
L2,q(Ω)

+

∫ t

0

(
〈γ̌τλ, div Ψ〉L2,q(Ω)(s) + 〈rot γ̌τλ,Ψ〉L2,q+1(Ω)(s)︸ ︷︷ ︸

= 〈λ, γνΨ〉L2,q(∂ Ω)(s)

)
ds
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by Lemma 3.7. Putting all together completes the proof. �

Remark 3.10 We have to be sure that Fubini’s theorem can be applied in the first step
of the calculation of the third term. Introducing the pointwise scalar product on q-forms
〈ϕ, ψ〉q := η ∧ ∗ψ̄ and on pairs

〈
(ϕ, α), (ψ, β)

〉
q,p

:= 〈ϕ, ψ〉q + 〈α, β〉p , respectively, we
have so show by Tonelli’s theorem that the absolute value of the measurable function

(s, x) 7→
〈

exp
(
− i(t− s)M

)
(F̃ , G̃)(s),Λ(Φ,Ψ)(t)

〉
q,q+1

(x)

is an element of L1
(
(0, t)×Ω

)
. Hence, we compute (denoting the Lebesgue measure on RN

by µ) ∫ t

0

∫
Ω

∣∣∣∣〈 exp
(
− i(t− s)M

)
(F̃ , G̃)(s),Λ(Φ,Ψ)(t)

〉
q,q+1

(x)

∣∣∣∣ dµ(x) ds

≤ c

∫ t

0

∣∣∣∣∣∣ exp
(
− i(t− s)M

)
(F̃ , G̃)(s)

∣∣∣∣∣∣
H

∣∣∣∣(Φ,Ψ)(t)
∣∣∣∣

H ds

≤ c

∫ t

0

∣∣∣∣(F̃ , G̃)(s)
∣∣∣∣

H

∣∣∣∣(Φ0,Ψ0)
∣∣∣∣

H ds ≤ c
√
T
∣∣∣∣(Φ0,Ψ0)

∣∣∣∣
H

∣∣∣∣(F̃ , G̃)
∣∣∣∣

L2(I,H)
.

A shorter justification is the following: Since the scalar product of H is (clearly) continuous
and the integral over I is a limes of elements in H (Bochner’s integral) we can, of course,
interchange the integration over I and the scalar product.

3.3 A new notation

Let us change to a new and shorter notation, which enables us to follow the forth-
coming arguments and basic ideas more easily.

We set 0 := (0, 0) as well as

u := (E,H) , f := (F,G) ,

u0 := u(0) = (E0, H0) , eλ := e(λ) := (γ̌τλ, 0) ,

uT := u(T ) , gλ := g(λ) := (− ∂s γ̌τλ, µ−1 rot γ̌τλ) .

With this notation our Cauchy problem (6) reads as

(∂t + iM)u = f in Ξ ,

γτπu = λ in Γ , (12)
u(0) = u0 in Ω ,

where for a pair of forms π denotes the projection onto the first component. More-
over, u may be decomposed into u = ul + uc , where ul and uc are the unique weak
solutions of the Cauchy problems

(∂t + iM)ul = 0 , (∂t + iM)uc = f in Ξ ,

γτπu
l = 0 , γτπu

c = λ in Γ , (13)

ul(0) = u0 , uc(0) = 0 in Ω .
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ul depends linearly and continuously on the initial data u0 and uc is independent
of the initial data u0 , i.e. constant with respect to u0 . The unique weak solutions of
(12) and (13) exist by Theorem 3.9 in C0

(
Ī ,H

)
for all T and all

u0 ∈ H , f ∈ L2(I,H) , λ ∈ H1
(
I,Rq(∂ Ω)

)
(14)

and are given by the formulas

u(t) = eλ(t) + e− i tM
(
u0 − eλ(0)

)
+

∫ t

0

e− i(t−s)M(f + gλ)(s) ds ,

ul(t) = e− i tM u0 , (15)

uc(t) = eλ(t)− e− i tM eλ(0) +

∫ t

0

e− i(t−s)M(f + gλ)(s) ds .

4 Least-squares formulation of the controllability prob-
lem

From now on let the right hand side data f and λ satisfying (14) as well as the
time T > 0 be given and fixed.

In order to solve the controllability problem (3), which reads now as

‘find u0 ∈ H, such that u satisfies (12) and uT = u0‘, (16)

we investigate the equation
uT − u0 = 0 (17)

more thoroughly. With the help of (15) we obtain

uT = u(T ) = ul(T ) + uc(T ) = e− iTM u0 + ucT ,

uT − u0 = (e− iTM−1)u0 + ucT .

Consequently, with the continuous linear operator in H

Ct := C(t) := e− i tM−1 ,

which satisfies ||Ct|| ≤ 2 for all t and we will call ‘control operator’, we get

uT − u0 = CTu0 + ucT . (18)

Hence, we have to solve the linear equation

CTu0 + ucT = 0

in the Hilbert space H . Since, of course, CT is neither symmetric nor selfadjoint we
cannot apply the usual conjugate gradient algorithm for its solution. Thus, we may
consider the corresponding normal equation

C∗TCTu0 + C∗TucT = 0 , (19)
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where C∗t = ei tM−1 denotes the adjoint operator of Ct . We note C∗∗t = Ct . Now
clearly C∗TCT is selfadjoint and the usual ideas of conjugate gradient methods may
by applied to our problem. Consequently, we are forced to consider and to minimize
the quadratic functional

u0 7→
1

2
〈C∗TCTu0,u0〉H + <〈C∗TucT ,u0〉H =

1

2
〈CTu0, CTu0〉H + <〈ucT , CTu0〉H

=
1

2
||CTu0 + ucT ||2H −

1

2
||ucT ||2H ,

which, of course, is minimized, if and only if the quadratic functional

F : H −→ [0,∞)
u0 7−→ 1

2
||CTu0 + ucT ||2H = 1

2
||uT − u0||2H

(20)

is minimized.

4.1 Least-squares formulation and calculation of the derivative of
the least-squares functional

We will investigate the following least-squares formulation:
Find initial data u0 ∈ H , such that

∀ v0 ∈ H : F(u0) ≤ F(v0) . (21)

Here u resp. v is the unique weak solution of the Cauchy problem (12) with
initial data u0 resp. v0 . A solution u0 of our controllability problem (16) would
clearly satisfy F(u0) = 0 and thus solve our least-squares problem. As a minimum
u0 would then clearly satisfy F ′(u0) = 0 , provided that F is differentiable. Clearly
this holds true for every local extremum as long as F is differentiable. Moreover,
in order to solve the least-squares problem we will use as indicated a conjugate
gradient algorithm operating in the Hilbert space H . The implementation of such
an algorithm is greatly facilitated by the knowledge of the derivative F ′ . Thus,
having now two good reasons we may compute the derivative of F . But this is
quite easy since F is a quadratic functional. To do so, we pick some u0,v0 ∈ H and
derive

F(u0 + v0) = F(u0) + <〈CTv0, CTu0 + ucT 〉H +
1

2
||CTv0||2H . (22)

Thus, F is differentiable in u0 with derivative

F ′(u0)v0 = <
〈
v0, C∗T (CTu0 + ucT )

〉
H = <〈v0, C∗TCTu0 + C∗TucT 〉H (23)

and, of course, the normal equation is recovered. In this sense we may identify

F ′(u0) with C∗TCTu0 + C∗TucT .
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Furthermore, we receive the representations

Dt := D(t) := C∗t Ct = (ei tM−1)(e− i tM−1) = 2
(
1− cos(tM)

)
, (24)

ût := û(t) := C∗t uc(t) = (ei tM−1)uc(t)

= (ei tM−1)eλ(t) + (e− i tM−1)eλ(0) +

∫ t

0

(1− e− i tM) ei sM(f + gλ)(s) ds ,

where we will call the continuous linear operator Dt in H the ‘derivative operator’.
We have ||Dt|| ≤ 4 for all t . Finally we obtain

F ′(u0)v0 = <〈v0,DTu0 + ûT 〉H . (25)

By (22) we get also
F(u0) ≤ F(u0 + v0)−F ′(u0)v0

for all v0 ∈ H and thus

Lemma 4.1 For u0 ∈ H the following assertions are equivalent:

(i) u0 is a solution of the least squares problem (21).

(ii) F ′(u0) = 0

(iii) DTu0 + ûT = 0

We note that (iii) is the normal equation (19).

Using (18) let us interpret the derivative vector

DTu0 + ûT = C∗Tu∗0 = (eiTM−1)u∗0 ∈ H , u∗0 := uT − u0 ∈ H

little more thoroughly. Clearly the forms u∗,+ and u∗,− defined by

u∗,+(t) := ei tM u∗0 , u∗,−(t) := ei(T−t)M u∗0

are the unique weak solutions of the (homogeneous) adjoint Cauchy problems

(∂t− iM)u∗,+ = 0 , (∂t + iM)u∗,− = 0 in Ξ ,

γτπu
∗,+ = 0 , γτπu

∗,− = 0 in Γ , (26)
u∗,+(0) = u∗0 , u∗,−(T ) = u∗T := u∗0 in Ω

and we have u∗,+(T ) = u∗,−(0) = eiTM u∗0 , i.e.

C∗Tu∗0 = u∗,+T − u∗,+0 = u∗,−0 − u∗,−T

= u∗,+T − u∗0 = u∗,−0 − u∗0 = u∗,−0 − u∗T .

Here the signs ± indicate that the wave u∗,+ evolves forward in time, whereas the
wave u∗,− evolves backward in time. Of course, this implies a change in the ∂t-
term. We note that we define the weak solutions of the adjoint Cauchy problems
analogously to Definition 3.5. We do not want to write down these definitions in
detail here. Finally we obtain two more nice representations of our derivative vector
utilizing the solutions of the adjoint Cauchy problems (26)

DTu0 + ûT = u∗,+T − u∗,+0 = u∗,−0 − u∗,−T . (27)
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4.2 Classical calculation of the derivative

Just for the sake of completeness let us shortly calculate the derivative via the ‘clas-
sical’ procedure. The idea is to compute the derivative and then to determine the
vector in Riesz’ representation theorem. This procedure is usually called perturba-
tion analysis.

From (22) and (18) we may assume, that we already know the representation
of the derivative, which is by the way only heuristically clear without using the
spectral theory,

F ′(u0)v0 = <〈vT − v0,uT − u0〉H = <〈vT − v0,u
∗
T 〉H ,

where u∗T = uT −u0 as well as u and v are the unique weak solutions of the Cauchy
problems

(∂t + iM)u = f , (∂t + iM)v = 0 in Ξ ,

γτπu = λ , γτπv = 0 in Γ ,

u(0) = u0 , v(0) = v0 in Ω .

All we have to do is to find a vector ũ ∈ H with

<〈vT − v0,u
∗
T 〉H = <〈v0, ũ〉H .

Now the classical method proceeds as follows: Putting u∗,−T := u∗T we compute for
the solution u∗,− of some adjoint problem, which has to be determined,

<〈vT − v0,u
∗,−
T 〉H = <〈v0,u

∗,−
0 − u∗,−T 〉H + <〈v,u∗,−〉H(T )−<〈v,u∗,−〉H(0)

and show <〈v,u∗,−〉H(T ) − <〈v,u∗,−〉H(0) = 0 . But if we choose u∗,− as the unique
weak solution of the backward in time homogeneous adjoint Cauchy problem (26)
with initial condition u∗,−T = u∗T , i.e.

u∗,−(t) := ei(T−t)M u∗T ,

we get trivially 〈v,u∗,−〉H(T ) = 〈v,u∗,−〉H(0) since e− i tM is unitary. Actually we have
for all t ∈ Ī

〈v,u∗,−〉H(t) = 〈e− i tM v0, e
i(T−t)M u∗T 〉H = 〈v0, e

iTM u∗T︸ ︷︷ ︸
=u∗,−0

〉H = 〈v,u∗,−〉H(0) .

Consequently,
<〈vT − v0,u

∗,−
T 〉H = <〈v0,u

∗,−
0 − u∗,−T 〉H

and we get like in (25), (27)

F ′(u0)v0 = <〈v0,u
∗,−
0 − u∗T 〉H .
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Thus, we obtain the representation of the derivative using the solution of the ad-
joint Cauchy problem (26) evolving backward in time. We note that in the classical
computations no weak solutions were considered. Thus, one was forced to calculate

〈v,u∗,−〉H(T )− 〈v,u∗,−〉H(0) =

∫ T

0

∂t〈v,u∗,−〉H(t) dt

=

∫ T

0

〈
v, (∂t + iM)u∗,−︸ ︷︷ ︸

=0

〉
H(t) dt = 0

using ∂t v = − iMv as well as γτπv = γτπu
∗,− = 0 and partial integration (or the

selfadjointness of M) to see that this term vanishes, if u∗,− is chosen as the unique
backward in time solution of the adjoint Cauchy problem (26).

We finally note, if one wants to use the control space H = L2,q,q+1
Λ (Ω) , like we do,

in general the forms possess neither strong time- nor spatial-derivatives. Thus, this
method is not applicable in our weak framework.

4.3 Further discussion of the derivative

As already pointed out the derivative vector

DTu0 + ûT = C∗Tu∗0 = eiTM u∗0 − u∗0 ,

u∗0 = CTu0 + ucT = e− iTM u0 − u0 + ucT

= uT − u0 = ulT − u0 + ucT

depends on the initial condition u0 both directly and indirectly through the solution
u of the (Maxwell) wave equation (12) and one of the solutions u∗,± of the adjoint
(Maxwell) wave equations (26). Moreover, we saw in (15) that u = ul + uc splits up
in a linear (and continuous) and a constant part (with respect to u0). Of course, the
same holds true for the solutions of the adjoint equations. Let us pick, for instance,
the forward in time solution u∗ := u∗,+ . Then u∗ depends linearly (and continu-
ously) on the initial data u∗0 and may be decomposed into u∗ = u∗,l +u∗,c , where u∗,l

and u∗,c are the unique weak solutions of the Cauchy problems

(∂t− iM)u∗,l = 0 , (∂t− iM)u∗,c = 0 in Ξ ,

γτπu
∗,l = 0 , γτπu

∗,c = 0 in Γ ,

u∗,l(0) = u∗,l0 := ulT − u0 = CTu0 , u∗,c(0) = u∗,c0 := ucT in Ω

with u∗0 = u∗,l0 +u∗,c0 . Again u∗,l depends linearly (and continuously) on u0 , whereas
u∗,c does not depend on u0 . Of course, we have

u∗,l(t) = ei tM u∗,l0 , u∗,c(t) = ei tM u∗,c0 .

Putting all together we see

DTu0 = u∗,lT − ulT + u0 , ûT = u∗,cT − ucT .
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Finally by the representation (24) of Dt we observe that ũ(t) := Dtu0 solves in the
weak sense

(∂2
t +M2)ũ = 2M2u0 , ũ(0) = 0 , ∂t ũ(0) = 0

resp.

(∂2
t +M2)ũ = 2M2u0 , ũ(0) = 0 , ∂t ũ(0) = 0 , γτπũ = 0 .

5 Conjugate gradient method for the least-squares for-
mulation

Although it has become quite customary to use the conjugate gradient algorithm
in Hilbert spaces we want to repeat the main ideas and the algorithm here. For a
solid foundation see [13] and for applications one may have a look at [16, 17, 18, 19,
20] and of course at [21].

5.1 Conjugate gradient method in Hilbert space

Let H be a Hilbert space with scalar product 〈 · , · 〉 and norm || · || . Moreover, let A
be a continuous linear operator in H and let A∗ denote its adjoint operator.

We want to solve the problem

Au+ f = 0

for given f ∈ H , i.e. determine some u ∈ H .
Since in general A might not be symmetric or selfadjoint, we turn to the normal

equation
A∗Au+ A∗f = 0 .

Now, of course, A∗A is selfadjoint and we try for the solution of the problem the
usual conjugate gradient ansatz. Thus, we want to minimize the quadratic func-
tional

u 7→ 1

2
〈A∗Au, u〉+ <〈A∗f, u〉 =

1

2
||Au||2 + <〈Au, f〉 =

1

2
||Au+ f ||2 − 1

2
||f ||2 .

Consequently, we will try to minimize the quadratic functional

F := Ff : H −→ [0,∞)
u 7−→ 1

2
||Au+ f ||2 . (28)

From the formula

F (u+ h) = F (u) + <〈Ah,Au+ f〉+
1

2
||Ah||2 ≥ F (u) + <〈Ah,Au+ f〉
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for all h ∈ H we see two things. First, F is differentiable with derivative

F ′(u)h = <〈Ah,Au+ f〉 = <〈h,A∗Au+ A∗f〉

and, second, for some u ∈ H

F (u) = min
v∈H

F (v) ⇔ F ′(u) = 0 ⇔ A∗Au+ A∗f = 0 .

Hence, our minimization problem and our normal equation are equivalent.
We note the following useful formulas, which we be frequently used during the

next two subsections:

F (u+ h) = F (u) + F ′(u)h+
1

2
||Ah||2 ≥ F (u) + F ′(u)h

F ′(u+ v)h = F ′(u)h+ <〈Ah,Av〉 = F ′(u)h+ <〈h,A∗Av〉

Moreover, again F ′(u) = F ′f (u) and F ′0(u) may be identified with A∗Au + A∗f and
A∗Au respectively.

5.1.1 Method of steepest descent

Now let us assume that an approximation un−1 of u is given and let us define the
residual

rn−1 := A∗Aun−1 + A∗f ,

where we can identify F ′(un−1) with rn−1 . Then we try to find a better approxima-
tion un with hopefully F (un) < F (un−1) by a one dimensional line search

un = un−1 + αndn ,

where αn ∈ R and dn ∈ H have to be determined. The vector dn should be the
direction of steepest descent. Since we search for the minimum

F (un) = min
αn∈R

F (un−1 + αndn)

we set the derivative of the real function

αn 7→ F (un−1 + αndn) = F (un−1) + αnF
′(un−1)dn +

1

2
α2
n||Adn||2

to zero and get

0 = F ′(un−1 + αndn)dn = F ′(un−1)dn + αn||Adn||2 ⇔ αn = −F
′(un−1)dn
||Adn||2

.

Then we derive

F (un)− F (un−1) = αnF
′(un−1)dn +

α2
n

2
||Adn||2 = −1

2

(
F ′(un−1)dn

)2

||Adn||2
< 0 , (29)
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if and only if F ′(un−1)dn = <〈dn, A∗Aun−1 + A∗f〉 = <〈dn, rn−1〉 6= 0 . This shows
that the best choice for dn is the direction of steepest descent dn = rn−1 , the residual.
Thus, we put

dn := rn−1 , αn := − ||rn−1||2

||Arn−1||2

and consequently

un := un−1 −
||rn−1||2

||Arn−1||2
rn−1 .

By the equation
rn = A∗Aun + A∗f = rn−1 + αnA

∗Arn−1

we get a simplification in the determination of rn without using f . Note thatA∗Arn−1

may be identified with F ′0(rn−1) .
We obtain our first method, the method of steepest descent:

Algorithm 1 Steepest Descent Algorithm (SDA) in H

initialization
set n = 0
set un ∈ H
set rn = A∗Aun + A∗f
if rn small then

goto exit
end if
loop {for n ≥ 1 assuming un−1 and rn−1 6= 0 are known}

set d = Arn−1

set α = −||rn−1||2/||d||2
set un = un−1 + αrn−1

set rn = rn−1 + αA∗d
if rn small then

goto exit
end if
set n = n+ 1

end loop
exit
take un as solution

5.1.2 Method of conjugate gradients

Suppose now that approximate solutions u0, . . . , un−1 with corresponding search di-
rections d1, . . . , dn−1 are constructed. One may ask, if it is possible to construct this
sequence in a way, such that

un = un−1 + αndn
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even minimizes F over the space

Un := {u0}+ Lin{d1, . . . , dn}

and not only over {un−1} + Lin{dn} ? To give a positive answer to this question we
look at

un = u0 +
n∑

m=1

αmdm = u` +
n∑

m=`+1

αmdm , ` = 0, . . . , n− 1

and calculate

F (un) = F (u0) +
n∑

m=1

αmF
′(u0)dm +

1

2

∣∣∣∣ n∑
m=1

αmAdm
∣∣∣∣2 .

Now we want to use Pythagoras’ theorem and hence wish on our search directions
the orthogonality property

<〈Adm, Adn〉 = δn,m||Adn||2 ,

which we will call the ‘A-orthogonal property’. Assuming and utilizing this property
we obtain

F (un) = F (u0) +
n∑

m=1

αmF
′(u0)dm +

1

2

n∑
m=1

α2
m||Adm||2 .

Consequently, our optimization problem over Un decouples completely into n one
dimensional line search minimization problems. Of course, again by setting the
derivative of the real function

αm 7→ αmF
′(u0)dm +

α2
m

2
||Adm||2 = F (u0 + αmdm)− F (u0)

to zero we get

0 = F ′(u0)dm + αm||Adm||2 ⇔ αm = −F
′(u0)dm
||Adm||2

.

Furthermore, we note for all n,m

F ′(un)dm = F ′(u0)dm +
n∑
`=1

α`<〈Ad`, Adm〉 = F ′(u0)dm +
n∑
`=1

α`δ`,m||Ad`||2

=

{
F ′(u0)dm , if n < m

F ′(u0)dm + αm||Adm||2 = 0 , if n ≥ m

(30)

and hence for all n = 0, . . . ,m− 1

αm = −F
′(un)dm
||Adm||2

.
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At this point for all n we may remind of the equation

F ′(un)h = <〈h, rn〉 .

Now we try to find A-orthogonal directions of steepest descent dn . By (29) we see
that again something like dn = rn−1 would be the best choice. Hence, to ensure also
the A-orthogonality we try an ansatz

dn = rn−1 +
n−1∑
`=1

β`d` .

Then by (30) we have

F ′(un−1)dn = F ′(un−1)rn−1 = ||rn−1||2 , (31)

which is the best one can achieve, and for m = 1, . . . , n− 1

0
!

= <〈Adn, Adm〉 = <〈Arn−1, Adm〉+
n−1∑
`=1

β`<〈Ad`, Adm〉

= <〈Arn−1, Adm〉+ βm||Adm||2 ,

if we assume that the directions d1, . . . , dn−1 are already A-orthogonal. Thus, our
choice must be

β` := −<〈Arn−1, Ad`〉
||Ad`||2

= −F
′(un−1)A∗Ad`
||Ad`||2

, ` = 1, . . . , n− 1 .

Let us note two more properties: For m = 0, . . . , n− 1 we have by (30)

<〈rn, rm〉 = F ′(un)rm = F ′(un)dm+1 −
m∑
`=1

β`F
′(un)d` = 0 ,

i.e.

<〈rn, rm〉 = δn,m||rn||2 ,

and thus

F ′(un)A∗Adm = <〈rn, A∗Adm〉 ,

<〈Arn, Adm〉 = <〈rn, A∗Adm〉 =
1

αm

(
<〈rn, rm〉 − <〈rn, rm−1〉

)
= 0

with the help of

rn = rn−1 + αnA
∗Adn . (32)
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Of course, we also have

F ′(un)rn = ||r2
n|| , F ′(un)A∗Adn = <〈Arn, Adn〉 =

||r2
n||
αn

.

But this shows β` = 0 for ` = 0, . . . , n − 2 and hence our current search direction is
simply

dn = rn−1 + βn−1dn−1 .

Summing up we get the following procedure: For some given approximation un−1

and last search direction dn−1 we choose

un := un−1 + αndn , dn := rn−1 + βn−1dn−1

with

αn := −F
′(un−1)dn
||Adn||2

, βn−1 := −F
′(un−1)A∗Adn−1

||Adn−1||2
.

Utilizing (31) we finally have

αn = −||rn−1||2

||Adn||2
, βn−1 = − ||rn−1||2

αn−1||Adn−1||2
=
||rn−1||2

||rn−2||2

and we note that the update of the residual rn is given by (32).
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We obtain the following conjugate gradient method:

Algorithm 2 Conjugate Gradient Algorithm (CGA) in H

initialization
set n = 0
set un ∈ H
set rn = A∗Aun + A∗f
set ρn = ||rn||2
if ρn small then

goto exit
end if
set dn+1 = rn
loop {for n ≥ 1 assuming un−1 and rn−1 6= 0 , ρn−1 as well as dn 6= 0 are known}

set d = Adn
set α = −ρn−1/||d||2
set un = un−1 + αdn
set rn = rn−1 + αA∗d
set ρn = ||rn||2
if ρn small then

goto exit
end if
set ρ = 1/ρn−1

set ρ = ρnρ
set dn+1 = rn + ρdn
set n = n+ 1

end loop
exit
take un as solution

Using ||Adn||2 = 〈A∗Adn, dn〉we note that a variant in the loop would be replacing
the sequence

set d = Adn

set α = −ρn−1/||d||2

set un = un−1 + αdn

set rn = rn−1 + αA∗d

by
set d = A∗Adn

set α = −ρn−1/〈d, dn〉
set un = un−1 + αdn

set rn = rn−1 + αd

.

Of course, the similar modification is possible in Algorithm 1.
Let us remark that the procedures r0 = A∗Au0 + A∗f and d = A∗Adn may be

regarded as the computations of the derivatives F ′(u0) = F ′f (u0) and F ′0(dn) respec-
tively.
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5.2 Conjugate gradient algorithm for the problem at hand

To solve our least squares problem (LSP) (21) or by Lemma 4.1 equivalently our
normal equation (19)

DTu0 + ûT = C∗TCTu0 + C∗TucT = 0

approximately we propose to apply the latter CGA with the indicated variant. Hence,
we set

F = Ff := F , H := H , A := CT , f := ucT , u := u0 .

We note that the procedure
r0 = A∗Au0 + A∗f

in the CGA, which reads as

r0 = C∗TCTu0
0 + C∗TucT , (33)

i.e.
r0 = C∗Tu∗0 = u∗T − u∗0 , u∗0 = CTu0

0 + ucT = uT − u0
0 ,

where we picked the forward in time solution u∗ := u∗,+ , needs the solution u at
time T of the inhomogeneous Cauchy problem (ICP) (12) with initial data u0

0 as well
as the forward in time solution u∗ at time T of the homogeneous adjoint Cauchy
problem (HACP+) (26) with initial data u∗0 . Analogously the procedure

d = A∗Adn

in the CGA, which reads as
d = C∗TCTdn , (34)

i.e.
d = C∗Tu∗0 = u∗T − u∗0 , u∗0 = CTdn = uT − dn ,

where we once again used the forward in time solution u∗ := u∗,+ , needs the solu-
tion u := ul at time T of the homogeneous Cauchy problem (HCP) (13) with initial
data dn as well as the forward in time solution u∗ at time T of the homogeneous
adjoint Cauchy problem (HACP+) (26) with initial data u∗0 .

We recall that the procedure (33) resp. (34) may be identified with the calculation
of the derivative or ‘gradient’ F ′(u0

0) = F ′ucT (u0
0) resp. F ′0(dn) of the least squares

functional

F = FucT
: H −→ [0,∞)

u0 7−→ 1
2
||CTu0 + ucT ||2H

resp. F0 : H −→ [0,∞)
u0 7−→ 1

2
||CTu0||2H

.

We will present the CGA for the approximate solution of the LSP as our Algo-
rithm 3. In the beginning of the algorithm, before entering the iteration loop, we
choose an initial control vector u0

0 ∈ H and compute the first residual vector r0, i.e.
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the ‘gradient’ of the functional FucT
at the point u0

0 , which gives the first minimiz-
ing direction d1 = r0 . The computation of this residual requires the solutions of
the inhomogeneous Cauchy problem ICP (12) with initial control vector u0

0 and of
the homogeneous adjoint Cauchy problem HACP+ (26). Then on each CG iteration
we calculate the solutions of the homogeneous Cauchy problem HCP (13) with ini-
tial vector dn and of the homogeneous adjoint Cauchy problem HACP+ (26). This
gives the ‘gradient’ of the functional F0 at the point dn , which is needed to update
the new residual vector rn and the new control vector un0 . Finally we set the new
minimizing direction dn+1 .

Algorithm 3 CGA in H with variant for LSP (21)

initialization
set n = 0
set initial control vector un0 ∈ H
solve ICP (12) with initial vector un0 and get u
solve HACP+ (26) with initial vector u∗0 = uT − un0 and get u∗

compute residual vector
(
gradient F ′ucT (u0

0)
)
rn = u∗T − u∗0

compute norm ρn = ||rn||2H
if ρn small then

goto exit
end if
set first minimizing direction dn+1 = rn

loop {for n ≥ 1 assuming un−1
0 and rn−1 6= 0 , ρn−1 as well as dn 6= 0 are known}

solve HCP (13) with initial vector dn and get u
solve HACP+ (26) with initial vector u∗0 = uT − dn and get u∗

compute gradient
(
F ′0(dn)

)
d = u∗T − u∗0

compute parameter α = −ρn−1/〈d,dn〉H
update control vector un0 = un−1

0 + αdn

update residual vector rn = rn−1 + αd
compute norm ρn = ||rn||2H
if ρn small or n = N then

goto exit
end if
compute parameter ρ = 1/ρn−1

compute parameter ρ = ρnρ
update minimizing direction dn+1 = rn + ρdn

set n = n+ 1
end loop
exit
take un0 as solution

We note that we may use the backward in time system HACP- (26) instead of
HACP+ as well. Then in this variant by (27) we have to replace the computation of
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the residual or gradient vector u∗T − u∗0 = u∗,+T − u∗0 by u∗,−0 − u∗T with u∗T = u∗0 .

6 Translation to classical vector analysis

We shortly turn out, which classical problems of vector analysis are covered
by our Cauchy problem (6). Hence, in this heuristic section we assume sufficient
smoothness of the boundary ∂ Ω and of the differential forms. We may write down
(6) slightly more detailed:

∂tE − ε−1 divH = F in Ξ

∂tH − µ−1 rotE = G in Ξ (35)
γτE = λ in Γ

The condition (E,H)(0) = (E0, H0) in Ω stays always the same, so we do not write
it down every time. Since the exterior derivative and the tangential trace operator
commutate the second equation always contains a boundary condition forH as well,
if we assume slightly more regularity on the data, i.e. G ∈ µ−1Rq+1(Ω) . Applying
γτ we obtain in Γ

γτ ∂t µH = γτµG+ Rotλ

or after integration

γτµH(t) =

∫ t

0

(γτµG+ Rotλ)(s) ds+ γτµH0 .

Furthermore, we may also discuss Neumann problems. Again with little more reg-
ularity on the data we get in Γ by applying γτ

γτε
−1 divH = ∂t λ− γτF .

In the classical framework, where we use Euclidean coordinates {x1, . . . , xN} , we
identify tangential vectors ∂n = ∂Id

n with unit vectors ∂Id
n (Id) = en ∈ RN . Moreover,

we then identify 0-forms E with functions E and N -forms E dx1 ∧ · · · ∧ dxN via the
Hodge star operator with 0-forms E and hence also with functions. Furthermore,
we identify 1-forms

E =
N∑
n=1

En dxn

by Riesz’ representation theorem with vector fields (E1, . . . , EN)t in RN and also
(N − 1)-forms

E = (−1)N−1

N∑
n=1

En ∗ dxn
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(again via the Hodge star operator) with 1-forms and thus also with vector fields
(E1, . . . , EN)t in RN .

Let N = 3 . On the surface ∂ Ω we identify 0-forms and 2-forms with func-
tions as well as 1-forms with tangential vector fields. Since we have generally
∗∗ = (−1)q(N−q) and ~~ = (−1)q(N−1−q) we obtain ∗∗ = Id and ~~ = (−1)q . More-
over, ∗ acts like Id for functions and vector fields, whereas we have

q = 0 q = 1 q = 2

~ Id ν× Id
,

where ν denotes the exterior unit normal on ∂ Ω . The wedge product ∧ in R3 is just
the scalar or vector multiplication, i.e.

E ∧H q = 0 q = 1 q = 2 q = 3

q = 0 EH EH EH EH
q = 1 EH E ×H E ·H 0
q = 2 EH E ·H 0 0
q = 3 EH 0 0 0

.

On the boundary ∂ Ω we have for ∧

E ∧H q = 0 q = 1 q = 2

q = 0 EH EH EH
q = 1 EH ν · (E ×H) 0
q = 2 EH 0 0

.

The exterior derivative rot = d and co-derivative div = δ = (−1)q+1 ∗ d∗ in R3 turn
to the classical differential operators from vector analysis

grad = ∇ , curl = ∇ × , div = ∇ ·

and, therefore, our Sobolev spaces for forms may be identified with the well known
Sobolev spaces. Moreover, the tangential γτ = ι∗ and normal trace γν = (−1)q+1~ι∗∗
need to be translated. We get the following identification table:

q = 0 q = 1 q = 2 q = 3

rot grad curl div 0
div 0 div − curl grad
◦
Rq(Ω)

◦
H(grad,Ω)

◦
H(curl,Ω)

◦
H(div,Ω) L2(Ω)

Dq(Ω) L2(Ω) H(div,Ω) H(curl,Ω) H(grad,Ω)

γτE E|∂ Ω ν × E|∂ Ω ν · E|∂ Ω 0
γνH 0 ν · H|∂ Ω −ν × (ν × H|∂ Ω) H|∂ Ω

We note
◦
H(grad,Ω) =

◦
H1(Ω) and H(grad,Ω) = H1(Ω) .
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On the boundary ∂ Ω we have for Rot = d and Div = δ = ~ d~ :

q = 0 q = 1 q = 2

Rot grad∂ Ω curl∂ Ω 0
Div 0 div∂ Ω − cograd∂ Ω

Here grad∂ Ω , curl∂ Ω , div∂ Ω resp. cograd∂ Ω denotes the surface gradient, (scalar)
rotation, divergence resp. co-gradient. These boundary differential operators may
be defined by extending a function f or a tangential vector field v defined on ∂ Ω
arbitrarily to a small neighborhood in R3 and then applying the usual differential
operators to the extensions f̃ or ṽ as well as restricting them back to ∂ Ω . If necessary
we take the tangential or normal part of the vector. We have

grad∂ Ω f := −ν × (ν × grad f̃
∣∣∣
∂ Ω

) , cograd∂ Ω f := −ν × grad f̃
∣∣∣
∂ Ω

,

curl∂ Ω v := ν · curl ṽ|∂ Ω , div∂ Ω v := div ṽ|∂ Ω

and note

cograd∂ Ω f = −ν × grad∂ Ω f ,

curl∂ Ω(ν × v) = div∂ Ω v , div∂ Ω(ν × v) = − curl∂ Ω v .

Furthermore, the rules of partial integration

〈grad∂ Ω f, v〉∂ Ω = −〈f, div∂ Ω v〉∂ Ω , 〈cograd∂ Ω f, v〉∂ Ω = 〈f, curl∂ Ω v〉∂ Ω

hold for suitable functions resp. tangential vector fields f , v . As long as the vector
product × or curl are not used all operations still hold true for arbitrary dimensions
N .

Now we obtain the following problems:
q = 0 :

∂tE − ε−1 divH = F in Ξ

∂tH − µ−1 gradE = G in Ξ

E|∂ Ω = λ on Γ

ν × (∂t µH)|∂ Ω = ν × µG|∂ Ω + grad∂ Ω λ on Γ

ε−1 divH
∣∣
∂ Ω

= ∂t λ− F |∂ Ω on Γ

q = N − 1 :

∂tE − ε−1 gradH = F in Ξ

∂tH − µ−1 divE = G in Ξ

ν · E|∂ Ω = λ on Γ

ν · ε−1 gradH
∣∣
∂ Ω

= ∂t λ− ν · F |∂ Ω on Γ
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q = N (trivial case): ∂tE = F and E(0) = E0 . Thus, E = E0 +
∫ t

0
F (s) ds .

q = 1 and N = 3 :

∂tE + ε−1 curlH = F in Ξ

∂tH − µ−1 curlE = G in Ξ

ν × E|∂ Ω = λ on Γ

ν · (∂t µH)|∂ Ω = ν · µG|∂ Ω + curl∂ Ω λ on Γ

ν × ε−1 curlH
∣∣
∂ Ω

= − ∂t λ+ ν × F |∂ Ω on Γ

We would like to note that the equations of linear elasticity are also covered by
our approach, if we change the tangential boundary condition into the more simple
ones of componentwise scalar Dirichlet boundary conditions in Euclidean coordi-
nates. In detail the system (4) with the corresponding divergence equations, where
we may assume εF to be solenoidal, reads for N = 3 , q = 1 using our isomorphisms
and, for instance, only the equations for E

∂2
t E + ε−1 curlµ−1 curlE = F̃ in Ξ ,

div εE = div εE0 in Ξ ,

ν × E|∂ Ω = λ on Γ .

If we now replace the space
◦
Rq(Ω) by

◦
H1,q(Ω) , the closure of

◦
C∞,q(Ω) in the norm of

H1,q(Ω) , in our formulations and after taking the gradient insert the second equation
into the first one, we get

∂2
t E + ε−1 curlµ−1 curlE + grad div εE = ˜̃F in Ξ ,

E|∂ Ω = λ on Γ .

Choosing ε := −b Id and µ := − 1
ab

Id with a, b > 0 we obtain the homogeneous
isotropic linear elasticity operator

∂2
t E + a curl curlE − b grad divE = ˜̃F in Ξ ,

where in classical language a = µ , b = 2µ+ κ and µ , κ are the Lamé constants.

7 Conclusion and outlook

Of course, it is also possible in a very similar way to establish our theory using

the domain of definition Rq(Ω)×
◦
Dq+1(Ω) instead of D(M) forM . Then we always

would have prescribed normal traces.
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This report represents the first part of an ongoing longer research project. It
contains most of the theoretical work. Anyhow, in a forthcoming second report
we wish to investigate the ‘equivalence’ between the time-harmonic and the time-
periodic problem. In a third report we will try to explain some domain trunca-
tion procedures, which are needed for the implementation of the CGA, and study
their approximation properties thoroughly. There we will discuss approximate ra-
diation conditions (ARC), perfectly matched layers (PML), infinite elements (IFE)
and in particular tangential to normal operators (TtN) for differential forms, which
are the counterparts of the classical Dirichlet to Neumann (DtN) or electric to mag-
netic (EtM) operators for Helmholtz’ or (time-harmonic) Maxwell’s equations, re-
spectively. For the TtN method we plan to work out a new theory.

Since we formulate our differential equations within the framework of differen-
tial calculus there are two methods for their discretization. One idea is to use the
finite element method (FEM) for differential forms, i.e. the finite element exterior
calculus (FEEC), [28, 1], which is the more common method. However, we intend
to use the discrete exterior calculus (DEC) since the DEC utilizes in a very natural
way the properties and the calculus of differential forms. In fact, this method uses
another approach to discretize the forms. The idea is not to use a variational for-
mulation of the problem and approximate the forms by polynomial forms, which
then would be evaluated at some points, but to measure the action of a differential
q-form E on a q-dimensional volume element C , called q-cell. This mapping from
q-cells to real (or complex) numbers will be denotes by Ê and equals in fact the in-
tegral of the q-form E over the q-cell. This is even the more physical way of viewing
Maxwell’s equations. The electric field may then be regarded as a 1-form and the
magnetic field as a 2-form. Due to Stokes’ theorem for a differential q-form E we
have on (q + 1)-cells C

〈dE,C〉 := d̂E(C) =

∫
C

dE =

∫
∂ C

ι∗E = ι̂∗E(∂ C) =: 〈ι∗E, ∂ C〉 .

(Here again ι : ∂ C ↪→ C denotes the natural embedding of the boundary.) Hence,
the exterior derivative d, i.e. a partial differential operator, is transformed into the
‘simple’ geometric boundary operation ∂ of computing the boundary ∂ C of C .
Therefore, the boundary operator ∂ is often called the ‘dual’ or ‘adjoint’ operator
to the exterior derivative d. Thus, roughly spoken, all one needs are operators map-
ping for a given mesh volumes to faces, faces to edges, edges to vertices. These
boundary operators are naturally sparse and consist of entries ±1 . Of course, also
the star operator needs to be discretized which results in a diagonal matrix. The
proper inner product is then the corresponding quadratic form. For a more detailed
discussion of the DEC we refer to the recent papers [29, 15, 14]. We note that in
special cases the classical Yee-scheme [50] and Yee-like schemes [8, 9] are recovered.

We plan to publish the corresponding numerical results in further forthcoming
reports. First promising numerical experiments are already done.
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