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Abstract

Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter

of the central nerve system (CNS). This biological tissue contains much anatomic,

structural and orientational information of fibers in human brain. Spectral data from the

displacement distribution of water molecules located in the brain tissue are collected

by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier

inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a

consequence, the recorded magnitude data are corrupted by Rician noise.

Statistical estimation of diffusion leads a non-linear regression problem. In this

paper, we present a fast computational method for Maximum Likelihood estimation

(MLE) of diffusivities under the Rician noise model, based on the Expectation Max-

imization (EM) algorithm. By using data augmentation, we are able to transform a

non-linear regression problem into the the generalized linear modeling framework, re-

ducing dramatically the computational cost. The Fisher-scoring method is used for

achieving fast convergence of the tensor parameter. The new method is implement-

ed and applied using both synthetic and real data in a wide range of b-amplitudes up
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to 14000 s/mm2. Higher accuracy and precision of the Rician estimates are achieved

compared with other log-normal based methods. In addition, we extend the maximum

likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI un-

der the aforementioned scheme by specifying the priors. We will describe how close

numerically are the estimators of model parameters obtained through MLE and MAP

estimation.

Keywords: data augmentation, Fisher scoring, maximum likelihood estimator,

maximum a posteriori estimator, Rician Likelihood, reduced computation

1. Introduction

Diffusion tensor imaging (DTI) is a powerful tool to detect, in vivo, the white mat-

ter anatomy and structures of the brain. The raw MR-data are collected by a magnetic

resonance scanner and consist of spectral measurement from the displacement distri-

bution of water molecules constrained into cellular structures. Diffusion anisotropy5

characterizes the nervous fibers.

After the Fourier inversion, the MR-signals are corrupted by a complex Gaussian

noise, and consequently, the recorded measurement magnitudes, referred as diffusion

weighted magnetic resonance imaging (DW-MRI) data, will follow the Rician distribu-

tion. The complex noise is composed of two components, where the real and imaginary10

parts are still independently Gaussian [2, 3, 4]. The simplest method for diffusion ten-

sor estimation (DTE) is based on the linearized log-normal regression model, where the

residual variance is assumed to be either constant (the Least Squares) or depending on

the signal amplitude (the Weighted Least Squares). These Gaussian noise models fail

to fit the high frequency data, which carry information about the higher order diffusion15

characteristics. In the existing literature [5, 6, 7] on the ML-estimation of diffusion ten-

sors under the Rician noise, the maximization algorithm involves repeated computation

of modified Bessel functions. By using data augmentation we are able to replace the

Rician likelihood by a Poisson likelihood which is standard in the generalized linear

modeling (GLM) framework.20

Such simplification reduces dramatically the computational burden of the Fisher-
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scoring maximization algorithm. This applies also at high b-amplitudes, where in the

low signal regime measurements below a threshold are customarily coded as zeros.

In the standard LS or WLS approaches, zero-measurements are problematic since they

cannot be fitted by a log-normal distribution, and simply discarding them induces selec-25

tion bias. The appropriately modeled noise level provides capability of data correction

in further insights, e.g. removing artefacts from the raw data.

This paper is structured as follows. Section 2 describes the noise in MRI and data

augmentation, specifying the statistical model for DTE. In Section 3 we discuss the

implementation of the EM and the Fisher-scoring algorithms in the DTI context. In30

addition, we also specify priors for the parameters and discuss the computation of the

Maximum a Posteriori Estimator (MAPE) under the same scheme. Section 4 illustrates

the results from both synthetic and real data. In Section 6 we conclude with an overview

of the methods and the undergoing developments. Theoretical details are left for the

appendices.35

2. GLM for MRI observations

2.1. Rician noise in MRI

In magnetic resonance imaging (MRI), we usually need to take the noise in the raw

MR-acquisitions into account. The complex valued noise ε is composed of two i.i.d.

Gaussian random variables with zero mean and variance σ2, one for the real and the

other one for the imaginary component. After the Fourier inversion, the signal intensity

S≥ 0 is corrupted by a complex Gaussian noise, and Y = |S+ε|will be observed. Con-

sequently, the observed MR-signal magnitudes follow a Rician distribution resulting in

the likelihood function

pS,σ2(y) =
y

σ2 exp
(
−y2 +S2

2σ2

)
I0

(
yS
σ2

)
, (1)

where Iα is the α-order modified Bessel function of first kind. For α = 0 it has also the

following representation in terms of Gaussian hypergeometric series [8]:

I0(2τ) = 0F1(1,τ2) =
∞

∑
n=0

τ2n

(n!)2 . (2)
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Let t = S2/(2σ2), then Eq. (1) gives

Pt,σ2(Y ∈ dy) =
y

σ2 exp
(
−t− y2

2σ2

)
I0

(
y
σ

√
2t
)

dy (3)

with τ = yS/(2σ2) =
√

2ty/(2σ).

2.2. Data augmentation

We follow the strategy presented in [9] implementing augmented data N from a

Poisson distribution with mean t > 0. The likelihood for the observed data can be

transformed from the Rician likelihood Eq. (3) to a joint augmented density

Pt,σ2(N = n,Y 2 ∈ dy2) = Pt,σ2(N = n,X ∈ dx) (4)

= Pt(N = n)Pσ2(X ∈ dx|N = n) =
(tx)n

(n!)2(2σ2)n+1 exp
(
−t− x

2σ2

)
dx ,

where X is from the conditional distribution Gamma(N +1,1/(2σ2)) given N. Eq. (4)

provides a transformation from a non-linear regression problem to the GLM framework

fξ ,φ (z) = c(z,φ)exp
(

zξ −a(ξ )
φ

)
(5)

with z corresponding to the response in general, see [10] for more details.40

3. Method

3.1. DW-MRI and parametrization

In DW-MRI, the signal is modeled as the first equality

S(q) = S0 exp
(
−bd(g)

)
= S0 exp

(
Zθ
)
, (6)

where the control vector q ∈ R3 is determined by the sequence of gradient pulses,

b = |q|2, and g = q/|q| ∈S 2 is a vector of unit length. The MR-signal decays expo-

nentially with respect to the b-amplitude. Depending on the gradient direction g the45

decay is modeled by the reflection symmetric diffusivity function d : S 2→ R+.

Great efforts have been devoted to modeling the diffusivity, and in general we can

have parametrization as the second equality in Eq. 6. In the simplest model the d-

iffusivity is expressed by a symmetric and positive definite rank-2 tensor D ∈ R3×3,
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giving

logS(q) = logS0−bg>Dg = logS0 +Zθ ,

where in the left hand side the diffusion tensor is parametrized as

θ = (θ1, . . . ,θ6)
> :=

(
Dxx,Dyy,Dzz,Dxy,Dxz,Dyz

)>
with a design matrix

Z = Z(q) =−b
(
g2

x ,g
2
y ,g

2
z ,2gxgy,2gxgz,2gygz

)
.

In high angular resolution models (HARDI) (see e.g. [11]), the diffusivity is modeled

with a totally symmetric Cartesian tensor D of order n ∈ N, as

d(g) :=
3

∑
`1=1

3

∑
`2=1
· · ·

3

∑
`2n=1

D`1,`2,...,`2ng`1g`2 · · ·g`2n .

3.2. EM in MLE

In the optimization of the likelihood, we employ the EM (Expectation - Maxi-

mization) algorithm, which is one among the iterative methods in the MLE or in the

maximum a posteriori estimation (MAPE). The EM algorithm proceeds in two steps50

and shortens the computational complexity by using augmented data. In terms of our

case, in the E-step we calculate the expectation of the log-likelihood w.r.t the condition-

al distribution of N given by the observations and other parameters with fixed values.

In the M-step, we find the ML parameter of S2
0 and σ2 by maximizing the augmented

log-likelihood quantities. The computational details are listed in Appendix A.55

Note that the data are obtained by given different b values and gradients in the

experiment, they are discrete complex numbers, therefore, we use sums instead of in-

tegrals in the algorithms. The log-likelihood from Eq. (4) then is expressed as

Q := log
(

pt,σ2(N = n,Y )
)
= c(Y,N)+N log(t)− (N +1) log(σ2)− t− Y 2

2σ2 , (7)

where c(Y,N) = N log(Y 2)−2log(N!)−(N+1) log(2) does not depend on (t,σ2) and

will be omitted in the M-step. From Section 3.1, we have t = S2
0 exp(2Zθ)/2σ2.
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In the EM-iteration, given the current parameter estimates (θ (k),S2
0
(k)
,σ2(k)), we

update the conditional expectation of the augmented data by

〈N〉(k) := E
t(k),σ2(k)

(
N
∣∣Y)= τ(k) I1

(
2τ(k)

)
I0
(
2τ(k)

) with τ
(k) =

Y S(k)0 exp(Zθ (k))

2σ2(k)
.

In the M-step we update σ2 and S2
0 by the recursions

(σ (k+1))2 =

( m

∑
i=1

(
(S(k)0 )2 exp

(
2Ziθ

(k))+Y 2
i
))/(

2m+4
m

∑
i=1
〈Ni〉(k)

)
(8)

and

(S(k+1)
0 )2 = 2(σ (k))2

( m

∑
i=1
〈Ni〉(k)

)/( m

∑
i=1

(
exp
(
2Ziθ

(k))) , (9)

where m is the number of acquisitions at each voxel.

For the tensor parameter θ , we employ a stabilized Fisher scoring method: given

the stabilizing parameter α ∈ [0,1], we iterate the recursion

θ → θ +

(
(1−α)J(θ)+αS (θ)>S (θ)

)−1

S (θ), (10)

until convergence to a fixed point [12]. In Eq. (10) the score S (θ) is given by

S (θ) = 2
m

∑
i=1

Zi〈Ni〉(k)−
(
S(k)0 /σ

(k))2
m

∑
i=1

exp(2Ziθ)Z>i ,

and the corresponding Fisher information is

J(θ) = 2
(
S(k)0 /σ

(k))2
m

∑
i=1

exp(2Ziθ)Z>i Zi .

The initials of the EM algorithm can be obtained through the least squares (LS)

from a truncated dataset with the diffusion weighting ranging from 0 ∼ 1000s/mm2
60

in order to fit the Gaussian model (see [13], [14]). To pursue higher quality of the

initials, we could further apply the weighted least squares (WLS) described in [4].

In the Appendix B we compare the differences between our EM algorithm and the

direct optimization of the Rician likelihood in Eq. (1), which is commonly used to

compute the MLE in DTI. It should be noted that the well-known EM algorithm is65

needed because of the latent augmented variables; it does not decrease the marginal

likelihood of the data.
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3.3. EM in MAPE

In the Bayesian framework, the maximum a posteriori estimation (MAPE) aim-

s to obtain the point estimates by maximizing the posterior density. The advantage of

MAPE over the likelihood approach is that the prior knowledge of the unknown param-

eters of interest with respect to (w.r.t.) the observed measurements can be transferred

into the modeling framework by the prior distribution. Specifically, we can include

restrictions to the parameters in terms of probability distributions, for instance regu-

larization can be simultaneously included into the model by adding the knowledge of

tuning parameters. Compared with the likelihood approach, Bayesian strategy typical-

ly yields less uncertainty and better knowledge of the parameters (the posterior) as it

is analysing the probability distribution of every parameter of interest. The difference

between MLE and MAPE in this scenario is in the prior probability π(ξ ). Given the

data y, the normalizing constant in the posterior density π(ξ |y) does not depend on the

parameter ξ . We find the MAPE by maximizing the joint density π(ξ )pξ (y), and this

is achieved by iterating the EM-recursion

ξ
(k+1) = argmax

ξ∈Ξ

{
E

ξ (k)

(
log pξ (z,y)

∣∣y)+ logπ(ξ )

}
(11)

with the penalization logπ(ξ ) until convergence to a fixed point. The log-prior penal-

ization term has a regularizing effect, which vanishes asymptotically as the sample size70

increases [7].

In DTE, we can assign conjugate priors in light of Section 3.2 for σ2 and S2
0. S-

ince we have only weak knowledge of the tensor parameter θ , we may choose non-

informative priors which are either scale- or shift-invariant [15]. A simple Bayesian

hierarchical model is obtained after the following choices:75

• σ2 has scale invariant improper prior with density π(σ2) ∝ 1/σ2,

• S2
0 ∼ Gamma(c1,c2), where c1,c2 are very small.

• θ ∈ Rd has the isotropic centered Gaussian prior N (0,Ω−1), where Ω is a d×d

precision matrix.
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The penalized EM-updates for MAPE are given by

(σ (k+1))2 =

(
1
2

m

∑
i=1

(
(S(k)0 )2 exp

(
2Ziθ

(k))+Y 2
i
))/( m

∑
i=1

(2〈Ni〉(k)+1)+1
)

(12)

and

(S(k+1)
0 )2 =

( m

∑
i=1
〈Ni〉(k)+ c1

)/(
1

2(σ (k))2

m

∑
i=1

(
exp
(
2Ziθ

(k))+ c2

)
. (13)

Additionally, this gives the modified score and Fisher scoring

S̃ (θ) = S (θ)−Ωθ , and J̃ = J(θ)+Ω, respectively.

Under our Bayesian model with weak priors the MAP estimation Eq. (12) and Eq.80

(13) are similar as the ML updates Eq. (8) and Eq. (9). Indeed, usually
m
∑

i=1
〈Ni〉 � 1,

and we can omit the difference between Eq. (8) and Eq. (12). Then when c1 and

c2 are small enough, the difference between the likelihood and posterior mode of S0,

expressed in Eq.(9) and Eq. (13) respectively, can also be ignored. The only difference

when updating θ is that we have considered the correction between the elements of85

a tensor represented by the prior distribution, the inverse covariance matrix, Ω. Such

correction may be ignorable.

Remark: By the normalized likelihood, the MLE can be treated as a special case

of the MAPE where the precision of the parameters depend on the chosen prior. If the

effects of the priors are weak enough to be ignored, then the posterior distribution is90

asymptotically approximated by the likelihood. The consequence is that numerically

the MAP tend to the ML estimates numerically. Such remark is not unusual (see [16])

but nearly has never appeared in the DTI literature.

4. Results

4.1. Synthetic Data95

Experiment 1. We first simulate four datasets by choosing a positive tensor of 2nd

order and of 4th order, respectively from the same voxel with fixed S0 (5.4595 in loga-

rithmic level) and two different noise variance σ2. The synthetic data in the experiment
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arise from models with parameter values (the same gradients, b values and the num-

ber of replication which had been used to collect a real human dataset) resembling the100

real scenario. Each dataset contains 1440 (32× 15× 3) measurements corresponding

to 32 distinct gradients and 15 distinct increasing b values (knots), and then being re-

peated three times. Furthermore, the b knots gradually increase every 32 gradients up

to 14000s/mm2 with in total 480 experimental parameters. The ground truth (GT) of

high (H-) and low (L-) Rician noise σ are 93.0405 and 12.8821, respectively. Thus we105

get the (nondiffusion weighted) non-dw SNR (:= S0/σ ) being 2.5256 and 18.2408, re-

spectively, which fall into the wide range of clinic settings (< 25) [6]. Firstly, we give

an overview of the data which are used in this experiment under the signal 2nd order

tensor model in Fig. 1. Fig. 1a and Fig. 1b describe the generated data and the corre-

sponding true signal intensities under the Rician noise model from the low and the high110

noise case, respectively, where we only take the first replication (480 measurements)

as an example due to the similar behaviour of the other two repeats. From Fig. 1b,

we can see that the data depicted by the blue curve is much more noisy than that in

Fig. 1a. The corresponding diffusion profile of the 2nd order tensor is shown in Fig.

Figure 1: The thick curve represents the generated data and the red curve gives the corresponding true signal

intensities. Fig. 1a and Fig. 1b describe the generated data and the corresponding true signal intensities

under the Rician noise model from the low and the high noise case, respectively.

2, where the diffusion profile under the signal 2nd order tensor model represented as115

an ellipsoid can somehow explain the extent of the departure from normality in the the
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movements of water molecule. In addition, we plot the corresponding diffusion profile

Figure 2: Scatter plot of the diffusion profile under the selected 2nd order tensor.

of the 4th order tensor in this experiment in Fig. 3, which is also considered to account

for possible departures of the observed diffusion from normality.

Figure 3: Scatter plot of the diffusion profile under the selected 4th order tensor.

To compare the performance, we plot the ML estimated signals and the correspond-120
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ing GT as a function of b values shown in Fig. 4, where we only consider the first 480

measurements as an illustration. The signals are calculated by averaging the 32 gra-

dients for each distinct b value. In Fig.4a the signals of ground truth are from the 4th

order tensor. However, in reality the ground truth should be unique no matter what

choice of angular resolution of the tensor is. Actually in this experiment the signals125

of ground truth from the 2nd and the 4th order have very small difference (the max

modulus (m.) deviation in logarithmic scale is less than 0.1, and the mean m. deviation

is 0.0374). In order to distinguish the results from different datasets, we plot the re-

sults in log scale in Fig.4b, where we legend the logarithmic signals from the 4th order

tensor as GT due to the very small differences mentioned above. The GT are displayed130

by the thick blue line. As Fig. 4b points out, the results from the dataset under the

single 4th order tensor model at the high noise level has ’large’ deviation from the GT,

but the estimates from the other cases fit the GT quite well. Furthermore, we calculate

the empirical signal to noise ratio (SNR := S
SDv

=
mean(Sg(b,g))

σ
), and only consider one

replication. Here instead of averaging the signal intensities of the whole acquisitions as135

defined in [17], we average the 32 gradients (g) at each distinct b values for represent-

ing the changes of the SNR when b value is increasing. To distinguish the difference,

we again plot the results from the first 480 measurements in logarithmic level depicted

in Fig.5. It is shown that in the high-noise level case, the results under the single 4th

order tensor model have a bit larger bias when b≥ 3000s/mm2.140

Experiment 2. For comparison of the methods, we generate 100 datasets from the high

(Fig. 6, Fig. 7 Fig. 8) noise case and another 100 datasets from the low (Fig.9, Fig.10)

noise case under the same 4th order tensor as in Experiment 1 and compare the sample

means of SNR (SNR := S
SDv

=
mean(Sg,r(b,g,r))

σ
) of the whole 1440 measurements in each

sample data with the corresponding GT from the different methods, where the mean145

of the signals in the numerator is calculated by averaging the 32 gradients (g) and the

total number of replications (r) from the whole measurements. Note that here we also

average the number of replication in each dataset. Fig.6 represents the results from the

datasets generated by the high-noise level, where ”∗” denotes that only the low fre-

quencies (b values less than 1000s/mm2) are considered in the estimation. This figure150
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(a)

(b)

Figure 4: Fig. 4a. represents the signals S(b) = S0exp(Zθ) calculated from the estimated diffusion profile

by the proposed MLE method. The thick-blue line depicts the signal intensities of the GT from the 4th order

tensor. The green-start line and the cyan circles show the results under the 4th order tensor model from the

datasets of the high- and low- noise levels, respectively. The triangular-black line and the red crosses are

the results under the single 2nd order tensor model from the datasets of the high- and the low- noise levels,

respectively. Fig. 4b is the corresponding results in log scale.
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Figure 5: Empirical logarithmic SNR as a functions of log(b) values. The GT are represented by the thick-

blue lines, of which the upper curve is from the low non-dw SNR corresponding the low noise level with

σ = 12.8821, while the bottom one has the high noise level with σ = 93.0405. The red-circle lines are the

fitted profile under the single 2nd order tensor model, and the green-star lines show the empirical SNR under

the single 4th order tensor model.

reveals that the fitting profile by our method is the best, while the WLS results from the

whole data space are much worse than the others. To compare the further performance,

we compute the sample mean of signal intensities, and as an example we pick up from

the first replication those intensities with a low b value. The result is in Fig. 7, from

which, we can see that our results are slightly over estimated from the high-noise level155

data, but still being the best. The results from the other two methods are under estimat-

ed. In addition, we compute the sample mean of signal decay S(b)/S(0) := exp(Zθ)

by the tensor coefficients averaging by the gradients for obtaining the mean square er-

rors. Fig. 8 describes the mean square error of signal decay in log level as a function

of b values. Note that the results by the LS∗ and the WLS∗ are extrapolated to the160

high-frequency region by using the same design matrix Z and their tensor estimates.

This figure reveals that even in the region of low b values (b = 800−1000s/mm2), our

method still performs better than the others.

Fig. 9 and Fig. 10 correspond with Fig. 7 and Fig. 8 from the 100 sample data

13



Figure 6: Sample mean of SNR as a function of b values. The sample means are calculated from 100

simulated datasets. The SNR are calculated from the estimates estimated by the different methods. The

thick-blue curve represents the SNR of the GT. The red-dash line and the black-star line are the estimators

by the LS and the WLS with the truncated datasets, respectively. The cyan-circle line is the results through

the WLS, and the green-cross line is empirical values by our MLE method.

Figure 7: Sample mean of signal intensities. Again the thick-blue curve represents the GT. The red-dash

line and the black-star line are the results by the LS and the WLS methods with the truncated datasets,

respectively. The green-cross line show the results by our MLE method. We did not show the results by the

WLS from the whole dataset as the bad performance in Fig. 6.
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Figure 8: MSE of sample mean of averaged signal decay as a function of the distinct b values from the first

480 measurement. The red-circle line and the black-star line the results by the LS and the WLS methods

with the truncated datasets (b ≤ 1000s/mm2), respectively. They are almost overlapping. The green-cross

line shows the results by our MLE method. We did not show the WLS results from the whole dataset due to

the bad performance in Fig. 6.

generated by the low noise. Fig. 9a reveals that the estimated signal intensities from165

our method are roughly similar than the results from the LS∗ and the WLS∗ when the

b value equals to 62s/mm2. In Fig. 9b again the signal intensities by the LS∗ and the

WLS∗ are extrapolated to the high-frequency region by the estimated diffusion profile,

and our method shows a better fitted profile than the others. Fig. 10 describes the mean

square error of signal decay as a function of b values. Since the difference is visible, we170

do not need rescale the results in the log level. This figure reveals at b ≤ 1000s/mm2,

the LS∗, WLS∗ and the WLS methods perform quite similarly, and the results by our

method represent the smallest MSE in the whole region of the frequencies.

All the synthetic experiments were carried out on a 64-bit 4 core computer with 16

Gb RAM, and the CPU of each core is 3.40GHz with MATLAB. The average com-175

putational time of the aforementioned MLE method under the 4th order tensor model

is 0.5435 seconds (an example record from the 100 datasets under low noise case),

which is extremely shorter than the minutes running time per voxel from the current

standard methods such as MATLAB Nelder-Mead based or gradient-based estimators

15



(a) low b value, b = 62s/mm2

(b) high b value, b = 14000s/mm2

Figure 9: Sample mean of signals intensities. The plots illustrate the means of signal intensities at b =

62 and 14000s/mm2, respectively, of each gradient from the first replication estimated by the four methods.

The red-dash line and the black-star line are the results by the LS and the WLS methods with the truncated

datasets, respectively. The green-cross line show the results by our MLE method, and cyan-circle line is the

results through the WLS.

(see [18, 19]).180
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Figure 10: MSE of sample mean of averaged signal decay as a function of the distinct b values from the first

480 measurement. The red-circle line and the black-star line the results by the LS and the WLS methods

with the truncated datasets (b≤ 1000s/mm2), respectively. They are almost overlapping with the results by

the WLS. The green-cross line show the results by our MLE method.

4.2. Real Data

The data consist of 4596 diffusion MR-images of the brain of an healthy human

volunteer, taken from four 5mm-thick consecutive axial slices, and measured using a

Philips Achieva 3.0 Tesla MR-scanner. The image resolution is 128× 128 pixels of

size 1.875× 1.875 mm2. After masking out the skull and the ventricles, we remain185

with a region of interest (ROI) containing 18764 voxels. In the protocol, we used all

the combinations of the 32 gradient directions with the b-values varying periodically in

the range 0−14000s/mm2, with 2−3 repetitions, for a total of 23 323 644 data points.

The average computational cost per voxel by our method under the 4th order tensor

model from this dataset is 1.8331 seconds. We illustrate the results mainly under the190

4th order tensor model. Fig.11 shows the mean diffusivity (MD) and the fractional

anisotropy (FA) of diffusion from two consecutive slices, where FA is computed from

the results under the 2nd order tensor model, which is given by

FA =

√
3((λ1−E[λ ])2 +(λ2−E[λ ])2 +(λ3−E[λ ])2)√

2(λ 2
1 +λ 2

2 +λ 2
3 )

. (14)
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The average values of FA from these two ROI are 0.2769 and 0.2861, respectively. The

color in FA represents the orientations of the fibers. Under the 4th order tensor model,195

MD is expressed as

MD =
1
5
(D1111 +D2222 +D3333 +2D1122 +2D1133

+2D2233) =
1
5

trace(D). (15)

The average values of MD from Slice 3 and 4 are 6.248e-03 mm2/s, 6.045e-03 mm2/s,

respectively, and we have the same estimated values of MD under the 2nd order tensor

model.

We also plot the Rician noise map of σ from the two consecutive slices shown200

in Fig. 12, where the artefacts are clearly depicted by white color representing very

high noise, which reveal the true scenario from the raw MR images, and are confirmed

independently by our estimation.

Visualization of angular resolution of DTI data under different tensor models from

the region of interest (ROI) of two consecutive slices are displayed in Fig. 13, where the205

ROI is near the hippocampus and the empty spaces inside of left parts of the diffusion

profiles (DP) are the masked ventricle. DP under the 4th order tensors provide detailed

information of diffusion through the higher angular resolution. In addition, the colors

represents the principle orientations of diffusion at each voxel. These tensor profiles

are plotted by MATLAB fanDTasia toolbox [21]. We also conduct the experiment with210

the real data on the 64-bit 4 core computer with 16 Gb RAM, and the CPU of each core

is 3.40GHz with MATLAB. The total running time is 2.9733e+04 and 3.4395e+04,

equally 1.5846 and 1.8331 seconds per voxel in average under the 2nd and 4th order

tensor model, respectively.

Note that the algorithms presented in this work are under the assumption of voxel215

independence, therefore, the algorithms are parallelizable across voxels. The code

related to the proposed method and the above results is available by request, which can

also work on the cluster by parallel computation pixel by pixel.
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(a) Mean diffusivity (MD)

(b) Fractional anisotropy (FA)

Figure 11: MD and FA maps from two consecutive slices, where the estimated FA are computed under the

2nd order tensor model. The color in FA represents the orientations of the fibers: Red, left-right; Green,

anterior-posterior; Blue, superior-inferior. The color coded FA maps are drawn by using the software Ex-

ploreDTI [20]. The corresponding MD maps are from the results under the 4th order tensor model, where

the white spots corresponding to the corrupted data (artefacts) with measured magnitudes increasing to high

b values.

5. Method Comparisons

Comparison between our EM method and the traditional MLE [7]. In this section, we220

discuss the differences between our data-augmentation based on the EM algorithm and

on the typical MLE method through direct maximization at the Rician log-likelihood

Qr. Detailed calculation can be found in Appendix B.

1. We do not need to calculate all the elements of the Hessian as we can directly find
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Figure 12: Rician noise map from two consecutive slices. The white curves in the left bottom of the slices

depict the artefacts corresponding to very high noise.

the modes of S2
0 and σ2 by data augmentation. A small improvement appears in225

the reparametrization of S0 or logS0 by S2
0.

2. In the E-step we compute

〈Ni〉= E
θ (k),σ2(k),S2

0
(k)(Ni|Yi), (16)

which does not depend on the parameters θ ,σ2 and S2
0. In the M-step we use Eq.

16, the recursive values from θ (k),σ2(k),S2
0
(k), instead of solving the intractable

formula w.r.t those parameters. This dramatically reduces the computation of the230

score from Eq.(B.2,B.1,B.3) to Eq.(A.3,A.2,A.4), respectively.

3. The EM algorithm allows us to use empirical values from Eq.(16) to compute the

Fisher information. Our Fisher information J(θ) which fits the whole range of

SNR and is slightly bigger than the approximated one, Ir(θ), expressed in (Eq.

(B.4)), which requires heavy mathematical calculations to deal with different235

expectations (see [7] for more details). In addition, when computing the score of

θ in Eq. (10), we do not need to update the items containing Ni as they are fixed

values from Eq.(16). All those lead to reduced computation in practice.

Comparison between our EM method and the EM method described e.g. in [22, 1].

Firstly, the theory part of the comparing EM method can be found in Appendix C.240

1. In terms of the EM algorithm, both methods are likely in computation. Since the

augmented data are calculated in the E-step by the knowns and parameters in the
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Figure 13: Visualization of the 4th order diffusion tensor profiles from two consecutive slices of a ROI. The

color-code represents the main principal direction of the diffusion: Red, left-right; Green, anterior-posterior;

Blue, superior-inferior.

current iteration given by, respectively

〈N〉(k) := E
S(k),σ2(k)

(
N
∣∣Y)= τ(k) I1

(
2τ(k)

)
I0
(
2τ(k)

) ,

〈cos(ϕ)〉(k) = E
S(k),σ2(k)

(
cos(ϕ)

∣∣Y)= I1(2τ(k))

I0(2τ(k)
,

with τ
(k) =

Y S(k)0 exp(Zθ (k))

2σ2(k)
.

In the M-step, we calculate the partial derivative of Q w.r.t. σ2 and S0. Such
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derivatives are straightforward to compute as presented in [1]. Then the com-

putation till now from both methods should be roughly similar. The difference

is that, in our EM algorithm, we update θ , the tensor parameter by a stabilized

Fisher scoring method.245

2. In theory, the augmentation in the two EM algorithms have essential difference,

that is, they are working in different space. The implemented augmentation is

in the natural integer space, while the introduced augmentation in Appendix C

works on the phase data space.

3. In terms of Bayesian strategy, both methods can be totally different, because we250

can include the prior knowledge of the argument data through the prior distribu-

tions, then N will be generated from the reinforced Poisson distribution (see [9])

and cos(φ) will be obtained from the Von Mises distribution given in Eq. (C.1).

6. Discussion

Our method substantially differs from the previous ones in the literature and the255

advantages are summarized by the following points: 1) We implement the recently de-

veloped data augmentation method [9], which allows the non-linear regression problem

to be transformed into the GLM framework in DTE. 2) Subsequently, the computation

is dramatically reduced due to the tractable modes of parameters of interest in the sense

of point estimation. In addition, when employing Fisher-scoring scheme we simplify260

the complexity of the Fisher information. 3) Our Rician noise model can be combined

with any tensor model in different representation, such as spheric harmonic expansion,

by reparametrization. 4) Either ML or MAP estimation yields more accurate estimates

than the LS and the WLS do. In addition, high frequencies from the low SNR data and

the zero measurements are also included into the estimation. These data are known to265

contain detailed anatomical information of the complex tissue in vivo. 5) Our method

leads to significantly less biased estimates of the noise level, which plays key role in

denoising the MRI and cleaning the artefacts.

Positivity constraints. The physical feature of diffusion requires the tensor to be

positive definite. Our model allows to check the positivity of diffusivity in the tensor270
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updates under the scheme of Fisher-scoring method. For the rank-2 tensor model, the

constraining is fairly easy to do by computing the eigenvalues of the tensor matrix

D. For HARDI, Barmpoutis et al. [11] propose the Gram matrix approach, using

the quartic form to guarantee the positivity. Other methods such as [23] address the

constraint by calculating the Z-eigenvalue polynomials.275

MLE VS MAPE. In this work, we did not list the results from MAPE but we em-

phasize the differences between these two methods. Bayesian methods have advan-

tages in the learning process, meaning that they may gain extra information from the

prior knowledge. When the prior is weak, like in our case, we learn things from the

data, what we actually do when approaching the problem through frequentist statistical280

modeling. In order to learn the uncertainty of the diffusion parameters, a fully Bayesian

approach is highly recommended to characterize the posterior parameter distributions

rather than point estimation.
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Appendix

A. MLE by the EM algorithm in DTI

We consider the Rician noise model with the Poissonian data augmentation of Sec-

tion 2. The latent augmented variable N conditionally on X ,Z is given by

pt,σ (N = n|X ,Z) =
1

I0(2τ)

exp(−2τ)τ2n

(n!)2 , n ∈ N, with τ =

√
Xt

2σ2 and X = Y 2 .
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It follows [9] that this discrete distribution is referred as reinforced Poisson distribution295

with parameter τ .

In the EM algorithm we need to compute the conditional expectation of N condi-

tionally on X and the design matrix Z. Given the current values t(k), σ2(k), then

〈N〉(k) := E
t(k),σ2(k)

(
N
∣∣X ,Z

)
=

∞

∑
n=1

npt,σ (N = n|X ,Z)

= τ
(k)/2

d
dτ(k)

log 0F1(1,(τ(k))2) = τ
(k)/2

d
dτ(k)

logJ0(2τ
(k)√−1)

=
τ(k)J−1(2τ(k)

√
−1)

J0(2τ(k)
√
−1)

=
τ(k) I1(2τ(k))

I0(2τ(k))
,

with

t(k) = t(S2
0
(k)
,θ (k),σ2(k)) =

S2
0
(k) exp(2Zθ (k))

2σ2(k)
,τ(k) =

√
X i

2σ2(k)
exp(Ziθ

(k))S0
(k).

Note that 0F1(1,τ2) = J0(2τ
√
−1) = I0(2τ), where J0(z) is the zero-order Bessel func-300

tion of first kind, I0(z) is the zero-order modified Bessel function of first kind, which

satisfies

J′v(x) = Jv−1(x)−
ν

x
Jv(x),

and

J−n(x) = (−1)nJn(x), In(z) = i−nJn(zi).

In the M-step, we maximize the parameters of the augmented log-likelihood Q from

Eq. (4) w.r.t (θ ,σ2,S2
0). Omitting the items not depending on these parameters, Q can

be expressed as

m

∑
i=1

(
log(S2

0)−2log(σ2)+2Ziθ

)
〈Ni〉(k)−m log(σ2)− 1

2σ2

m

∑
i=1

(
S2

0 exp(2Ziθ)+Xi
)
.

(A.1)

It is easy to see in Eq. (A.1) that the log likelihood w.r.t σ2 and S2
0 are inverse Gamma

and Gamma distributions, respectively. Hence, we update these two parameters by

their modes:

σ̂2ML := argmax
σ2

g

(Q) =
∑

m
i=1(Xi + exp(2θ̂Zi)Ŝ0

2
)

2∑
m
i=1(2〈Ni〉+1)

(A.2)
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and

Ŝ2
0ML := argmax

S2
0

(Q) =
2σ̂2ML ∑

m
i=1〈Ni〉

∑
m
i=1 exp(2Ziθ̂)

. (A.3)

To apply the Fisher scoring method, the score of θ is

S (θ) = 2
m

∑
i=1
〈Ni〉Zi−

Ŝ2
0ML

σ̂2ML

m

∑
i=1

exp(2Ziθ)Zi, (A.4)

and the Fisher-information is given by305

J(θ) = E
[
− ∂ 2Q

∂θh∂θk

]
=

Ŝ2
0ML

σ̂2ML

m

∑
i=1

exp(2Ziθ)ZiZT
i . (A.5)

B. Maximization of Rician Log-likelihood

Without data agumentation, we have to directly maximize the Rician log-likelihood

QRician, in short Qr thereafter, by using some typical MLE method, such as gradient

descent. Then the first (the score) and second derivatives of Qr are usually required.

The log-likelihood Qr is

Qr = const.−m log(σ2)− 1
2σ2

m

∑
i=1

(
Y 2

i + exp(2Ziθ)S2
0

)

+
m

∑
i=1

log I0

(Yi exp(Ziθ)
√

S2
0

σ2

)
,

where Ik(τ) are modified Bessel functions of first kind satisfying

I
′
0(τ) = I1(τ), I

′′
0 (τ) = I

′
1(τ) = (I0(τ)+ I2(τ))/2.

The score of σ2 and S2
0 are respectively given by

∂Qr

∂σ2 =− m
σ2 +

1
2σ4

m

∑
i=1

(
Y 2

i + exp(2Ziθi)S2
0

)
(B.1)

− 1
σ4

m

∑
i=1

g
(

Yi exp(Ziθ)S0σ
−2
)

Yi exp(Ziθ)S0

and

∂Qr

∂S2
0
=− 1

σ2

m

∑
i=1

exp(2Ziθi)+
1

2σ2
√

S2
0

m

∑
i=1

g
(

Yi exp(Ziθ)S0σ
−2
)

Yi exp(Ziθ). (B.2)
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The score of θ is given by

∂Qr

∂θk
=−

S2
0

σ2

m

∑
i=1

exp(2Ziθi)Zik +
1

σ2

m

∑
i=1

g
(

Yi exp(Ziθ)S0σ
−2
)

Yi exp(Ziθ)S0Zik.

(B.3)

The Hessian of θ is

∂Q2
r

∂θh∂θk
=−

2S2
0

σ2

m

∑
i=1

exp(2Ziθi)ZihZik +
S0

σ2

m

∑
i=1

Yi exp(Ziθ)ZikZih{
g
(

Yi exp(Ziθ)S0σ
−2
)
+g

′
(

Yi exp(Ziθ)S0σ
−2
)

Yi exp(Ziθ)S0

σ2

}
=

m

∑
i=1

ZihZik

(
−4t2

i + τi(g(τi)+ τig
′
(τi)

)
=

m

∑
i=1

ZihZik

(
−4t2

i + τ
2
i − τ

2
i

(
I1(τi)

I0(τi)

)2)
.

where we use

ti =
S2

0 exp(2Ziθi)

2σ2 , τi =
Yi exp(Ziθ)S0

2σ2 , g(τ) =
d

dτ
log I0(τ) =

I1(τ)

I0(τ)
,

g
′
(τ) =

d2

dτ2 log I0(τ) =
1
2

(
1+

I2(τ)

I0(τ)

)
−
(

I1(τ)

I0(τ)

)2

= 1− I1(τ)

τI0(τ)
−
(

I1(τ)

I0(τ)

)2

with

I2(τ) = I0(τ)−
2I1(τ)

τ
.

For SNR > 10, the corresponding Fisher-information matrix is approximated by

Ir(θ) = E
[
− ∂Q2

r
∂θh∂θk

]
≈

m
∑

i=1
ZihZik

(
S2

0
σ2 exp(2Ziθ)− 1

2

)
, (B.4)

where (see[7])

E
[

τ
2
i

(
I1(τi)

I0(τi)

)2]
≈
(

S2
0

σ2 exp(2Ziθ)

)2

+
S2

0
σ2 exp(2Ziθ)−

1
2
.

C. Theory of the EM algorithm by the phase data

Consider the Rician noise model in Eq. (1), and define the phase

ϕ := arg
(

S+ ε1 + iε2

)
∈ [0,2π)

such that

S+ ε1 = Y cos(ϕ), ε2 = Y sin(ϕ).
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It follows from the Bayes formula that the joint density of ϕ and Y for fixed S and σ2

is given by

pS,σ2(y,ϕ) =
y

2πσ2 exp
(
− 1

2σ2

(
Y cos(ϕ)−S)2− 1

2σ2 Y 2 sin(ϕ)2
)

=
y

2πσ2 exp
(
− 1

2σ2

(
Y 2 +S2−2SY cos(ϕ)

))
= pS,σ2(y)pS,σ2(ϕ|Y ),

or alternatively, similar formula can be found in [24] without using the Bayes theorem.

Here the conditional density

pS,σ2(ϕ|Y ) =
1

2πI0(SY/σ2)
exp
(

SY
σ2 cos(ϕ)

)
, ϕ ∈ [0,2π), (C.1)

is an instance of the symmetric Von Mises distribution on the circle. See 4.3.2. in [25].

Note also that if the data Y = 0, we get we get a Gaussian likelihood

pS,σ2(εr =−S,εi = 0) =
y

2πσ2 exp
(
− S2

2σ2

)
,

and in such a case the augmentation is not needed.

D. EM with latent phase measurements in multicompartment models310

[1] introduces a related EM algorithm based on data augmentation with the com-

plete complex-valued measurements Y = (Yi j : 1≤ i≤N,1≤ j≤M) for the individual

diffusion compartments, and incomplete magnitude measurements Si =
∣∣∑ j Yi j

∣∣. The

E-step gives

Q(Θ|Θ(k)) = E
[
`(Θ|Y )

∣∣S,Θ(k)]= ∫ `(Θ|Y)p(Y|S,Θ(k))dY

= const.− (M+1)N log(σ2)+
M+1
2σ2

N

∑
i=1

M

∑
j=0

E
[

2νi jℜ(Yi j)−|Yi j|2−ν
2
i j

∣∣∣∣Si,Θ
(k)
]

where ν = ν(Θ) and ℜ(z) denotes the real part of a complex z. Since

E
[
ℜ(Yi j)

∣∣Si,Θ
(k)]= E

[
E
[
ℜ(Yi j)

∣∣ℜ(Yi)
]∣∣∣∣Si,Θ

(k)
]

= ν
(k)
i j +

1
M+1

E
[
ℜ(Yi)

∣∣Si,Θ
(k)]− ν

(k)
i

M+1
, and

E
[
ℜ(Yi)

∣∣Si,Θ
(k)]= SiI1

(
Siν

(k)
i /σ2

)
I0
(
Siν

(k)
i /σ2

) ,
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where ν(k) = ν(Θ(k)), we obtain up to additive and multiplicative constants which do

not depend on Θ, we obtain equation (7) in [1]:

Q(Θ|Θ(k)) = const.+ const.∑
i, j

{
2νi j

(
Si

M+1
I1
(
Siν

(k)
i /σ2

)
I0
(
Siν

(k)
i /σ2

) − ν
(k)
i

M+1
+ν

(k)
i j

)
−ν

2
i j

}
.

(D.1)

In the M-step it is used the gradient of (D.1), given by

∂Q(Θ|Θ(k))

∂θ
= const.∑

i, j

(
Si

M+1
I1
(
Siν

(k)
i /σ2

)
I0
(
Siν

(k)
i /σ2

) − ν
(k)
i

M+1
+ν

(k)
i j −νi j

)
∂νi j(Θ)

∂θ

We note that one could use simply the EM algorithm with for a single component

(M = 0) with latent data (Yi : i = 1, . . . ,n), optimizing in the M-step

Q(Θ|Θ(k)) = const.+ const.∑
i

{
2νiSiI1

(
Siν

(k)
i /σ2

)
I0
(
Siν

(k)
i /σ2

) −ν
2
i

}
with gradient

∂Q(Θ|Θ(k))

∂θ
= const.∑

i

{
SiI1
(
Siν

(k)
i /σ2

)
I0
(
Siν

(k)
i /σ2

) −νi

}
∂νi(Θ)

∂θ

Since the phase augmentation under the single compartment model is quite similar in

the computation by applying the proposed EM-MLE scheme, therefore, it is straight-

forward to extend our methods to the multiple compartment case.
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