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ABSTRACT 
The perceptual structure of music is a fundamental issue in music 
psychology that can be systematically addressed via computational 
models. This study estimated the contribution of spectral, rhythmic 
and tonal descriptors for prediction of perceptual segmentation across 
stimuli. In a real-time task, 18 musicians and 18 non-musicians 
indicated perceived instants of significant change for six ongoing 
musical stimuli. In a second task, 18 musicians parsed the same 
stimuli using audio editing software to provide non-real-time 
segmentation annotations. We built computational models based on a 
non-linear fuzzy integration of basic and interaction descriptors of 
local musical novelty. We found that musicianship of listeners and 
segmentation task had an effect on model prediction rate, 
dimensionality and components. Changes in tonality and rhythm, as 
well as simultaneous change of these aspects were important to 
predict segmentation by listeners. Our results suggest that musicians 
pay attention to more features than non-musicians, including more 
high-level structure interactions. Prediction of non-real-time 
annotations involved more features, particularly interactions thereof, 
suggesting high context dependency. The role of interactions on 
perception of musical change has an impact on the study of neural, 
kinetic and speech stream processing. 
 
Topic area: Musical structure, Cognitive modeling of music 
Keywords: segmentation density, musical training, segmentation task, 
audio-based computational modeling 

I. BACKGROUND 
While listening to music, we spontaneously parse musical 

structure based on our perception of significant changes and 
repetitions. This dual process of grouping and segmenting 
music involves high-level cognitive functions such as memory, 
attention, and decision-making. Since music listening is a 
temporally unfolding process, real-time indications of musical 
boundaries are of great interest for music perception. However, 
the real-time perception of a succession of events may not 
guarantee a complete understanding of an underlying structure. 
Moreover, experience and musicianship in particular might 
guide our attention towards different characteristics of the 
musical stream. On top of that, the hierarchical grouping 
structure of music affords multiple levels for segmentation, 
such as notes, beats, motifs, phrases, melodies and sectional 
forms. In this study, we mainly investigate phrase-level 
musical boundaries, which are understood in this article as 
instants of significant change in the music. We aimed to 
systematically investigate the role of timbre, rhythm, and 
tonality on segmentation by musicians and non-musicians in 
different tasks. To this end, we proposed a method for 
polyphonic audio-based computational modeling of perceptual 
segmentation based on optimal musical feature subsets. 

The tendency towards perceptual grouping of musical and 
other temporal sensory information into streams of events has 
been well studied. This Gestalt phenomenon has been of 
particular interest for auditory scene analysis (ASA) 
psychophysical models (Bregman, 1994), as well as within 
music theory, for melodic expectation models (Narmour, 1992) 
and generative theory of tonal music (GTTM) formal 
descriptions (Lerdahl & Jackendoff, 1983). 

Within music cognition, MIDI-based data- and model- 
driven methods (Wiering, de Nooijer, Volk, and 
Tabachneck-Schijf, 2009) have been suggested for boundary 
prediction in score-based monophonic musical examples. Few 
works have been carried out on validation of segmentation 
systems and rules via music listening studies (Wiering et al., 
2009; Bruderer, 2008; Frankland & Cohen, 2004; Clarke & 
Krumhansl, 1990; Peretz, 1989; Deliège, 1987). Changes in 
timbre and harmonic progression are melodic description cues 
that listeners frequently used to justify segmentation decisions 
(Bruderer, 2008). Also rhythmic attributes, particularly 
changes in note duration, have been found to be crucial in 
several melodic segmentation systems (Temperley, 2007). 
Complex musical changes combining grouping preference 
rules might also be important boundary candidates, as temporal 
pauses of melodies are more likely to be perceived as 
boundaries by both musicians and non-musicians when 
reinforced with other determinants such as musical parallelism 
(Peretz, 1989). 

Within music information retrieval (MIR), a number of 
audio-based systems for segmentation have been evaluated 
against perceptual ground truth, usually for polyphonic popular 
music. Recent studies (McFee and Ellis, 2014; Nieto & Jehan 
2013) focused mainly on timbre-based features and 
chromagram-based (Fujishima, 1999) tonal features. 
'Repetition features' are often derived from these (McFee and 
Ellis, 2014), yielding good results for Western popular music. 
Rhythmic features such as fluctuation patterns (Pampalk, 
Rauber & Merkl, 2002) have also shown good results in this 
domain (Turnbull, Lanckriet, Pampalk & Goto 2007; Jensen, 
2007).  

In regards to algorithms for audio-based computational 
modeling, the novelty approach (Foote, 2000) is still 
considered state-of-the-art. It is based on the computation of a 
feature-based self-similarity matrix, which is convolved with a 
Gaussian Checkerboard kernel along the diagonal to obtain a 
novelty curve representing transitions characterized by high 
dissimilarity between neighboring feature frames. 

Music perception studies showed some interesting trends 
regarding listeners and segmentation tasks. Several studies 
using naturalistic stimuli (Hartmann, Lartillot & Toiviainen, 
2014; Bruderer, 2008; Deliège, 1987) reported no clear effects 
of musicianship on segmentation, although non-musicians tend 
to segment more often than musicians. Effects of data 



collection task were however found, as listeners marked 
significantly fewer boundaries in real-time contexts than in 
offline annotation tasks (Hartmann et al., 2014). It was also 
found that the perceived strength ratings of a boundary relate to 
the number of participants that indicated it (Bruderer, 2008).  

The effects of musical training on the prediction rate of 
computational segmentation models are still unclear. This 
should be studied to improve accuracy of computational 
models and gain further understanding on transfer effects of 
musicianship. The effects of segmentation task upon prediction 
rate of models are also unclear, although these should be 
studied to understand, for example, whether computational 
models are more comparable to real-time or to non-real-time 
segmentations. Moreover, the relative contribution of distinct 
musical attributes on segmentation and buildup of perceptual 
streams awaits clarification. The interaction between different 
acoustic features has not been studied either, although its 
potential for segmentation has been stated (Turnbull et al., 
2007). 

 In addition, we lack systematic investigation of perceptual 
segmentation via audio-based computational models, which 
are crucial because audio target stimuli can increase the 
ecological validity of computational models and associated 
findings. Also, studies generally perform analyses based on 
segmentation data coming from small sample sizes (McFee & 
Ellis, 2014; Nieto & Jehan, 2013; Jenssen, 2007; Turnbull, 
2007; Clarke & Krumhansl, 1990), but larger populations are 
needed to improve the external validity of results and 
implementations. A further limitation of previous segmentation 
studies is that they are often limited to classical or pop music 
and rarely include a variety of styles. This should be considered 
because it could offer a more general understanding of 
boundary perception and increase the impact of outcomes. 

II. AIMS 
This study focused on prediction of perceptual segmentation 

via audio-based computational models of spectral, rhythmic, 
and tonal change. Our main goal was to estimate the 
contribution of different musical features in the prediction of 
boundary density using six diverse stimuli. Additionally, we 
aimed to understand the effect of musicianship upon perceptual 
segmentation in real-time listening contexts. We also aimed to 
shed light on the effect of task (real-time vs. non-real-time) 
upon perceptual segmentation. 
The main hypothesis of this study is that novelty-based 
computational models based on multiple musical features 
could accurately predict boundary density, at least for highly 
contrasting passages (e.g., simultaneous and stark changes in 
dynamics, instrumentation, and key). Since perceptual 
segmentation is multidimensional, novelty detection should 
increase prediction if interactions of musical features were 
aggregated. Another hypothesis is that tonal and other 
high-level features predict segmentation better for musicians 
than for non-musicians. Probably both groups pay attention to 
the musical surface (dynamics, texture, instrumentation, 
register, pace), but musicians might focus relatively more on 
harmonic and other deeper relationships. We also assumed that 
high-level features predict non-real-time segmentation better 
than segmentation in real-time contexts, due to 
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Figure 1. General design of the study. 

incomplete understanding of the musical structure during 
segmentation of ongoing stimuli. 

Our approach was implemented via an assessment of model 
predictability for different groups, tasks, and conjoint features. 
We examined the predictability of boundary density using 
audio-based computational approaches and diverse stimuli. We 
aim to contribute to music perception and MIR literature via a 
systematic assessment of musical features for different 
perceptual data. 

III. METHODS 
We conducted two listening experiments to gather 

perceptual segmentation responses, and extracted musical 
features from the audio to computationally model the task. 
Figure 1 illustrates the approach described below and in the 
next section. The materials were six instrumental musical audio 
stimuli that were around two minutes in duration and of diverse 
styles (see Appendix). We chose these pieces because they are 
relatively unfamiliar and rather diverse; we searched for music 
whose segmentation would rely on multiple complex processes 
such as textural change and similarity instead of basic 
“Gestalt” boundaries (long inter-onset intervals, pitch jumps, 
etc.). For instance, some boundaries may be unexpected or 
perceived as blurry transition regions, delivering uncertainty 
and ambiguity. 

1)  Perceptual segmentation experiment 

The subjects of the study were 36 participants, 18 of whom 
(11 males, 7 females) were musicians with an average of 14 
years of training (SD = 7.49). All the musicians considered 



themselves either to be semi-professional or professional 
musicians specialized in classical (12 participants) or other  

Table 1. Correlations between segmentation density and basic 
features.  

 

Table 2. Best correlations between segmentation density and 
feature interactions. 

 

(6 participants) styles. The remaining 18 participants (10 
females, 8 males) reported being musically untrained, and none 
of them reported having skills in dance or sound engineering. 
The subjects were local or exchange students and graduates 
from the University of Jyväskylä and Jyväskylä University of 
Applied Sciences. The groups were matched in terms of their 
age distribution; the mean age was 27 years  (SD = 4.5) for both 
musicians and non-musicians.  

Two listening experiments were conducted to collect sets of 
boundary indications from 18 non-musicians and 18 musicians 
via different tasks. 

2)  Real-time task 

Participants were asked to indicate instants of significant 
change as they listened to the music by pressing the space bar 
key of a computer. After reading instructions and completing a 
trial, they segmented each of the musical stimuli presented in 
randomized order. The listeners were requested to offer their 
“first impression” as they did not have a chance to listen to the 
whole stimulus beforehand or change their choice afterwards. 

The interface included a playbar that offered the beginning, 
current and end time position of the ongoing stimuli as 
visual-spatial cue. The real-time task segmentation density is 
abbreviated in Tables 1, 2, and 3 as NMrt for non-musicians 
and as Mrt for musicians. 

3)  Annotation task 

We conducted a second experiment with the purpose of 
obtaining a more comprehensive and precise set of 
segmentations from participants. Audio editing skills were 
needed for this task, so we collected data only from musicians 
as they reported familiarity with this software. The same 18 
musicians of the first task took part in this experiment, which 
we call Annotation task as it resembles structure annotation. 

We collected boundaries and perceived boundary strength 
via an editing interface that allowed playback, marking, 
reposition, and labeling (Sonic Visualizer, see Cannam, 
Landone & Sandler, 2010). Participants were requested to 
listen to the complete stimulus, and at the same time mark 
instants of significant change over a waveform. The next step 
was to freely playback the music from desired time points and 
reposition or remove boundaries that were added by mistake. 
Finally, listeners were asked to mark the perceived strength of 
each boundary with a value between 1 (not strong at all) and 10 
(very strong). We abbreviated segmentation density of the 
annotation task as Ma, and segmentation density considering 
perceived strength weights as Maw for Tables 1, 2, and 3. 

4)  Segmentation density 

For each participant, we concatenated the obtained 
boundaries across all six stimuli in order to investigate general 
segmentation principles across stimuli. Subsequently, we 
constructed an estimate of the boundary indications within 
each task and group with normalized Kernel Density 
Estimation to obtain a smooth curve of boundary density over 
time. Following previous work (Bruderer 2008, Hartmann et 
al., 2014), we used a kernel width of 1.5 seconds. The upper 
plot of Figure 2 shows indications by non-musicians as rug 
marks and the perceptual segmentation density as a curve for 
Aus Böhmens Hain und Flur (B. Smetana). 

A. Computational segmentation models 

In addition, we obtained computational segmentation 
profiles via detection of novelty points over time based on local 
changes of 36 musical descriptors. 

We extracted musical features describing spectral (Subband 
Flux, see Alluri & Toiviainen, 2010), rhythmic (Fluctuation 
Patterns, see Pampalk, et al., 2002) and tonal (Chromagram; 
Key Strength, see Krumhansl, 1990; Tonal Centroid, see Harte, 
Sandler & Gasser) attributes of the audio stimuli. We utilized 
conventional extraction parameters for rhythmic and spectral 
features (Fluctuation Patterns: 1 s and hop size of .1 s; Subband 
Flux: .025 s and hop size of .0125 s). As regards tonal features, 
we utilized two different window lengths to capture the 
chord-level (1 s, hop size .1 s) and model the tonal context (3 s, 
hop size .1 s). We computed novelty curves with a kernel of 16 
s from these eight features to represent spectral, rhythmic and 
tonal dissimilarity over time. This kernel size was found to 
provide temporal smoothness comparable to the perceptual 
segmentation density.  

Type Basic Feature NMrt Mr
t 

Ma Ma
w 

Spectral Subband Flux .16 .18 .13 .23 

Rhythmi
c 

Fluctuation Patterns .32 .25 .29 .36 

Tonal Chromagram (1s) .24 .22 .32 .29 

  Chromagram (3s) .25 .24 .30 .29 

  Key Strength (1s) .15 .13 .19 .21 

  Key Strength (3s) .12 .12 .17 .17 

  Tonal Centroid (1s) .17 .14 .22 .24 

  Tonal Centroid (3s) .14 .14 .23 .22 

Segmentation Feature Interaction r 
NMrt Fluctuation Patterns ° Chromagram (3s) .37 

  Fluctuation Patterns ° Chromagram (1s) .35 

  Fluctuation Patterns ° Tonal Centroid 
(3s) 

.32 

Mrt Subband Flux ° Chromagram (3s) .29 

  Fluctuation Patterns ° Chromagram (3s) .30 

  Fluctuation Patterns ° Chromagram (1s) .29 

Ma Fluctuation Patterns ° Chromagram (1s) .39 

  Fluctuation Patterns ° Chromagram (3s) .39 

  Fluctuation Patterns ° Tonal Centroid 
(3s) 

.41 

Maw Fluctuation Patterns ° Chromagram (1s) .45 

 Fluctuation Patterns ° Chromagram (3s) .44 

  Fluctuation Patterns ° Tonal Centroid 
(3s) 

.44 



Since we also focused on the interaction of musical features, 
we merged each pair of basic novelty curves to obtain all 28 
possible combinations. Each interaction feature was computed 
as pairwise multiplication of two novelty curves, symbolized 
as ° and illustrated in Figure 1. 

IV. RESULTS 
The perceptual segmentations were compared with the 

novelty curves and also with computational segmentation 
models derived from optimal feature subsets. 

A. Baseline: Perceptual segmentation vs. novelty  

Each perceptual segmentation density curve was correlated 
with each basic novelty feature and each interaction feature. 
Table 1 shows the correlations for each of the eight basic 
novelty features; values in bold show the best correlation 
obtained for each perceptual segmentation density. 
Correlations ranged from weak to moderately low; the features 
yielding the highest similarity with perceptual segmentation 
density curves were rhythmic (Fluctuation Patterns) and tonal 
(Chromagram). Tonal features were better predictors in the 
Annotation task than in the Real-time task. 
 The highest correlations between segmentation density and 
interaction features are presented in Table 2. The three highest 
correlations obtained for each perceptual segmentation density 
are shown; the highest correlation for each segmentation 
density is indicated in bold font. The interaction features also 
exhibited weak to moderately low correlations, which peaked 
for rhythmic-tonal interactions regardless of the perceptual 
task. 

B. Perceptual segmentation vs. multidimensional novelty 

Next, we investigated how the perceptual data could be 
predicted using combinations of novelty curves. We deemed 
multiple regression  to be inadequate for this purpose, since it 
would assume a constant contribution of each feature across 
stimuli and time. Therefore, we combined the novelty features 
via ranking-based aggregation. Roughly, our computational 

modelling approach involved obtaining a percentile across an 
optimal subset of novelty features for each time point. 

1)  Combining novelty curves 

The used model is inspired by soft computing and describes 

musical change based on a flexible operation to aggregate 
features. The features are integrated using a percentile measure, 
which can be considered as a generalized 
conjunction/disjunction function (Dujmović, 2007). This can 
be understood as a 'majority voting' that is neither based on all 
the features nor on only one feature.  For example, the 50th 
percentile across features will be high if at least half of the 
considered features exhibit high musical change. We found 
that the 50th percentile (median ordinal position) yielded 
computational segmentation models that provided the best fit 
to the perceptual segmentations. 

2)  Optimal feature subset via combinatorial optimization 

Based on the correlation between perceptual and 
computational models, we selected an optimal feature subset to 
compute the aggregate feature. Due to the high number of 
possible feature combinations per perceptual segmentation 
(236), we used Genetic Algorithm optimization to find the 
optimal subset. The optimization cost function was initialized 
with random subsets of all 36 features and evaluated using 
correlation as criterion.  

The middle plot of Figure 2 displays the optimal set of 
novelty features for non-musicians, and the respective 
aggregate feature.  

We found that the feature aggregation method increased the 
prediction rate over the individual novelty features. Table 3 
shows the best correlations found via the percentile-based 
computational model, and their p-values (obtained via Monte 
Carlo simulation). The correlations were moderately high, 
reaching r = .52 for the prediction of segmentation by 
musicians in the Annotation task (with strength weights). The 
lowest plot of Figure 2 compares the computational model with 
the perceptual segmentation density obtained for 

Table 3. Correlations between segmentation density and percentile-based computational models 

  
NMrt Mrt Ma Maw 

Subset Fluct. Pat. Sub. Flux Fluct. Pat. Fluct. Pat. 

  Tonal Centr. (1s) Fluct. Pat. Tonal Centr. (1s) Tonal Centr. (1s) 

  Sub. Flux ° Fluct. Pat. Sub. Flux ° Fluct. Pat. Sub. Flux ° Chromag. (1s) Sub. Flux ° Fluct. Pat. 

  Sub. Flux ° Tonal Centr. (3s) Sub. Flux  ° Key Strength (3s) Sub. Flux ° Chromag. (3s) Sub. Flux ° Key Strength (3s) 

  Fluct. Pat. ° Chromag. (3s) Sub. Flux  ° Tonal Centr. (3s) Sub. Flux ° Tonal Centr. (3s) Sub. Flux ° Tonal Centr. (3s) 

    Fluct. Pat. ° Chromag. (1s) Fluct. Pat. ° Chromag. (3s) Fluct. Pat. ° Chromag. (1s) 

    Fluct. Pat. ° Chromag. (3s) Fluct. Pat. ° Tonal Centr. (1s) Fluct. Pat. ° Chromag. (3s) 

      Fluct. Pat. ° Tonal Centr. (3s)   

Type Rhythmic Spectral Rhythmic Rhythmic 

  Tonal Rhythmic Tonal Tonal 

  Spectral ° Rhythmic Spectral ° Rhythmic Spectral ° Tonal (3x) Spectral ° Rhythmic 

  Spectral ° Tonal Spectral ° Tonal (2x) Rhythmic ° Tonal (3x) Spectral ° Tonal (2x) 

  Rhythmic ° Tonal Rhythmic ° Tonal (2x)   Rhythmic ° Tonal (2x) 

r .41*** .38*** .44*** .52*** 
*: p < .001 



non-musicians. Notably, Tables 1, 2, and 3 show increased 

computational model prediction rates for segmentation for 
non-musicians over musicians. Moreover, prediction rates are 
overall higher for the annotation task than for the real-time 
task. 

In regards to selected features, we found a general trend with 
rhythm and rhythmic-tonal interactions contributing to higher 
correlations. For both participant groups, rhythmic 
(Fluctuation Patterns) and rhythmic-tonal interactions 
(Fluctuation Patterns ° Chromagram 3s) were included in the 
optimal model. The computational model of the segmentation 
by musicians (Table 3), however, involved more features, 
especially feature interactions. For both segmentation tasks, 
rhythmic-tonal interactions as well as rhythmic and tonal basic 
features exhibited the highest correlations. The number of 
aggregated features, particularly feature interactions, was 
higher in the optimal computational model of the Annotation 
task (Table 3). 

V. DISCUSSION 
Our results indicate that, despite differences between groups 

and tasks, rhythm and tonality are the most important features 
in segmentation modeling. In particular, we found that 
spectral-tonal and rhythmic-tonal interactions were crucial for 
segmentation prediction. The role of high-level features in 
prediction via computational modeling increased both for 
musicians and for the annotation task. 

One general finding is that the prediction rate of the 
computational models does depend on the musicianship level 
and segmentation task. The obtained correlations suggest that 
computational segmentation models can yield better prediction 
for non-musicians than for musicians. Perhaps this is because 
segmentation by musicians relies on more complex musical 
knowledge and involves conceptually driven processing. 

Moreover, the results show increased prediction of 

computational segmentation models for the Annotation task 
than for the Real-time task. One explanation for this could be 
that perceptual delays were corrected in the Annotation task 
since participants had the possibility to reposition their 
indications. Boundary density weighted with strength ratings 
further increased the prediction rate in the Annotation task, 
suggesting that the height of novelty peaks is predictive of the 
perceived salience. 

We also found differences between groups and 
segmentation tasks in the size and composition of feature 
subsets selected for the optimal computational models. Our 
results show that more features were needed to predict musical 
change indicated by musicians, suggesting that they pay 
attention to more features. Compared to non-musicians, 
musicians followed a more complex pattern, as their optimal 
models were derived from more feature interactions. Since 
musicians relied on more interaction features, they might 
process musical structure with more emphasis on simultaneous 
change of multiple attributes. Interaction features can be 
considered high-level or structural features, because they 
represent simultaneous change in two dimensions. Previous 
findings (Hartmann et al., 2014; Bruderer, 2008; Deliège, 1987) 
showing fewer boundary indications by musicians than 
non-musicians are in the same vein, suggesting that musicians 
pay attention to higher levels of the structural hierarchy.  

Comparing tasks, we found that the optimal models for the 
Annotation task are larger in feature subset size and more 
diverse in composition than for the Real-time task. Probably 
the Annotation task involved more high-level features because 
non-real-time contexts prompt deeper structure representations 
and include retrospective aspects of segmentation.  

In regards to our proposed percentile-based computational 
model, it provided better prediction than correlation with 

Figure 2. Perceptual segmentation density and computational segmentation model for non-musicians in the Real-time task (Aus 
Böhmens Hain und Flur, B. Smetana). Upper plot: Perceptual boundary data and segmentation density. Middle plot: Optimal feature 
subset and computational model. Lower plot: Segmentation density and computational model.  



individual novelty features. The 'majority voting' logic 
described musical change as a trend across features, whose 
relative contribution varied over time and stimuli. 

Our results expand previous evidence  (Pearce and Wiggins, 
2006) on the influence of harmonic, metrical, and rhythmic 
pattern changes on melodic boundary perception. We suggest 
the importance of simultaneous change of these aspects in 
phrase-level segmentation of polyphonic audio. Hence, chord 
boundaries that are isochronous with rhythmic or metrical 
pattern change might constitute important cues for boundary 
perception. 

VI. CONCLUSIONS 
This study focused on the contribution of spectral, rhythmic, 

and tonal features for prediction of segmentation using six 
diverse stimuli. Moreover, we estimated the effects of 
musicianship and task upon perceived segmentation of 
naturalistic stimuli in real-time and non-real-time listening 
contexts. Using a novel approach, we built computational 
segmentation models based on optimal subsets of basic and 
interaction of musical features. We found that simultaneous 
change in rhythmic patterns and tonal context had an important 
role in prediction of perceptual segmentation. More features, 
particularly high-level interactions, were important for 
prediction of segmentation by musicians compared to 
non-musicians. Similarly, optimal prediction of segmentation 
in a non-real-time task required more features, mainly 
high-level, than in a real-time task. Implications for music 
education include development of listening and expressive 
skills regarding simultaneous rhythmic and tonal changes. Our 
results also make an impact on digital music retail for music 
streaming services and on other applications such as audio 
software. Our bottom-up model, however, did not take into 
consideration top-down aspects, such as violations of musical 
expectation, and our focus on instants of change disregarded 
the contribution of other aspects of segmentation such as 
repetition. Another shortcoming is the lack of qualitative 
analysis of the stimuli, which would allow a better 
understanding of the segmentation process. We consider 
completing the block design in future work by collecting 
segmentation indications by non-musicians in the Annotation 
task. In regards to the stimuli, the repertoire is biased towards 
common practice piano music. It is expected that the outcomes 
of this study will encourage work in music perception and MIR 
on the contribution of high-level interaction for music 
segmentation. 
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Banks, T., Collins, P. & Rutherford, M. (1986). The Brazilian. [Recorded by 

Genesis]. On Invisible Touch [CD]. Virgin Records. (1986).  
Spotify link: ttp://open.spotify.com/track/7s4hAEJupZLpJEaOel5SwV 
Excerpt: 01:10.200-02:58.143. 
 



Smetana, B. (1875). Aus Böhmens Hain und Flur. [Recorded by 
Gewandhausorchester Leipzig - Václav Neumann]. On Smetana: Mein 
Vaterland [CD]. BC - Eterna Collection. (2002).  

Spotify link: http://open.spotify.com/track/2115JFwiNvHxB6mJPkVtbp 
Excerpt: 04:06.137-06:02.419. 
Morton, F. (1915). Original Jelly Roll Blues. On The Piano Rolls [CD]. 

Nonesuch Records. (1997).  
Spotify link: http://open.spotify.com/track/6XtCierLPd6qg9QLcbmj61 
Excerpt: 0-02:00.104. 
 
Ravel, M. (1901). Jeux d’Eau. [Recorded by Martha Argerich]. On Martha 

Argerich, The Collection, Vol. 1: The Solo Recordings [CD]. Deutsche 
Grammophon. (2008).  

Spotify link: http://open.spotify.com/track/27oSfz8DKHs66IM12zejKf 
Excerpt: 03:27.449-05:21.884 
 
Couperin, F. (1717). Douzième Ordre / VIII. L’Atalante. [Recorded by Claudio 

Colombo]. On François Couperin : Les 27 Ordres pour piano, vol. 3 
(Ordres 10-17) [CD]. Claudio Colombo. (2011).  

Spotify link: http://open.spotify.com/track/6wJyTK8SJAmtqhcRnaIpKr 
Excerpt: 0-02:00 
 
Dvořák, A. (1878). Slavonic Dances, Op. 46 / Slavonic Dance No. 4 in F Major. 

[Recorded by Philharmonia Orchestra - Sir Andrew Davis]. On Andrew 
Davis Conducts Dvořák [CD]. Sony Music. (2012).  

Spotify link: http://open.spotify.com/track/5xna3brB1AqGW7zEuoYks4 
Excerpt: 00:57.964-03:23.145 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 


