

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

A parallel radix-4 block cyclic reduction algorithm

Myllykoski, Mirko; Rossi, Tuomo

Myllykoski, M., & Rossi, T. (2014). A parallel radix-4 block cyclic reduction algorithm.
Numerical Linear Algebra with Applications, 21(4), 540-556.
https://doi.org/10.1002/nla.1909

2014

A parallel radix-4 block cyclic reduction

algorithm

M. Myllykoski†¶ T. Rossi†

November 18, 2014

Abstract

A conventional block cyclic reduction algorithm operates by halving
the size of the linear system at each reduction step, i.e., the algorithm
is a radix-2 method. An algorithm analogous to the block cyclic reduc-
tion known as the radix-q PSCR method allows the use of higher radix
numbers and is thus more suitable for parallel architectures as it requires
fever reduction steps. This paper presents an alternative and more intu-
itive way of deriving a radix-4 block cyclic reduction method for systems
with a coefficient matrix of the form tridiag{−I,D,−I}. This is done by
modifying an existing radix-2 block cyclic reduction method. The result-
ing algorithm is then parallelized by using the partial fraction technique.
The parallel variant is demonstrated to be less computationally expensive
when compared to the radix-2 block cyclic reduction method in the sense
that the total number of emerging sub-problems is reduced. The method
is also shown to be numerically stable and equivalent to the radix-4 PSCR
method. The numerical results archived correspond to the theoretical ex-
pectations.

keywords: block cyclic reduction; direct solver, fast Poisson solver; parallel
computing; partial fraction technique; PSCR

This is the accepted version of the following article: Myllykoski,
M. and Rossi, T. (2014), A parallel radix-4 block cyclic reduction algorithm.
Numer. Linear Algebra Appl., 21: 540–556. doi: 10.1002/nla.1909, which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.

1002/nla.1909/abstract.

†Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box
35 (Agora), FI-40014 University of Jyväskylä, Finland
¶Email: mirko.myllykoski@jyu.fi

1

http://onlinelibrary.wiley.com/doi/10.1002/nla.1909/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nla.1909/abstract

1 Introduction

Linear system solvers of the block cyclic reduction (BCR) type have a long
history starting from year 1965 [1]. The first formulation was found to be
numerically unstable, but it was soon realized that the method can be stabilized
by slightly modifying the formulation [2]. Another early attempt was to combine
the method with the so-called Fourier analysis method [1]. This yielded the
FACR(l) method [3, 4]. Later on, a more generalized BCR algorithm was also
formulated [5] and, in order to produce a parallel variant, the partial fraction
technique was applied to matrix rational polynomials occurring in the formulas
[6]. The study of BCR type methods has generated a large amount literature
dealing with different kind of variations, see e.g., [7, 8, 9, 10, 11, 12, 13, 14].
The convergence and stability of the method have also received a lot of attention
[10, 15, 16, 17].

While the early formulations could only be applied to block tridiagonal sys-
tems and, preferably, to systems with a block Toeplitz structure, the method
can also be formulated in such a way that it can be applied to a much wider
class of problems. For example, a Schur complement type formulation can be
applied to a class of Toeplitz-like block Hessenberg matrices arising in queuing
problems [18, 19, 20]. Further developed BCR algorithms have been applied
to a wide range of different kind of problems such as solving banded Toeplitz
systems [21], factorizing matrix polynomial and power series [22, 23, 24], solving
quadratic and nonlinear matrix equations [19, 20, 25], and solving algebraic Ric-
cati equations [26, 27]. A recent and more detailed look to the cyclic reduction
method and its applications can be found in [17].

In the 80’s, another kind of direct method, which is nowadays called the
radix-2 PSCR (Partial Solution variant of the Cyclic Reduction method), was
formulated [28] and further developed in [29]. The PSCR method consists of
two stages which are very similar to the reduction and back substitution stages
in the BCR method. The main difference is that the PSCR method uses a
so-called partial solution technique [30, 31] in order to reduce the system size.
A more general radix-q algorithm was formulated later in [32]. Following the
analogy between the PSCR and BCR methods, the radix number q defines the
ratio according to which the size of the system is reduced at each reduction step.
Thus, in the case of the conventional BCR algorithms the radix number is two.
The PSCR method can be classified as a matrix decomposition algorithm and
a good survey on those kind of methods can be found in [33].

In 1999, a more cyclic reduction type radix-2 PSCR formulation was intro-
duced in [34]. In addition, the possibility of applying standard BCR techniques,
such as simplifying the computations by using the rational polynomial factor-
ization technique and parallelizing the recursion steps by applying the partial
fraction technique [6], was considered. A stability estimate that was presented
showed that the method is, with certain assumptions, linearly stable with re-
spect to the size of the problem. From here onwards in this paper, the partial
fraction variant of the method is referred to as the radix-2 PFCR (Partial Frac-
tion variant of the Cyclic Reduction) method.

The radix-2 PFCR method has an interesting connection to the radix-2
PSCR method, as shown in [34], in the sense that, under certain special con-
ditions, the radix-2 PSCR method produces exactly the same sub-problems as
the radix-2 PFCR method. Thus, the radix-2 PFCR method can be thought

2

of as a special case of the radix-2 PSCR method. Correspondingly, as its name
implies, the radix-4 PSCR method can be thought of as a radix-4 BCR method.
However, the derivation of the radix-4 PSCR is somewhat more complicated
than the cyclic reduction type formulation presented in [34].

The purpose of this paper is to present an alternative and more intuitive
way of deriving a radix-4 BCR method for systems with a coefficient matrix
of the form tridiag{−I,D,−I}. The radix-2 BCR method presented in [34]
serves as a starting point and the partial fraction technique is applied to the
modified formulas. The resulting parallel variant is referred from here on as the
radix-4 PFCR method. The close connection between the radix-2 PFCR and
PSCR methods suggests that the radix-4 PFCR method might have a similar
connection to the radix-4 PSCR method. Thus, based on the computational
complexity estimates presented in [35], it is expected that the total computa-
tional cost will decrease when the radix number is increased and the radix-4
PFCR method will require less sequential computation as the number of reduc-
tion steps is reduced by the factor of two. This would bring additional benefits
to parallel architectures.

The rest of this paper is organized as follows: Section 2 describes a model
problem to which methods may be applied; Section 3 provides an introduction
to the radix-2 BCR algorithm and to the partial fraction technique; Section
4 contains the derivation of the radix-4 BCR algorithm and partial fraction
expansions for rational polynomials occurring in the formulas; Section 5 provides
an error analysis for the radix-4 BCR method; Section 6 shows the connection
between the radix-4 PFCR and PSCR methods; Section 7 deals with numerical
experiments; and Section 8 concludes the paper.

2 Problem formulation

This paper deals with the following block tridiagonal linear system
D −I

−I D
. . .

. . .
. . . −I
−I D

u1

u2
...
un1

 =

f1

f2
...
fn1

 , (1)

where D ∈ Rn2×n2 , ui, fi ∈ Rn2 and n1 = 2k − 1 for some positive integer k.
Such systems arise, e.g., from finite difference discretization of a two-dimensional
Poisson problem in a rectangle with homogeneous Dirichlet boundary condi-
tions. More specifically, D = tridiag{−1, 4,−1}.

The final forms of the BCR methods presented in this paper generate a large
set of sub-problems, each of which contains a linear system with a coefficient
matrix of the form D−cI, where c ∈ R. An important special case are problems
where the diagonal block D is a block tridiagonal matrix of the form

D =

B −I

−I B
. . .

. . .
. . . −I
−I B

 ∈ Rm1m2×m1m2 , (2)

3

where n2 = m1m2, B ∈ Rm2×m2 and m1 = 2k̂ − 1 for some positive integer k̂.
In this case, the methods can be applied recursively in order to solve the gener-
ated block tridiagonal sub-problems. For example, a three-dimensional Poisson
problem with Dirichlet boundary conditions posed in a rectangular cuboid leads
to a coefficient matrix where B = tridiag{−1, 6,−1}.

3 Radix-2 block cyclic reduction

The BCR methods are a well-known group of recursive algorithms for solving
special kind of linear systems such as (1). On each recursion step, the algorithm
eliminates all odd-numbered block rows from the linear system and creating thus
a new linear system which is approximately half the size of the original linear
system. This so-called reduction step is repeated recursively until the remaining
linear systems consists only of one block equation. After this block equation is
solved, the algorithm proceeds to a back substitution stage, during which the
algorithm goes through all previously created subsystems in reverse order and
solves all the odd-numbered block rows by using known even-numbered block
rows from the previous back substitution step. In some cases, the subsystems
converge in a certain sense and the BCR method can be applied as an iterative
method. This section offers formulas for the radix-2 BCR algorithm closely
following the presentation in [34].

3.1 Reduction Formulas

On the first reduction level, the reduction of the system (1) is performed by
first multiplying the odd-numbered block rows with the matrix D−1 and then
eliminating the rows from the system. This reduction pattern most likely ap-
peared first in [10]. The remaining steps are defined as follows: Let T (0) = I,
D(0) = D and f (0) = f . Now the subsystems are defined, for each reduction
step r = 1, 2, . . . , k − 1, as

D(r) −T (r)

−T (r) D(r) . . .

. . .
. . . −T (r)

−T (r) D(r)

u
(r)
1

u
(r)
2
...

u
(r)

2k−r−1

 =

f
(r)
1

f
(r)
2
...

f
(r)

2k−r−1

 , (3)

where

T (r) =
(
T (r−1)

)2 (
D(r−1)

)−1
,

D(r) = D(r−1) − 2
(
T (r−1)

)2 (
D(r−1)

)−1
,

f
(r)
i = f

(r−1)
2i + T (r−1)

(
D(r−1)

)−1 (
f
(r−1)
2i−1 + f

(r−1)
2i+1

)
.

(4)

Note that the matrices D(0), T (0), D(1), T (1), . . . , D(k−1) and T (k−1) commute.
The solution is produced during the back substitution stage of the algorithm

4

by the formula

u
(r)
i =

(
D(r)

)−1 (
f
(r)
i + T (r)

(
u
(r+1)
(i−1)/2 + u

(r+1)
(i−1)/2+1

))
, when i is odd and

u
(r+1)
i/2 , when i is even,

(5)

where r = k − 1, k − 2, . . . , 0, i = 1, 2, . . . , 2k−r − 1 and u
(r+1)
0 = u

(r+1)

2k−r−1 = 0.

Finally, u = u(0). Note that the above formulas are well-defined only when the

matrices
(
D(r)

)−1
, r = 0, 1, . . . , k−1, exist. This is the case, for example, when

the matrix D−1 exist and the coefficient matrix in the system (1) is strongly
diagonally dominant by rows [10].

The above formulation has some disadvantages, the most significant of which
is that the matrices D(r) and T (r) can fill quickly even if the matrix D is sparse.
This makes the matrix calculation expensive and requires additional memory to
store the matrices. However, as noted in [34], this problem can be easily solved
by expressing the matrices D(r) and T (r) as

D(r) = β(r)(D)α(r)(D) and T (r) = β(r)(D), (6)

where the matrix polynomials α(r)(D) and
(
β(r)(D)

)−1
are defined recursively

by starting with α(0)(D) = D, β(0)(D) = I and then defining

α(r)(D) =
(
α(r−1)(D)

)2
− 2I,

β(r)(D) = β(r−1)(D)
(
α(r−1)(D)

)−1
.

(7)

The roots of the resulting polynomials are known in a closed form. Hence, they
can be factorized as:

α(r)(D) =

2r∏
j=1

(D − θ(j, r)I) , θ(j, r) = 2 cos

(
2j − 1

2r+1
π

)
,

β(r)(D) =

2r−1∏
j=1

(D − φ(j, r)I)
−1
, φ(j, r) = 2 cos

(
j

2r
π

)
.

(8)

The use of these factorized forms of the polynomials reduces the amount
of the required memory and they also considerably simplify the calculations
in formulas (4) and (5). Solving a sequence of linear systems like (8) is often
considerably easier than solving a single dense linear system. The polynomial
factorizations presented above are not however the most optimal ones for parallel
computing, as the sub-problems must be solved sequentially, one after another.
More possibilities for parallel execution can be obtained by the partial fraction
technique. In addition, a direct substitution of the factorizations (8) into the
formulas (4) and (5) could lead to numerical instability [15]. For a stable way
of performing the computations and for a more general formulation where the
off-diagonal blocks in the system (1) do not have to be identity matrices, see
[34].

5

3.2 Partial Fraction Technique

The matrix polynomials α(r)(D) and
(
β(r)(D)

)−1
are actually matrix counter-

parts of C2r (x) and S2r−1(x) respectively, defined as

C2r (x) =

{
2 cos

(
2r cos−1(x/2)

)
, 0 ≤ x ≤ 2,

2 cosh
(
2r cosh−1(x/2)

)
, x > 2,

S2r−1(x) =

{
sin
(
2r cos−1(x/2)

)
/ sin

(
cos−1(x/2)

)
, 0 ≤ x ≤ 2,

sinh
(
2r cosh−1(x/2)

)
/ sinh

(
cosh−1(x/2)

)
, x > 2.

(9)

The above polynomials are modified Chebyshev polynomials and they have the
following property:

C ′2r (x) = 2rS2r−1(x). (10)

These observations make it easier to apply the partial fraction technique
introduced in [6]. The basic idea is given by the following lemma:

Lemma 1 Let p(x) and q(x) be two polynomials with the following properties:

(i) p and q are relatively prime,

(ii) deg p < deg q = n, and

(iii) the roots, α1, α2, . . . , αn, of q are distinct.

Then, the following statement applies:

p(x)

q(x)
=

n∑
j=1

cj
x− αj

, where cj =
p(αj)

q′(αj)
.

Applying Lemma 1 leads to additive expressions for the matrices arising in
the algorithm [34]. In particular

T (r)
(
D(r)

)−1
= 2−r

2r∑
j=1

(−1)j−1 sin

(
2j − 1

2r+1
π

)
(D − θ(j, r)I)

−1
(11)

and (
D(r)

)−1
= 2−r

2r∑
j=1

(D − θ(j, r)I)
−1
, (12)

where θ(i, r) is defined in (8). This means that instead of solving a sequence
of sub-problems sequentially, the solution is formed by solving a set of sub-
problems (in parallel) and then computing the final result as a collective sum.

On each reduction step, the algorithm operates 2k−r − 1 block rows, each
of which requires solution of 2r−1 sub-problems. During the back substitution
stage the algorithm operates 2k−r−1 block rows per step, each of which requires
solution of 2r sub-problems. Adding all of these together gives a total of

N2
count(k) = 2k (k − 1) + 1, (13)

sub-problems during the execution of the algorithm.

6

4 Derivation of the radix-4 block cyclic reduc-
tion method

A major down side of the radix-2 PFCR method is that the recursion steps
are dependent on the preceding steps. The impact of this limitation could be
reduced by increasing the radix number. This section covers a new way of
deriving a radix-4 BCR method. This is done by combining two consecutive
radix-2 reduction steps (4) into a radix-4 reduction step and then applying the
partial fraction technique.

4.1 Reduction Formulas

Let n1 = 4k − 1 for some positive integer k. By combining radix-2 reduction
steps (4) the following reduction formula is obtained

f
(2r)
i = f

(2r−1)
2i + T (2r−1)

(
D(2r−1)

)−1 (
f
(2r−1)
2i−1 + f

(2r−1)
2i+1

)
= f

(2r−2)
4i + T (2r−2)

(
D(2r−2)

)−1 (
f
(2r−2)
4i−1 + f

(2r−2)
4i+1

)
+

T (2r−1)
(
D(2r−1)

)−1 (
f
(2r−2)
4i−2 + f

(2r−2)
4i+2

)
+

T (2r−1)
(
D(2r−1)

)−1
T (2r−2)

(
D(2r−2)

)−1
·(

f
(2r−2)
4i−3 + f

(2r−2)
4i−1 + f

(2r−2)
4i+1 + f

(2r−2)
4i+3

)
,

(14)

where r = 1, 2, . . . , k − 1 and i = 1, 2, . . . , 4k−r − 1.
The back substitution step is slightly more complicated. For reasons that

will become apparent later, the best approach is to solve the block rows in
groups of four. Let r = k − 1, k − 2, . . . , 0 and d = 0, 1, . . . , 4k−r−1 − 1. For the
first row of the group, the combining of two radix-2 back substitution steps (5)
leads to

u
(2r)
4d+1 =

(
D(2r)

)−1 (
f
(2r)
4d+1 + T (2r)

(
u
(2r+1)
2d + u

(2r+1)
2d+1

))
=
(
D(2r)

)−1 [
f
(2r)
4d+1 + T (2r)

(
u
(2r+2)
d +(

D(2r+1)
)−1 (

f
(2r+1)
2d+1 + T (2r+1)

(
u
(2r+2)
d + u

(2r+2)
d+1

)))]
.

(15)

The unknown term f
(2r+1)
2d+1 from the intermediate step 2r + 1 can be resolved

by substituting it with a radix-2 reduction formula (4). The end result is

u
(2r)
4d+1 =

(
D(2r)

)−1
f
(2r)
4d+1 +

(
D(2r)

)−1
T (2r)u

(2r+2)
d +(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
f
(2r)
4d+2+(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
T (2r)

(
D(2r)

)−1 (
f
(2r)
4d+1 + f

(2r)
4d+3

)
+(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
T (2r+1)

(
u
(2r+2)
d + u

(2r+2)
d+1

)
.

(16)

7

In a similar manner, for the second block row

u
(2r)
4d+2 = u

(2r+1)
2d+1

=
(
D(2r+1)

)−1 (
f
(2r+1)
2d+1 + T (2r+1)

(
u
(2r+2)
d + u

(2r+2)
d+1

))
=
(
D(2r+1)

)−1
f
(2r)
4d+2 +

(
D(2r+1)

)−1
T (2r)

(
D(2r)

)−1 (
f
(2r)
4d+1 + f

(2r)
4d+3

)
+(

D(2r+1)
)−1

T (2r+1)
(
u
(2r+2)
d + u

(2r+2)
d+1

)
,

(17)

and for the third block row

u
(2r)
4d+3 =

(
D(2r)

)−1
f
(2r)
4d+3 +

(
D(2r)

)−1
T (2r)u

(2r+2)
d+1 +(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
f
(2r)
4d+2+(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
T (2r)

(
D(2r)

)−1 (
f
(2r)
4d+1 + f

(2r)
4d+3

)
+(

D(2r)
)−1

T (2r)
(
D(2r+1)

)−1
T (2r+1)

(
u
(2r+2)
d + u

(2r+2)
d+1

)
.

(18)

And finally, if d 6= 4k−r−1 − 1, then for the fourth block row u
(2r)
4d+4 = u

(r+2)
d+1 .

At this point, it is possible to see why it is feasible to perform the back
substitution step in this particular way. The formulas (16) and (18) have two
common terms, and thus some intermediate results can be shared between these
two block rows. Later on, when the partial fraction technique is applied to the
matrix rational polynomials appearing in these three back substitution formulas,
the number of common terms increases. As a consequence the cost of performing
the radix-4 back substitution step is actually almost identical to the cost of
performing the radix-4 reduction step (14).

The above formulation can be modified so that it is capable of solving prob-
lems of the size n1 = 2k − 1. The reduction stage formula (26) does not require
any major modification. The indexes r and i are modified in the following
manner: r = 1, 2, . . . , dk/2e − 1 and i = 1, 2, . . . , 2k−2r. However, the back sub-
stitution stage requires more modification. Firstly, one radix-2 back substitution
step (5) is performed at the radix-2 level r = k − 1 in order to solve the block
row u2k−1 . Then the radix-4 back substitution stage can begin, but the indexes
r and d are changed in the following manner: r = bk/2c − 1, bk/2c − 2, . . . , 0
and d = 0, 1, . . . , 2k−2r−2.

It is possible to directly substitute the factorizations (8) into the formulas.
However, as was noted in the case of the radix-2 BCR method, this substitution
could lead to numerical instability. Also, the resulting radix-4 formulation would
not have the desired benefits over the corresponding radix-2 formulation. Hence,
the idea of applying the factorizations (8) directly is not discussed in this paper
in further detail.

4.2 Partial Fractions

In this section, the partial fraction technique is applied to the matrices oc-

curring in the radix-4 formulas (14), (16), (17) and (18). The matrix B
(r)
1 =

8

T (r)
(
D(r)

)−1
T (r−1) (D(r−1))−1 can be expressed, using (6) and (7), as(

α(r)(D)α(r−1)(D)
)−1

. This means that in Lemma 1, p(x) = 1 and

q(x) = C2r (x)C2r−1(x). (19)

Using Lemma 1 and relation (10) is now slightly more complicated because the
polynomial q(x) has two distinct sets of roots. This results in the following
expressions for the coefficients cj in Lemma 1:

cj =
1

q′(θ(j, r))
= 2−r sin

(
2j − 1

4
π

)
sin

(
2j − 1

2r+1
π

)
, j = 1, 2, . . . , 2r,

c2r+j =
1

q′(θ(j, r − 1))
= −2−r sin

(
2j − 1

2
π

)
sin

(
2j − 1

2r
π

)
, j = 1, 2, . . . , 2r−1.

(20)

Thus the matrix B
(r)
1 has the following partial fraction:

B
(r)
1 = 2−r

2r∑
j=1

sin

(
2j − 1

4
π

)
sin

(
2j − 1

2r+1
π

)
(D − θ(j, r)I)

−1−

2−r
2r−1∑
j=1

(−1)j−1 sin

(
2j − 1

2r
π

)
(D − θ(j, r − 1)I)

−1
.

(21)

Another set of equations involve the matrix B
(r)
2 , which is of the form

B
(r)
2 =

(
D(r−1)

)−1
T (r−1)

(
D(r)

)−1
=
(
β(r−1)(D)α(r)(D)

)−1
. (22)

Now, p(x) = S2r−1−1(x) and q(x) = C2r (x). Thus, Lemma 1 leads to the
expansion

B
(r)
2 = 2−r

2r∑
j=1

(−1)j−1 sin

(
2j − 1

4
π

)
(D − θ(j, r)I)

−1
. (23)

The third set of equations has coefficient matrices B
(r)
3 having the structure

B
(r)
3 =

(
D(r−1)

)−1
T (r−1)

(
D(r)

)−1
T (r−1)

(
D(r−1)

)−1
=
(
β(r−1)(D)α(r)(D)α(r−1)(D)

)−1 (24)

In this case also, the denominator q(x) = C2r (x)C2r−1(x) in Lemma 1 has two
distinct sets of roots and thus

B
(r)
3 = 2−r−1

2r∑
j=1

(D − θ(j, r)I)
−1

+ 2−r
2r−1∑
j=1

(D − θ(j, r − 1)I)
−1
. (25)

9

4.3 Final Formulas

Now the radix-4 reduction stage can be rewritten by using the results of the
previous subsection as follows: Let n1 = 4k − 1 for some positive integer k and
f (0) = f . Then the reduction steps r = 1, 2, . . . , k − 1 are

f
(r)
i = f

(r−1)
4i + 21−2r

22r−1∑
j=1

sin

(
2j − 1

22r
π

)
(D − θ(j, 2r − 1)I)

−1

[
(−1)j−1

(
f
(r−1)
4i−2 + f

(r−1)
4i+2

)
+

sin

(
2j − 1

4
π

)(
f
(r−1)
4i−3 + f

(r−1)
4i−1 + f

(r−1)
4i+1 + f

(r−1)
4i+3

)]
+

21−2r
22r−2∑
j=1

(−1)j−1 sin

(
2j − 1

22r−1
π

)
(D − θ(j, 2r − 2)I)

−1 ·(
−f (r−1)4i−3 + f

(r−1)
4i−1 + f

(r−1)
4i+1 − f

(r−1)
4i+3

)
,

(26)

where i = 1, 2, . . . , 4k−r − 1.
The same procedure can be performed for the back substitution stage formu-

las (16), (17) and (18). Let r = k − 1, k − 2, . . . , 0 and d = 0, 1, . . . , 4k−r−1 − 1.
First, it is necessary to define vectors

g
(r)
d,j = (−1)j−1f

(r)
4d+2 + sin

(
2j − 1

4
π

)(
f
(r)
4d+1 + f

(r)
4d+3

)
+

sin

(
2j − 1

22r+2

)(
u
(r+1)
d + u

(r+1)
d+1

)
,

h
(r)
d,j = (−1)j−1

(
f
(r)
4d+1 − f

(r)
4d+3

)
+ sin

(
2j − 1

22r+1

)(
u
(r+1)
d − u(r+1)

d+1

)
,

(27)

where u
(r+1)
0 = u

(r+1)

4k−r−1 = 0. If d 6= 4k−r−1 − 1, then u
(r)
4d+4 = u

(r+1)
d+1 . The other

components can be solved from

u
(r)
4d+1 = 2−2r−1

22r+1∑
j=1

sin

(
2j − 1

4
π

)
v
(r)
d,j + 2−2r−1

22r∑
j=1

(−1)j−1y
(r)
d,j ,

u
(r)
4d+2 = 2−2r−1

22r+1∑
j=1

(−1)j−1v
(r)
d,j ,

u
(r)
4d+3 = 2−2r−1

22r+1∑
j=1

sin

(
2j − 1

4
π

)
v
(r)
d,j − 2−2r−1

22r∑
j=1

(−1)j−1y
(r)
d,j ,

(28)

where

v
(r)
d,j = (D − θ(j, 2r + 1)I)

−1
g
(r)
d,j,

y
(r)
d,j = (D − θ(j, 2r)I)

−1
h
(r)
d,j .

(29)

Finally u = u(0).

10

On each reduction step (26) the algorithm handles 4k−r − 1 block rows,
each of which requires the solution of 3 · 22r−2 sub-problems. During the back
substitution stage (28) the algorithm handles 4k−r−1 groups per step, each of
which requires the solution of 3 · 22r sub-problems. This amounts to a total of

N4
count(k) = 22k−1 (3k − 2) + 1, (30)

sub-problems during the algorithm. Thus, the radix-4 PFCR method produces
fewer sub-problems that the radix-2 PFCR method and

lim
k→∞

N2
count(2k)

N4
count(k)

=
4

3
. (31)

If the matrix D is block tridiagonal as was discussed in Section 2, then these
same methods can be applied to sub-problems occurring in formulas (26) and
(28). As a result,

lim
k→∞

(
N2

count(2k)

N4
count(k)

)2

=
16

9
. (32)

5 Error analysis

An error estimate [34] shows, by using similar techniques as in [36], that the
radix-2 BCR method is linearly stable with respect to the size of the problem
when D = DT and the smallest eigenvalue of the matrix D is at least two. This
section extends this technique to the radix-4 BCR method.

Let λ(D) be the spectrum of the matrix D. The reference [34] provides

the following estimates for the spectral norms of the matrices
(
D(r)

)−1
and

T (r)
(
D(r)

)−1
when D = DT and λ ≥ 2 for all λ ∈ λ(D):∥∥∥∥(D(r)

)−1∥∥∥∥ ≤ 2r−1,∥∥∥∥T (r)
(
D(r)

)−1∥∥∥∥ ≤ 1

2
.

(33)

Since the spectral norm is sub-multiplicative, these lead to:∥∥∥∥T (r−1)
(
D(r−1)

)−1
T (r)

(
D(r)

)−1∥∥∥∥ ≤ 1

4
,∥∥∥∥(D(r−1)

)−1
T (r−1)

(
D(r)

)−1∥∥∥∥ ≤ 2r−2,∥∥∥∥(D(r−1)
)−1

T (r−1)
(
D(r)

)−1
T (r−1)

(
D(r−1)

)−1∥∥∥∥ ≤ 2r−3.

(34)

Let n1 = 4k−1, k ≥ 2, f1, f2, . . . , fn1 denote the exact right-hand side vector
blocks, fi,ε be the floating point counterpart of fi and ε ≥ 0 be selected in such
a way that

‖fi − fi,ε‖2 ≤ ε,

11

for all i = 1, 2, . . . , n1. And let f
(r)
i , r = 0, 1, . . . , k − 1, i = 1, 2, . . . , 4k−r − 1,

denote the right hand side vector blocks produced by the radix-4 BCR method

using exact arithmetic and f
(r)
i,ε be the floating point counterpart of f

(r)
i . Sub-

stituting the spectral norm estimates (33) and (34) into the formula (14) gives
the following error estimates for the reduction stage∥∥∥f (0)i − f (0)i,ε

∥∥∥
2
≤ ε = g(0)(ε, δ),∥∥∥f (r)i − f (r)i,ε

∥∥∥
2
≤ g(r−1)(ε, δ) + 1/2 · 2 · g(r−1)(ε, δ) +

1/2 · 2 · g(r−1)(ε, δ) + 1/4 · 4 · g(r−1)(ε, δ) + δ

= 4rε+ 1/3 · (4r − 1) δ = g(r)(ε, δ),

(35)

where δ ≥ 0 denotes the upper limit for the roundoff error introduced at each
step.

A similar analysis can be performed for the back substitution stage. Let

u
(r)
i , r = 0, 1, . . . , k− 1, i = 1, 2, . . . , 4k−r − 1, denote the solution vector blocks

produced by the radix-4 BCR method using exact arithmetic and u
(r)
i,ε be the

floating point counterpart of u
(k)
i . For the level r = k−1, k−2, . . . , 0, using the

formulas (16), (17) and (18) leads to∥∥∥u(r)4d+1 − u
(r)
4d+1,ε

∥∥∥
2
≤ 3 · 22r−1g(r)(ε, δ) + µ(r+1)(ε, δ) + δ < µ(r)(ε, δ),∥∥∥u(r)4d+2 − u

(r)
4d+2,ε

∥∥∥
2
≤ 22r+1g(r)(ε, δ) + µ(r+1)(ε, δ) + δ = µ(r)(ε, δ),∥∥∥u(r)4d+3 − u

(r)
4d+3,ε

∥∥∥
2
≤ 3 · 22r−1g(r)(ε, δ) + µ(r+1)(ε, δ) + δ < µ(r)(ε, δ)∥∥∥u(r)4d+4 − u

(r)
4d+4,ε

∥∥∥
2
≤ µ(r+1)(ε, δ) < µ(r)(ε, δ),

(36)

where d = 0, 1, . . . , 4k−r−1 − 1 and µ(k)(ε, δ) = 0.
At the final back substitution step (r = 0), the accumulative error is

µ(0)(ε, δ) =

[
k−1∑
r=0

22r+1 (4rε+ 1/3 · (4r − 1) δ)

]
+ kδ. (37)

This leads to the following result

‖ui − ui,ε‖2 ≤ µ
(0)(ε, δ) ≤ 2

15
(n1 + 1)2 (ε+ δ) , (38)

for all i = 1, 2, . . . , n1. Thus it can be concluded that, the radix-4 BCR method
is linearly stable with respect to the size of the problem when n1 ≈ n2. The
numerical results shown in Figure 1 support this conclusion.

6 Connection to the Radix-4 PSCR method

As mentioned in [34], the radix-2 PFCR and PSCR methods are equivalent in the
sense that both methods generate exactly the same sub-problems when applied
to a linear systems of the form (1). The first subsection describes a simplified
radix-q PSCR method and the second subsection shows that the radix-4 PFCR
method has a similar connection to the radix-4 PSCR method.

12

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 10 100 1000 10000 100000

re
s
id

u
a

l

n

radix-2 2d

radix-4 2d

radix-2 3d

radix-4 3d

Figure 1: Measured error residuals for the radix-2 and radix-4 PFCR meth-
ods when using blockwise euclidean vector norm and double-precision floating-
point arithmetic. The number of unknowns is n2 for two-dimensional prob-
lems and n3 for three-dimensional problems. D = tridiag{−1, 4,−1} (or
B = tridiag{−1, 6,−1}) and the elements of the right-hand side vector are
randomly distributed on the interval [−1, 1].

6.1 Simplified Radix-q PSCR Method

The PSCR method can be applied, under certain assumptions, to block tridi-
agonal linear systems of the form

Au = f, A = A1 ⊗M2 +M1 ⊗A2 + c(M1 ⊗M2), (39)

where A1,M1 ∈ Rn1×n1 , A2,M2 ∈ Rn2×n2 , u, f ∈ Rn1n2 , c ∈ R and ⊗ denotes
the matrix Kronecker (tensor) product1. The PSCR method includes two stages
which are very similar to the reduction and back substitution stages in the
BCR methods, and an initialization stage comprised of generalized eigenvalue
problems.

If n1 = qk − 1 for some positive integers q and k, 2 ≤ q, and the matrix A is
of the form

Ã⊗ I + I ⊗ (D − 2I), (40)

where Ã = tridiag {−1, 2,−1} ∈ Rn1×n1 , then the matrix A correspond to the
coefficient matrix in the system (1) and the generalized eigenvalue problems
reduce into

Ã(r)w
(r)
j = λ

(r)
j w

(r)
j , j = 1, 2, . . . ,mr, (41)

where mr = qr+1 − 1 and Ã(r) = tridiag {−1, 2,−1} ∈ Rmr×mr .
The radix-q PSCR method can be described by using the same notation as

was used in Sections 2 and 4. Let f (0) = f . At first, for r = 1, 2, . . . , k − 1, a
sequence of vectors is generated by using the formula

f
(r)
i = f

(r−1)
qi +

mr−1∑
j=1

(w
(r−1)
j)mr−1

v
(r−1)
i,j +

mr−1∑
j=1

(w
(r−1)
j)1v

(r−1)
i+1,j , (42)

1If A ∈ Rn×n and B ∈ Rm×m, then A⊗B = {Ai,jB}ni,j=1 ∈ Rnm×nm.

13

where i = 1, 2, . . . , qk−r − 1 and the vector v
(r−1)
i,j can be solved from

(
D + (λ

(r−1)
j − 2)I

)
v
(r−1)
i,j =

q−1∑
s=1

(w
(r−1)
j)sqr−1f

(r−1)
(i−1)q+s. (43)

This operation includes so called partial solutions [30, 31], where the right-hand
side vector is sparse and only certain components from the solution vector are
needed, namely the first and the last component in the present case. Next, for
r = k − 1, k − 2, . . . , 0, a second sequence of vectors is generated by using the
formula

u
(r)
qd+i =

mr∑
j=1

(w
(r)
j)iqry

(r)
d,j , i = 1, 2, . . . , q − 1,

u
(r)
qd+q = u

(r+1)
d+1 , d 6= qk−r−1 − 1,

(44)

where d = 0, 1, . . . , qk−r−1 − 1 and the vector y
(r)
d,j can be solved from

(
D + (λ

(r)
j − 2)I

)
y
(r)
d,j =

q−1∑
s=1

(w
(r)
j)sqrf

(r)
qd+s+

(w
(r)
j)1u

(r+1)
d + (w

(r)
j)mru

(r+1)
d+1 .

(45)

In addition, u
(r+1)
0 = u

(r+1)
k−r−1 = 0. Finally, u = u(0).

6.2 Connection to the Radix-4 PFCR Method

It is known that the matrix Ã(r) has the following eigenvalues and eigenvectors

λ
(r)
i = 2− 2 cos

(
iπ

qr+1

)
and (w

(r)
i)j =

√
2 · q−r−1 sin

(
ijπ

qr+1

)
, (46)

where i, j = 1, 2, . . . ,mr. Let q = 4. Now

(w
(r)
j)1 =

√
2−2r−1 sin

(
jπ/4r+1

)
= (−1)j−1(w

(r)
j)mr

,

(w
(r)
j)1·4r =

√
2−2r−1 sin (jπ/4) = (−1)j−1(w

(r)
j)3·4r ,

(w
(r)
j)2·4r =

√
2−2r−1 sin (jπ/2) .

(47)

It is easy to see that (w
(r)
j)2·4r = 0 when j ∈ 2N and (w

(r)
j)1·4r = 0 =

(w
(r)
j)3·4r when j ∈ 4N. By taking this into account, the formulas (42) and (43)

can be rewritten as

f
(r)
i = f

(r−1)
4i +

22r−1∑
j=1

√
21−2r sin

(
2j − 1

22r
π

)
v
(r)
i,2j−1+

22r−2∑
j=1

√
21−2r sin

(
2j − 1

22r−1
π

)
v
(r)
i,4j−2

(48)

14

and(
D − 2 cos

(
jπ/22r

)
I
)
v
(r)
i,j =

√
21−2r sin (jπ/4)

(
f
(r−1)
4i−3 + (−1)j−1f

(r−1)
4i+1

)
+

√
21−2r sin (jπ/2)

(
f
(r−1)
4i−2 + (−1)j−1f

(r−1)
4i+2

)
+

√
21−2r sin (jπ/4)

(
(−1)j−1f

(r−1)
4i−1 + f

(r−1)
4i+3

)
.

(49)

Thus the first stage of the radix-4 PSCR method is equivalent with the radix-4
PFCR reduction stage.

Similarly, the formulas (44) and (45) can be rewritten as

u
(r)
4d+1 =

22r+1∑
j=1

√
2−2r−1 sin

(
2j − 1

4
π

)
y
(r)
d,2j−1 +

22r∑
j=1

√
2−2r−1 sin

(
2j − 1

2
π

)
y
(r)
d,4j−2,

u
(r)
4d+2 =

22r+1∑
j=1

√
2−2r−1 sin

(
2j − 1

2
π

)
y
(r)
d,2j−1,

u
(r)
4d+3 =

22r+1∑
j=1

√
2−2r−1 sin

(
2j − 1

4
π

)
y
(r)
d,2j−1 −

22r∑
j=1

√
2−2r−1 sin

(
2j − 1

2
jπ

)
y
(r)
d,4j−2

(50)

and(
D − 2 cos

(
jπ/22r+2π

)
I
)
y
(r)
d,j =

√
2−2r−1 sin (jπ/4) f

(r)
4d+1+

√
2−2r−1 sin (jπ/2) f

(r)
4d+2+

√
2−2r−1 sin (jπ/4) (−1)j−1f

(r)
4d+3+

√
2−2r−1 sin

(
jπ/22r+2

) (
u
(r+1)
d + (−1)j−1u

(r+1)
d+1

)
.

(51)

Clearly this formulation is identical with (28), and thus the second stage of the
radix-4 PSCR method is equivalent with the radix-4 PFCR back substitution
stage.

When the radix-2 PSCR method is applied to a Poisson problem of the
form discussed in Section 2, about half of the sub-problems can be ignored
because the eigenvector components corresponding these to sub-problems are
zero [34]. The above analysis shows that about quarter of the sub-problems
can be ignored in the case of the radix-4 PSCR method. More generally, if the
radix-q PSCR method is applied to a problem where n1 = qk − 1, k ≥ 2 and
(M1)−1A1 = tridiag {−1, b,−1}, b ∈ R, then

(w
(r)
i)j·qr =

√
2 · q−r−1 sin

(
ijπ

q

)
= 0, for all j ∈ {1, 2, . . . , q − 1}, (52)

if, and only if, i ∈ qN. Thus, the total number of sub-problems is

Mq
count(k) =

k(q − 1)(2qk + 1)− (q + 2)(qk − 1)

q − 1
, (53)

15

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 100 1000 10000

ra
d

ix
-2

 r
u
n

 t
im

e
 /
 r

a
d
ix

-4
 r

u
n
 t

im
e

n

1 core
2 cores
4 cores
8 cores

expected

Figure 2: Relative run time difference between the radix-2 and radix-4 PFCR
methods for the two-dimensional problems (n2 unknowns). The expected-line
shows the expected run time difference according to (13) and (30).

when all sub-problems are counted and

Mq,0
count(k) = 2k(q − 1)qk−1 − qk + 1, (54)

when non-contributing sub-problems are ignored. As a result, the total number
of sub-problems is reduced asymptotically by the factor

lim
k→∞

1− Mq,0
count(k)

Mq
count(k)

= 1− (1− 1/q) = 1/q. (55)

7 Numerical results

The implementations of the radix-2 and radix-4 PFCR methods are written
using the OpenMP framework [37]. The implementations are applied to two-
and three-dimensional problems of the form (1) and the run times are compared.
The tests are carried out using a computer with two Intel Xeon 4-core CPUs.
All measurements are done using double-precision floating-point arithmetic and
the tridiagonal sub-problems are solved using the LU decomposition.

Figure 2 shows the results for the two-dimensional problems. The expected-
line shows the expected relative run time difference according to the formulas
(13) and (30). Since this estimate takes into account only the number of sub-
problems, the real relative run time difference depends largely on the type of
these sub-problems. For example, if the matrix D is a full matrix, then the
algorithm used to solve the sub-problems dominates the overall run time of the
algorithm and the real relative run time difference would track very closely to
the expected-line. The results show a quite constant relative run time difference
between the methods. That difference is reasonably close to the expected rela-
tive run time difference. Both methods scale similarly as the number of cores is
increased. The moderate sawtooth pattern is due to the modifications discussed
in Section 4.

Figure 3 shows the corresponding results for the three-dimensional problems.
Again, the relative run time difference seem to correspond reasonably well to the

16

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 100 1000

ra
d

ix
-2

 r
u
n

 t
im

e
 /
 r

a
d
ix

-4
 r

u
n
 t

im
e

n

1 core
2 cores
4 cores
8 cores

expected

Figure 3: Relative run time difference between the radix-2 and radix-4 PFCR
methods for the three-dimensional problems (n3 unknowns). The expected-line
shows the expected run time difference according to (13) and (30).

expectations. Figure 3 might suggest that the radix-4 method does not scale as
well as the radix-2 method when the number of cores increases. However, this
is likely due to the fact that the scaling of both methods varied more strongly
depending on the used hardware and software configuration when compared to
the two-dimensional implementation.

Additional comparisons can be found from [38], where GPU implementations
were compared to each other and to equivalent CPU implementations. In addi-
tion to concluding that the BCR type methods are suitable for GPU computing,
the paper also concluded that the radix-4 PFCR method is indeed better able
to utilize the GPU’s parallel computing resources. Figure 4 shows some of the
results obtained in the paper. The implementations were simpler than the ones
considered in this paper and utilized a simplified scalar cyclic reduction instead
of the standard LU decomposition. As a result, the tridiagonal system solver
constituted a smaller portion of the total run time, and thus the relative run
time difference between the methods is expected to be slightly smaller.

The radix-4 PFCR method seems to perform well in the case of small and
mid-sized problems. This is something that was to be expected since the number
of threads required to fully utilize a GPU is very high. Thus, when the problem
size is relative small, some of the computing units inside the GPU are left
partially unused and the memory band can not be used effectively. However,
the radix-4 PFCR method can use these computing units more effectively than
the radix-2 PFCR method. A more generalized GPU implementation would
use a conventional (parallel) cyclic reduction [39] or similar methods in order
to solve the arising tridiagonal sub-problems and, thus the tridiagonal system
solver would have taken a larger portion of the total run time. Then it would be
expected that the relative run time difference would be even higher. In the case
of large problems, both methods can use the computing units nearly equally,
and the radix-4 PFCR method loses this additional benefit. Also, both GPU
implementations change their behavior when the system size exceeds n = 1023
because the threads are arranged in groups with a maximum size of 1024. These
are the most probable explanations for the sudden drop in the relative run time

17

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 100 1000 10000

ra
d

ix
-2

 r
u
n

 t
im

e
 /
 r

a
d
ix

-4
 r

u
n
 t

im
e

n

GPU
CPU

expected

Figure 4: GPU comparison from [38]. Relative run time difference between
the radix-2 and radix-4 PFCR methods for the two-dimensional problems (n2

unknowns). Expected-line shows the expected run time difference according to
(13) and (30).

difference when the problem size exceeds n = 1023.

8 Conclusions

This paper presents an alternative and intuitive way of deriving a radix-4
block cyclic reduction method for systems with a coefficient matrix of the form
tridiag{−I,D,−I}. The presented method is numerically stable and highly par-
allel, allowing its efficient implementation on many-core platforms like GPUs.
The higher radix number has the effect of reducing the total number of emerg-
ing sub-problems when compared to the radix-2 block cyclic reduction method.
The method was shown to be equivalent with the radix-4 PSCR method. The
measured run time difference between the radix-2 and the radix-4 methods cor-
respond relatively well to the theoretical expectations based on the number of
arising sub-problems.

Acknowledgments

The authors thank anonymous reviewers for their valuable feedback. The pre-
sentation of the paper was significantly improved thanks to their comments and
suggestions. The research of the first author was supported by the Academy of
Finland, grant #252549.

References

[1] Hockney RW. A fast direct solution of Poisson’s equation using Fourier
analysis. Journal of the Association for Computing Machinery 1965; 12:95–
113, doi:10.1145/321250.321259.

18

[2] Buneman O. A compact non-iterative Poisson solver. Technical report 294,
Institute for Plasma Research, Stanford University, Stanford, CA 1969.

[3] Hockney RW. Potential calculation and some applications. Methods in
Computational Physics 1970; 9:135–511.

[4] Swarztrauber PN. The methods of cyclic reduction, Fourier analysis and
the FACR algorithm for the discrete solution of Poisson’s equation on a
rectangle. SIAM Review 1970; 19:490–501, doi:10.1137/1019071.

[5] Sweet RA. A cyclic reduction algorithm for solving block tridiagonal sys-
tems of arbitrary dimension. SIAM Journal on Numerical Analysis 1977;
14:706–719, doi:10.1137/0714048.

[6] Sweet RA. A parallel and vector variant of the cyclic reduction algorithm.
SIAM Journal on Scientific and Statistical Computing 1988; 9:761–765,
doi:10.1137/0909050.

[7] Swarztrauber PN. A direct method for the discrete solution of separable
elliptic equations. SIAM Journal on Numerical Analysis 1974; 11(6):1136–
1150.

[8] Sweet RA. A generalized cyclic reduction algorithm. SIAM Journal on Nu-
merical Analysis 1974; 11(3):506–520.

[9] Diamond MA, Ferreira DLV. On a cyclic reduction method for the solu-
tion of Poisson’s equations. SIAM Journal on Numerical Analysis 1976;
13(1):54–70, doi:10.1137/0713007.

[10] Heller D. Some aspects of the cyclic reduction algorithm for block tridiago-
nal linear systems. SIAM Journal on Numerical Analysis 1976; 13:484–496,
doi:10.1137/0713042.

[11] Swarztrauber PN. Approximation cyclic reduction for solving Poisson’s
equation. SIAM Journal on Scientific and Statistical Computing 1987;
8(3):199–209, doi:10.1137/0908030.

[12] Swarztrauber PN, Sweet RA. Vector and parallel methods for the direct so-
lution of Poisson’s equation. Journal of Computational and Applied Mathe-
matics 1989; 27(1–2):241–263, doi:10.1016/0377-0427(89)90369-5. Special
Issue on Parallel Algorithms for Numerical Linear Algebra.

[13] Schwandt H. Truncated interval arithmetic block cyclic reduction. Applied
Numerical Mathematics 1989; 5(6):495–527, doi:10.1016/0168-9274(89)
90047-0.

[14] Amodio P, Paprzycki M. A cyclic reduction approach to the numerical
solution of boundary value ODEs. SIAM Journal on Scientific Computing
1997; 18(1):56–68, doi:10.1137/S1064827595287225.

[15] Reichel L. The ordering of tridiagonal matrices in the cyclic reduction
method for Poisson’s equation. Numerische Mathematik 1989; 56:215–227,
doi:10.1007/BF01409785.

19

[16] Yalamov P, Pavlov V. Stability of the block cyclic reduction. Linear Algebra
and its Applications 1996; 249(1–3):341–358, doi:10.1016/0024-3795(95)
00392-4.

[17] Bini DA, Meini B. The cyclic reduction algorithm: from Poisson equation
to stochastic processes and beyond. Numerical Algorithms 2008; 51(1):23–
60, doi:10.1007/s11075-008-9253-0.

[18] Bini D, Meini B. On cyclic reduction applied to a class of Toeplitz-like
matrices arising in queuing problems. Computations with Markov Chains,
Stewart WJ (ed.), Kluwer Academic Publishers, 1995; 21–38, doi:10.1007/
978-1-4615-2241-6 2.

[19] Bini D, Meini B. On the solution of a nonlinear matrix equation arising
in queueing problems. SIAM Journal on Matrix Analysis and Applications
1996; 17(4):906–926, doi:10.1137/S0895479895284804.

[20] Bini DA, Meini B. Improved cyclic reduction for solving queueing problems.
Numerical Algorithms 1997; 15(1):57–74, doi:10.1023/A:1019206402431.

[21] Bini DA, Meini B. Effective methods for solving banded Toeplitz systems.
SIAM Journal on Matrix Analysis and Applications 1999; 20(3):700–719,
doi:10.1137/S0895479897324585.

[22] Bini DA, Gemignani L, Meini B. Factorization of analytic functions by
means of Koenig’s theorem and Toeplitz computations. Numerische Math-
ematik 2001; 89(1):49–82, doi:10.1007/PL00005463.

[23] Bini DA, Gemignani L, Meini B. Computations with infinite Toeplitz
matrices and polynomials. Linear Algebra and its Applications 2002;
343/344:21–61, doi:10.1016/S0024-3795(01)00341-X. Special issue on
structured and infinite systems of linear equations.

[24] Bini DA, Fiorentino G, Gemignani L, Meini B. Effective fast algorithms
for polynomial spectral factorization. Numerical Algorithms 2003; 34(2–
4):217–227, doi:10.1023/B:NUMA.0000005364.00003.ea.

[25] Bini DA, Meini B, Ramaswami V. Analyzing M/G/1 paradigms through
QBDs: the role of the block structure in computing the matrix G. Pro-
ceedings of the Third Conference on Matrix Analytic Methods, Latouche G,
Taylor P (eds.), Advances in Algorithmic Methods for Stochastic Models,
Notable Publications: NJ, USA, 2000; 73–86.

[26] Bini DA, Iannazzo B, Meini B, Poloni F. Nonsymmetric algebraic Riccati
equations associated with an M-matrix: recent advances and algorithms.
Numerical Methods for Structured Markov Chains, Bini D, Meini B, Ra-
maswami V, Remiche MA, Taylor P (eds.), no. 07461 in Dagstuhl Seminar
Proceedings, Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany: Dagstuhl, Germany, 2008.

[27] Guo CH. Efficient methods for solving a nonsymmetric algebraic Ric-
cati equation arising in stochastic fluid models. Journal of Computational
and Applied Mathematics 2006; 192(2):353–373, doi:10.1016/j.cam.2005.
05.012.

20

[28] Vassilevski P. Fast algorithm for solving a linear algebraic problem with
separable variables. Comptes Rendus de Academie Bulgare des Sciences
1984; 37:305–308.

[29] Kuznetsov YA. Numerical methods in subspaces. Vychislitel’-nye Processy
i Sistemy II 1985; 37:265–350.

[30] Banegas A. Fast Poisson solvers for problems with sparsity. Mathematics
of Computation 1978; 32:441–446, doi:10.2307/2006156.

[31] Kuznetsov YA, Matsokin AM. On partial solution of systems of linear al-
gebraic equations. Soviet Journal of Numerical Analysis and Mathematical
Modelling 1978; 4:453–468, doi:10.1515/rnam.1989.4.6.453.

[32] Kuznetsov YA, Rossi T. Fast direct method for solving algebraic systems
with separable symmetric band matrices. East-West Journal of Numerical
Mathematics 1996; 4:53–68.

[33] Bialecki B, Fairweather G, Karageorghis A. Matrix decomposition algo-
rithms for elliptic boundary value problems: a survey. Numerical Algo-
rithms 2011; 56:253–295, doi:10.1007/s11075-010-9384-y.

[34] Rossi T, Toivanen J. A nonstandard cyclic reduction method, its variants
and stability. SIAM Journal on Matrix Analysis and Applications 1999;
20:628–645, doi:10.1137/S0895479897317053.

[35] Rossi T, Toivanen J. A parallel fast direct solver for block tridiagonal sys-
tems with separable matrices of arbitrary dimension. SIAM Journal on Sci-
entific Computing 1999; 20:1778–1796, doi:10.1137/S1064827597317016.

[36] Buzbee BL, Golub GH, Nielson CW. On direct methods for solving Pois-
son’s equations. SIAM Journal on Numerical Analysis 1970; 7(4):627–656.

[37] OpenMP (Open Multi Processing). http://openmp.org/.

[38] Myllykoski M, Rossi T, Toivanen J. Fast Poisson solvers for graphics pro-
cessing units. Applied Parallel and Scientific Computing, Lecture Notes in
Computer Science, vol. 7782, Manninen P, Öster P (eds.). Springer Berlin
Heidelberg, 2013; 265–279, doi:10.1007/978-3-642-36803-5 19.

[39] Hockney RW, Jesshope CR. Parallel computers : architecture, programming
and algorithms. Bristol : Adam Hilger, 1981.

21

http://openmp.org/

	1 Introduction
	2 Problem formulation
	3 Radix-2 block cyclic reduction
	3.1 Reduction Formulas
	3.2 Partial Fraction Technique

	4 Derivation of the radix-4 block cyclic reduction method
	4.1 Reduction Formulas
	4.2 Partial Fractions
	4.3 Final Formulas

	5 Error analysis
	6 Connection to the Radix-4 PSCR method
	6.1 Simplified Radix-q PSCR Method
	6.2 Connection to the Radix-4 PFCR Method

	7 Numerical results
	8 Conclusions

