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ABSTRACT

Myllykoski, Mirko

On GPU-Accelerated Fast Direct Solvers and Their Applications in Image Denois-
ing

Jyvaskyla: University of Jyvaskyld, 2015, 94 p.(+included articles)

(Jyvaskyld Studies in Computing

ISSN 1456-5390; 218)

ISBN 978-951-39-6276-0 (nid.)

ISBN 978-951-39-6277-7 (PDF)

Finnish summary

Diss.

This dissertation focuses on block cyclic reduction (BCR) type fast direct solvers,
graphics processing unit (GPU) computation, and image denoising. The fast di-
rect solvers are specialized methods for solving certain types of linear systems.
They take into account specific characteristics of the system and are therefore able
to solve the system much more efficiently than less specialized methods. In par-
ticular, this dissertation focuses on symmetric block tridiagonal linear systems
that can be presented in a separable form using the so-called Kronecker matrix
tensor product. Modern GPUs can provide significantly more floating point pro-
cessing power than traditional central processing units (CPUs) and could there-
fore potentially improve the efficiency of fast direct solvers. Image denoising is a
process in which a given noisy image is cleared of excess noise. Recently, higher
order models that utilize mean curvature information in their regularization term
have received a lot of attention. These models are expensive to solve, but fast di-
rect solvers and GPUs could be a solution to this problem. A total of five articles
are included in this article-style dissertation. The first three articles deal with the
BCR methods and two present GPU implementations of different variants and
compare the implementations against similar CPU implementations. The two re-
maining articles focus on a so-called L!-mean curvature image denoising model.
The fourth article introduces a new augmented Lagrangian-based solution algo-
rithm and the fifth article describes an efficient GPU implementation of the algo-
rithm. The included articles show that GPUs can provide significant performance
benefits in the context of the BCR type fast direct solvers and higher order image
denoising models.

Keywords: alternating direction methods of multipliers, augmented Lagrangian
method, block cyclic reduction, fast direct solver, fast Poisson solver,
GPU computing, image denoising, image processing, mean curva-
ture, OpenCL, parallel computing, PSCR method, separable block tridi-
agonal linear system



Author

Supervisors

Reviewers

Opponent

Mirko Myllykoski

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

E-mail: mirko.myllykoski@ijyu.fi
mirko.myllykoski@gmail.com

Professor Tuomo Rossi

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

Professor Jari Toivanen

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Xue-Cheng Tai
Department of Mathematics
University of Bergen
Norway

Professor Gundolf Haase

Institute for Mathematics and Scientific Computing
Karl-Franzens-University Graz

Austria

Professor Olivier Pironneau
Jacques-Louis Lions Laboratory
Pierre-and-Marie-Curie University
France



ACKNOWLEDGEMENTS

I would like to thank my supervisors Professor Tuomo Rossi and Professor Jari
Toivanen. Their guidance and support has been invaluable to the success of my
PhD studies and the completion of this dissertation. I would like to thank my
other collaborators, Professor Roland Glowinski and Professor Tommi Karkka&i-
nen. It was a sincere pleasure to collaborate with them. I am grateful to the
reviewers of my dissertation, Professor Xue-Cheng Tai and Professor Gundolf
Haase, for their constructive comments and suggestions. I would also like to
thank Professor Olivier Pironneau for being my opponent.

My research was mainly funded by the Academy of Finland (grant #252549),
but additional funding was provided by the Jyvaskyla Doctoral Program in Com-
puting and Mathematical Sciences (COMAS) and the Foundation of Nokia Cor-
poration (Nokian s&d&tio).

Finally, I would like to thank my family, relatives, and friends for providing
support throughout my whole life. I am also grateful to my numerous co-workers
for their advice and support.

Jyvaskyla
August 19, 2015

Mirko Myllykoski



COMMON MATHEMATICAL NOTATIONS AND GLOSSARY

K RorC

R RU{—o00, 400}

Uy, 0x,0

® Kronecker matrix tensor product

I, n X n identity matrix

IxI ]l or [

Ixllg VIXP+B

ABC Absorbing Boundary Condition
ADMM Alternating Direction Method of Multipliers
AL Augmented Lagrangian

ALF Augmented Lagrangian Functional
BCR Block Cyclic Reduction

BV Bounded Variation

CPU Central Processing Unit

CR Cyclic Reduction

Cu Computing Unit

EL Euler-Lagrange

GMC Generalized Mean Curvature

GPU Graphics Processing Unit

L1IMC L!-Mean Curvature

MC Mean Curvature

OpenCL Open Computing Language

PCR Parallel Cyclic Reduction

PDE Partial Differential Equation

PE Processing Element

PML Perfectly Matched Layer

PSCR Partial Solution variant of the Cyclic Reduction
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Thread
SPMD Single Program, Multiple Data
TGV Total Generalized Variation

TV Total Variation
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1 INTRODUCTION

This chapter explains the background and the motivations behind the conducted
research. In addition, the research questions this dissertation seeks to answer
are listed and the overall structure of the dissertation is detailed. Finally, the
included articles, their relationships to each other and the common themes of the
dissertation, and the author’s contribution to them are listed and discussed.

1.1 Background and research motivations

The three main themes of this dissertation are block cyclic reduction (BCR) type
fast direct solvers, their graphics processing unit (GPU) implementations, and their
applications, particularly in the field of image denoising. The fast direct solvers
are a special subset of linear system solver algorithms. They can be used to solve
special types of linear systems that arise, for example, when one wishes to numer-
ically solve a variety of mathematical models describing the real world. The fast
direct solvers are said to be fast because their arithmetical complexities are often
orders of magnitude smaller than the arithmetical complexities of those methods,
that do not take into account the special properties of the numerical problem in
question. Memory requirements are an equally important factor, and fast direct
solvers often require significantly less memory for the same reasons.

Fast Poisson solvers, which are specialized direct methods for solving the
Poisson’s boundary value problem, are a very typical example of the fast direct
solver algorithms. They include, for example, Hockney’s Fourier transformation-
based method [93] and Buneman’s BCR variant [43]. More generalized fast di-
rect solvers, such as a partial solution variant of the cyclic reduction (PSCR) method
[106, 108, 165], are also capable of solving much more complicated problems.
For example, the PSCR method can be applied, with certain assumptions, to a
Helmholtz equation [89] or it can be used as part of a preconditioner [143]. In
particular, the PSCR method is very suitable for solving so-called separable block
tridiagonal linear systems that arise as subproblems in many algorithms.
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Modern GPUs are capable of providing significantly more floating-point
processing power than traditional central processing units (CPUs). This is mainly
due to GPUs’ specialized parallel computing-orientated architecture and their
large memory bandwidth, which are both required when processing 3D graph-
ics. Because modern graphics engines are extremely complex and sophisticated,
GPUs had to respond to the challenge by becoming more and more flexible. This
led to the development of modern programmable GPUs. These devices can ac-
tually be utilized in a much wider range of applications than just 3D graphics.
Because of this, several compute-intensive software programs seek to take ad-
vantage of the GPUs in their operation, and GPUs are already widely used in
scientific computing as well (see, e.g., [56, 87, 86, 97, 98]).

While significant research on the overall topic of fast direct solvers and some
GPU research on certain types of fast Poisson solvers (see, e.g., [31, 151]) already
existed when this study began, there was not GPU-related research on more gen-
eralized methods, such as the PSCR method. This was even though GPU comput-
ing had become a relatively popular research topic during the preceding years.
Part of the reason for this could have been that GPU hardware imposes a number
of restrictions on the implementation. In particular, the cores inside a GPU are
very limited in their functionality, and memory utilization-related limitations set
many obstacles. For these reasons, traditional CPU-oriented formulations may
not be suitable for GPU computation in their present form. However, for the
reasons mentioned in the proceeding paragraphs, it is likely that there exists de-
mand for effective GPU implementations of different fast direct solvers, and thus,
meeting the challenge imposed by GPU hardware is a worthwhile undertaking.

Image processing provides a natural application area for the above-discussed
fast direct solvers and their GPU implementations. In particular, the area of im-
age denoising is considered in this dissertation. Image denoising, or more gener-
ally noise reduction, is a process in which a given noisy signal is cleared from
excess noise. This process has numerous practical applications as all recording
devices have some traits that make them susceptible to interference. For exam-
ple, the number of photons received by any surface fluctuates in accordance with
the central limit theorem. Thus, even the input signals caused by a constant radi-
ation source are susceptible to interference, particularly when the exposure time
is short. The thermal noise caused by random electrons straying from their des-
ignated paths is another common source of incorrect input signals in both analog
and digital sensors. Faulty equipment may also lead to interference.

In many situations, the amount of noise must be significantly reduced be-
fore the desired information can be successfully extracted from the signal. The
motivations behind removing noise from an image can be aesthetic, in which
case the goal is to make the image more pleasing to the human eye, or the denois-
ing can be a part of a preprocessing stage of a much broader image processing
application, in which case the goal is to reduce the impact the noise would have
on the later stages of the algorithm.

The (partial) removal of the noise can be achieved in many different ways,
but quite often the task is formulated as a multi-objective minimization problem
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where the objective function tries to balance between preserving as much infor-
mation as possible and keeping the amount of noise remaining in the achieved
solution minimal. Solving this minimization problem often leads to a sequence
of subproblems that are in some cases solvable by the fast direct solvers. A GPU-
accelerated implementation would have many benefits over a conventional CPU
implementation. In particular, GPU-acceleration would bring significant perfor-
mance benefits if utilized properly and the image can be kept in the video mem-
ory, thus avoiding the need to transfer large quantities of data from one memory
space to another in some situations.

1.2 Research questions

The objectives of this research are to modify existing fast direct solvers so that
they can be implemented effectively on GPUs and to implement the modified
methods using a suitable GPU programming framework. The objectives also in-
clude to develop GPU-friendly solution algorithms for higher order image de-
noising models. The effectiveness of the GPU implementations is demonstrated
by applying them to a variety of numerical problems and comparing them against
equivalent CPU implementations.

The four research questions this dissertation seeks to answer are the follow-

ing:

RQ1: Can fast direct solver methods be modified such that they are better suited
to GPU computation?

RQ2: Can GPUs provide significant performance benefits in the context of fast
direct solvers?

RQ3: Is it possible to develop efficient GPU-friendly numerical methods for
higher order image denoising models?

RQ4: Can GPUs provide significant performance benefits in the context of the
aforementioned higher order models?

1.3 Structure of the work

The structure of this dissertation is as follows: In addition to the above-listed re-
search motivations and questions, Chapter 1 lists the included articles and the
author’s contributions to them. Chapter 2 introduces the reader to GPU compu-
tation and the Open computing language (OpenCL) programming framework that
was used to implement the fast direct solvers and image denoising algorithms
considered in this dissertation. Chapter 3 deals with separable linear systems
and BCR type fast direct solvers. Chapter 4 provides a brief summary of the aug-
mented Lagrangian (AL) methods used in the image denoising algorithm consid-
ered in this dissertation. Chapter 5 provides a brief introduction to image denois-
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FIGURE 1 The included articles and how they relate to the three main themes of the
dissertation.

ing methods and, in particular, to the so-called L'-mean curvature (LIMC) image
denoising model. Chapter 6 lists the research contributions of the included arti-
cles, and Chapter 7 provides the final conclusions. Chapter 8 offers some ideas on
how to further develop the subject matter and presents some preliminary results.

1.4 Author’s contributions to the included articles

A total of five articles are included in this dissertation. The author’s contribu-
tions are mainly related to implementing the considered algorithms, performing
comparisons between different variants and implementations, and analyzing the
obtained results in various ways. However, the author has done some algorithm
development in two of the included articles. The overarching theme of the dis-
sertation is the fast direct solvers, and all five included articles are in some way
related to that topic. The included article [P1I] is the purest example as it is almost
entirely focused on fast direct solver type algorithm development. The included
articles [PI] and [PIII] bring in the GPU computing perspective and are largely
implementation-oriented. The included article [PIV] introduces a suitable appli-
cation area for the obtained GPU implementations in the form of an image denois-
ing algorithm, and included article [PV] brings together all three main themes by
presenting a GPU-accelerated image denoising method that utilizes a fast direct
solver. The connections of the included articles with respect to the three main
themes are illustrate in Figure 1.

The first included article [PI] focused on BCR type linear system solvers. Two
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(simplified) GPU implementations were presented and compared against equiv-
alent CPU implementations. In addition, the article described a simplified cyclic
reduction (CR)-based tridiagonal system solver and investigated the impact of
increasing the so-called radix number of the algorithm. The results were pre-
sented at the Workshop on State-of-the-Art in Scientific and Parallel Computing
(PARA2012) in Helsinki, Finland in the summer of 2012. A revised proceedings
article was published in Applied Parallel and Scientific Computing (volume 7782 of
Lecture Notes in Computer Science) in 2013. The author derived explicit formulas
for a radix-4 BCR method; wrote the CPU and GPU implementations; performed
comparisons and analyses; and wrote the majority of the article.

The second included article [PII] was prepared simultaneously with the first
included article. The article presented an alternative way of deriving a parallel
radix-4 BCR method for systems with a particular type of coefficient matrix. A
GPU implementation was previously presented in [PI]. The article was published
as a journal article in Numerical Linear Algebra with Applications in 2014 (available
online since 2013). The author derived the majority of the formulas; wrote CPU
implementations; performed comparisons and analyses; and wrote the majority
of the article.

The third included article [PIII] extended the previous work presented in
[PI]. The article presented a generalized GPU implementation of a radix-4 PSCR
method and compared it against an equivalent CPU implementation. Initial re-
sults were presented at the SIAM Conference on Parallel Processing for Scientific
Computing in Portland, Oregon, USA in early 2014. The article was submitted
as a journal article to SIAM Journal on Scientific Computing in early 2015. The au-
thor wrote the GPU implementation; performed comparisons and analyzes; and
wrote the majority of the article.

The fourth included article [PIV] focused on the LIMC image denoising model.
The article presented an alternative AL-based solution algorithm and demon-
strated the performance of the proposed algorithm by numerical means. One
of the arising subproblems can be solved using the PSCR method. In addition,
two subproblems can be solved point-wise without inter-process communication,
which makes them very suitable for GPU computing. The article was published
as a journal article in SIAM Journal on Imaging Sciences in 2015. The author con-
tributed a few minor details to the actual formulation of the algorithm; wrote a
CPU implementation; performed comparisons and analyses; and wrote 40-50%
of the article.

The fifth included article [PV] is a natural follow-up to [PIV]. The article pre-
sented a GPU-accelerated version of the image denoising algorithm presented in
[PIV] and compared it against an equivalent CPU implementation. The article
was presented in 23rd International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2015 (WSCG 2015) in Plzen in the
summer of 2015 and appeared in the full paper proceeding of the conference. The
author wrote the GPU implementation; performed comparisons and analyzes;
and wrote the majority of the article.



18

Remark 1.1 The author has presented implementations and numerical results similar to
those presented in the included articles [PI] and [PIII] in his Master’s thesis [125].



2 GPU COMPUTING AND OPENCL

This chapter introduces the reader to general GPU computing concepts and ter-
minology. Some additional information on contemporary Nvidia GPUs is pro-
vided because that information is essential for the proper understanding of the
GPU implementations and the numerical results presented in the included arti-
cles.

2.1 OpenCL

OpenCL [104] is an open standard for general purpose parallel programming on
heterogeneous platforms. The aim is to provide software developers a portable
and efficient framework which is able to tap into the colossal computing power
of the modern multi-core CPUs, GPUs, and other “accelerator” devices.

2.1.1 Computing units and processing elements

The OpenCL platform model divides computer hardware into a host and one
or more OpenCL devices. In most situations, the main CPU acts as the host. A
OpenCL device may in turn be, for example, a GPU or a synergistic processing
element found inside IBM Cell processors. The main computational tasks are per-
formed by the OpenCL devices while the host manages and submits commands
to the OpenCL devices. An OpenCL device contains one or more computing units
(CUs) that are further divided into one or more processing elements (PEs). Figure
2 shows an example of an OpenCL platform that contains four OpenCL devices,
each OpenCL device contains four CUs, and each CU contains 10 PEs.

On the logical level, the PEs within a CU execute instructions either together
as a single instruction, multiple data (SIMD) unit or separately as single program,
multiple data (SPMD) units. The former means that the PEs within a CU share the
same program counter but process different data, that is, the CU behaves simi-
larly to a vector processor. The latter means that each PE within a CU has its own
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Computing units

[ (RN
[ AR

Processing elements
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OpenCL device —

FIGURE 2 An example of an OpenCL platform.

program counter and can therefore operate independently. However, the actual
hardware level implementation can be very different. For example, contempo-
rary Nvidia GPUs implement what Nvidia calls single instruction, multiple thread
(SIMT) architecture which is, in a certain sense, a hybrid between the SIMD and
the SPMD architectures.

2.1.2 Kernels, work-groups, and work-items

An OpenCL application is executed on the host in the same way as normal ap-
plications but with the difference that the application can submit commands to
the OpenCL devices using the OpenCL application programming interface. The
OpenCL device-side program code execution is based around the concept of a
special subroutine called (OpenCL) kernel. The kernels are written using a par-
tially restricted ISO C99 programming language that can be extended with stan-
dard and platform specific extensions. An OpenCL application can place kernel
launch commands and other operations into command-queues from which they are
then automatically scheduled onto the OpenCL devices.

An OpenCL application has to define an index space for each enqueued ker-
nel launch command. This index space is then used to launch an instance of the
kernel, or a work-item (thread), at each point of the index space. This index space
can be one- , two-, or three-dimensional and defines a unique global index number
for each work-item. All work-items start from the beginning of the kernel pro-
gram code, but the indexing allows the execution paths of different work-items to
branch off. The work-items are grouped into work-groups, and each work-group
is also given a unique index number. Each work-item is assigned a local index
number inside the work-group. Figure 3 shows an example where each work-
group (illustrated by the gray boxes) contains four work-items (illustrated by the
black strings). The index pairs in the top left corners of the boxes correspond
to the work-group indexes, the index pairs below the boxes correspond to the
global work-item indexes, and the indexes inside the boxes correspond to the
local work-item indexes.
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FIGURE 3 An example of how the work-items are grouped into work-groups and how
they are indexed.

2.1.3 Memory hierarchy

OpenCL has a multi-level memory model. Each work-item has access to four
memory regions as follows:

Global memory: A memory region to which all work-items in all work-groups
have read and write access. It is usually the largest memory region of the
four and is implemented off-chip on the OpenCL device. Thus, the memory
bandwidth is often relatively low when compared to the other three avail-
able memory regions. The reads and writes to global memory may or may
not be cached, depending on the hardware implementation.

Local memory: A memory region which is visible to a single work-group. All
work-items within the work-group have read and write access. It is usu-
ally implemented as a dedicated memory region inside the CUs and con-
sequently has much higher bandwidth than the global memory. The local
memory is usually used to allocate space for variables that are shared by all
work-items within the work-group.

Constant memory: A section of the global memory that remains constant during
the execution of a kernel. Reads from the constant memory are often cached.
Only the host has write access to the constant memory.

Private memory: A region of memory that is visible to a single work-item. It is
usually mapped to a section of the global memory.

Figure 4 shows an example of an OpenCL device where the local memory is im-
plemented as a dedicated region of memory on the CUs.

The host allocates, manages and has read and write access to global and
constant memory. Local and private memory are allocated and managed auto-
matically by the OpenCL runtime system. The host and OpenCL memory spaces
are separate by default. However, they can interact through explicit copying and
memory region mapping commands issued by the host.
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FIGURE 4 An example of an OpenCL device where the local memory is implemented
as a dedicated region of memory on the CUs.

OpenCL implements a relaxed consistency memory model. The memory is al-
ways consistent for a single work-item, but the state of memory visible to differ-
ent work-items is not guaranteed to be consistent. Memory consistency can be
achieved momentarily within a work-group by using a special work-group bar-
rier command. The work-items within a work-group will stall until all work-items
have reached the barrier and all previous memory operations have been com-
pleted. The memory is consistent for all work-items within all work-groups right
after a kernel is launched. Thus, a kernel that requires global memory consistency
must be divided into multiple subkernels.

2.2 Nvidia’s GPU hardware

The OpenCL specifications do not tell much about the actual underlying hard-
ware implementation. However, programmers should be aware of these details
in order to produce efficient program code. In addition, this information is essen-
tial to understand the GPU implementations and the numerical results presented
in the included articles. For these reasons, this subsection provides some ad-
ditional information on Nvidia’s current hardware. The capabilities of a given
Nvidia GPU depend on the compute capability number of the device. For example,
a Nvidia GeForce GTX580 GPU that is a few years old has the compute capability
of 2.0, while a much newer computing-orientated Nvidia Tesla K40c GPU has a
compute capability of 3.5. The content of this subsection is based on Reference
[128] and is general enough to be applied to most concurrent Nvidia GPUs.
Nvidia refers to CUs as multithreaded streaming multiprocessors. These units
implement the aforementioned SIMT architecture. Each CU is capable of execut-
ing hundreds of work-items concurrently. The work-items of a single work-group
execute concurrently on a single CU, and multiple work-groups can execute con-
currently on a CU. Each work-group is partitioned into subgroups referred to
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FIGURE 5 A work-group consisting of 96 work-items is divided into three warps.

as warps. In contemporary devices, each warp is made out of 32 work-items and
contains work-items with consecutive, increasing index numbers. Figure 5 shows
an example of a work-group consisting of 96 work-items and how the work-items
are grouped into warps.

Each work-item within a warp has its own instruction address counter and
register state, and can therefore operate independently. The stage of each warp is
stored on-chip during the entire lifetime of the warp, which means that context
switching has practically zero cost. A warp executes the kernel program code one
common instruction at a time. During each cycle, a warp scheduler selects a warp
that has work-items ready to execute their next common instruction and issues
the instruction to those work-items. This allows twofold instruction pipelining:

— instruction-level parallelism within a single work-item because multiple mu-
tually independent instructions from the same work-item can be scheduled
simultaneously and

— work-item-level parallelism through simultaneous hardware multithreading.

Diverging execution paths are executed serially, and the work-items that do not
follow the common path are disabled. Thus, full efficiency is achieved only when
all 32 work-items within a warp follow the same execution path. The PEs inside
the same CU share certain resources, such as a register file, special function units,
load/store units, and caches. These resources are partitioned among the work-
groups, which limits the number of work-groups that can reside and be processed
simultaneously in a CU.

Each CU inside a compute capability 2.0 GPU contains 32 PEs, 4 special
function units for single-precision floating-point transcendental functions, and 2
warp schedulers. At every instruction issue time, each warp scheduler can issue
an integer or a single-precision instruction for a warp that is ready to execute.
Only one warp scheduler can be active while issuing double-precision instruc-
tions. Each CU inside a compute capability 3.5 GPU contains 192 PEs, 32 spe-
cial function units, and 4 warp schedulers. At every instruction issue time, each
scheduler can issue two independent single-precision instructions for any warp
that is ready to execute.

Figure 6 shows an example of a compute capability 2.0 CU. The CU has two
active work-groups (wg0 and wgl) and each work-group consists of four warps
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FIGURE 6 An example of how warps are scheduled on a Compute Capability 2.0 GPU.

(warp0, warpl, warp2, and warp3). The black strings correspond to the work-
items that are ready to execute the next instruction, and gray strings correspond
to work-items that are disabled for the current instruction issue time. Both sched-
ulers have three warps that contain at least one work-item that is ready to execute
the next instruction. The first warp scheduler has issued the warp wg0,warp2 to
the first half of the PEs (illustrated by the black and gray squares), and the second
warp scheduler has issued warp wg0,warpl1 to the second half of the PEs. Thus,
the instructions are scheduled over two clock cycles. Because the warp scheduled
by the second warp scheduler contains work-items that are disabled, only 21 PEs
are actually utilized during the first cycle and only 22 are actually utilized during
the second cycle.

Latency, that is, the number of clock cycles it takes for a warp to be ready to
execute its next instruction, has a huge impact on the performance. A full perfor-
mance is achieved only when each warp scheduler has an instruction to issue for
a warp at every clock cycle. In that situation, the latency is completely hidden.
Memory access operations also lead to latencies, in particular when the off-chip
global memory is used, because in that case usual latency times are measured in
hundreds of clock cycles.

The global memory request issued by the work-items within a warp are coa-
lesced into one or more combined memory transactions. The global memory can
be accessed via 32-, 64-, or 128-byte memory transactions that must be naturally
aligned by the size of the memory transaction. Scattered or misaligned memory
requests are handled automatically but lead to redundant memory traffic. Com-
pute capability 2.0 and 3.5 GPUs have level 1 and 2 caches for global memory
transactions.

The local memory is divided into 32 memory banks organized in such a way
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that successive 32-bit (or 64-bit for compute capability 3.5 devices) words map
to successive memory banks. Each memory bank can serve one memory re-
quest during a clock cycle, and thus, the highest local memory bandwidth is
achieved when the warp accesses all memory banks simultaneously. Simulta-
neous memory requests that map to the same memory bank but different 32-bit
(64-bit) words cause a memory bank conflict and are processed sequentially. Com-
pute capability 2.0 and 3.5 GPUs support up to 48 KB of local memory per CU.

2.3 An example: a scalar sum

The following source code listing shows how a scalar sum can be effectively com-
puted on a (Nvidia) GPU using the local memory:

#define THRESHOLD 16

/*

X

A function that computes the sum of the elements
+ in a vector. The number of elements in the vector
must be smaller than twice the size of the work—group.

*

* Arguments:

lwork : A pointer to the wvector in the local memory.
+ size : The wvector lenghth.

Returns:

The sum of the elements in the vector.

*

*

X

*/

float Isum(__local float =Ilwork, int size) {
// Get the local index number.
int local_id = get_local_id (0);

if (size < 1)
return 0.0f;

// Sums that are bigger than a given threshold are
// processed in parallel. The actual summation is
// performed recursively in pairs.

while (THRESHOLD < size) {

// Calculates how many element pairs are
// actually added together during this recursion
// step.

int pairs = size/2;

// Updates the vector lenghth in preparation for
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// the mnext recursion step.
size = pairs + (size & 0x1);

// Each work—item adds togetger two elements.
if (local_id < pairs)
Iwork[local_id] += lwork|[size+local_id ];

// Syncronize using the barrier command.
barrier (CLK_LOCAL_MEM_FENCE) ;
)

// Sums that are smaller than the given threshold are
// processed sequentially by a single work—item .
if (local_id == 0) {
float sum = 0.0f;
for(int i = 0; i < size; i++4)
sum += lwork][1i];
Iwork[0] = sum;

}

// Syncronize using the barrier command.
barrier (CLK LOCAL MEM _FENCE);

return lwork[0];

}

The above implementation is very similar to the prefix sum algorithm presented
in [88]. Figure 7 shows an example where the elements of a vector consisting
of 35 single-precision floating-point numbers are summed together. During the
first recursion step, a total of 17 element pairs are added together in parallel by
17 work-items. The results are then stored on top of the original vector with-
out memory bank conflicts. The work-items then call the barrier synchronization
subroutine in order to achieve memory consistency. The same pairwise summa-
tion is then repeated during the second recursion step by nine work-items. After
this point, the size of the remaining sum is smaller than a given threshold and the
remaining elements are summed by a single work-item. The reason for this is that
the pairwise summation causes additional overhead that will have a significant
impact if the size of the remaining sum is small.



FIGURE 7 An example of how a scalar sum can be effectively computed on a GPU.
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3 CYCLIC REDUCTION METHODS

This chapter serves as an introduction to separable linear systems and CR-based
solvers. The chapter begins by defining the Kronecker matrix tensor product and
providing a few examples of numerical problems that give rise to such linear
systems. The chapter then proceeds to describe the CR method and its parallel
variant. Finally, a particular radix-2 BCR method and a generalized radix-q PSCR
method are presented.

3.1 Kronecker matrix tensor product

The fast direct solvers considered in this dissertation can be applied to certain
types of block tridiagonal linear systems having coefficient matrices that can be
presented in a separable form using the so-called Kronecker matrix tensor prod-
uct:

Definition 3.1 (Kronecker matrix tensor product) The Kronecker matrix tensor prod-
uct is defined for matrices B € K" *"™ gnd C € K"2*"2 gs

bLlC bLzC . b1,m1C
BRC= bzf'lc bz"zc T bzr"”lc c [KMmmaxmymy
by 1C by 2C ... by, C

In this dissertation, the field KK can be either R or C.
The product has numerous properties that will prove useful later on:

Lemma 3.1 The Kronecker matrix tensor product is bilinear and associative, that is:

— Let B € K">*™ gnd C,D € K"™*™2, Then,

B® (C+D)=B®C+B®D ¢ Knm*mm,
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— Let B,C € K">*™ gnd D € K"™*"2, Then,
(B+C)@D=B®D+C®D ¢ Knmnxmm,
— Let B e K> C e K"*"2 gnd k € K. Then,
(kB) @ C=B® (kC) = k(B® C) € K""2*m™mM2,
— Let B e K"M*™M C ¢ K"%M2 gnd D € K"*"3, Then,
(B®C)®D =B® (C®D) e KMnmnxmuins
Lemma 3.2 Let B € K> C ¢ K™% D ¢ K™>™ gnd E € K™*"2, Then,

(B X C)<D & E) = (BD ® CE) c Kmmxmny

Lemma 3.3 Let D € K"*" gnd E € K"™*" be nonsingular matrices. Then the
product matrix D ® C € K""2*""2 s glso nonsingular and

(D ® E)—l — D—l ® E—l c ]Knlnzxnlnz‘

These three lemmas follow from the definition of the Kronecker matrix tensor
product.

3.2 Separable linear systems

The most general form of a separable linear system considered in this dissertation
is Au = f, with

A=A ®3M;+M; ®A2+C(M1 ®M2) € Kmmxmmy (3.1)

where the factor matrices A1,M; € K"*™ and Ay, M, € K"2*"2 are symmetric
and tridiagonal, and ¢ € K. This means, that the coefficient matrix A is symmetric
and block tridiagonal.

Separable linear systems with a coefficient matrix of the form (3.1) typically
correspond to two-dimensional partial differential equations (PDEs). However, the
methods discussed in this dissertation can also be applied to linear systems aris-
ing from three-dimensional PDEs, in which case the coefficient matrix A is of the
form

A1 QM) QM3+ M ® Ay ® M3 4+ M; ®M2®A3+C(M1®M2®M3), (3.2)

where the factor matrices Az, M3 € K"3*"3 are symmetric and tridiagonal.
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FIGURE 8 An example of an orthogonal finite element triangulation.
3.2.1 Poisson equation

Let Q) be a rectangular domain of R? with d € {2,3}, and let X, 1=0,1,...,n;+
1, be the mesh points of an orthogonal finite element triangulation of () in the
xj-direction such that x;, xj,,+1 € dQ). Figure 8 shows an example of such a
triangulation. Let us first consider a two-dimensional Poisson equation posed on

) with Dirichlet boundary conditions:
—Au= in (),
u=f in (3.3)
u=g, on dQ).

When the above boundary value problem is discretized using (mass lumped) lin-
ear finite elements, we get the following separable block tridiagonal linear sys-
tem:

(A1 @My +M; ®@ Ap)u =f, (3.4)
where, forj =1,2,
bi1 aj1
A= | ?j,z € RY* (3.5)

and

M; = o € R, (3.6)
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with

bjfl = wl ajl = _hil and dj,l = M

3.7
hiphjrea = i 2 5.7)

Above, hj; = x;; — xj;—1. An equivalent three-dimensional Poisson boundary
value problem leads to

(A1 M @Mz +M; @A M3 +M; @ My ® Az)u = f. (3.8)

If the discretization grid is equidistant, then the two-dimensional case (3.4)
can be alternatively written as

(A®1, +1, @ (D—2I,))u=f, 3.9)

where A = tridiag{—1,2, -1} € R"*" and D = tridiag{—1,4, -1} € R™*"™,
The above translates to the following block tridiagonal linear system:

D _Inz uq f1
_Inz D . ur _ f2 (3 10)
S :
-I,, D u,, £,

In the three-dimensional case, we get

D _In2n3 up fl
Ty, D w _ | f (3.11)
. _Iﬂzﬂs :
R D uy, £,
with
B =1,
p—| Im B € RM2"3xm2n3 (3.12)
. L,
-1,, B

where B = tridiag{—1,6, —1} € R"*"3,

The methods discussed in the included articles [PI] and [PII] can be applied
to the special form (3.9) assuming that n; = 251 — 1 for some positive integer k;.
The GPU implementations discussed in the included article [PI] assume, more-
over, that 1, = 22 — 1 and n3 = 28 — 1 for some positive integers k and k3. The
general cases (3.4) and (3.8) can be solved using the generalized GPU implemen-
tation depicted in the included article [PIII].
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3.2.2 Helmholtz equation

As an another example, consider the following approximation of a Helmholtz
equation

—Au—wzu:f, inRY,

3.13
lim, oo (47172 <?;f — ia)u) =0, R

where d € {2,3}, w is the wave number, and i denotes the imaginary unit. The
second equation in (3.13) is the so-called Sommerfeld radiation condition that poses
u to be a radiating solution. Before any attempts to discretize the equation are
made, the unbounded domain R? is usually truncated to finite a one, which
means that the Sommerfeld radiation condition must somehow be approximated
at the truncation boundary. Two popular techniques, which are relevant for the
purposes of this dissertation, are a perfectly matched layer (PML) [16, 17] and an
absorbing boundary condition (ABC) [11, 66, 74]. In both cases, discretization using
bilinear (or trilinear) finite elements on an orthogonal finite-element mesh pro-
duces a separable block tridiagonal linear system [89].

A second-order ABC applied to a two-dimensional Helmholtz equation of
the form (3.13) leads to

—Au—wzu:f, in Q),
i

Vu-n—iwu— 0 (Vu-s)-s =0, on the faces of (2, and (3.14)
Viu-s— &Twu = 0, in the corners of 0(),

where () is the rectangular truncated domain, n denotes the outward unit nor-
mal to d(), and s denotes the tangential unit vector on 0Q). Discretization using
bilinear finite elements leads to the following separable block tridiagonal linear
system [89]:

(A1 @My +M; ® Ay — w?M; @ Mp)u = f, (3.15)

where, forj = 1,2,

bj,l {1]‘/1
aj1 bj/2 X
Aj= . _ e C"ix" (3.16)
.. .. ﬂj,nj—l
L Gjni—1 bjr"j ]
and
_dj,l Cj,l i
Ciq d‘2 NP
M] — s .]r ‘ e Cnlxn], (317)
.. .. Cj,n/-—l
L Cjni—1 djf”j J
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with

hij_1+h;
d) = % 1=23,...,nj—1, (3.18)
d J— h]'l 1 o ]n],1 1
Ty T T T T T 2w
1 hj,
a]l - _@, and Cj,l = ?

Above, hj; = xj; — xj; 1, where x;;, | = 1,2,...,nj, are the mesh points in the
xj-direction such that x;1, x;,, € dC). The generalized GPU implementation de-
picted in the included article [PIII] can be applied to the systems arising from
two- and three-dimensional Helmholtz equations treated either with the PML or
the ABCs.

3.3 Scalar cyclic reduction method

CR methods are are a well-known group of recursive algorithms for solving (block)
tridiagonal linear systems. The basic idea is to form a sequence of subsystems
decreasing in size. Usually, the system size is reduced by a factor of two in each
reduction step, that is, the method’s radix number is two. The reduced subsystems
are then solved in the reverse order during the back substitution stage of the al-
gorithm. Methods with a higher radix number are also a possibility, as will be
seen later in Section 3.5.

3.3.1 Traditional formulation

Let us assume that we have a tridiagonal linear system of the form

Du = f{, (3.19)
with the coefficient matrix
b1 1
D= |2 b € K™, (3.20)
' Cn—1
ay by

where the vectors a, b, ¢ € K" form a band representation for the coefficient ma-
trix (a1 = 0, ¢, = 0). For the sake of simplicity, we assume that n = 2% — 1 for
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some positive integer k. The method can be easily generalized for an arbitrary
n € IN.

Consider an even-numbered row and the odd-numbered rows above and
below it:

agj1Uoj—2 + boj qupj 1 + Coj 1Ua; = faj1
Apjlinj—1 +  byjunj +  cajlinjiq = foj

Agj11Uoj + boji1tzjr1 + Cojy1tijra = foj41

where j = 1,2,...,25"1 — 1 and uy = uy = 0. Let us multiply the upper odd-
numbered row by a; = —a;/byj 1 and the lower odd-numbered row by g; =
_Czj/b2j+l. Now, we have

KjApj_1Ugj—p — AjUpj—1 + &jCoj_1U2;j = IXjfzj—l
Apjligj—1 +  bajligj + Cojlinjn = foj

Bjazj+1taj — Cojuizjt1 + Bjcaj1tajra = Bif2j+1

and can eliminate the unknowns u5; 1 and ;1 from the 2jth row by adding
the three rows together. In the same way, we can eliminate all odd-numbered
unknowns from the system. Thus, by denoting a0 = a, b0 = b, O = ¢,
0 = f, and u(?) = u, we have a new tridiagonal system

1 1 1 1
4 0] (4
1 1 . 1 1
ay b2 - ué ) _ fZ( ) (3 21)
.. .. C(l) . . ¢ .
. . ok—1_ : .
1 1
agzl_l bgzl_l ugk)—l_l fz(k—)l_l
with
1 0 0
=),
1 0 0
B! = i) /5L,
(1) (1) (0) (1)
ap - =g ay g, a0 = 0, 522)
D ﬁ(l)C(Q) D —0 '
j Jol Tkl
1 0 1) (0 1) (0
b]( ) = béj) —|—zx](. )céjll + ,3]( )agj)ﬂ, and
1 0 1 0 1 0
V=1 i
Above, we denote u](-l) = ué?) = Uy;. Obviously, this same reduction operation can

be applied recursively to this new system. By taking this idea even further, we
can actually form a sequence of tridiagonal subsystems. The remaining reduced
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FIGURE9 An example of how the CR method accesses the memory during the reduc-

tion stage.

systems are defined, for each reduction stepi =2,3,...,k —1, as

o 01 [
2 b . w || A (3.23)
R K
ayly W] [l A
with
of) = ~af Vg,
i i—1) ;1 (i—1
B ==y by,
(i) (i) ,(i=1) (i)
a; &y o, 8y = 0 (324)
D IB(‘i)C(ifl) PO '
j o2l ki T
i i-1 i) (i-1 i) (i-1
b = b5V a7 + gl ), and
. - N N
= A
Above, we denote ul) = u%_l) = Uyi;. Figure 9 illustrates how the CR method

accesses the memory during the reduction stage when the data is kept in place.

Because u

Finally, after k — 1 reduction steps, we get

i T M2

bgk_l)ugk_l) :fl(k—l) — ugk—n :fl(k—l)/bgk—l)' (3.25)
(i+1) j=2,4,...,2¢"—2and
O e

,i=1,3,...,2 -1, (3.26)
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with u(()i) = ug(),, = 0, we can solve the previously generated subsystems in the
reverse order by using the following back substitution formula

(i) _ Q0,6+ 0, 6+1) Y 0 :
O {(f; =/ p = ¢l ) /7 whenj @ 2N, (327)

Ui when j € 2IN,

wherei = k—-2,k—-3,...,0,j = 1,2,... ,2k=1 _ 1, and u((fﬂ) = u;:llf)l = 0.
Finally, we have u = D~'f = u(?). The arithmetical complexity of the method is
O(n).

The CR method offers some possibilities for parallelization because each re-
duction and back substitution step can be performed in parallel. For this reason,
the method has been used extensively in GPU computing (see, e.g., [79, 103, 114,
150, 180]). It was also used in the included articles [PI] and [PIII]. However, each
step is dependent on the preceding steps, and the number of parallel tasks is re-
duced by a factor of two on each reduction step, which means that the last reduc-
tion steps make use of only a fraction of the available cores. Thus, the CR method
is not optimal for systems with a very large number of cores, such as GPUs. In
addition, the memory access pattern disperses exponentially if the data is stored
in place, as shown in Figure 9, which may be a disadvantage in some platforms.
In particular, the dispersing memory access pattern causes problems with Nvidia
GPUs because the scattered global memory requests cannot be processed effec-
tively and the local memory requests placed in the same memory bank lead to
memory bank conflicts.

Remark 3.1 As noted in [72], the CR method can also be formulated using the Schur’s
complement. The idea is to rearrange the linear system (3.23) as

AD BOT Tal® £0)
{c(i) D(i)} Lﬁ i)] = {f(i)}' (3.28)

where AW = diag {6y, b}, b}, 1, D0 = diag {b", 0,6}, } a0 =
. . . T ) . ; . T .. . . . T
[ugz), uil)l L u;)—z;z} ul) = [ugl), Llél), o ”g)—i,l] JE0) = {fél)/le(l)’ N '/f2(li)—i,2} )

o ; . . T
I V0 LR A L

c K& -29x@7-1, (3.29)

(i)
2k=i_p

(i)

Cor=i_p
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and

C(i) _ - c K(Zk—ifl)x(2k_i72)' (3.30)

ok=i_3
(i)
L 2k=i—1 ]

Now, each reduction step can be rewritten as

<A<i—1) _gli-1) (Do—l))*l C(i—l)) ul) —

§i-1) _ gli-1) (D(i—l)) i) (3.31)

— £(i)

and the odd-numbered rows can be solved from
DO 4 ciyli+1) — §0), (3.32)

Similar Schur’s complement formulations allow us to eliminate an arbitrary number of
rows per reduction step, thus in principle leading to CR type methods with higher radix
numbers.

3.3.2 Parallel cyclic reduction

Parallel cyclic reduction (PCR) method [95] provides a partial solution to the limi-
tations of the CR method. Let us assume without loss of generality that we have a
tridiagonal linear system of the form (3.19) with n = 2k for some positive integer
k. Again, the method can be easily generalized for an arbitrary n € IN. Consider
the following three rows:

aj_quj_p + b]-,luj,1 + Ccj—1U; = f]',l
ajuj—1 +  bjuj+ cjujn = Jj

Ajtj + bjpujn + catjn = fi

where j = 1,2,.. .,2k. The rows rows 0 and 2% + 1 are assumed to be zeros.

As before, we can eliminate the unknowns u; 1 and u;,; from the jth row by

multiplying the row above the jth row by a; = —a;/b; 1 and the row below the

jth row by B; = —c;/bj;1 and then adding the three rows together. Once this

reduction operation is applied to all rows, we effectively get two new tridiagonal

linear systems. The first subsystem involves only the even-numbered unknowns,
and the second subsystem involves only the odd-numbered unknowns.

More specifically, let al® =a, b0 =b,c® =, 0 = £, and u® = u. The
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two new tridiagonal subsystems are of the form

0,0 0,0
b0 (00
ag0,0) bé0,0)
o
2 o
and
b§0'1) 650,1)
aé@,l) béo'l)
0,1
C(k—l)
) )
where, for/ = 0,1,
(0,0) 0 0
&; __aéj)—l/bgj)—l—l’
ol 0 0
B; __ng)—l/béj)Hl’
0, 0l) (0 0,
dO = g0 0
0, 0l) (0 0,
R
0, 0 0) (0
L B
ol (0,1)
f] fZJ +ch

on_ (0 _
Above, we denote Uj = Uil = Uy

+ ﬁ
(0)
f2j7171 + /3]' f2j71+1'

ug0,0) fl(0,0)
w15 (3.33)
&0 £
ugO,l) fl(O,l
”g_)ll) f, 2((_)'1) ) (3.34)
ulr!) J
0,
(3.35)
0,
”21) 111, and

Naturally, this reduction operation can be applied recursively to these two
new subsystems. The remaining reduced systems are defined, for each reduction

stepi =2,3,...,k as
b
! 1
A 0
C(i)—l
1 )
aék)ﬂ' bzk)—i

2, (3.36)
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i=0

i=1

i=2

i=3

8N 8N4 68N-2 8N-6 8N-1 8N-5 8N-3 8N-7
(0,0,0,0)(0,0,0,1) (0,0,1,0)(0,0,1,1) (0,1,0,0)(0,1,0,1) (0,1,1,0)(0,1,1,1)

FIGURE 10 A four-level binary tree representation for the tridiagonal subsystems gen-
erated by the PCR method.

where I = (lp,1,12,...,1;) € {0} x {O,l}i,

glordi) — (o) Uoseeoliog)
&j “2] /b z] 171 ’
(l rli) di- 'l )
:B] - _C2] l /b2] l+1 ’

](10 Ai) lX](lO i)ag;or-l /1171)’ aglo Ai) _ 0, 5
0,e- loi) (loyeeed; lo,--.s '
]( ) ﬁ](o )C§]01+1 ), Cékoz )_0
b](lo di) _ b(] ; di— 1)+a(lol ,Z)Cgo/lr_zll —|—,B (los-e-il agorlill)’ and
I (I i I (o (Ioyorli) p(l0,m- s
fj(o fzo 1 +D‘](o fZ]Olfll +/30 f(olJrll)'
Above, we denote u](-lo" ) = ugo;l’ll D=y L(lp,..J;,j)» Where
, , i
L:{0} x{0,1} x N = N, L(ly,...,1;,j) =2'j— Y 271 (3.38)
=1

In all subsystems, the rows rows 0 and 2¢~7 + 1 are assumed to be zeros.

Figure 10 illustrates how the tridiagonal subsystem relate to each other and
Figure 11 illustrates how the PCR method accesses the memory when the data
is kept in place. The different shades in Figures 10 and 11 correspond to the
different subsystems.

Finally, after k reduction steps, we get

) =10 e )1

<:>ML[1 fl /bl’

(3.39)
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FIGURE 11 An example of how the PCR method accesses the memory when the data is
kept in place.

for all I € {0} x {0,1}*. Note that the PCR method does not involve a back
substitution stage.

Contrary to the CR method, the number of parallel tasks stays constant as
the method progresses. In addition, the data can be stored in place without mem-
ory access pattern dispersion. Thus, the PCR method is more suitable for multi-
core architectures and, in particular, to GPUs. Unfortunately the arithmetical
complexity of the PCR method is O(nlogn), which will have a significant im-
pact on large linear systems. However, the PCR method property of splitting the
system into multiple independent subsystems has been exploited in GPU com-
putation (see, e.g., [57, 105, 180]). The basic idea is to take a few PCR reduction
steps and then solve the arising subsystems in parallel using the Thomas method
[55]. The Thomas method is basically a special variant of the well-known LU-
decomposition method for tridiagonal matrices with O(n) complexity. A similar
hybrid approach was also used in the included article [PIII].

Remark 3.2 As noted in [72], the Schur’s complement idea discussed in Remark 3.1
can be extended to the PCR method as well. For example, the first reduction step can be
rewritten as

(3.40)
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3.4 Block cyclic reduction method

Generally speaking, the reduction and back substitution formulas presented in
Subsection 3.3.1 can be generalized for an arbitrary field K provided that the
divisions are replaced by multiplicative inverses when necessary. In particular,
if the field K consists of matrices, then the reduction principle can be applied
to block tridiagonal linear systems. Actually, these BCR methods have a long
history starting in the year 1965 [93]. The first formulation used different reduc-
tion formulas and was notoriously numerically unstable. However, the so-called
Buneman’s variant [43] managed to stabilize the method by slightly modifying
the formulation.

An even earlier attempt to stabilize the first formulation yielded the so-
called FACR(]) method [94, 155], which combined the BCR method with the so-
called Fourier analysis method [93]. These early formulations can be applied only
to a very small subset of block tridiagonal linear systems, but a more generalized
method was presented in [160]. Later, a partial fraction technique was applied
to matrix rational polynomials occurring in the Buneman formulas [161] which
resulted in a parallel variant. In addition to the above-listed formulations, the
following variants are noteworthy: [7, 59, 91, 144, 148, 156, 157, 158, 159]. In ad-
dition, the convergence and stability properties of the method have received a lot
of attention; see, for example, [29, 91, 144, 141, 176]. A recent survey regarding
the CR method and its many applications can be found in [29].

Remark 3.3 This dissertation focuses on block tridiagonal linear systems but the basic
idea of the CR method can be generalized to Toeplitz-like block Hessenberg matrices [25,
26, 271, banded Toeplitz systems [28], factorizing matrix polynomial and power series
[21, 22, 23], solving quadratic and nonlinear matrix equations [26, 27, 301, and solving
algebraic Riccati equations [24, 85].

3.4.1 Basic reduction formulas

Let us assume that we have a separable block tridiagonal linear system of the
form

D _Inz up fl
_In2 D t. un _ fz (3 41)
' = :
-I,, D Uy, fu,

where D € R™*™2, y;,f; € R, and ny = 2k — 1 for some positive integer k.
As noted in Subsection 3.2.1, taking D = tridiag{—1,4, —1} corresponds to a
particular type of Poisson boundary value problem.

During the first reduction step, the odd-numbered block rows are multi-
plied by the matrix D!, after which they can be eliminated from the system in
the same way as described in Subsection 3.3.1. Thereafter, the remaining block
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tridiagonal subsystems are defined as follows: Let T(”) = I,,, D) = D, and
£(0) = f. For each reduction stepi =1,2,...,k—1, wehave

p 10 ugl) fgl)
_1) pl) (1) £
b N R N I e
- . —T® K Rk
1@ p ug}—i,l fé’k)i_l
where
, -1
- (1) (o)
. 2
D(l) — D(l 1 2 (T(Z 1 ) < i— 1 ) , and (343)

i — — — -1 z 1
o (00)” (6 ),

The adopted back substitution formula reads as follows:

-1 . . .
| ; () i) () 4 () :
ul! = {(‘?( ) (67 1O (o u ) a) ) whenj # 2N, (3.44)

u](l/zl), when j € 2N,

wherej =1,2,... ,2k=1_ 1, and u(()iﬂ) = uéﬁi})l = 0. Similar but more general-

ized reduction and back substitution formulas appeared in [91]. As shown in [91],
.\ —1

the above formulas are well-defined, that is, (D(l)) ,i=1,2,...,k—1 exist if

D! exists, and the coefficient matrix in (3.41) is strictly diagonally dominant by
rOWS.

3.4.2 Partial fraction variant

Although the formulas (3.43) and (3.44) could be applied directly, the approach
has several drawbacks. First, even if the diagonal block D is tridiagonal, the re-
cursively defined matrices D) and T(¥) can fill up quickly. This is very expensive
in terms of arithmetical complexity and memory requirements. Second, as with
the scalar CR method, the resulting method cannot be parallelized effectively.

The first step towards improving the formulation is to define the matrix ra-
tional polynomials ald) (D), ﬁ(i) (D),i=0,1,...,k — 1, by starting with

«®(D) =D, (D) =1, (3.45)
and then

(D) = (uc(ifl)(D))z —2I,,, and

pO(D) = -1 (D) (a1 (D)) .

Now, the following results from [144] allow us to express the matrices D) and
T() in an alternative form:

(3.46)
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Lemma 3.4 The recursively defined matrices D\V) and T\V) can expressed as

D = g (D)a) (D) and TV = ) (D).
Lemma 3.5 The recursively defined matrix rational polynomials «)(D) and () (D)
can be factorized as
; 2 .. i 21 .. 1
(D) = [T(D ~6(j,)1s,) and pU'(D) = [T (D~ ¢(j,i)ln,) ",
j=1 j=1

where

6(j,i) = 2cos (2;:11 n) and ¢(j,i) = 2cos <2]lrr) .

Thus, the reduction and back substitution formulas (3.43) and (3.44) reduce to a
series of multiplications with tridiagonal matrices and their inverses.

The second step is to apply the partial fraction technique introduced in
[161]. The basic idea is given by the following lemma:

Lemma 3.6 (Partial fraction technique) Let p(x) and q(x) be two polynomials with
the following properties:

1. p and q are relatively prime,
2. deg(p) < deg(q) = n, and
3. the roots, ay, 0z, . .., &y, of q are distinct.

Then, we have:

where

The application of Lemma 3.6 leads to [144]:

AN R . (2j—1 AN
T <D(l)) —2 Zg(—l)] 1sm( ém n) (D —6(j,i)I,,) " (3.47)
j=
and
-1 2
<D(l)) — 271y (D—0(j,i)L,,) " (3.48)
j=1

Thus, the reduction and back substitution formulas (3.43) and (3.44) reduce even
further to a solution of a set of tridiagonal linear systems. The arithmetical com-
plexity of the final partial fraction variant is O(nn;logn;) when the Thomas
method is used to solve the arising tridiagonal subproblems.
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3.5 PSCR method

The PSCR method was introduced (in a radix-2 form) in the 1980s by Vassilevski
[165, 166] and Kuznetsov [106]. The method shares many similarities with the
BCR methods, such as the one depicted in Subsection 3.4.2. However, instead
of using matrix rational polynomials and partial fractions, the method relies on
a so-called partial solution technique [10, 107]. This technique can be applied
very effectively in situations where the right-hand side vector contains only a
few non-zero elements and we only are interested in certain components of the
solution vector. A more generalized radix-q algorithm was presented later in
[108]. Parallel CPU implementations were considered in [1, 137, 145].

3.5.1 Projection matrix formulation

This subsection describes the radix-q PSCR method using orthogonal projection

matrices similar to [145]. For the sake of simplicity and without major loss of

generality, we assume from now on that we are dealing with a linear system

where the coefficient matrix is of the form (3.1) and 11 = g¥ — 1 for some integers

g and k. The case (3.2) requires some minor changes to the formulas and, in the

end, reduces to a set of subproblems with coefficient matrices of the form (3.1).
Let us first define the sets ]y, J1,...,Jy C N and K1,K5,...,K; C IN as

]O == {1/2/3/-'~rn]}r

Jk=0
and
K = U]{j—l}u{j—i—l}, i=12...k (3.50)
J€Ji

With these sets we can define orthogonal projection matrices

PO = diag{p\", p\",...,p{1y e K™, i=0,1,...,k (3.51)

and
TO = diag{" &) .. )} e K™, i=1,2,... K (3.52)

with
TS .

From these, we get

PO =P @1, i=01,...k (3.54)
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and
™ =10 ®1,,i=12,...,k (3.55)

If the projected matrix P()AP(?) is nonsingular in subspace Im(P()) for all
i =1,2,...,k, then the linear system Au = f can be solved using the following
algorithm:

Algorithm 3.1
Set £1) = f.
fori=1,2,...,k—1do
Solve the vector v\ from

POAPUY() = plgl), (3.56)
Compute
i+ — () _ ApPU)y(), (3.57)
end for
Set uk+1) = o,
fori=kk—1,...,1do
Solve the vector u'®) from
POAPO GO — pgl) _ pi) A <1n1n2 _ P(i)) ul ), (3.58)
Compute
(IW2 - P(">) ul) = (IW2 - P(i)> uli+), (3.59)
end for
Setu =u),

The reason Algorithm 3.1 is effective at solving the system Au = f unravels once
we observe the following results from [145]:

Lemma 3.7 In (3.56)—(3.57), foralli =1,2,...,k—1,
PO € Im (P(i) (1,11,12 - P(i’1>))
and
gli+1) — (Inlnz _ P(z‘)) <f(z‘> _ AT<i>V(z'>) '
Lemma 3.8 In (3.58)-(3.59), fori =k, k—1,...,1,

pigl) _ pi)A (Inln2 _ P“)) w1 € Im (P(i) (IW2 - P<i—1>)) UTm (P(i>) .

In addition, the solution u'") is needed in the image subspace of P(! (In1n2 — P("*l)) for
i=kk—1,...,1
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FIGURE 12 An example of how the reduction stages of a radix-2 PSCR method (on the
left) and a radix-4 PSCR method (on the right) access the memory when the
data is kept in place.

Lemmas 3.7 and 3.8 imply that only a very sparse set of solution components
are actually required in the update formulas (3.57) and (3.58), and the right-hand
side vectors in the linear systems (3.56) and (3.58) contain only a few non-zero
elements.

The choice of the integer g and the sets Jy, J1, . . ., Jx determine the radix num-
ber of the algorithm. A radix-q method reduces the system size by a factor of g
in each reduction step. Thus, a radix-4 method requires only half as many reduc-
tion steps as a radix-2 method. A higher radix number would potentially benefit
multi-core CPUs and GPUs because the number of consecutive tasks will be re-
duced. However, the arithmetical complexity estimate shown in [145] indicates
that the optimal value for g is somewhere in the range of 4-6. The system size
can be arbitrary, but the sets Jo, [1,..., Jy and Ky, Ky, ..., Ki must then be chosen
differently in that case. Figure 12 illustrates how the reduction stages of a radix-2
PSCR method and a radix-4 PSCR method access the memory when the data is
kept in place.

Remark 3.4 A radix-q adaptation of the Schur’s complement formulation discussed in
Remark 3.1 actually leads to the same subproblems during the first reduction step and
the last back substitution step. Considering the connection highlighted later in Remark
3.6, it is very likely that an alternative formulation for the radix-q PSCR method could
be obtained using the Schur’s complement approach.
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3.5.2 Partial solution technique

The subproblems resulting from (3.56)—(3.59) are actually of the form Av = g
with

A:A1®M2+A1 ®A2+C(M1 ®M2), (3.60)

where A; € K" and M; € K™ are non-zero diagonal blocks from pro-
jected matrices P(DA;P) and P)M;P(), respectively. Furthermore, Lemmas
3.7 and 3.8 imply that we are actually interested in computing only a vector
Rv and g € Im(Q), where the orthogonal projection matrices R € K™"2*""2
and Q € K"™2*"" define the required solution components and the non-zero
components of the right-hand side vector, respectively. Naturally, R = R® 1,
and Q = Q® I, for suitable orthogonal projection matrices R € K™ ™ and
Q c Kmxm,
Let us consider the following generalized eigenvalue problem:

A1W]‘ = )\]M1W] (361)

Because the matrix A; is symmetric, we can now assume that the eigenvectors
Wi, Wa,..., Wy, € K" are M;-orthonormal. Thus, the matrices

W = [wiwy...wy] and A =diag{A1, Ay, ..., A} (3.62)
have the properties
WIA;W = A and WIM;W = 1,,,. (3.63)
The vector Rv can be computed effectively using the following result from
[10, 107]:

Theorem 3.1 (Partial solution technique) The projected matrix RA~1Q can be de-
composed as

(RW @ 1,) (A +cly) @My + 1, @ Ap) H(WTQ®T,y,).

The above result follows from Lemmas 3.1, 3.2, and 3.3 and implies that each
partial solution reduces into a set of tridiagonal linear systems. The arithmeti-
cal complexity of the final PSCR algorithm is O(n11;logn;) when the Thomas
method is used to solve the arising tridiagonal subproblems.

Remark 3.5 More explicit formulas for the radix-q PSCR method can be found in the
included article [PIII].

Remark 3.6 As noted in [144] and the included article [PII], the radix-2 or radix-4
variants of the PSCR method are equivalent to the radix-2 and radix-4 BCR methods
discussed in Subsection 3.4.2 and in the included article [PII], respectively, when applied
to a system of the form

(A® Ty, + 1 4 ®(D=2L,))u=f (3.64)

where D € R™*"2 gnd A = tridiag{—1,2, -1} € RW g =1)x(¢" =1 for some positive
integer k. Above, q € {2,4}.
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Remark 3.7 Numerous similar methods have been derived by using the properties of
the Kronecker matrix tensor product. Reference [20] contains a comprehensive survey of
these so-called matrix decomposition algorithms.



4 AUGMENTED LAGRANGIAN METHODS

This chapter provides a brief introduction to the decomposition principle, the
AL technique, and the alternating direction method of multipliers (ADMM) follow-
ing a similar presentation, as in [78]. Together, these techniques allow us to
decompose a complex minimization problem into a set of simpler subproblems
through the introduction of auxiliary variables. These auxiliary variables are de-
coupled by adding additional constraints to the problem in order keep the new
constrained minimization problem equivalent to the original minimization prob-
lem. The resulting constrained minimization problem is then associated with a
suitable augmented Lagrangian functional (ALF) whose saddle-point corresponds
to the solution of the original minimization problem. The resulting solution algo-
rithms are modular, and each subproblem can be treated separately using meth-
ods that are best suited for the particular subproblem. These techniques have a
well-established role in analyzing optimization problems and deriving solution
algorithms for them [19, 71, 76, 78, 101].

4.1 Preliminaries

Before the basics of the AL methods can be covered, we must give a few defini-
tions:

Definition 4.1 (Proper functional) An extended valued functional G from a function
space V into R is said to be proper if G(v) > —oo forallv € V and G(vy) < +oo for at
least one vy € V.

Definition 4.2 (Convex functional) An extended valued functional G from a function
space V into R is said to be convex if for every vy, v, € Vand t € [0,1]

G(tv1 + (1 — t)vp) < tG(v1) + (1 — 1) G(v2).
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Definition 4.3 (Strictly convex functional) An extended valued functional G from a
function space V into R is said to be strictly convex if for every vy, vy € V, vy # vy, and
t€[0,1]

G(tv1 + (1 — t)vp) < tG(v1) + (1 — 1) G(v2).

Definition 4.4 (Uniformly convex functional) An extended valued functional G from
a Hilbert space V into R is said to be uniformly convex if 6 (t) > 0 for all t > 0, where
the modulus of convexity is defined as

1 1
Sc(t) = inf{zG(le) +5G(v2) =G (”1 Jz”’z> Nor —oally = £, 01,00 € V}.

Definition 4.5 (Coercive functional) An extended valued functional G from a Hilbert
space V into R is said to be coercive if limj, |, _, oo G(v) = +00.

Definition 4.6 (Lower semicontinuous functional) An extended valued functional
G from a function space V into R is said to be lower semicontinuous at vy € V. if

— for every € > O there exists a neighborhood U C V of vy such that G(v) >
G(vg) — e forall v € V when G(vg) < +o0, and
- G(v) = 4o0as v — vy when G(vy) = +oo.

Definition 4.7 (Domain) The domain of an extended valued functional G from a func-
tion space V into R is defined as
dom(G) ={v €V :—00 < G(v) < +o0}.

4.2 Decomposition principle

Let us assume that we have

Hilbert spaces V and H,

a linear operator B € L(V, H),

a convex, proper, lower semicontinuous functional F from H into RU {+o0},
and

a convex, proper, lower semicontinuous functional G from V into RU {+c0},

with the property
dom(G) Ndom(F o B) # @. (4.1)

We are interested on decomposing the following minimization problem:

{” eV (4.2)
Ju) <J(v) YoeV,
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where
J (v) = F(Bv) + G(v). (4.3)

If the functional J is coercive, then the minimization problem (4.2) admits a so-
lution, and the solution is unique if the functional 7 is strictly convex [78].
We begin by defining a subset W C V x H as

W={(v,q) e VxH:Bv=gq} (4.4)
and a new objective functional j : W — R U {+co} as
j(v,q) = F(q) + G(0). (4.5)

Now, the minimization problem (4.2) can be decomposed to the following con-
strained two-variable minimization problem:

(u,p) €W,
{J'(u,p) < i(0,q) Y(v,q) € W. (4.6)

Above, p is the new auxiliary variable.

Clearly, if we obtain a solution (u, p) to the constrained two-variable min-
imization problem (4.6), then u is also a solution to the original minimization
problem (4.2). While these two minimization problems are mathematically equiv-
alent, the constrained two-variable minimization problem is often easier to solve
numerically. This decomposition principle can be applied more than once, in
which case multiple auxiliary variables and constraints are introduced.

4.3 Augmented Lagrangian functional

The constrained minimization problem (4.6) could be tackled using the following
well-known methods:

Method of Lagrange multipliers: The constrained minimization problem (4.6) is as-
sociated with a Lagrange functional L : V x H x H — R:

L(v,q;4) = F(q) + G(v) + (4, Bv — 9)n- (4.7)

Above, u € H is called a Lagrange multiplier. A solution to the minimization
problem (4.6) is then obtained by finding a saddle-point

w=(upr)eVxHxH 4.8)
for the Lagrange functional £, that is,
L(u,p;p) < L(u,p;A) < L(v,q;A) 4.9)

forall (v,q;4) € V x H x H.
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Penalty methods: An additional penalty term is introduced to the objective func-
tional j. A quadratic penalty term would lead to

jr(0,9) = F(9) + G(0) + 7| Bo — g%, (4.10)

where > 0. A solution to the minimization problem (4.6) is then obtained
by iteratively increasing the value of the penalty coefficient r. The solution of
the previous iteration is used as an initial guess for the next iteration.

These two techniques can be combined into AL methods. The constrained mini-
mization problem (4.6) is associated with the following ALF £, : V x H x H — R:

.
Lr(v,q;1) = F(9) + G(v) + 5| Bo = qlf + (1, Bo — q)u, (4.11)

where ¥ > 0 and y € H. The name augmented Lagrangian comes from the fact
that the functional £, is basically a Lagrange functional associated with the con-
strained minimization problem (4.6) with an additional quadratic penalty term
511Bo — qll3-
It can be easily shown (see, e.g., [71, 78]) that if we can solve the saddle-point
problem
%meEVXHXHr (4.12)

Lo, pou) < Le(u,p;A) < Ly(v,q;A) Y(v,q;u) € VX HXH,

then (u, p) is a solution to the constrained minimization problem (4.6). Further-
more, u is a solution to the original minimization problem (4.2).

When compared to ordinary penalization methods, the AL formulation ben-
efits from the fact that the exact solution to (4.6) can be obtained without making
the penalty parameter r tend to infinity. The introduction of more than one auxil-
iary variable leads to additional Lagrange multipliers and penalty terms.

4.4 Alternating direction method of multipliers

A wide variety of methods could be applied to the saddle-point problem (4.12),
but the following ADMM method is advocated in the included articles [PIV, PV]:

Algorithm 4.1
Initialize p©) and A(©),
fori=1,2,... do
u(l:) = arg minvevﬁr(vf p(i—l);A(i—l))'
p(z) — arg minquﬁr(u(l),q,‘/\(Fl)).
AD = A=) 4 o0 (B — pi)),
end for
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Above,p(i) >0,i=1,2,....

Algorithm 4.1 is commonly referred to as ALG-2 (see, e.g., [15, 71, 75, 78]).
This alternating direction approach effectively splits the original minimization
problem into two subproblems that are then solved sequentially. If the decom-
position is done cleverly enough, then this operator splitting technique can greatly
improve the effectiveness of the resulting solution algorithm, as each subproblem
can be solved using a dedicated solver.

The following convergence result holds for Algorithm 4.1:

Theorem 4.1 Suppose that the following conditions apply:

The ALF L, has a saddle-point (u,p;A) € V. x H x H.
The ALF L,(v,q; 1)

— is coercive over V x H for any fixed u,
— is proper on V for any fixed q and p, and
— is proper on H for any fixed v and .

Either

— F is uniformly convex on the bounded sets of H with B injective and with
Im(B) closed, or
— G is uniformly convex on the bounded sets of V.

The parameters p1), 0(2), . .. satisfy

1+\@r

0<p =p< 5

Then,

— the sequence (u'), p(); A is well defined,
F(p®) + G(ul) = F(p) + G(u),
— ul) — ystrongly in V,
() — pstrongly in H, and
() — A weakly in H.

The above result is from [78]. A proof can be found in the same reference.

Remark 4.1 As noted in [78], if the spaces V and H are finite-dimensional, then the
conditions become much weaker because the saddle-point (u, p; A) always exists and the
uniform convexity of the functionals F and G is not required. However, the functionals
F and G are still required to be convex.



5 IMAGE DENOISING

This chapter deals with image denoising. The chapter begins by providing a
brief introduction to image denoising and commonly used image denoising tech-
niques. The chapter then proceeds to define the LIMC image denoising model
and to summarize a few previously developed solution algorithms.

5.1 Formal problem formulation and preliminaries

A digital image is usually conceived as a discrete mapping
o: 0 — U, (5.1)

where O = {1,2,...,W} x {1,2,...,H},U C Z,and d € {1,3}. The cased = 1
corresponds to a grayscale image and d = 3 corresponds to a color image. From
now on, it is assumed thatd = 1. Usually, U = {0,1,...,255}, where 0 represents
black and 255 represents white in grayscale images.

In this dissertation, an image is actually conceived as a member of a suitable
function space V. More specifically, the image is represented by a functionv : ) —
R, where Q) is a rectangular bounded domain of R2. The function space V' can be,
for example, a piecewise linear finite element space, in which case the function v
is a piecewise linear interpolation of the discrete mapping 9.

In a general case, image denoising is a process of finding a solution u € V
to an inverse problem

Ku+g=f, (5.2)

where the function f € V is the noisy image and the operator K : V — V and the
function ¢ € V model the non-additive and additive parts of the noise, respectively
[82, 102]. This is a particularly challenging problem because the inverse operator
K~! may not exist and the function g is usually unknown. However, in many
cases it is possible to obtain a kind of “pseudoinverse” for the operator K, and a
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FIGURE 13 Two examples of noisy images: “salt and pepper” noise (on the left) and
Gaussian noise (on the right).

sufficient amount of information is known about the function g. Thus, the solu-
tion u, or a close representative of it, can be obtained. The articles included in this
dissertation deal only with additive noise, and from now on it is assumed that
K = I. In a general case, the operator K could model, for example, motion blur
phenomena [54].

In most cases, the additive noise g that naturally occurs in images can be
placed in either of the following categories:

“Salt and pepper” / impulse noise: Only a small minority of pixels are affected, but
the colors of the affected pixels can be very different from their true values
and their surrounding pixels. Salt and pepper noise usually manifests as
dark or white dots in the image. A partially faulty sensor and dust are two
common sources of this type of noise.

Gaussian noise: Virtually all pixels are affected, but the colors of the affected pix-
els do not (usually) differ very much from their true values and their sur-
rounding pixels. Usually, the histogram that arises when the values of the
added noise are plotted against the frequency with which they occur follows
a normal distribution.

Figure 13 shows examples of these two noise types. The test images considered
in the included articles [PIV] and [PV] were of the second type.

5.2 Filter and frequency domain-based methods

Linear filter methods are based around the idea of convolving the noisy image with
a suitable (radial) mask. This mask may be a simple low-pass filter or a smoothing
operator, such as a Gaussian kernel over the neighboring pixels (a.k.a Gaussian
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smoothing) shown here:

u(x) = [ Guolt=x)f(dt, (5.3)
for all x € Q) with
_ I«
Gxo(t) = Axexp 102 ) (5.4)

where the Gaussian kernel Gy, has standard deviation o and Ax € R is selected
such that

/Q Gro(t — x)dt = 1. (5.5)

Although these types of methods are simple to implement and fast, they
perform poorly on the singular parts of the image, that is, the parts that contain
sharp transitions (edges) and texture. Nonlinear filter methods may utilize, for ex-
ample, median information (see, e.g., [14, 65, 82, 122]). Methods based on the
weighted averages are generally considered to be best suited for noisy images
that contain Gaussian noise, while filter methods based on medians are generally
considered to be best suited for noisy images that contain impulse noise.

The denoising can also be performed in the frequency domain using Fourier
transformations or wavelet functions (see, e.g., [9, 120]). Wavelet methods (see, e.g.,
[12, 62, 63, 61, 147, 172]) are based around the idea of decomposing the image
into the wavelet basis. The denoising is accomplished by shrinking or otherwise
modifying the transform coefficients. Wavelet threshold methods (see, e.g., [63]) rely
on the idea that the actual characteristics of the image are usually represented
by the wavelets with large coefficients, while the noise is generally distributed
across the wavelets with small coefficients. Thus, canceling the wavelets with
small coefficients would remove the noise but keep the actual characteristics of
the image intact.

One of the simplest approaches is to cancel all wavelets with coefficients
smaller than a given threshold. Unfortunately, these so-called hard thresholding
methods are likely to cause unwanted oscillation (a.k.a, wavelet outliers [64]) in
the denoised image. Soft thresholding methods [61], on the other hand, utilize a
continuous threshold operators. Simple wavelet-based methods assume that the
wavelet coefficients are independent. In addition, the chosen threshold does not
always match the actual distributions of the image and the noise. More advanced
wavelet models (see, e.g., [51, 69, 138, 149, 153]) try to solve these problems by
using estimators based on Bayesian theory.

5.3 Variational-based methods

Variational-based image denoising methods treat the image as a discretely differ-
entiable function and utilize the derivative information in the denoising process.
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One of the earliest and most famous of these methods was based on anisotropic
diffusion and was introduced in the late 1980s by Perona and Malik [135, 136].
Their idea was to improve upon the Gaussian smoothing method by convolving
the noisy image f at x € Q) only in the direction orthogonal to V f(x). This choice
reduced the blurring effect commonly associated with the Gaussian smoothing
method and thus significantly improved the edge-preserving properties of the
method.

Many variational-based methods since then have been based on solving a
minimization problem of the form

{u eV, (5.6)
Ju) < J(v) YoeV.
Typically,

J(v) = eJr(v) + Tf(0v), (5.7)

where J; is the so-called regularization term, the purpose of which is to measure
how much noise the image v contains, and J is the so-called fidelity term whose
role is to fit the denoised image u to the noisy data f. The parameter ¢ > 0 defines
how these two terms are balanced out.

Remark 5.1 Sometimes the minimization problem is initially formulated as
u=argmin _,J,(v) st |f —ol*=0? (5.8)
or
u = arg min,_,J,(0) s.t. ||f —v[* <%, (5.9)

where o is the variance of the noise function g in (5.2). However, the exact value of
o is usually unknown. Thus, minimization problems of the form (5.8) and (5.9) are
often solved approximately using Tikhonov reqularization, which leads to minimization
problems that are of the form (5.6)~(5.7) with Jy(v) = Sf =l

5.3.1 Total variation minimization model

Total variation minimization model (TV model) introduced by Rudin, Osher, and
Fatemi (a.k.a ROF model) [146] has dominated the variational-based image de-
noising scene during the last two decades. The model incorporates so-called total
variation norm into the regularization term 7;:

Definition 5.1 (Total variation semi-norm) Let () be an open subset of R" and let
CK(Q), R™) be the space of C¥ functions with compact support in Q with values in R,
The total variation of a function v € L'(Q) is defined as

TVa(v) = sup {/QUV~¢dx ¢ € CHO,RY), ¢l ) < 1} :
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In a discrete case, we can write
TVa(v) = /Q V|| dx. (5.10)

The TV model starts from the premise that the solution u consists of con-
nected sets (i.e., objects) and smooth contours (i.e., edges). The solution is as-
sumed to be smooth inside the connected sets but to contain jumps near the con-
tours. On this basis, the function space V was chosen to be the space BV(Q2)
consisting of integrable functions with finite TV (BV space).

Definition 5.2 (Space of functions of bounded variation) The space of functions of
bounded variation (BV functions) is defined as

BV(Q) = {v e L1(Q) : TVqa(0v) < +oo}.
The resulting Tikhonov regularized model is of the form

J(v) = eTVq(v) + % /Q |f —o|*dx. (5.11)

The functional (5.11) is strictly convex and lower semicontinuous. Thus, the
minimum exists and is unique [45]. More importantly, the AL techniques dis-
cussed in Chapter 4 can be applied to the model (see, e.g., [36, 45, 53, 126, 170,
175]). The so-called split Bregman iteration-based solvers have also received some
attention [80, 130]. Split Bregman solvers are very similar to the AL-based ap-
proaches as they too transform the minimization problem to a series of subprob-
lems through the introduction of auxiliary variables. Each subproblem is defined
by using the Bregman distance [38]. Some attempts have been made to solve the
problem using dual methods [44, 48]. As noted in [175], the split Bregman iteration
and these two dual methods can be seen as different procedures to solve the sys-
tem resulting from a particular AL formulation. Effective solvers have also been
presented in [119, 169]. A recent and comprehensive analysis of the TV model
can be found in [92].

While the TV model has many good characteristics, such as the ability to
retain the edges, it also has some undesirable traits. For example, the method
cannot preserve image contrast, the corners get easily smeared, and the so-called
staircase effect turns smooth surfaces into piecewise constant regions [13, 46, 60,
123, 142]. In addition, please see the numerical experiments presented in [45, 47,
99, 111].

Several modifications have been proposed over the years:

— Modify the Euler-Lagrange (EL) equation associated with the problem, for
example, by multiplying it by ||Vu/||. This has been found to accelerate the
minimization process and dampen the staircase effect [121].

— Modify the regularization term such that

F@) = [ 9o 07D ax, (512
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where the function P : R — [1,2] is selected such that P(||Vv||) ~ 1 when
| Vol| is large and P(||Vv||) ~ 2 when || V| is small [33], the point being
that [, [|Vo|| dx is better at preserving edges and |, |Vo||? dx is better at
preserving the other features of the image [45]. Similar approaches have
been compared and analyzed in [113]. In particular, the active-set methods
have received moderate attention in this context [99, 110, 111, 113], and a
semi-adaptive approach was presented in [112].
— Modify the fidelity term such that

Tp(o) = 5 [[1f ol a, (5.13)

where 0 < s < +oo [152]. The L!-fitting in particular has been studied
(in this and in other contexts) in [77, 109] because it is better at tolerating
outliers [96, 127, 129, 139, 140].

— Variants for vector valued images (i.e., color images) [32, 39, 49, 175].

Different iterative approaches have also received some attention:

— Initially apply the TV model to a noisy image f to form a decomposition
f = up+ go. Then apply the model recursively to the residual noise go
using a smaller parameter ¢ to form a second decomposition gg = 11 + g1.
Finally, after k recursion steps, we get the following decomposition of f:

f=uo+go
j: - Tt 8 (5.14)

f:uo+u1+u2+---+uk+gk,

where ¢; = uj;1 + gj+1. The denoised image is obtained by u = Z;{:o U
[162].

— Initially apply the TV model to a noisy image f to form a decomposition
f = up+ go. Then apply the model recursively to the function f + go to
form a second decomposition f + g9 = u1 + g1 and repeat the process for
the function f + g;. Finally, after k recursion steps, we get the decomposition
f + Qk—1 = Uk + gk [131].

Finally, several alternative models have been studied:

— Total generalized variation (TGV) model [37] with

TGV]E{‘(Z)) = sup { /deivk4> dx : ¢ € CE(Q, SymF(R™)),
(5.15)
||din47HLoo(Q) S le,l = O, 1, e ,k — 1}

as a regularization term. Above, div* is the so-called k-divergence, Sym*(R")
denotes the space of symmetric tensors of order k with arguments in R”, and
Ap>0foralll =0,1,...,k—1.
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— Higher order generalizations with H1-space [133] and an additional elliptic
operator [47].

— Non-local means models [73, 116] that involve all first-order variations and
and models based on diffusion tensors [58].

— The higher order model suggested in [118] is relevant to what follows in the
next subsections. The model uses the following objective functional:

Vo

J(v)zs Vi——

2/ |f — v|?dx. (5.16)

— Euler’s elastica [4, 5, 50, 124] will be mentioned in passing;:

J(v):s/

QO

Vo \? 1 5
a+b<V~”vv”> ] |\Vv||dx+§/Q |f —ov|7dx, (5.17)

wherea > 0and b > 0.
— Other higher order models; see, for example, [18, 83, 84, 117, 178, 179].

See, for example, Reference [42] for a more comprehensive review of different
image denoising methods.

Remark 5.2 Actually, the BV-regularization has many uses outside the field of image
denoising as it can be applied to other ill-posed problems as well (see, e.g., [2, 100]).
Staying in the overall context of image processing, the BV-reqularization has been used,
for example, in image flow [8, 13] and denoising-deblurring [167] applications.

5.3.2 L'-mean curvature model

Let us for a moment think of image v : {3 — IR as a surface in () x R. More
formally, let the function F, : (3 x R — R be defined as

Fy(x1,x2,x3) = v(x1,Xx2) — X3. (5.18)
The surface we are interested on is specified by the equation
Fy(x1,x2,x3) =0, (5.19)

that is, the equation (5.19) defines the graph of the image v. In the model sug-
gested by Zhu and Chan [181], the L!-norm of the mean curvature (MC) of the
surface (5.19) is incorporated into the regularization term J;. In that case, the MC
is calculated as [132]

1 VE, 1 Vo
F) ==V | —— )=V | — |, 5.20
KF) =3 (nwu) 2 <\F+||w||2> 620

and thus the objective functional used in their LIMC model is of the form

1
J(v) —£/| ( 1+HV ||2>‘dx+2/0|f—v|2dx. (5.21)
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The authors in [181] suggest that taking V = BV(Q) could be a suitable choice for
their model.
Because the unit normal vectors of the surface (5.19) are given by

VE,

AL (5.22)
IVE|

the L'-norm of the MC, in essence, measures how much variance exist among
the unit normal vectors of the surface. Thus, incorporating the MC term into the
regularization term makes sense intuitively because the unit normal vectors of a
noisy surface are likely to have more variance among them. Moreover, as par-
tially proved in [181], the L!-norm of the MC does not penalize sharp transitions
of the surface. Thus, the model preserves the image contrast. In addition, partial
proofs provided in [181] suggest that the model can keep sharp edges and ob-
ject corners. Thus, this LIMC model could be a suitable solution to the problems
associated with the TV model.
The LIMC model (5.21) can be generalized as follows:

J(v) = S/Q D (icy,p) dx + % /Q |f — v|*dx, (5.23)

where 0 < s < +00, ® : R — R is a measurable function, and

Vo
0=V | ———m—— |, (5.24)
‘o <\/|er||2+&>

with B > 0. This model is referred to from now on as the generalized mean cur-
vature (GMC) model. If ®(x) = |x| and s = 2, then the case p = 1 corresponds
to the LIMC model (5.21) and the case f = 0 corresponds to the model (5.16).
However, the model (5.16) is usually regularized in a such a way that 0 < g < 1.
Thus, the methods developed for the model (5.16) and its alternatives could be
generalized to the LIMC model (5.21).

5.3.3 Solution algorithms for the L'-mean curvature model

If the function @ is differentiable and s = 2, then the EL equation associated with
the GMC model (5.23) is

Y(u) =€V (D1 (u) V' (ky8) — Da(u)Vu) +u— f =0 in 0,

(5.25)
Vu-n=0 onadQ),
where n denotes the outward unit normal to 9(Q),
1 Vo- VCD/(KU ﬁ)
D1(v) = , and Dy(v) = ——=—3, (5.26)
©)= %ol ©) = (9ol

with [|x||g = /[[x[|* + B [41, 181] .
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In [181], the LIMC model (5.21) was regularized such that

2 <1
o) =¥ =L (5.27)
lx|, |x| >1.
The authors then transformed the EL equation (5.25) into a parabolic form
ou
R 2
=) 528)
and solved the resulting time-dependent problem using an explicit Euler formula
ul* = 3O 4 Arg (u®), (5.29)

As noted in [41], the magnitudes of the terms D; and D, may be very far apart,
and thus the resulting discrete operator can be very unbalanced. As a result, the
time step /At needs to be extremely small for stability reasons, and the method is
extremely slow to converge.

A more advanced AL-based solution algorithm was later introduced in [182].
The authors extended the solution algorithm developed for the Euler’s elastica
model (5.17) presented in [163] to the LIMC model (5.21). They decomposed the
original minimization problem as

. 1
(u, P1,P2,P3, (P) = arg mln(v,ql,qz,%,(p)ew € /Q |(p|dx + E /Q |f - v|2dx, (530)

where, formally,

W= {(v, QL 92 93, @) €V x (L2(Q))® x (L*(Q))? x H3(Q;div) x

(5.31)
L(Q):q1 = (Vu,1),q = ”g%”/qs =q¢=V- qs}-
Above,
Hs(;div) = {q € (12(Q))°: V-q € L*(Q) } . (5.32)

They then associated the decomposed minimization problem (5.30) with the fol-
lowing (non-standard) ALF:

L:(v, q1, 92, 93, @5 P1, Yo, 3, Ha) =
8/Q!<pldx+%/0|f—v|2dx
+%/Qllq1 —(Vv,l)\|2dx+/0yl.(ql (Vo 1))dx
T ./Q(HCHH —qu q)dx + /QM(HCHH —q1 - q2)dx (5.33)
+%/(_2||q3—qz||2dx+/('2y3.(q3_q2)dx
- %4 /Q |9 — 32, (q3)1 — 0, ()2 [*dx

+ /Q #a(@ — 0x, (q3)1 — 9x,(q3)2)dx + 6r (q2),
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where r; > 0foralli =1,2,3,4, p1, p3 € (L2(Q))3, o, s € L?(Q), and

0, qEeR,
1) = 5.34
r(q) {+oo, q#R. (5.34)
Above, the set R is defined as
R = {q € (L2(Q))%: ||lq|| < 1ae. in Q} . (5.35)

The additional term % (q2) in the ALF (5.33) ensures that the term ||qi1|| — q1 - q2
is positive almost everywhere in ().

Although the objective functional (5.21) is not convex and thus the assump-
tions enumerated in Theorem 4.1 are not satisfied, the related saddle-point prob-
lem was solved using an Algorithm 4.1 style ADMM method. This led to four
auxiliary variables and five subproblems, two of which were solved using the
fast Fourier transformation method. The authors provided closed-form solutions
for the three remaining subproblems. The authors concluded that the proposed
method was much faster than the method depicted in [181].

5.3.4 Solution algorithms for the generalized mean curvature model

The three articles that will be discussed in this subsection introduce solution al-
gorithms for the GMC model (5.23) in the case s = 2. The numerical results pre-
sented in these three articles take ®(x) = x?, and thus, the results presented in
these three articles are not directly comparable with the results presented in [182]
and the included articles [PIV] and [PV]. However, there is no obvious reason
why the methods could not be generalized to the LIMC model (5.21).

The solution algorithm presented in [41] relies on a geometric multigrid al-
gorithm (see, e.g., [40, 52, 164, 173]) to solve the EL equation (5.25). The authors
initially considered a Vogel and Oman style fixed-point iteration scheme [168] as
a smoother operator but soon concluded the resulting method was unstable with
the GMC model. The authors then proceeded with a so-called convexity-splitting
technique [67, 68] that leads to a semi-implicit time-marching scheme where the
convex part is treated implicitly and the non-convex part is treated explicitly. The
technique also introduces an additional differential operator ', the purpose of
which is to improve the stability properties of the method. In a general case, the
scheme is of the form:

AN @) ey (Dz(u(iJrl))vu(iJrl)) 4ol

. : (5.36)
—yN () — eV (Dy ()T (1,06 ) + f,

where the functionals D; and D; are defined in (5.25), and y > 0 is a new param-
eter introduced by the convexity-splitting technique. After considering multiple
options, the authors chose the differential operator N as

Vo

N@ =V 1

(5.37)
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To solve the semi-implicit equation (5.36), the authors first considered a nonlinear
Gauss-Seidel-Picard method and a global linearizion approach. After performing
local Fourier analyses (see, e.g., [164]) and numerical simulations for both alterna-
tives, the authors ended up with an adaptive smoother based on the global lin-
earizion approach. The authors concluded their geometric multigrid algorithm
combined with the adaptive fixed-point iteration smoother is fast and robust but
is subject to certain restrictions regarding the parameter B. The authors noted
that B = 1072 provides a good balance between the quality of the results and the
performance.

In [154], the GMC model (5.23) with ®(x) = x?/2 (% added for notational
reasons) is at first decomposed as follows:

. € 5 1 5
(u,p) :argmm(vlq)ewi/ﬂlv-m dx—l—i/ﬂ |f —v|“dx, (5.38)

where
W= {(U,q) erHz(Q;div):q:W}. (5.39)
Vol
Above,
Hy (Q; div) = {q € (LX(Q))?:V-q e LZ(Q)} . (5.40)

This yielded a quadratic penalty method with the following objective functional:

. € 1
o) =3 [ [V-aPdv+ 3 [ [f—oPdx

. ) (5.41)
+§/QHvU—q||vp||ﬁ}| dx.
The authors then derived the related EL equations for (5.41):
Vu-p .
u—f—rV-{Vu—|Vullgp - WVU +(p-p)Vu | =0,
||V gz, — 0y, (V- p) +7 | Vae|3p1 =0, (5.42)
F|Vullpi, — €35, (V-p) + 7| Va2 p2 =,
with boundary conditions
V-p=0,
Vu-n=0, (5.43)
p-n=0,

where n denotes the outward unit normal to dQ). Next, the authors proceeded to
solve the EL equations (5.42) using a nonlinear multigrid algorithm. As with [154],
the authors concluded that simple fixed-point schemes are not suitable for the
EL equations (5.42). Thus, the authors adopted the convexity-splitting approach
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and tried to solve the related semi-implicit equations using two Gauss-Seidel type
approaches. The authors performed local Fourier analyzes and numerical simula-
tions for both approaches and concluded that the obtained smoother operators
are efficient for solving the GMC model.

Towards the end of the article, the authors performed extensive compar-
isons between their nonlinear multigrid algorithm, their adaptation of the AL-
based method from [163, 175, 182], and the aforementioned geometric multigrid
algorithm [41]. The authors also included the TV (5.11) and TGV (5.15) models
in their comparisons. In the end, the authors concluded that their method deliv-
ers better quality results and uses less regularization and nonlinearity than the
method presented in [41]. In addition, they concluded that the quality of the re-
sults produced by their method is comparable to the results produced by the TGV
model. The method seemed to perform well, even when g = 10~%.

The two previous articles made use of the multigrid method and achieved
relatively good results. The solution algorithm presented in [177] represents a
slightly different approach based on a so-called homotopy method [3, 115, 171] and
a relaxed fixed-point iteration. At first, the authors rewrote the EL equation (5.25) as

p(Np(u),u) =0, (5.44)
where
Vo
p(N,v) =2e N (V. ”VUH/S) +v—f, (5.45)

and the differential operator N is defined as

1 VoVol
Nﬁ(v) =-V. (va”ﬁ (Iz — ||VU||% ) V) . (5.46)

The authors then derived a fixed-point method based on the idea of freezing the
differential operator Ng for each step and then updating the operator accord-
ingly:
Algorithm 5.1

Initialize u®) = f.

Initialize the operator as J\/’éo) = Np(u®).

forn=1,2,... do

Solve u') ¢ V from p(/\/'ﬁ(i*l), u(i)) —=0.
Update the operator as Néi) = Np(u®).
end for

Unfortunately, the differential operator N is highly singular for small g, which
makes the part of solving 1) in Algorithm 5.1 very expensive. The authors no-
ticed that they could obtain a relaxed fixed-point method by replacing the differ-
ential operator NVg with the operator

1
M =—V- [——=—V|. 5.47
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In addition, the authors advocated a particular primal dual method for the solution
of u). In summary, the modified algorithm is of the form:

Algorithm 5.2
Initialize u(®) = f
Initialize the operator as /\/lg]) = Mﬁ(u(o)).
forn=1,2,... do
Solve u') € V from

—ZeM/(gi*l)V-w+ uld — f=0
w||Vu(i>||/g —vul) =,

where w : Q) — R? is a differentiable function.
Update the operator as Mg) = M,g(u(i)).
end for

In order to even further improve the convergence properties of their method for
small B, the authors adopted the homotopy method. The basic idea is to adap-
tively decrease the value of by following a predetermined curve. This approach
significantly improved the effectiveness of the method, even in the case § = 10~°.

Remark 5.3 An alternative approach based on the so-called Bernstein’s problem for min-
imizing the MC of the image was provided in [81, pp. 155 — 159]. The author reported
that task of minimizing the MC energy is equivalent to making the image more piece-
wise linear. Thus, the minimization can be accomplished without explicitly computing
the MC. The numerical results indicate that this new approach is three or four orders of
magnitude faster than the methods presented in this subsection and in the previous sub-
section. However, based on preliminary numerical experiments conducted by the author
of this dissertation, it appears that this new method does not preserve edges very well and
is unable to maintain the image contrast. Thus, the real significance of this new approach
remains unclear.



6 INCLUDED ARTICLES AND RESEARCH
CONTRIBUTION

This chapter discusses the included articles in greater detail and highlights the
major research contributions of each article. The fast direct solver and GPU
computing-related articles [PI], [PIl], and [PIII] are treated first, followed by the
image denoising and GPU computing-related articles [PIV] and [PV].

The included articles [PI] and [PII] dealt with a special form of separable
block tridiagonal linear system

D _Inz up fl
e P =1 61)
=1, : :
-I D uy, £,
where D € R™*™  y;f; € R™, and n; = 2k1 — 1 for some positive integer

ki. As noted earlier in Subsection 3.2.1, if D = tridiag{—1,4, —1}, then this sys-
tem corresponds to a particular type of two-dimensional Poisson boundary value
problem.

6.1 Article [PI]: Fast Poisson solvers for graphics processing units

M. Myllykoski, T. Rossi, and J. Toivanen. Fast Poisson solvers for graphics processing
units. In P. Manninen and P. Oster, editors, Applied Parallel and Scientific Computing,
volume 7782 of Lecture Notes in Computer Science, pages 265-279, Springer Berlin Hei-
delberg: Berlin, Germany, 2013.

In addition to the above limitations, the included article [PI] also assumed that
D = tridiag{—1,4, 1} (or B = tridiag{—1,6,—1} € R™*"™, ng = 2k — 1,
ks € N, in (3.12)), and n, = 2% — 1 for some positive integer ko. The article
described GPU implementations of two BCR methods. The first implementa-
tion is based on the radix-2 BCR method discussed in Subsection 3.4.2, and the
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FIGURE 14 Examples of how the global memory (on the left) and the local memory
(on the right) data permutation schemes work when the work-group size is
four.

second implementation is based on a radix-4 variant of the PSCR method dis-
cussed in Section 3.5. The radix-4 algorithm was obtained by explicitly calcu-
lating the eigenvalues and eigenvector components associated with the partial
solution technique (Theorem 3.1). The resulting radix-4 algorithm is very simi-
lar to the radix-2 algorithm but generates a fewer number of tridiagonal linear
systems.

The GPU implementations were compared against each other and against
equivalent multithreaded CPU implementations. Up to sixfold speedups were ob-
served when a Nvidia GeForce GTX580 GPU was compared against a quad-core
Intel Core i7 CPU. The numerical experiments were performed using double-
precision floating-point arithmetic. The article then investigated the impact of in-
creasing the radix number of the algorithm by comparing the radix-2 and radix-4
methods to each other and concluded that the radix-4 method was more suitable
for GPU computation. The article concluded that BCR type methods can offer
a sufficient amount of fine-grained parallelism for GPU computation when they
are combined with the CR method.

The article introduced a few new ideas related to CR-based tridiagonal lin-
ear system solvers. More specifically, the article introduced a permutation scheme
that can be used in combination with the CR method and the global memory. This
permutation scheme eliminated the memory access pattern fragmentation prob-
lem discussed in Subsection 3.3.1 at the cost of some additional global memory
traffic. The article also suggested a similar permutation scheme to be used with
the local memory in situations where the reduced system contains more even-
numbered rows than there are work-items in the work-group. Figure 14 shows
examples of how the data permutation schemes operate.
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The article provides partial answers to the research questions RQ1 and RQ2.
In summary, the primary research contributions of the article were:

1. The article described efficient GPU implementations of two BCR methods.

2. The article showed that GPUs can provide demonstrable benefits in the con-
text of BCR-type fast direct solvers.

3. The article introduced a few new ideas related to tridiagonal linear systems
solvers.

4. The article presented evidence that the BCR methods with a higher radix
numbers are more suitable for GPU computation.

6.2 Article [PII]: A parallel radix-4 block cyclic reduction algorithm

M. Myllykoski and T. Rossi. A parallel radix-4 block cyclic reduction algorithm. Nu-
merical Linear Algebra with Applications, 21(4):540-556, 2014.

The included article [PII] presented an alternative way to derive a radix-4 BCR
method for the linear system (6.1). This was accomplished by modifying the
radix-2 BCR formulas discussed in Subsection 3.4.1. To put it briefly, two radix-
2 reduction steps were combined into a one radix-4 reduction step. Similar but
slightly more complicated steps were taken in order to achieve a radix-4 back sub-
stitution step. A parallel variant was obtained by using Lemmas 3.4 and 3.5 to-
gether with the partial fraction technique (Lemma 3.6). The article demonstrated
that the parallel variant of the radix-4 method generates a smaller number of sub-
problems when compared to the parallel variant of the radix-2 method discussed
in Subsection 3.4.2. In that sense, the radix-4 method is less computationally ex-
pensive than the radix-2 method. The radix-4 method was also demonstrated
to be numerically stable and equivalent to the radix-4 PSCR method in certain
special circumstances. The theoretical results were confirmed by numerical ex-
periments.

The article provides partial answers to the research question RQ1. In sum-
mary, the primary research contributions of the article were:

1. The article described an alternative way to derive a radix-4 BCR method.

2. The article demonstrated that the number of tridiagonal subproblem:s is re-
duced when the radix number is increased.

3. The article presented the results of numerical experiments showing that the
new radix-4 method is actually faster than the radix-2 method.

4. The article showed that the new method is numerically stable.

5. The article highlighted the equivalence between the new method and the
radix-4 PSCR method.
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6.3 Article [PIII]: On solving separable block tridiagonal linear
systems using a GPU implementation of radix-4 PSCR method

M. Myllykoski, T. Rossi, and J. Toivanen. On solving separable block tridiagonal linear
systems using a GPU implementation of radix-4 PSCR method. Submitted to SIAM
Journal on Scientific Computing.

The included article [PIII] presented a generalized GPU implementation of the
radix-4 PSCR method discussed in Section 3.5. The implementation can be ap-
plied to real and complex valued problems of arbitrary size with coefficient ma-
trices of the form (3.1) or (3.2). The article can be considered as a natural extension
of the included article [PI]. However, the relaxation of the requirement related to
the problem size posed in the included article [PI] complicates the implementa-
tion considerably.

The implementation utilizes an updated version of the tridiagonal solver
used in [PI]. It uses the CR method and the same permutation schemes but in-
cludes additional PCR and Thomas stages, similar to [57, 105]. However, the nu-
merical experiments presented in the article suggested that the Thomas step was
actually unnecessary, and it was disabled in most numerical experiments. The
performance of the implementation was further improved by using the Newton-
Raphson division algorithm [70] and an initial guess that leads to full double-precision
accuracy with only four iterations, each of which requires two fused multiply-
add instructions [134]. Additional numerical experiments indicated that this ap-
proach more than doubled the division operation throughput on a Nvidia Tesla
K40c GPU.

Up to 16-fold speedups were observed when Nvidia GeForce GTX580 and
Nvidia Tesla K40c GPUs were compared against a single-threaded CPU implemen-
tation run on an Intel Xeon CPU. The obtained floating-point performance was
extensively analyzed using the roofline performance analysis model [174], which
takes into account the available (off-chip) memory bandwidth. The obtained
models indicated that the implementation was otherwise optimal, but the hy-
brid tridiagonal solver did not perform quite as well as expected. Various local
memory-related limitations were offered as an explanation. The numerical exper-
iments were performed using double-precision floating-point arithmetic.

The article provides partial answers to the research questions RQ1 and RQ2.
In summary, the primary research contributions of the article were:

1. The article described an efficient and generalized GPU implementation of
the radix-4 PSCR method.

2. The article showed that GPUs can provide demonstrable benefits in the con-
text of more generalized BCR-type fast direct solvers.

3. The article presented extensive roofline analyzes of the presented numerical
results, including separate analyzes of the tridiagonal system solver.

4. The article showed that the Newton-Raphson division algorithm can im-
prove the division operation throughput on some GPUs.
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6.4 Article [PIV]: A new augmented Lagrangian approach for L!-
mean curvature image denoising

M. Myllykoski, R. Glowinski, T. Karkkdinen, and T. Rossi. A new augmented La-

grangian approach for L'-mean curvature image denoising. SIAM Journal on Imaging
Sciences, 8(1):95-125, 2015.

The included article [PIV] introduced a new AL-based solution algorithm for the
LIMC image denoising model discussed in Subsection 5.3.2. The solution algo-
rithm differs from the existing approach presented in [182] to the extent that it
uses a different ALF and mixed finite elements [34] instead of finite differences.

The original minimization problem with 7 defined by (5.21) was decom-
posed as

. 3 1 3
(1, P1,P2,P3, @) = ArgMin, o o, 0. oyew € /Q |pldx + 5 /Q |f —ol%dx,  (62)

where, formally,

W = {(v, quL 92,93, ¢) € V x (L2(Q))? x (L*(Q)))? x Hy(Q;div) x L2(Q)

(6.3)
q1

=V, g = ———r, q3:q2and(p:V-q3}.
V1I+aq?

Above, V = H?(Q) and H(Q;div) is defined in (5.40). The non-convex term
q (6.4)

Q@ =
VAR CHE

was handled using a projection in

V1t al?

Thus, the non-convex term (6.4) does not appear in the resulting ALF, which is
the form:

Ep = {(CILQZ) S <L2(Q))2X2 92 = ql} : (6.5)

1

L:(v, 91,92, 93, ¢; #1, B2, H3) :e/ﬂ|q0\dx—|—§/ﬂ|f—v\2dx
7’1 2
"IV — qud / (Vo —q)d
+ 3 [ 1vo - qulPax+ [ - (Vo
TZ 2 /
2 _ d Aa» — aa)d
+ 2 [ oz = aslPx+ [ pa- (a2 — as)d
Q/V-—zd / Vg5 — ¢)d
+5 ),V —elfdet | ps(Vogs —g)dx,

where r; > 0 foralli =1,2,3, p1, 2 € (L2(Q))?, u3 € L*(Q), and (q1, q2) € Eqo.

The resulting saddle-point problem was solved using an Algorithm 4.1 style
ADMM method. Because the ALF (6.6) contains five variables and two of the aux-
iliary variables are coupled together in the space Ej;, the application of Algorithm
4.1 leads to four subproblems that are solved sequentially:

(6.6)
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1. a smooth but nonlinear and non-convex minimization problem in R? (in-
volves the variables q1 and qp),

2. a vector valued linear minimization problem with a positive definite and
symmetric coefficient matrix (involves the variable q3),

3. apurely explicit pointwise treated minimization problem (involves the vari-
able ¢), and

4. ascalar valued linear minimization problem with a separable, positive def-
inite and symmetric coefficient matrix (involves the variable v).

The fourth arising subproblem can be solved using the PSCR method discussed
in Section 3.5.

The non-convexity of the objective functional (5.21) is effectively transferred
to the first subproblem, which is initially solved using Newton’s method. The
obtained solution candidate is tested against an explicit relation, and if this test
fails, the method then proceeds to a one-dimensional version of the subproblem.
In this way, the global minimum can be found more reliably, and as a result,
edges can be recovered more easily. Numerical experiments indicated that the
algorithm is capable of removing considerable amounts of noise with a reason-
able number of iterations. When compared to the solution algorithm depicted in
[182], this solution algorithm has the benefit of having one less Lagrange mul-
tiplier, which makes it easier to adjust of the penalty coefficients. In addition,
the equality constraints in the ALF (6.6) are all linear and result in different (and
simpler) subproblems.

The article provides a answer to the research question RQ3. In summary,
the primary research contributions of the article were:

1. The article presented a new AL-based solution algorithm for the LIMC im-
age denoising model that has fewer tunable parameters than the previous
method discussed in [182].

2. The article presented the results of numerical experiments demonstrating
the performance of the method.

3. The article showed that the method is capable of removing considerable
amounts of noise and can preserve edges very well.

6.5 Article [PV]: A GPU-accelerated augmented Lagrangian based
L'-mean curvature image denoising algorithm implementation

M. Myllykoski, R. Glowinski, T. Karkkdinen, and T. Rossi. A GPU-accelerated aug-
mented Lagrangian based L!-mean curvature image denoising algorithm implemen-
tation. In M. Gavrilova, V. Skala, editors, WSCG 2015: 23rd International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision’2015: Full Papers
Proceedings, pages 119-128, Vaclav Skala — Union Agency, 2015.

The included article [PV] describes a GPU implementation of the solution algo-
rithm depicted in [PIV]. Because two of the arising subproblems can be solved
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without inter-process communication, GPU-acceleration brought significant per-
formance benefits because the non-convex term in the original objective func-
tional is treated by one that these two subproblems. The remaining subproblems
were solved using the radix-4 PSCR GPU implementation depicted in [PIII] and
a conjugate gradient method which can be implemented relatively efficiently on
GPUs [6, 35, 90]. The article also presented an analysis of how certain data struc-
tures should be stored in the global memory.

The new GPU implementation was compared against a single-threaded CPU
implementation. Up to 33-fold speedups were observed when Nvidia GeForce
GTX580 and Nvidia Tesla K40c GPUs were compared against an Intel Xeon CPU.
The first subproblem was solved up to 76 times faster. More global memory inten-
sive subproblems did not benefit quite as much from the GPU-acceleration. The
numerical experiments were performed using double-precision floating-point arith-
metic.

The article provides a answer to the research question RQ4. In summary,
the primary research contributions of the article were:

1. The article described an efficient GPU implementation of the LIMC image
denoising algorithm described in the included article [PIV].

2. The article showed that GPUs can provide demonstrable benefits in the con-
text of the higher order variational-based image denoising algorithms.

3. The article presented an analysis of how certain data structures should be
stored in the global memory.



7 CONCLUSION

This dissertation had three main themes: BCR type fast direct solvers, GPU com-
putation, and LIMC-based image denoising. The BCR methods have many uses,
ranging from solving a simple Poisson boundary value problem in a rectangle to
solving a set of subproblems generated by a different numerical method. GPUs
can provide significant performance benefits for the aforementioned BCR meth-
ods. Image denoising, on the other hand, is a suitable application area for the
GPU implementations of the BCR methods.

A total of five articles were included in this article-type dissertation. The
first three articles dealt with BCR methods. The first article presented GPU imple-
mentations of two simplified BCR methods and compared the implementations
against similar CPU implementations. The second article introduced a new way
of deriving a GPU-friendly radix-4 BCR method. The third article presented a
GPU implementation of a radix-4 PSCR method. Reasonable speedups were ob-
tained in the first and the third articles, although the generalized implementation
presented in the third article did not perform quite as well as expected on newer
GPUs. The implementation would benefit from a more GPU-friendly tridiagonal
solver. Otherwise, these articles showed that GPUs can provide demonstrable
benefits in the context of BCR type fast direct solvers.

The two remaining articles focused on the LIMC model. The fourth arti-
cle introduced a new AL-based solution algorithm and demonstrated the perfor-
mance of the proposed algorithm by numerical means. The fifth article presented
an efficient GPU implementation of the method. Significant performance ben-
efits were obtained, although some parts of the implementation did not benefit
quite as much as expected. Otherwise, these articles show that GPUs can provide
demonstrable benefits in the context of higher order image denoising models and
ADMM methods.



8 FUTURE WORK

In future, the generalized radix-4 PSCR implementations described in the in-
cluded article [PIII] could be rewritten using CUDA [128], or the implementation
could have a support for both frameworks. This would allow the implementation
to access more memory because Nvidia’s current OpenCL implementation sup-
ports only up to 4 GB of global memory. Furthermore, AMD/ATI GPUs should
be tested with the implementation, and support for multiple GPUs would be use-
ful. The implementation was written with a multi-GPU support in mind, but
some functionality is missing.

The AL-based LIMC image denoising algorithm described in the included
article [PIV] could be generalized. Adopting the method to the GMC model (5.23)
would require modifications to three subproblems:

Arbitrary function ®: The third subproblem must be modified. The case ®(x) =
x? yields a closed-form solution for the subproblem and requires only minor
modifications.

Arbitrary parameter B: The first subproblem must be modified. The required
modifications are trivial, but the behavior of the whole algorithm changes
drastically in some cases.

Arbitrary parameter s: The fourth subproblem must be modified. The subprob-
lem becomes nonlinear, which means that the PSCR method cannot be ap-
plied directly. However, an operator splitting-based time-marching tech-
nique was proposed by Professor Roland Glowinski, and this technique
would utilize the PSCR method.

8.1 Preliminary results

Figures 15 and 17 show some preliminary results in the case ®(x) = |x| and
s = 2. These proof-of-concept style results show that the method at least con-
verges and produces visually pleasing results. The method actually seems to
converge slightly faster when the value of the parameter p was reduced. Making
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the parameter 8 smaller also seems to reduce the number of artifacts in the result
(the narrow peaks) but makes the result more piecewise constant. The original
test image was scaled to the range [0,1], and the noisy input image contained
normally distributed zero-mean noise with the standard deviation o = 0.05. The
parameters were: i = 0.005 (mesh refinement), ro = 0.001, e = roh, r; = 50r¢h,
ry = 51”0, and ry = 51”0]12.

Figures 16 and 18 show similar preliminary results in the case ®(x) = x
and s = 2. The method converges, but the convergence rate was negatively ef-
fected when the value of the parameter  was reduced. However, the method
could be competitive with the other methods discussed in Subsection 5.3.4 after a
proper adjustment of the parameters. Again, making the parameter  smaller
makes the result more piecewise constant. The parameters were: & = 0.005,
ro = 0.001, € = roh?, 1, = 50rgh, r» = 5rp, and r3 = 5roh?.

2
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(c) Result, B = 10°. (d) Result, B = 1073, (e) Result, p = 107°.

(f) Cross-section, p = 10°.  (g) Cross-section, B = 1073. (h) Cross-section, § = 107°.

FIGURE 15 The results obtained with the GMC model (®(x) = |x| and s = 2).
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(c) Result, B = 10°. (d) Result, B = 1073, (e) Result, p = 107°.

(f) Cross-section, p = 10°.  (g) Cross-section, B = 1073. (h) Cross-section, § = 107°.

FIGURE 16 The results obtained with the GMC model (®(x) = x?> and s = 2.)
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FIGURE 17 Values of the objective functional (5.23) (®(x) = |x|, s = 2) among the
iterations when the value of the parameter f is varied.
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FIGURE 18 Values of the objective functional (5.23) (®(x) = x?, s = 2) among the
iterations when the value of the parameter f§ is varied.
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YHTEENVETO (FINNISH SUMMARY)

Télla vaitoskirjalla, GPU-kiihdytetyt nopeat suorat ratkaisijat ja niiden sovellukset hiii-
rion poistamisessa valokuvista, on kolme péddasiallista teemaa: lohkosyklinen re-
duktio (block cyclic reduction, BCR) -pohjaiset nopeat suorat ratkaisijat, ndyténoh-
jainlaskenta ja keskimaaraisen kaarevuuden (mean curvature) L'-normiin perustu-
vat héirionpoistomenetelméat. BCR-menetelmilld on monia kayttokohteita kuten
esimerkiksi yksinkertaisen Poissonin reuna-arvotehtdvan ratkaiseminen suora-
kulmiossa. Lisdksi menetelmille soveltuvia osatehtdvid syntyy monimutkaisem-
pien numeerisien menetelmien yhteydessa. Modernit ohjelmoitavat ndytonohjai-
met (GPU) kykenevit tarjoamaan huomattavasti enemman liukulukulaskenta-
tehoa kuin perinteiset keskusprosessorit. Taten GPU:den hyodyntamisestd saat-
taisi olla hyotyd myoskin BCR-menetelmien yhteydessa. Hairionpoistomenetel-
maét puolestaan tarjoavat erinomaisen sovellusalueen BCR-menetelmien ndyton-
ohjainpohjaisille toteutuksille.

Tahan artikkelikokoelmaan siséltyy yhteensa viisi tieteellista artikkelia. Kol-
me ensimmaistd artikkelia kasittelivat BCR-menetelmid. Ensimmainen artikkeli
esitteli kahden yksinkertaistetun BCR-menetelmédn naytonohjainpohjaiset toteu-
tukset. Toinen artikkeli esitteli uuden tavan johtaa naytonohjaimelle soveltuva 4-
kantainen BCR-menetelmd. Kolmas artikkeli esitteli yleistetyn BCR-menetelmén
ndytonohjainpohjaisen toteutuksen. Ensimmaéisessd ja kolmannessa artikkelissa
raportoitiin kohtalaisen hyvid suorituskykylisdyksid, mutta kolmannessa artik-
kelissa esitelty yleistetty toteutus ei suoriutunut tdysin odotuksien mukaisesti
uudemmilla ndytonohjaimilla. Paremmin ndyténohjaimelle soveltuva tridiago-
naaliratkaisija saattaisi parantaa toteutuksen suorituskykya.

Kaksi jalkimmaistd artikkelia kasittelivdt keskiméardisen kaarevuuden L!-
normiin perustuvaa héirionpoistomallia. Neljds artikkeli esitteli laajennettuun Lag-
rangen funktionaaliin perustuvan menetelmédn mallin ratkaisemiseksi ja osoitti
menetelmédn toimivuuden numeerisin keinoin. Viides artikkeli esitteli ndytonoh-
jainpohjaisen toteutuksen kyseisestd menetelmastd. Naytonohjainpohjaisen to-
teutuksen avulla paastiin merkittdviin nopeushyotyihin, mutta osa toteutuksen
osatehtdvéaratkaisijoista ei hydtynyt aivan niin paljon kuin oli odotettavissa.

Viitoskirjaan liitetyt julkaisut osoittavat, ettd GPU:sta on oleellista hyotya
BCR-menetelmien, korkeamman asteen hdirionpoistomallien ja laajennettuun Lag-
rangen funktionaaliin perustuvien menetelmien yhteydessa.
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ON SOLVING SEPARABLE BLOCK TRIDIAGONAL LINEAR
SYSTEMS USING A GPU IMPLEMENTATION OF RADIX-4 PSCR
METHOD

M. MYLLYKOSKI'89, T. ROSSIT, AND J. TOIVANENT#

Abstract. Partial solution variant of the cyclic reduction (PSCR) method is a direct solver
which can be applied to certain separable block tridiagonal linear systems. Such linear systems arise,
e.g., from the Poisson and Helmholtz equations discretized with (mass lumped) linear finite-elements
or bilinear (or trilinear) finite-elements. Furthermore, the domain has to be rectangular and the
mesh orthogonal. This paper presents a generalized graphics processing unit (GPU) implementation
of the radix-4 PSCR method and numerical results obtained while testing the implementation using
the two aforementioned numerical problems. The numerical results indicate up to 16-fold speedups
when compared to an equivalent CPU implementation utilizing a single CPU core. Attained floating
point performance is analyzed using the roofline performance analysis model. Both the off-chip
and on-chip memory accesses are covered by the analysis. Obtained roofline models show that the
attained floating point performance is mainly limited by the available off-chip memory bandwidth
and the effectiveness of the tridiagonal solver used to solve the arising tridiagonal subproblems. The
performance was accelerated using a Newton-Raphson division algorithm and rudimentary parameter
optimization.

Key words. fast direct solver, GPU computing, partial solution technique, PSCR method,
roofline model, separable block tridiagonal linear system

AMS subject classifications. 35J05, 65F05, 65F50, 65N30, 65Y05

1. Introduction. Separable block tridiagonal linear systems appear in many
practical applications. In such a system the coefficient matrix can be presented in a
separable form using the Kronecker matrix tensor product. An example is a Poisson
equation with Dirichlet boundary conditions discretized in a rectangular domain using
an orthogonal finite-element mesh and bilinear (or trilinear) finite-elements. A sim-
ilarly treated Helmholtz equation either with absorbing boundary conditions (ABC)
[3, 15, 17] or a perfectly matched layer (PML) [4, 5], among others, will also lead to
a suitable linear system [19]. Such systems also appear as subproblems in a variety
of situations. For example, a similarly discretized diffusion equation with a suitable
implicit time-stepping scheme will lead to the solution of a separable block tridiagonal
linear system on each time step.

Numerous effective direct methods have been derived by employing many useful
properties of the Kronecker matrix tensor forms. A comprehensive survey of these
so-called matrix decomposition algorithms (MDAs) can be found in [6]. A MDA
operates by reducing the linear system into a set of smaller sub-systems which can be
solved independently of each other. The solution of the original linear system is then
obtained by reverting the reduction operation. MDAs are similar to the well-known
method of separation of variables. Many MDAs utilize the fast Fourier transformation
(FFT) method while performing the reduction operation. One of the first and most
important of these is so-called Fourier analysis method introduced by Hockney [21]
in 1965.
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Cyclic reduction methods are a well-known class of numerical algorithms which
can be applied, among other things, to tridiagonal and block tridiagonal linear sys-
tems. A traditional cyclic reduction type method (see, e.g., [10, 20, 21, 34, 40, 41])
operates in two stages. The first stage generates a sequence of sub-systems by recur-
sively eliminating odd numbered (block) rows from the system. As a result, the size
of each sub-system is approximately half of the size of the previous sub-system. This
means that the reduction factor, or the radix number, is two. The reduction operation
often takes advantage of properties of the coefficient matrix. For example, in certain
cases, the sub-systems can be represented using matrix rational polynomials which
considerably simplifies computations and reduces amount of memory needed perform
the computations. The sub-systems are solved in reverse order during the back sub-
stitution stage of the algorithm. A recent survey of the cyclic reduction methods and
their applications can be found in [7].

This paper deals with a direct method called partial solution variant of the cyclic
reduction (PSCR). It is a cyclic reduction type method with MDA-type features for
separable block tridiagonal linear systems. The initial work on the (radix-2) PSCR
method was done in the 80’s by Vassilevski [42, 43] and Kuznetsov [26]. The method
uses so-called partial solution technique [2, 27], which can be applied effectively to a
separable linear system when a sparse set of the solution components is required and
the right-hand side vector has only a few non-zero elements. The technique is a special
form of MDA. A more generalized radix-q algorithm was formulated later in [28] and a
parallel radix-4 CPU implementation was presented in [35]. Parallel implementations
were also considered earlier in [1] and [33]. Here the radix number q means that the
system size is reduced by a factor of q on each reduction step. The usual formulation of
the PSCR method only distantly resembles the formulation of a traditional block cyclic
reduction type method. However, in certain special cases, equivalent methods can be
derived using a more traditional matrix rational polynomial approach [30, 34]. If
the factor matrices are tridiagonal, then the arithmetical complexity of the method is
O(ninglogny) for ning x ning two-dimensional problems and O(nynang logn logna)
for nynans X ninong three-dimensional problems.

While scalar cyclic reduction (CR) method [21] and its parallel variant (parallel
cyclic reduction, PCR) [22] have become very popular methods for the solution of
tridiagonal linear systems on graphics processing units (GPUs) (see, e.g., [14, 18, 23,
24, 29, 37, 45]), the block cyclic reduction type methods have been somewhat less
popular topic. Comparisons between CPU and GPU implementations of simplified
radix-2 [34] and radix-4 [30] methods can be found in [31]. The paper concluded that
the block cyclic reduction type methods considered in the paper are suitable for GPU
computation and that the radix-4 method is better able to utilize the GPU’s parallel
computing resources than the radix-2 method. Obtained numerical results indicated
up to 6-fold speed increase for two-dimensional Poisson equations and up to 3-fold
speed increase for three-dimensional Poisson equations. The implementations were
compared against equivalent multi-threaded CPU implementations run on a quad-
core CPU.

This paper presents a generalized GPU implementation of the radix-4 PSCR
method. In a sense, this paper can be seen as a natural follow-up to [30]. The imple-
mentation presented in this paper can be applied to real and complex valued problems.
The problem can be two- or three-dimensional and the factor matrices are assumed
to be tridiagonal and symmetric. As an additional, formal requirement, certain fac-
tor matrices are assumed to be positive definite. However, the GPU implementation
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presented in this paper and the CPU implementation presented in [35] (see [19]) are
applicable in some cases even when this condition is not strictly satisfied. The im-
plementation is tested using a Poisson equation with Dirichlet boundary conditions
and a Helmholtz equation with second-order ABC. In the both cases the domain is
rectangular and the discretization is performed using an orthogonal mesh. In the case
of the Poisson equation, the finite-element space consists of (mass lumped) piecewise
linear element, and in the case of the Helmholtz equation, the finite-element space
consist of bilinear (or trilinear) elements. The obtained numerical results are ana-
lyzed using roofline performance analysis model [44]. The model takes into account
the available off-chip memory bandwidth and, thus, provides a very extensive picture
of how effectively the computational and memory resources are utilized.

The rest of this paper is organized as follows: Section 2 describes the Kronecker
matrix tensor product, the partial solution technique, and the PSCR method. Section
3 gives a brief introduction to GPU computing and describes the GPU implementa-
tion. Section 4 presents the numerical results. The roofline models are presented in
Section 5. The final conclusions are given in Section 6.

2. Radix-q PSCR method. In order to describe the PSCR method, we first de-
fine the Kronecker matrix tensor product for matrices B € K" *"1 and C € K"2*"2
as follows

b11C bisC oo by, C
bgle bz,zc - bgymlc

BeC=| . o _ € Krmnaxmima (2.1)
bm,1C bnl,QC e bnl,mlc

where the field K can be R or C. The product has two properties which are the basis
of many matrix decomposition algorithms: First, let D € K™1*" and E € K™2*"2,
Then,

(B® C)(D® E) = (BD ® CE) € Kmn2xmnz (2.2)

Second, let D € K™ *" and E € K"2*"2_ If the matrices D and E are nonsingular,
then product matrix D ® C' € K™"2X™™"2 ig also nonsingular and

(D ®E)—1 — D—l ®E_1 c Knlngxnlnz. (23)

These two results can be derived from the definition of the Kronecker matrix tensor
product.

Generally speaking, the PSCR method considered in this paper can be applied to
a linear system Au = f, with

A= A1 ® Afg -+ Afl ®A2 -+ C(]V[l X ]\42)7 (24)

where the factor matrices A; € K"'*™ and M; € K™*™ are symmetric and tridiag-
onal, Ay, My € K"*"2 and ¢ € K. Thus, the coefficient matrix A is symmetric and
block tridiagonal. This corresponds to a two-dimensional problem. The method can
also be applied to three-dimensional problems in which case the coefficient matrix A
is of the form

AL @ My @ M3+ My ® As @ M3+ My @ My ® Ag + c¢(My @ My ® Ms), (2.5)
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where the factor matrices Ay and My are symmetric and tridiagonal, and Ag, M3 €
Kms*ns - The PSCR method reduces a three-dimensional problem into a set of two-
dimensional problems where the coefficient matrices are of the form

Ay @ M3 + My ®@ Az + (¢ + \) (M ® Ms), (2.6)
with A € K. The PSCR can be applied recursively to solve problems with (2.6).

2.1. Basic algorithm. This and the next subsection describe the radix-q PSCR
method using projection matrices similarly to [35]. Let sets Jy, Ji, ..., Ji C N deter-
mine (indirectly) which block rows are eliminated during each reduction step. The
exact formulation of the PSCR method depends on how these sets are chosen. In the
case of the radix-q PSCR method, k = [log, 71| + 1 and the sets fulfill the following
conditions:

() Jo={1,2,3,...,m}, Jp = 0.
(i) Jp C Jg—1 C--- C J1 C Jp.
(i) Let J; = J; U{0,n1 + 1}, (31", 757, ...) be the elements of the set J;, in
ascending order, and

DY ={jedia: i <j<ith}

Then #D{ < g—1foralli=1,2,....kandl=1,2,...,%J; + 1.

Above #.J; and #Dl(l) are the cardinalities of the sets J; and Dlw7 respectively.
The consequence of the third condition is that the rows, that are to be eliminated
during a reduction step, are distributed into groups of a size of no more than ¢ — 1.
Examples of the sets Jq, Jo, ..., Ji are given in Figure 2.1 and in Section 2.3.

./0 HE EEE NN EEE NN EEEEEEEEEEEEEEEEEEENESR

_/1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
jz ] ]
13

Fiac. 2.1. An example of the sets Jo, J1, J2, J3 when ¢ =4 and n1 = 32.

With the sets Jo, Ji, ..., JJx, we can define projection matrices
P — diag{pgi),p?7 . ,pﬁfl)} eK™, i=1,2,...,k, (2.7)
with
) 1. idJ
p;z) _ ) ] ¢ i (2.8)
0, je Ji.

Based on these, we can define a second set of projection matrices: P() = PO g I,
i=1,2,... k.
Under the assumption that projected matrix P®W AP is nonsingular in subspace
Im(P®) for all i = 1,2, ..., k, the system Au = f can be solved in two stages:
(i) Let fM = f. Then, for i = 1,2,...,k — 1: Solve the vector v( from
POAP@ L = pd) (0
and compute
FEHD = &) _ Ap@y(0),
4
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(ii) Let u**1) =0. Then, for i = k,k —1,...,1: Solve the vector u() from
PO AP® 6 — P(vi)f(i) _ p(w:)A(I _ P(i))u(i-{-l)
and compute
(I- P(i))u(i) =(I— P(f,))uml)_

Finally, u = u(.

The rationale behind the aforementioned recursive technique becomes clear after
the following observations: Due to the special block tridiagonal structure of the coef-
ficient matrix A, only a sparse set of the solution components are actually required
in the update formulas, and the right-hand side vectors have only a few non-zero
elements. In this situation the partial solution technique [2, 27], which is described
in the next subsection, can be applied very effectively.

_ 2.2. Partial solution technique. Let us focus on a separable linear system
Av = g with

A=A, @ My+ Ay @ Ay + (M @ M), (2.9)

where Ay, M; € K™*™ are tridiagonal and symmetric. Let us have projection ma-
trices R € K™*™ and Q € Km*™ defining the required solution components and
the non-zero components of the right-hand side vector, respectively. Based on these
projection matrices, we construct two additional projection matrices: R = R® I,
and Q = Q ® In,.

Instead of solving the whole vector v, we are going to solve only vector Rv. In
addition, it is assumed that g € Im(Q). The vector Rv can be solved effectively by
using the following formula:

RATIQ = (RW @ L,,) (A + ¢L,y) @ My + I, ® As) " {(WTQ ® I,,,), (2.10)

where the diagonal matrix A € K™*™ and the matrix W € K™*™ have the properties

WTAW =A and WIM\W = I,,,. (2.11)
In other words,

W = [wiws ... wy,] and A =diag{\1, Ao, ..., A} (2.12)
contain the eigenvalues A1, A2,..., A\, € K and the M;-orthonormal eigenvectors
wi,wa, ..., wy € K™, which satisfy the generalized eigenvalue problem

Ajw; = \jMyw;. (2.13)

The aforementioned formula (2.10) follows from the properties (2.2) and (2.3).

In the case of the radix-q¢ PSCR method, the projection matrices R and Q contain
not more than ¢ + 1 non-zero elements, which means that only certain components
of the eigenvectors are required to compute (2.10). If the factor matrices Ay and
M are tridiagonal, then the arithmetical complexity of the partial solution technique
is O(mns), the most expensive operation being the solution of m tridiagonal linear
systems.
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2.3. Explicit formulas. This subsection gives explicit formulas in the special
case when n; = ¢* — 1 for some positive integer k. The method can be generalized
easily for arbitrarily n; but due to lengthy formulas we limit ourselves to presenting
the method in this special case. However, the implementation presented in this paper
is applicable for general n;. We begin by defining the sets Jy, J1,...,Jry C N as

Jo={1,2,3,....m},
Ji={j-¢:j=12..,¢"-1},i=1,2,...,k—1and (2.14)
Ji = 0.

Clearly these sets fulfill the conditions enumerated in Section 2.1.

In summary, the radix-q PSCR method proceeds for a two-dimensional problem
as follows: First, we solve a set of generalized eigenvalue problems

APwE = NNl i =12,k =12, m, (2.15)

where /1&”,%1(2”,...,14;,),1. e Kmixmi and ]\7[1(i>,]v~[2(i),...,]v~f;£),i € Kmixmi are the
non-zero diagonal blocks from projected matrices PO A, PO and I:’“)Mlﬁ’(i), respec-
tively, in order starting from the upper left corner, and m; = ¢* — 1. This step can be
considered as an initialization stage.

Next, let f() = f. We recursively compute vectors f2) e K" '=nz #(3) ¢
K@ *=Dnz (k) ¢ K@=Dn2 Ly using the formula

R A Z ~ 70 Z (@), )10l e K2, (2.16)
where
) = (A1) g g1+ € (M) i) M+ (M1) s s -1 A,
Vj(l) = ((Al)jqujqw-l +c (]\fl)jqi,jqz_'_l)]\/[Q + (Ml)jqu]'qz_*_lAQ.
The vectors vj(ll) € K™ are solved from
q—1 . )
(A2 + () + C)MQ> o) =3 @) gir £ (2.17)
s=1
Next, we recursively compute vectors u®) € K@=Dnz o(k=1) ¢ Ra*=Dna 1) ¢

K@~ Dn2 by using the formula

Wiy = S sl €K =12 a1

= (2.18)
ul(;d)ﬂ = u((;:ll) e K™ d< q’“*’: -1,
where d = 0,1,...,¢" " — 1. The vectors yfl; € K™ are solved from
g—1
<A2 +(A d-f)—l e )M2> (Z) Z(w&% 1sgi=t qd+s
= (2.19)

o (7 i i+1 (i i4+1
Kz(i)(w&ll?z)l“& ) Kd-i)—l(wgl-f)—ll)m1u‘£l+l>’
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where
kY = ((A1)dgi+1,dq¢ + ¢ (M1)agi+1,dq ) M2 + (M1) agi11,aq A2,
K = (A)agi—1,aq + ¢ (M1)agi—1,4q1) Ma + (M1)agi—1,aq: Az,

Kél) = IA(QQ,L. =0, and u((f“) = ufll,ill) =0. Finally, u = u™.

In the case of a three-dimensional problem the formulas are essentially the same.
The numerical stability of the PSCR method depend largely on the properties of the
generalized eigenvalue problems (2.15) associated with the partial solutions.

3. Implementation.

3.1. OpenCL. Open computing language (OpenCL) is a programming frame-
work which enables programmers to develop portable programs for heterogeneous
platforms. One of the main applications of the framework is in utilizing GPUs for
general purpose computation. Other similar frameworks also do exist, perhaps the
most popular being called compute unified device architecture (CUDA). CUDA can
be used only with Nvidia’s GPUs while OpenCL is intended to be platform indepen-
dent. The GPU-related part of OpenCL and CUDA resemble each other in many
respects, but there are some major differences between the terminologies used. Since
an OpenCL implementation is presented in this paper, the OpenCL terminology is
used throughout this paper. OpenCL specifications do not include much relevant
information on GPU hardware. That knowledge is, however, essential for high per-
formance implementation on a GPU. For that reason, some additional information on
Nvidia’s current hardware is provided.

A contemporary high-end GPU contains thousands of processing elements (cores)
which are grouped into multiple computing units. On the logical level all processing
elements are full-fledged cores, but on the hardware level the processing elements are
linked to each other in many ways. The processing elements inside the same computing
unit share certain resources such as a register file, schedulers, special function units,
and caches. Because multiple processing elements share the same scheduler, the code
is actually executed in a synchronous manner. The hardware handles branches by
going through all necessary execution paths and disabling those processing elements
that do not contribute to the final result.

GPU has two primary memory spaces:

Global memory is a large but relative slow (off-chip) memory space, which can be
accessed by all processing elements. Achieved memory bandwidth depends
largely on the access pattern. Usually this means that the processing ele-
ments, that are executing the same memory access command synchronously,
should access memory locations that are located inside the same memory
block. These kind of coherent memory requests can be carried out col-
lectively while scattered memory requests lead to several separate memory
transactions.

Local memory is a fast (on-chip) memory space which is commonly used when
multiple processing elements, that belong to the same computing unit, want
to share data. This memory is often divided into 32-bit or 64-bit memory
banks organized such a way that successive 32-bit (or 64-bit) words map to
successive memory banks. Each memory bank is capable of serving only one
memory request simultaneously. This limits the number of effective access
patterns as simultaneous memory requests, that point to the same memory
bank, cause a memory bank conflict and are processed sequentially.

7
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In addition, there are two additional memory spaces called constant memory and
private memory, but they are not used (explicitly) in our GPU implementation.

A processing element is capable of executing multiple work-items (threads) con-
currently. Having extra active work-items is actually beneficial as the computing
pipeline can be kept occupied and the memory latencies can be seemingly hidden.
Nvidia uses the term warp to describe a set of work-items that are executed together
in a synchronized manner. The warp size is 32 work-items. The work-items are
grouped into multiple work groups, which are then mapped to the computing units.
GPU-side code execution begins when a special kind of subroutine called kernel is
launched. Every work-item starts from the same location in the code, but each work-
item is given a unique index number which makes branching possible. The work
groups are also indexed. The work-items, that belong to the same work group, can
share a portion of the local memory and can use synchronization commands which
guarantee memory coherence between the work-items.

3.2. General notes. The GPU implementation is based on the radix-4 PSCR
method. The radix-4 variant was chosen because it is relatively simple to implement
but it is still nearly optimal in the sense of arithmetical complexity [35]. Based on
the numerical results presented in [31], it is also likely that a radix-4 method will
outperform a radix-2 method on a GPU, especially when the problem size is small.

The GPU implementation can be applied to problems where the factor matrices
Ay, As, My, and My are tridiagonal and symmetric. For three-dimensional problem,
the factor matrices Az and M3 are also assumed to be tridiagonal and symmetric. The
field K can be either R or C. The system size can be arbitrary as long as the GPU
has enough global memory to accommodate the right-hand side vector, the factor
matrices, the eigenvalues, the required eigenvector components, guiding information,
and workspace buffers.

The generalized eigenvalue problems are solved using the CPU. This is not a
major limitation because the PSCR method is usually used when one must solve a
large set of problems with (nearly) identical coefficient matrices. If the factor matrix
M, (or M>) is not diagonal, then the generalized eigenvalue problem is preprocessed
with Crawford’s algorithm [13] leading to an ordinary eigenvalue problem with the
same eigenvalues. The eigenvalues are then solved using the LR-algorithm [36] coupled
with Wilkinson’s shift. The eigenvectors are solved using the inverse iteration method
after the eigenvalues have been computed. Crawford’s algorithm uses the Cholesky
decomposition which assumes that the factor matrix M; (and Ms) is positive definite.
However, this condition does not need to be always satisfied.

OpenCL does not have a native support for complex numbers. In the GPU im-
plementation presented in this paper, a complex number is presented using a vector
of length two. Multiplications and divisions are implemented using suitable precom-
piler conditionals/macros. This means that the same codebase can be used for real
and complex valued problems. Problems appear when each work-item accesses two
consecutive elements of a complex valued vector that is stored in the global memory.
If the real and imaginary parts are stored together in the same memory buffer, then
each work-item would have to load a 256-bit memory block at once. However, for per-
formance reasons each work-item should access a maximum of 128-bit memory block
at once. This problem is avoided by storing the real and imaginary parts separately
in the situation where it is beneficial. The same approach is also used with the local
memory to avoid memory bank conflicts.

Double precision floating point division is a very expensive operation on a con-

8
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| FMA division Newton-Raphson
GTX580 | 98.7 - 107 op/s (197 GFlop/s)  9.55 - 10° op/s  9.89 - 10° op/s
K40c | 704 - 10° op/s (1408 GFlop/s) 25.1-10° op/s  55.1 - 10° op/s
TABLE 3.1
Measured arithmetical operation output on Nuvidia Geforce GTX580 and Nvidia Tesla K/Oc
GPUs.

temporary GPU. Based on the measurements shown in Table 3.1, the native double
precision floating point division is over 28 times more expensive than double precision
fused multibly-add (FMA) operation on a Nvidia Tesla K40c GPU. This motivated
us to consider Newton-Raphson division algorithm [16] for computing the inverse of
a real number D € [1/2,1). The iteration formula is

Xip1 = Xi + X;(1 — DX,) (3.1)

and the optimal linear initial approximation of 1/D which minimize the maximum
relative error in the final result over interval [1/2,1] is given by

48 32
Xo = T 17D. (3.2)
This initial approximation leads to full double precision accuracy with only four itera-
tion [32], which means that the cost of computing the reciprocal is 9 FMA. The scaling
into the half-open interval [1/2,1) and back to the correct range can be performed
with five bitwise operations and two integer additions/subtractions. As shown in Ta-
ble 3.1, on a Nvidia Geforce GTX580 GPU, the Newton-Raphson division slightly
outperforms the native floating point division, and on the K40c GPU, the Newton-
Raphson division is more than two times faster.

The implementation is divided into three levels: The level 3 is the tridiagonal
solver, which is responsible for solving the tridiagonal sub-problems in (2.17) and
(2.19). The details are given in the next subsection. The level 2 forms the right-
hand side vectors for the aforementioned tridiagonal sub-problems and computes the
vectors (2.16) and (2.18). The level 1 is analogous to the level 2 as it performs the
same operations to a three-dimensional problem. The only major difference is that
the sub-problems are then block tridiagonal.

When the tridiagonal solver is excluded, the implementation consists the following
seven kernels:

Ix_stage_11 forms the right-hand side vectors for the sub-problems in (2.17).
Ix_stage_12a computes the vector sums in (2.16).

Ix_stage_y2b helps to compute the vector sums in (2.16) and (2.18).

Ix stage 12c computes the vector f(+1) in (2.16).

Ix_stage_21 forms the right-hand side vectors for the sub-problems in (2.19).
Ix_stage_22a computes the vector sums in (2.18).

Ix stage 22c computes the vector u(¥) in (2.18).

As the levels 1 and 2 are analogous to each others, they use the same codebase. Level
1 kernels have a prefix 11 and level 2 kernels have a prefix 12.

The purpose of the kernel Ix_stage_y2b is to distribute the task of computing the
vector sums in (2.16) and (2.18). Each vector sum is divided into multiple partial sums
which are then evaluated in parallel by the kernels Ix_stage_12a and Ix_stage_22a. The
same division into partial sums is then repeated recursively by the kernel Ix_stage_y2b
using a tree-like reduction pattern until the whole vector sum is evaluated.

9
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Many aspects of the implementation are parametrized. For example, each kernel
has its own parameter that specifies the size of the work group. The maximum size
of each partial vector sum and division algorithm are also set by parameters. In
addition, several parameters control the way the tridiagonal solver behaves. Optimal
parameters are selected by solving the arising integer programming problems using a
(discrete) differential evolution [38, 39] method.

3.3. Tridiagonal solver (level 3). The tridiagonal solver used in this paper is a
generalized and extended version of the CR based tridiagonal solver used in [31]. The
extended tridiagonal solver is based on the CR, PCR, and Thomas [11] methods. The
CR method has been shown to be particularly effective on GPUs due to its simplicity
and parallel nature (see, e.g., [14, 18, 23, 24, 29, 37, 45]). The method solves a
tridiagonal linear system Du = f, D = tridiag{a;, b;,¢;} € K™*™, by generating a
sequence of tridiagonal sub-systems as follows: Let a<0) bm) b, c( ) = = ¢;, and
f<0) fivi=1,2,...,m. Now, fori=1,2,...,k—1, k= \_logZ( )] + 1, we generate
a sequence of sub-systems by using the formulas

1 1 i 1 1
5) = (Z )/bg3—1)7 ﬁ]@ (1 )/6(234—1)7
(@) <1) (Z D0 _ gl (i~ 1)
o =gy, o) = gy (3.3)
1 1 i) (i—1 ’
b(_z) b(t )t a (1) (211 1)+B<}) gjﬂ),

f() f(L 1) + (L)fZ(' 1) +ﬁ( )f2<;+i)?

e . 3 (i—1) _ g (i-1) (i—1) (i— o
where j =1,2,...,|m/2"], a Uit 41 = bLm/W 1 = Lm/Q’ 1 = flmgpir 1 =
0, and C(Lm/gl = = 0. Then, fori =k —1,k—2,...,0, we solve the sub-system using

the formula

(i) _ (1) (Z+1) (1) (1+1) (#) .
W _ U UGoye TG UGonar)/b s T E 2N,
u’ =14 . (3.4)
U 7 € 2N,
where j = 1,2,...,|m/2!], a (Lgl/TJ =0, and uéiﬂ) = “(Lzr/lz)wljﬂ = 0. Finally,

u = u(®. The arithmetical complex1ty of the method is O(m).

In its basic formulation the CR method suffers from many well-known drawbacks.
The most significant of them, when GPUs are concerned, are: (i) The memory access
pattern disperses exponentially as the method progresses. This causes problems with
the global memory as the processing elements, that are executing the same memory
access command synchronously, must access data that does not any longer fit in-
side a single memory block. And, it causes problems with the local memory because
some processing elements, that are executing the same memory access command syn-
chronously, must access data that is stored in the same memory bank. This problem
is tackled in this paper by different permutation patterns. (ii) The number of parallel
tasks is reduced by a factor of two on each CR recursion step. Thus, some process-
ing elements are left partially uninitialized, i.e., the processing element occupancy is
low. This further leads to suboptimal floating point and memory performance. The
situation is even worse in the complex valued case since the memory requirement is
doubled but the number of parallel tasks stays the same.

The PCR method uses the same reduction formulas as the CR method but the re-
duction operation is applied to every row in each reduction step. Thus, all sub-systems
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are the same size and the arithmetical complexity of the method is O(mlogm). The
benefits of using the PCR method are a more GPU-friendly memory access pattern,
which does not cause additional memory bank conflicts, and high processing element
occupancy. The method is widely used for solving tridiagonal systems on GPUs; see,
e.g. [14, 45].

And finally, the Thomas method is a special variant of the well-known LU-
decomposition method for tridiagonal matrices. The arithmetical complexity of the
method is O(m) and it is the most effective of all the three mentioned methods. How-
ever, this sequential algorithm is not suitable for GPUs on its own. Thus, the method
is often combined with the PCR method (see, e.g., [14, 24]). This is possible because
a PCR reduction step splits a linear system into two independent sub-systems. After
a few reduction steps, the remaining sub-systems can be solved effectively using the
Thomas method.

Fia. 3.1. Ezamples of the permutation patterns during the stage A (on the left) and stage B
on the right) of the tridiagonal solver. The work group size is four.
g 9 g

The solver has four main stages: Stage A is used when the reduced system does
not fit into the allocated local memory buffer. It this case, the coefficient matrix and
the right-hand side vector are stored in the global memory and the local memory is
used to share odd numbered rows between work-items. The system is divided into
sections which are then processed independently of each other. Each section is two
times the size of the work group. After the new sub-system has been computed using
the CR method, each section is permuted such that all odd numbered rows from the
previous sub-system are stored in the upper half of the section and all rows from
the new sub-system are stored in the lower half of the section. This division and
permutation operation is repeated after each reduction step. Figure 3.1 shows how
the reduction stage proceeds when the work group size is four. Each reduction and
back substitution step can be performed by using multiple work groups concurrently,
thus allowing larger number of work-items to be used per tridiagonal system.

Stage B is used when the reduced system fits into the allocated local memory
but the number of remaining even numbered rows is bigger than the size of the used
work group. The system is again divided into sections which are then processed
independently of each other and each section is two times the size of the work group.
Before the first reduction step, each section is permuted such that all odd numbered
rows are stored in the upper half of the section and all even numbered rows are stored
in the lower half of the section. Then all sections are processed in pairs. After the new
sub-system has been computed using the CR method, each section pair is permuted
such that all computed rows, that are going to be odd numbered rows during the next
reduction step, are stored in the lower half of the first section and all computed rows,
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that are going to be even numbered rows during the next reduction step, are stored
in the lower half of the second section. This division and permutation operation is
repeated after each reduction step. This permutation pattern seems to be in some
respects similar to the one used in [18]. Figure 3.1 shows how the reduction stage
proceeds when the work group size is four.

Fic. 3.2. An example of the permutation pattern during the stage C of the tridiagonal solver.
The work group size is eight.

Stage C is used when the reduced system fits into the allocated local memory
buffer and the number of remaining even numbered rows is at most the same as the
size of the used work group. Before the first reduction step, the system is permuted
such that all odd numbered rows are stored in the upper half of the vector and all
even numbered rows are stored in the lower half of the vector. After the new sub-
system has been computed using the CR method, each vector is permuted such that
all computed rows, that are going to be even numbered rows during the next reduction
step, are stored in the first part of the vector, followed by all computed rows, that
are going to be odd numbered rows during the next reduction step. This division
and permutation operation is repeated after each reduction step. This permutation
pattern seems to be identical with the one used in [18].

Stage D performs the remaining system using a PCR-Thomas hybrid method
similar to [14, 24]. This stage can be disabled completely or the Thomas-step can be
skipped, if desired. In our implementation this is decided by the differential evolution
optimization of the run time.

The permutations can be implemented effectively as the coefficient matrix is
stored as three vectors and the reversal of the permutation pattern during the back
substitution stage is necessary only in the case of the right-hand side vector. The
tridiagonal solve presented in [31] consisted simplified versions of the stages A, B, and
C.

In total, the tridiagonal solver consists of five kernels. If it is necessary to
use the global memory, then the following four kernels are used: the first kernel
(13_gen_glo_sys) is responsible for forming the coefficient matrices into the global mem-
ory, the second kernel (13_al) performs one (or multiple if only one work group is used
per system) reduction step, the third kernel (13_a2) performs one (or multiple if only
one work group is used per system) back substitution step, and the fourth kernel
(13_-bed_cpy_sys) copies the system into the local memory and performs the other
stages. If the global memory is not needed, then only one kernel (13_bcd_gen_sys)
is used to performs all necessary operations. The work group sizes, the amount of
allocated local memory, switching points between different stages, the number of work
groups per system, and many other properties are parametrized and, thus, optimized.
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4. Numerical results. The GPU implementation is tested with the following
two test problems. The first test problem is a two- or three-dimensional Poisson
equation with Dirichlet boundary conditions:

{Au—f, in €,

4.1
u =g, on ). (41)

In a rectangle the discretization using (mass lumped) linear finite-clements on an
orthogonal finite-element mesh leads the following factor matrices:

1 , h’j,l+h]',l+17_i} ERTL]X"LJ'7
hji—1" hjihjie  hyg

h; h;
M; = diag{ij’l +2 b } € R™*M,

Aj = tridiag {—
(42)

Above, hj; is the [th mesh step in the jth coordinate axis direction. In addition, ¢ =0

in (2.5) or (2.6). Bilinear (or trilinear) finite-elements could be used. In that case, the

factor matrix M; would be tridiagonal which would make the solution slightly slower.
The second test problem is an approximation of a Helmholtz equation

—Au—w?u=f, inR?,

4.3
limrﬁoor(dfl)/2 (? - iwu) =0, (4.3)
T

where d = 2,3 and w is the wave number. The second equation of (4.3) is the Som-
merfeld radiation condition posing u to be a radiating solution. Here ¢ denotes the
imaginary unit. The unbounded domain R? must be truncated to a finite one before
finite element solution can be attempted. This means that we must approximate
the radiation condition at the truncation boundary. Two popular ways of achieving
this are a perfectly matched layer (PML) [4, 5] and an absorbing boundary condi-
tion (ABC) [3, 15, 17]. If the truncated domain is rectangular and the problem is
discretized using bilinear (or trilinear) finite elements on an orthogonal finite-element
mesh, then the resulting coefficient matrices can be presented using the Kronecker
matrix tensor product in a form which is suitable for the PSCR method. The factor
matrices and other details can be found in [19].

A second-order ABC was chosen for numerical experiments. For the Helmholtz

equation, ¢ = —w? in (2.5) or (2.6). The factor matrices are defined as
-b]"1 aj1
A= aj1 bjo . € Cmixn (4.4)
- - Ajnj;—1

Gjn;—1  bjin,

and

E(C”’X"J, (45)

cj,njfl

cj,n]—l dj,n]
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n | CPU GTX580 K40c K40c/cuFFT
31 | 0.0002 0.0007 + 0.0001  0.0006 + 0.0001 0.0002
63 | 0.0005 0.0006 + 0.0001  0.0008 + 0.0001 0.0002
127 | 0.0019  0.0008 + 0.0002  0.0009 + 0.0002 0.0002
255 | 0.0073  0.0011 + 0.0005  0.0010 + 0.0006 0.0008
511 | 0.0344 0.0037 4 0.0021  0.0031 + 0.0021 0.0016
1023 | 0.1441  0.0176 + 0.0055  0.0126 + 0.0044 0.0080
2047 | 0.7072  0.0819 + 0.0165  0.0619 + 0.0303 0.0245
4095 | 2.9455  0.3384 + 0.0922  0.2454 + 0.0794 0.1619
8191 | 13.991 — 1.2558 + 0.5003 —

TaBLE 4.1
Solution and right-hand side vector transfer times (in seconds) for the two-dimensional Poisson
equations.

where
bﬁzi%, 1=2,3,...,n; — 1,
1 ] 1 ;
dj¢l:w7l:2,3,...?nj—l7 (4.6)
dj1 = % + %v djn; = % + i
aj1 = —$7 and ¢;; = %

4.1. Comparisons. The GPU tests presented in this paper were carried out on
a Nvidia GeForce GTX580 GPU with 512 processing elements' and a Nvidia Tesla
K40c GPU with 2880 single-precision processing elements and 960 double-precision
processing elements. The first GPU is a few years old consumer level device which is
not meant for general purpose computation. The reason to include this device is to
demonstrate that our GPU implementation is capable of utilizing even a consumer
level device in such a degree that it significantly outperforms a CPU. The later device
is a high-end device aimed for computations with error checking & correction (ECC)
memory. It is substantially more capable device than the GeForce-series device as it
contains more than five times as many processing elements and more than seven times
as much global memory. However, the theoretical peak global memory bandwidth has
increased only by 50% when compared to the GTX580 GPU. The Tesla-series device
could potentially allow us to solve much larger problems but unfortunately, due to
the limitations of Nvidia’s OpenCL implementation, it is only possible to access up
to 4GB of global memory. GPU driver versions were 340.58 (64-bit Linux) for the
GTX580 GPU and 331.75 (64-bit Linux) for the K40c GPU. The radix-4 PSCR CPU
code used as a reference implementation is the one presented in [35]. It is written in
Fortran and utilizes a single CPU core. CPU tests were carried out using an Intel
Xeon E5-2630 v2 (2.60GHz) CPU. All the test were performed using double precision
floating point arithmetic and the ECC memory was used when possible.

Tables 4.1 and 4.2 show the results obtained with the CPU and GPU implemen-
tations for the two-dimensional test problems. The initialization time is excluded

1Double precision performance of the Nvidia Geforce GTX580 GPU is 1/8 of single-precision
performance.
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n | CPU GTX580 K40c
31 | 0.0005 0.0006 + 0.0001  0.0007 + 0.0001
63 | 0.0009 0.0006 + 0.0001  0.0006 + 0.0001
127 | 0.0055  0.0009 + 0.0003  0.0008 + 0.0003
255 | 0.0196  0.0024 + 0.0014  0.0018 + 0.0012
511 | 0.0972  0.0113 + 0.0036  0.0098 + 0.0038
1023 | 0.3927  0.0436 + 0.0086  0.0358 + 0.0090
2047 | 1.8860  0.1946 + 0.0465  0.1600 + 0.0615
4095 | 8.7141  0.8027 + 0.1851  0.6053 + 0.2487

TABLE 4.2
Solution and right-hand side vector transfer times (in seconds) for the two-dimensional
Helmholtz equations.

16
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Fia. 4.1. A run time comparison between the Intel Xeon CPU and the Nvidia GPUs for the
two-dimensional problems.

from the tabulated run times. The initialization time depends on the properties of
the generalized eigenvalue problems but generally the initialization time is tens of
times longer than the actual solution time. Figure 4.1 shows the speed up when the
Nvidia GPUs are used instead of one core of the Intel Xeon CPU. The right-hand side
vector transfer time is excluded from the comparison. For the Poisson equation, the
GTX580 GPU is up to 9 times faster and the K40c GPU is up to 12 times faster. For
the Helmholtz equation, the GTX580 GPU is up to 11 times faster and the K40c GPU
is over 14 times faster. The size of the problem determines the number of work-items
that can be used which further determines how effectively the GPU can be utilized.
In addition, each kernel launch causes some additional overhead which has the largest
impact on small problems. These two observations explains why the speedup goes up
initially as the problem size increases.

Table 4.1 also includes an additional comparison against a cuFFT-based [12]
Poisson solver [8, 9]. The right-hand side vector transfer time is excluded. The
results show that the cuFFT-based solver is faster than the PSCR implementation
even though it uses a 2D complex-to-complex FFT-transformation instead of a discrete
sine transformation. However, the PSCR method can be applied to a much wider
class of problems. The cuFFT-based solver requires that the equation has constant
coefficients and it is posed with Dirichlet boundary conditions. Furthermore, the
discretization grid must be equidistant.

Tables 4.3 and 4.4 show the corresponding results for the three-dimensional test
problems. The initialization time is again excluded from the tabulated run times.
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n | CPU GTX580 K40c

31 [ 0.0095 0.0028 + 0.0003  0.0035 + 0.0002

44 | 0.0266  0.0058 + 0.0009  0.0047 4 0.0012

63 | 0.0803 0.0114 + 0.0021  0.0084 + 0.0020

89 | 0.4028  0.0510 + 0.0049  0.0341 4 0.0054
127 | 12771 0.1063 4 0.0085  0.0828 + 0.0090
180 | 3.7289  0.2925 + 0.0346  0.2598 + 0.0455
255 | 10.977  0.8434 +0.0634  0.6665 + 0.1209
361 | 47.380 — 3.3248 4 0.3576

Solution and right-hand side vector transfer times times (in seconds) for the three-dimensional

Poisson equations.

TABLE 4.3

n | CPU GTX580 K40c

31 ] 0.0268 0.0067 + 0.0006  0.0038 + 0.0005
44 1 0.0774  0.0167 + 0.0021  0.0089 + 0.0013
63 ‘ 0.2372  0.0332 + 0.0025  0.0173 + 0.0024
89 | 1.2201  0.1572 4+ 0.0064  0.0897 4+ 0.0066
127 | 3.7773  0.3818 + 0.0162  0.2445 + 0.0298
180 | 11.439  1.2079 + 0.0769  0.7880 + 0.0971
255 | 33.022 2.0755 + 0.2469

TABLE 4.4
Solution and right-hand side vector transfer times times (in seconds) for the three-dimensional
Helmholtz equations.

Unlike in the case of two-dimensional test problems, the initialization time is generally
neglectable when compared to the solution time. Figure 4.2 shows the speed up when
the Nvidia GPUs are used instead of one core of the Intel Xeon CPU. In this case,
the GPUs outperform the CPU even when the problem size is small. For the Poisson
equation, the GTX580 GPU is almost 13 times faster and the K40c GPU is over 16
times faster. For the Helmholtz equation, the GTX580 GPU is up to 10 times faster
and the K40c GPU is up to 16 times faster.

Figures 4.3 and 4.4 show how the run time was distributed among the kernels on
the K40c GPU for the two- and three-dimensional Helmholtz equations. For the small
two-dimensional problems, the run time is dominated by the overhead, as expected.
For the larger two-dimensional problems, the run time is dominated by the tridiago-
nal solver. Therefore the effort of improving the implementation should be directed
toward the tridiagonal solver. The transition point where the tridiagonal solver be-
gins to use the global memory can again be seen clearly. For the three-dimensional
problems, the overhead is small and the run time is again strongly dominated by the
tridiagonal solver. The run time breakdowns for the GTX580 GPU and the Poisson
equation are very similar with the difference that the overhead constituted a slightly
larger portion of the total run time.

The GPU implementation is numerically as accurate as the CPU implementation.
The parameter optimization provided some additional benefit usually of the order of
15% when compared to non-optimized generic parameters, which try to maximize
GPU utilization by using large work groups and utilizing the local memory as much
as possible. The Newton-Raphson division algorithm was used in almost all numerical
tests and it increased the performance on average by 3.1% on the GTX580 GPU and
6.8% on the K40c GPU.

5. Roofline models. The roofline model [44] is a performance analysis tool
which takes into account the available off-chip memory bandwidth. The model gives
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Fia. 4.2. A run time comparison between the Intel Xeon CPU and the Nvidia GPUs for the
three-dimensional test problems.
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FiGc. 4.3. The run time distribution on the Nvidia Tesla K40c GPU for the two-dimensional
Helmholtz equation.

a much more accurate picture than only counting of the floating point operations (flop)
would. This is especially true in the case of GPUs since the theoretical floating point
performance can be very high but the actual attainable floating point performance is
limited in several ways, including the global memory bandwidth. The roofline model
has been previously successfully applied to GPUs; see, e.g., [25].

Basically, the application of the roofline model produces a two-dimensional scatter
plot, assigning ”operational intensity” to the horizontal axis, and ”attained floating
point performance” to the vertical axis. Here the operational intensity is defined as

number of floating point operations (5.1)

operational intensity = .
P Y = Jumber of bytes of (off-chip) memory traffic
The model includes two device specific upper limits for the attainable floating point
performance. The first upper limit is the theoretical peak floating point performance
of the device. The second upper limit is determined by the peak (off-chip) memory
bandwidth and calculated by

peak (off-chip) memory bandwidth x operational intensity. (5.2)

The point where these two upper bounds intersect is called device specific balance
point. If the computational intensity of an algorithm is lower than the device specific
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FiGc. 4.4. The run time distribution on the Nvidia Tesla K40c GPU for the three-dimensional
Helmholtz equation.

balance point, then the algorithm is considered to be memory-bound; otherwise the
algorithm is considered to be compute-bound. The actual attained floating point
performance should be close to the upper limit specified by the computational intensity
of the algorithm.

The analysis presented in this paper is based on computing an estimate for the
number of floating point and memory operations on a test run by test run basis.
These estimates take into account the problem size and the parameters. Each Newton-
Raphson division operation counts as 18 flops. The test run specific computational
intensities, attained floating point performances, and average memory throughputs
were then derived from these estimates.
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1000 g 1000 7
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Fia. 5.1. Global memory roofline models for the Nvidia Geforce GTX580 GPU.

5.1. Global memory roofline models and throughput. Figure 5.1 shows
the global memory roofline models for the GTX580 GPU. Based on the information
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provided by Nvidia, the theoretical peak floating point performance was estimated to
be about 198 GFlop/s and the theoretical peak global memory bandwidth to be about
192 GB/s. This means that the device specific balance point is about 1.03 Flop/Byte.
For the two-dimensional problems, the measurement points form two distinct clusters.
For the Poisson equation, these clusters are located near 0.30 Flop/Byte and 1.30
Flop/Byte. The first cluster includes the cases in which the tridiagonal sub-problems
are solved using the global memory and the second cluster includes the cases where the
global memory is not used. This relatively large separation between the cluster is due
to the fact that this analysis does not take into account the local memory throughput
and, thus, the operational intensity is higher in the cases where the local memory
is used more intensively. For the Helmholtz equation, the measurement points form
similar cluster near 0.41 Flop/Byte and 1.17 Flop/Byte. In all cases, the models
indicate that the algorithm is memory-bound for large problems and compute-bound
for small problems. For the three-dimensional Poisson and Helmholtz equations, the
clusters are located near 1.52 Flop/Byte and 1.86 Flop/Byte, respectively. These
imply that the algorithm is compute-bound.

The roofline model explain the numerical results very well in the case of the
large two-dimensional problems. However, it is clear that the attained floating point
performance is not even half of the attainable floating point performance in other
cases. Additional analyses, in which local memory intensive kernels were excluded
from the estimates, produced roofline models where the clusters were located much
closer to the global memory bandwidth related upper limit.
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Fia. 5.2. Global memory roofline models for the Nvidia Tesla K40c GPU.

Figure 5.2 shows similar global memory roofline models for the K40c GPU. This
time the theoretical peak floating point performance is about 1430 GFlop/s and the
theoretical peak global memory bandwidth is about 288 GB/s when the ECC is turned
off. This means that the device specific balance point is about 4.97 Flop/Byte. If
the ECC is turned on, as it was during the test runs, the theoretical peak global
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memory bandwidth will drop. If it is assumed that this drop is about 20%, then the
effective theoretical peak global memory bandwidth would be about 230 GB/s and
the effective device specific balance point would be about 6.21 Flop/Byte. Figure 5.2
includes two global memory bandwidth related upper limits, one with ECC turned
off and one with ECC turned on. Such a large device specific balance points mean
that the task of harnessing all the available computing resources is going to be much
harder when compared to the GTX580 GPU.

For the two-dimensional Poisson equation, the clusters are located near 0.30
Flop/Byte and 2.20 Flop/Byte. For the two-dimensional Helmholtz equation, the
clusters are located near 0.50 Flop/Byte and 2.47 Flop/Byte. And finally, in the case
of the three-dimensional Poisson and Helmholtz equations, the clusters are located
near 1.34 Flop/Byte and 2.20 Flop/Byte, respectively. In all cases, the roofline models
indicate that the algorithm is heavily memory-bound. This explains, at least in part,
why the considerably more powerful computing orientated Tesla-series GPU did not
outperform the consumer-level GeForce-series GPU in such a large extend as would
have been expected.

When compared to the roofline model in Figure 5.1, it can be seen that some
measurement points have shifted to the right. This is mainly due to the fact that
the tridiagonal solver begins to utilize the PCR method at much earlier stages and
the PCR method has higher arithmetical complexity than CR method. While this
increases the overall arithmetical complexity of the implementation, it also streamlines
the local memory usage. This benefits devices with high device specific balance points,
such as the K40c GPU.
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Fia. 5.3. Average global memory throughputs for the Nvidia Geforce GTX580 GPU (on the
left) and the Nvidia Tesla K40c (on the right) GPU.

Figure 5.3 shows the average global memory throughputs for the GTX580 and
K40c GPUs. The transition point where the tridiagonal solver begins to use the
global memory can be seen clearly and it appear that the memory channels begin to
saturate when the two-dimensional problems become large enough thus implying that
the algorithm becomes memory-bound. These graphs are consistent with the global
memory roofline models.

5.2. Local memory roofline models. The roofline models in Figures 5.1 and
5.2 provide reasonably accurate analysis when the global memory usage is domi-
nating over the local memory usage. However, the local memory usage is also an
important factor in particularly when the problem size is small or the problem is
three-dimensional. In order to take this into account, the local memory usage of the
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kernels 13_bed_cpy_sys and 13_bed_gen_sys was analyzed in further detail.

Based on the hardware specifications and the documentation provided by Nvidia,
the theoretical peak local memory bandwidth of the GTX580 GPU was estimated to
be about

2 ks 4 2 les
3 b.an s . bytes / 2 cycles « 1.544 Ghz
computing unit bank (5.3)
~ 1581 GB/s,

16 computing units x

which means that the device specific balance point is about 0.13 Flop/Byte. Simi-
larly, if we assume that each memory bank has a bandwidth of 64-bits per cycle, as
documented, then the theoretical peak local memory bandwidth of the K40c GPU
would be about
32 b.anks ' 8 bytes / cycle « 0.745 Ghz
computing unit bank (5.4)
~ 2861 GB/s,

15 computing units x

which means that the device specific balance point is about 0.50 Flop/Byte. Our
additional numerical experiments support these estimates.
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Fi1G. 5.4. Local memory roofline models for the Nvidia Geforce GTX580 GPU.

Figure 5.4 shows the obtained local memory roofline models for the GTX580 GPU.
For the two-dimensional Poisson and Helmholtz equations and three-dimensional Pois-
son and Helmholtz equations the measurement points are located near 0.32 Flop/Byte,
0.36 Flop/Byte, 0.33 Flop/Byte, and 0.38 Flop/Byte, respectively. These imply that
the algorithm is compute-bound in all cases. In the best cases, slightly more than half
of the attainable floating point performance is actually utilized.

Figure 5.5 shows the obtained local memory roofline models for the K40c GPU.
For the two-dimensional Poisson and Helmholtz equations and three-dimensional Pois-
son and Helmholtz equations the measurement points are located near 0.33 Flop/Byte,
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F1G. 5.5. Local memory roofline models for the Nvidia Tesla K40c GPU.

0.38 Flop/Byte, 0.33 Flop/Byte, and 0.38 Flop/Byte, respectively. These imply that
the algorithm is slightly memory-bound in all cases. In the best cases, almost half of
the attainable floating point performance is actually utilized. The significantly higher
attained floating point performance when compared to the GTX580 GPU is mainly
due to the increased utilization of the PCR method.

The above presented roofline models do not alone explain all the numerical results.
Several explanations were considered ranging from memory bank conflicts to potential
GPU driver problems and limitations. In the end, we came to the conclusion that the
most important issue to consider in this regard is the limited amount of local memory
available in contemporary GPUs (48kB), which has the unfortunate side effect of
severely restricting the number of work groups that can be executed simultaneously
in a computing unit. This leads to to suboptimal local memory performance as based
on our measurements, the GTX580 GPU requires at least 256 active work-items and
the K40c GPU at least 512 active work-items per computing unit in order to achieve
the best local memory bandwidth.

In practice, the CR-PCR-Thomas hybrid tridiagonal solver is unable maintain
the required processing element occupancy even though it is possible in principle by
utilizing the PCR-Thomas hybrid method sufficiently. This is due to the fact that the
increase in arithmetical complexity would negate any gains made. Actually, there was
little discernible benefit from using the Thomas stage at all and in most cases only
the CR and PCR stages were used. Previous findings suggest that the roofline model
overestimates the amount of available local memory bandwidth and as a result, the
amount of attainable floating point performance.

6. Conclusions. This paper presented a generalized GPU implementation of
the radix-4 PSCR method and numerical results obtained with the implementation
for two test problems. The results indicate up to 16-fold speedups when compared to
an equivalent CPU implementation utilizing a single CPU core. The highest speedups
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were obtained with the three-dimensional test problems. The numerical results in-
dicate that the presented GPU implementation is effective and that GPUs provide
demonstrable benefits in the context of the cyclic reduction and MDA methods. The
presented roofline models indicate that the performance is, for the most part, limited
by the available global memory bandwidth and the effectiveness of the tridiagonal
solver used to solve the arising tridiagonal subproblems. The Newton-Raphson divi-
sion algorithm improved the average performance almost by 7% and the differential
evolution parameter optimization by 15%.
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Abstract. Variational methods are commonly used to solve noise removal problems. In this paper, we present
an augmented Lagrangian-based approach that uses a discrete form of the L'-norm of the mean
curvature of the graph of the image as a regularizer, discretization being achieved via a finite element
method. When a particular alternating direction method of multipliers is applied to the solution
of the resulting saddle-point problem, this solution reduces to an iterative sequential solution of
four subproblems. These subproblems are solved using Newton’s method, the conjugate gradient
method, and a partial solution variant of the cyclic reduction method. The approach considered here
differs from existing augmented Lagrangian approaches for the solution of the same problem; indeed,
the augmented Lagrangian functional we use here contains three Lagrange multipliers “only,” and
the associated augmentation terms are all quadratic. In addition to the description of the solution
algorithm, this paper contains the results of numerical experiments demonstrating the performance
of the novel method discussed here.

Key words. alternating direction methods of multipliers, augmented Lagrangian method, image denoising,
image processing, mean curvature, variational model
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1. Introduction. Let © be a bounded domain of R? (a rectangle in practice). In the sim-
plest form, denoising is a process in which a given noisy image f : 2 — R is separated into
the actual image v : 2 — R and the remaining noise g :  — R, that is, f = v+ g. Vari-
ational methods, e.g., partial differential equation (PDE)-based (Euler-Lagrange equation)
and nonlinear and nonsmooth optimization—based (corresponding energy functional), intro-
duce a special family of techniques for image restoration and denoising in the general field of
image processing and computer vision [14, 49]. A landmark in such techniques is the work by
Perona and Malik related to anisotropic diffusion [41, 42]. Since then, many formulations and
corresponding algorithms have been proposed, analyzed, realized, and utilized to improve the
quality or understandability of digital images.

Let V' be the space of restored functions, and let us consider the following minimization
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problem:

(1.1) {“ €V,
J(w) <JWw) YveV.

Typically
(1.2) J () = Tp(v) + e (v);

ie., J consists of two terms, namely, (i) Jy(v), whose role is to fit (in a suitable norm) the
denoised function to the noisy data f (the fidelity term), and (ii) the regularizing term €7, (v),
where € (> 0) is the regularization coefficient; examples of functionals 7, will be given below.
The value of € can be determined from the noise variance [10] if this information is known, or
using some suitable heuristics [34].

Well-known variational approaches for image denoising relying on (1.2) include (but are
not restricted to) the following:

BV (or TV) regularization: To be able to restore and denoise images with discontinuous
intensity, a regularization using a norm that is not embedded in C(f2) is needed. During
the last two decades, the image denoising scene has been dominated by a method using
such a regularization. The Rudin-Osher—Fatemi (ROF) method [44] relies on a discrete
variant (obtained by finite difference discretization) of the minimization problem (1.1)
with J defined by

(13) J(v):E/Q\Vv|dx+%/ﬂ|f—v|2d:c.

A natural candidate for the function space V' is the space BV () of the functions with
bounded variation over Q. Problem (1.1) with J defined by (1.3) and close variants of
it have motivated a large literature where their denoising properties, approximation,
and iterative solution have been extensively discussed. We refer the reader to, e.g.,
[33, 34, 35, 45] and references therein for further information.

Euler’s elastica: Euler’s elastica as a prior curve model for image restoration was introduced
in [39]. The work was continued, in connection with image inpainting, in [13]. In
particular, Ambrosio and Masnou [1, 2] advocated using as regularizer the level set of

v via the functional
Vo \?
hlv. 2=
o ( |Vv|)

Let us return for a moment to the ROF model. Although the functional in (1.3) is convex,
the nonreflexivity of the space BV (£2) makes its analysis nontrivial, particularly the behavior
of its solution when ¢ — 0. This issue and many others, such as the derivation of dual
formulations to (1.1) with J defined by (1.3), its discretization, the implementation, and the
convergence of iterative solution methods (of the splitting type), are thoroughly discussed in
[31].

(1.4) To(v) = /Q IVolde.
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Actually, as pointed out by [38] (see also [3], [12], and [51]), the ROF model has some
significant drawbacks, such as the loss of image contrast, the smearing of corners, and the
staircase effect. To remedy these unfavorable properties, several cures have been proposed
(see [51] for a list of related references), among them the one introduced in [51], namely,
instead of (1.1) with J defined by (1.3) use the following model:

Vv 1
1.5 u = arg min,, 5/ V-ider—/,fvsdx,
(19 g mincy Q‘ | S [l

commonly known these days as the L'-mean curvature denoising model; s > 1, s = 2 being
the most common choice. The fidelity term in (1.5) is of the simplest form compared to
the proposed formulations. In particular, as depicted in [40], one can, via adding two linear
transformations to this model, address other important image processing tasks related to
deconvolution, inpainting, and superresolution. The rationale for (1.5) is discussed in much
detail in [51]. However, to the best of our knowledge, the variational problem (1.5) is not yet
fully understood mathematically due to the nonconvexity and nonsmoothness of the functional
in (1.5) and to the fact that a natural choice for V is not clear. Concerning this last issue,
taking V' = BV (Q) is suggested in [51]. We have, however, a problem with such a choice since
we think that the definition of V' has to include conditions on the second derivatives. We can
only hope that a variant of [31] dedicated to problem (1.5) will appear in the near future.

Considering the above situation, our goals in this paper are more modest and purely finite
dimensional algorithmic. They can be summarized as follows:

1. Taking advantage of the relative simplicity of the formalism of the continuous prob-
lem, we derive in section 2 a (necessarily formal) augmented Lagrangian algorithm.
Our algorithm is a simplified variant of the one considered in [52] since we use a
projection on a nonconvex set to treat a nonlinear constraint instead of treating it
by penalty-duality, which would imply one extra augmentation functional and the re-
lated Lagrange multiplier. Thus, our algorithms involve three augmentation terms
instead of four and three Lagrange multipliers instead of four. Indeed, when several
Lagrange multipliers are used, one of the main issues is their adjustment to optimize
convergence. We will return to the details of this reduction in section 2.

2. Taking advantage of the augmented Lagrangian algorithm described in section 2, we
define in section 3 a discrete version of this algorithm to be applied to a (kind of)
mixed finite element approximation of problem (1.5). We choose finite element meth-
ods for approximating the problem instead of finite differences since, when applied
on uniform triangulations (like the one in Figure 1), in particular, these finite ele-
ment methods automatically generate finite difference approximations with, among
other attributes, good accuracy, stability, and monotonicity properties. Moreover, the
variational derivation of Galerkin/finite element approximations (like the one we use
here) makes them the perfect match for the solution of problems from Calculus of
Variations, such as (1.1) with J defined by (1.3) and (1.5) (see [24] for other exam-
ples). Another advantage of finite element approximations is their ability to handle
nonuniform meshes, adaptively or not, which may be of interest for some applications.
More precisely, the minimization of the discrete counterpart of the functional in (1.5)
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is transformed into the iterative sequential solution of four subproblems: one being
smooth but nonlinear in R?, one purely explicit vertexwise, and two linear with pos-
itive definite and symmetric coefficient matrices of a scalar- (assuming s = 2) and
vector-valued type.

3. In section 5 we apply the algorithms defined in section 4 to the solution of a variety of
test problems of variable complexity in order to evaluate the capability of the method-
ology discussed in this paper. The actual solution process is somewhat simplified by
assuming that s = 2 (which was also recommended by Zhu and Chan [51]).

2. Augmented Lagrangian formulation and basic solution algorithm.

2.1. Some preliminary observations. Despite the fact that problem (1.5) is not fully
understood mathematically, we are going to take advantage of the simplicity of its formalism
to derive a formal solution algorithm of the augmented Lagrangian type. This algorithm will
be useful since in section 3 we will take it as a model to define a finite dimensional analogue
dedicated to the solution of a finite element approximation of problem (1.5).

Actually, augmented Lagrangian techniques have a well-established role in analyzing con-
strained optimization problems as well as in deriving general solution algorithms for such
problems [5, 10, 22, 25, 29, 32]. With BV-regularization a reformulation with an augmented
Lagrangian method can introduce one or two new variables to deal with Vu in the nonsmooth
regularization term (e.g., [15, 48, 40] and the references provided in the reviews therein) or
additionally to represent u in the fidelity term [11, 50]. In the latter case, three subproblems
(alternating directions) typically appear and are then solved using linear solvers, explicit for-
mulae (projection or shrinking), and nonlinear optimization methods (for nonsmooth fidelity).
Moreover, when more than one additional variable is introduced, one typically applies varying
regularization parameters for the penalized constraint (e.g., [11, 50]). More examples where
many variational formulations (including Euler’s elastica) for image processing have been effi-
ciently treated using augmented Lagrangian approaches can be found in, e.g., [20, 30, 46, 50].

As already mentioned in section 1, an augmented Lagrangian algorithm was used in [52]
for the solution of (1.5). The augmented Lagrangian approach we apply in this paper is of the
ALG-2 type [22, 29] (better known as ADMM for alternating direction methods of multipliers).
The basic idea of ADMM and the convergence proof in a convex situation were presented in the
1970s by Glowinski and Marrocco [27] and Gabay and Mercier [23]. Augmented Lagrangian
methods, with partly similar ingredients for the solution of other challenging problems, are
described, e.g., in [8, 16, 17, 19, 18, 21, 28]; most of these problems are nonconvex, as is the
one discussed here.

The solution method in [52] is also of the ALG-2 (or ADMM) type, but it uses a different
(and, we think, more complicated) augmented Lagrangian functional as the functional involves
four augmentation functionals and four Lagrange multipliers. What made us uncomfortable
was the Lagrange multiplier treatment of the nonlinear nonsmooth condition |q;|—q;-g2 = 0,
where ¢; and g belong (formally) to (L?(£2))3. The related condition in our approach is

q1

Q@ =—F
V1itaf

where q; and q» belong (formally) to (L?(£2))2. The discrete analogue of the aforementioned

(2.1)
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equality will be treated by projection, avoiding those two terms associated with it in the
augmented Lagrangian and reducing to three the number of Lagrange multipliers. This is a
notable simplification considering that the adjustment of these parameters is one of the main
issues associated with ADMM-type methods (it is discussed in [19] in a particular case). Also,
in our approach, all the constraints treated by penalty-duality are linear, which is not the case
in [52] (one of the constraints there is not only nonlinear but also nonsmooth).

Remark 1. At present, there is no available theory (as far as we know) for the convergence
of ADMM methods for nonconvex problems, even in a finite dimension. Currently, the most
popular publication concerning augmented Lagrangian and ADMM algorithms is certainly [7],
a large review article (>100 pages) uniquely concerned with finite dimensional problems. The
part of the article dedicated to nonconvex problems covers four (inconclusive) pages, suggest-
ing that convergence proofs are difficult to obtain in most nonconvex cases. However, various
investigations concerning nonconvex problems and comparisons with known solutions have
shown the capability of augmented Lagrangian methods at solving nonconvex problems (as
shown, for example, in [18] and [29]). This certainly encouraged us to apply this methodology
to the solution of problem (1.5).

2.2. An augmented Lagrangian formulation. Assuming that a minimizer exists, the
minimization problem (1.5) is clearly equivalent to

(2.2) (u,p1,P2,P3,¥) € E,
j(U,p17P27P3a¢) < j(U7q1,q27q3,Q0) v(1}7(:117c127q3730) € E7
where
) 1 s
(23) ](vahaQ%QS’(P) =€ |50| dr + — |f - ’l}‘ dr.
Q sJa
Above,

E= { (v.a1, 92,93, ¢) 1 v € V, (a1, q2) € (L*(Q))*%, q3 € H(Q;div),

(2.4)
q1
4 € L2(Q)7 q1 = VU7 Q2= —F/——, Q3 = 2, ¢ = Vq3 5
V1t ai?
where
(2.5) H(Qdiv) = {q € (L*(Q))*: V-q € L*(Q)} .

Remark 2. In section 1, we mentioned that the choice of V' in the denoising model (1.5)
is a critical issue. Actually, a reasonable candidate is (for its simplicity) the Sobolev space
W21(Q) since the two terms defining the cost functional in (1.5) make sense in that space (we
recall that from the Rellich-Kondrachov compact imbedding theorem the injection of W21(Q)
in L9(Q) is compact Vq € [1,+00)). From a practical (but formal) point of view, there is an
advantage to taking V = H?(Q)(= W22(Q)) for the following reasons: (i) H2(f) is a Hilbert
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space; (ii) H?(f2) being dense in W?21(Q), one obtains the same infimium when one minimizes
the cost functional in (1.5) over these two spaces; and (iii) the above two spaces lead to the
same discrete minimization problem.

Let us define

(2.6) T = [V x Ejp x H(Q;div) x L*(Q)] x [(L*())? x (L*(Q))* x L*(Q)],
with
(2.7) Ep = {<q17q2> € (L) a2 = \/121T|2}

With problem (2.2) we associate the following augmented Lagrangian functional £, : T — R
(With r= (7‘1,7‘2,7‘3),7"7; >0Vi=1, 2,3):

1
Le(v.d1, 92,93, 9; p1, 2, [13) =€/ \w\dﬂHE/ |[f —vl*dx
Q Q
,
+ *1/ Vo — aqi[*da +/ p1 - (Vv —ai)de
2 Ja Q
I
+§/ \qz—q3|2da:+/uz-(qz—q3)dw
Q Q
T3 2
+ 5/ IV-qs — ¢ dw+/ w3(V-as — @)dz,
Q Q

where (q1,q2) € Eqa.
Now, suppose that the augmented Lagrangian £, has a saddle-point

(29) w = (U»p17p27p377/)§)\17)\27/\3) S T7
that is

(U, P1;P2,P3, ¢> A1> AQ? )‘3)

(2.10) Ly (u, p1, P2, P3, V5 P, P, f13) < Loy
< Le(v,d1, 92,93, 93 A1, A2, A3),

for all (Uu q1,492,93, ¥; U1, 42, ,LLg) € T.
It can be easily shown that if w is a saddle-point of £, over Y, then u is a solution of the

minimization problem (1.5) and

b1 :VU7 P2 = %7 P3 = P2, and¢:v'p3-
V1+pil

2.3. The basic algorithm. A natural candidate for the solution of the saddle-point prob-
lem (2.9)—(2.10) is a particular ADMM called ALG-2 by various practitioners (see, e.g.,
[4, 22, 24, 29]). Among the several algorithms of the ALG-2 type, the following is considered
in this paper.

(2.11)
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Algorithm 1.
Input: f,e,s,vr,N
Initialize(uo,p?,p87pg71/)0; )\(1)7)\8, )\g)
forn=0,...,N do

(2.12) (P11, 5T = arg mingg, qyyemy, L (W, a1, G2, PE, U™ AT, Xy, AY)
(2.13) Pyt = arg ming,e pouain £r (4", PYT RS a5, 0 AT, A AS)
(2.14) " = arg mingepaio) L (uh, PP PETL PET 01 AT, NS, NF)
(2.15) u"t = aryg min,cy Ly (v,p?+1,p§+17pg+l,d}"+1;)\71‘7 3,)\2)

APFL = AP 4y (VT — pPth
NP = X3+ ralppt! — p*)

A= N (VT -

if stopping criterion is satisfied then

1 n+1 n+1 n+1 1
'r'eturn (u'rH» ) pl ) pQ I p3 ’ 'WLJF )

end if
end for
return ERROR

A more explicit formulation of subproblem (2.12) reads as follows:

T T . 1
(pl +1’ p2+1) = arg Mil(q, q,)ek1y |:§ /Q (n\q1|2 * 7’2|(l2‘2) e
(2.16)
- / (rVu™ + A7) - qidz — / (roph — A9) - qux:| .
Q Q

Similarly, the minimization problem (2.13) is equivalent to the following well-posed linear
variational problem in H (€);div):

Pyl € H(Q;div),
rz/nngrl ~qdx +r3/QV~p’3’+1V-q dx = /Q (ropy T+ AL) - qda

+/ (rgy™ — A§)V-q dx, Vq € H(Q;div).
Q

(2.17)

Next, a more explicit formulation of the minimization problem (2.14) is given by

. T
" = arg min e r2(0) s/ lo| dz + ﬁ/ |2 dz
Q 2 Ja
(2.18)
—/ (rsV-p3tt+ A7) dac:| .
Q
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Finally, the minimization problem (2.15) is nothing but equivalent to the following well-posed,
nonlinear, elliptic, variational problem (linear if s = 2):

un+1 c ‘/7
(2.19) r /Q Vutl . Vo dr + /Q ’u”“ - f‘s_z (W — f) v dz

= / (P!t = A1) - Vodz VoeV.
Q

Remark 3. Assuming the minimizing sequences converge to a limit, we do not know in
which space the related weak convergence takes place and if the functional under consider-
ation has the weak lower semicontinuity property necessary to guaranty the convergence to
a minimizer. Indeed, since our main concern is mostly to find a simpler alternative to the
method discussed in [52], we skip this theoretical aspect of the problem.

Remark 4. As mentioned in the introduction, the augmented Lagrangian approach dis-
cussed in this section is largely formal, unlike its finite element realization discussed in section
3. This formality yields to various variational crimes, one of them being to take ¢ in L?(£2),
and consequently gz in H(£2; div), while the natural functional space for ¢ is obviously L'(€).
Actually, a similar variational crime is committed when associating (as done by various prac-
titioners today) with the functional 7 defined by (1.3) the augmented Lagrangian

1
Lo =< [ faldat 5 [ 1 = of da
(2.20) @ @

+i/\Vv—q|2d;t+/u~(Vv—q)dac,
2 Ja Q

which is well suited to operations in H'(£2), but definitely not in BV (), which is the natural
space in which to minimize the above functional (7. Of course, the finite dimensional analogues
of (2.20) make sense, authorizing, for example, the use of ADMM to solve the corresponding
minimization problem.

3. Finite element realization.

3.1. Generalities. The rationale for using finite elements instead of finite differences was
given in the introduction. An inspection of relations (2.16)—(2.19) shows that none of them
explicitly involve derivatives of an order higher than one, implying that finite element spaces
consisting of piecewise polynomial functions are well suited for defining a discrete analogue of
Algorithm 1. Moreover, the expected lack of smoothness of the solutions (or quasi solutions)
of problem (1.5) strongly suggests employing low degree polynomials (of a degree typically
less than or equal to one). Actually, the approximation we will use is of the mixed type, like
those used, for example, in [9, 16, 21, 31]; it allows solving a nonsmooth fourth-order elliptic
problem using approximation spaces commonly used for the solution of second-order elliptic
problems. For a thorough discussion of mixed finite element methods and some applications,
see [6].

Concerning the solution of problem (1.5), we assume that © is a rectangle and denote by
0f) the boundary of €. Since € is polygonal, we can triangulate it using a standard finite



AUGMENTED LAGRANGIAN MEAN CURVATURE DENOISING 103

element triangulation 7, (verifying therefore the assumptions listed in, e.g., [24]). A typical
finite element triangulation (uniform here) is shown in Figure 1.

A
X3

X4

»
'

Figure 1. A uniform triangulation of Q = (0,1)>.

We denote by Xj, (respectively, Xop,) the finite set of the vertices of 7, (respectively, the
finite set of the vertices of 7o, that do not belong to 092). From now on we will assume that
N N,

(3.1) Yon = {P]}]:O’lI and ¥j, = Yo U {Pj}j:hN0th1 ,
where Ny, (respectively, Np) is the number of elements of Xy (respectively, Xj). Finally, we

denote by €2; the polygon that is the union of those triangles of 7}, that have P; as a common
vertex, and by [€;] the measure of ;.

3.2. Fundamental finite element spaces and the discrete divergence operator. Follow-
ing Remark 2, we assume from now on that V = H?(Q). Using the appropriate discrete
Green’s formula, there is no difficulty in approximating the saddle-point problem (2.9)-(2.10)
using classical C%-conforming finite element spaces. To approximate the spaces H'(Q2) and
H?(9), we will use

(3.2) Vi={vel Q) :vre AVTET}.

Above, Pj is the space of the polynomials of two variables of degree less than or equal to one.
Now, for j = 1,..., Ny, let us uniquely define the shape function w; associated with the
vertex P; by

wj € Vi,
(33 wy(P) =1,
wj(Pe) = 0%k, 1<k < Ny, k# .
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The set By, = {wj}ﬁvzhl is a vector basis of V},, and we have

(3.4) v = Zv(Pj)wj Yo € V.

Other finite element spaces will prove useful in what follows. The first, denoted by Vpp, is
the subspace of V}, consisting of the functions vanishing on 952, that is,

(3.5) Vo ={v €V :0(Pj) =0Vj=Nop+1,...,Np};

we clearly have

Non,

(3.6) v=> v(P)w; Y€ Vo
j=1

The other space, denoted by Qp, is defined by
(3.7) Qn={a€ (L) alr € (R)’VT €T},

where Py is the space of those polynomials that are constant. We clearly have

(38) a= Y (dlr),, Ya€Qu,

TET),
where yr is the characteristic function of 7" and
(3.9) VVi, C Qp.

The linear space Qy, is a suitable candidate for the approximation of the space H(€;div),
the main issue being to properly approximate the divergence of an arbitrary element of Qj,.
Suppose that q € H(Q;div) and v € H}(Q2); we have (from the divergence theorem)

(3.10) / V-qudz = —/ q-Vode Y(v,q) € H (Q) x H(Q;div).
Q Q

Suppose now that q € Qp; relation (3.10) suggests defining the discrete divergence operator
divy, by: Vq € Qp we have

divpq € Von,

(3.11) ,
/(dlvhq) vdr = —/ q-Vudr Yve Vy,
Q Q

or equivalently Vq € Qy,, we have
divpq € Vop,

12
(3.12) / (divpg)w; dz:—/ q-Vwjde Vj=1,..., Nop.
Q; Q,

J
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Since the functions q and Vw; are constant over the triangles of 7j, the integrals on the right-
hand sides of the equations in (3.12) can be computed exactly (and easily). On the other
hand, to simplify the computation of the integrals on the left-hand sides, we advocate using
the trapezoidal rule to compute (approximately this time) these integrals; we then obtain

(3.13) (divhq)(P]-)zf‘Q—?)|/ a-Vjdz ¥j=1,.... Noy.
il Ja,

Remark 5. Albeit satisfactory conceptually, the use of the discrete Green’s formulas (as
done above to approximate the divergence operator) may lead to spurious oscillations (see
[9] for dramatic evidence of this unwanted phenomenon), particularly when combined with
low-order approximations, as in the case here. In order to eliminate (or at least strongly
dampen) these unwanted oscillations, we advocate the following regularization (some say also
stabilization) procedure: replace (3.12) or (3.13) by: Vq € Q) we have

divyq € Vop,

cy / TV (divyq) - Vo dz + / (div,q) v dz
T Q

(3.14) =

:—/q-Vvda: Yo € Von,
Q

with C(> 0); boundary layer thickness considerations suggest C' &~ 1. The above kind of
Tychonov regularization procedure has been successful when applied to the solution of the
Dirichlet problem for the Monge-Ampere equation in two dimensions, using mixed finite
element approximations based on low-order C?-conforming finite element spaces; see [9] for
further details. Actually, it has not been tested yet for the solution of problem (1.5).

3.3. Discrete Lagrangian and discretized subproblems. Since our goal in this paper is to
compute and approximate the solution of problem (1.5), using a discrete variant of Algorithm
1, a first step in that direction is to define an approximation of the augmented Lagrangian
(2.8). The candidate functional L.y : (V3 X Q‘Z x Von) X (Qi x Vor) — R proposed in this
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paper is the following:
c Non
Len(v,ar, a2, a3, 93 p1, 2, 113) = 3 > 195lle(P))]
j=1

1
+35 Il £(Py) —v(P))I°
j=1

+Ll/ \VU*Q1|2d$+/H1'(VU*Q1)d$
2 Ja Q

(3.15) .
+ 3/ a2 — qs|*da +/ M2 - (92 — q3)dx
Q Q
rs Non
+5 > 19 I(divias) (Py) — o(P;)[?
j=1
Non

1 .
+3 > 195]us(P)) [(divaas)(P)) — @(P))],
=1
where (ql,qg) € Eq9;, with

q1
(3.16) Epn =14 (a,a) €Q) iqa = ———— .
" Vit

Based on Ly, subproblem (2.12) can be approximated by

. 1
(P, p5 ™) = arg min(g, g)em, L / (rilasf® + r2lq[*) de

(3.17)
— / (nVu” + A?) . qldx — / (Tgpg — AS) . qux:| .
Q Q

Since functional (3.17) does not contain derivatives of q; and qg, its minimization can be
performed pointwise (in practice on the triangles of the finite element triangulation 7). This
leads to the solution, a.e. in €2, of a four-dimensional problem of the following type:

. 1
(3.18) (x1,%X2) = arg min(y, yv,)ce, {5 (rily1” + raly2l?) =bi-y1 — by }’2] ;

with by, by € R? and

(3.19) 612{(y1,y2)€R2XR2:y2¢}4

V1t lyif?

The term yo from (3.18) can be easily eliminated using the nonlinear relation in (3.19). This
leads to the following unconstrained (and nonconvex) two-dimensional problem:

. ly? ( o ) b,
3.20 - DL+ b+ —2—.y|.
(3:20) X1 = &g illyer? { 2 M Ir P e Y
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Since the objective function in (3.20) is differentiable, an obvious choice for the solution of
the problem is Newton’s method.
Problem (3.20) can be reduced even further by observing that if x is a solution of (3.20),

then it follows from the Schwarz inequality in R? that x and the vector by + 1T| E
X

are

positively co-linear, that is, there is a > 0 such that

by
3.21 xi=a|b+ —— .
( ) 1 < 1 1+|X12>

It follows from (3.20) and (3.21) that

X] =« bl-‘ri ,
V14 p?

(3.22) (p, @) = arg min 7——QbJriQ ro 2
. P = arg (o,7)EA 2 1 1+ P 1 1+ o2
by |
—71b 4+ —
' V1+o?
where
(3.23) A:{(UT)€R+XR+:Tb1+$ :J}.
’ V1402
Now clearly, due to (3.23), we have
(3.24) a= p ,
by + 22
1t V/ 1+p2
and thus
0'2 T2 b2
3.25 = i — —— ) —olb —].
(3.25) P argmmaenw{z (T1+1+Jz) o b1+ 1+02}
Similarly, subproblem (2.17) can be approximated by
pitt e Q.

Non
T . .
o [ BT ads+ 52 Y10yl(dvipg (P (i) (P)
j=1

2
(3.26) Non,

= [ap5™ £ 3 ade o+ 3 Y 190" ~ )P (i) ()
j=1

Vq € Qh
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The bilinear functional on the left-hand side of (3.26) being positive definite and symmetric,
an obvious choice for the solution of the above problem is the conjugate gradient algorithm,
initialized with the vector-valued function p%.

Subproblem (2.18) can be approximated by

Non rs Non
W = arg mingey, |€ > 1Q]l0(P)] + 5} > 195lleP)?
Jj=1 J=1
(3.27) Now
=Y 191 (radivaps T 4+ A5 (Py)e(Py) |-
j=1

Let X}' = (7"3divhpg+1 + A3)(P;). The closed form solution of subproblem (3.27) is given by
(3.28) PPy = - sgn(X7) max(0, | X}| —¢) Vj=1,..., Nop.
Finally, subproblem (2.19) can be approximated by

un+1 eV,
Nn
1 —
(3200 " /Q Vart Vo de + 3 301 = I = (R
j=1
= /(ﬁp’fwrl —A)-Vodx YveV,.
Q

Problem (3.29) could be solved, for 1 < s < 2, for example, using a semismooth Newton
method or a nonlinear overrelaxation method like that discussed in [26]. Alternately, if s = 2,
problem (3.29) reduces to

u"tl e Vi,

Nn
n 1 n
(3.30) n [ VU Vo de s 231010 = (PP
j=1

= / (rpP™ = AT -Vodr Vv eV,
Q

It that case, a wide variety of methods could be applied. This article advocates a method
called radix-4 partial solution variant of the cyclic reduction (PSCR) [36, 37, 43, 47] in the
cases where the discretization mesh is orthogonal. In other cases, subproblem (3.30) could be
solved, for example, using multigrid-type methods.

4. Implementation. Subproblems excluding the first one can be addressed in a straight-
forward fashion. Subproblem (3.26) is solved using the conjugate gradient method without
any preconditioning since we use a uniform mesh in practice. The subproblem (3.30) is solved
using the radix-4 PSCR method. Finally, the solution of subproblem (3.27) is a simple trian-
glewise operation.
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Before a digital image 0 : {1,... ,W} x{1,... ,Ifl} — R can be presented as a member of
the finite element space V3, we must first choose how we are going to deal with the dimensions
of Q and the spatial discretization step h. When one of these is chosen, the other is also fixed.
We decided to normalize the dimensions of Q = (0, W) x (0, H) by setting max(W, H) = 1.
As a result, the spatial discretization step h is fixed to 1/(max(W, f[) — 1), implying h < 1
in practice. The fact that the spatial discretization step depends on the pixel size of the
image could potentially have an effect on the final denoised image. See Remark 7 for further
discussion.

4.1. Solution of the first subproblem. Apparently the most involved part of the discrete
analogue of Algorithm 1 is the solution of the first subproblem (3.17). We could solve either
the two-dimensional form (3.20) or the one-dimensional form (3.25). Depending on by, by and
71,79 both forms can have multiple local minimas due to the nonconvex nature of the mean
curvature. Our actual realization first applies Newton’s method to the two-dimensional form
(3.20) starting from obvious initial guess p}(z). Assuming that the method converges and
the achieved solution is actually a local minimum, we then use the explicit relation (3.21) to
test the obtained solution candidate. Only then is the solution candidate accepted.

If Newton’s method fails, we proceed with the one-dimensional form (3.25) and apply
the well-known bisection method. Some fine-tuning is needed because the best local mimima
should be obtained to guarantee overall convergence. Hence, our actual heuristic algorithm
for the minimization of the one-dimensional form (3.25) reads as follows:

Algorithm 2.

n = [logy(vV2h™1)]

L={[4"" 4" k=1,..,n}U{{0},[0,1],[47, +oo[}
K = {bisection(¥,1,15) e R: 1 € L}
k= arg mingeg W(k)
p = bisection(V, [k — &,k + &],0)
b
pbisection(x) = P <b1 + 72)
bi+ 2y V1+p?

Above, VU is the objective function from the one-dimensional form (3.25), and the function
bisection(V,1,s) applies the bisection search to the function ¥ on the interval [ with accuracy
tolerance ¢. If interval [ is unbounded, then interval [ is adjusted by moving the right-hand
side boundary in such a way that the value of the function ¥ is larger on the right-hand side
boundary than it is on the left-hand side boundary. In addition, A is the spatial discretization
step and o (> 0) is the requested accuracy. Finally, we set
(4.1) Pi ™ (&) = arg Milge (pyion,priccction i ()} 2(D)-
where @ is the objective function from (3.20) and ppewton is the solution (or the result of the
last iteration) obtained by Newton’s method.

We obtained this heuristic algorithm by observing the cases where Newton’s method
failed to solve the two-dimensional form (3.20) and by investigating the behavior of the one-
dimensional form (3.25) on those cases. Since p} begins to approximate the gradient of u™
as the discrete analogue of Algorithm 1 progresses and the solution of the one-dimensional
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form (3.25) is the length of p7, it makes sense to concentrate on the interval [0,v/2h~!] (as-
suming Im(u™) C [0,1]). The overall shape of the graph motivated us to divide the interval
into subintervals as described above. In rare cases, the global mimima was actually located
outside the range [0, /2h~!], which also had to be taken into account.

In practice, the combination of the two aforementioned algorithms works well in almost all
cases. Newton’s method converges quickly for most of the triangles of 7; for the few triangles
for which Newton’s method fails, one uses Algorithm 2. The cases where both algorithms fail
are rare and are limited to individual triangles.

4.2. Initialization and stopping criterion. Concerning the use of the discrete variant
of Algorithm 1, several issues will be addressed, obvious ones being initialization, stopping
criterion, and the choice of the Lagrange multipliers r and . The choice of parameters r
and ¢ is addressed in section 5, and thus only the initialization and stopping criterion will be
discussed here.

A number of different kinds of initialization methods were considered; the most prominent
were

0
0 _ 0_w,0 0_ _ 91  o0o_ 0 ,0_ . .0

(4.2) w=[,qi=Vu, q= 1+|q(1)|27%—‘h71/)—v(137
A =x)=0, \)=0,

and

43) w=0,ql =qy=q§ =0, v" =0,
AV =23=0, \}=0.

In the case of initialization (4.2), only the term corresponding to the mean curvature of the

image surface is nonzero in the functional £,,; and, in the case of initialization (4.3), only the

term |u — f|® is nonzero. These differences play a major role in the overall behavior of the

algorithm; the effect of both initializations will be discussed in further detail in section 5.
The second issue to be addressed is the stopping criterion. Several candidates were con-

sidered, such as

|un _ un+1|oo

|un|oo

|un _ un+1|2

[u™2

|7 (") = T ()]

5,
= | (u)]

< 0, and <9,

(4.4)

where § > 0. The following criterion was found to be the most straightforward:

‘ﬁrh(wn) - Erh (wn+1 )|
|Len(w™)]

(4.5) <4,

where w" = (u", Py, P3, P5, V"5 AT, A, Af).

The aforementioned criterion works well as long as the Lagrange multipliers 71,7y, and
r3 are selected to be large enough so that they accurately enforce the equality constraints in
(2.4).
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5. Numerical results. In order to demonstrate the functionality of the discrete variant of
Algorithm 1, we applied it against a large variety of test problems. These problems include
synthetic and photographic images. For all these test problems, the values of the noise function
g are uniformly distributed on the closed interval [—p,p], p > 0. We took § = 10~ for the
stopping criterion defined by (4.5). All images are grayscale, and the original images are
scaled to the range [0, 1].

5.1. Choice of initialization method and parameters. The behavior of the algorithm
varied drastically depending on its initialization. Initialization (4.2) had a tendency to cause
extremely slow convergence and an imperceptible low decrease of the value of the objective
function in (1.5). By adjusting the parameters ¢ and r accordingly, reasonably good results
were obtained in some cases. Usually this required a large parameter ¢ and small values for the
Lagrange multipliers r1, o, and r3. However, each Lagrange multiplier combination worked
only for a specific problem, and the undertaking of finding a Lagrange multiplier combination
applicable to all problems proved futile. When the method was successfully initialized this
way, it retained a considerable amount of detail while leaving some residual noise.

On the other hand, the initialization (4.3) caused a completely different behavior as the
convergence was much faster, particularly during the first few tens of iterations. Finding a
suitable Lagrange multiplier combination was difficult. The equality constraints in (2.4) and
a crude dimensional analysis suggest that if |[Vu|? < 1, the augmentation functionals behave
such that p; ~ h™ ', pa ~ A7l ps ~ A7, and ¢ ~ h~2. Thus, taking into account the
homogeneity considerations, we should choose the following: & ~ h2,r; ~ h? ry ~ h%, and
r3 ~ h*. On the other hand, the same analysis suggests that for |[Vu|? > 1, the augmentation
functionals behave such that p; ~ A=, ps ~ 1,p3 ~ 1, and ¢ ~ h~!, and thus we should
choose the following: & ~ h, 7 ~ h?,ry ~ 1, and r3 ~ h%. In addition, from the formulation of
subproblem (3.26), it can be seen that h?ry & r3 could be a suitable choice because it would
balance the left-hand side terms. Otherwise the conjugate gradient method would converge
extremely slowly.

However, by applying the discrete analogue of Algorithm 1 against a large number of test
problems and observing the residuals associated with the equality constraints in (2.4), we
concluded that we should choose € ~ h, r; ~ h,73 ~ 1, and 73 ~ h%. This was due to the
fact that the equality constraint associated with the Lagrange multiplier r; did not converge
when 71 ~ h%. Further testing leads us to the following Lagrange multiplier combination:

g = ’r'()h,

r1 = 10rgh,
(5.1) ! 0

T2 = 5T07

r3 = 57‘0h2,

where r(> 0) is a parameter that can be tuned depending on the amount of noise.

In (5.1), the Lagrange multipliers 71, 72, and r3 are large enough to accurately enforce
the equality constraints in (2.4) while keeping the convergence speed reasonable. When one
combines the initialization (4.3) with the above-mentioned Lagrange multipliers, the method
removes a considerable amount of noise while filtering out some detail. From these observations
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it was decided to use initialization (4.3) and the Lagrange multiplier combination (5.1) for all
examples and comparisons.
Remark 6. A “simple” way to fix the problem with the selection of ¢ is to take

1
(5.2) e=Ch' Ve,

with C on the order of 1 (other nonlinear functions of |[Vu| are possible). We intend to inves-
tigate this approach in another paper. A simple way to use this variable in space parameter
¢ is as follows:
1. Solve the image restoration problem using a simpler method (based on BV-regulariza-
tion, for example). Call ug the solution to this problem.
9. Set cp = Ch' T TTwwE,
3. Fori=1,..., M, solve

v.__Yv

1
dw+—/ —v|*dz
V14 |Vo? s Qlf |

(5.3) u; = arg min, ¢y /Qsi,l

1
and set g; = C’h1+1+\vw\2. We believe that M = 2 should be enough.

Remark 7. In our approach, Q = (0, W) x (0, H) is normalized such that max(W, H) = 1.
This means that the spatial discretization step h depends on the pixel dimensions of the image.
However, this issue was treated very differently in [51] and [52]. In these papers, the spatial
discretization step h was chosen first and, thus, in contrast to our approach, the dimensions
of 2 depend on the pixel dimensions of the image.

As pointed out in [51] and [52], the spatial discretization step h plays an important role
in the behavior of the method. This is due to the fact that h affects the magnitude of the
gradient. In order to justify the choices made in this paper we investigated the behavior of
the discrete regularization term

s vEVh,Pj € Xop-

(5.4) kw)(Py) = ‘ (divhﬂf”w) )

Our goal was to find out how k(v) behaves pointwise as a function of h. This refines the
view on how h should be chosen. We generated a large number of test images containing
only random noise and analyzed the obtained data statistically. In addition, we modified our
implementation so that the parameter h we consider in the remainder of the current remark
is consistent with the one used in [51], [52], implying that & may be chosen freely, and tested
various values of this parameter (including some larger than 1).

Figures 2, 3, and 4 show the obtained results. In Figure 2, the pixel values are uniformly
distributed over various intervals; i.e., the figure shows how the regularization term reacts to
the changes in the “intensity” of the noise. In Figure 3, the nonzero pixel values are uniformly
distributed in the interval [—0.2,0.2], but only a certain percentage of the pixels contains
nonzero values; i.e., the figure shows how the regularization term reacts to the changes in the
“quantity” of the noise. Figure 4 shows the same results in a scaled form.
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Figure 2. The average pointwise behavior of the discrete reqularization term k(v) as a function of h. The
pizel values are uniformly distributed in the interval [—p, p).
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Figure 3. The average pointwise behavior of the discrete regqularization term k(v) as a function of h. Only
a certain percentage of the pizels contains nonzero values.
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Figure 4. Scaled versions of Figures 2 (on the left) and 3 (on the right).

It is clear that k(v) exhibits three different behaviors when the value of h is varied:

1. If h is small enough (~ 1073), then k(v) ~ h~!, which is consistent with the afore-
mentioned dimensional analysis. Another defining property is that the regularization
term k(v) is unable to differentiate between low intensity and high intensity noise.
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This has three main consequences: First, the regularization term is almost always
very large when dealing with photographic images; thus the model wants to produce
overly smooth solutions. As a result, the parameter ¢ must be small to preserve small
details. Second, it is likely that the model may misidentify some noise as a true jump
in the data and preserve it. This observation was also noted in [51] and [52]. Third,
the regularization term probably becomes even more difficult to deal with because
the transition from a smooth image to a noisy image is extremely steep. This could
also explain why the initialization (4.2) did not work: If u® = f, then the value of
the regularization term would be the same almost everywhere at u°, and a transition
to even slightly lower “energy” would require significant smoothing of the image. In
other words, it is nearly impossible to find a descending path from u° to the global
minimizer because the regularization term is “flat” near «° (= f). It should be noted
that the regularization term can still differentiate between low and high quantity of
noise.

. If h is large enough (~ 10'), then k(v) ~ h~2, which is again consistent with the

aforementioned dimensional analysis. The results show that the value of the regular-
ization term is directly proportional to the intensity of the noise (see, in particular,
Figure 4). This is not particularly surprising because k(v) ~ Av when |Vv|?> < 1.
Numerical experiments indicate that our method works really well when h = 1, but
the output images are quite blurred, as expected, since the regularization term favors
shallow gradients over the steeper ones. In addition, the initialization (4.2) actually
works even better than the initialization (4.3) in the sense that the method converges
much faster. Both initializations also lead to the same solution in most cases. Again,
this is not a surprise because the nonconvex part of the regularization term does not
have a major impact when |Vv|? < 1.

. If h ~ 107!, then the regularization term does not have a clear asymptotic behavior.

This parameter range is clearly the most interesting because of the way the regulariza-
tion term reacts to the changes in the intensity of the noise. The value of h determines
how steep the transition from a smooth image to a noisy image is, and, thus, it has
a significant effect on the final output image. Unfortunately, it is far from clear how
h should be chosen. In principle, the parameter h determines how the regularization
term reacts to noise, and the parameter £ determines how strongly this reaction is
taken into account. However, in practice, there seems to be some overlap between
these two parameters.

Our choice of h falls into the first category if it is assumed that the number of pixels is

large. Although this choice has many disadvantages, the effects of which can be seen in some
of the numerical results presented in this paper, we believe that our choice is justified, at
least in the context of this paper, for the following reasons: (i) If the input image contains
substantial amount of noise, then only a limited amount of information can be recovered even
under the best conditions. By taking this into consideration, a solution that is a little too
smooth is not a big disadvantage. In addition, if the original image is smooth, then small
h is a reasonable choice. (ii) If h < 1, then the two terms in the objective function can be
easily balanced by selecting € ~ h. This means that tuning the parameters is going to be a
much easier task. Considering that the goals of this paper are purely algorithmic, we do not
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want to focus too much on such tuning. (iii) Since the objective function is likely to be more
challenging to deal with when h is chosen to be small, problems with small h can be seen as
benchmark problems. In that sense, small h is is well suited for the goals of this paper.

5.2. Examples and comparisons. Figure 5 shows the results obtained while applying
the implementation against one of the synthetic test images (Test9). This synthetic test
image contains only simple patterns and shapes. The purpose of this test image is to show
that the algorithm works effectively in the sense that edges, corners, and image contrast are
preserved. Here the noise parameter p was 0.2, and the parameter ro was 0.015. The value
of the objective function in (1.5) at noisy image f was 0.027159 and J(u") = 0.364139. The
convergence to the given tolerance was achieved after 291 iterations with J (u?!) = 0.007054.
The I?-residual between the vector representations of the original and noisy images was 58.95.
A similar residual between the original and output images was 9.049. The algorithm was
able to eliminate practically all noise, and the output image is almost indistinguishable from
the original image. However, when the difference between the output and noisy images is
examined more closely, it is clear that the algorithm had some minor difficulties with the
diagonal tips of the star.

Figure 6 shows similar results for a second synthetic test image (Test6). This synthetic test
image contains many different challenges (sine waves, high and low contrast text, gradients,
edges, corners, and narrow bounces) to the algorithm. Here p = 0.2, ro = 0.004, J(f) =
0.004503, and J(u®) = 0.207021. The convergence to the given tolerance was achieved after
215 iterations with J (u?'%) = 0.004130. The residuals between the noisy and original and the
output and original images were 58.16 and 14.35, respectively. The algorithm filtered out a
considerable amount of noise, and it is very clear that the algorithm does not have problems
with sine waves or gradients. However, the algorithm had difficulties in preserving certain
details, such as low-contrast text and the narrowest bounces in the surface.

Figure 7 shows results for a photographic image (Barbara). This test image is particularly
challenging because it contains image details and noise on similar scales. Here, p = 0.2,
ro = 0.005, J(f) = 0.008823, and J(u®) = 0.134979. After 268 iterations, the value of the
objective function in (1.5) was 0.008394. The residuals between the noisy and original and the
output and original images were 58.86 and 35.50, respectively. Again, the algorithm filtered
out a considerable amount of noise, but some details were lost in the process as it is clear that
the algorithm was unable to resolve the stripes and grids in the table cloth and pants. This
can be seen clearly in the intersection plot.

The values of the objective function along the iterations are plotted in Figures 8, 9, and
10. The figures also include the following normalized residuals:

S\
2 max(|Vu™|, |p}|)’
1 |py —pil
5.5 Rn = 3T
(5.5) 27 2max(|py], |p%])
Ry — 1 |div,pg —¢"| .
2 max(|div,p}|, [¢¥"])

In all three cases, the value of the objective function drops sharply during the first few tens of



116 M. MYLLYKOSKI, R. GLOWINSKI, T. KARKKAINEN, AND T. ROSSI

0.2 L | L I 0.2 ! L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Figure 5. A synthetic test image (Test9) containing simple shapes. From top left: Original image, noisy
image (p = 0.2), output image, difference between the output and noisy images, and two horizontal intersections.
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Original Original

Figure 6. A synthetic test image (Test6) containing sine waves, text, gradients, and narrow bounces. From
top left: Original image, noisy image (p = 0.2), output image, difference between the output and noisy images,
and two horizontal intersections.

iterations. However, in the case of the last two, it takes a few tens of iterations more before
the value of the objective function drops below J(f). Also, the decrease is not monotonic as
the value of the objective function jumps momentarily after a few iterations. This jump takes
place at the same time as the value of the normalized residual R} jumps and was observed
with almost all the test images in varying extent. Similar behavior was also presented in [52].

Figure 11 shows a comparison between different test problems with varying amounts of
noise. The relevant parameters, objective function values, iteration counts, and residuals are
shown in Table 1. It is clear that the algorithm performed commendably when p = 0.05 or
p = 0.1. In the case of p = 0.2, more details were lost in the process, and when p = 0.4,
almost all small details were lost.

Finally, Figure 12 visualizes the influence of 7y on the resulting denoised image. The
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Figure 7. A photographic test image (Barbara). From top left: Original image, noisy image (p = 0.2),
output image, difference between the output and noisy images, and horizontal intersection from the center of
the image.
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Figure 8. Values of the objective function in (1.5)
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Figure 10. Values of the objective function in (1.5) and normalized residuals (5.5) along the iterations for
the photographic test image (Barbara).

relevant objective function values, iteration counts, and residuals are shown in Table 2. In
all cases, p = 0.2. It is clear that the optimal value of ry is somewhere near 0.005. These
results illustrate a clear trend that can be observed in all considered test images: the larger
the value of rg is, the better the algorithm behaves. Actually, when r9 = 0.001, the value of
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Figure 11. A comparison between different test problems with varying amounts of noise: p = 0.05 (ro =
0.001), p = 0.1 (ro = 0.002), p = 0.2 (ro = 0.005), and p = 0.4 (ro = 0.02). From left to right: The noisy
image, the output image, and a horizontal intersection from the center of the image.
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the objective function at the achieved solution u™ is higher than it is at the noisy image f,
although the algorithm appears to be working properly otherwise. On the other hand, a large
value of ry means that more detail is lost in the process. Thus, selecting an optimal value for
ro is a difficult balancing act. Fortunately, it appears that the optimal value of the parameter
ro mainly depends on the amount of noise and does not depend as strongly on the image itself.
The previous sentence holds true at least when success is measured by the >-norm. If success
is estimated by visual inspection, then it appears that ro must be selected image dependently,
because even a small change in the value of the parameter g can have a visible impact on the
final result. This is consistent with comments in [52]. However, the values provided in Table
2 work fairly well for most images.

All presented numerical results show that the L'-mean curvature allows both smooth
transitions and large jumps without staircasing. In two dimensions the output results do not
appear perfect, but the one-dimensional intersections demonstrate desired overall behavior;
the qualitative challenges and difficulties are mostly related to the mixtures of image details
and noise on similar scales.

Table 1
A comparison between different test problems with varying amounts of noise, with n denoting the number
of iterations necessary to achieve convergence and u" the achieved solution. The Residuals column shows the
residuals between the vector presentations of the original and noisy images and the original and output images.

P o J(f) T (u®) J(u™) Iterations  Residuals

0.05 0.001 0.001626 0.145999  0.000831 150 14.72, 13.10

0.1 0.002 0.003435 0.147198 0.002228 173 29.48, 18.53

0.2 0.005 0.008909  0.152132  0.007485 255 58.99, 26.49

0.4 0.020  0.036206  0.172260 0.029445 181 117.8, 37.31
Table 2

A comparison between different values of ro. The Residuals column shows the residuals between the vector
presentations of the original and noisy images and the original and output images. The function u™ is the
achieved solution.

ro J(f) T (u®) J ™) Iterations  Residuals

0.001  0.001795  0.142086  0.004210 193 58.93, 39.59
0.005 0.008979  0.142142 0.007126 220 58.92, 21.13
0.01 0.017945 0.142136  0.007911 180 58.85, 21.91

0.05 0.089864  0.141968 0.010577 242 58.87, 33.91
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Figure 12. A comparison between different values of ro: 0.001,0.005,0.01, and 0.05. The left side shows
the output images, and the right side shows the horizontal intersections from the center of the image.
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6. Conclusions. This paper presents an image denoising algorithm based on an augmented
Lagrangian approach that uses the L'-mean curvature of the image surface as a regularizer.
The main difference between this paper and existing literature (e.g., [52]) is that our method-
ology relies on a novel augmented Lagrangian functional where the equality constraints treated
by augmentation-duality are all linear, resulting in different (and simpler) subproblems. The
functionality of the proposed algorithm was demonstrated by applying it against a large set
of different types of test problems, some of which were presented in further detail. Based on
the numerical experiments, it can be concluded that the algorithm can remove considerable
amounts of noise within a reasonable number of iterations. The cpu time used by our imple-
mentation is dominated by the solution of the first subproblem; thus we feel that the effort of
improving our method should be directed toward this subproblem.

Acknowledgment. The authors thank anonymous reviewers for their valuable feedback.
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gestions.
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Abstract

This paper presents a graphics processing unit (GPU) implementation of a recently published augmented La-
grangian based L'-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction
method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimiza-
tion problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore
be solved point-wise without inter-process communication. In particular, this facilitates the efficient solution of
the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two
remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic
reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indi-
cate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated
subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times
faster.

Keywords

augmented Lagrangian method, GPU computing, image denoising, image processing, mean curvature, OpenCL

1 INTRODUCTION median and mean, from the neighboring pixels that fall
within an appropriately selected window.

Image denoising, or more generally noise reduction, is

a process in which a given noisy signal, such as a dig-

ital image, is cleared from excess noise. This process

The most relevant sub-category to the topic of this pa-
per is referred to as variational-based methods. These
methods treat the noisy image as a discretely differen-
has numerous applications since all recording devices (jzple function and denoise the image using derivate in-
have some traits that make them susceptible to interfer- ¢y mation. In more formal terms, let Q be a rectangu-
ence. For example, thermal noise effecting digital im- 1, domain of R? and the function f:Q— R repre-
age sensors is a typical source of interference in digital  ¢op¢ the given noisy image. We want to find a func-
photography. The noise must be removed, or at least o 4 : Q — R that is a representative of the desired
significantly reduced, before essential information can denoised image. A variety of variational-based tech-
be successfully extracted from an image. niques have been developed and a significant propor-

Image denoising methods are divided into multiple sub-  tion of them (see, e.g., [Mum94, Rud92]) are based on
categories. For example, wavelet methods are based solving an unconstrained minimization problem of the

around the idea of decomposing the image into the —form

wavelet basis and shrinking (or otherwise modifying) wev

the wavelet coefficients in order to denoise the image. { ’ 1)
A somewhat similar approach is to process the image S )< Jv),weV,

in the frequency domain using the fast Fourier trans- h

formation (FFT) method. Statistical methods, on the where

other hand, utilize local statistical information, such as F(v)=¢ /r(v) + 7 f(v)7 2)

V is a suitable function space, and € > 0. Here _Z, is so-

Permission to make digital or hard copies of all or part of called regularization term and 7 is so-called fidelity

this work for personal or classroom use is granted without| ————
fee provided that copies are not made or distributed for profit | * University of Jyviskyld, Department of Mathematical Infor-
or commercial advantage and that copies bear this notice and | mation Technology, P.O. Box 35, FI-40014 University of

the full citation on the first page. To copy otherwise, or re- |  Jyviskyld, Finland.
publish, to post on servers or to redistribute to lists, requires 2 University of Houston, Department of Mathematics, Houston,
prior specific permission and/or a fee. TX 77204, USA.
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term whose role is to fit the obtained solution u to the
noisy data f. The work in this field of research is aimed
primarily at finding a suitable regularization term that
is able to detect noise but preserves as much relevant
information as possible.

During the last two decades, the variational-based im-
age denoising scene has been dominated to a large ex-
tent by Rudin—Osher-Fatemi (ROF) method [Rud92]
which uses the following objective function:

1
/(v):S/Q|Vv|dx+i/ﬂ\ffv\2dx. 3)

Here, [ |Vv|dx is so-called total variation norm (TV
norm) and the function space V made out of func-
tion whose total variation is bounded (a.k.a BV space).
This very popular method has, however, some well-
known drawbacks, such as the loss of image contrast,
the smearing of corners, and the staircase effect.

Some attempts to remedy these drawbacks have led to
higher-order variational-models which seek to take ad-
vantage of the higher-order derivatives. One approach
suggested by Zhu and Chan [Zhu12] is to treat an image
v:Q — Ras asurface in Q x R and utilize the surface
mean curvature information in the regularization term.
More specifically, the surface in question is defined by
the equation F,(x,y,z) = v(x,y) —z = 0 and the mean
curvature of the function F, is given by

VF, Vv
kK(F)=-V. —L=-V.——— 4
") IVE| VIV

All in all, the objective function used in the model sug-
gested by Zhu and Chan is of the form:

= [[[xEdx s [1r-vPar ©)

This model is commonly known these days as the L'-
mean curvature denoising model. As noted in [Zhul2],
this model has the ability to remove noise without the
undesirable drawbacks associated with the ROF model.
However, the non-convex and non-smooth nature of the
objective function (5) makes the problem very difficult
to solve.

1.1 Related work

Although the model suggested by Zhu and Chan is very
difficult to solve as noted above, effective solution al-
gorithms for this particular formulation have been pro-
posed, for example, in [Zhul3] and [Myll5]. The
solution algorithm presented in [Zhul3] uses an aug-
mented Lagrangian based approach and solves the aris-
ing saddle-point problem using a particular alternating
direction method of multipliers. This leads to an itera-
tive sequence of five simpler minimization problems.
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These subproblems can be solved using explicit for-
mulas and the FFT method. The solution algorithm
presented in [Myl15] uses the same alternating direc-
tion approach as [Zhul3] but relies on a different type
of augmented Lagrangian functional. Two of the four
arising subproblems can be solved pointwise using the
Newton’s method, a bisection search algorithm, and ex-
plicit formulas. The two remaining subproblems can
be solved using the conjugate gradient method and a
partial solution variant of the cyclic reduction (PSCR)
method [Kuz85, Kuz96, Vas84, Val85].

It should be noted that the model suggested by Zhu
and Chan is closely related to the model depicted in
[LysO4]. The model uses the following regularization
term:

Vv

Tl dx. (©6)

s =[ v

In [Lys04], the authors explained that their goal was to
minimize the “TV norm” of the unit normal vectors of
the level curves of the image. An alternative interpreta-
tion is that the regularization term (6) measures the to-
tal mean curvature at every level curve of the image. In
contrast, the regularization term in the model suggested
by Zhu and Chan measures the total mean curvature at
the surface defined by the image (graph).

From a practical point of view the most relevant con-
nection comes from the fact that the resulting model is
often regularized in such a way that |Vv| in (6) is re-
placed by |Vv|g = \/|[Vv[>+ B, B > 0. Thus, the solu-
tion algorithms developed for this denoising model and
its variants (see, e.g., [Bril0, Sunl4, Yan14]) could be
in principle generalized for the model suggested by Zhu
and Chan by taking f = 1.

The solution algorithm presented in [Bril0] solves the
related Euler-Lagrange (EL) equation using a stabilized
fixed point method and a geometric multigrid (MG)
algorithm. The authors in [Sunl4] aimed to improve
upon that by introducing an additional operator split-
ting step. They then moved on to solving the EL equa-
tions associated with the related constrained minimiza-
tion problem using a linearized fixed point method and
a nonlinear MG method. In [Yanl4], the problem is
tacked with a relaxed fixed point method and a homo-
topy algorithm. The papers [Bril0, Sunl4, Yan14] in-
cluded comparisons where the value of the parameter 3
was varied (including the case 8 = 1). In other aspects
these three recent papers were mostly interested in the
case where the regularization term (6) is replaced by

Ir(v) = /Q (V- Vvvv|ﬁ>2dx' (7)

and f < 1.
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1.2 Motivation and structure

Now that the overall context and main related works
have been dealt with, we can move on to the main topic
of this paper. We present a graphics processing unit
(GPU) implementation of the solution algorithm de-
picted in [Myl15] and compare the GPU implementa-
tion against a single-threaded CPU implementation.
Our main motivation is that the most demanding step in
the solution algorithm is a pointwise treated subprob-
lem that handles the non-convex term in the original
objective function. This makes the solution algorithm
very suitable for GPU computation since the solution of
this subproblem does not require inter-process commu-
nication. Thus, it is very likely that GPU-acceleration
would bring significant performance benefits.

The rest of this paper is organized as follows: Sec-
tion 2 describes the augmented Lagrangian based im-
age denoising algorithm closely following the presen-
tation in [Myl15]. Section 3 gives a brief introduction
to GPU computing and describes the GPU implementa-
tion. Section 4 presents the numerical results, compar-
isons, and discussion. The final conclusions are given
in Section 5.

2 SOLUTION ALGORITHM
2.1 Augmented Lagrangian formulation

Augmented Lagrangian techniques are a well-
established framework for analyzing (constrained)
optimization problems and deriving solution algo-
rithms for such problems. When applied to convex
minimization problems, the basic idea is to decompose
the problem with the help of auxiliary variables. This
so-called operator splitting operation effectively splits
the problem into subproblems which can be treated
separately using methods that are best suited for each
subproblem. This greatly improves the effectiveness of
the resulting solution algorithm.

The addition of these new auxiliary variables leads
to a new constrained minimization problem that has
the same minimizer as the original minimization prob-
lem. This constrained minimization is then associated
with a suitable augmented Lagrangian functional whose
saddle-point correspond to the minimizer of the con-
strained minimization problem. The saddle-points can
be solved by, for example, using an alternating direction
type approach. See, for example, [For83] for further in-
formation.

Although the objective function in the model suggested
by Zhu and Chan is not convex, we will now describe a
formal augmented Lagrangian formulation for the min-
imization problem similarly to [Myl15]. To begin with,
let us define

Y = [V xEj» x H(Q:div) x L*(Q)]

Q) (2@ xL2@),
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where
H(Qdiv) = {q € (L*(Q)*:V-qe L}(Q)} (9

and

Ep;— {«n,qz) e (L2@)™?
(10)

q1
= ——— .
v1+q1|2}

Following the remarks made in [Myl15], we take V =
H?*(Q). The minimization problem (1) with _# defined
by (5) is associated with the following augmented La-
grangian functional .£ : Y — R:

L, 41,92, 93, 9 1, Ko, 113)

1
—e [ lglax+ 5 [ If —vPax
Jo 2Ja

+r—1/ |VV—q,\2dx+/pl.(Vv—q1)dx
2 Jo Jo

r (1)
+52/ |Q2—Q3|2dx+/li2'(Q2—QS)dx
Jo Ja

+%*/ IV-qs — ¢[2dx
JQ
+/Qu3(V~qs—<p)dx,

where (q1,q2) € Ejp and r; > 0,i=1,2,3. Above, qj,
q2, q3, and @ are the previously mentioned auxiliary
variables, and p,M,, and u3 are called Lagrange mul-
tipliers. Note that the non-convex term qp = —~4

Vi+ai?

is treated by projection in (10) and thus does not appear
in the augmented Lagrangian functional .Z.

Now, if we can find a saddle-point
© = (u,p1,P2,p3, ¥;A1,42,43) €T (12)

for the augmented Lagrangian ., that is
‘f(u’pl ;P2,P3, W’p'l 7["'27,“'3)

< Z(up1,p2, 3, ¥:A1,42,43)
Sg("y‘lh‘lZ»‘lS:(P;ll,2'27)b3)7

13)

for all (v,q1,q2,q3, P 4y, Mo, u3) €Y, then
Pi

p1=Vu, pp= —F———,
VI+pif?

p3 =p2, ¥y =V-p3,

(14)
and, more importantly, u is a local minimizer of the
minimization problem (1) with ¢ defined by (5).

2.2 Subproblems

In [Myll5], the saddle-point problem (12) — (13) is
solved using a particular alternating direction method

ISBN 978-80-86943-65-7
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of multipliers called ALG-2 [For83, Glo89]. The idea is
to minimize the augmented Lagrangian functional (11)
one variable at a time until the method converges. The
Lagrange multipliers are update accordingly after each
iteration.

Since we have five variables and two of the auxiliary
variables (q; and ) are coupled together, this leads
to an iterative sequential solution of four subproblems.
More precisely, the task of finding a saddle-point for the
augmented Lagrangian functional (11) is transformed
into one smooth but nonlinear and non-convex min-
imization problem in R2, one purely explicit point-
wise treated minimization problem, and two linear min-
imization problems with positive definite and symmet-
ric coefficient matrices.

Each outer iteration is defined as follows: Let
(u ,pl,pz,p3,w” AT, A5, A%) €Y be the output of the
previous iteration. The first subproblem minimizes the
augmented Lagrangian functional (11) with respect to
the pair (q;,qz) € Ej3. Using the nonlinear relation in
(10), the function p”+1 can be solved pointwise from
the following non-convex minimization problem:

X = arg miny g2 | |2 r+ 2
2 T4y
(15)

b
— (b == |,
VI+y]?
where by,b; € R2 depend on the other variables. Or,

alternatively, by noticing that the following nonlinear
relation must hold

b
ofb+—— |, (16)
V1+x]?
where o > 0, we can write the two-dimensional mini-

mization problem (15) as

p by

X = b; + , 17
by 1+ 2
'b1+m Vitp
where
_ . 02 r
p = arg minge (g .oy > r+ T5o?
(18)
b,
o|b+ ——
' V1+o0?

In the second subproblem we minimize the augmented
Lagrangian functional (11) with respect to the variable
q3. More specifically, we solve the following linear
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vector-valued minimization problems with positive def-
inite and symmetric coefficient matrix:

pitl e H(Q:div),
rz/gp’31+1~qu+r3/V-p’g“qux
7/ rszH
+/Q(r3w"—/1§)v.qu,

Vq € H(Q;div).

)-qdx (19)

The third subproblem minimizes the augmented La-
grangian functional (11) with respect to the variable ¢

and is of the form:
€ / |@| dx
Q

+%/S;|(p|2dxf/ (r3V p”+1+l§‘)(pdx}.

1 :
' =arg mingg 2 g

The minimization problem (20) has a closed-form solu-
tion

WlH»l(x) — (21)

% sgn(&(x))max(0,|&(x)| —¢),

with & (x) = (r3V- p”+l + A7) (x).

The fourth subproblem minimizes the augmented La-
grangian functional (11) with respect to the variable v.
The subproblem can be written as the following linear
scalar-valued minimization problems with positive def-
inite, symmetric, and separable coefficient matrix:

ey,
r1/ Vu't! ~Vvdx+/ (Wt = f) vdx

n+l
—/ rp;

Finally, the Lagrange multipliers are updated as fol-
lows:

(22)
-Vvdx,Yvev.

)u"+1 1 + " (Vun+l pn+l)7
MA@t o), @)
M =RV ),

2.3 Finite element realization

The domain Q is triangulated using a uniform finite ele-
ment triangulation .7,. The function space V' is approx-
imated by a piecewise linear finite element space

Vi={velQ):v|reP, VT € F}, (24)

where P, is the space of the polynomials of two
variables of degree < 1. The spaces (L*(Q))? and
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H(Q;div) are approximated by the following piecewise
constant finite element space:

Q={ac )’ :dre(R)]’VTeF}, (25

where F is the space of the constant functions. Clearly,
we have VV;, C Qy,.

Let {X j}?’i | be the set of vertices of 7, and q € Qj,. The
divergence operator is approximated by using an appro-
priate discrete Green’s formula and the trapezoidal rule
as follows:

3

() ) =~ g [, @ Twrdn (o)
Ve

where X is a vertex that does not belong to dQ, Q; is
the polygon that is the union of those triangles of .7,
that have X; as a common vertex, |Q;] is the measure of
Q;, and the shape function w; € V}, is uniquely defined
as

{Wj(Xj) =1 27)

3 GPUIMPLEMENTATION
3.1 GPU computing and OpenCL

The GPU implementation presented in this paper is
written using the OpenCL framework. This section in-
troduces the reader to general OpenCL concepts and
terminology. Some additional information related to
Nvidia’s current hardware is provided since that infor-
mation is essential for the understanding of the imple-
mentation and obtained numerical results.

A contemporary high-end GPU contains thousands of
processing elements (cores) which are grouped into
multiple computing units. The processing elements in-
side the same computing unit share a fast (on-chip)
memory space called local memory which can be used
for sharing data among the processing elements. The
local memory is divided into 32-bit (or 64-bit) memory
banks organized in such a way that successive 32-bit (or
64-bit) words map to successive memory banks. Multi-
ple processing elements also share the same scheduler,
which means that the processing elements are executing
the program code in a synchronous manner. In addition
to the local memory, all processing elements can ac-
cess a much larger but slower (off-chip) memory space
called global memory. The global memory can serve
memory requests at the optimal rate when processing
elements are synchronously accessing data that is lo-
cated inside a same memory block.

GPU-side program code execution is based on the con-
cept of a special kind of subroutine called (OpenCL)
kernel. All work-items (threads) start from the begin-
ning of the kernel but each work-item is given a unique
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index number which allows the execution paths of dif-
ferent work-items to branch off. The work-items are
grouped into work groups which are also given unique
index numbers and a work group can share a portion of
the local memory. Nvidia uses the term warp when re-
ferring to a set of work-items that are executed together
in a synchronized manner. Diverging execution paths,
also known as warp divergences, lead to a suboptimal
performance as all the necessary paths have to be evalu-
ated by the whole warp. In contemporary Nvidia GPUs
the warp size is 32 work-items.

3.2 General notes

The GPU implementation is principally identical with
the CPU implementation described in [Myl15] but the
low level details vary considerably. The less simpli-
fied two-dimensional form of the critical non-convex
subproblem (15) is initially solved using the Newton’s
method, whose solution candidate is then tested against
the explicit relation (16). If the solution candidate does
not fulfill the explicit relation, the implementation pro-
ceeds to the one-dimensional form (18) which is solved
using the bisection search algorithm as described in
[Myl15].

The linear vector-valued subproblem (19) is solved us-
ing the conjugate gradient algorithm without precon-
ditioning. While more generalized GPU implemen-
tations have been presented in the past (see, for ex-
ample, [Amel0, Bol03, Hell2]), the conjugate gradi-
ent solver used in the GPU implementation described
in this paper was tailored for this specific subproblem
and the matrix-vector multiplication operation was hard
coded into the kernels. The explicit subproblem (20) is
solved using the closed form solution (21) and the lin-
ear scalar-valued subproblem (22) is solved using the
PSCR method.

All computational operations are carried out in the
GPU side. The floating point division operation
was accelerated using a Newton-Raphson division
algorithm [Fly70] and an initial approximation that
leads to full double precision accuracy with only four
iterations [Par92].

3.3 Element numbering

The elements of the finite element space Vj, are num-
bered in a row-wide fashion. This means that the co-
efficient matrix in the linear scalar-valued subproblem
(22) is block tridiagonal and presentable in a separable
form using so-called Kronecker matrix tensor product.
This is required by the PSCR method.

The numbering of the elements of the finite element
space Qj, can be chosen more freely. Figure 1 shows
two possible numbering schemes. If the numbering
scheme shown on the left (referred to hereinafter as
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Figure 1: Two possible numbering schemes for the el-
ements of the finite element space Qy, (3 x 3 grid): the
dense numbering scheme (on the left) and the sparse
numbering scheme (on the right).

Figure 2: The non-zero elements of the coefficient ma-
trix in the linear vector-valued subproblem (19) when
the dense numbering scheme is used (4 x 4 grid).

Figure 3: The non-zero elements of the coefficient ma-
trix in the linear vector-valued subproblem (19) when
the sparse numbering scheme is used (4 x 4 grid).

the dense numbering scheme) is chosen, then the co-
efficient matrix in the linear vector-valued subproblem
(19) is of the form shown in Figure 2. On the one hand,
if the numbering scheme shown on the right (referred to
hereinafter as the sparse numbering scheme) is chosen,
then the coefficient matrix is of the form shown in Fig-
ure 3. Each numbering scheme has its own advantages
and disadvantages.

The dense numbering scheme leads to a more optimal
global memory access pattern during the solution of the
linear vector-valued subproblem (19) as the non-zero
elements of the coefficient matrix are packed tightly to
three bands and elements of each band can be shared
among work-items using the local memory. This is par-
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ticularly important because many contemporary high
end GPUs have an extremely high peak floating-point
performance but a relatively low peak global memory
bandwidth. Thus, the use of the global memory should
be kept at minimum. The most significant downside of
this numbering scheme is that a straightforward imple-
mentation would lead to warp divergences throughout
the implementation. Most of these warp divergences
could be avoided by re-arranging the computational
tasks appropriately with the help of the local memory.
However, this re-arranging would complicate the im-
plementation considerably and introduce memory bank
conflicts in many places.

The sparse numbering scheme leads to a simpler im-
plementation but the pattern of non-zero elements in
the coefficient matrix is much more fragmented. This
means that less data can be shared between the work-
items using the local memory and, thus, the global
memory usage increases significantly. Despite this, the
sparse numbering scheme was chosen for the GPU im-
plementation described in this paper because it was not
clear whether this choice would lead to an actual global
memory bottleneck that would limit the performance
of the whole GPU implementation. In addition, if the
dense numbering scheme is chosen, then the increased
complexity in the other parts of the implementation
might negate the potential benefits. The reference CPU
implementation uses the dense numbering scheme be-
cause it allows more effective utilization of the CPU
caches.

3.4 PSCR implementation

The PSCR method [Kuz85, Kuz96, Vas84, Val85] is a
block cyclic reduction type direct solver which can be
applied to certain separable block tridiagonal linear sys-
tems. To put it briefly, the PSCR method solves the lin-
ear scalar-valued subproblem (22) by recursively elim-
inating block-rows from the corresponding linear sys-
tem and then solves the generated sub-systems in the
reverse order during so-called back substitution stage.
Each reduction and back substitution step produces a
large set of tridiagonal linear system.

The GPU implementation of the PSCR method used in
this paper is based on the radix-4 variant described in
[Ros99] and it is in many respects similar to the sim-
plified radix-4 block cyclic reduction GPU implemen-
tation presented in [Myl13]. However, the GPU imple-
mentation used in this paper is much more generalized
as the problem size can be arbitrary.

The arising tridiagonal subproblems are solved using
the cyclic reduction (CR) [Hoc65], the parallel cyclic
reduction (PCR) [Hoc81] and the Thomas [Con80]
methods. If a tridiagonal system does not fit into the
allocated local memory buffer,then the system size
is first reduced using the CR method and the global
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memory data permutations depicted in [Myl13]. The
tridiagonal systems that do fit into the allocated local
memory buffer are solved using a CR-PCR-Thomas
hybrid method. The CR stage of the hybrid solver
uses the local memory data permutations depicted in
[Myl13]. The PCR stage further splits the reduced
tridiagonal systems into smaller subsystems which
are eventually solved using the Thomas method in a
manner similar to [Dav11, Kim11]. Somewhat similar
tridiagonal solver techniques have been used, for
example, in [God11, Lam12, Zhal0].

4 NUMERICAL RESULTS
4.1 Test setting

GPU tests were carried out on a few years old con-
sumer level Nvidia GeForce GTX580 GPU and a
high-end computing orientated Nvidia Tesla K40c
GPU. The CPU implementation is the same as was
used in [Myl15]. It is written using C++ and Fortran. It
utilizes a single-threaded variant of the radix-4 PSCR
method presented in [Ros99]. CPU tests were carried
out using an Intel Xeon E5-2630 v2 (2.60GHz) CPU.
All the tests were performed using double precision
floating point arithmetic and ECC memory (excluding
the GTX580 GPU which does not support ECC).

Four test images (shown in Figure 4) were used in the
numerical tests: Test9, Lena, Boat, and Mercado. In
addition, four different sized versions of the test image
Mercado were included: 256 x 256, 512 x 512, 1024
x 1024, and 2048 x 2048. The dimensions of the other
test images are 512 x 512. The original test images
were scaled to the range [0,1]. Two sets of noisy in-
put images were generated: uniformly distributed zero-
mean noise with the standard deviation ¢ = 0.025 and
uniformly distributed zero-mean noise with the stan-
dard deviation ¢ = 0.1.

Based on the remarks made in [Myl15], the following
initialization was used:

W=0,q)=q)=¢q=0, y* =0,

(28)
A0=29=0 1 =o0.
In the same way, the stopping criterion read as
L") = L] s
<107, (29)
|z (")

where %, is the discrete counterpart of the
augmented  Lagrangian  functional (11) and

V" = (u",p},ps. Pt WAL AL AY).  The parame-
ter € and the Lagrangian multipliers were coupled as
follows: € = roh, ri = 10roh, r» = 5ry, and r3 = 5rph?,
where ryp > 0. We took & = 0.005 for the spatial
discretization step.
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4.2 Comparisons

Figure 4 shows the original test images, the generated
input images (o = 0.1), and the obtained output im-
ages. Table 1 shows the used parameter values, itera-
tion counts and execution times for the Intel Xeon CPU.
The input images and parameter values were the same
for the three platforms. In addition, as the GPUs used in
the numerical experiments are fully IEEE 754 compli-
ant, the iteration counts, objective function values, and
output images were also identical.

The “Whole” column shows the average total per iter-
ation execution times; the “Sub. #17, “Sub. #2”, “Sub.
#3”, and “Sub. #4” columns show the average per it-
eration execution times for each subproblem; and the
“Misc.” column shows the combined average per itera-
tion execution times for augmentation term update ker-
nels and an objective function value computation ker-
nel. The CPU results show that a significant portion
of the total execution time goes to solving the critical
non-convex subproblem (15).

Tables 2 and 3 show the average per iteration execution
times and the obtained speedups for the GTX580 and
K40c GPUs, respectively. The GTX580 was on aver-
age 15.6 times faster than the Xeon CPU. The highest
speedups were obtained in the case of the synthetic test
image Test9 in which case the GTX580 GPU was up
to 21.5 times faster. The K40c GPU was on average
26.0 times faster than the Intel Xeon CPU and the Test9
test image was processed up to 33.7 times faster. Both
GPUs achieved the highest speedups in the case of the
critical non-convex subproblem (15). The K40c GPU
was at its best 76.0 times faster than the Intel Xeon CPU
at solving the subproblem.

4.3 Discussion

A significant portion of the total execution time still
goes to solving the critical non-convex subproblem (15)
but the gap between it and the linear vector-valued sub-
problems (19) has narrowed considerably. However,
even if we managed to overcome the potential global
memory bottleneck associated with the linear vector-
valued subproblems (19), the critical non-convex sub-
problem (15) would still dominate the total execution
time in such a degree that it probably would not be of
a significant improvement. Finally, the speedups ob-
tained with the Mercado test images show that GPU’s
computational resources can be utilized best when the
image size is relatively large.

Although the highest speedups were obtained in the
case of the critical non-convex subproblem (15), the
K40c GPU did not perform quite as well as expected.
One culprit might be the Newton-bisection hybrid
method which was used to solve the subproblem. For
example, in the case of the Lena (¢ = 0.1) input image,
the Newton’s method had an average success rate of
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Figure 4: From top to bottom: the original images, the nisy input images (o = 0.1), and the obtained output
images. From left to right: Test9, Lena, Boat, and Mercado5123.

Image 0 Iter. ~ Whole | Sub. #1 | Sub. #2 | Sub. #3 | Sub. #4 | Misc.
Test9, o = 0.025 0.005 | 103  0.6170 | 0.4489 | 0.0985 0.0031 0.0412 | 0.0206
Lena, 6 = 0.025 0.002 | 77  0.7463 | 0.5676 | 0.1097 | 0.0031 0.0405 | 0.0206
Boat, 6 =0.025 0.001 75 0.7967 | 0.6154 | 0.1115 0.0031 0.0412 | 0.0206
Mercado256, ¢ = 0.025 0.002 | 125 01719 | 0.1335 | 0.0233 0.0008 | 0.0081 | 0.0050
Mercado512, o = 0.025 0.002 | 143  0.6813 | 0.5147 | 0.0977 | 0.0031 0.0406 | 0.0206
Mercadol1024, 6 =0.025 | 0.002 | 172 = 2.6356 | 1.9665 | 0.3869 | 0.0125 | 0.1670 | 0.0847
Mercado2048, 6 =0.025 | 0.002 | 169 10.691 | 7.7660 1.6705 0.0499 | 0.7866 | 0.3460
Test9, 0 = 0.1 0.015 | 163  0.5985 | 0.4348 | 0.0942 | 0.0031 0.0412 | 0.0206
Lena, 6 =0.1 0.005 | 158 0.6881 | 0.5189 | 0.0997 | 0.0031 0.0412 | 0.0206
Boat, 6 =0.1 0.005 | 163  0.6889 | 0.5181 0.1013 0.0031 0.0412 | 0.0206
Mercado256, 6 = 0.1 0.005 | 213  0.1692 | 0.1309 | 0.0232 | 0.0008 | 0.0082 | 0.0050
Mercado512, 6 = 0.1 0.005 | 205 0.6778 | 0.5104 | 0.0979 | 0.0031 0.0412 | 0.0206
Mercado1024, c = 0.1 0.005 | 208 2.6719 | 1.9906 | 0.3958 | 0.0125 | 0.1694 | 0.0857
Mercado2048, ¢ = 0.1 0.005 | 205 = 10.661 | 7.7299 1.6658 | 0.0500 | 0.7982 | 0.3458

Table 1: Parameter values, iteration counts, and average per iteration execution times (in seconds) for the Intel

Xeon CPU.

99.40%. This is perfectly fine for the CPU since the
cost of processing the remaining triangles using the
bisection search algorithm is neglectable. However,
on the basis of the same data, there is on average
16.59% probability that an individual warp contains
a work-item that has to process a triangle using the
bisection search algorithm. This has a significant
impact on the performance since the cost of processing
a single triangle in this way is the same as processing
similarly all the 32 triangles as the longest execution
path of work-items within the warp determines the cost
of completing the computational task assigned to this

warp.

The above does not, however, explain why the consid-
erably more powerful K40c GPU did not outperform
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the GTX580 GPU in such a large extent as would have
been expected. The results could be partly explained
by the fact that, based on our measurements, the K40c
GPU is only 2-3 times faster than the GTX580 GPU at
performing special operations such as computing recip-
rocals and square roots. The Newton-Raphson division
algorithm improved performance less than 10%. In ad-
dition, we noticed that the K40c GPU was unusually
sensitive to how the work group size was chosen. The
critical non-convex subproblem (15) required us to set

3 The Mercado test image is based on the works of Diego
Delso and licensed under Wikimedia Commons license
CC-BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0/legalcode).
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Image Whole Sub. #1 Sub. #2 Sub. #3 Sub. #4 Misc.

Test9, o = 0.025 0.0287 21.5 | 0.0147 30.5 | 0.0085 11.6 | 0.0002 17.7 | 0.0041 10.0 | 0.0012 173
Lena, 0 = 0.025 0.0507 14.7 | 0.0357 159 | 0.0095 11.5 | 0.0002 17.7 | 0.0041 9.9 0.0012 173
Boat, 0 =0.025 0.0654 12.2 | 0.0501 12.3 | 0.0097 11.5 | 0.0002 17.7 | 0.0041 10.0 | 0.0012 174
Mercado256, o = 0.025 0.0136  12.6 | 0.0095 14.0 | 0.0027 8.6 0.0001  14.1 | 0.0010 8.5 0.0003 17.1
Mercado512, o = 0.025 0.0472 144 | 0.0335 154 | 0.0082 11.8 | 0.0002 17.9 | 0.0041 10.0 | 0.0012 17.3
Mercado1024, 6 =0.025 | 0.1681 15.7 | 0.1124 17.5 | 0.0296 13.1 | 0.0006 19.6 | 0.0208 8.0 0.0046 185
Mercado2048, 0 = 0.025 | 0.6457 16.6 | 0.4095 19.0 | 0.1178 14.2 | 0.0025 20.0 | 0.0975 8.1 0.0182  19.0
Test9, 0 = 0.1 0.0278 21.5 | 0.0142 30.6 | 0.0080 11.7 | 0.0002 17.8 | 0.0042 9.9 0.0012 172
Lena, 6 =0.1 0.0454 15.1 | 0.0312 16.6 | 0.0087 11.4 | 0.0002 17.8 | 0.0041 10.0 | 0.0012 17.3
Boat, 0 = 0.1 0.0452 15.2 | 0.0310 16.7 | 0.0087 11.6 | 0.0002 17.8 | 0.0041 10.0 | 0.0012 17.3
Mercado256, 6 = 0.1 0.0133  12.7 | 0.0093  14.1 | 0.0027 8.5 0.0001 14.2 | 0.0009 8.7 0.0003  17.1
Mercado512, 6 = 0.1 0.0464 14.6 | 0.0325 157 | 0.0084 11.7 | 0.0002 17.9 | 0.0041 10.1 0.0012  17.3
Mercado1024, 6 = 0.1 0.1726  15.5 | 0.1167 17.1 0.0303  13.1 | 0.0006 19.6 | 0.0203 8.3 0.0046  18.7
Mercado2048, 6 = 0.1 0.6440 16.6 | 0.4075 19.0 | 0.1178 14.1 | 0.0025 20.0 | 0.0977 8.2 0.0182  19.0
Average speedup 15.6 18.2 11.8 17.8 9.3 17.7

Table 2: Average per iteration execution times (in seconds) and obtained speedups for the Nvidia GeForce GTX580
GPU.

Image Whole Sub. #1 Sub. #2 Sub. #3 Sub. #4 Misc.

Test9, o = 0.025 0.0183  33.7 | 0.0059 76.0 | 0.0078 12.7 | 0.0001 29.7 | 0.0036 11.3 | 0.0009 23.3
Lena, 0 =0.025 0.0297 251 | 0.0163 348 | 0.0087 125 | 0.0001 29.5 | 0.0036 11.2 | 0.0009 23.4
Boat, 0 =0.025 0.0361 221 | 0.0225 273 | 0.0089 12.6 | 0.0001 29.5 | 0.0036 11.3 | 0.0009 23.4
Mercado256, o = 0.025 0.0091 188 | 0.0045 29.4 | 0.0031 7.6 0.0000 16.6 | 0.0012 7.0 0.0003  17.1
Mercado512, o = 0.025 0.0277 24.6 | 0.0153 33.6 | 0.0077 12.6 | 0.0001 29.9 | 0.0037 11.1 | 0.0009 23.2
Mercado1024, 0 =0.025 | 0.0970 27.2 | 0.0509 38.6 | 0.0262 14.8 | 0.0003 37.3 | 0.0163 10.2 | 0.0033  26.0
Mercado2048, 6 =0.025 | 0.3736 28.6 | 0.1841 422 | 0.1033 162 | 0.0012 40.6 | 0.0721 109 | 0.0127 272
Test9, 0 =0.1 0.0178 33.6 | 0.0057 75.7 | 0.0074 12.7 | 0.0001 29.5 | 0.0037 11.2 | 0.0009 23.3
Lena, 0 =0.1 0.0269 25.5 | 0.0143 363 | 0.0080 125 | 0.0001 29.6 | 0.0036 114 | 0.0009 23.4
Boat, 0 =0.1 0.0272 254 | 0.0144 359 | 0.0080 12.6 | 0.0001 29.7 | 0.0037 11.2 | 0.0009 23.2
Mercado256, 6 = 0.1 0.0088  19.1 | 0.0045 29.3 | 0.0031 7.6 0.0000  16.0 | 0.0010 8.4 0.0003  18.2
Mercado512, 6 = 0.1 0.0274 248 | 0.0149 342 | 0.0077 12.6 | 0.0001 29.8 | 0.0037 11.2 | 0.0009 23.2
Mercado1024, o = 0.1 0.0996 26.8 | 0.0530 37.5 | 0.0267 14.8 | 0.0003 37.5 | 0.0162 104 | 0.0032 26.4
Mercado2048, o = 0.1 0.3721 287 | 0.1826 423 | 0.1033 16.1 | 0.0012 40.7 | 0.0721 11.1 | 0.0127 272
Average speedup 26.0 40.9 12.7 30.4 10.6 23.5

Table 3: Average per iteration execution times (in seconds) and obtained speedups for the Nvidia Tesla K40c GPU.

the work group size as low as 64 work-items. In turn,
the GTX580 GPU performed just fine when the work
group size was set as high as 512 work-items. This sug-
gest that Nvidia’s OpenCL compiler might have prob-
lems with resource management. In general, the com-
piler seems to generate less optimal code for the K40c
GPU in many situations. It also appears that the K40c
GPU does not perform well in situations where the solu-
tion of a subproblem requires multiple kernel launches.

5 CONCLUSIONS

This paper presented a GPU implementation of an aug-
mented Lagrangian based L'-mean curvature image de-
noising algorithm and numerical results obtained while
comparing the GPU implementation against a single-
threaded CPU implementation. Up to 33-fold speedups
were obtained, the average speedup being 26-fold. The
pointwise handled non-convex subproblem predictably
benefited most from the GPU-acceleration. The numer-
ical results indicate that GPUs provide demonstrable
benefits in the context of the higher-order variational-
based image denoising algorithms and alternating di-
rection type augmented Lagrangian methods.
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