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ABSTRACT 

Roiha, Toni 
Carbon control of bacterioplankton in subarctic lakes and ponds 
Jyväskylä: University of Jyväskylä, 2015, 55 p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 305) 
ISBN 978-951-39-6280-7 (nid.) 
ISBN 978-951-39-6281-4 (PDF) 
Yhteenveto: Hiilen vaikutus bakteeriplanktoniin subarktisissa järvissä ja lammissa 
Diss. 

Subarctic water bodies vary from humic thermokarstic ponds surrounded by dense 
shrub to oligotrophic lakes situated in barren rocky catchments. They are subject to 
harsh and fluctuating environmental conditions (temperature, light, carbon and 
nutrients) which influence the metabolic rates and community composition of 
organisms living in these systems. The focus of this thesis was to describe the 
variability of bacteria metabolism in different types of subarctic freshwaters and to 
estimate the influence of dissolved organic carbon (DOC) concentration and 
characteristics on bacteria metabolism and bacterial community composition (BCC). 
The project was carried out in subarctic Finland and in Northern Quebec, and 
involved seasonal, spatial and experimental studies. The water bodies in Finland 
were generally clear and poor in DOC and nutrients and characterized by lower 
bacterial production (BP) than the darker and nutrient rich thermokarstic ponds in 
Quebec, Canada. Highest BP was measured in summer at the bottom of 
thermokarstic ponds, while in northern Finland ponds had the highest BP followed 
by lake inlets and outlets. The environmental variables that best correlated with BP 
were temperature, certain nutrients, DOC and the amount of humic compounds. 
Nutrients and DOC variables (concentration, S289, fulvic and protein compounds) 
also explained seasonal and spatial changes in BCC and in bacterial growth 
efficiency. Climate models predict higher temperatures and precipitation which 
should increase the amount of terrestrial carbon arriving into the lakes and alter the 
overall DOC composition available for bacterial metabolism. According to an 
experimental addition of terrestrial DOC, BP benefited from new DOC and at the 
same time the microbial food web moved significantly towards heterotrophy due to 
the increased light attenuation. Understanding how bacterial metabolism and BCC 
are controlled by different environmental variables can provide insights into how 
bacteria will manage in a changing climate. 
 
Keywords: Bacterioplankton; dissolved organic carbon; freshwater; heterotrophy; 
pond; subarctic. 
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1 INTRODUCTION  

1.1 Bacterioplankton in freshwater sciences 

Interest in bacterioplankton research goes back to the beginning of the 19th century 
when the focus was on pathogens in drinking water (Welch 1935). Early studies 
suffered from methodological shortcomings causing severe underestimation of the 
role of pelagic bacterioplankton. In the 1940s the energy transfer to higher 
organisms through trophic steps was recognised (Lindeman 1942) and, based on 
this, a view of aquatic food webs was created whereby photosynthetic C from 
primary production was assumed solely to supply consumers and the role of 
bacterioplankton was merely as C consumers. It was not until the early 1980s that 
bacterioplankton was suggested to be an important player in the recycling of 
primary produced DOC back to the food web via heterotrophic flagellates (Azam 
et al. 1983, Sherr et al. 1988). These findings were largely due to the introduction of 
novel methodology (Hobbie et al. 1977, Porter & Feig 1980, Fuhrman & Azam 1982, 
Kirchman et al. 1985) that made estimates of BB and BP more realistic. In the 1980s 
it also became evident that, especially in boreal humic lakes, the amount of 
primary produced C was not satisfying the need of bacterioplankton production, 
suggesting an important secondary energy source, namely terrestrial C (Salonen et 
al. 1983, Tranvik 1988, Jones 1992). 

Currently bacterioplankton is seen as an important player in two major 
pathways in C cycling. First, as consumers through their production bacteria 
recycle dead organic C into living carbon biomass (Pomeroy 1974) and secondly, 
via respiration bacteria produce CO2 and release it to the biosphere (Pomeroy & 
Johannes 1966). Bacterioplankton may also act as a source of new DOC to aquatic 
ecosystems (Ogawa et al. 2001, Kawasaki & Benner 2006) due to DOC loss 
occurring during BP (Kawasaki & Benner 2006). Earlier studies suggested that this 
bacteria-produced DOC could be not biologically available (Stoderegger & Herndl 
1998, Ogawa et al. 2001), but advances in fluorescence methodology have provided 
a detailed tool to estimate interactions between DOM and bacteria. New 
technology has revealed that bacterially generated DOC seems to be a significant 
source of the total CDOM and also that heterotrophs are a source of both, 
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bioavailable protein-like and refractory humic-like C (Yamashita & Tanoue 2008, 
Lønborg et al. 2009). 

1.1.1 Bacterial production 

Traditionally, production has been understood as the production of new organic 
matter in a defined time period (Boysen-Jensen 1919). In the case of 
microorganisms, production of new C by absorption of organic C also reflects their 
level of activity (Romanova & Sazhin 2011). Production of heterotrophic 
organisms can be studied either via direct abundance and biomass counts in a 
given time interval or indirectly by measuring changing rates of vital processes 
(DNA & protein production). These indirect measurements of incorporation of 
radioactive label (leucine or thymidine) are most commonly used in aquatic 
environments (Fuhrman & Azam 1982, Kirchman et al. 1985). Independent of their 
cell size, 63 % of bacterioplankton dry weight is formed from proteins (Simon & 
Azam 1989) and a relatively stable fraction of it is leucine (7.3–8.7 %) (Buesing & 
Marxsen 2005 and refs therein). Heterotrophic bacteria are also superior 
competitors for these amino-acids when compared to phytoplankton (Kirchman et 
al. 1985). Due to these factors, protein synthesis rates can be converted to estimates 
of organic C production. Thymidine, on the other hand, is cell size dependent and 
is related to the production of new DNA, and therefore it represents more the 
increase of the population size (thymidine) than cell growth (leucine). 

Drawbacks in these incorporation methods are that both amino-acids are 
present in the natural environment and can also be synthesised intracellularly. 
This unknown fraction of incorporated unlabelled amino-acids (isotope dilution) 
is especially problematic with leucine and can lead to underestimation of BP 
because the isotope dilution conversion factor can as much as double between 
oligotrophic and more eutrophic environments (Simon & Azam 1989, Kirchman 
1993). To minimize the effect of isotope dilution, time series and saturation curves 
should be established to ensure that there is significantly more external leucine 
available than in the natural state and to inhibit synthesis of new leucine (Buesing 
& Marxsen 2005 and refs therein). In turn, the thymidine method suffers from 
varying conversion factors that can cause significant differences in the relation 
between incorporation rates and C dry weight in similar environments (Scavia et 
al. 1986). Current BP methods do not either take into account viruses that are 
common among bacterial communities (Bratbak et al. 1994) indicating that 
communities are also likely producing viral particles (Unanue & Iriberri 1997).  

1.1.2 Bacterial respiration 

Respiration has been recognized as one of the key functions in the ecosystem 
where it represents a sink for organic matter and simultaneously produces 
reactants like O2, CO2, CH4 and low molecular weight compounds (Williams & del 
Giorgio 2005). The history of respiration measurements starts with the early 
development of measurement of dissolved O2 by Winkler (Winkler 1888), but it 
took several decades to recognize respiration as an individual process and not 
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merely as a correction measurement for photosynthesis. The first specific 
respiration studies were conducted during the late 1960s (Pomeroy & Johannes 
1966, 1968) but the focus in the aquatic field was still heavily concentrated on the 
measurement of photosynthesis. This situation lasted nearly 30 years until del 
Giorgio and Peters (1993) pointed out that there was over an order of magnitude 
more published papers on productivity than on respiration (> 1000 vs. < 100). The 
topic was also acknowledged on the microbial side when del Giorgio & Cole 
(1998) introduced an idea of uncoupling anabolism and catabolism as a way for 
bacterioplankton to adapt their growth efficiency according to the changing 
environment. Simultaneously with an increasing interest in respiration 
measurements, there were also developments in the measurement methodology. 
BR is measured as a change in O2 consumption or as production of CO2 (Griffith et 
al. 1990, Biddanda et al. 1994, Hansell et al. 1995), but until the last decade the 
accuracy of the measurements was a problem. Recent methodology includes high 
resolution spectrometric sensors (Warkentin et al. 2007) that allow online 
measurements of O2 consumption and CO2 production making it also possible to 
re-evaluate assumptions regarding respiratory quotients (Berggren et al. 2011). 

There are also methodological problems that concern BR measurements. 
Prefiltration is often necessary to remove zooplankton and phytoplankton from 
the sample. This can cause an overestimation of bacterioplankton contribution to 
community respiration in oligotrophic environments by removing the predation 
pressure from HNF (Weisse & Scheffel-Möser 1991) and nutrient competition from 
phytoplankton (Caron et al. 2000). Filtration can also cause changes in BCC 
because larger size fractions of bacteria can be retained by the filter and therefore 
favour opportunistic bacteria (Gasol & Morán 1999, Massana et al. 2001). It is also 
possible that handling procedures can cause changes in nutrient and DOC 
availability (Gasol & Morán 1999, Massana et al. 2001). As a consequence of tightly 
coupled predator-prey and autotrophic-heterotrophic dynamics, BR in prefiltered 
and long-incubated oligotrophic samples are prone to overestimations 
(Aranguren-Gassis et al. 2012). 

1.1.3 Bacterial growth efficiency 

Production of new C and respiration of organic to inorganic C are two main 
functions of heterotrophic bacterioplankton (del Giorgio & Cole 1998). These main 
functions can be used as an estimation of how bacterioplankton uses the obtained 
C. Generally it seems that heterotrophic bacteria maximize the amount rather than 
the efficiency of C utilized (del Giorgio & Cole 1998). BGE can be calculated as the 
ratio of new C produced per unit of C assimilated (del Giorgio & Cole 1998). 

 
BGE = BP / (BP + BR) 
 
where BGE is bacterial growth efficiency (%), BP is bacterial production and 

BR is bacterial respiration.  
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1.1.4 Bacterial community composition 

Research on BCC has been one of the most rapidly developing fields associated 
with aquatic bacterioplankton (Newton et al. 2011). Development started during 
the 1990s when 16S rRNA gene sequencing was first applied to aquatic bacterial 
communities (Bahr et al. 1996). During this first generation sequencing several 
different methods like DGGE (Muyzer et al. 1993), T-RFLP (Avaniss-Aghajani et al. 
1996) and LH-PCR (Suzuki et al. 1998) were applied to study the 16S rRNA gene. 
Results from these studies have shown that aquatic environments are inhabited by 
distinct bacterial communities (Zwart et al. 2002). During the last decade a wave of 
next generation sequencing has landed in aquatic bacterial research. 454 
sequencing includes methods like Pyrosequencing (Margulies et al. 2005), Illumina 
(Gunderson et al. 2004) and Ion Torrent (Rothberg et al. 2011) that have been very 
efficient tools in studying aquatic bacterial diversity and ecosystem functioning 
and have provided a solution to solve very precise questions about BCC 
functioning. The main drawbacks of next generation sequencing are associated 
with handling of extremely large datasets and reducing the sequencing error 
within that, although software for characterizing and cleaning the data are 
available (Schloss et al. 2009, 2011).  

1.2 Most important controls of bacterial metabolism 

DOC (Blomqvist et al. 2001, Hessen et al. 2004), nutrients (Jansson et al. 1996, 
Granéli et al. 2004), nutrients and C combined (Vrede 2005, Breton et al. 2009, Vidal 
et al. 2011), temperature (Panzenböck et al. 2000, Vrede 2005), UV radiation 
(Sommaruga et al. 1997) and top-down predation (Weisse & Scheffel-Möser 1991, 
Hessen et al. 2004) have all been found to be connected to bacterial metabolic rates 
in freshwater ecosystems. 

Aerobic bacteria use C for biomass synthesis and respiration, unlike nutrients 
that are only needed for biomass synthesis, making C the major limiting factor for 
bacterial metabolism (Kirchman 2012). Bacterioplankton are superior competitors 
for nutrients when compared to phytoplankton; therefore, without C eventually 
becoming limiting, BP would increase until the system has run out of nutrients 
(Bratbak & Thingstad 1985). Still nutrients are crucial to aquatic microbes for the 
production of new biomass. Stoichiometry of bacterioplankton (C:N:P; 50:10:1) 
indicates that they are extremely rich in phosphorus (Fagerbakke et al. 1996, Vrede 
et al. 2002). This leads to increased demand for P compared to N (Kirchman 2012). 
Also turnover times are faster for P, that is found in nuclei acids, lipids and 
nucleotides, than for N that is mainly found in proteins, making bacterioplankton 
more likely to be P- than N-limited (Kirchman 2012). 

Low temperatures significantly decrease metabolic rates (Kirchman & Rich 
1997, Pomeroy & Wiebe 2001) although diverse communities can have a high 
adaptation to low and fluctuating temperatures (Adams et al. 2010). Direct UV 
radiation can also inhibit bacterioplankton metabolism (Sommaruga et al. 1997, 
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Hörtnagl et al. 2011) but its severity to living organism is strongly regulated by 
attenuation by humic material. UV radiation is strongly attenuated by DOC but it 
also simultaneously decomposes DOC in the surface waters (Vähätalo & Wetzel 
2004, Cory et al. 2013) therefore creating protection for living organisms. Usability 
of UV-decomposed C is strongly related to the original characteristics of the DOC 
(Tranvik & Bertilsson 2001) and in some cases it has been found to enhance 
(Anesio et al. 2005) and in others to suppress the availability of DOC (Obernosterer 
et al. 1999). Furthermore, bacterioplankton can be top-down controlled, especially 
in enclosure environments, by predation from HNF (Weisse & Scheffel-Möser 
1991) or cladocerans (Hessen et al. 2004). Yet, focusing on a single limiting factor 
can oversimplify the functioning of the studied ecosystem because metabolic rates 
are more enhanced by addition of multiple limiting factors (Vrede 2005; Breton et 
al. 2009; Vidal et al. 2011). Furthermore, most studies have treated 
bacterioplankton communities as a homogeneous group and only recently has the 
high inherent diversity of bacterial communities been taken into consideration. 
High complexity indicates that different groups in bacterial communities are co-
limited by multiple factors (Eiler et al. 2012). 

In recent years, the role of DOC in controlling bacteria metabolism has 
received increasing attention. This interest stems from efforts for a better 
understanding of the global C cycle and the role of lakes in processing terrestrial C 
before it enters the oceans (Tranvik et al. 2009). Organic C in aquatic environments 
is found in three forms: POC, COC or DOC. Categorizing these components has 
been based on the methodology so that the fraction retained on a filter (0.2–1.22 
μm pore size) is called POC and the filtrate includes both COC and DOC fractions. 
The chemical complexity of DOM leads to variation in DOM colour. Colour of the 
pigmented parts of DOM varies from the light yellow of fulvic acids to almost 
black humin (Stevenson 1982), but in exceptional conditions DOM can be 
degraded to almost colourless (Anderson & Stedmon 2007). Therefore DOM 
generally has a significant effect on the underwater light climate by attenuating 
blue light and UV radiation and letting through the red and yellow light of the 
spectrum. Especially increased attenuation of the UV part of the spectrum is due 
to DOM and therefore UV exposure is often linked to DOM concentrations. DOM-
induced changes in light climate have a drastic influence on living organisms. 
Light attenuation by DOM reduces the area and volume available for benthic and 
pelagic primary production (Pérez-Fuentetaja et al. 1999, II), while on the other 
hand DOM provides shelter against the detrimental UV radiation (Rautio & 
Tartarotti 2010). DOM also has a role in pH changes. DOM of terrestrially origin 
mainly consists of organic acids that can cause a decrease in pH in waters with 
low or no bicarbonate alkalinity but on the other hand these organic acids act as 
buffers for further pH decrease (Lydersen 1998). DOM also plays a crucial role in 
detoxifying toxic and metal cations in the water body (Lydersen 1998).  

O2 consumption in water bodies is enhanced by increased DOM 
concentration due to increased BR rates. Photochemical degradation takes place 
only in the photic zone where high molecular weight C compounds are degraded 
to more labile forms and potentially stimulate bacterioplankton metabolism 
(Lindell et al. 1995, Stedmon & Markager 2005). Although this likely increases the 
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O2 consumption, it is always coupled to O2 production by primary production, 
thus preventing hypoxia in the epilimnion. Attenuation of solar energy in the 
epilimnetic waters, on the other hand, increases thermal stratification and 
increases the possibility of anoxia in the bottom waters.  

Usually DOC concentrations are an order of magnitude higher than POC 
concentrations making DOC the most important pool of organic C in aquatic 
ecosystems (Wetzel 2001, Tranvik et al. 2009). DOC inputs are also often divided 
by their source. Carbon produced within the system by autotrophic organisms and 
macrophytes is called autochthonous C, whereas C derived from terrestrial 
sources (outside the system) is called allochthonous C. Terrestrial inputs are 
mainly soil leachates, leaf litter and debris. Autochthonous C fuels the microbial 
loop where high molecular weight organic C is degraded back into forms that are 
available to higher trophic levels (Azam et al. 1983) and terrestrially derived 
organic C further provides an excess energy source for secondary production 
(Tranvik 1988). Autochthonous C is generally considered to be a good and 
important source of C for bacterioplankton (Cole et al. 1988, Chen & Wangersky 
1996), whereas terrestrial C is available in high quantities but its quality for 
organisms is considered poor (Brett et al. 2009, 2012). Still it has been shown that 
labile low molecular terrestrial C can support a significant part of secondary 
production (Cole et al. 2006, Berggren et al. 2010) likely due to microbial and 
photochemical transformations (Stedmon & Markager 2005, Laurion & Mladenov 
2013). When the importance of DOC as an additional energy source for 
bacterioplankton was recognised the focus moved to its importance to higher 
trophic levels in freshwater ecosystems (Salonen & Hammar 1986). During the last 
decade there has been a debate about the share of terrestrial C transferred to 
higher trophic levels (zooplankton and fish). There are several stable isotopic 
( 13C, 15N & 2H) studies that have concluded the contribution of terrestrial C to 
zooplankton and fish can vary from 20 % to 70 % (Pace et al. 2004, Solomon et al. 
2011, Karlsson et al. 2012) whereas other studies, based on C mass influxes and 
quality results from essential fatty acids, have concluded that their role in 
zooplankton diet and animal production is very small (Brett et al. 2009, 2012, 
Galloway et al. 2014).  

All these findings are related to the complex nature of DOC. Humic 
substances, carbohydrates, carboxylic acids and amino acids are all components 
that can be found and identified by using the optical properties of CDOM. 
Therefore it is possible to use CDOM as a tracer of the dynamics and 
characteristics of the DOC components. Optical properties are analysed with a 
combination of spectrophotometric and spectrofluorometric measurements from 
which a suite of different indexes has been developed, for example to estimate the 
origin (McKnight et al. 2001), aromaticity (Kalbitz et al. 1999), redox-potential 
(Miller et al. 2006) and size (Retamal et al. 2007) of DOC. The latest advance in the 
fluorescent technology is applying the multivariate modelling technique, 
PARAFAC, to EEM (Stedmon & Bro 2008). Individual C components can be 
decomposed from the EEMs and their relative contributions to total fluorescence 
are estimated. Incorporation of this rapid and relatively inexpensive method into a 
range of ecological studies for understanding the biochemical role of DOM has 
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been suggested (Fellman et al. 2010), although there are still several issues with 
data interpretation (Ishii & Boyer 2012). 

1.3 Subarctic freshwater ecosystems 

There is a great diversity of aquatic ecosystems in the subarctic region among 
landscapes that vary from wet mineral peatlands to barren rocky catchments, and 
there are several features that distinguish high latitude lakes and ponds from their 
boreal counterparts (Vincent et al. 2008). The most notable difference is the length 
of the winter ice cover that can persist for up to 9 months (Rautio et al. 2011b). The 
long winter season is characterised by lowered temperatures and irradiance 
leading to lower productivity during winter, but there are still organisms that are 
active under the ice (Rautio et al. 2011a). The situation is totally different during 
summer when small turbid ponds especially can easily heat up to > 20 °C (Vincent 
et al. 2008), and due to primary production and terrestrial inputs there is also more 
C available for organisms. On top of that there is 24 h sunlight available for 
autochthonous producers at latitudes above the polar circle (66° N). These abiotic 
variables make the short summer the most important growth phase in the 
subarctic.  

Thermokarstic permafrost thaw ponds are the most abundant water bodies 
in the arctic (Vincent et al. 2008); they are widespread over the whole circumpolar 
arctic and estimated to occupy 24 % of northern hemisphere land surface (Zhang 
et al. 1999, Grosse et al. 2013). These usually highly turbid ponds are formed in 
depressions caused by melting permafrost and are heavily influenced by 
terrestrial C. Terrestrial inputs have a major impact on the thermal and light 
regimes and therefore thermokarstic ponds often form stabile stratification and are 
O2 depleted at the bottom (Laurion et al. 2010). These dark, anoxic and C-rich 
conditions are extremely favourable for bacterioplankton and have made the thaw 
ponds hot spots of greenhouse gas emissions (Walter et al. 2006, Laurion et al. 
2010) and therefore possible contributors to climate warming (Schuur et al. 2008).  

Another important type of subarctic aquatic ecosystem is clearwater lakes 
and ponds. These usually oligotrophic water bodies were formed in rock basins by 
retreating ice masses (Pienitz et al. 2008). Low nutrient and C content and high 
transparency makes these ponds and lakes especially vulnerable to increased 
terrestrial inputs from the catchment and in contrast to thermokarstic ponds are 
saturated with O2 through the whole water column. These oligotrophic ponds and 
lakes are generally known for their low pelagial PP (Rautio et al. 2011b), but 
recently the focus has shifted to the importance of benthic production 
(Vadeboncoeur et al. 2008). Barren rocky pond sediments are known to have a lot 
of sedimented and recycled nutrients and they are not light or O2 limited, 
therefore making them highly diverse and productive environments in these 
desert and tundra aquatic ecosystems (Rautio & Vincent 2006, Quesada et al. 2008). 

According to climate change predictions the Subarctic and Arctic region 
might undergo increasing air temperatures and precipitation (Solomon et al. 2007). 
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These changes would have a large impact on their aquatic food web structures. 
Increased precipitation would benefit heterotrophic organisms due to improved 
nutrients and terrestrial C availability from the catchment (Hessen et al. 2004, 
Breton et al. 2009, II). Also higher light attenuation caused by terrestrial inputs 
would decrease the volume of photic zone and lower the overall phototrophic 
primary production, thereby moving subarctic water bodies towards more 
heterotrophic energy pathways (Pérez-Fuentetaja et al. 1999, II). Changes would 
also extend to higher trophic levels. High transparency and 24 hour radiation have 
created a need for zooplankton to have protection against UV radiation. Terrestrial 
inputs would likely increase the UV-attenuation providing shelter and making the 
production of UV-protecting pigments obsolete for zooplankton (Rautio et al. 
2009). On a global scale, one of the biggest issues induced by climate change in 
northern environment is the accelerating mobilization of old soil organic C pools. 
Microbially and photochemically degraded large and old C stocks have increased 
the amount of CO2 and CH4 emitted to the atmosphere (Schuur et al. 2009). High 
greenhouse gas emissions have been measured widely over the whole northern 
hemisphere (Kling et al. 1992, Hamilton et al. 1994, Nakano et al. 2000, Walter et al. 
2006, Desyatkin et al. 2009, Laurion et al. 2010) and CH4 has been acknowledged to 
play a particularly large role in greenhouse gas emissions (Walter et al. 2006, 
Laurion et al. 2010) further extending the magnitude of the warming region 
(Laurion et al. 2010).  

1.4 Thesis objectives 

A warming climate is predicted to introduce more terrestrial organic material to 
subarctic aquatic ecosystems. This could make the food web structure more 
beneficial to heterotrophic organisms. Recently the small water bodies in the 
subarctic have been noted as hot spots for greenhouse gas emissions, coming 
mainly from bacterial metabolism. Therefore it is essential to know the factors 
contributing to bacterioplankton functioning in these waterbodies. This thesis 
aims to provide new knowledge on bacterioplankton metabolism and community 
composition in subarctic waters and focuses especially on: 
 
1. Characterising the range of variability of bacterioplankton metabolism and 

community composition in different types of subarctic freshwaters and 
seasonally. 

2. Estimating the role of quantity and quality of DOC for bacterioplankton 
functioning in natural water bodies and in experimental conditions. 

3. Estimating the relative contribution of phototrophic vs. heterotrophic microbial 
energy pathways in different subarctic water bodies. 



  

 

2 METHODS 

2.1 Study area and samples 

There is a high diversity of freshwater ecosystems located in high latitude 
subarctic regions. Data for this thesis were gathered from a series of oligotrophic 
ponds and lakes in the Kilpisjärvi region in north-western Finland (69º 03’ N, 20º 
52’ E)) (Fig. 1) and from a series of thermokarstic ponds located in discontinuous 
permafrost near Kuujjuarapik in northern Quebec (55° 20’ N, 77° 30’ W). Sampling 
was also carried out in Seida in north-western Russia (67º 03´ N, 62º 56´ E) at a 
lowland tundra area and, although not yet published, some of these results are 
presented in the thesis and referred to as “add”.  

 

 
FIGURE 1 A map of the circumpolar arctic and subarctic with sampling sites (grey stars).  
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Kilpisjärvi is located in the most north-western corner of Finnish Lapland. A 
variety of ponds and lakes was chosen to represent a typical oligotrophic (low 
nutrient & high transparency) subarctic freshwater type. Lakes and ponds were 
situated along an altitudinal (473–950 m a.s.l.) gradient and were either 
surrounded by barren or forested catchments. The treeline of mountain birch 
forest (Betula pubescens subsp. czerepanovii (Orlova) Hämet-Ahti) is located at 600 
m a.s.l.. Altogether 16 ponds and 3 lakes were sampled in this region. One of the 
lakes, Lake Saanajärvi, also served as a site for an experimental setup (II). The sites 
were sampled in 2008 (spring, summer and autumn) and in 2011 (winter, spring, 
ice-break, summer and fall).  

The Kuujjuarapik region is located in discontinuous permafrost ca. 20 km 
east from the nearest village of Whapmagoostui-Kuujjuarapik. Five thermokarstic 
ponds (moderate nutrient & low transparency) were sampled along the DOC (3.9–
11.9 mg l-1) and colour gradient. Ponds were situated in an impermeable clay-silk 
bed and were surrounded by dense shrubs and sporadic tree and moss areas 
(Bouchard et al. 2011). Ponds were sampled on two separate occasions in 2009 (late 
winter in April and summer in August).  

The Seida region is located in extensive lowland tundra and permafrost 7 km 
west from the small village of Seida. Altogether 8 thermokarstic ponds and 3 lakes 
(low nutrients & moderate transparency) with extensive moss growth on the 
bottom were sampled along a DOC gradient (9.5–116.8 mg l-1). Ponds and lakes 
were sampled once in 2012 (August). 

Climate, drainage-area, C input sources and climate change predictions in 
these areas are very different and provided a possibility to work with a large 
environmental gradient. Lakes and ponds in Kilpisjärvi (Finland) are typically 
oligotrophic with clear water and low nutrient and C concentrations (Table 1). 
Ponds in Kuujjuarapik (Canada) and Seida (Russia) on the other hand are typically 
heavily influenced by terrestrial inputs making them coloured and relatively rich 
in nutrients and C (Table 1). Seasonal fluctuations of bacterioplankton biomass (I, 
III), productivity (I, III, IV, add), respiration (IV) and community composition (I, 
IV) were measured. Properties of DOC were studied alongside these 
bacterioplankton variables. DOC concentration was measured on every sampling 
(I, II, III, IV, add), and the optical properties of the water were also analysed to 
estimate quality and source of DOC. Spectrophotometric and spectrofluorometric 
analyses were run to illustrate source (I, II, III, IV, add), availability (I, II, III, IV, 
add) and composition (IV) of CDOM. Effects of DOC were studied in the natural 
environment (I, III, IV, add) but also in experimentally (II). Phototrophic and 
heterotrophic C flows were compared in oligotrophic Saanajärvi in Kilpisjärvi (II) 
and in thermokarstic ponds in Kuujjuarapik (III). Chl-a concentration (I, II, III, IV, 
add), PP (II, III) and phytoplankton (II, add) or PNF (I, III) biomass were used to 
represent the phototrophic C energy flow. BB (I, II, III) and BP (I, II, III, IV, add), 
and also HNF biomass (I, II, III) were used to estimate the C flow through 
secondary production. Terrestrial C inputs were estimated at the same time 
because they are known to be beneficial to heterotrophic organisms. This 
hypothesis was also tested with a DOC addition experiment (II). Lastly, the role of 
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habitats to bacterioplankton metabolism and C quality changes was studies in 
Kilpisjärvi (I, IV).  

2.2 Analytical methods 

2.2.1 Sample collection and experimental design 

During the open water season ponds were sampled either from a rubber boat or 
by using waders, and during winter the deepest spot was sampled through a 
drilled ice hole either with a Limnos or a Kemmerer water bottle sampler. Lakes 
were sampled from the inlet and outlet brooks using boat or waders. Generally 
samples were only taken from the surface waters, with the exception of KWK 
thermokarstic ponds where both surface and bottom were sampled. Lake 
Saanajärvi was used as a location for a DOC-addition experiment. Altogether 9 
open ca. 75 l plastic containers were set in the south end of Lake Saanajärvi; 3 
controls, 3 boreal DOC additions and 3 subarctic DOC additions. Water samples 
were collected 3 times (1 day, 3 day and 5 day) from the containers with a small 
Limnos sampler. 

2.2.2 Physico-chemical properties 

A multiparametric probe (YSI Inc., Yellow Springs, Ohio) was used to measure 
temperature, pH, conductivity and O2 concentration in the field. Total and 
inorganic nutrients were analysed using standard methods (Finnish Standards 
Association SFS-EN 5505, 6878) of the National Board of Waters at Lammi 
biological station or as in Breton et al. (2009). DOC was analysed from filtered 
samples using standard methods (Finnish Standards Association SFS-EN 
1484:1997) of the National Board of Waters in Finland or using a Shimadzu TOC-
5000A carbon analyser calibrated with potassium biphthalate. 
 
TABLE 1 Characteristics of study ponds and lakes situated in Kilpisjärvi, Kuujjuarapik 

and Seida regions. TP, TN and DOC values are presented as means of all 
observations ± S.D. 

 
Region  Sites Altitude  TP TN DOC
   (m a.s.l) (μg l-1) (μg l-1) (mg l-1) 
Kilpisjärvi  9–16 473–950 6.1±1.5 161±69 3.4±2.4 
Kuujjuarapik  5 ca. 105 154±133 533±343 6.9±2.1 
Seida   10 ca. 95 85±45 1431±1226 40±36 

Analysis of heterotrophic components 

BA was analysed with two separate methods. In I and II bacterial densities were 
counted from prepared slides stained with 4-,6-diamido-2-phenylindole (DAPI) 
using UV excitation with an epifluorescence microscope (Leica Leitz DMRB). In III 
bacterioplankton was stained with SYBR green I and cell abundance was 



20 

estimated using flow cytometry (FACSCalibur, Becton-Dickinson). BB estimations 
(I, II, III) were calculated from cell sizes converted to C using either a constant 
coefficient (Fry 1988) or an allometric conversion formula (Posch et al. 2001). Cell 
sizes were measured from digital images taken from DAPI-stained slides and 
using the Cell C program (Selinummi et al. 2005). 3H-leucine incorporation 
(Kirchman et al. 1985) with a centrifugation method (Smith & Azam 1992) was 
used to estimate BP (I, II, III, IV, add). Saturation of 3H-leucine incorporation was 
tested experimentally for concentration and time. BR was measured from 
prefiltered (3 μm) samples as a decrease of O2 concentration using fibre-optic mini-
sensors (Fibox 3, PreSens Precision Sensing GmbH, Regensburg, Germany) 
(Warkentin et al. 2007). BCC was analysed with two separate methods. In I the 
polymerase chain reaction  was used to amplify bacterial 16s rRNA-genes that 
were analysed for length heterogeneity (LH-PCR) to illustrate differences in 
community composition (Suzuki et al. 1998). In IV bacterial 16s rRNA-genes were 
analysed by next generation sequencing (454 pyrosequencing; Margulies et al. 
2005). Abundance and biomass of HNF was estimated from DAPI-stained slides 
using UV excitation with epifluorescence microscopy (I, II, III). Heterotrophic 
organisms were identified from autotrophic organism using a green excitation 
filter. 

2.2.3 Analysis of autotrophic components 

Samples were filtered onto GF/F filters from which chl-a was extracted into 
ethanol and analysed fluorometrically (I, II, III, IV, add). Photosynthesis was 
measured using incubations with 14C solution. Screened polyethylene bags 
(Whirlbak) or a Rae-box were used to generate a PAR gradient (II, III) and to 
obtain photosynthesis–irradiance curves. Photosynthetically fixed C was 
normalized to chl-a concentration and fitted to equations depending on presence 
or absence of photoinhibition (Jassby & Platt 1976, Platt et al. 1980). The site-
specific diffuse attenuation coefficient (KdPAR) was obtained from a correlation 
between DOC and light (Forsström et al. 2015) in Kilpisjärvi region and from a 
correlation between DOC and total suspended solids (Watanabe et al. 2011) in the 
Kuujjuarapik region. Calculated photosynthetic parameters and KdPAR were used 
for calculating depth-integrated primary production. Picoautotrophic plankton 
abundances were calculated either from slides under UV excitation and with a 
green excitation filter or by flow cytometry (FACSCalibur, Becton-Dickinson) 
using their own chlorophyll autofluorescence. Abundance and biomass of PNF 
were estimated from the same samples as HNF using UV excitation with 
epifluorescence microscopy (I, II, III). Autotrophic organisms were distinguished 
from heterotrophic organisms using a green excitation filter. 

2.2.4 Analysis of carbon components 

Optical and fluorescence properties of water were used to analyse the quantity 
and quality of DOC (I, II, III, IV, add). Three separate methods were applied for 
spectrophotometric data. Quantity of CDOM was estimated from the absorption 
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coefficient at 320 nm (a320). Pigmentation and origin of DOC was estimated from 
specific UV absorbance at 254 nm normalized to DOC concentration (SUVA) 
(Weishaar et al. 2003, Hood et al. 2005). Two individual spectral slopes and their 
ratios were also calculated from spectrophotometric CDOM absorption spectra. 
Spectral slopes in lower wavelengths (S289) are known to be related to algal 
derived proteins and phenols whereas spectral slopes at higher wavelengths 
(S382) are usually related to terrestrial fulvic and humic acids. Sr therefore 
represents a change in dissolved C components (Loiselle et al. 2009, Bracchini et al. 
2010, Galgani et al. 2011). A single excitation scan was performed at 370 nm and 
the ratio of fluorescence emissions at 450 nm and 500 nm was used to calculate the 
FI that was in turn used to infer the origin (microbial or terrestrial) of fulvic acids 
in the sample (McKnight et al. 2001). A synchronous fluorescence scan was 
recorded from 200 nm to 700 nm with 14 nm separation between excitation and 
emission. The ratio between fluorescence emissions at 470 nm and 360 nm was 
used as an index of humification and polycondensation (HI) indicating availability 
of C for further usage (Kalbitz et al. 1999). Excitation was measured across 220–450 
nm and emission across 240–600 nm with 5 and 2 nm intervals to create a 3-D 
EEM. EEMs were analysed with PARAFAC to identify separate fluorescent 
components with similar excitation-emission properties (Stedmon & Bro 2008, 
Fellman et al. 2010).  



 

3 RESULTS AND DISCUSSION 

3.1 Bacterial metabolism 

BP in ponds in the Kuujjuarapik region differed significantly (F2,70 = 122.5, p < 
0.001) from ponds in the Kilpisjärvi (Tukey test; p < 0.001) and Seida (Tukey test; p 
< 0.001) regions with summer BP (32.5 ± 15.5 μg C l-1d-1) significantly higher than 
in the Kilpisjärvi (1.4 ± 1.4 μg C l-1d-1) or Seida (1.6 ± 1.5 μg C l-1d-1) regions (Fig. 2).  

 
FIGURE 2 Open water BP in different studied regions. Statistically significant (p < 0.05) 

differences are indicated by different letters above bars. 
 
Seasonality in BP (Fig. 3) was measured for Kilpisjärvi and Kuujjuarapik (I, III, IV). 
There was a significant seasonal change in BP in both Kilpisjärvi (F4,50 = 4.0, p = 
0.007) and Kuujjuarapik ponds (H = 10.0, n = 17, p = 0.002). In Kilpisjärvi waters 
production was found to be significantly (Tukey test; p = 0.006) higher during the 
summer (1.9 ± 1.3 μg C l-1d-1) than fall (0.8 ± 0.3 μg C l-1d-1). In thermokarstic 
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Canada there was also a clear separation between winter and summer when 
almost two orders of magnitude higher production was measured during summer 
(32.5 ± 4.5 μg C l-1d-1) than winter (0.4 ± 0.1μg C l-1d-1). BP was significantly higher 
in Canadian than in Russian thermokarstic ponds (H = 5.3, n = 27, p = 0.021). 
 

  
FIGURE 3 Seasonal changes of BP in A) Kilpisjärvi ponds and B) Canadian and Russian 

thermokarstic ponds. Statistically significant differences (p < 0.05) are 
indicated by different letters above bars. 

Significant seasonal change was also observed in BR (F4,36 = 6.1, p = 0.001) 
measured at Kilpisjärvi sites in 2011 (IV). Lowest BR rates were measured in 
summer (4.6 ± 6.8 μg C l-1d-1) and winter (5.0 ± 2.2 μg C l-1d-1), and highest values 
in spring (15.2 ± 5.5 μg C l-1d-1) (Fig. 4). Seasonality and uncoupling of BP and BR 
was clearly seen in BGE (F4,36 = 17.6, p < 0.0001) that was highest during the 
productive summer (32.1 ± 7.6 %) period and lower during spring (4.6 ± 4.0 %) 
and fall (4.7 ± 3.7 %).  
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FIGURE 4 Seasonal fluctuations of A) BR and B) BGE in Kilpisjärvi water bodies. 

Statistically significant (p < 0.05) differences are indicated by different letters 
above bars. 

In Kilpisjärvi, the aim was also to study how the landscape (I) and different 
habitats (IV) influence bacteria metabolism (Fig. 5). Effect of landscape was 
studied in ponds situated below and above the treeline (600 m a.s.l). Low altitude 
ponds were situated in dense mountain birch catchments whereas high altitude 
ponds were located in barren rocky catchments. BP was not significantly impacted 
by landscape change although higher average production was found in ponds in 
mountain birch (1.5 ± 1.1 μg C l-1d-1) than in ponds in barren rocky catchments (1.1 
± 0.9 μg C l-1d-1). Impact of habitat was studied in three different habitat zones: 1) 
lake inlets representing habitats influenced by allochthonous C arriving to lakes, 2) 
lake outlets representing C from the in-lake algal production, and 3) ponds 
containing C with a mixed signature of terrestrial and algal compounds. Habitat 
had a significant impact on bacterial production (F2,82 = 4.4, p = 0.015). 
Significantly lower BP rates (Tukey test; p = 0.013) were measured from the lake 
outlets (0.5 ± 0.4 μg C l-1d-1) whereas highest rates were found from the small 
ponds (1.2. ± 1.0 μg C l-1d-1).  
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FIGURE 5 BP fluctuations according to A) landscape and B) habitat. Statistically 

significant differences (p < 0.05) are indicated by different letters above bars. 
 
Habitat did not have as strong an impact on BR and growth efficiency as it had on 
bacteria production (Fig. 6). However, BGE was found significantly different in 
different habitats (F2,27 = 3.5 p = 0.045) (IV). When all respiration data from 
Kilpisjärvi were included in the data set, the effect was not significant (F2,38 = 1.9 p 
= 0.164) although higher BGEs were still measured from inlets (13.6 ± 13.6 %) and 
ponds (17.4 ± 14.0 %) than from outlets (8.3 ± 7.9 %).  

 
FIGURE 6 Impact of habitat on A) BR and B) BGE in Kilpisjärvi water bodies. Seasonal 

data are pooled in this figure. Statistically significant differences (p < 0.05) are 
indicated by different letters above bars. 
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3.2 Bacterial community composition 

Seasonal changes in BCC in the Kilpisjärvi sites (Fig. 7) were analysed in 2008 with 
LH-PCR (I) and in 2011 with 454-pyrosequencing (IV). Significant differences were 
found among the seasons in 2008 (F2,34 = 5.10, p < 0.001) but marginally significant 
difference between water bodies below and above the treeline (F1,34 = 1.63, p = 
0.059). Seasonal differences were mainly due to distinct bacterial communities 
found during the spring ice melt (spring vs. summer; t = 2.66, p < 0.001 and spring 
vs. autumn; t=2.61, p < 0.001). Similarly to 2008 a significant seasonal change in 
BCC was found in 2011 (Pseudo-F2,22 = 3.64, p < 0.001) with all seasons (winter, 
spring, ice break up, summer, fall) being different from each other apart from the 
pairs winter-spring, spring-fall and summer-fall.  

A) B)

 

FIGURE 7  Seasonal fluctuation of BCC in Kilpisjärvi ponds, analysed with A) LH-PCR 
(2008) and B) pyrosequencing (2011), and illustrated with non-metric 
multidimensional scaling (NMDS). Similarities of sample points are illustrated 
with cluster analyses. 

3.3 Characterization of dissolved organic carbon 

Regions differed significantly from each other according to their DOC 
concentration (DOC; F2,119 = 57.4, p < 0.001) and quality parameters (SUVA; F2,118 = 
21.3, p < 0.001, HI;F1,106 = 84.5, p < 0.001, FI;F1,89 = 66.9, p < 0.001). Lowest DOC 
concentrations were measured in Kilpisjärvi ponds (3.4 ± 2.4 mg l-1) (Fig. 8) 
whereas thermokarstic ponds in Kuujjuarapik (6.9 ± 2.1 mg l-1) and especially in 
Seida (39.6 ± 35.8 mg l-1) were rich in DOC. Also quality of DOC changed 
according to region. DOC pigmentation (SUVA) was significantly higher in 
Kuujjuarapik (4.5 ± 2.6 mg C l-1m-1) and Seida (4.4 ± 1.8 mg C l-1m-1) than in 
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Kilpisjärvi (2.5 ± 0.8 mg C l-1m-1). Also DOC had a higher degree of humification 
and was of more microbial origin in Kilpisjärvi (HI; 0.89 ± 0.15, FI; 1.24 ± 0.10) than 
in Kuujjuarapik (HI; 0.53 ± 0.24) and in Seida (FI; 0.99 ± 0.06). 
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FIGURE 8 Regional fluctuations of A) DOC, B) SUVA, C) HI and D) FI. Statistically 
significant differences (p < 0.05) and cases with no data available (nd.) are 
indicated by different letters above bars.  

 
There was no change in DOC concentration whereas all the DOC quality indices 
fluctuated significantly according to season in Kilpisjärvi ponds (SUVA: F4,80 = 6.0, 
p < 0.001; HI: F4,76 = 18.0, p < 0.001; FI:  F4,76 = 9.0, p < 0.001) (Fig. 9). A significant 
change in SUVA takes place during the ice melt periods (ice-break) when 
pigmented humic terrestrial DOC enters the waterbodies. Fluorometric properties 
indicated that terrestrial inputs had a higher degree of humification and had more 
terrestrial than microbial origin during ice-break. 
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FIGURE 9 Seasonal fluctuations of A) DOC, B) SUVA, C) HI and D) FI in the Kilpisjärvi 

ponds. Statistically significant differences (p < 0.05) are indicated by different 
letters above bars. 

 
Significant seasonal change in quality of DOC between winter and summer was 
also observed in humic Canadian thermokarstic ponds in Kuujjuarapik. During 
late winter the DOC was significantly less pigmented (SUVA: H=13.3, n=26, 
p<=0.001) and had a higher degree of humification (HI: H=11.2, n=26, p=0.001) 
although the amount of DOC did not change significantly between the seasons. 
This indicates there were terrestrial inputs from the dense shrub catchment during 
the open water season and also rapid degradation by microbes and UV-radiation 
(Fig. 10). 
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FIGURE 10 Seasonal fluctuations of A) SUVA and B) HI in the Kuujjuarapik ponds. 

Statistically significant differences (p < 0.05) are indicated by different letters 
above bars. 

 
Catchment type had a significant impact on quantity (DOC: F1,83 = 13.4, p < 0.001) 
and quality of DOC (SUVA: F1,83 = 4.2, p = 0.043; FI: F4,79 = 9.8, p = 0.002) in 
Kilpisjärvi ponds (Fig. 11). Concentration of DOC was significantly higher in 
ponds with mountain birch catchments (4.1 ± 2.5 mg l-1) than in ponds with barren 
rocky catchments (2.3 ± 0.7 mg l-1). Also, according to optical indices, DOC derived 
from mountain birch catchments was more pigmented and had a stronger 
terrestrial signal than DOC from barren rocky catchments. 
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FIGURE 11 Fluctuations of A) DOC, B) SUVA and C) FI according landscape change in 

Kilpisjärvi. Statistically significant differences (p < 0.05) are indicated by 
different letters above bars. 

 
Habitat had a significant influence in both concentration (DOC: F2,83 = 4.3 p = 
0.018) and quality (HI: F2,78 = 7.2 p = 0.001) of DOC. More DOC with a higher 
content of aromatic structures was found from pond habitats than from lake inlets 
and outlets. Also, DOC in lake inlets seemed to be more terrestrially derived 
(SUVA: 2.8 ± 0.5) and the fulvic acids (FI: 1.28 ± 0.07) were more microbially 
produced than in outlets (SUVA: 2.4 ± 0.5, FI: 1.23 ± 0.05) or ponds (SUVA: 2.4 ± 
0.9, FI: 1.23 ± 0.11), although the difference was not statistically significant (Fig. 
12).  
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FIGURE 12 Fluctuations of A) DOC, B) SUVA, C) HI and D) FI with habitat in Kilpisjärvi 
ponds. Statistically significant differences (p < 0.05) are indicated by different 
letters above bars. 

 
Kilpisjärvi sites were also analysed for individual DOC compounds in 2011 (IV). 
Seven individual fluorescence components were identified from 331 EEMs 
analysed from lakes and ponds across boreal to arctic landscapes (Fig. 13). 
Components were identified according to the literature (Fellman et al. 2010 and 
refs therein) and grouped to represent terrestrially (C1, C2, C3, C4 and C6) and 
microbially (C5) induced humic-like C and protein-like tryptophan-like C (C7).  
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FIGURE 13 Fluorescence signatures of components C1–C7 identified from boreal and 

subarctic EEM scans. Components 1-4 and 6 (C1–C4 and C6) were combined 
to represent terrestrial humic-like components whereas component C5 was 
identified as fulvic microbial component and a commonly found component 
C7 as a protein-like (Tryptophan) component. Identification is based on 
Fellman et al. (2010) and refs therein. 

 
Similarly to photo- and fluorometric indices, seasonal change in fluorescence 
components was identified with the proportion of protein-like clearly decreasing 
during the open water season whereas there was an increase especially in humic-
like C of terrestrial origin, although the change was not statistically significant. 
From a habitat perspective, lake inlets were more influenced by terrestrial C than 
lake outlets and ponds (Fig. 14). Habitat had a significant influence on humic-like 
components C3 (F2,39 = 4.7 p = 0.015), C4 (F2,39 = 3.4 p = 0.044) and C6 (F2,39 = 5.8 p 
= 0.006). 
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FIGURE 14 Fluctuation of fluorescence components according to A) season and B) habitat 

change in Kilpisjärvi. 

3.4 Carbon control of bacterioplankton metabolism 

In larger data sets DOC is a good predictor of bacterial metabolism (Sobek et al. 
2003), but it does not provide any information about the source and quality of the 
C. Spectrophotometric and spectrofluorometric properties have been used to 
estimate quality and origin of DOC and have been found to explain changes in 
bacterial metabolism better than a simple DOC concentration measurement 
(McKnight et al. 2001, Weishaar et al. 2003, Guillemette & del Giorgio 2012, 
Laurion & Mladenov 2013).  

Data from both quantity and quality of DOC (SUVA) had a positive 
correlation with BP. Quantity of DOC played a significant role in BP, especially in 
subarctic Kilpisjärvi, and in the larger Kilpisjärvi data set used in the synthesis 
quality of DOC (HI) was also significantly correlated with BP. In Kilpisjärvi 
microbially produced DOC also had a significant negative correlation with BP. 
One of the main differences between the clearwater Kilpisjärvi ponds and the 
thermokarstic ponds in Kuujjuarapik and Seida environments was the low supply 
of DOC in clearwater environments (DOC 3.2 ± 0.2 mg l-1) and the much higher 
supply in the thermokarstic systems (DOC 18.9 ± 5.1 mg l-1). Thermokarstic ponds 
in Canada were uninfluenced while the ponds in Russia were even negatively 
influenced by DOC, indicating that BP was regulated by factors other than DOC 
concentration. One other factor, terrestrial DOC, had significant correlations with 
BP in both Kuujjuarapik (SUVA and HI), and Seida (FI) (Table 2).  
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TABLE 2 Spearman’s correlations between BP and carbon quantity (DOC) and quality  
(SUVA, HI, FI, TerC, MicbC and ProtC). Correlation results are presented for 
all available and spatially divided data. Correlation coefficient (Rs), p-value (p) 
and number of samples in analysis (n). 

 
  All Spatial Spatial Spatial  
   Kilpisjärvi Seida Kuujjuarapik  
DOC Rs 0.322 0.286 -0.663  
 p 0.001 0.008 0.037 ns 
 n 112 85 10 
SUVA Rs 0.342   0.659 
 p < 0.001 ns ns 0.004 
 n 112   17 
HI Rs  0.264  -0.593 
 p ns 0.017 ns 0.012 
 n  81  17 
FI Rs   -0.677 
 p ns ns 0.032 ns 
 n   10 
TerC  Rs 
 p ns ns nd nd 
 n 
MicbC  Rs -0.367 -0.367 
 p 0.018 0.018 nd nd 
 n 41 41 
ProtC Rs 
 p ns ns nd nd  
 n      
ns = Spearman’s correlation not significant 
nd = data not available 
 
In the Kilpisjärvi region the quantity of DOC had a significant positive correlation 
with BP during summer (Table 3). At the same time, terrestrial components had a 
strong positive correlation with BP while microbial and protein components were 
negatively correlated with BP. The carbon quality index indicating terrestrial C 
(SUVA) had a significant positive correlation during winter but a significant 
negative correlation during fall. During fall HI also had a significant positive 
correlation with BP. Overall BR, like BP, correlated with DOC concentration in 
Kilpisjärvi, but in the case of BR strong seasonal correlations between DOC and 
BR were found during ice-break that also seemed to be connected to terrestrial 
components of DOC (Table 4). Also BR was found to correlate negatively with the 
protein component. No significant seasonal changes were found in the relation 
between BGE and HI (Table 5). 

Significant differences were also found between the Kilpisjärvi catchments. 
BP in waterbodies below the treeline was strongly influenced whereas BP in the 
waterbodies above the treeline was unaffected by DOC (I). In the mountain birch 
area C quality indexes suggested that DOC enhancing BP was mainly less 
recalcitrant (HI) and was likely derived from terrestrial sources (FI). This could 
suggest the importance of terrestrial inputs on productivity of bacteria. A similar 
indication of the importance of terrestrial C (subarctic DOM) in increasing BP was 
found in the C-addition experiment that took place in clearwater Lake Saanajärvi 
located above the treeline in Kilpisjärvi (II). BR and BGE were not significantly 
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correlated to C parameters in ponds in mountain birch areas. Concentration of 
DOC did not correlate with BP in ponds with barren rocky catchments, but there 
was a significant positive correlation found between BR and DOC. On the other 
hand, BGE was significantly correlated with C quality indices (HI and FI). 

BP did not correlate with DOC quantity according to habitat, but there was a 
significant positive correlation between BR and DOC measured in ponds. In lake 
inlets BP correlated with less recalcitrant C (HI) that was likely of microbial origin 
(MicbC). A similar situation in lake inlets was found between BGE and less 
recalcitrant C. In ponds, terrestrial C was negatively correlated with BGE. BR did 
not correlate with any of the C parameters.  
 
TABLE 3 Spearman’s correlations between BP and carbon quantity (DOC) and quality 

(SUVA, HI, FI, TerC, MicbC and ProtC) in Kilpisjärvi region. Correlation 
results are presented for data divided according to season (1=winter, 
2=spring, 3=ice break up, 4= summer and 5=fall), landscape (1=mountain 
birch and 2=barren rocky) and habitat (1=inlet, 2=outlet and 3=pond). 
Correlation coefficient (Rs), p-value (p) and number of samples in analysis (n). 

 
 Seasonal Landscape Habitat 
             __________________________________  ___________   ______________ 
  1 2 3 4 5 1 2 1 2 3  
DOC Rs    0.465  0.635    
 p ns ns ns 0.022 ns 0.001 ns ns ns ns 
 n    24  40     
SUVA Rs 0.714    -0.681 
 p 0.047 ns ns ns. 0.001 ns ns ns ns ns 
 n 8    21 
HI Rs     0.490 0.382  0.639 
 p ns ns ns ns 0.028 0.015 ns 0.010 ns ns 
 n     20 40  15 
FI Rs      -0.341 
 p ns ns ns ns ns 0.031 ns ns ns ns  
 n      40 
TerC  Rs    0.862 
 p ns ns ns 0.003 ns ns ns ns ns ns  
 n    9  
MicbC  Rs    -0.697    -0.523 
 p ns ns ns 0.037 ns ns ns 0.045 ns ns 
 n    9    15 
ProtC Rs    -0.879 
 p ns ns ns 0.002 ns ns ns ns ns ns 
 n    9        
ns = Spearman’s correlation not significant 
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TABLE 4 Spearman’s correlations between BR and carbon quantity (DOC) and quality  
(SUVA, HI, FI, TerC, MicbC and ProtC) in Kilpisjärvi region. Correlation 
results are presented for all available data (A), and data divided according to 
season (1=winter, 2=spring, 3=ice break up, 4= summer and 5=fall), landscape 
(1=mountain birch and 2=barren rocky) and habitat (1=inlet, 2=outlet and 
3=pond). Correlation coefficient (Rs), p-value (p) and number of samples in 
analysis (n). 

 
 Seasonal Landscape Habitat 
             ____________________________________      __________  ________________ 
    A 1 2 3 4 5 1 2 1 2 3  
DOC Rs 0.367   0.867    0.524   0.897  
 p 0.018 ns ns 0.002 ns ns ns 0.010 ns ns 0.002 
 n 41   9    23   9 
SUVA Rs     
 p ns ns ns ns ns ns ns ns ns ns ns  
 n     
HI Rs     
 p ns ns ns ns ns ns ns ns ns ns ns  
 n     
FI Rs    
 p ns ns ns ns ns ns ns ns ns ns ns 
 n    
TerC  Rs    0.867 
 p ns ns ns 0.002 ns ns ns ns ns ns ns 
 n    9  
MicbC  Rs   
 p ns ns ns ns ns ns ns ns ns ns ns  
 n    
ProtC Rs    -0.667 
 p ns ns ns 0.050 ns ns ns ns ns ns ns 
 n    9         
ns = Spearman’s correlation not significant 
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TABLE 5 Spearman’s correlations between BGE and carbon quantity (DOC) 
and quality (SUVA, HI, FI, TerC, MicbC and ProtC) in Kilpisjärvi 
region. Correlation results are presented for all available data (A), 
and data divided according to season (1=winter, 2=spring, 3=ice 
break up, 4= summer and 5=fall), landscape (1=mountain birch 
and 2=barren rocky) and habitat (1=inlet, 2=outlet and 3=pond). 
Correlation coefficient (Rs), p-value (p) and number of samples in 
analysis (n). 

 Seasonal Landscape Habitat 
            ____________________________________      __________  ________________ 
 A 1 2 3 4 5 1 2 1 2 3
  
DOC Rs           
  
 p ns ns ns ns ns ns ns ns ns ns ns 
 n            
SUVA Rs     
 p ns ns ns ns ns ns ns ns ns ns ns
  
 n     
HI Rs 0.347       0.447 0.541 
 p 0.028 ns ns ns ns ns ns 0.037 0.046 ns ns
  
 n 40       22 14 
FI Rs        -0.536   -0.736 
 p ns ns ns ns ns ns ns 0.010 ns ns 0.004 
 n        22   13 
TerC  Rs     
 p ns ns ns ns ns ns ns ns ns ns ns 
 n      
MicbC  Rs   
 p ns ns ns ns ns ns ns ns ns ns ns
  
 n   
ProtC Rs     
 p ns ns ns ns ns ns ns ns ns ns ns 
 n            
ns = Spearman’s correlation not significant 
 

3.5 Carbon control of bacterial community composition 

Carbon also played an important role in structuring the BCC, with DOC, fulvic 
acids (C5) and proteins (C7), together with TP, explaining most variation of overall 
OTU distribution (IV). However, all C compounds correlated with some 
individual OTU. Similar OTUs were abundant when terrestrial humic-like 
components (C1-C4 and C6) were present. Very different OTUs were correlated 
with fulvic acids (C5) that are degraded (microbially or photochemically) humic-
like compounds. BCC connection to protein-like C (C7) more resembled that of 
terrestrial compounds (Fig. 15). It is known that tryptophan-like C (C7) is 
unaffected by solar and microbial degradation (Stedmon & Markager 2005, 
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Laurion & Mladenov 2013) and its fluorescence signal rarely resembles pure 
tryptophan (Cory & McKnight 2005, Maie et al. 2007, Yamashita & Tanoue 2008). 
Therefore C7 could play a double role in the environment: as a substrate and as a 
degradation end-product.  
 

 
FIGURE 15  BCC Spearman correlations with carbon fluorescence components in 

Kilpisjärvi ponds. 

3.6 Phototrophic vs. heterotrophic energy pathways 

In the Kilpisjärvi region the role of different DOM additions were tested in an 
enclosure experiment (II). DOM additions increased the ratio between autotrophic 
and mixotrophic production (autotrophic:mixotrophic) in all enclosures (Fig. 16). 
Meanwhile the PNF:HNF abundance ratio shifted towards the heterotrophic 
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pathway. Although autotrophic epilimnetic production increased during the 
experiment, the overall production scaled to the whole water column was shifted 
toward heterotrophy due to increased light attenuation by the added DOM. The 
number of species known to be mixotrophic also increased in the enclosures. 
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FIGURE 16 Shifts in epilimnetic autotrophic:mixotrophic versus heterotrophic processes 

over 5 days following DOC addition (subarctic and boreal DOC) in a subarctic 
Finnish lake in A) PP:BP and B) PNF:HNF abundance. Error bars represent SE. 

 
Measured PP:BP in Kuujjuarapik thermokarstic ponds pointed to a strong 
heterotrophic dominance but PNF:HNF indicated to phototrophic reliance (III). 
During late winter, in situ PP was prevented by snow and ice cover, but when 
exposed to light phytoplankton C production reached the same rates as 
heterotrophic production, suggesting the occurrence of mixotrophic species (Fig. 
17). During summer the conditions were favourable for bacterioplankton and 
heterotrophic production that dominated especially in the bottom waters. PNF 
biomass always exceeded the HNF biomass even in the bottom. Phytoplankton 
communities studied in the area have been dominated by flagellate 
Chrysophyceae species (Dupont 2009). Mixotrophic flagellates in steeply stratified 
ponds can likely benefit from their diurnal migration (Jones 1991) by accessing the 
nutrient-rich bottom waters (Jones 1991) and by using the bottom as a refuge from 
the zooplankton grazing (M.Sc. M. Wauthy, Université du Québec à Chicoutimi). 
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FIGURE 17 Shifts in autotrophic:mixotrophic versus heterotrophic processes in Canadian 

subarctic thermokarstic ponds sampled in winter at mixed water column (M) 
and during summer at the surface (S) and bottom (B) in A) PP:BP and B) 
PNF:HNF abundance ratio. Error bars represent SE. 



  

 

4 CONCLUSIONS 

This thesis demonstrates seasonal and spatial changes in bacterioplankton 
communities and C transfer in clearwater and thermokarstic subarctic aquatic 
environments. The role of bacterioplankton in C cycling was investigated using 
productivity, respiratory and community composition analysis and their changes 
were related to DOC quantity and quality. Analyses indicated that bacterial 
metabolism and community composition were strongly connected to DOC. Due to 
low overall DOC inputs in clearwater systems, both DOC quantity and quality 
were important, whereas in thermokarstic ponds with high DOC only quality was 
important to bacterioplankton. Seasonally both bacterial and C variables showed 
greatest variation between the winter ice season and the open water season with 
the most distinct change during ice-melt.  

In subarctic clearwater systems, BP and BR were uncoupled but DOC 
quantity and quality still had a strong impact on both processes. In the combined 
data set, BP was correlated with DOC concentration and with DOC of terrestrial 
origin (SUVA), but it seems that the limiting factors can vary from DOC quantity 
(I) to TP (19 %) and to the terrestrial component of DOC (7 %) (IV). Although BR 
was correlated with DOC quantity, results from the multiple regression analysis 
indicated that variation in BR was mainly explained by TN concentration (66 %) 
and chl-a (21 %) (IV). This could indicate high respiratory and cell maintenance 
costs created by production of nutrient-cleaving enzymes. In thermokarstic ponds, 
DOC quantity was not correlated with BP, whereas the quality of DOC (terrestrial 
origin) in Canadian thermokarstic ponds substantially increased the microbial 
production. In Russian thermokarstic waterbodies C was not a limiting factor for 
BP. This was likely due to the different characteristics of the DOC. Although 
SUVA indicated that pigmentation of DOC was not significantly different between 
the thermokarstic sites, it is likely that DOC in Russia was much older that the 
Canadian counterpart and hence was not as easily accessible. Similarly two orders 
of magnitude lower production rates point to lower microbial degradation in 
Russian thermokarstic systems. 

Both season and habitat were found to control BCC in subarctic Kilpisjärvi 
ponds. Seasonal changes were most often observed during spring (approximately 
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the time of ice-break). On the other hand, habitat seemed to have an impact on 
BCC diversity. In ponds there was a less even distribution and fewer species, 
whereas in larger lakes the diversity of bacteria was significantly higher. BCC was 
also likely influenced by temperature and the quality of substrates and nutrients. 
DOC quality differences were seen especially in smaller water bodies and were 
likely contributing to variation in BCC (I, IV). Also links between individual 
bacterial tribes and different DOC fractions were found (IV). 

Terrestrial C is often considered a poor substrate due to its lack of essential 
fatty acids (Brett et al. 2009, 2012). Still our studies showed that terrestrial C was 
often strongly connected with bacterial metabolism, especially with production, 
probably for several reasons. The Kilpisjärvi waters were clear and had a very 
limited supply of DOC, causing a situation where both C quantity and quality 
could be limiting for organisms. In these systems, due to 24 h radiation in summer 
and low light attenuation in the water column, terrestrial C goes through a 
photochemical degradation process that is known to make higher molecular 
weight terrestrial humic-like C more available to organisms (Stedmon & Markager 
2005, Laurion & Mladenov 2013). During summer there is also more available 
labile DOC produced by phytoplankton that could act as a primer for the use of 
more recalcitrant C (Bianchi 2011, Danger et al. 2013). Terrestrial C was also 
important in the thermokarstic systems although these were not limited by the 
amount of C.  

Generally most oligotrophic lakes are considered heterotrophic based on 
their net emissions of greenhouse gases (del Giorgio et al. 1997), but oligotrophic 
relatively shallow water bodies can be considered truly autotrophic due to their 
high benthic production (Andersson & Brunberg 2006). Also in oligotrophic 
systems primary production and heterotrophic production tend to be coupled 
with primary production (Hobbie & Laybourn-Parry 2008). 

The sensitivity of the clear water ecosystems in Kilpisjärvi to increases in C 
was tested with a DOC addition experiment where DOC concentration was 
doubled. Experiments showed that strongly phototrophic systems moved 
significantly towards heterotrophy. Heterotrophic microbial production increased 
in subarctic DOC addition treatments but a more drastic change was the decrease 
in photic layer depth that caused a decrease in the overall photosynthetic 
production. The phytoplankton community also changed towards a more 
mixotrophic community that could benefit from the increased DOC concentration. 
These changes in energy pathways indicate that the importance of secondary 
production can increase in cases of large environmental changes (II). 

Energy pathways in thermokarstic ponds are far less studied, but due to their 
high DOC concentration and light attenuation they are assumed to resemble 
boreal humic lakes. The PP:BP ratio measured in Kuujjuarapik thermokarstic 
ponds (III) pointed to strong heterotrophic pathways, whereas the PNF:HNF ratio 
suggested phototrophic reliance. This contradiction is likely explainable by the 
phytoplankton community composition, which mostly consisted of mixotrophic 
species (Dupont 2009, Dr. Laura Forsström, University of Helsinki, pers. comm.).  

In cases of large environmental changes (e.g. brownification, global change) 
bacterioplankton communities at the base of the food chain are the first to react. 
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Subarctic regions have a huge stock of organic C stored in their soils and a 
warming climate is expected to mobilize these stocks and to increase the delivery 
of terrestrial C to aquatic systems. Heterotrophs are predicted to benefit from this 
DOC addition meaning that more energy would cycle trough this trophic step 
causing significant changes to ecosystems. Therefore understanding the microbial 
heterotrophic processes and assessment of their sensitivity are crucial to gain a 
complete picture of subarctic food web interactions. 
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Hiilen vaikutus bakteeriplanktoniin subarktisissa järvissä ja lammissa 

Subarktisilla leveyspiireillä vesimuodostumat vaihtelevat tiheän ja runsaan va-
luma-aluekasvillisuuden omaavista tummavetisistä palsasuolammista karujen 
kivikkoisten valuma-alueiden isoihin kirkasvetisiin järviin. Omat erityispiirteet 
pohjoisille vesistöille luovat myös huomattavan voimakkaat vuodenaikaiset 
ympäristöolosuhteiden (lämpötila, valo, hiili ja ravinteet) vaihtelut. Lisäksi il-
mastonmuutoksen vaikutusten (lämpötila ja sadanta) on ennustettu olevan 
voimakkaimpia juuri pohjoisilla leveyspiireillä. Kaikilla näillä osatekijöillä on 
merkittävä vaikutus bakteerien metaboliaan (tuotanto ja hengitys) sekä yhteisö-
rakenteeseen. Tämän väitöskirjan tarkoituksena on arvioida hiilen määrän ja 
laadun muutoksien vaikutusta subarktisien mikrobiyhteisöjen metaboliaan ja 
rakenteeseen vuodenaikaisesti, kokeellisesti (DOC-lisäys) sekä erilaisilla valu-
ma-alueilla.  

Niukkaravinteisella valuma-alueella mikrobituotanto ja hengitys olivat 
toisistaan riippumattomat ja lisäksi ne hyödynsivät eri osia liuenneesta orgaani-
sesta hiilestä. Mikrobien tuottaman hiilen määrä oli korkeimmillaan alku- ja 
keskikesällä, jolloin sulamisvesien takia lisääntynyt valuma-alueelta peräisin 
olevan hiilen määrä kiihdytti merkitsevästi tuotantoa. Alkukeväällä ennen jäi-
den lähtöä mitatut mikrobihengitysarvot olivat taasen enemmän riippuvaisia 
liuenneen orgaanisen hiilen sekä ravinteiden määrästä.  

Subarktisille alueille ilmastonmuutosmallit ennustavat nykyistä korkeam-
pia lämpötiloja ja lisääntyvää sadantaa, jotka lisäisivät valuma-alueelta tulevan 
liuenneen hiilen määrää. DOC-lisäyskokeessa mikrobituotanto kasvoi merkit-
sevästi, mutta erityisesti hiilen lisäys aiheutti valaistuksen vähenemistä, joka 
muutti koealtaita selkeästi heterotrofiseen suuntaan.  

Kilpisjärven alueella bakteeriyhteisöjen muutokset olivat merkitsevästi yh-
teydessä vuodenaikaisuuteen sekä kasvupaikkaan. Vuodenaikaisuuden vaiku-
tus näkyi bakteeriyhteisöjen koostumuksessa, kun taas kasvupaikan vaikutus 
lajirunsaudessa. Tämän lisäksi lämpötila sekä ravinteiden ja substraattien laatu 
vaikuttivat bakteeriyhteisöjen koostumukseen.  

Ikiroudan sulamisvaihtelun muodostamissa termokarstisissa lammikoissa 
bakteeriplankton oli myös merkitsevästi linkittynyt hiilen laatuun, esim. kana-
dalaisissa termokarstisissa lammikoissa värilliset humusainekset kymmenker-
taistivat mikrobien tuotannon. Termokarstiset lammikkoiden on havaittu 
kuormittavan ilmakehää kasvihuonekaasuilla ja myös tässä tutkimuksessa 
lammikoissa havaittiin suuria CO2- ja CH4-kaasupitoisuuksia.  

Yleisesti bakteerimetabolia oli tiukasti linkittynyt liuenneeseen orgaanisen 
hiileen, vaikkakin vuodenaikaisuus ja valuma-alueiden erot vaikuttivat hiilen 
kiertoon merkittävästi: niukkaravinteisissa kohteissa sekä hiilen määrä että laa-
tu olivat merkittävässä roolissa, kun taas termokarstisella alueella hiilen laadul-
la oli selkeästi vaikutus mikrobien metaboliaan. 
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Abstract 21 

 22 

Carbon in lakes is a complex mixture of terrestrial carbon from the catchment and algal 23 

carbon from the in-lake production. Both of them serve as substrates for bacterial growth, 24 

but their composition and availability differ. Here we show how terrestrial and algal carbon 25 

compounds are linked to the bacterial metabolism and community composition (BCC) in 26 

three different habitats of subarctic freshwaters. We measured dissolved organic matter 27 

quality indices including different components of algal and terrestrial carbon together with 28 

bacterial metabolism and BCC. The samples were collected from 1) lake inlets representing 29 

habitats influenced by allochthonous carbon arriving to lakes, 2) lake outlets i.e. habitats 30 

integrating carbon from the in-lake algal production and 3) ponds that contain carbon with 31 

a mixed signature of terrestrial and algal compounds. Terrestrial drainage and associated 32 

nutrients and humic carbon compounds supported higher bacteria production but lower 33 

bacterial diversity than carbon from the algal production. There was a high variation in 34 

BCC which was best explained by the habitat-specific concentrations of nutrients, dissolved 35 

organic carbon, fulvic acids and proteins. The results also show strong variation related to 36 

pool size and seasonality, and emphasize the winter period that has previously gained little 37 

attention in aquatic studies. 38 

 39 

  40 
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INTRODUCTION 41 

Dissolved organic matter (DOM) in surface waters is a complex mixture of humic 42 

substances, carbohydrates, carboxylic acids, amino acids and nutrients. These 43 

compounds originate from terrestrial and aquatic production, and they are a 44 

major energy source for the aquatic food webs. The main energy source for the 45 

food webs in transparent lakes (dissolved organic carbon; DOC < 5 mg L-1) is 46 

assumed to be DOM produced by autotrophic phytoplankton (1, 2), but some 47 

additional energy comes from the terrestrial fraction of DOM (3, 4, 5). The 48 

availability of different fractions of DOM to bacteria differs tremendously with 49 

amino acids being readily uptaken by most bacteria, while the recalcitrant 50 

compounds in humic substances, such as lignin, can be degraded only by more 51 

specialized groups (6). The DOM quality, or proportions of different fractions of 52 

DOM may also vary depending on the type of the water body and the location 53 

within it (7, 8, 5). Further, the vegetation in the catchment has a prominent 54 

impact as the DOM from catchment with coniferous forest has been shown to 55 

support higher bacterial production than DOM from bog area (7, 9). Within the 56 

water column autochthonous amino acid-like DOM has been reported to 57 

dominate in the euphotic mixed layer whereas in the deeper layers humic-like 58 

DOM is overrepresented (10). Less is known about the horizontal and habitat-59 

specific variations in organic carbon bioavailability.  60 

The variation in carbon quality shapes the bacteria residing in lakes. It has been 61 

shown that bacterial community composition (BCC) and metabolism are linked to 62 
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carbon source (11, 12, 13, 14, 15, 16, 17) and to the quality of the carbon within 63 

different sources (18, 19, 20). Further, it has been shown that the composition of 64 

bacterial community plays a significant role in the rate of carbon mineralization 65 

(21), and while the bacteria are processing DOM, some compounds are produced 66 

while others get degraded (22, 23). Thus, the bacteria are influenced by the DOM 67 

milieu but also contribute to defining the quality and quantity of carbon in lakes. 68 

Another factor that needs to be taken into account especially at high latitudes is 69 

seasonality, which adds up to the changes in quantity and quality of DOM (24, 70 

25).  Seasonal changes in solar radiation, runoff, primary production and water 71 

chemistry all influence DOM properties (8). For example, DOM spectral slope 72 

distributions have been shown to differ between summer and winter (10) and 73 

under the ice DOM has been shown to have higher presence of terrestrially 74 

derived carbon (26).  75 

DOM characteristics should also be influenced by lake morphometry, although 76 

this has received little attention. It is well known that morphometry creates 77 

differences in habitats and influences photo exposure, residence time, velocity, 78 

primary production and species composition, all of which contribute to defining 79 

DOM. For example, the size of the water body has been shown to influence the 80 

bacterial diversity (27). Similarly, the vertical location in the water column plays 81 

a critical role as photochemical processes in shallow euphotic zones make DOM 82 

more bioavailable to bacteria compared to DOM in dark (28). The efficiency of 83 

DOM transformations drops when the residence time increases, suggesting that 84 

the reactivity of organic matter is reduced as it ages (29). Thus, it can be expected 85 
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that DOM varies between different habitats of the lake and also between water 86 

bodies of different sizes, resulting in variation in microbial community 87 

compositions and microbial processes between these habitats.  88 

Our objective was to test hypothesis that habitat-specific characteristics influence 89 

bacterial metabolism and BCC by regulating the organic matter quality. Because 90 

aquatic DOM quality (i.e. composition) reflects the dynamic interplay between 91 

DOM sources and biogeochemical reactions, we hypothesized that the DOM 92 

biogeochemistry and bioavailability have variation based on seasonality and 93 

habitat within a water body. To test this, water samples representing four 94 

different seasons were collected from nine locations in six subarctic Finnish 95 

water bodies. These included i) lake inlets representing habitats that should be 96 

influenced by allochthonous light-exposed carbon arriving to lakes, ii) lake 97 

outlets i.e. habitats that integrate carbon from in-lake algal production including 98 

euphotic and aphotic depths and iii) ponds that should contain carbon with a fast 99 

renewal time and a mixed signature of terrestrial and algal compounds. The 100 

bacterial metabolism and community composition were analyzed in relation to 101 

DOM quality (carbon compounds, spectrophotometric properties, nutrients etc.) 102 

and physical attributes of the habitats.  103 

 104 

MATERIALS AND METHODS 105 

Study site and sampling 106 

We sampled three ponds, three lake inlets and three lake outlets in the Kilpisjärvi region, 107 

subarctic Finnish Lapland (69ºN, 20ºE). The sites were located between 473 and 850 m 108 
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a.s.l. in the subarctic landscape where treeline of mountain birch (Betula pubescens subsp. 109 

Czerepanovii) is at 600 m a.s.l (Table 1). All sites were sampled five times in 2011; in 110 

February (winter), in early May (spring), in mid-June just after the ice break up (ice break 111 

up), in late July (summer) and in early October (fall). Ponds were sampled in the middle of 112 

the pond and the lakes were sampled from near the inlet and outlet rivers. Samples were 113 

collected with a 2 L Limnos water sampler as integrated samples from the first meter of the 114 

water column. Water temperature was measured in the field with YSI Professional Plus 115 

(Yellow Springs, OH, USA). Total phosphorus (TP) and nitrogen (TN) concentrations were 116 

analysed from sieved (50 μm) water using standard methods (http://www.sfs.fi/). For the 117 

determination of chlorophyll a (Chl-a) concentrations, 1-2 L were filtered onto GF/F filters. 118 

Samples were collected in duplicate and stored at -80⁰C until fluorometric analysis 119 

according to Nusch (30). Dissolved organic carbon (DOC) concentration was analysed from 120 

water filtered through 0.2 μm prerinsed cellulose acetate filters using Shimadzu TOC-121 

5000A carbon analyser. 122 

 123 

Quality measurements of carbon 124 

A set of indicators for the quality of carbon was measured using spectrophotometric and 125 

spectrofluorometric methods. All the measurements were carried out for water that had 126 

been filtered through a 0.2 μm prerinsed cellulose acetate filter and stored in the dark at + 127 

4°C. Scanning of absorption coefficient at 320 nm (a320), specific UV-absorbance index 128 

(SUVA) and the spectral slope (S289) was performed in a dual-beam mode with Cary 100 129 

UV-Vis spectrophotometer (Agilent) using a 10-cm quartz cuvette. Samples were corrected 130 

against MilliQ water. Absorption coefficient at 320 nm (a320) was measured as indicator of 131 
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coloured dissolved organic carbon (CDOM) concentration. Values were calculated from 132 

absorbance measurements (Aλ) at 320 using aλ = 2.303/L x A, where L is the length of the 133 

cuvette in meters (31). SUVA, which is an indicator of the share of terrestrially derived 134 

organic carbon (32, 33), was calculated from DOC normalized absorbance at the 135 

wavelength 254 nm with higher values indicating a higher share of terrestrial carbon 136 

compounds in the sample (34). S289, indicating the amount of carbon compounds likely 137 

related to autochthonous production (35), was calculated from the spectrophotometric 138 

measurements. For the calculation an absorption slope was calculated for the 20 nm 139 

interval between 279-299 nm. Algal derived carbon has a maximum at 289 nm, thus the 140 

higher the S289 values the bigger is the share of carbon compounds from autochthonous 141 

production (35). There are some environmental factors that could have compromised the 142 

fluorometric measurements, most important such factors being iron and pH. According to 143 

previous measurements of the lakes in the area the iron concentration is low (mean of 37 144 

lakes 0.24 mg L-1) (36) and not likely to cause a bias. Also, the pH was stable within the 145 

samples (6.5 ± 0.5) and should not interfere with the measurements. Thus, we are 146 

confident that our measurements were correct and reliably showing the true variation in 147 

carbon quality. 148 

Composition of different humic, fulvic and protein-like carbon compounds was identified 149 

with excitation-emission matrixes (EEM) using a spectrofluorometer Cary eclipse (Agilent). 150 

They were measured across excitation (220-450 nm) and emission (240-600 nm) 151 

wavelengths with 5 and 2 nm increments, respectively. EEMs were corrected for inner 152 

filter effect (37), machine specific biases, background scattering (38) and were 153 

standardized to Raman units (R.U.) (39). Raman and Rayleigh scattering were removed 154 
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using the DOMfluor 1.7 toolbox in MATLAB 2008b (MathWorks, Natick, MA, USA) as 155 

recommended in Stedmon and Bro (40). The obtained EEMs were inserted to the parallel 156 

factor analysis (PARAFAC) model based on samples collected from > 100 lakes from boreal, 157 

subarctic and arctic lakes from Finland, Canada and Greenland (data not shown). The 158 

model was used to identify and calculate intensities of all main carbon components in the 159 

sample. Five different components (C1-C4, C6) identified from the EEMs were highly 160 

correlated with each other (correlation coefficients for all pairs > 0.87, p < 0.0001) and 161 

were pooled for the analyses as terrestrial humic-like compounds, while the component C5 162 

was considered as a fulvic acid and the component C7 as protein, according to Fellman et 163 

al. (41) (Supplementary Fig. 1). The compounds C1-C4 and C6 are widespread terrestrial 164 

humic-like components originating e.g. from forest streams and wetlands (41, 42, 43, 44). 165 

C5 have been associated with irradiated DOM that has been microbially degraded (43). C7 166 

resembles amino acid-like tryptophan found commonly in different freshwater 167 

environments (41). 168 

 169 

Bacterial metabolism analyses 170 

Bacteria production (BP) was measured using 3H-leucine (specific activity 73 Ci mmol-1) 171 

incorporation with a centrifugation method (45). Incubations were started within 2-6 172 

hours after sampling using a leucine concentration of 30 nM and incubation time of 3 h 173 

according to the saturation curves in Roiha et al. (20). Incubations were conducted in dark 174 

in a constant temperature of 6.4±0.5 °C which deviated from the in-situ field temperatures 175 

5.1 ± 2.1°C. TCA was added to terminate incubation (TCA; 5 % final concentration) after 176 

which the samples were stored at -20°C until centrifuging and radioassaying according to 177 
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Smith and Azam (45). Bacterial respiration was measured as oxygen (O2) consumption 178 

using fibre-optic O2 mini-sensors (Fibox 3, PreSens Precision Sensing GmbH, Regensburg, 179 

Germany) (46). Filtered (3 μm) water samples were incubated in top-filled 500 ml 180 

Erlenmeyer vials closed with airtight silicone stopper. Samples were incubated as above 181 

but in a water bath to further reduce temperature variability as this infers with O2 sensor 182 

reading. The incubations were let to stabilize for few hours before the first sensor reading. 183 

Over the first five days O2 concentrations were measured 1-2 times a day while the last 184 

measurement was taken in the beginning of the next sampling trip (total incubation time 4-185 

6 weeks). BR rates were calculated from the linear slope of O2 consumption that was 186 

converted to carbon units using respiratory quotient (RQ) of 1.0. To estimate actual 187 

bacteria metabolism in the sampled sites, the BP and BR values were corrected for in-situ 188 

temperatures with Q10 values according to Berggren et al. (47). Such corrections were not 189 

applied when the aim was to measure temperature-independent bacteria control. Bacterial 190 

growth efficiency (BGE), i.e. bacterial production (BP) per unit of assimilated carbon was 191 

calculated using equation 1.  192 

 193 

(1)  194 

 195 

Bacterial community analyses 196 

Unfiltered water samples for DNA extraction were frozen within 2-4 hours of sampling. 197 

300 ml subsample of the frozen water was freeze dried with an Alpha 1-4 LD plus (Christ, 198 

Osterode, Germany). DNA extraction, PCR (primers 341F (5’-CCTACGGGNGGCWGCAG-3’) 199 

and 805R (5’-GACTACHVGGGTATCTAATCC-3’); 48) and 454-pyrosequencing were 200 
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performed as described in Peura et al. (49). The amplicon processing, including quality 201 

trimming and noise and chimera removal was done as outlined in Schloss et al. (50) using 202 

mothur (51). The sequences were assigned into operational taxonomic units (OTUs) using 203 

97 % sequence similarity cutoff, loosely corresponding to bacterial species and OTUs were 204 

classified using taxonomic framework for freshwater bacteria introduced by Newton et al. 205 

(52). Two samples with likely fecal contamination were removed from the sample set. 206 

Contamination was likely caused by lowered water level during samplings. Prior to further 207 

analysis, the sequence data was resampled to smallest sample size (1153 sequences per 208 

sample) using perl script daisychopper.pl (available at 209 

http://www.genomics.ceh.ac.uk/GeneSwytch/Tools. html; 53). The sequences are 210 

available at the NCBI Sequence Read Archive under project number PRNA244724. 211 

 212 

Statistical analysis 213 

Differences in environmental and temperature-corrected bacterial metabolism variables 214 

between seasons and habitats were tested using a 2-way ANOVA. Season and habitat were 215 

considered as fixed factors in the analysis. Normality and homogeneity of variance were 216 

checked with visual examination of residuals (54). Square root transformations were 217 

applied to TN and Chl-a, logarithmic (base 10) transformations to a320, fulvic acids, BP and 218 

BR, and inverse (x-1) transformation to S289 to achieve ANOVA assumptions. When a factor 219 

was significant, a posteriori multiple comparison test (Tukey-Kramer) was carried out to 220 

identify differences.  221 

Statistical testing of the impact of season, habitat and their interaction to the bacterial 222 

community and environmental data structure was done using a Permutational Multivariate 223 
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analysis of variance (PERMANOVA; 55) with 999 permutations. Multiple regression 224 

analyses were used to identify which environmental variables (TP, TN, Chl-a, DOC, SUVA, 225 

S289, humic acids, fulvic acids and proteins) best explained the changes in bacterial 226 

metabolism (BP, BR, and BGE). The absorption coefficient a320 was omitted from the 227 

model due to its high Pearson correlation with DOC (r = 0.85) and humic acids (r = 0.96). 228 

Best model (using forward procedure) was selected according to the lowest value of AICc 229 

index. Regression equations were produced with all the dataset and separately for each 230 

habitat (pond, inlet, outlet). For the statistical testing of the BCC, all OTUs with more than 231 

100 sequences in the total data were retained in the analysis. Bacterial data were square 232 

root transformed prior to generating a resemblance matrix of Bray-Curtis similarities. 233 

Environmental data were normalised and Euclidian distances were used to generate 234 

resemblance matrix. Pairwise permutation t-tests were performed on the factors that were 235 

identified as significant in PERMANOVA to identify differences among levels. The effects of 236 

season and habitat on BCC were visualized with a Principal Coordinates Analysis (PCO). A 237 

similarity percentage analysis (SIMPER) was used to assess the percentage contribution of 238 

each OTU to the observed dissimilarities among habitats (pond, inlet, outlet).  239 

Spearman’s rank correlations were used to examine relationships between the 240 

resemblance matrices of BCC and environmental variables to identify the environmental 241 

variables (alone or in subset) that explain best the observed patterns of BCC (BIO-ENV 242 

analyses, PRIMER). For this analysis, OTU and environmental variable matrices were 243 

constructed using Bray-Curtis dissimilarity (square-root transformed) and Euclidean 244 

distances respectively (see 56, 57). Diversity indices and relationships between BCC and 245 

carbon components were analysed with Spearman’s rank correlation in R (58). Shannon 246 
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index was used to evaluate the evenness of the community, that is, how evenly the 247 

observations were distributed among OTUs (59). To measure the species richness, or the 248 

number of different OTUs in samples, we used inverse Simpson’s index (60). The software 249 

JMP (JMP®, Version 10.0. SAS Institute Inc., Cary, NC, 1989-2012) was used for all 250 

univariate tests while PRIMER+PERMANOVA (version 6.1.6; 61, 55) was used for 251 

multivariate analyses. A threshold of significance of 0.05 was adopted for all statistical 252 

tests. 253 

RESULTS 254 

Environmental variables 255 

Many of the environmental variables had variation based on both, the season and habitat 256 

(Table 2, Supplementary Table 1, Supplementary Fig. 2 and 3). The most drastic seasonal 257 

variation was seen in temperature which was close to zero in winter while the summer 258 

maximum was about 15°C. Total phosphorus (TP) had its maximum in the spring and in the 259 

ponds. Also total nitrogen (TN), DOC and proteins had the highest values in ponds, but the 260 

difference between ponds and other habitats was significant only in samples from under 261 

the ice (winter and spring). The indicator of algal production (S289) was always highest in 262 

the outlets but these values were significantly different only from ponds and only in winter 263 

and spring. Chlorophyll a (Chl-a), another indicator of algal carbon, was low in all samples 264 

(< 1 μg L-1) and no differences between seasons or habitats were detected. Fulvic acids 265 

(indicator for microbially degraded DOC) had some habitat and seasonal variation that was 266 

expressed with ponds having the smallest amount of these compounds in winter. There 267 

were no significant differences in the indicator of the total amount of coloured DOM 268 

(CDOM; absorption coefficient a320) or in the fluorescence of humic-like compounds 269 
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(indicator of the share of terrestrial carbon in the CDOM), though those were the lowest in 270 

the outlets. Several variables in the total dataset were highly correlated with each other, 271 

with highest correlations (all p < 0.0001) observed between TN and TP (Pearson’s 272 

correlation  r = 0.88), DOC and humic-like substances (r = 0.81), DOC and TP (r = 0.68) and 273 

DOC and TN (r = 0.61).  274 

According to PERMANOVA, there was a difference in environmental variables according to 275 

seasons (Pseudo-F4,21 = 3.92, p < 0.001) with all pairwise comparisons, except for winter – 276 

spring, ice breakup – summer and ice breakup – fall, suggesting different conditions 277 

(p  <  0.05 for all). The data structure was also different between habitats (Pseudo-F2,21 = 278 

6.22, p < 0.001) with the ponds being distinct from the inlets (Permutation pairwise test, 279 

t = 2.22, p = 0.005) and outlets (t = 3.21, p < 0.001) while inlets and outlets were similar.  280 

 281 

Bacterial metabolism 282 

Bacterial metabolism exhibited large seasonal variation (bacterial production (BP): F4,29 = 283 

8.23, p < 0.0001; bacterial respiration  (BR): F4,27 = 3.75, p = 0.0150; bacterial growth 284 

efficiency (BGR): F4,27 = 18.71, p < 0.0001) (Fig. 1) and there was also marked variation 285 

between the habitats for BP and BGE (Fig. 2). Highest BP values were measured for the 286 

ponds (4.5 μg C L-1 d-1 ± 3.9) and inlets (1.5 μg C L-1 d-1 ± 0.8) during the ice breakup while 287 

the maximum BP in the outlets (1.0 μg C L-1 d-1 ± 0.5) was reached in summer. In all 288 

habitats the BP was lowest in fall with values < 1 μg C L-1 d-1. BR followed a different 289 

seasonal pattern, with the highest values measured in the ponds in the spring (20.7 μg C L-1 290 

d-1 ± 4.4) and the lowest in the inlets in the summer (3.2 μg C L-1 d-1 ± 1.2). BGE was rather 291 

low and the maximum values, 20-39 %, were reached in the summer. There was also 292 
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variation between the habitats, with the ponds and inlets providing an environment that 293 

allowed for higher BGE than that of the outlets (Fig. 2).  294 

Multiple regression models were constructed to assess the importance of each variable that 295 

was confirmed to have significant impact on the BP, BR and BGE. The models explained up 296 

to 62% of the variance in BP, 87% in BR and 26% in BGE (Table 3). Overall, TN explained 297 

the largest share of the bacterial metabolism (on average 45 %), but there was a lot of 298 

variation between sites and processes. The highest explanatory degree was acquired for 299 

the BR in ponds, where concentrations of TN and Chl-a explained 66 and 21 % of the 300 

variation, respectively. When models selected algal carbon variables (i.e. S289 and Chl-a) 301 

their negative coefficients showed that they were negatively linked to bacterial 302 

metabolism. Models for all data and for specific habitats retained nearly the same variables, 303 

however, for certain habitat – bacterial variable pairs the model could not produce any 304 

significant explanatory factors. This was most likely due to the low number of observations 305 

on which these data sets were based.  306 

 307 

Bacterial community and interactions with the environment 308 

There was a clear change in the community structure along the season (Pseudo-F2,22 =3.64, 309 

p < 0.001) with all season pairs except for winter-spring, spring-fall and summer-fall being 310 

different from each other (Supplementary Fig. 3). Also the communities residing in the 311 

habitats were different from each other (Pseudo-F2,22 =5.76, p < 0.001). The pond 312 

communities were more similar to the inlet (pair-wise test t = 1.77, p = 0.019) than to the 313 

outlet communities (t = 3.76, p < 0.001), but also the inlet and outlet communities were 314 

distinct from each other (t = 1.61, p = 0.037). The BIO-ENV analyses suggested that the 315 



15 
 

 

environmental variables that best explained the OTU distribution among habitats were TP, 316 

DOC, fulvic acids and proteins (Table 4). The proteins represent the readily available, 317 

amino acid-like fraction of DOM and they were the carbon compounds that alone best 318 

captured most of the variability. The Spearman correlations further suggested connections 319 

between certain bacterial groups and carbon fractions (Fig. 3). For example, most OTUs 320 

associated with flavobacterial tribe Flavo-A3 were positively correlated with humic 321 

fraction and SUVA-index. Both of these are indicators of the share of terrestrial DOC. Also 322 

all OTUs associated with betaproteobacterial tribe Janb had positive correlation with SUVA. 323 

The indicator for algal carbon (S289) had correlations for example to alphaproteobacterial 324 

lineage LD12, betaproteobacterial LD28 and verrucomicrobial LD19. The protein fraction 325 

appeared to favor only a few OTUs and all of the protein correlations were weak.  326 

According to the SIMPER analysis, the difference in the BCC between habitats was caused 327 

primarily by the different abundance distribution of OTUs 10973, 10878, 10854, 10771, 328 

10891, 10100 and 10977. Also, the conformation of the community was distinct between 329 

ponds and outlets with ponds having few very abundant OTUs, whereas the outlets were 330 

harboring many small ones (Fig. 4). The ponds were more abundant especially with taxa 331 

such as Betaproteobacteria (tribes PnecC (OTU 10973) and Lhab-A2 (OTU10878)) and 332 

Bacteroidetes (clade bacIII-A (OTU 10854)) than inlets and outlets. Correspondingly, the 333 

inlets and outlets had a higher abundance of Actinobacteria (tribe Myco (OTU 10771) and 334 

clade acI-A (OTU 10977)), Verrucomicrobia (OTU 10891) and Alphaproteobacteria (tribe 335 

LD12 (OTU 10100)). A detailed analysis of BCC revealed that the ponds and outlets had 336 

rather distinct communities while the inlet community was more of a mixture of the two 337 

former ones (Fig. 4). The diversity of bacterial communities was affected by habitat, but not 338 
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by season. According to Shannon index the communities in inlets and outlets had more 339 

even communities than ponds (χ2 = 13.99, p < 0.001; Supplementary Table 2) and also the 340 

species richness (Inverse Simpson index) was higher in inlets and outlets than in ponds (χ2 341 

= 11.97, p < 0.005).  342 

  343 
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DISCUSSION 344 

Interaction between DOM quality, seasonality and habitats 345 

The results strongly suggest that crude quantity measurements of DOC are not 346 

sufficient to demonstrate the seasonal and spatial variation in organic carbon in 347 

freshwaters, but also the quality of carbon should be taken into account. 348 

Consistent with earlier reports from the area (26, 20), the total concentration of 349 

DOC was not connected to seasonality. How ever, some of the CDOM fractions 350 

(S289, fulvic acids and proteins) did exhibit seasonal variation, which is 351 

consistent with earlier observations on fulvic acids (62, 25). We also observed 352 

seasonal variation in total phosphorus and nitrogen in ponds and in inlets, but 353 

not in outlets. The lack of variation in the outlets is in accordance with the 354 

observations of Forsström et al. (63) from similar environment.  355 

Seasonal changes in carbon compounds were most pronounced in the ponds, 356 

where also the concentration was highest. Under the ice samples from ponds 357 

were especially rich with amino acids, which are often considered as an indicator 358 

of the labile fraction of DOM and can therefore be used as a predictor of DOM 359 

availability (64). This fraction has been suggested to originate from 360 

autochthonous production (65), but it can also be produced by bacterial 361 

degradation (23). Here the indicator of autochthonous production, S289, was 362 

lower in under the ice samples from ponds suggesting that the increased 363 

proportion of amino acid fraction during ice cover could originate from bacterial 364 

degradation. Thus, here the protein fraction might not predict as much the 365 

availability of the carbon, but rather the degradation rate (66). 366 



18 
 

 

Consistent with our hypothesis, carbon in the lake outlets was characterized by 367 

fraction, which is coming from within lake production. This observation has 368 

earlier been supported by Jonsson et al. (25), who suggested higher impact of 369 

phytoplankton to the carbon in lake outlets than in inlets. Also the concentration 370 

of amino acids was higher in the outlets than in the inlets. In lakes the main 371 

producers of amino acids are phytoplankton (67, 65), supporting the importance 372 

of primary production to the DOM pool in outlets. Conversely, humic substances 373 

were more typical for the ponds and inlets. The humic fraction could originate 374 

either from the terrestrial production, or from in situ production by microbes 375 

(68), but based on the low values of S289 it can be assumed that the contribution 376 

of fulvic and humic compounds from autochthonous production was minor (35). 377 

Thus, it seems that for these variables the volume of the pool was influencing the 378 

DOM quality with smallest and fast renewing pond waters showing the highest 379 

seasonality and terrestrial impact. 380 

 381 

Season and habitat control the bacterial metabolism in subarctic waters 382 

Our analyses suggest that community composition and metabolic activity of 383 

subarctic aquatic bacteria is a result of a complex interplay between the 384 

community and physical and chemical variables determining the environment. In 385 

high latitude ecosystems seasonal changes are major determinants of their 386 

physico-chemical environment (69). One of the most notable determinant is 387 

temperature, but water as a habitat levels out much of the seasonal temperature 388 

variation due to its heat absorbing capacity, which, in turn, is mainly regulated by 389 
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water volume. This could be seen in this study, with the ponds having the lowest 390 

winter and highest summer temperatures. Also the rate of temperature change 391 

followed the size of the water mass. The impact of temperature to the plankton 392 

metabolism is known to be more linear in low temperatures, where it usually 393 

decreases the metabolic rates (70, 71) and also the rate of bacterial carbon 394 

degradation (72). Thus, the low temperature combined with typically low 395 

nutrient and carbon concentrations of the harsh environment at higher latitudes 396 

usually results in slow bacterial metabolism (73). Our results are well in 397 

accordance with this notion as the BP was indeed higher in the ice breakup and 398 

summer samples than in under the ice or autumn samples, and BGE peaked in 399 

summer during the maximal temperatures.  400 

Higher concentrations of nutrients, humic acids and proteins in ponds supported 401 

the highest BP and BGE, while the algal carbon was the greatest contributor to the 402 

secondary production in lake outlets.  We did not see any link between crude DOC 403 

concentration and BP, which is controversial to some earlier studies (74, 20). In 404 

contrast, the humic fraction of DOM had a positive impact on BP. Many 405 

compounds in the humic fraction of DOC are regarded as calcitrant to bacterial 406 

degradation (6) and are reported to support less BP than the non-humic fraction 407 

of DOC (75). However, humic compounds are also highly sensitive to 408 

photodegradation (28, 43, 76), which generates products that enhance bacterial 409 

metabolism (77). The occurrence of humic-like substances was highest during the 410 

ice break up in June when also the intensity of solar radiation increased in the 411 

water column after the dark winter and was at its annual maximum. Thus, the 412 
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photodegradation of humic compounds was likely contributing to the increased 413 

BP and more so in the shallow ponds and inlets than in the outlets. Further, the 414 

potential of the humic compounds for supporting growth was likely also nutrient 415 

regulated as indicated by high correlation between nitrogen and phosphorus, 416 

DOC and humic compounds. Also the multiple linear regression models indicated 417 

that the strongest controlling factor over bacterial metabolism was total nitrogen 418 

and total phosphorus concentrations. Also previous studies have suggested 419 

phosphorus alone (78, 79), or together with nitrogen (80) to be the limiting 420 

factor for bacterial metabolism. In accordance with our results, the availability 421 

and quality of organic carbon and the availability of inorganic P and N have been 422 

suggested to be key limiting factors of BGE (7, 81). 423 

Models also suggested that BP and BGE had a negative relationship to S289, 424 

which is the descriptor of autochthonous primary production and BP was higher 425 

in the ponds and inlets. In oligotrophic lakes autochthonous production often 426 

dominates over bacterial production (5, 82) and primary production is thought to 427 

support BP (83, 84). This has been suggested to lead to higher BP in outlets than 428 

in inlets (85). One reason for opposite trends in our study and for the negative 429 

relationship between the S289 and BP and BGE could be the seasonal effect. Most 430 

studies are concentrated in open water season (e.g. 82, 85) whereas very little 431 

information exists for winter season. We could see a clear seasonal impact on 432 

bacterial production with highest values measured during the open water season. 433 

For S289, the pattern especially in the inlets was opposite and it was exhibiting 434 

the highest values in under the ice samples, possibly reflecting convective 435 



21 
 

 

influence from perennial benthic algae that dominate the overall algal biomass in 436 

shallow arctic waters (86, 87). Thus, in order to fully understand the interaction 437 

between autochthonous carbon and BP more efforts should be addressed to 438 

include also the winter season to sampling schemes.  439 

 440 

Implications of carbon quality, season and habitat to bacterial community 441 

composition 442 

The combination of molecular microbiology and chemical analyses enabled us to 443 

link certain bacterial tribes to carbon fractions across habitats. Our 444 

environmental data corroborates the experimental results that members of tribe 445 

Lhab would seem to have a preference to algal carbon over terrestrial carbon 446 

(16). Another interesting link was seen between two indicators of terrestrial 447 

carbon (humic fraction and SUVA) and OTUs associated with flavobacterial tribe 448 

Flavo-A3. Bacteria associated with this group have been previously suggested to 449 

benefit from phytoplankton exudates (88), which is opposite to what was 450 

observed here. However, in a review study 30 % of the previous occurrences of 451 

tribe Flavo-A3 were from soil habitats (52), suggesting that Flavo-A3 consists of 452 

at least two groups of bacteria with very distinct environmental preferences. 453 

Another group in the bacterial community that was associated with terrestrial 454 

carbon was tribe Janb. Janthinobacterium, the representative genus of tribe Janb, 455 

is described as soil bacterium (52). Thus, both Flavo-A3 and Janb could be 456 

transient members of the lake community and may originate from the catchment 457 

area. There were also groups that were associated only with algal carbon. These 458 
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included, for example, alphaproteobacterial tribe LD12. This tribe is a sister 459 

group of highly abundant marine cluster SAR11 and has been described as typical 460 

for freshwater habitats (89).  The previous reports suggest that the members of 461 

tribe LD12 are poor competitors and their abundance has previously been 462 

reported to be negatively correlated with phytoplankton (90). How ever, it has 463 

been show that generally there is a lot of variation in substrate and 464 

environmental preferences within bacterial tribes (80) and even within species 465 

(91, 92) and further, for LD12 specifically it has been suggested that this tribe has 466 

wide variations in environmental preferences across lakes (90). Thus, it is not 467 

surprising that we see variation in preferences between the members of same 468 

tribe residing in different habitats.  469 

 470 

While there were indications of certain substrate preferences for bacterial OTUs, 471 

the overall composition of bacterial community was controlled by season and 472 

habitat. One factor that can be assumed to influence BCC is temperature. While 473 

the data for under the ice BCC of freshwater lakes is scarce, it is known that there 474 

is a wide variation in bacterial adaption to extreme temperatures and certain 475 

bacteria are better adapted to lower temperatures or to substantial temperature 476 

changes (93). This was likely a factor in the organization of winter vs. summer 477 

communities in these systems. Another factor likely contributing to differences in 478 

seasonal communities was the quality and availability of substrates and 479 

nutrients. It has been established that BCC will change depending on the DOC 480 

source (e.g. 12, 14, 15) and quality (20). Especially in the ponds carbon quality 481 
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was very different during different seasons and likely one of the most important 482 

factors contributing to variation in BCC. 483 

Within habitats, pond community assembly was less even and there were less 484 

species than in other habitats. This is well in accordance with previous report 485 

showing that bacterial diversity increases with lake size (27). Also the 486 

observation of difference in composition between the inlet and outlet 487 

communities is corroborated by earlier results (85). The variables best explaining 488 

differences in OTU distributions between habitats included TP, DOC, fulvic acids 489 

and proteins. As stated before, phosphorus is a typical limiting source for bacteria 490 

(78, 79), explaining the strong impact.  491 

To conclude, our results show that pond DOM contains the best combination of 492 

carbon compounds and nutrients to support BP and stimulate BGE. Further, there 493 

are indications of distinct preferences for terrestrial vs. algal carbon among 494 

certain bacterial tribes found in subarctic waters. Our study also demonstrates 495 

how the spatial variability of DOM in subarctic waters is tightly connected to 496 

season and habitat and within those, temperature and the size of the pool are 497 

major determinants creating variation beyond what is seen within season or 498 

habitat specific studies. 499 
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Legends 775 

 776 

TABLE 1 Physical characteristics of the sampled lakes and ponds. 777 

 778 

TABLE 2 Mean values of temperature, total phosphorus (TP), total nitrogen (TN), 779 

chlorophyll-a (chl-a), dissolved organic carbon (DOC), specific UV-absorbance index 780 

(SUVA254), absorption at 320 nm (a320), spectral slope at 289 nm (S289) and fluorescence 781 

intensity of humic, fulvic and protein compounds of DOC in Raman units (R.U). Data are 782 

shown for five seasons in 2011: winter (W), spring (S), ice break (I), summer (Su), and Fall 783 

(F). 784 

 785 

TABLE 3 Results of different multiple linear regression models (based on lowest AICc) to 786 

estimate a) bacterial production (BP), b) bacteria respiration (BR) and c) bacteria growth 787 

efficiency (BGE) for all data and for the three studied habitats (pond, inlet, outlet) 788 

separately. Total phosphorus (TP), humic acids (Humic), total nitrogen (TN), spectral slope 789 

at 289 nm (S289) and chlorohyll-a (Chl-a) were the variables used in the regression models 790 

(only significant values are listed). ns: not significant. Partial R2 below each regression 791 

coefficient, N = number of data included, total R2 (adjusted R2), small sample size–corrected 792 

Aikaike Information Criterion Index (AICc) and root mean square errors (RMSE) are 793 

shown. 794 

 795 

TABLE 4 Combinations of environmental variables (TP, TN, DOC, Chl-a, S289, SUVA, humic, 796 

fulvic and protein), taken k at a time, giving the four best variables alone and the largest 797 
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rank correlation ρs between OTU and environmental variable similarity matrices; bold 798 

indicates the best combination overall. 799 

 800 

FIG 1 Bacterial metabolism measured as bacterial production and respiration (μgC L-1 d-1) 801 

and bacterial growth efficiency (BGE) in different seasons in subarctic Kilpisjärvi waters. W 802 

= winter, S = spring, I = ice breakup, Su = summer and F = fall. The letters next to the 803 

symbols indicate statistical differences between seasons. Note logarithmic scale on y-axis 804 

on the left side.  805 

 806 

FIG 2 Average values ± SE of a) bacteria production (μgC L-1 d-1) and b) bacteria growth 807 

efficiency (BGE) between subarctic ponds, inlets and outlets. The letters above the bars 808 

indicate statistical differences between sites. 809 

 810 

FIG 3 Heatmap visualizing the Spearman correlations between abundances of OTUs and 811 

concentrations of different fractions of CDOM.  812 

 813 

FIG 4 Ternary plot showing the distribution of OTUs between the habitats in the dataset. 814 

Axes represent the pond, inlet and outlet and the percentage of reads associated with each 815 

environment. The size of the symbol indicates number of reads associated with each OTU 816 

and taxonomic affiliations are indicated by colors. All OTUs with at least 20 reads are 817 

included into the plot. 818 

 819 

Supplementary TABLE 1 Summary of ANOVAs showing the effects of Habitat (Ha), Season 820 
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(Se) and crossed factors (Ha x Se) on a) temperature, b) total phosphorus (TP), c) total 821 

nitrogen (sqrt TN), d) chlorophyll-a (sqrt chl-a), e) dissolved organic carbon (DOC), f) 822 

specific UV-absorbance index (SUVA254), g) absorption at 320 nm (log a320), h) spectral 823 

slope at 289 nm (x-1 S289) and fluorescence intensity of i) humic, j) fulvic (log) and k) 824 

protein compounds of DOC. Significant values are shown bold. 825 

 826 

Supplementary FIG 1 Fluorescence signatures of components C1-C7 identified from the 827 

subarctic PARAFAC model. Components 1-4 and 6 (C1-C4 and C6) were combined to 828 

represent terrestrial humic-like components whereas component C5 was identified as 829 

fulvic microbial component and a commonly found component C7 as a protein-like 830 

(Tryptophan) component. Identification is based on Fellman et al. 2010 and refs therein. 831 

 832 

Supplementary FIG 2 Variation in a) dissolved organic carbon (DOC) and b) total 833 

phosphorus concentration between habitats and c) in total phosphorus between seasons. 834 

The letters above the bars indicate statistical difference between values. Error bars 835 

represent standard error. W = winter, S = spring, I = ice breakup, Su = summer, F = fall. 836 

 837 

Supplementary FIG 3 Variation in the environmental variables between seasons and 838 

habitats. a) Temperature, b) total nitrogen (TN), c) fulvic acids, d) proteins, e) spectral 839 

slope at 289 nm (S289). The letters above the bars indicate statistical difference between 840 

values. Error bars represent standard error. W = winter, S = spring, I = ice breakup, Su = 841 

summer, F = fall. 842 

 843 
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Supplementary FIG 4 Principal Coordinate Analysis (PCoA) showing a) the OTU variability 844 

between seasons and b) between habitats. 845 



















Table 1. Physical characteristics of the sampled lakes and ponds. 
 

 Area (ha) Catchment (ha) Depth (m) Altitude (m) 

Pond 1 (Saana 15) 0.7 27 7.5 850 

Pond 2 (Saana 11) 0.8 39 2.0 710 

Pond 3 (Saana 12) 1.3 - 2.0 710 

Lake 1 (Saanajärvi) 70 461 24.0 679 

Lake 2 (Tsâhkaljärvi) 113 3396 18.0 559 

Lake 3 (Kilpisjärvi) 3370 27100 57.0 473 
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Table 3. Results of different multiple linear regression models (based on lowest AICc) to 

estimate a) bacterial production (BP), b) bacteria respiration (BR) and c) bacteria growth 

efficiency (BGE) for all data and for the three studied habitats (pond, inlet, outlet) separately. 

Total phosphorus (TP), humic acids (Humic), total nitrogen (TN), spectral slope at 289 nm 

(S289) and chlorohyll-a (Chl-a) were the variables used in the regression models (only 

significant values are listed). ns: not significant. Partial R2 below each regression coefficient, N = 

number of data included, total R2 (adjusted R2), small sample size–corrected Aikaike Information 

Criterion Index (AICc) and root mean square errors (RMSE) are shown. 

 
 Intercept TP Humic TN S289 Chl-a N R2 (adj. R2) AICc RMSE 

a) BP           
All data -1.00 0.24 0.86 ns ns ns 42 0.26 (0.22) 105.65 0.816 
Partial R2  0.19 0.07        

Pond - ns ns ns ns ns 13 - - - 
Partial R2           

Inlet 4.77 ns ns 0.007 -320.31 ns 15 0.62 (0.56) 30.12 0.495 
Partial R2    0.38 0.24      

Outlet - ns ns ns ns ns 14 - - - 
Partial R2           

b) BR           
All data -2.45 ns ns 0.078 ns ns 39 0.36 (0.22) 105.65 0.816 
Partial R2    0.36       

Pond -4.80 ns ns 0.12 ns -24.77 13 0.87 (0.84) 80.23 4.47 
Partial R2    0.66  0.21     

Inlet - ns ns ns ns ns 14 - - - 
Partial R2           

Outlet -7.16 ns ns 0.11 ns ns 13 0.80 (0.79) 75.67 3.46 

Partial R2    0.80       

c) BGE           
All data 0.63 ns ns -00006 -22.10 -0.18 39 0.26 (0.20) -52.48 0.11 
Partial R2    0.07 0.11 0.08     

Pond - ns ns ns ns ns 13 - - - 
Partial R2           

Inlet - ns ns ns ns ns 14 - - - 

Partial R2           

Outlet - ns ns ns ns ns 13 - - - 
Partial R2           



 



Table 4. Combinations of environmental variables (TP, TN, DOC, Chl-a, S289, SUVA, humic, 

fulvic and protein), taken k at a time, giving the four best variables alone and the largest rank 

correlation ρs between OTU and environmental variable similarity matrices; bold indicates the 

best combination overall. 
 

k Best variable combinations  

(ρs) 

   

1 Protein 

(0.42) 

DOC 

(0.38) 

TN 

(0.35) 

TP 

(0.34) 

3 TP, fulvic, protein 

(0.54) 

   

4 TP, DOC, fulvic, protein 

(0.57) 

TP, humic, fulvic, protein 

(0.55) 

TP, S289, fulvic, protein 

(0.54) 

 

5 TP, DOC, S289,  

fulvic, protein 

(0.56) 

TP, DOC, humic,  

fulvic, protein 

(0.56) 

TP, DOC, SUVA, fulvic, 

protein 

(0.55) 

TP, S289, humic, 

fulvic, protein  

(0.57) 

 



Supplementary table 1. Summary of ANOVAs showing the effects of Habitat (Ha), Season 

(Se) and crossed factors (Ha x Se) on a) temperature, b) total phosphorus (TP), c) total nitrogen 

(sqrt TN), d) chlorophyll-a (sqrt chl-a), e) dissolved organic carbon (DOC), f) specific UV-

absorbance index (SUVA254), g) absorption at 320 nm (log a320), h) spectral slope at 289 nm (x-1 

S289) and fluorescence intensity of i) humic, j) fulvic (log) and k) protein compounds of DOC. 

Significant values are shown bold.  

 
Source of 
variation 

df MS F p-value  Source of 
variation 

df MS F p-value 

a) Temperature      b) TP     
Ha 2 0.56 0.24 0.7904  Ha 2 14.15 12.88 <0.0001 
Se 4 320.0 135.36 <0.0001  Se 4 6.12 5.57 0.0019 
HaXSe 8 10.10 4.24 0.0018  HaXSe 8 2.10 1.91 0.0970 
Residual 29     Residual 29    
C. Total 43     C. Totakl 43    
           
c) TN (sqrt)      d)  Chl-a (sqrt)    
Ha 2 32.73 10.83 0.0003  Ha 2 0.027 0.87 0.4312 
Se 4 38.75 12.83 <0.0001  Se 4 0.030 0.94 0.4530 
HaXSe 8 8.83 2.92 0.0160  HaXSe 8 0.038 1.18 0.3430 
Residual 29     Residual 29    
C. Total 43     C. Total 43    
           
e) DOC      f)  a320 (log)    
Ha 2 4.97 5.10 0.0127  Ha 2 1.04 2.90 0.0722 
Se 4 1.26 1.30 0.2950  Se 4 0.11 0.30 0.8731 
HaXSe 8 0.86 0.88 0.5453  HaXSe 8 0.13 0.37 0.9277 
Residual 29     Residual 27    
C. Total 43     C. Total 41    
           
g) SUVA      h)  S289 (x-1)    
Ha 2 0.50 1.36 0.2736  Ha 2 1421 50.17 <0.0001 
Se 4 0.47 1.29 0.2987  Se 4 100.9 3.56 0.0186 
HaXSe 8 0.48 1.31 0.2801  HaXSe 8 244.1 8.62 <0.0001 
Residual 27     Residual 27    
C. Total 41     C. Total 41    
           



Source of 
variation 

df MS F p-value  Source of 
variation 

df MS F p-value 

i) Humic      j) Fulvic (log)    
Ha 2 0.290 2.29 0.1204  Ha 2 0.655 2.30 0.1200 
Se 4 0.023 0.18 0.9464  Se 4 1.008 3.54 0.0190 
HaXSe 8 0.014 0.11 0.9984  HaXSe 8 1.355 4.76 0.0010 
Residual 27     Residual 27    
C. Total 41     C. Total 41    
           
k)  Proteins           
Ha 2 0.120 9.87 0.0006       
Se 4 0.048 3.36 0.0118       
HaXSe 8 0.033 2.62 0.0289       
Residual 27          
C. Total 41          
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