
Comparative Study of Population-Based

Metaheuristic Methods in Global

Optimization

Master’s Thesis

Teemu Peltonen
May 25, 2015

University of Jyväskylä
Department of Physics

Supervisors: Prof. Dr. Ferrante Neri
and Dr. Pekka Koskinen

Instead of trying to produce a
programme to simulate the adult
mind, why not rather try to
produce one which simulates the
child’s?

Alan Turing

Abstract
While global optimization problems are very common when working in com-
putational nanoscience, they also constitute a set of computationally very de-
manding problems that lack efficient all-round optimizers. In this thesis I do a
small survey on algorithms that try to be exactly like this; general methods that
can be applied to any problem off the shelf. Constraining myself to so-called
population-based metaheuristics, especially Nature-inspired evolutionary algo-
rithms and swarm intelligence, I study their capabilities of solving a difficult
real-world optimization problem, the Lennard-Jones cluster structure problem. I
also use one of the algorithms, CCPSO2, to study the Lennard-Jones problem’s
separability, that is, how well it can be solved by dividing the problem into
smaller subproblems.

An analysis on the Lennard-Jones problem of up to 200 atoms shows that
these methods can be surprisingly efficient optimizers even in high-dimensional
real-world problems. Especially one algorithm, namely CCPSO2, provides quite
good and robust approximations for the global minima of the Lennard-Jones
clusters with an error of around 10–20 %, and all that with a very small number
of heavy energy function evaluations. I also show that they are superior to
two versions of simulated annealing algorithms, a popular class of global
optimization methods among physicists.

By using CCPSO2 to divide the Lennard-Jones problem into smaller pieces of
different dimensionalities, I show that the most efficient way to solve it is to
divide the problem into subproblems of only 4–12 dimensions, regardless of the
problem dimension. This is a remarkable result since this division dramatically
decreases the difficulty of the Lennard-Jones problem and it serves as a guide
for people trying to develop even more efficient algorithms for this problem.

ii

Tiivistelmä
Vaikka globaalit optimointiongelmat ovat hyvin yleisiä laskennallisen nano-
tieteen alalla, ne ovat myös laskennallisesti erittäin vaativia ongelmia, joille
tehokkaita ja yleisiä ratkaisualgoritmeja ei ole saatavilla. Tässä työssä teen yleis-
katsauksen algoritmeihin, joiden tavoitteena on olla juuri tällaisia yleisiä mene-
telmiä, joita voi soveltaa tehokkaasti mihin ongelmaan tahansa. Rajoittuessani
niin kutsuttuihin populaatiopohjaisiin metaheuristiikkoihin, erityisesti luonnos-
ta ideansa saaneisiin evolutiivisiin algoritmeihin ja parviälyyn, tutkin niiden
kyvykkyyttä ratkaista eräs vaikea todellisen maailman ongelma, Lennard-Jones-
atomiryppään rakenneongelma. Käytän lisäksi yhtä algoritmeista, CCPSO2:ta,
Lennard-Jones ongelman separoituvuusanalyysiin eli siihen, kuinka hyvin ky-
seisen ongelman voi ratkaista jakamalla se pienempiin osaongelmiin.

Lennard-Jones-ongelman tutkiminen 200 atomiin asti osoittaa, että kyseiset
menetelmät voivat olla hämmästyttävän tehokkaita optimoijia jopa korkeadi-
mensioisissa todellisen maailman ongelmissa. Erityisesti yksi menetelmistä,
CCPSO2, kykenee arvioimaan Lennard-Jones-atomiryppäiden globaaleja mi-
nimejä 10–20 % virheellä dimensiosta riippumatta, ja vieläpä todella vähällä
määrällä raskaita energiafunktiokutsuja. Näytän lisäksi, että nämä menetel-
mät ovat ylivoimaisia verrattuna kahteen simuloidun jäähdytyksen versioon.
Simuloitu jäähdytys on fyysikoiden keskuudessa suosittu luokka globaalin
optimoinnin ratkaisualgoritmeja.

Käyttämällä CCPSO2:ta jakamaan Lennard-Jones-ongelma pienempiin, dimen-
sioiltaan erikokoisiin osaongelmiin, näytän että tehokkain tapa ratkaista kysei-
nen ongelma on jakaa se erittäin pieniin 4–12 dimension osaongelmiin riippu-
matta ongelman dimensiosta. Tämä on merkittävä tulos, sillä jako näin pieniin
ongelmiin helpottaa vaikean Lennard-Jones-ongelman ratkaisua merkittävästi,
ja se toimii suuntaviivana kyseiselle ongelmalle vieläkin tehokkaampia algorit-
meja kehittäville tutkijoille.

iii

Acknowledgements
Here I wish to thank all those people who have helped me both in putting
together this thesis and surviving the long studies I have done.

First of all, I would like to thank both my supervisors, Prof. Dr. Ferrante Neri
and Dr. Pekka Koskinen. Thanks to Ferrante Neri for introducing me to a whole
new field and for giving a different perspective for this interdisciplinary study.
Thanks to Pekka Koskinen for being a fantastic supervisor in all my larger
works, namely bachelor’s thesis, research training, and this master’s thesis. You
are a supervisor who has always time to give valuable opinions and to help
solving numerous problems, as well as to provide comments on a thesis in less
than a day. Your guide for seminar presentations also helped me a lot in giving
a good and understandable seminar.

I would also wish to thank my lovely partner Anna for supporting me when
having difficulties in my studies and with this thesis, and for understanding all
those weekends and evenings I spent with this thesis instead of you.

And last but certainly not least, I must thank my dear friends and people
at my second home, FYS4, for both spending evenings doing the homework
exercises with me and for giving valuable help in uncountably many problems
I encountered doing this thesis. I also very much liked discussing more or less
lightweight subjects with you, with everything from politics to the essence of
black holes and worm holes, in the middle of stressing out with this thesis.

iv

Contents
1 Introduction 1

2 The problem of global optimization in physics 3
2.1 The general optimization problem . 3
2.2 Structure optimization and the Lennard-Jones cluster problem 6
2.3 Examples of other physical optimization problems 10

2.3.1 Minimum energy path of a chemical transition 10
2.3.2 Ground state of a quantum-mechanical system 12

3 Basic population-based, metaheuristic algorithms for global opti-
mization 15
3.1 Genetic algorithms . 17

3.1.1 Crossover . 18
3.1.2 Mutation . 19
3.1.3 Selection . 19
3.1.4 Summary of the algorithm and further notes 20

3.2 Differential evolution . 21
3.2.1 Mutation . 21
3.2.2 Saturation . 21
3.2.3 Crossover . 21
3.2.4 Selection . 22
3.2.5 Summary of the algorithm and further notes 22
3.2.6 Common variants . 23

3.3 Particle swarm optimization . 24
3.3.1 Position update . 25
3.3.2 Updating the personal and global best vectors 25
3.3.3 Summary of the algorithm and further notes 25

4 State-of-the-art metaheuristics 27
4.1 jDE . 27

4.1.1 Temporary mutation parameter and crossover rate formation 28
4.1.2 Selection . 28
4.1.3 Summary of the algorithm and further notes 29

4.2 CCPSO2 . 30
4.2.1 The historical way from CCGA to CCPSO2 30
4.2.2 Details of CCPSO2 . 31
4.2.3 Forming the new swarms 32
4.2.4 Updating the personal and swarm best vectors 34
4.2.5 Updating the global best vector 37

v

4.2.6 Finding the neighbourhood best 37
4.2.7 Position update and saturation 38
4.2.8 Summary of the algorithm and further notes 39

5 Efficiency of population-based metaheuristics and practical separa-
bility of the Lennard-Jones problem 41
5.1 Comparison between population-based metaheuristics, simulated anneal-

ing, and problem-tailored methods . 41
5.1.1 Settings of the algorithms 41
5.1.2 Comparison results . 42

5.2 Practical separability of the Lennard-Jones cluster problem 45

6 Conclusions 49

Appendix A Pseudo-Java styled CCPSO2 51

vi

1 Introduction
What is the shortest route between two cities? What is the best way to manu-
facture cars to maximize income? What are the optimal weights of an artificial
neural network? What is the minimum energy structure of an atomic cluster?
Optimization problems are everywhere. You encounter them almost in daily
basis both in everyday life and as a scientist, if not consciously, then at least
unconsciously. Even though approximate solutions to some of these problems
might be obvious to a person having a good intuition or education, solving
them mathematically might give even better solutions. However, often when
increasing the number of possible routes, number of perceptrons in a neural
network, or number of atoms, the problems might become so difficult that
mathematics and computer algorithms are the only viable method for providing
even the crudest approximate solutions. Nevertheless, no efficient standard
methods exist and the study of new global optimization algorithms is very
active.

In this thesis I take a small journey to the field of computer science, trying
to introduce methods that might be standard for computer scientists but not
known to physicists, to the field of computational nanoscience. The standard
method for a physicist to tackle a new global optimization problem is usually to
use all available knowledge of the problem to create a (partially) new heuristic
algorithm, a so-called problem-tailored algorithm, that exploits the problem
peculiarities. This method often produces very good results but it has the
obvious drawback that your new sophisticated algorithm will only work for
the single problem, and then for the next one you have to start from scratch.
This, of course, also takes a lot of time. In this work I take a different approach
and introduce a few metaheuristic methods, inspired by Darwinian evolution
and swarm intelligence in animals, that try to be general all-round optimizers
that can be used without much tuning. These methods have shown to be
efficient optimizers in many benchmark problems [1, 2, 3, 4] as well as in
many real-world problems [5, 6, 7, 8, 9, 10, 11, 12]. I show that in the case of
a Lennard-Jones potential, the difficult atomic cluster structure problem is no
exception and that these methods offer an attractive and quick alternative to
the problem-tailored methods.

On the other hand, one of the methods, namely CCPSO2, also provides a way
to study the separability of a given problem, i.e. how well it can be solved by
dividing it into smaller subproblems. If this division is possible, the difficulty
of high-dimensional problems can be dramatically decreased. As an example, I
show that the Lennard-Jones cluster problem is best solved by dividing it into
very small subproblems of only 4–12 dimensions, giving a hint that if developing

1

new algorithms for this problem, one should stick to methods perturbing only
a small subset of the variables at a time.

The thesis is structured as follows. In Section 2 I define the general optimization
problem and give a few specific physical examples, including Lennard-Jones
cluster problem, which can be modeled as optimization problems. In Section
3 I introduce a few specific metaheuristics that serve as a basis for the more
advanced methods, jDE and CCPSO2, presented in Section 4. Then in Section 5.1
I show that these Nature-inspired metaheuristics can be very efficient optimizers
even in the difficult Lennard-Jones cluster problem also in high dimensions.
Finally in Section 5.2 I show a way to use CCPSO2 to analyze the separability
of the Lennard-Jones problem to get ideas for further algorithmic development.

Finally, a word about the mathematical notation. Throughout this thesis, vectors
in Rn are denoted by boldface-font. Furthermore, as the amount of different
indices grows rather high from time to time, unless otherwise stated I use
a convention where the main loop (usually the generation) is indexed by an
upper index, while the vector component or individual of the population etc. is
indexed by a lower index. As an example, at the generation G, the i’th individual
could be denoted xG

i , while its j′th component would be xG
i,j. It should always

be clear from the context whether the upper index means an exponent or a loop
index.

2

2 The problem of global optimization in physics
2.1 The general optimization problem

Let us first define what we mean by global and local minima and maxima of a
general function with R as the codomain, equipped with the Euclidean metric.
Definition 1 (Minima and maxima). Let D be a nonempty set and f : D → R.
The point x∗ ∈ D is said to be a

(i) global minimum point of f if f (x∗) ≤ f (x) for all x ∈ D and
(ii) global maximum point of f if f (x∗) ≥ f (x) for all x ∈ D.

Moreover, if D is a topological space, the point x∗ ∈ D is said to be a
(iii) local minimum point of f if f (x∗) ≤ f (x) for all x ∈ U ∩ D for some

neighbourhood U of x and
(iv) local maximum point of f if f (x∗) ≥ f (x) for all x ∈ U ∩ D for some

neighbourhood U of x.
In these cases the point x∗ is said to be an extremum point while the correspond-
ing value f (x∗) is known as an extremum. If the inequality is strict for all x 6= x∗,
the corresponding extremum is strict.
Examples of different kind of minima and maxima are shown in Fig. 1.

By the term optimization problem we mean finding the (local or global) minimum
or maximum points of a given objective function f . Of course, depending on
the function, these might not be unique even if they exist. It depends on the

global maximum

local/global minimum

local maximum

local minimum

0.1 1.2
x

(a)

x

y

(b)

Figure 1. Examples of local and global minima when the space is equipped with the
Euclidean metric. (a) The function f : [0.1, 1.2]→ R, f (x) = cos(3πx)/x ∀x ∈ [0.1, 1.2]
has two local minima, a local maximum, a global minimum, and a global maximum.
(b) The function f :]− 1, 1[2 → R, f (x, y) = x2 + y2 ∀(x, y) ∈]− 1, 1[2 has one and
only one local minimum at the origin, which is also a global minimum.

3

particular problem at hand whether one wants to find only one of them, all
of them, or if one is only studying their existence. In the case of minimization
(maximization), if f has only a single minimum (maximum) it is called unimodal
and in the case where it has more than one minima (maxima) it is called
multimodal. Moreover, the domain D in the above definition is said to be the
search space, and if it is a vector space, its dimension is called the problem
dimension.

Although the definition above was very general, usually for practical solving
methods the search space D needs to be a subset of Rn. In fact, in this thesis I
will mostly consider methods that assume D to be a rectangular subset of Rn.
Definition 2 (Rectangular set). A set D ⊂ Rn is called rectangular if for each
i ∈ {1, . . . , n} there are ai, bi ∈ R such that ai < bi and

D =
n

∏
i=1

[ai, bi]. (1)

In other words, this means that each coordinate xi has lower and upper bounds
as

ai ≤ xi ≤ bi. (2)

A common optimization problem in real life is minimizing the cost of some
process, yielding the term cost function for f in the case of minimization. Respec-
tively, in the case of maximization the objective function f is called the fitness
function. However, since the minimization and maximization problems are very
closely related, these terms are often used interchangeably. So if someone tells
you “the fitness is better”, he means the function value is higher in the case of
maximization and that the function value is lower in the case of minimization,
respectively.

Let us define a few more general terms regarding optimization.
Definition 3. Let x ∈ D ⊂ Rn and f : D → R be differentiable. The point x is
said to be a critical point of f if ∇ f (x) = 0. Furthermore, x is said to be a saddle
point of f if it is a critical point but is neither a minimum nor a maximum.
Two examples of saddle points are shown in Fig. 2.

Finding the local extrema is easy in principle by using the following theorem,
which gives us a necessary condition for a point to be a local extremum [13].
Theorem 1. Let f : D → R be a differentiable function on the open set D ⊂ Rn. If
x ∈ D is a local extremum point of f then x is a critical point, i.e. ∇ f (x) = 0.

4

1 1
x

1

1

(a)

x

y

(b)

Figure 2. Two examples of saddle points. Both the functions (a) f : R → R, f (x) =
x3 ∀x ∈ R and (b) f : R2 → R, f (x, y) = x2 − y2 ∀(x, y) ∈ R2 have one and only one
saddle point, which is located at the origin.

With the help of Theorem 1, one could find all the local extrema of a given
differentiable function f by first calculating its gradient and solving ∇ f (x) = 0
for x. This yields all the critical points which can be either local minima, maxima,
or saddle points, so the quality of these critical points have to be examined one
at a time. If one wanted to study the qualities, one should solve the eigenvalues
of the so-called Hessian matrix [13].

Although in principle the above procedure for finding the local extrema of a
given function f seems straightforward, there might be many problems in using
it in real life optimization problems. First of all f might not be differentiable
at all, let alone speaking of its continuous second partial derivatives that are
needed in the Hessian matrix. Even worse, in the case of optimization of a
procedure etc., one may not even know the analytical expression of f . Also,
the amount of critical points can be astronomically large as we will see in the
next section in the Lennard-Jones cluster problem. However, what the term
local optimization usually means in numerical physics is finding the nearest local
optimum from a given initial point.

Now moving on to global optimization, a similar route can be followed. It is
clear that the global extremum points can be found only from the critical points,
the domain boundary, or from the points where f is not differentiable. The
process sounds easy since one must only compare the function values at each
of these points and pick the ones that give the highest or lowest values, but this
is usually not the case. Again the same problems arise in real life as in the case
of local optimization. Moreover, calculating the objective function value itself
might be very time-consuming. Methods for optimizing this kind of difficult

5

“black box” functions, whose analytical expressions need not be known, are
presented in Section 3.

One important factor determining the difficulty of an optimization problem is
its dimension since the volume of the search space increases exponentially: a
cube with a side of length L has a volume of Ln in an n-dimensional space. This
phenomenon is called the curse of dimensionality [14, 15, 16].

As can be seen from the results in the papers describing the algorithms CCGA
[17] and CCPSO2 [18], a very efficient way to tackle some high-dimensional
problems is to subdivide them into smaller pieces. The important property of a
problem that tells how well it can be solved this way is called separability.
Definition 4 (Separable function). Let D = ∏n

i=1 Di ⊂ Rn. The function f :
D → R is called separable if there are functions { fi : Di → R}n

i=1 such that

f (x1, . . . , xn) =
n

∑
i=1

fi(xi) ∀(x1, . . . , xn) ∈ D. (3)

It is obvious that if a function can be written as a sum of functions of only one
variable as above, its optimization becomes way easier since instead of solving
one n-dimensional problem it is enough to solve n one-dimensional problems.
In some sense the effective dimensionality of the problem has decreased from
Ln to nL, which is a dramatic change. A simple example of a separable function
would be

f : R3 → R, f (x1, x2, x3) = x2
1 + 2x2 − e−x3 ∀(x1, x2, x3) ∈ R3. (4)

But how about functions that cannot be written as a sum this way only because
a few of the variables interact? For example, the function

f : R5 → R,

f (x) = f (x1, x2, x3, x4, x5) = x1x2 + 2x3 + ex4 − x2
5 ∀x ∈ R5 (5)

is not separable because of the interaction term x1x2, but still algorithms that
optimize each variable separately should be quite effective. These kind of
functions are called partially separable.

2.2 Structure optimization and the Lennard-Jones cluster problem

Let us now take a physical example of a global minimization problem: structure
optimization. We have N atoms and a potential U : R3N → R describing the

6

1 2

1

1

r/rm

U1/ε

Figure 3. The graph of the Lennard-Jones potential function U1 for a single pair of
atoms separated by a distance r.

total potential energy between all these particles. Again, the explicit form of U
might be unknown or very complex, which is the case of a quantum-mechanical
potential. In the structure optimization problem one is interested in finding
the coordinates (xi, yi, zi) ∈ R3 for all the atoms i ∈ {1, . . . , N} such that the
potential U gets minimized, because this is also the most stable structure in
Nature.

In this thesis I will concentrate on a simple and easy-to-calculate Lennard-Jones
potential because the main focus will be on studying the efficiency of algorithms
instead of new physical phenomena. The Lennard-Jones potential is a so-called
pair-wise potential where the potential is calculated by summing up all the
potentials between each pair of atoms. The Lennard-Jones potential for a single
pair of atoms separated by the Euclidean distance r is the function

U1 : R+ → R, U1(r) = ε

[(rm

r

)12
− 2

(rm

r

)6
]
∀r ∈ R+, (6)

where ε ∈ R+ is the well depth and rm ∈ R+ is the minimum point. A figure
showing the behaviour of the function (6) is shown in Fig. 3, which shows a
single global and local minimum point and a steep potential rise when the
atoms are getting closer together.

In order to work with numbers in the order of unity, it is convenient to choose
the energy and length units as ε = rm = 1 in numerical calculations. The
potential (6) then becomes

U1 : R+ → R, U1(r) =
1

r12 −
2
r6 ∀r ∈ R+, (7)

7

or as a function from the coordinate-space of atoms i and j,

Uij : G → R, Uij(ri, rj) =
1

||ri − rj||12 −
2

||ri − rj||6
(8)

for all (ri, rj) = (xi, yi, zi, xj, yj, zj) ∈ G := {(r, r′) ∈ R6 : r 6= r′} ⊂ R6, where

|| · || : R3 → R, ||(x, y, z)|| =
√

x2 + y2 + z2 ∀(x, y, z) ∈ R3 (9)

is the Euclidean norm. With the help of the pair potential (8) the total Lennard-
Jones potential describing the whole system of N atoms is then written as a
sum over all pairs of atoms, excluding the double counting, as

Ũ : D̃ → R,

Ũ(r1, . . . , rN) =
N

∑
j=1

N

∑
i=1
(i<j)

Uij(ri, rj)

=
N

∑
j=1

N

∑
i=1
(i<j)

(
1

||ri − rj||12 −
2

||ri − rj||6

)
(10)

for all (r1, . . . , rN) ∈ D̃ := {(r1, . . . , rN) ∈ R3N : ri 6= rj ∀i 6= j} ⊂ R3N.

However, as mentioned previously, I will mostly consider methods that assume
the search space to be rectangular, which D̃ is not because it is not bounded and
it has the extra constraint ri 6= rj. Firstly, the constraint can simply be dropped
out since it is highly unlikely that any algorithm utilizing random number
generators, which I will only consider, will come up generating two exactly
same vectors. Secondly, for the coordinate-wise bounds I used the following
solution. To keep the rectangular search space small for small clusters and to
increase its size for larger clusters I define the search space as

D := [0, 4]3 ×
3N

∏
k=4

[
−4− 1

4

⌊
k− 3

3

⌋
, 4 +

1
4

⌊
k− 3

3

⌋]
. (11)

So whenever I refer to “the Lennard-Jones problem”, I mean finding the mini-

8

(a) N = 4 (b) N = 13 (c) N = 38

Figure 4. Currently best known minimum configurations of Lennard-Jones clusters of
4, 13, and 38 atoms.

mum of

U : D → R,

U(r1, . . . , rN) =
N

∑
j=1

N

∑
i=1
(i<j)

(
1

||ri − rj||12 −
2

||ri − rj||6

)
. (12)

For visualization, currently the best known [19] minimum configurations for 4,
13, and 38 atoms are shown in Figure 4.

Although the Lennard-Jones potential is not a very realistic model for describing
general atomic clusters, in the case of noble gas atoms it works quite well [20, 21]
by modeling the dipole–dipole interactions properly. The main reason for
choosing it for this cluster problem, however, is its computational conveniency
and the number of previous studies regarding its optimization [22, 23, 24, 25,
26, 27]. A comprehensive database for comparison is thus readily available.

Even though the potential (7) is trivial to minimize, the case is very different
when increasing the number of atoms. It has been suggested, based on empirical
evidence, that the number of local minima increases with the number of atoms
N as O(eN2

) [28], which renders the problem a really hard one. Even if one
could by any mean solve the equation ∇U(r1, . . . , rN) = 0, the amount of
solutions (critical points) is so large that only calculating the potential function
values for these points would take an astronomical amount of time. For example,
if N = 100, the order of the amount of local minima∗ is about 10136 [28]. When
comparing this to the number of atoms in the observable universe, 1080, it is
clear that only trying out all the possible critical points is not a viable method

∗. Note that there might be a huge amount of local maxima and saddle points as well.

9

for solving this global minimization problem.

2.3 Examples of other physical optimization problems

The cluster problem above was an example of a “traditional” physical optimiza-
tion problem in the sense that optimization is the traditional tool used to solve
the problem. Let us next take an example of another traditional physical/chem-
ical optimization problem, the problem of finding the minimum energy path of
a chemical reaction.

2.3.1 Minimum energy path of a chemical transition

If one wanted to gain deeper understanding of a chemical reaction, knowing the
initial and the final molecules and their configurations, it would be beneficial
to know the minimum energy path connecting these initial and final states,
that is, the path it usually follows in Nature. As in the Lennard-Jones cluster
problem, let G ⊂ R3N be the coordinate-space of N atoms, and denote the initial
configuration by A ∈ G and the final configuration by B ∈ G. For example, A
could be the situation where the two molecules are separated, and B could be
the situation where the two molecules have formed a new single molecule. The
space of all the possible paths between the initial and final states, the search
space, now becomes

Γ̃ := {γ : [0, 1]→ G : γ is continuous, γ(0) = A, γ(1) = B}. (13)

Then what is the actual minimum energy path of all the paths in Γ̃? Here
we need to fix the potential describing the system, V : G → R, that tells the
potential energy of a given configuration. In the very simple case it could be, for
instance, the Lennard-Jones potential in Eq. (12). We can now think of the graph
of V, GV ⊂ R3N ×R, as a “landscape” (the potential energy surface) where at a
given position (configuration of all the atoms) we are at a certain height (the
potential energy). Following this analogy, it is clear that water running down a
hill will most likely follow a path that goes at the bottom of a valley. It is easy
to convince oneself that a chemical reaction will similarly most likely follow “a
valley bottom path”, with the obvious difference caused by inertia of mass in
water. For visualization, three example paths that follow a valley bottom on a
simple artificial low-dimensional potential energy surface are shown in Fig. 5.

Obviously, the valley bottom path is not unique and we thus need more con-
straints. Making the well-justified assumption that the initial and final states
A and B are local minimum points, the valley bottom path must go through at

10

initial state A

final state B

saddle points of
the MEP MEP

2nd valley
bottom path
3rd valley
bottom path

Figure 5. Three example paths from an initial configuration A to a final configuration
B that follow a valley bottom on a simple artificial potential energy surface. Every path
has saddle points, but out of the highest saddle points, the minimum energy path
(MEP) has the lowest one.

least one saddle point. The highest of these saddle points is called the transition
state. As is well known from chemistry, the reaction with the lowest energy
transition state is most likely to occur, meaning that this is the path we are
looking for. As a summary, the minimum energy path can be defined by the
following two requirements:

1. The path follows the bottom of a valley.
2. Out of these valley bottom paths, the minimum energy path (MEP) is the

one whose highest saddle point has the lowest energy.
In Fig. 5, out of the three example valley bottom paths, the MEP is shown as a
black, continuous path.

The two requirements above are not enough to model the problem as a global
optimization problem, so let us make approximations next. Looking at the
definition of MEP, finding it feels more or less equivalent to minimizing the
path integral of V along all the possible paths. This, of course, does not exactly
provide the correct MEP, but it should provide good results for well-behaved
potentials, as is discussed in Ref. [29]. Mathematically, finding the MEP has
(approximately) reduced down to minimizing the path integral function

f̃ : Γ̃→ R,

f̃ (γ) =
∫

γ
Vds =

∫ 1

0
V(γ(t))||γ′(t)||dt ∀γ ∈ Γ̃, (14)

which still needs to be discretized.

11

The first easy refinement is to consider only piecewise linear paths. Defining a
(dense) partition P := {t0 = 0, t1, . . . , tK−1, tK = 1} of [0, 1], the search space can
be written as

Γ := {γ : [0, 1]→ G : γ is continuous, γ(0) = A, γ(1) = B,
γ is piecewise linear with the partition P}. (15)

But because of continuity

f̃ (γ) =
∫ 1

0
V(γ(t))||γ′(t)||dt ≈

K

∑
j=1

V(γ(tj))||γ′(tj)||(tj − tj−1)

≈
K

∑
j=1

V(γ(tj))||γ(tj)− γ(tj−1)|| ∀γ ∈ Γ, (16)

we may define the function to be minimized as

f : Γ→ R,

f (γ) =
K

∑
j=1

V(γ(tj))||γ(tj)− γ(tj−1)|| ∀γ ∈ Γ, (17)

where tj ∈ P for all j. In order to solve this optimization problem by a com-
puter, however, one yet needs to identify the path γ as a finite set of points
{(t0, γ(t0)), . . . , (tK, γ(tK))}. Note that at this point I have only shown that it is
possible to model the approximate MEP problem as an optimization problem,
but I will not discuss how to solve it in practice. For practical algorithms the
objective function in Eq. (17) might need some serious further refinements.

Let us next take an example of yet another physical optimization problem, the
problem of finding the ground state of a 1-dimensional quantum-mechanical
system.

2.3.2 Ground state of a quantum-mechanical system

Another interesting physical problem is finding the ground state of a quantum-
mechanical system. If we restrict ourselves to study the stationary states of
a single particle in one dimension, the problem is to solve the Schrödinger
equation (

− h̄2

2m
d2

dx2 + V(x)

)
ψ(x) = Eψ(x), (18)

12

where h̄ is the reduced Planck’s constant, m is the mass of the particle, V is
the potential describing the system, E is the (unknown) energy of the system,
and ψ is the (unknown) wavefunction of the system. Solving this differential
equation yields all the possible states, but if we are only interested in finding
the lowest-energy state (the ground state), the problem can also be formulated
as a global minimization problem.

Assume now that V : [a, b]→ R is the given arbitrary (smooth) potential and
that the system is in an infinite potential well, i.e. V(a) = 0 = V(b). Because we
are interested in stationary states it is enough to study real-valued wavefunctions
in the space L2. However, due to numerical convenience, we restrict ourselves
to the search space

D := {ψ : [a, b]→ R : ψ(a) = 0 = ψ(b), ∃ψ′′,
∫ b

a
ψ(x)2 dx = 1}. (19)

The objective function can be found by using a fact from the variational method
of quantum mechanics: If E0 is the ground state energy of a given system, then

E0 ≤ 〈ψ|Hψ〉 (20)

for any normalized state ψ, where H = − h̄2

2m
d2

dx2 + V is the Hamiltonian and
〈 · | · 〉 is the L2 inner product. By defining the function

E : D → R,

E(ψ) = 〈ψ|Hψ〉 =
∫ b

a
ψ(x)

(
− h̄2

2m
d2

dx2 + V(x)

)
ψ(x)dx

=
∫ b

a

(
− h̄2

2m
ψ(x)ψ′′(x) + V(x)ψ(x)2

)
dx (21)

for all ψ ∈ D, the problem of finding the ground state of a one-dimensional
single particle QM-system has reduced down to minimizing the function E.

Again, I have shown that a specific problem can be formulated as an optimiza-
tion problem. But the above form for the objective function is of little practical
help, especially when solving it numerically, because the search space is a rather
abstract function space. It is now up to the researcher how he or she wants to
proceed and how to search the search space in practice. One possible algorithm-
dependent approach is presented by Grigorenko et al. in Ref. [30], where they
used a specific genetic algorithm that combined Gaussian-like functions in a
nonlinear way to form quite arbitrary functions in D.

13

In the next two sections I will describe population-based, metaheuristic algo-
rithms that are designed to solve general optimization problems. I have splitted
the discussion in two parts: in Section 3 I discuss basic methods that are good
in explaining the foundational ideas behind the state-of-the-art algorithms,
presented in Section 4, that are nowadays the algorithms actually in use.

14

3 Basic population-based, metaheuristic algorithms for
global optimization

In the previous section we saw a few physical problems that can be modeled as
global optimization problems. In this section I will present selected algorithms
that try to solve these problems. As the real-life physical problems are often
very difficult and high-dimensional, stochastic methods [31] are usually the tool
of choice. These methods are based in generating new possible solutions by
random number generators. A few of the most popular stochastic methods
among physicists are called simulated annealing [32, 33, 23] and basin hopping
[34, 35, 36]. The first one tries to simulate annealing and cooling of a physical
object: we start from a random solution, we have a high probability of accepting
worse random solutions in the beginning, but during the run we gradually
decrease the acceptance probability (by decreasing the temperature) and hope
that in the end the solution has converged into the global optimum. The latter
one, on the other hand, simply does hopping between adjacent local optimum
points, where the local optima are found by some local optimizer.

Although the methods above are outside the scope of this thesis, a generic
version of simulated annealing is introduced in Algorithm 1 because I will use
two versions of it as a comparison later in Section 5.1. The details of the actual
versions I used in the comparison study are also presented in Section 5.1, where
I present the unspecified parts, rk and A, of the pseudocode.

In this thesis I will mainly concentrate in global optimization methods that
have a very different approach: Nature-inspired evolutionary algorithms (EA) and
algorithms from the field of swarm intelligence. While EA’s apply the ideas of
Darwinian evolution of species to global optimization by using the familiar
mechanisms reproduction, mutation, recombination, and selection, swarm in-
telligence models collective behaviour of individual agents working together
towards a common goal, e.g. a bird flock searching for food. These algorithms
belong to a class of population-based metaheuristics that have a simple generic
outline:

1. Initialize a random population of individuals
2. Apply the search (e.g. mutation and crossover) operators
3. Select the best individuals to the next generation
4. Repeat steps 2–3 until a good enough individual is present in the popula-

tion.
In contrast to simulated annealing and basin hopping where we had only a
single solution that was perturbed, there is now a population of individuals,
which is why they are called population-based methods. The reason to prefer

15

Algorithm 1: A generic pseudocode of different versions of simulated annealing
(SA). Here, rand(0, 1) is a uniform random number from the interval [0, 1].
The pseudocode has two components that must be specified by a specific
implementation: rk is a random vector of some kind, while A is the rule for
adaptively updating θk. The termination criterion is usually a lower bound for
the temperature, but it can also be e.g. a maximum number of fitness function
evaluations.
Data: Rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, fitness function
f : D → R, initial temperature T0, temperature reduction parameter χ,
initial step size θ0, number of steps lk in each temperature

Generate a random solution x0 ∈ D;
Initialize k = 0;
while termination criterion is not met do

for l = 0, . . . , lk do
Generate a new neighbour uk = xk + θkrk;
Move to the new neighbour with the rule

xk+1 =

{
uk if f (uk) ≤ f (xk) or e(f (xk)− f (uk))/Tk

> rand(0, 1)
xk otherwise

;

Adaptively update the step size: θk+1 = A(θk);
Reduce the temperature: Tk+1 = χTk;
k++;

16

population-based methods over single-solution methods in this thesis is that
there are multiple arguments on why they usually perform better, as argued by
Prügel-Bennett [37].

On the other hand, the reason to prefer metaheuristics over heuristics is simple.
While heuristics, problem-tailored approximate methods that use problem-
dependent “rule-of-thumbs”, are often used because of their power in tackling
difficult problems, I focus on metaheuristics. They are problem-independent
methods that are based on more abstract, higher-level rules [38]. They do not
need any information about the gradient of the fitness function or even the
explicit formula of it. The fitness function is thus only treated as a “black box”,
an object that just provides a value for a given point. This is advantageous
if the fitness function is very complex, noisy, not differentiable, or if it is a
procedure or a simulation that yields the fitness value. They also have the
obvious advantage that a metaheuristic algorithm is not restricted to a single
problem only, but can be used for any problem instead.

In the following I will discuss three basic population-based metaheuristics. The
first, genetic algorithm (GA), is a class of algorithms that can be considered as a
father of all the evolutionary algorithms, as it most closely models Darwinian
evolution by using bit-string representations as a model of the chromosomes
representing individuals. The second, differential evolution (DE), is similar to
GA’s but uses vectors of real numbers instead of the bit-strings to represent
individuals. The third, particle swarm optimization (PSO), is an example of swarm
intelligence, even though it has very similar components in it.

The methods presented here are all minimization algorithms. However, it is
clear that the maximization of f is equivalent to the minimization of − f , so the
restriction to minimization problems can be done without loss of generality.

3.1 Genetic algorithms

In 1950, while tackling with the problem of artificial intelligence, Alan Turing
proposed [39] a “learning machine” that would parallel the principles of Dar-
winian evolution to simulate the learning happening in a child’s brain. The
idea was put to practice by Barricelli in 1954 [40, 41] when he wrote the first
successful computer experiments regarding artificial evolution. However, it
was not until 1975 when these methods were applied to function optimization
by John Holland [42, 43], yielding the so-called genetic algorithms. The genetic
algorithms can be viewed as the father of all the evolutionary algorithms, as
they are all somehow derived from the GA approach.

17

The genetic algorithms follow the basic metaheuristic outline with some very
identifiable peculiarities. Assuming a population size Npop and a rectangular
search space D = ∏n

i=1[ai, bi] ⊂ Rn, the population at the G’th generation is

PG :=
{

xG
i

}Npop

i=1
(22)

where xG
i ∈ D for all i. The important point is that the individuals xG

i are
usually bit-string representations of the corresponding vectors. For example, if
we had a 4-bit system, for a vector

x̃ := (310, 1110, 510) = (00112, 10112, 01012) ∈ R3 (23)

we could have a representation

x := (001110110101) (24)

where the components are just glued together to form a bit-string. To keep
the notation easier, we identify the vectors x̃ and x and use the bit-string
representation for the genetic operators and the vector representation for the
fitness calculations.

The idea of the genetic algorithm starts to become apparent now: the bit-string
in (24) is a simple model of a chromosome, representing an individual, and the
chromosomes then form the population.

3.1.1 Crossover

Following the analogy to Darwinian evolution, first k parents QG := {qG
i }k

i=1
are selected from the population PG either randomly or by some fitness-based
rule, and the parents are then mated to form an offspring CG := {cG

i }l
i=1. As in

Darwinian evolution, this information-exchanging process is called crossover. A
schematic picture of the process is shown in Fig. 6, where two parent chromo-
somes are crossed over to form two children chromosomes. There are several
possibilities of how this can be done in genetic algorithms, but one simple and
common example is the sexual (two parents at a time form two children) version
of the one-point crossover. Here, we cut the two parents from a random place
into two parts and exchange their latter parts. For example, the parents

qG
1 =(0011101|10101) and

qG
2 =(1001110|00100)

18

crossover

Figure 6. Crossover of two chromosomes in Darwinian evolution.

would produce the children

cG
1 =(0011101|00100) and

cG
2 =(1001110|10101)

if the random cut-place happens to be in the position denoted by |. This
procedure is then repeated for as many parent-pairs as necessary to form an
offspring of l children.

3.1.2 Mutation

Again as in evolution, the resulting children are mutated to form the mutated
children MG := {mG

i }l
i=1. A simple method is to pick each child cG

i and perform
bit-flipping in each bit with a probability p, as defined by the user. For example,
if p = 0.2, on average 2.4 bits get flipped and thus the mutated version of the
child cG

1 above could be

mG
1 = (001̄110̄100100̄) = (000111100101).

3.1.3 Selection

The final very important phase in evolution is survival of the fittest. Similarly
in GA, the population PG+1 of the next generation is formed somehow from
the mutated children MG and their parents QG. There exists a whole range of
different schemes, including fitness-proportionate selection and greedy selection as
two common examples. When comparing between two individuals, in fitness-
proportionate selection the probability of being selected to the next generation
is proportionate to fitness, while in greedy selection the better individual gets
selected with a probability of 1.

19

3.1.4 Summary of the algorithm and further notes

A pseudocode of the genetic algorithm described above is shown in Algorithm
2. The description here is actually called a generational genetic algorithm [44].
There is also a simpler version, called a steady-state genetic algorithm [44], where
no generations are present. Instead, usually only two parents are selected from
the population and they are crossed-over to form two children. The children
are then mutated and the resulting individuals replace their parents if they are
better. This way the population is updated on-the-fly and two individuals at a
time, yielding a more suitable version for parallel implementations. A careful
reader can see that, in fact, the steady-state version is only a special case of the
generational one.

Algorithm 2: A pseudocode of a generic genetic algorithm (GA). The termina-
tion criterion is usually a maximum number of fitness function evaluations or a
maximum number of generations.
Data: Rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, fitness function
f : D → R, population size Npop, mutation probability p

Initialize a random population P0 = {x0
i }

Npop
i=1 : for each individual i, generate a

random position x0
i ∈ D;

Initialize the generation G = 0;
while termination criterion is not met do

Select k parents QG = {qG
i }k

i=1 ⊂ PG;
Create offspring CG = {cG

i }l
i=1 by crossing over the parents in QG;

Mutate the children CG to form MG;
Select individuals staying alive: form PG+1 out of MG and QG by selecting
“the best” individuals;
G++;

return the best known individual

It is important to note that in the above form genetic algorithms can be used
only in problems where the search space is a rectangular subset of Rn. But if
one is willing to take this restriction, then the same algorithm can be used for
every problem having a search space a rectangular subset of Rn. However, if one
is willing to develop a different variant for each problem, genetic algorithms
can be used also in more abstract search spaces such as the function space in
Eq. (19). In Ref. [30] a specific genetic algorithm has been developed for this
particular problem. The individuals are originally Gaussian-like functions, but
by going through specifically engineered mutation and crossover operators they
form more and more arbitrary functions.

20

3.2 Differential evolution

First introduced by Storn and Price in 1997 [1], differential evolution (DE) is
yet another example of an evolutionary algorithm. Comparing to genetic algo-
rithms, the solutions are not represented by bit-strings but by vectors of real
numbers instead. Having a rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn and
a population size Npop, the population at the G’th generation is

PG :=
{

xG
i

}Npop

i=1
(25)

where xG
i ∈ D for all i.

3.2.1 Mutation

The way DE examines the landscape of the search space is encoded in the
mutation operator, which adds weighted differences of random individuals to
other individuals, yielding the term differential evolution. To be exact, for each
target vector xG

i ∈ PG, a mutant vector

ṽG
i := xG

r1
+ F(xG

r2
− xG

r3
) (26)

is formed. Here F ∈ [0, 2] is the mutation strength parameter and r1, r2, r3 ∈
{1, . . . , Npop} \ {i} are mutually distinct random integers that are generated
again for each i. This also means that the population size must be at least four.

3.2.2 Saturation

The resulting mutant vector ṽG
i might very well reside outside the rectangular

search space D. To transform it back to the feasible region D, each of its
components j are transformed to D by a user-defined function as

vG
i,j := saturateai,bi(ṽ

G
i,j), (27)

if the j’th coordinate is bounded by the lower and upper bounds ai and bi,
respectively. The original version, in fact, does not have the saturation compo-
nent at all. But since most of the following algorithms have it, and to keep the
algorithms comparable, I included it also in this algorithm.

3.2.3 Crossover

To further increase the diversity of the population, crossover is applied after
the mutation process. Here a new parameter has to be introduced, the crossover

21

rate C ∈ [0, 1], which tells the probability to pick a chosen component from the
mutant vector. Using the mutant vector vG

i = (vG
i,1, . . . , vG

i,n), the trial vector

uG
i = (uG

i,1, . . . , uG
i,n) (28)

is formed, where the component j ∈ {1, . . . , n} is

uG
i,j :=

{
vG

i,j if sj ≤ C or j = ti

xG
i,j otherwise

. (29)

In other words, each component is checked independently for update, in con-
trast to the one-point crossover presented in Section 3.1.1 in regard of genetic
algorithms. Here sj ∈ [0, 1] is the j’th evaluation of a uniform random number
generator and ti ∈ {1, . . . , n} is a uniformly chosen random index to ensure that
the new trial vector gets at least a single component from the mutant vector.

3.2.4 Selection

Again to implement the idea of survival of the fittest, differential evolution uses
the greedy criterion to decide which individual survives to the next generation.
The individual for the next generation is chosen as

xG+1
i =

{
uG

i if f (uG
i) < f (xG

i)

xG
i otherwise

. (30)

In other words, the previous individual is replaced by the new individual if
and only if the new individual is better.

3.2.5 Summary of the algorithm and further notes

In summary, a pseudocode of differential evolution is shown in Algorithm 3.
It is easy to see, heuristically, why and how differential evolution works [45].
The concept of mutating the individuals with vector differences automatically
makes the mutation a self-adjusting phenomenon. Initially the vector differences
remain large in the initial population, so the algorithm searches widely the
search space for promising areas. Gradually the individuals start to get settled
into local minima, so the vector differences start to contain information about
the landscape of the search space. The scale of the differences then slowly decays
out while more and more individuals start to get near the global minimum.

22

Algorithm 3: A pseudocode of the original differential evolution (DE) algorithm.
The termination criterion is usually a maximum number of generations or fitness
function evaluations.
Data: Rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, fitness function
f : D → R, population size Npop, mutation strength parameter F ∈ [0, 2],
crossover rate C ∈ [0, 1]

Initialize a random population P0 = {x0
i }

Npop
i=1 : generate random individual

x0
i ∈ D for each i, calculate their fitness values, and save the best individual;

Initialize the generation G = 0;
while termination criterion is not met do

for each individual (target vector) do
Mutation: form the mutant vector ṽG

i using Eq. (26);
Saturation: form vG

i by transforming the mutant vector ṽG
i back to the

feasible area D using Eq. (27);
Crossover: form the trial vector uG

i using Eqs. (28) and (29);
Calculate the fitness f (uG

i) of the new trial vector, select it to the next
generation according to Eq. (30) and update the best known individual;

G++;
return the best known individual

The obvious advantage of differential evolution is its simplicity: it is very easy
to implement and it has only three control parameters. Despite of its simplicity
it seems to be a very robust and consistent optimizer [46].

3.2.6 Common variants

Looking at the definition of the mutation operator, it is easy to invent new
variants of differential evolution by adding small modifications to Eq. (26).
Indeed, a few variants of the basic DE have shown to be useful. In order to keep
track of the different variants, Storn and Price introduced [1] the notation

DE/x/y/z, (31)

where
• DE stands for differential evolution
• x specifies the vector to be mutated, and it is usually either “rand” (random

vector from the population) or “best” (the best vector from the population)
• y defines the number of difference vectors to be used in the mutation

23

• z specifies the crossover scheme, which is usually either “bin” (binomial)
or “exp” (exponential).

The name “binomial” for the crossover operator comes from the fact that the
number of new components in the mutant vector approximately follows the
binomial distribution. Another common solution is to use an operator where
the number of new components follows the exponential distribution.

Using this notation the standard differential evolution scheme may be written
as DE/rand/1/bin. Other common variants listed in Ref. [47] include

DE/best/1/z: ṽG+1
i = xG

best + F(xG
r2
− xG

r3
)

DE/cur-to-best/1/z: ṽG+1
i = xG

i + F(xG
best − xG

i) + F(xG
r2
− xG

r3
)

DE/best/2/z: ṽG+1
i = xG

best + F(xG
r2
− xG

r3
) + F(xG

r4
− xG

r5
)

DE/rand/2/z: ṽG+1
i = xG

r1
+ F(xG

r2
− xG

r3
) + F(xG

r4
− xG

r5
).

3.3 Particle swarm optimization

Darwinian evolution is not the only possible phenomenon to learn from Nature.
The idea for particle swarm optimization [4] (PSO) can be seen to be picked up
from the behaviour of bird flocks: in order to find food, the birds move in
large flocks and the information of promising areas is exchanged between the
individuals. This is why the algorithm belongs to a class of swarm intelligence,
even though it is very similar to the other evolutionary algorithms described
above. In PSO the individuals moving in the search space are called particles
and each particle’s movement is influenced by its own best known position as
well as by the best globally known position.

A simple overview of particle swarm optimization can be found from the article
by van der Bergh and Engelbrecht [48]. As in evolutionary algorithms, having
a rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, the population at the G’th
generation consists of Npop individuals (now particles) as

PG :=
{

pG
i

}Npop

i=1
=
{
(xG

i , vG
i , yG

i)
}Npop

i=1
. (32)

Again as in DE we use real-vector representations of the particles. The difference
is that in addition to the particle’s current position xG

i ∈ D the particle also
stores its current velocity vG

i ∈ Rn as well as its personal best known position
yG

i ∈ D. Moreover, the best position ŷG found so far by any individual is stored
by the population.

24

3.3.1 Position update

In contrast to genetic algorithms, differential evolution, and most evolution-
ary algorithms, PSO has only one update rule or “genetic operator”. At the
generation G, for each particle pG

i ∈ PG its velocity is updated as

vG+1
i = vG

i + cri(yG
i − xG

i) + dsi(ŷG − xG
i), (33)

where c, d ∈ R are the acceleration coefficients that determine how much the
particle will move towards its personal best known position and the best
globally known position, respectively. Furthermore, ri, si ∈ [0, 1[are random
numbers from two uniform random number generators and they are generated
again for each i.

The position of the particle is then updated straightforwardly by

xG+1
i = xG

i + vG+1
i . (34)

Here it can be seen that even though vG
i is called the velocity, it is not the

real physical velocity but it only describes how much to move and in which
direction instead. The original PSO does not have the saturation component so
the updated particles might wander off the feasible area D. However, if D is
large enough and because the initial population is inside of it, this should not
become a problem.

3.3.2 Updating the personal and global best vectors

After the position has been updated, the best personal position is updated
greedily by

yG+1
i =

{
xG+1

i if f (xG+1
i) < f (yG

i)

yG
i otherwise

(35)

and the best globally known position also greedily by

ŷG+1 =

{
xG+1

i if f (xG+1
i) < f (ŷG)

ŷG otherwise
. (36)

3.3.3 Summary of the algorithm and further notes

To further illustrate particle swarm optimization, a pseudocode of the algorithm
is shown in Algorithm 4. In summary, even though the original idea of the
PSO algorithm was very different from differential evolution, the update rule

25

is very similar to the mutation operator in DE and its variants. This again is
one good reason why the different algorithms really belong to the same family,
even though they have different terminology because of historical reasons.

Algorithm 4: A pseudocode of particle swarm optimization (PSO). The termi-
nation criterion is usually a maximum number of fitness function evaluations
or a maximum number of generations.
Data: Rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, fitness function
f : D → R, population size Npop, acceleration coefficients c, d ∈ R

Initialize a random population P0 = {p0
i }

Npop
i=1 = {(x0

i , v0
i , y0

i)}
Npop
i=1 : generate

random positions x0
i ∈ D and velocities v0

i for each particle i, calculate the
fitness values, and update the personal y0

i and global best ŷ0 positions;
Initialize the generation G = 0;
while termination criterion is not met do

for each particle pG
i = (xG

i , vG
i , yG

i) do
Calculate the new velocity vG+1

i using Eq. (33);
Calculate the new position xG+1

i using Eq. (34);
Calculate the fitness f (xG+1

i) of the new position and update the
personal best yG+1

i and global best positions ŷG+1 using Eqs. (35) and
(36);

G++;
return the best globally known position ŷG

As differential evolution, a good side of particle swarm optimization is its
simplicity and its ease to be implemented. Furthermore, it usually seems to
converge very fast, but unfortunately often only to a local minimum [46].

26

4 State-of-the-art metaheuristics
The few population-based metaheuristics described in the previous section have
been modified and developed a lot further by many people. In this section
I will describe two state-of-the-art algorithms that provide faster and more
reliable convergence than the basic versions in many optimization problems.
The first algorithm, jDE, is a very simple modification of differential evolution
that adaptively chooses the important F and C parameters, leaving the user
with only one free parameter. The second algorithm, CCPSO2, is a little more
complex version of particle swarm optimization that tries to be efficient also in
high dimensions by dividing the problem into smaller subproblems.

Why did I choose exactly these two methods to explain here? In Section 5.1
I will show that these methods, jDE and CCPSO2, are actually very efficient
all-round optimizers even in the difficult Lennard-Jones problem. On the other
hand, in Section 5.2, I will use CCPSO2 to study the separability properties
of the Lennard-Jones problem to show that it is possible to solve the difficult,
nonseparable problem by dividing it into very small pieces.

The reason why the algorithms are discussed so thoroughly is that the original
articles describing them contain a few errors and lack certain details. So I try
to provide here a detailed and mathematically exact explanation of both the
algorithms, so detailed that it should be possible to implement them after a
careful reading of this section.

4.1 jDE

A very simple but efficient self-adaptive algorithm, based on differential evolution,
was introduced by J. Brest et al. in 2006 [49]. This algorithm was later named
jDE [50] probably after the first author. jDE is very similar to the original DE,
having only a small modification. While in differential evolution there were
the constant user-defined mutation parameter F and the crossover rate C, in
jDE each individual keeps track of its own F and C parameters and they are
adaptively updated. To be more precise, having a rectangular search space
D = ∏n

i=1[ai, bi] ⊂ Rn, the population at the generation G is

PG :=
{

zG
i

}Npop

i=1
=
{
(xG

i , FG
i , CG

i)
}Npop

i=1
(37)

where xG
i ∈ D is the point in the search space and FG

i and CG
i are the DE’s F

and C parameters, now evolving through generations and being unique to each
individual.

27

4.1.1 Temporary mutation parameter and crossover rate formation

Before the mutation and crossover operators for the i’th individual, temporary
mutation parameter FG,tmp

i and crossover rate CG,tmp
i are formed as†

FG,tmp
i =

{
Fl + r1Fu if r2 < τ1

FG
i otherwise

(38)

and

CG,tmp
i =

{
r3 if r4 < τ2

CG
i otherwise

, (39)

where r1, r2, r3, r4 ∈ [0, 1] are random numbers from a uniform random number
generator that are generated again for each i. Here also the new “parameters”
Fl = 0.1, Fu = 0.9, and τ1 = 0.1 = τ2 were introduced, but, according to the
authors, their choice does not significantly alter the behaviour of the algorithm.

These newly formed temporary parameters are then used in the standard DE
mutation, saturation, and crossover operations to form uG

i from the vectors
x. It has to be pointed out that only the position components x are used in
these genetic operators instead of the full individuals z. The adaptivity becomes
part of the algorithm only in the slightly modified selection operator, which is
described next.

4.1.2 Selection

The decision whether the new trial vector survives to the next generation is done
greedily as in DE [Eq. (30)], but now also the individual-dependent parameters
are updated according to

zG+1
i = (xG+1

i , FG+1
i , CG+1

i)

=

{
(uG

i , FG,tmp
i , CG,tmp

i) if f (uG
i) < f (xG

i)

(xG
i , FG

i , CG
i) otherwise

. (40)

This means that the new perturbed parameters survive to the next generation if
and only if they formed a better individual. In this way only the good parameter
values survive, providing the adaptivity to the algorithm.

†. There is a flaw in the logic explaining this part in the original article, so the correct version I
present here looks a little different.

28

4.1.3 Summary of the algorithm and further notes

As a summary, a pseudocode of the jDE algorithm is presented in Algorithm 5. It
must be noted that the term self-adaptive the authors used is a little questionable
in describing the algorithm. According to their definition [49] self-adaptivity
would mean that the usual DE parameters F and C are encoded in the chro-
mosomes and are also going through the evolution operators. As can be seen
from the explanation above, the extra parameters are indeed encoded in the
chromosomes and they go through the selection operator, but they do not go
through the mutation and crossover operators.

Algorithm 5: A pseudocode of the jDE algorithm. The termination criterion
is usually a maximum number of fitness function evaluations or a maximum
number of generations.
Data: Rectangular search space D = ∏n

i=1[ai, bi] ⊂ Rn, fitness function
f : D → R, population size Npop

Initialize a random population P0 = {z0
i }

Npop
i=1 = {(x0

i , F0
i , C0

i)}
Npop
i=1 : for each

individual i, generate a random position x0
i ∈ D, a random mutation coefficient

F0
i ∈ [0.1, 1], and a random crossover rate C0

i ∈ [0, 1], calculate the fitness value
f (x0

i), and update the best known position;
Initialize the generation G = 0;
while termination criterion is not met do

for each individual zG
i = (xG

i , FG
i , CG

i) do
Generate FG,tmp

i and CG,tmp
i according to Eqs. (38) and (39);

Mutation: form the mutant vector ṽG
i using FG,tmp

i as the mutation
strength parameter in Eq. (26);
Saturation: form vG

i by transforming the mutant vector ṽG
i back to the

feasible area D using Eq. (27);

Crossover: form the trial vector uG
i using CG,tmp

i as the crossover rate in
Eq. (29);
Calculate the fitness f (uG

i) of the new trial vector, update the individual
zG+1

i according to Eq. (40), and update the best known position;
G++;

return the best known position

Even though jDE is a little more complex than the basic differential evolution,
it is still a very simple algorithm. It has also the big advantage of having
only one control parameter, the population size, making it very practical in
actual optimization applications. There is thus only a minimal need for time-

29

consuming parameter tuning. Moreover, jDE seems to be generally a very good
optimizer in many numerical benchmark problems [50].

4.2 CCPSO2

In 2012 Li et al. presented [18] a new PSO-based algorithm that can handle
very high-dimensional problems. This algorithm, called cooperatively coevolv-
ing particle swarms for large scale optimization (CCPSO2), has a little longer
historical story than the simple jDE described above.

4.2.1 The historical way from CCGA to CCPSO2

The history of CCPSO2 started in 1994 from Potter’s and De Jong’s cooperative
coevolutionary genetic algorithm (CCGA) [17], which presented the first idea of a
divide-and-conquer strategy to tackle high-dimensional problems. The idea in
this method was simply to optimize each component of the problem separately,
thus assuming full separability of the fitness function. They first divided the
n-dimensional search space into n one-dimensional subspaces by generating a
subpopulation for each of these components. The standard genetic algorithm
was then used to optimize each of these subproblems separately. However, this
division created a new problem: how to measure the fitness of an individual in
a subproblem? The fitness function needs an n-dimensional vector to calculate
a value, while the individuals in the subproblems are real numbers. Potter and
De Jong solved this problem by assembling this component along with the
best members from the other subpopulations and calculating the fitness for the
resulting n-dimensional vector. Mathematically, when calculating the fitness of
the j’th individual xj

i ∈ R in the i’th subpopulation, they actually calculated

f (xbest
1 , . . . , xbest

i−1 , xj
i , xbest

i+1 , . . . , xbest
n), (41)

where xbest
1 is the best individual so far in the first subpopulation, xbest

2 is the
best individual so far in the second subpopulation, and so on.

Potter and De Jong also tried a version where they chose either random or best
members from the other subpopulations in the fitness calculation. As expected,
both of these versions worked well in separable functions but performed poorly
in nonseparable functions, since the division into n subproblems is simply not
possible in the latter case.

In CCGA the divide-and-conquer strategy was applied to a simple genetic
algorithm, but nothing prevents one applying it to different methods also, such

30

as differential evolution or particle swarm optimization. In addition to first
applying this idea to PSO, van den Bergh and Engelbrecht allowed for a more
flexible division of the problem [48]. Instead of dividing the n-dimensional
problem into n parts, the problem is divided into K parts, each having a
dimension of s = n/K, as specified by the user. This way a higher group size s
can be chosen for nonseparable problems and a lower group size s for separable
problems.

Yang et al. developed this idea even further by making their framework, multilevel
cooperative coevolution (MLCC) [51], to adaptively choose a suitable group size s
for a given problem. The user only has to provide a set of possible group sizes,
e.g. S := {2, 5, 10, 100, 250} for a 500-dimensional problem. Between generations
the algorithm then chooses a new group size s from the set S depending on
its performance record such that better-performing group sizes have higher
probability to be chosen.

4.2.2 Details of CCPSO2

CCPSO2 followed in the route of MLCC. The user has to provide a set of
possible group sizes and the algorithm adapts the group size to the problem.
This time, however, there are no performance records and the new group size is
chosen uniformly at random if and only if the best fitness didn’t improve during
the last generation. In addition to this, the dimension indices are permuted at
each generation to allow for more flexible grouping. Without the permutation
the successive components are likely to be always at the same group. The
subpopulations formed this way are called swarms in CCPSO2.

The basic idea of the algorithm can be understood well from the original article
[18]. However, because the notation is a little sloppy, a few of the ideas are
explained wrong, and many corners are cut, I will present a corrected version
here, as reverse-engineered from the original source code that can be found
from Ref. [52]. Because of this the presentation will look quite different in
some parts. Furthermore, because I am writing everything explicitly out, the
mathematical presentation becomes quite technical. So while reading the details
below, I encourage the reader to simultaneously keep eye on the pseudocode of
CCPSO2, presented in Algorithm 6, in order to keep track of the main outline
of the algorithm.

If we have a rectangular search space D = ∏n
i=1[ai, bi] ⊂ Rn, a population size

Npop
‡ and denote row vectors by boldface font, the population at the generation

‡. Note that in the original article Npop is denoted by swarmSize. Because swarmSize can be

31

G is stored in the matrix

XG :=

 xG
1
...

xG
Npop

 =

 xG
1,1 · · · xG

1,n
...

xG
Npop,1 · · · xG

Npop,n

 , (42)

where each row xG
i is a point from the search space D. Furthermore, the best

personal positions are stored in the matrix

YG :=

 yG
1
...

yG
Npop

 =

 yG
1,1 · · · yG

1,n
...

yG
Npop,1 · · · yG

Npop,n

 , (43)

where each row yG
i ∈ D is the best personal position of the i’th particle. These

two matrices and the best vector

ŷG = (ŷG
1 , . . . ŷG

n) (44)

found so far by any particle are entities that are affected by the column-
permutation, but not by the grouping process.

During the first generation the trivial permutation σ0 = (12 . . . n) is used. In
the end of each generation G− 1, a new permutation of (12 . . . n), called σG,
is formed randomly. This is then used at the next generation to permute the
columns of XG, YG, and ŷG. To help with the notation, I define the function

Pσ :Mm×n →Mm×n (45)

that reorders the columns of m× n matrices [in permutation (12. . . n)] into the
permutation σ. I will also be using the inverse function of this,

P−1
σ :Mm×n →Mm×n, (46)

that reverses the permutation σ back to (12 . . . n).

4.2.3 Forming the new swarms

In the beginning of each generation, a new group size s is chosen randomly from
the set S if the fitness of ŷ didn’t improve during the previous generation. This

easily mixed up with the dimensionality of each swarm, I’m using the notation Npop to denote
the number of particles in each swarm.

32

means the number of swarms is now K := n/s. New swarms {PG
i }K

i=1 are then
formed by denoting the columns i, . . . , i + s of the current permuted population
PσG(XG) by PG

i . Similarly, the personal bests {QG
i }K

i=1 of the particles in these
swarms are formed by denoting the columns i, . . . , i + s of PσG(YG) by QG

i .
The j’th particle (now s-dimensional) in the i’th swarm is denoted as pj,i and
its personal best as qj,i, so the particles in the swarms constitute the permuted
population now as

PσG(XG) = (PG
1 , . . . , PG

K) =

 pG
1,1 · · · pG

1,K
...

pG
Npop,1 · · · pG

Npop,K

 (47)

and their personal bests constitute the permuted Y matrix as

PσG(YG) = (QG
1 , . . . , QG

K) =

 qG
1,1 · · · qG

1,K
...

qG
Npop,1 · · · qG

Npop,K

 . (48)

Moreover, we choose the components i, . . . , i + s of the permuted global best
vector PσG(ŷG) to be the swarm best vector rG,0

i , that is, the best vector of the i’th
swarm. The meaning of the extra index 0 will be clarified later in the swarm
best update process. In other words,

PσG(ŷG) = (rG,0
1 , . . . , rG,0

K). (49)

Later on we will use the swarm bests to form the so-called context vector when
calculating fitnesses of lower-dimensional vectors.

As an example, if the problem dimension is n = 6, population size is set to
Npop = 2, group size happens to be s = 3, and the permutation is σ = (214365),
the permuted population would look like (dropping the generation index G)

Pσ(X) =

(
x1,2 x1,1 x1,4 x1,3 x1,6 x1,5
x2,2 x2,1 x2,4︸ ︷︷ ︸

swarm 1 P1

x2,3 x2,6 x2,5︸ ︷︷ ︸
swarm 2 P2

)
, (50)

the two swarms would be

P1 =

(
x1,2 x1,1 x1,4
x2,2 x2,1 x2,4

)
=

(
p1,1
p2,1

)
and P2 =

(
x1,3 x1,6 x1,5
x2,3 x2,6 x2,5

)
=

(
p1,2
p2,2

)
(51)

33

and their personal bests

Q1 =

(
y1,2 y1,1 y1,4
y2,2 y2,1 y2,4

)
=

(
q1,1
q2,1

)
and Q2 =

(
y1,3 y1,6 y1,5
y2,3 y2,6 y2,5

)
=

(
q1,2
q2,2

)
.

(52)
Furthermore, the permuted global best vector is

Pσ(ŷ) = (ŷ2, ŷ1, ŷ4, ŷ3, ŷ6, ŷ5) (53)

so the swarm bests would be picked from this as

r0
1 = (ŷ2, ŷ1, ŷ4) and r0

2 = (ŷ3, ŷ6, ŷ5). (54)

4.2.4 Updating the personal and swarm best vectors

We first calculate the fitness of the particles in these new swarms because the
index-permutation changes them, and update the personal best and the swarm
best vectors accordingly. For each swarm PG

i , first its j’th particle’s personal best
vector qj,i is updated as

qG+1
j,i =

{
pG

j,i if f (P−1
σG (b(pG

j,i, uG,i, i))) < f (P−1
σG (b(qG

j,i, uG,i, i)))

qG
j,i otherwise

, (55)

its swarm best ri is checked for update by

rG,j
i =

{
qG+1

j,i if f (P−1
σG (b(q

G+1
j,i , uG,i, i))) < f (P−1

σG (b(r
G,j−1
i , uG,i, i)))

rG,j−1
i otherwise

,

(56)
and this is repeated for each particle. In other words, it is first checked whether
the current particle is better than its personal best and then it is checked whether
this new personal best is even better than the best particle in the whole swarm.
Here the extra index j in the swarm best vector rG,j

i just indexes the particles in
the loop because it is updated by each particle, and this update process always
changes the “context” vector uG,i for the next round. Furthermore, remember
that qG

j,i is part of the matrix PσG(YG), so the matrix PσG(YG+1) gets also formed
here. Similarly, because the context vector uG,i, defined below, consists of the
swarm bests, it gets also updated on-the-fly.

Here the fitness calculations become a little messy because of the permutations
and the necessary context vector, but let us go through this one part at a time.

34

Assuming n = sK, the function

b : Rs ×Rn × {1, . . . , K} → Rn (57)

helps in calculating the fitnesses of s-dimensional vectors in a provided context.
If a context vector u = (u1, . . . , uK) ∈ Rn is divided into K s-dimensional parts
and we want to calculate the fitness of the vector z ∈ Rs in the i’th swarm, it
returns

b(z, u, i) = (u1, . . . , ui−1, z, ui+1, . . . , uK) ∈ Rn, (58)

thus providing a vector suitable for the fitness function. The idea is similar as
in CCGA’s expression (41). Now the context where we want to calculate the
fitnesses is the concatenation of the current swarm bests. Now that the swarm best
gets updated for each particle j, the context vectors get updated all the time,
and thus the mathematical notation becomes a little difficult. Assume we are
checking the conditions in Eqs. (55) and (56) for the j’th particle in the i’th
swarm and that we go through the particles in the natural order. Now because
only the components different from i matter, we may define the context vector
at the generation G for the i’th swarm as

uG,i := (r
G,Npop
1 , . . . , r

G,Npop
i−1 , rG,0

i , . . . , rG,0
K), (59)

and so
b(z, uG,i, i) = (r

G,Npop
1 , . . . , r

G,Npop
i−1 , z, rG,0

i+1, . . . , rG,0
K). (60)

Now when calculating the fitness of z in this context, what we really do is just
assemble the vector z in side of the current swarm bests from the other swarms.
The only reason why some of the swarm bests have the extra index Npop is that
they have already been updated by Eq. (56) and by all the particles, and thus
the context vector is not anymore simply PσG(ŷG).§

In order to make the fitness calculation more sensible between the different
generations and permutations, the vector returned by b is furthermore reversed
back to the original order by the inverse permutation function P−1

σG .

To better understand the update equations (55) and (56), let us continue the

§. It would be an option not to update the context vector on-the-fly, but instead use the same
permuted global best vector PσG (ŷG) = (rG,0

1 , . . . , rG,0
K) as the context vector for all the swarms.

However, according to tests I made this deteriorates the performance of the algorithm. In fact
the context vector was defined exactly like this in the original article but it was not implemented
this way in the source code.

35

example above for clarification, where we had

Pσ(ŷ) = (ŷ2, ŷ1, ŷ4, ŷ3, ŷ6, ŷ5) = (r0
1, r0

2). (61)

When calculating the fitnesses for the particles in the first swarm, the context
vector is

u1 = (r0
1, r0

2), (62)

so for the first particle p1,1 = (x1,2, x1,1, x1,4) in the first swarm we get simply

b(p1,1, u1, 1) = (p1,1, r0
2) = (x1,2, x1,1, x1,4, ŷ3, ŷ6, ŷ5), (63)

which is then reversed back to the original order as

P−1
σ (b(p1,1, u1, 1)) = (x1,1, x1,2, ŷ3, x1,4, ŷ5, ŷ6). (64)

The fitness of p1,1 is then defined to be the number we get by calculating the
fitness for the vector above. On the other hand, currently the fitness of the first
swarm best is simply

f (P−1
σ (b(r0

1, u1, 1))) = f (P−1
σ (r0

1, r0
2))) = f (P−1

σ (Pσ(ŷ))) = f (ŷ), (65)

which is already known, and the swarm best gets updated to r1
1. When checking

the same for the second particle, the fitness is

f (P−1
σ (b(r1

1, u1, 1))) = f (P−1
σ (r1

1, r0
2)) 6= f (ŷ), (66)

which is also known from the previous update procedure. Now the swarm best
gets updated to r2

1. Moving on to the first particle in the second swarm, the
fitness of the swarm best is

f (P−1
σ (b(r0

2, u2, 2))) = f (P−1
σ (r2

2, r0
2)), (67)

which is also known from the previous update.

Now that we understand how the fitness of an s-dimensional vector is calculated,
let us clarify the notation by defining a fitness function for s-dimensional vectors.
For all permutations σ, for all context vectors u ∈ Rn, and for all swarm indices
i ∈ {1, . . . , K}, define the function

f̃σ,u,i : Rs → R,

f̃σ,u,i(z) = f (P−1
σ (b(z, u, i))) ∀z ∈ Rs. (68)

36

Now the update equations (55) and (56) can be written more clearly as

qG+1
j,i =

{
pG

j,i if f̃σG,uG,i,i(p
G
j,i) < f̃σG,uG,i,i(q

G
j,i)

qG
j,i otherwise

(69)

and

rG,j
i =

{
qG+1

j,i if f̃σG,uG,i,i(q
G+1
j,i) < f̃σG,uG,i,i(r

G,j−1
i)

rG,j−1
i otherwise

. (70)

4.2.5 Updating the global best vector

After the fitness calculations and personal and swarm best updates of all the
particles in the i’th swarm, the global best vector ŷG+1 is formed and updated. If
the new fitness of the i’th swarm best r

G,Npop
i , as calculated above, got better than

the best globally known fitness value f (ŷG), then the i’th part of the permuted
global best vector PσG(ŷG+1) is set to r

G+1,Npop
i . But because by definition

PσG(ŷG+1) = (rG+1,0
1 , . . . , rG+1,0

K), this can be written as

rG+1,0
i =

{
r

G,Npop
i if f̃σG,ŷG,i(r

G+1
i) < f (ŷG)

rG,0
i otherwise

. (71)

4.2.6 Finding the neighbourhood best

In its position update procedure, the original PSO explores the fitness landscape
around the personal best and the global best position, as seen in Eq. (33). While
CCPSO2 also uses the personal best position, it utilizes the best position of
a local neighbourhood instead of the global best. Here the neighbourhood of
the particle pj,i includes the nearest neighbour particles pj−1,i, pj,i, and pj+1,i,
which means the neighbourhood best is chosen from the vectors qG+1

j−1,i, qG+1
j,i ,

and qG+1
j+1,i. In order to define the neighbours of the first and the last particle, the

basic ring-topology is used to connect the ends of this list together.

In Algorithm 6 the function “localBest” implements exactly this behaviour.
Calling localBest(QG+1

i , j) for the j’th particle returns the best-fit vector of the
set {qG+1

j−1,i, qG+1
j,i , qG+1

j+1,i}, where their fitnesses have already been calculated in

the last step. It also defines qG+1
Npop+1,i = qG+1

1,i and qG+1
0,i = qG+1

Npop,i to satisfy
the boundary conditions discussed above. This function is used to select the
neighbourhood-best vector nG+1

j,i of each particle j ∈ {1, . . . , Npop} in each

37

swarm i ∈ {1, . . . , K}, and these are used in the position update procedure
described next.

4.2.7 Position update and saturation

As the name suggests, CCPSO2 uses a modified version of particle swarm
optimization as the actual optimizer. The outline of this optimizer is the same as
in the basic PSO but the position update rule is very different from Eq. (34) and
there are no velocities present. Instead, the permuted population is updated as
follows. First, new components k ∈ {1, . . . , s} for the j’th particle pj,i in the i’th
swarm are calculated as¶

p̃G+1
j,i,k =

{
Cauchy(qG+1

j,i,k , |qG+1
j,i,k − nG+1

j,i,k |/2) if rj,i,k ≤ p

Gaussian(nG+1
j,i,k , |qG+1

j,i,k − nG+1
j,i,k |/2) otherwise

. (72)

This might produce vectors outside the rectangle D, so the components are
transformed back inside it by some sensible, user-defined function as

pG+1
j,i,k = saturate(p̃G+1

j,i,k). (73)

The original version has (although not mentioned in the article) a saturation
function that simply mirrors the solution from the boundary but this does not
guarantee the saturated solution to be in the feasible area D. Instead, I use a
different saturation function as described in Section 5.

Now that the particle pG+1
j,i , updated above, is part of the permuted popula-

tion matrix PσG(XG+1) of the next generation, so XG+1 gets also formed here.
In Eq. (72) p ∈ [0, 1] is a user-defined probability that chooses the ratio of
exploration/exploitation and rj,i,k ∈ [0, 1] is a random number from a uni-
form distribution, and it is calculated again for each i, j, and k. Furthermore,
Cauchy(a, b) is a random number following the Cauchy distribution with the
location parameter (the “mean”) a and the scale parameter (the “standard
deviation”) b and Gaussian(a, b) is a random number following the Gaussian
distribution with the mean a and the standard deviation b. They are also called
again for each i, j, and k.

Above, the short-tailed Gaussian distribution is used for local optimization
around the local best vector nG+1

j,i of the neighbourhood (exploitation) while the
long-tailed Cauchy distribution is used for searching wider areas around the
personal best vector qG+1

j,i (exploration).

¶. Note the 1/2 difference to the original article.

38

4.2.8 Summary of the algorithm and further notes

Again as a summary, a pseudocode of CCPSO2 is shown in Algorithm 6. Here
a small modification with respect to the original implementation is presented.
In the original version, during the first generation, new random particles from
each swarm were chosen to the context vector whenever needing it, instead of
the usual swarm bests. In this new version, I simply initialize ŷ0 by picking a
random row from X0 in the beginning. This is much simpler, and according to
tests I made doesn’t change the behaviour of the algorithm.

The explanation of the algorithm presented here should help in understanding
the algorithm mathematically. However, because the explanation is quite techni-
cal, its implementation might be nontrivial. This is why there is also another
explanation of CCPSO2 presented in Appendix A that is written in pseudo-Java
styled code. That version should help in implementing the algorithm in practice.

39

Algorithm 6: A pseudocode of the CCPSO2 algorithm. The termination criterion
is usually a maximum number of generations or fitness function evaluations.
Data: Rectangular search space D ⊂ Rn, fitness function f : D → R,

population size Npop, Cauchy/Gaussian search rate parameter p ∈ [0, 1],
set of possible group sizes S

Initialize a random population: for each individual i, generate a random
position x0

i ∈ D, form the population matrix X0 out of these, and set the
personal best matrix to Y0 = X0;
Initialize the global best vector: set a random row from X0 to ŷ0;
Choose a group size s ∈ S randomly and set number of swarms to K = n/s;
Initialize the permutation to σ0 = (12 . . . n);
Initialize the generation G = 0;
while termination criterion is not met do

if ŷ didn’t improve then
Randomly choose a new group size s ∈ S and set K = n/s;

// Form K swarms

foreach i ∈ {1, . . . , K} do
Denote the columns i, . . . , i + s of the permuted population PσG(XG) by
the particle matrix PG

i = (pG
1,i, . . . , pG

Npop,i)
> of the swarm;

Denote the columns i, . . . , i + s of the permuted matrix PσG(YG) by the
personal best matrix QG

i = (qG
1,i, . . . , qG

Npop,i)
> of the swarm;

Denote the components i, . . . , i + s of the permuted best vector PσG(ŷG)

by the swarm best vector rG,0
i ;

foreach swarm i ∈ {1, . . . , K} do
foreach particle j ∈ {1, . . . , Npop} do

// Update YG+1

Update the personal best qG+1
j,i according to Eq. (69);

// Update the context vector uG,i

Update the swarm best rG,j
i according to Eq. (70);

Update the global best vector ŷG+1 according to Eq. (71);
foreach swarm i ∈ {1, . . . , K} do

foreach particle j ∈ {1, . . . , Npop} do
Find the neighbourhood best nG+1

j,i = localBest(QG+1
i , j);

// Update XG+1

Update the position of the j’th particle pG+1
j,i in the i’th swarm

according to Eqs. (72) and (73);
Randomly generate a new permutation σG+1 of (12 . . . n);
G++;

return the global best position ŷG+1

5 Efficiency of population-based metaheuristics and
practical separability of the Lennard-Jones problem

In this section I will present two main results of this thesis. Firstly, I will show
how the population-based metaheuristics presented in the previous section, that
are all general all-round optimizers, compare against problem-tailored methods
and simulated annealing. Secondly, I will study the degree of separability of
the Lennard-Jones cluster problem.

For fair comparison, I used 5000n function evaluations as the stopping criterion
for all the algorithms, where n is the problem dimension. Furthermore, to get
a little statistics, I repeated each of the optimization runs 8 times with new
random initial configurations. So in this section whenever I am talking about an
“average” or a “mean”, I have taken the average of the results of 8 independent
optimization runs. For all the algorithms except the two versions of simulated
annealing, I defined the saturation function to transform the infeasible solutions
back to the feasible area using periodic boundary conditions. Mathematically,
if the number x ∈ R should be bounded by the inequality a ≤ x ≤ b, the
saturation function returns

saturatea,b(x) =


b− [(a− x) mod (b− a)] if x < a
a + [(x− b) mod (b− a)] if x > b
x otherwise

. (74)

5.1 Comparison between population-based metaheuristics, simulated
annealing, and problem-tailored methods

So far I have presented algorithms that are not that widely known among
physicists and that can be applied to any problem without much tuning. How
do they compare against more traditional methods such as simulated annealing
and, on the other hand, against problem-tailored methods that are specifically
developed for the Lennard-Jones problem?

5.1.1 Settings of the algorithms

First of all, in addition to algorithm parameters, let me specify the simulated
annealing (Algorithm 1) versions I used. In the neighbour generation rule in the
first version, which I call SA1, rk is a uniformly distributed random vector from
D such that ||rk|| = 1, as suggested in Ref. [53]. In this version the step size θk

is not adjusted, so we have A(θk) = θk = θ0 = 0.002 for all k. The temperature
reduction factor and initial temperature were chosen as χ = 0.88 and T0 = 0.9,

41

respectively. The number of steps at each temperature was kept at a constant
value of lk = 100.

In the second version, SA2, rk is a uniformly distributed random vector in
[−1, 1]n. The step size is adjusted adaptively as

A(θk) =


2θk if acceptance > 50 %
θk/2 if acceptance < 25 %
θk otherwise

, (75)

where acceptance means the acceptance ratio of accepted moves during the
previous temperature loop. This should keep the acceptance ratio at a desirable
25–50 % level as discussed in Ref. [54]. On the other hand, to allow for more
trials at lower temperatures and at higher dimensions, I set the number of trials
at the k’th step to

lk =
n
3

log
(n

3

) (
1− log

(
Tk
))

as suggested in Ref. [23]. The other parameters were chosen as χ = 0.8, T0 = 1.3
and θ0 = 0.001.

In this study the parameters for each algorithm were roughly tuned for the
120-dimensional problem for fair comparison. While the results provided by
SA1, SA2, DE, and jDE were highly dependent on their parameters, CCPSO2
seemed to be very robust with respect to its parameters Npop and p: as long as
the population size was & 10, neither of the parameters produced any noticeable
differences in the results. So for CCPSO2 I simply used the same values for
these parameters as suggested in the original article [18]: Npop = 30 and p = 0.5.
It became also immediately clear that the group size of 1 does not work at all
for this problem (more discussion in Section 5.2), so for the set S I chose the
one in Eq. (76), with 1 removed. As a summary, all the parameters and settings
used for the algorithms are shown in Tables 1 and 2.

5.1.2 Comparison results

In Fig. 7 I have done the comparison between different algorithms in the
Lennard-Jones problem in 6, 30, 120, 180, 300, and 600 dimensions. In Fig. 7a
the improvement of the best individual in the population is shown for each
algorithm and for each of the 8 independent optimization runs in the 600-
dimensional problem. The bottom energy level is the target energy, i.e. the lowest
energy that any (problem-tailored) algorithm has ever discovered, as listed
in Ref. [19]. While every algorithm is quite robust between the different runs,

42

0.5 1.0 1.5 2.0 2.5 3.0
Function evaluations ×106

−1200

−1000

−800

−600

−400

−200

0

En
er

gy
of

th
e

be
st

in
di

vi
du

al SA1 SA2
DE

jDE

CCPSO2

(a) n = 600

0 100 200 300 400 500 600
Problem dimension

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
la

ti
ve

er
ro

r

SA1
SA2

DE

jDE

CCPSO2

(b)

Figure 7. How the all-round optimizers differential evolution (DE), jDE, and CCPSO2
compare against the problem-tailored methods and, on the other hand, against two
versions of simulated annealing (SA) in the Lennard-Jones problem in 6, 30, 60, 120, 180,
300, and 600 dimensions. (a) A closer look at the 600-dimensional problem showing the
improvement of the best individual with increasing number of fitness function evalua-
tions. Each of the 8 independent optimization runs are shown for each algorithm. The
bottom energy level is the target energy, i.e. the lowest energy that any (problem-tailored)
algorithm has ever found [19]. (b) The average relative error |Eavg − Etarget|/|Etarget|,
where Eavg is the average final minimum energy found by the algorithm and Etarget is
the target energy [19], in different dimensions.

43

Table 1. Settings and parameters for the two simulated annealing algorithms in the
comparison study.

SA1 SA2

rk = rand() ∈ Rn s.t. ||rk|| = 1 rk = rand() ∈ [−1, 1]n

A(θk) = θk A(θk) as in Eq. (75)
lk = 100 lk = n

3 log
(n

3

) (
1− log

(
Tk))

χ = 0.88 χ = 0.8
T0 = 0.9 T0 = 1.3
θ0 = 0.002 θ0 = 0.001

Table 2. Parameters for the algorithms DE, jDE, and CCPSO2 in the comparison study.

DE jDE CCPSO2

Npop = 35 Npop = 20 Npop = 30
F = 0.4 p = 0.5
C = 0.9 Sn = {s ∈N : s | n} \ {1}

there are large differences between the algorithms. Both versions of simulated
annealing, as well as differential evolution, get stuck very early and are thus
poor optimizers for this problem. jDE is already much better, but CCPSO2 is
able to get quite close to the target energy already after a million function
evaluations. A million may sound a lot but imagine having a (unrealistically
small) grid consisting of only 2 points in each of the 600 coordinate axes: the
total grid would have an enormous amount of 2600 ≈ 10180 points.

I then took the final minima the algorithms found, calculated their average Eavg
and standard error of the mean for each algorithm, and repeated the study for
the dimensions 6, 30, 60, 120, 180, 300, and 600. The results are presented in Fig.
7b where, for better comparison between different dimensions, I have plotted
the relative error |Eavg − Etarget|/|Etarget|, where Etarget is the target energy [19].
Both versions of simulated annealing are poor optimizers for this problem,
having a large ∼ 90 % error in all dimensions. Differential evolution works
well in low dimensions but its performance deteriorates quickly when going
into higher dimensions. jDE, on the other hand, is a little more robust between
different dimensions, reaching a ∼ 30–40 % accuracy. However, CCPSO2 works
surprisingly well in all the studied dimensions, having a quite good and robust
∼ 10–20 % accuracy.

It must be noted that the stopping criterion of 5000n (n problem dimension)

44

function evaluations is quite arbitrary. Looking at the graphs in Fig. 7a one can
see that both jDE and CCPSO2 are still decreasing in energy in the end, although
CCPSO2 pretty slowly. This would allow one to easily achieve better results
simply by running the optimization process longer. A single optimization run
of the 600-dimensional problem of 3 million evaluations took around 6–8 hours
on a 2.67 GHz Intel Xeon in series, so longer runs would be affordable.

5.2 Practical separability of the Lennard-Jones cluster problem

Let us now analyze the degree of separability of the Lennard-Jones cluster
problem defined in Eq. (12). By looking at the definition of the objective function
it is clear that the problem is fully nonseparable; every variable interacts with
every other one. But let us study the separability from a practical perspective:
are there algorithms that can solve the problem efficiently by dividing it into
smaller pieces? CCPSO2 seems to be an optimal algorithm for this study since
it both performs well (Fig. 7) and it has the property of dividing the problem
adaptively into smaller pieces, where the possible group sizes (dimension of
the subproblems) are determined by the user. It uses the same group size as
long as it works, but whenever the algorithm gets stuck it chooses a new one. If
we then allowed CCPSO2 to use every possible group size available we could
easily see which group sizes are favoured and which avoided.

To do the study I first performed optimization runs of CCPSO2 in the Lennard-
Jones cluster problem in dimensions 6, 30, 60, 120, 180, 300, and 600, where I
allowed the algorithm to use every possible group size available. To achieve
this I simply chose the set S in the n-dimensional case to include all the natural
numbers that divide n, i.e.

Sn = {s ∈N : s | n}. (76)

As an example, for 30-dimensional problem I used

S30 = {1, 2, 3, 5, 6, 10, 15, 30}.

Because the Lennard-Jones problem is fully nonseparable it could be expected
that CCPSO2 uses a pretty high group size throughout the runs. But when
looking at the group size behaviour of typical runs in 600D, shown in Fig. 8, a
complete opposite happens. In some of the runs the group size saturates to a
very low value of 1–6 after a short transitional phase (Fig. 8a), while in the rest
of the runs a small group size of 1–6 is used throughout the run (Fig. 8b). I call
this phenomenon practical separability, meaning that even though the problem is

45

0 100 200 300 400 500
Generation

0

100

200

300

400

500

600

G
ro

up
si

ze

(a)

0 50 100 150 200 250 300 350 400
Generation

0

100

200

300

400

500

600

G
ro

up
si

ze

(b)

Figure 8. Two examples of typical adaptive group size behaviour of CCPSO2 in the
600-dimensional Lennard-Jones problem when allowing the algorithm to use every
possible group size. (a) In some of the runs the group size saturates to a very low value
(6 in this case) after a short transitional phase, (b) while in the rest of the runs a small
group size (5 in this case) is used throughout the run. Exactly the same behaviour
happens in all the studied dimensions, except in 6.

strictly nonseparable, in practice it can be solved effectively (by some algorithm)
by dividing it into smaller subproblems.

There is, however, an interesting behaviour regarding the group size 1. In Fig. 9
improvement of the best individual in the 600-dimensional problem is shown
for all the 8 runs. The algorithm is otherwise very robust between the different
runs but there is one run being very ineffective. A closer look reveals that the
algorithm happened to favour a constant group size of 1 in this run, which
seems to be ineffective for this problem. The algorithm did not nevertheless
discard it because it constantly produced lower energies, although very slowly.

The behaviour discussed above for 600-dimensional problem happened also in
all the other dimensions‖ studied: CCPSO2 favours small group sizes over large
ones, but whenever the group size 1 gets chosen, it usually quickly degrades
the performance of the algorithm.

But exactly how separable is the Lennard-Jones problem in the practical sense?
Inspired by the results above, I tried also versions where I kept the group size
at a constant value. Results for constant group sizes 1, 2, 3, 4, 5, 6, 10, 12, 15,
20, 30, and 60 are shown in Fig. 10 where, for meaningful comparison between

‖. The dimension 6 is an exception since its minimum is found so quickly that it does not
provide a sensible testbed for this study.

46

0.5 1.0 1.5 2.0 2.5 3.0
Function evaluations ×106

−1200

−1000

−800

−600

−400

−200

0

En
er

gy
of

th
e

be
st

in
di

vi
du

al

Figure 9. Improvement of the energy of the best individual of CCPSO2 in the 600-
dimensional Lennard-Jones problem in each of the 8 runs. The algorithm seems to
be very robust between the different runs with the exception of one run being very
ineffective.

different dimensions, average relative error between the final energy and the
target energy (the lowest energy currently known, as listed in Ref. [19]) is
plotted for the dimensions (6, 30,) 60, 120, 180, 300, and 600. The dimensions
6 and 30 are in parentheses because they do not include all of the group sizes.
For example, the group sizes 60 and 20 cannot be used for the 30-dimensional
problem simply because 30 is not divisible by them.

The results are in good agreement with what was found by the earlier analysis:
small group sizes work well while large group sizes and the group sizes 1 and
2 do not. More quantitatively, group sizes 1 and 2 are poor, 4, 5, 6, 10, and
12 are the best, and all the other group sizes work only in low dimensions.
This is remarkable because this tells us that there exists an algorithm (CCPSO2)
that can solve the difficult Lennard-Jones problem by dividing it into very low-
dimensional subproblems, dramatically lowering the difficulty of the problem.
Preliminary results on other benchmark problems also show that this behaviour
is not a universal property of CCPSO2, but instead a property of the Lennard-
Jones problem and the algorithm together. However, it is not known yet whether
this is a universal property of the problem, i.e. whether it is always better to
divide it into very small pieces regardless of the algorithm.

47

0 100 200 300 400 500 600
Problem dimension

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
la

ti
ve

er
ro

r

adaptive

1
2

3

4
5 6 10

12

15

20

30
60

Figure 10. How the different constant group size versions of CCPSO2 perform in the
Lennard-Jones problem in the dimensions (6, 30,) 60, 120, 180, 300, and 600. The coloured
number in side of each graph denotes the constant group size of the corresponding
CCPSO2 version, while the continuous, black curve is the “original” adaptive version
where the algorithm can use every possible group size as in Eq. (76). For sensible
comparison between different dimensions, the vertical axis is the average relative error
|Eavg− Etarget|/|Etarget|, where Eavg is the average of the final best energies of the 8 runs
and Etarget is the target energy, i.e. the lowest energy currently known, as listed in Ref.
[19]. Roughly, small group sizes work well while large group sizes do not, with 1 and 2
as exceptions.

48

6 Conclusions
In this work I did a survey on population-based metaheuristic global optimiza-
tion algorithms, namely evolutionary algorithms and swarm intelligence, that
try to be general all-round optimizers. As an example of a “real life” optimiza-
tion problem in computational nanoscience, I used the Lennard-Jones cluster
problem to show that these methods are, on the other hand comparable to
problem-tailored methods, but also much better than two versions of simulated
annealing, a popular method among physicists.

While both versions of simulated annealing were particularly poor optimizers
in the Lennard-Jones problem in general, simple differential evolution worked
already much better in low dimensions. The self-adaptive version of differential
evolution, jDE, performed better also in high dimensions but left still room for
improvement. CCPSO2, on the other hand, was really in its own class, although
not finding the correct minima. It provided a surprisingly good and robust
∼ 10–20 % accuracy up to 600 dimensions (200 atoms), and it even reached it
with a very small amount of function evaluations.

Moreover, CCPSO2 seemed to be very robust with respect to its parameters,
providing a truly attractive alternative to problem-tailored methods. The only
important parameter is the set S of possible group sizes available to the al-
gorithm, but this is only important if trying to enhance the efficiency even
further. Very good results can be obtained by simply setting S to include all
the numbers s that divide the problem dimension, thus providing a general
efficient algorithm that can be used with very little tuning. Although it could
not find the actual minimum, it certainly can be used as a robust basis for
further development of new, efficient problem-tailored algorithms. A few of the
first modification ideas would be to tune the position update rule and to couple
the algorithm with some local optimizers.

It was also shown that there exists an algorithm, namely CCPSO2, that is
able to solve efficiently the Lennard-Jones cluster problem by dividing it into
very small subproblems with a dimension of only 4–12, independent of the
problem dimension. This was surprising since the problem is actually highly
nonseparable, and thus this division should not have been possible. This is
remarkable because the problem difficulty grows exponentially with dimension,
so transforming one high-dimensional problem into many lower-dimensional
problems is a dramatic relief. This gives a hint that when designing new
algorithms for the Lennard-Jones problem one should probably stick to methods
that perturb only a small subset of the variables at a time. Preliminary studies on
other benchmark problems showed that this indeed is a property of the Lennard-

49

Jones problem and the algorithm together rather than only a property of the
algorithm. However, it is still a matter of future studies whether this practical
separability is a universal property of the problem among all algorithms.

50

Appendix A Pseudo-Java styled CCPSO2
The explanation of CCPSO2 in Section 4.2 is mathematically exact, which means
the equality sign “=” always denotes the normal equality equivalence relation.
That presentation is, however, quite technical, so I will present an alternative
explanation here that should help in implementing the algorithm in practice.

The following pseudocodes are written in a style resembling Java, which is
why I call them pseudo-Java styled. Variables, procedures, and programming
operators are written in teletype font while everything else, mainly verbal
descriptions, are written in the normal roman font. The equality sign “=” now
denotes the substitution sign familiar from programming languages.

The pseudo-Java styled version of CCPSO2 is presented in Algorithm 7, but
because it is quite lengthy, it is splitted in smaller procedures. Note that the
matrix pBests is stored in a transposed form with respect to Section 4.2 for
computational efficiency. Furthermore, the following small utility procedures
are needed:
• reverse(x, perm):

form a new vector that is x reversed back to its original permutation
(when x is permuted by perm)

• b(x, context, i):
form a new vector where the i’th part of context is replaced by the vector
x (when context is divided into K = n/s parts, where s is the length of x)

• getVector(X, perm, i, j, s):
get a copy of the j’th part of the i’th swarm of the permuted X matrix,
when each row of X is divided into K = n/s parts

• setVector(X, perm, x, i, j):
copy the contents of x into the j’th part of the i’th swarm of the permuted
X matrix (when each row of X is divided into K = n/s parts, where s is
the length of x)

• getSwarmthPart(yhat, perm, i, s):
get the i’th part of the permuted yhat vector, when each part has the
dimension s

• setSwarmthPart(yhat, perm, x, i):
copy the contents of x into the i’th part of the permuted yhat vector
(when yhat is divided into K = n/s parts, where s is the length of x)

• saturate(x, bounds):
transform x back to the feasible area according to bounds and some user-
defined rule

51

• localBest(pBests, pBestsFits, i, j):
get the best-fit particle in the neighbourhood of the j’th particle in the
i’th swarm, when the neighbourhood includes the vectors pBests[i][j],
pBests[i][j-1], and pBests[i][j+1] s.t. periodic boundary conditions
are used

• cauchy(a, b):
get a random number following the Cauchy distribution, where a is its
location parameter and b is its scale parameter

• gaussian(a, b):
get a random number following the Gaussian distribution, where a is its
mean and b is its standard deviation

52

Algorithm 7: Main outline of CCPSO2 in a pseudo-Java styled code.
Data: problem dimension n, fitness function f, bounds: n×2 matrix

including the lower and upper bounds for each variable, population size
Npop, Cauchy/Gaussian search rate parameter p, set of possible group
sizes S

// Initialization
perm = [0, 1, ..., n-1];

s = random element from S; // group size
K = n / s; // number of swarms
X = random Npop×n matrix s.t. each row is

limited by bounds; // population matrix
Y = X.copy(); // personal best matrix
yhat = random row from X; // global best
fhat = f(yhat); // fitness of yhat
G = 0; // generation
while termination criterion is not met do

if yhat did not improve then
s = random element from S;

K = n / s;

// Form K swarms
pBests, pBestsFits, sBests, sBestsFits =

formSwarms(Y, perm, s, K, fhat);

foreach swarm i = 0, ..., K-1 do
foreach particle j = 0, ..., Npop-1 do

// Form the n-dimensional context vector
context = [sBests[0], ..., sBests[K-1]];

updatePersonalAndSwarmBests(X, perm, pBests, pBestsFits,

sBests, sBestsFits, i, j, s, context));

updateGlobalBest(sBests, sBestsFits, yhat, perm, fhat);

foreach swarm i = 0, ..., K-1 do
foreach particle j = 0, ..., Npop-1 do

// Calculate a new position and update X and Y

evolvePopulation(X, Y, perm, pBests, pBestsFits, i, j);

G++;

perm = random permutation of [0, 1, ..., n-1];

return the global best position yhat

53

Procedure formSwarms(Y, perm, s, K, fhat)

sBests = new double[K][s]; // swarm bests
sBestsFits = new double[K]; // their fitnesses
pBests = new double[K][Npop][s]; // personal bests
pBestsFits = new double[K][Npop]; // their fitnesses
for i = 0, ..., K-1 do

for j = 0, ..., Npop-1 do
// Pick personal bests from the permuted Y matrix
pBests[i][j] = getVector(Y, perm, i, j, s);

// Pick swarm bests from the permuted yhat vector
sBests[i] = getSwarmthPart(yhat, perm, i, s);

sBestsFits[i] = fhat;
return pBests, pBestsFits, sBests, sBestsFits

Procedure updatePersonalAndSwarmBests(X, perm, pBests, pBestsFits,

sBests, sBestsFits, i, j, s, context)

// Pick the current vector from the permuted X matrix
currentVector = getVector(X, perm, i, j, s);

// Calculate its fitness in the current context
currentFullVector = b(currentVector, context, i);

currentFit = f(reverse(currentFullVector, perm));

// Calculate fitness of the personal best in the current context
pBestFull = b(pBests[i][j], context, i);

pBestsFits[i][j] = f(reverse(pBestFull, perm));

// Update the personal best
if currentFit < pBestsFits[i][j] then

pBests[i][j] = currentVector.copy();

pBestsFits[i][j] = currentFit;

// Update the swarm best
if pBestsFits[i][j] < sBestsFits[i] then

sBests[i] = pBests[i][j].copy();

sBestsFits[i] = pBestsFits[i][j];

54

Procedure updateGlobalBest(sBests, sBestsFits, yhat, perm, fhat)

// Update yhat

if sBestsFits[i] < fhat then
fhat = sBestsFits[i];

for k = 0, ..., K-1 do
// Replace the k’th part of yhat with the corresponding
// swarm best
setSwarmthPart(yhat, perm, sBests[k], k)

Procedure evolvePopulation(X, Y, perm, pBests, pBestsFits, i, j)

// Find the neighbourhood best
nBest = localBest(pBests, pBestsFits, i, j);

// Cauchy/Gaussian position update
newPos = calculateNewPosition(pBests[i][j], nBest);

// Transform newPos back to the feasible area
newPos = saturate(newPos, bounds);

// Update X and Y

setVector(X, perm, newPos, i, j);

setVector(Y, perm, pBests[i][j], i, j);

Procedure calculateNewPosition(pBest, nBest)

newPos = new double[s];

for k = 0, ..., s-1 do
if rand(0, 1) <= p then

newPos[k] = cauchy(pBest[k], abs(pBest[k]-nBest[k])/2);

else
newPos[k] = gaussian(nBest[k], abs(pBest[k]-nBest[k])/2);

return newPos

55

56

References
[1] R. Storn and K. Price. Differential evolution — a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global
Optimization, 11(4):341–359, 1997.

[2] K. Ohkura, Y. Matsumura, K. Ueda, and X. Yao. Robust evolution strategies.
Applied Intelligence, 1585:10–17, 1999.

[3] X. Li and X. Yao. Tackling high dimensional nonseparable optimization
problems by cooperatively coevolving particle swarms. In Proceedings of the
Eleventh Conference on Congress on Evolutionary Computation, CEC’09, pages
1546–1553, Piscataway, NJ, USA, 2009. IEEE Press.

[4] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.
In Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, 1995, pages 39–43, Oct 1995.

[5] K. P Wong and Z. Dong. Differential evolution, an alternative approach to
evolutionary algorithm. In Proceedings of the 13th International Conference
on Intelligent Systems: Application to Power Systems, pages 73–83, November
2005.

[6] S. Kannan, S. M. R. Slochanal, and N. P. Padhy. Application and comparison
of metaheuristic techniques to generation expansion planning problem.
IEEE Transactions on Power Systems, 20(1):466–475, February 2005.

[7] J. Chiou, C. Chang, and C. Su. Ant direction hybrid differential evolution
for solving large capacitor placement problems. IEEE Transactions on Power
Systems, 19(4):1794–1800, 2004.

[8] J. Chiou, C. Chang, and C. Su. Variable scaling hybrid differential evo-
lution for solving network reconfiguration of distribution systems. IEEE
Transactions on Power Systems, 20(2):668–674, May 2005.

[9] R. K. Ursem and P. Vadstrup. Parameter identification of induction mo-
tors using differential evolution. In The 2003 Congress on Evolutionary
Computation, volume 2, pages 790–796, December 2003.

[10] R. Storn. Differential evolution design of an IIR-filter. In Proceedings of
IEEE International Conference on Evolutionary Computation, pages 268–273,
May 1996.

[11] A. D. Brown and H. C. Card. Evolutionary artificial neural networks.
In IEEE 1997 Canadian Conference on Electrical and Computer Engineering,
volume 1, 1997.

[12] N. Chakraborti, K. Misra, P. Bhatt, N. Barman, and R. Prasad. Tight-
binding calculations of Si-H clusters using genetic algorithms and related
techniques: Studies using differential evolution. 22(5):525–530, 2001.

[13] V. Purmonen. Differentiaalilaskentaa 1. Department of mathematics and
statistics, lecture notes 52. University of Jyväskylä, 4th edition, 2010.

57

[14] R. E. Bellman. Dynamic Programming. Rand Corporation research study.
Princeton University Press, 1957.

[15] R. E. Bellman. Dynamic Programming. Dover Books on Computer Science
Series. Dover Publications, 2003.

[16] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Rand Corporation.
Research studies. Princeton University Press, 1961.

[17] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach
to function optimization. In Proceedings of the International Conference on
Evolutionary Computation. The Third Conference on Parallel Problem Solving
from Nature, PPSN III, pages 249–257, London, UK, 1994. Springer-Verlag.

[18] X. Li and X. Yao. Cooperatively coevolving particle swarms for large scale
optimization. IEEE Transactions on Evolutionary Computation, 16(2):210–224,
April 2012.

[19] J. Doye. Lennard-Jones clusters. http://doye.chem.ox.ac.uk/jon/

structures/LJ.html, 1997.
[20] V. Talanquer. A new phenomenological approach to gas–liquid nucleation

based on the scaling properties of the critical nucleus. The Journal of
Chemical Physics, 106(23):9957–9960, 1997.

[21] J. A. White. Lennard-Jones as a model for argon and test of extended renor-
malization group calculations. The Journal of Chemical Physics, 111(20):9352–
9356, 1999.

[22] L. T. Wille. Simulated annealing and the topology of the potential energy
surface of Lennard-Jones clusters. Computational Materials Science, 17:551–
554, 2000.

[23] T. Coleman, D. Shalloway, and Z. Wu. Isotropic effective energy simulated
annealing searches for low energy molecular cluster states. Computational
Optimization and Applications, 2:145–180, 1993.

[24] T. Coleman, D. Shalloway, and Z. Wu. A parallel build-up algorithm for
global energy minimizations of molecular clusters using effective energy
simulated annealing. Journal of Global Optimization, 4:171–185, 1994.

[25] J. Zhang. A brief review on results and computational algorithms for
minimizing the Lennard-Jones potential. ArXiv e-prints, December 2010.

[26] D. M. Deaven, N. Tit, J. R. Morris, and K. M. Ho. Structural optimization
of Lennard-Jones clusters by a genetic algorithm. Chemical Physics Letters,
256(195):195–200, June 1996.

[27] W. Cai, Y. Feng, X. Shao, and Z. Pan. Optimization of Lennard-Jones
atomic clusters. Journal of Molecular Structure: THEOCHEM, 579(1–3):229–
234, March 2002.

[28] M. R. Hoare and J. A. McInnes. Morphology and statistical statics of simple
microclusters. Advances in Physics, 32(5):791–821, January 1983.

58

http://doye.chem.ox.ac.uk/jon/structures/LJ.html
http://doye.chem.ox.ac.uk/jon/structures/LJ.html

[29] R. Elber and M. Karplus. A method for determining reaction paths in large
molecules: application to myoglobin. Chemical Physics Letters, 139(5):375–
380, September 1987.

[30] I. Grigorenko and M. E. Garcia. An evolutionary algorithm to calculate the
ground state of a quantum system. Physica A, (284):131–139, 2000.

[31] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. Wiley, 2003.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[33] M. Locatelli. Simulated annealing algorithms for continuous global op-
timization. In P. M. Pardalos and H. E. Romeijn, editors, Nonconvex Op-
timization and Its Applications, volume 62, pages 179–229. Springer US,
2002.

[34] D. J. Wales and J. P. K. Doye. Global optimization by basin-hopping and
the lowest energy structures of Lennard-Jones clusters containing up to
110 atoms. J. Phys. Chem. A, 101(28):5111–5116, July 1997.

[35] D. J. Wales. Energy Landscapes: Applications to Clusters, Biomolecules and
Glasses. Cambridge Molecular Science, 2004.

[36] G. G. Rondina and L. F. Da Silva. Revised basin-hopping monte carlo
algorithm for structure optimization of clusters and nanoparticles. Journal
of Chemical Information and Modeling, 53:2282–2298, 2013.

[37] A. Prügel-Bennett. Benefits of a population: Five mechanisms that ad-
vantage population-based algorithms. IEEE Transactions on Evolutionary
Computation, 14(4):500–517, Aug 2010.

[38] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey
on metaheuristics for stochastic combinatorial optimization. 8(2):239–287,
2009.

[39] A. M. Turing. Computing machinery and intelligence. Mind, LIX(236):433–
460, October 1950.

[40] N. A. Barricelli. Esempi numerici di processi di evoluzione. Methodos,
pages 45–68, 1954.

[41] N. A. Barricelli. Symbiogenetic evolution processes realised by artificial
methods. Methodos, pages 143–182, 1957.

[42] J. H. Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. University
of Michigan Press, 1975.

[43] J. H. Holland. Genetic algorithms. Scientific American, 267(1):66–72, 1992.
[44] G. J. E. Rawlins. Foundations of Genetic Algorithms 1991 (FOGA 1). Founda-

tions of Genetic Algorithms. Morgan Kauffmann, 1st edition, 1991.
[45] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical

59

Approach to Global Optimization. Natural Computing Series. Springer Science
and Business Media, 2006.

[46] J. Vesterstrøm and R. Thomsen. A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numer-
ical benchmark problems. In Congress on Evolutionary Computation, 2004.
CEC2004, volume 2, pages 1980–1987, June 2004.

[47] F. Neri and V. Tirronen. Recent advances in differential evolution: a survey
and experimental analysis. Artificial Intelligence Review, 33(1–2):61–106,
2010.

[48] F. van der Bergh and A. Engelbrecht. A cooperative approach to particle
swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–
239, 2004.

[49] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, December 2006.

[50] J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. S. Maučec. Performance
comparison of self-adaptive and adaptive differential evolution algorithms.
Soft Computing, 11(7):617–629, 2007.

[51] Z. Yang, K Tang, and X. Yao. Multilevel cooperative coevolution for large
scale optimization. In IEEE Congress on Evolutionary Computation, 2008. CEC
2008. (IEEE World Congress on Computational Intelligence), pages 1663–1670,
June 2008.

[52] X. Li. Publications. http://goanna.cs.rmit.edu.au/~xiaodong/

publications/publications.html. Accessed: 13-May-2015.
[53] I. O. Bohachevsky, Johnson M. E., and M. L. Stein. Generalized simulated

annealing for function optimization. Technometrics, 28:209–217, 1986.
[54] L. T. Wille. Minimum-energy configuration of atomic clusters: new results

obtained by simulated annealing. Chemical Physics Letters, 133:405–410,
1987.

60

http://goanna.cs.rmit.edu.au/~xiaodong/publications/publications.html
http://goanna.cs.rmit.edu.au/~xiaodong/publications/publications.html

	 Introduction
	 The problem of global optimization in physics
	 The general optimization problem
	 Structure optimization and the Lennard-Jones cluster problem
	 Examples of other physical optimization problems
	 Minimum energy path of a chemical transition
	 Ground state of a quantum-mechanical system

	 Basic population-based, metaheuristic algorithms for global optimization
	 Genetic algorithms
	 Crossover
	 Mutation
	 Selection
	 Summary of the algorithm and further notes

	 Differential evolution
	 Mutation
	 Saturation
	 Crossover
	 Selection
	 Summary of the algorithm and further notes
	 Common variants

	 Particle swarm optimization
	 Position update
	 Updating the personal and global best vectors
	 Summary of the algorithm and further notes

	 State-of-the-art metaheuristics
	 jDE
	 Temporary mutation parameter and crossover rate formation
	 Selection
	 Summary of the algorithm and further notes

	 CCPSO2
	 The historical way from CCGA to CCPSO2
	 Details of CCPSO2
	 Forming the new swarms
	 Updating the personal and swarm best vectors
	 Updating the global best vector
	 Finding the neighbourhood best
	 Position update and saturation
	 Summary of the algorithm and further notes

	 Efficiency of population-based metaheuristics and practical separability of the Lennard-Jones problem
	 Comparison between population-based metaheuristics, simulated annealing, and problem-tailored methods
	 Settings of the algorithms
	 Comparison results

	 Practical separability of the Lennard-Jones cluster problem

	 Conclusions
	Appendix Pseudo-Java styled CCPSO2

