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Abstract

The currently available computational methods for the calculation of mag-
netic coupling constants with density functional theory have been re-
viewed. These methods include modern approximations to the exchange-
correlation functional, such as hybrid, range-separated and double-hybrid
functionals, as well as approaches to treat the severe spin symmetry prob-
lems encountered in density functional calculations of magnetic interac-
tions. In addition to the commonly used unrestricted Kohn–Sham formal-
ism, density functional methods based on multireference wave functions
and ensemble densities are also discussed. Performance of these mod-
els based on various studies has been summarized. The results indicate
that self-interaction error plays an important role in the performance of
density functional methods and is responsible for many of their shortcom-
ings. If the self-interaction error and problems related to spin symmetry
are treated in a theoretically correct manner, density functional theory can
offer a very good description of magnetic coupling constants.

Tiivistelmä

Tässä tutkimuksessa on selvitetty mitä tiheysfunktionaaliteoriaan pe-
rustuvia laskennallisia menetelmiä käytetään tänä päivänä magneettis-
ten kytkentävakioiden teoreettiseen määrittämiseen. Näihin menetelmiin
kuuluvat muun muassa modernit vaihtokorrelaatiofunktionaaliapproksi-
maatiot (kuten hybridi-, kaksoishybridi- ja etäisyyserotetut funktionaa-
lit) ja menetelmät, joilla voidaan ratkaista tai kiertää spin-symmetriasta
aiheutuvia ongelmia. Yleisesti käytetyn Kohn–Sham-formalismin lisäk-
si tutkielmassa on käsitelty tiheysfunktionaalimeneltemiä, jotka perus-
tuvat monideterminanttisiin aaltofunktioihin tai laajennettuihin kuvauk-
siin elektronitiheydestä. Kirjallisuudessa esitettyjen tutkimustulosten yh-
teenveto osoitaa, että elektronitiheyden itseisvuorovaikutuksesta aiheu-
tuva virhe on merkittävä tekijä tiheysfunktionaaliteoriaan perustuvien
mallien kyvyssä ennustaa magneettisia kytkentävakioita ja johtaa usein
suuriin virheisiin tuloksissa. Jos itseisvuorovaikutusvirheestä ja spin-
symmetriasta aiheutuvat ongelmat ratkaistaan tai kierretään teoreettisesti
oikein, voi tiheysfunktionaaliteorialla laskea tarkkoja arvoja magneettisil-
le kytkentävakioille.
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1 Introduction

Molecular magnetic materials have attracted a lot of interest over the past
years. They show promising applications in a number of technologies
such as magnetic memory appliances, quantum computing and optical
devices.1–6 Rational design of magnetic functionality at the molecular
level requires quantum chemical insight into the magnetic coupling mech-
anism between the molecules that comprise these materials. At the heart
of this coupling lies the magnetic coupling constant J that describes the
magnitude and type of magnetic interactions.7, 8 Calculation of J using
ab initio methods based on reference wave functions with well defined
spin states is straightforward.8 Coupled cluster9, 10 and configuration in-
teraction10–12 theories can produce high quality results but they are com-
putationally extremely exhaustive. Furthermore, most magnetic systems
show multireference character and a proper description of such a system
cannot be achieved by the lowest levels of approximation in these theo-
ries.13–15 Methods such as the complete active space self-consistent field
(CASSCF)16, 17 and the multireference perturbation theory (CASPT2)18, 19

can be applied to systems of moderate size but most molecules with in-
teresting magnetic functionality are relatively large. Density functional
theory (DFT) offers a promising alternative to the aforementioned meth-
ods as it is fairly cheap in terms of computational costs and can offer very
accurate results in a number of different types of chemical problems.

Over the past two decades DFT has risen to become a standard method
for accurate quantum chemical treatment of systems that are too large for
high level ab initio calculations.20–25 DFT is, in principle, an exact theory
but in any practical implementation—the most common being the Kohn–
Sham (KS) formalism26—approximations have to be made. This intro-
duces the concept of the exchange-correlation functional that covers the
portion of energy that KS theory cannot describe exactly. Various approx-
imations have been made to its form, starting from the local density ap-
proximation (LDA). It was not, however, until the advent of hybrid func-
tionals in the early nineties that DFT became a de facto method in the field
of quantum chemistry.20–22, 24 Hybrid functionals introduce a portion of ex-
act exchange energy calculated with the wave function formalism into the
functional approximation, much improving their performance. Much of
the early success of hybrid DFT can be attributed to the B3LYP exchange-
correlation functional27–30 that is still the most widely used DFT method in
quantum chemistry today.23 Hybrid functionals have triumphed in their
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ability to predict a wide range of molecular properties, in addition to hav-
ing greater computational efficiency compared to high accuracy ab initio
methods.20, 23, 25 Nonetheless, calculation of magnetic coupling constant
proves a major challenge for DFT.31–34

Attempts to describe magnetic interactions expose many of the funda-
mental deficiencies of KS theory.31 Magnetic coupling is an exchange phe-
nomenon and thus an accurate description of exchange interaction is vital
for quantitative estimates of coupling constants. Exchange is treated ac-
curately in all ab initio methods but no mapping between electron density
and exchange energy exists.7 Another significant problem arises from the
description of spin eigenstates in DFT. A correct description of the spec-
trum of spin eigenstates is essential in order to calculate magnetic coupling
constants. A commonly used approach is to treat the spin state of the KS
reference wave function (an artificial by-product of a KS calculation35) as
an approximation to the true spin state. However, there is no theoreti-
cal justification for this.36 Furthermore, in magnetic coupling problems
one must employ unrestricted KS formalism which produces KS reference
wave functions that are not spin eigenstates. To enforce proper spin sym-
metry, the unrestricted results must be projected on to the spectrum of spin
eigenstates. Currently there is no consensus as to how this problem should
be best treated although a variety of approaches exist.8, 25, 31–34 Much of the
failure of common exchange-correlation functionals in magnetic coupling
problems has also been ascribed to a problem known as self-interaction
error that is present in all functional approximations.31, 37

The wide range of problems that require some approximate treatment
means that numerical results alone cannot be used in validating den-
sity functional methods for calculation of magnetic coupling constants.
Two incorrectly chosen approximations may lead to error cancellation and
good overall numerical results. As Illas et al. have pointed out,33 good
results are often obtained for the wrong reasons. Thus, one must have a
thorough understanding of the theoretical foundations of DFT and KS the-
ory and how they are related to magnetic coupling phenomena in order to
choose the right tools for the right problem.

This study aims to review the currently available density functional
methods that are used to calculate magnetic coupling constants and then
to discuss their performance. The second and third sections of this study
discuss the concepts of magnetic coupling, spin-Hamiltonians and ex-
change interaction and how they are treated in conventional electronic
structure theory. The fourth section introduces the theoretical concepts be-
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hind DFT. Sections five and six then introduce the tools that are required
to employ Kohn–Sham DFT to magnetic coupling problems. Finally, sec-
tion seven summarizes and discusses several systematic studies on the
performance of DFT models in the calculation of coupling constants of a
large number of experimentally or theoretically well-characterized mag-
netic systems.
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2 Magnetic coupling

The ability of certain minerals to attract ferrous bodies—
ferromagnetism—is a phenomenon that has been known to mankind
since ancient times. By the end of the 19th century the magnetic inter-
actions between macroscopic objects were well understood. However,
the microscopic structure of material that is responsible for magnetic
properties remained elusive until the advent of quantum mechanics.
A true understanding of magnetism was not achieved until relativistic
quantum theory introduced the concept of electron spin.7, 38 Since then
much progress has been made in understanding the relationship between
the electronic structure of material and its magnetic properties in both
relativistic and non-relativistic frameworks. The most commonly applied
model of magnetism in quantum chemistry is based on the semi-classical
approach proposed by Heisenberg in 1928 that treats spin by a simple vec-
tor model.39 The spin vectors couple through exchange interaction which
is a form of non-classical interaction that results from the antisymmetry
of the electronic many-particle wave function. The coupling mechanisms
determine the macroscopic magnetic properties of the bulk material.

2.1 Coupling of effective magnetic moments and exchange
interaction

Heisenberg’s theory of ferromagnetism considers effective magnetic mo-
ments, Si, that are located at a magnetic center i in a crystal lattice.39–41 The
moments arise from the spin and orbital angular moment of unpaired elec-
trons. The simplest case of such a magnetic center is one that is associated
with a single unpaired electron with zero orbital angular momentum and
thus has Si = 1/2. If the microscopic moments are aligned they add up,
and a macroscopic magnetization ensues in the bulk material. This type
of material (as well as the interaction between the moments) is said to be
ferromagnetic. If some of the moments add negatively to the net magnetic
moment but the overall magnetization still remains positive, the material
is said to be ferrimagnetic. The opposite phenomenon to ferromagnetism
is antiferromagnetism where the magnetic moments align themselves in
a manner such that they point to opposite directions canceling each other
and thus resulting in zero macroscopic magnetization. This is the most
common alignment in radical systems. Ferro-, ferri- and antiferromag-
netism all require ordering of the magnetic moments. Above a certain
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Ferromagnetic

Ferrimagnetic Paramagnetic

Anti-ferromagnetic

Figure 1: A schematic representation of the alignment of microscopic magnetic moments in ferro-
magnetic, anti-ferromagnetic, ferrimagnetic and paramagnetic materials.

material-specific threshold temperature (known as the Curie temperature)
this ordering disappears and the magnetic moments lie at random direc-
tions resulting in a zero macroscopic magnetization. This type of magnetic
material is called paramagnetic. A paramagnetic material is attracted to an
external magnetic field and can show ordered structure in such a field. In
contrast, a diamagnetic material is one that is repelled by an external field.
Para- and diamagnetism are much weaker interactions than ferro- or fer-
rimagnetism.40–42 Figure 1 presents a schematic representation of different
magnetic interactions in materials.

The macroscopic magnetization originating from the aligned micro-
scopic magnetic moments can be explained with classical electromag-
netism. The classical interaction between the individual microscopic mag-
netic moments is, however, in most cases far too weak to result in spon-
taneous alignment. Thus, ferromagnetism is a result of quantum mechan-
ical effects.8 The explanation for this lies in the Pauli principle. The mi-
croscopic magnetic moment is carried by unpaired electrons that are anti-
symmetric relative to particle exchange. Because of this, no two electrons
of the same spin may occupy the same point in space. This leads to a
lower probability of finding two electrons near each other and thus to a
lower Coulombic repulsion between them, resulting in a lower total en-
ergy of the system. The lowering of the total energy due to anti-symmetry
of electrons is known as the exchange interaction and takes place only
between electrons of the same spin. Exchange interaction is a highly im-
portant concept in the electronic structure of molecules, and already in the
early work of Heitler and London on the H2 molecule, it was shown that
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the anti-symmetry of the two-electron wave function must be enforced
in order to make the molecule stable.43, 44 A quantitative expression for
this concept is derived in section 3.1.1. Because of exchange interaction,
two electrons that aredegenerate in energy have lower total energy if their
spins are aligned. Of course, in most chemical systems electrons are not
degenerate but lie on orbitals of discrete energy. The energy gained from
spin-pairing to a lower energy orbital usually surpasses the energy gained
from the exchange interaction and thus spin-alignment takes place only in
the presence of near-degenerate orbitals.

2.2 Molecular magnetic materials and delocalization of ef-
fective magnetic moment

Degeneracy of orbitals is most common in transition-metals. In purely
metallic materials, all five d-orbitals can be degenerate, and if they are
only partially occupied, the unpaired electrons will align. This leads to
paramagnetism but does not ensure ferromagnetism. Degeneracy, as well
as near-degeneracy is present also in transition metal complexes with high
local symmetry where the d-orbitals split as described by crystal field or
ligand field theories.42 Paramagnetic transition metal centers are common
magnetic building blocks of molecular magnetic materials. These types
of materials can also be built with purely organic radicals. In general,
paramagnetic organic species are much less stable than paramagnetic tran-
sition metal centers, and magnetic properties (other than diamagnetism)
are much rarer in organic materials.2 Another class of organic compounds
that can be characterized by magnetic coupling constants are diradicals.
These compounds contain two unpaired electrons lying on different or-
bitals in singlet or triplet configuration. A diradical system can also be in-
terpreted as a partially dissociated bond. In order for a magnetic material
to show spontaneous spin-alignment there must be sufficient exchange
interaction between the paramagnetic units. This can take place either
through space or by the mediation of other electrons in a process known
as superexchange. A textbook example of such a system is MnO where
the antiferromagnetic interaction between the Mn atoms is mediated by
a p-orbital of the O atom lying on the Mn−O−Mn axis.45 In both transi-
tion metal centers and organic radicals the magnetic moment is carried by
singly occupied molecular orbitals (SOMOs). In transition metal centers
these are usually well localized near the atom they are associated with.
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Figure 2: A highly localized singly occupied molecular orbital of [Cu2Cl6] 2 – anion.

Figure 3: The singly occupied molecular orbital of a) a phenalenyl radical and b) a graphene sheet.

Figure 2 shows the highly localized singly occupied molecular orbitals of
the [Cu2Cl6] 2 – anion. In organometallic systems the magnetic moment
can however be delocalized into the ligands and in purely organic radi-
cals the SOMOs can be delocalized over the entire molecular skeleton.2, 3, 7

Examples of such systems are the phenalenyl radical (Figure 3a)46 and, in
a more extreme case, a fragment of a graphene sheet (Figure 3b).47

The delocalized nature of the SOMOs in some magnetic systems is con-
trary to the classical localized nature of magnetic centers in Heisenberg’s
model. The magnetic centers are well defined points in space whereas
the quantum nature of electrons means they are delocalized.36 In order
to study interactions between magnetic centers the molecular system un-
der study must be divided into subsystems over which the effective mag-
netic moment is localized. Transition metal clusters are relatively easy to
divide into magnetic units consisting of the transition metal atoms with
well localized SOMOs. In highly delocalized organic or organometallic
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systems assigning the SOMOs to a single point in space becomes rather
arbitrary. In any case, this division is never theoretically rigorous as the
spin—defined by the eigenvalues of the operators Ŝ2 and Ŝz—is a prop-
erty of the full many body wave function and not any subsystem of it.36

To overcome this problem, there has been considerable interest over the
past decade in developing a method to partition 〈Ŝ2〉 into atomic contri-
butions.48–52

Despite these inconsistencies the central idea of Heisenberg’s theory—
interacting magnetic subunits—remains an attractive approach. In the-
oretical magneto-chemistry one is usually interested in this interaction
and Heisenberg’s theory is by far the most common approach to model-
ing magnetic interactions in quantum chemistry.7 The Heisenberg model
is also the basis of the widely successful Heisenberg–Dirac–van Vleck
Hamiltonian introduced in the next section.

2.3 Spin-Hamiltonians

The spin of an electron is a relativistic four dimensional property and thus
a truly rigorous treatment of magnetic interactions would require use of
the Dirac equation.36, 53–55 In practice, however, spin interactions can often
be treated by a spin-Hamiltonian. Such Hamiltonians describe the lower
energy spectrum of spin eigenstates. A spin state is defined by the total
spin quantum number S and the quantum number corresponding to its
z-component MS . The z-component is chosen by definition and the theory
could easily be formulated by choosing any one of the components. The
energetics related to properties other than spin are considered by the ex-
act non-relativistic Hamiltonian or some model Hamiltonian based on it.
In molecular magnetism the most common spin-Hamiltonian used is the
Heisenberg–Dirac–van Vleck (HDV) Hamiltonian

ĤHDV = −
∑
〈i,j〉

JijŜi · Ŝj , (1)

where Jij is the magnetic coupling constant between magnetic centers i
and j, Ŝi and Ŝj are local magnetic moment operators acting on the cen-
ters i and j, and the 〈i,j〉 symbol indicates that the sum runs over lattice
neighbors only.39, 41, 56–58 The Hamiltonian describes the lower energy spec-
trum of isotropic magnetic interactions in a system of localized spins in
the absence of an external magnetic field. It should be noted when mak-
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ing comparisons with other works that some authors use 2Jij instead of
Jij and may discard the negative sign in equation (1).

The HDV Hamiltonian is originally phenomenological39 but can be rig-
orously derived from the exact Hamiltonian through the use of the ef-
fective Hamiltonian theory.7, 8, 59–64 The HDV Hamiltonian provides the
simplest way to describe magnetic coupling in a large variety of chemical
compounds, but it is by no means the most complete description of mag-
netic interactions. When an effective Hamiltonian is derived in an ab initio
manner some terms that would need to vanish in order to reproduce equa-
tion (1) may not necessarily do so. For example, Moreira et al. have shown
that in periodic calculations of NiO and K2NiF4 systems a biquadratic term
remains in the effective Hamiltonian:65

Ĥeff = −
∑
〈i,j〉

Jij

{
Ŝi · Ŝj + λ(Ŝi · Ŝj)2

}
. (2)

However, the biquadratic term is a four-particle operator and is not
present in any system with less than four magnetic centers. The most com-
mon magnetic coupling problems in quantum chemistry involve only two
centers. In this case Nesbet has suggested that two magnetic centers with
total spin of S at both centers should behave exactly as the HDV Hamil-
tonian predicts.8, 66, 67 Thus, assuming a priori the applicability of the HDV
Hamiltonian to a magnetic interaction problem is justified in the case of
two interacting magnetic centers. Equation (2) serves to warn that in sys-
tems of a large number of interacting magnetic subunits one must be care-
ful when assuming the absence of higher order terms.

As mentioned earlier, the HDV Hamiltonian describes a system of lo-
calized magnetic moments. The model is, however, applied also to mag-
netic systems with some degree of delocalization in the SOMOs.7, 25, 68, 69

The numerical results show that the model performs very well in these
systems and even systems of highly delocalized magnetic moment such as
the phenalenyl radical.70, 71 For organic magnetic systems, an alternative
approach has also been suggested that employs spin-polarization densi-
ties in addition to effective magnetic moments.72 Spin-polarization den-
sity ρ = nα(r)− nβ(r) is the difference between the electron densities of α
and β electrons. This introduces a degree of delocalization into the model.
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The first model was devised by McConnell72 in the early sixties:

ĤMcConnell = −ŜA · ŜB
∑
i

∑
j

JABij ρAi ρ
B
j . (3)

ŜA and ŜB are total spin operators acting on magnetic subunits A and B,
and ρAi and ρBj are spin-polarization densities of atoms i and j belonging
to subunits A and B. The magnetic coupling constant, Jij , is evaluated in
terms of valence bond theory44 and is thus not necessarily the same as in
the HDV Hamiltonian. Equation (3) is based on equation (1) but cannot be
derived from it in any rigorous way. This phenomenological nature of the
McConnell Hamiltonian has been criticized.73 Paul and Misra have very
recently proposed a rigorous approach to obtaining effective Hamiltoni-
ans in terms of spin-polarization density and applied these to calculation
of magnetic coupling constants.74 Their approach also offers some theo-
retical justfication for equation (3). Practically all modern DFT approaches
however employ the HDV Hamiltonian, and it will be the model of choice
in this study.7, 25

In order to relate the coupling constant Jij of the HDV Hamiltonian
to results from quantum chemical calculations, some way to relate Jij to
the energy state structure of the full system is required. Eigenstates of
the HDV Hamiltonian are the spin eigenstates of the system. Because the
squared spin operator, Ŝ2, and the operator of the z-component of spin, Ŝz,
commute with the exact Hamiltonian, spin states are also energy eigen-
states. Thus, the spin-Hamiltonian and the exact Hamiltonian share the
lower end of their spectrum. In a system of two magnetic centers the HDV
Hamiltonian takes the simple form

ĤHDV = −JŜ1 · Ŝ2 (4)

that can be written with the ladder operators Ŝ+ and Ŝ− as75

ĤHDV = −J{1
2
[(Ŝ+

1 + Ŝ+
2 )(Ŝ−1 + Ŝ−2 )+(Ŝ−1 + Ŝ−2 )(Ŝ+

1 + Ŝ+
2 )]+ Ŝz,1 · Ŝz,2}, (5)

where the subscripts 1 and 2 refer to operators acting on magnetic centers
1 and 2 and Ŝz,1 and Ŝz,2 are operators for the z-component of the spin
for centers 1 and 2 respectively. The simplest application of equation (5)
is to a system with two magnetic centers with total spins S1 = S2 = 1/2

such as many copper(II) complexes or organic diradicals.2 The system has
four possible spin eigenstates: a singlet with S = 0 and MS = 0 and three
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triplets with S = 1 and MS = 1,0, or − 1. The triplet states are degenerate
in the absence of external magnetic fields. Eigenvalues for these states
can be solved by employing equation (5) and they are 3

4
J and −1

4
J for the

singlet and triplets respectively. Thus, the magnetic coupling constant for
this system is the energy gap between the singlet and triplet states:

∆ES−T = E(S)− E(T ) = 3
4
J − (−1

4
J) = J . (6)

Equation (6) shows that if J is positive the triplet state is lower in en-
ergy and ferromagnetic (or spin-aligned) coupling is favored whereas if J
is negative anti-ferromagnetic coupling leads to lower energy. For larger
effective magnetic moments equation (5) becomes more complicated. If
S1 = S2 the Lánde interval rule76

J =
E(S − 1)− E(S)

S
(7)

can be used to map energies of the different 2S + 1 multiplet states to J .
This mapping can also be extended—although not straightforwardly—to
systems of more than two magnetic centers.77–79
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3 Magnetic interactions in electronic structure
theory

Equation (6) defines the magnetic coupling constant for a system of two
interacting magnetic centers with S1 = S2 = 1/2 as the energy gap be-
tween the singlet and triplet states. The singlet–triplet gap can be related
to more chemically intuitive concept of orbital interactions using electronic
structure theory. Also, understanding the process of calculating magnetic
coupling constants within wave function based framework is important
in order to grasp some of the concepts DFT struggles with once applied to
the same problem. For this reason, it is necessary to discuss Hartree–Fock
and configuration interaction theories in some detail.

In all subsequent derivations relativistic effects are ignored and the
Born–Oppenheimer approximation is assumed unless stated otherwise.

3.1 Fundamentals of electronic structure theory

3.1.1 Hartree–Fock theory

The Hartree–Fock (HF) theory approximates the many particle wave func-
tion as an antisymmetrized product function of single particle wave func-
tions. An energy expectation value is then calculated for the wave func-
tion using the full, many particle electronic Hamiltonian, and this expec-
tation value is treated variationally to obtain the ground state energy. The
antisymmetrized product function takes the form of a Slater determinant
ΦSD which is the exact ground state wave function of a system of non-
interacting fermions. Because in a real system the electrons interact via
Coulombic repulsion, this introduces a limit of how close HF theory can
get to the real ground state energy known as the Hartree–Fock limit EHF .
The difference betweenEHF and the true ground state energyE0 is known
as the correlation energy

Ecorr = E0 − EHF , (8)

and it is always negative.10, 12, 80
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A Slater determinant for a system of N particles has the form

ΦSD(x1,x1, . . . ,xN) =
1√
N !

det


φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) . . . φN(x2)
...

... . . . ...
φ1(xN) φ2(xN) . . . φN(xN)

 , (9)

where φi(xj) is a single particle function i of electron j known as a spinor-
bital and the factor 1/

√
N ! is a normalization constant. The spinorbitals

φi(xj) consist of a spatial function ϕi(rj) and a spin function σi(sj):

φi(xj) = ϕi(rj)σi(sj), (10)

where

σi(sj) =

{
α(sj)

β(sj)
. (11)

The vector rj contains the spatial coordinates of electron j. The spin func-
tions α(sj) and β(sj) are orthogonal and their exact mathematical form, as
well as the nature of the spin coordinate sj , are not relevant to this discus-
sion. important.10, 12

The HF energy is calculated by minimizing the energy of the Slater de-
terminant with respect to variations in the spinorbitals. The spinorbitals
must remain mutually orthogonal, and thus the minimization is a con-
strained search. This procedure is performed by the method of Lagrange
multipliers. For a system of N electrons this leads to N mutually coupled
single particle equations known as the HF equations:

f̂iφ(xi) = εiφ(xi), (12)

where f̂i is the Fock operator and εi is the energy of spinorbital i. The
spinorbitals produced as a solution to the HF equations are known as
canonical HF orbitals, and they are invariant under a unitary transforma-
tion. The Fock operator is an effective single particle operator. It is defined
as

f̂i = ĥi +
1

2

N∑
j=1

(
Ĉij − K̂ij

)
, (13)

where ĥi, Ĉij and K̂ij are the single electron, Coulomb and exchange oper-
ators respectively. The single electron operator corresponds to the kinetic
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and nuclear–electron attraction energies, the Coulomb operator to the elec-
trostatic repulsion between electrons i and j and the exchange operator to
electron exchange energy between electrons i and j due to the antisym-
metry of the N particle wave function. This is the same exchange inter-
action that is responsible for magnetic interactions. The term arises solely
because antisymmetry is enforced on the trial wave function. If a sim-
ple product function of the single particle functions was used instead of a
Slater determinant Coulombic repulsion would be the only two-electron
interaction. It should be noted that most texts use the notation Ĵij for the
Coulomb operator, but in order to avoid confusing it with the magnetic
coupling constant, Ĉij is used in this study. The operators can be defined
by the corresponding matrix elements:

hi = 〈φi(x)|ĥi|φi(x)〉

=

∫
φi
∗(x)

[
−1

2
∇2 + Vext(r)

]
φi(x)dx (14)

Cij = 〈φi(x1)φj(x2)|
1

|r1 − r2|
|φi(x1)φj(x2)〉

=

∫∫
φi
∗(x1)φj(x2)

1

|r1 − r2|
φi
∗(x1)φj(x2)dx1dx2 (15)

Kij = 〈φi(x1)φj(x2)|
1

|r1 − r2|
|φj(x1)φi(x2)〉

=

∫∫
φi
∗(x1)φj(x2)

1

|r1 − r2|
φi
∗(x1)φj(x2)dx1dx2, (16)

where Vext(r) is the Coulombic nuclear–electron attraction potential de-
fined by the nuclear geometry and charges.

It is clear from equations (12)–(16) that the orbital energies εi depend on
all the other orbitals, and thus the HF equations must be solved iteratively
with a method known as the self-consistent field (SCF) procedure. The
orbital energies and the total energy EHF can be written in terms of the
matrix elements in equations (14)–(16):

εi = hi +
1

2

N∑
j=1

(Cij −Kij) (17)

EHF =
N∑
i=1

hi +
1

2

N∑
i=1

N∑
j=1

(Cij −Kij). (18)
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The orbital energy is simply the expectation value of the corresponding
Fock operator. The total energy, however, is not the sum of orbital energies
as the Fock operator is associated with variations of the total energy, not
the energy itself. Simply summing the orbital energies leads to double
counting of some terms.

In practical implementations of HF theory, the spatial functions are ex-
panded in a finite basis:

φi(r) =
M∑
j=1

cijχj(r), (19)

whereM is the number of basis functions, cij are the expansion coefficients
and χj(r) is the jth basis function of the basis set. The basis functions
usually mimic atomic orbitals of a hydrogenic atom. These types of basis
sets fall into two categories: Slater type orbitals (STOs), where the radial
part of the hydrogenic orbital is an exponential function of the form rne−αr;
and Gaussian type orbitals (GTOs), where the radial part is a Gaussian
function of the form rne−αr

2 .10 In calculations of periodic systems a basis
consisting of plane waves can also be used. Once a basis set is chosen to
describe the spatial functions, the spin functions must be integrated out.
There are three schemes on how to do this: restricted HF (RHF) where
all orbitals are set to be doubly occupied (i.e. two electrons of opposite
spin share the same spatial orbital); unrestricted HF (UHF), where each
electron may have a unique spatial orbital; and restricted open-shell HF
(ROHF) where doubly occupied orbitals are described as in RHF and open
shell orbitals as in UHF.10, 12 The latter will not be reviewed here.

In RHF all the HF equations can be combined in a single matrix equa-
tion known as the Roothan–Hall equation:10, 12, 81, 82

FC = SCε, (20)

where

Fmn = 〈χm(r)|f̂ |χn(r)〉 =

∫
χm(r)f̂χn(r)dr

Smn = 〈χm(r)|χn(r)〉 =

∫
χm(r)χn(r)dr. (21)

F and S are the Fock and overlap matrices. C is a square matrix that
contains the expansion vectors (a vector with the coefficients cij as its ele-

15



ments) as its columns. The diagonal matrix ε contains the orbital energies.
The coefficients can be solved by diagonalizing the Fock matrix. In the
UHF formalism, the coefficients can be solved by simultaneous diagonal-
ization of two coupled matrix equations using the method of Pople and
Nesbet where all the matrices are built separately for spatial orbitals asso-
ciated to α and β spinorbitals:12, 83

FαCα = SαCαεα

FβCβ = SβCβεβ . (22)

The RHF wave function is an eigenfunction of the Ŝz and Ŝ2 operators as
the exact many-particle wave function. A UHF wave function is however
an eigenfunction of Ŝz only and does not have a clearly defined spin state.
The UHF wave function is said to be spin contaminated. An UHF solution
might also have a lower symmetry than the nuclear geometry. The singlet
UHF solution is in such a case called a broken symmetry solution.10, 12

The HF method is an independent particle model in the sense that,
even though the Fock operator in equation (13) is generated by all of the
spinorbitals, all electron–electron interactions are taken into account in an
average fashion. In other words, all the electrons move in a constant po-
tential vHFi (r) formed by all the other electrons, and therefore HF theory is
a mean field theory. This restriction is imposed on the model by approx-
imating the true wave function as a single determinant. The HF method
is usually able to reproduce about 99% of the total electronic energy of
the system. However, energies associated with chemical bonds are often
much smaller—and those associated to magnetic coupling constants even
smaller—and the remaining 1% becomes important.10 The solutions to the
HF equations can, however, be used as a basis for an expansion of the true
wave function.12

3.1.2 Electron correlation

Equation (8) defines the correlation energy as the difference between the
HF limit and the exact ground state energy. The limit arises from the sin-
gle determinant approximation in HF theory. Thus, any ab initio method
that goes beyond this approximation will recover some correlation energy
and is said to be correlated. The correlation energy is often divided to
dynamic and static electron correlation. Dynamic correlation arises from
the movement of electrons as they tend to avoid each other. This leads
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to more delocalized charge distributions than the ones produced by vari-
ational HF treatment and thus lower electron–electron Coulombic repul-
sion. Static correlation is a result of the failure of the single determinant
wave function approximation and is most prevalent in systems where a
single determinant is a very poor approximation to the true wave function.
Static correlation is often associated with degeneracy or near-degeneracy
of states such as in bond dissociation processes or transition-metal com-
plexes. These types of systems are sometimes called strongly correlated,
although this term can be used for other purposes as well. Dynamic cor-
relation is generally seen as a short range interaction and static correlation
as a long range effect. The exact division between the two types of electron
correlation is somewhat arbitrary.10, 12

It is important to note that describing electron correlation is not the
same thing as describing electron–electron interactions. HF theory em-
ploys the full non-relativistic electronic Hamiltonian which includes all
electron-electron interactions. The lack of electron correlation in the HF
model results from the failure of the single determinant wave function as
an approximation to the true ground state wave function. Electrons do in-
teract in the HF model although the form of the trial wave function forces
this interaction to take place in a mean field fashion.

3.1.3 Configuration interaction

When the Roothan–Hall equation (20) is solved, in addition to the 1/2N

occupied orbitals, M − 1/2N empty virtual orbitals are generated. By pro-
moting electrons from the occupied orbitals to the virtual orbitals, a se-
ries of singly, doubly, triply, etc., excited determinants, or configurations,
can be generated. The true interacting many particle wave function can
be expressed as an infinite expansion in a basis of configurations of the
non-interacting solution of the same system. This method is know as con-
figuration interaction (CI).10–12 The CI expansion can be written as

|ΨCI〉 = a0|ΦHF 〉+
∑
S

aS|ΦS〉+
∑
D

aD|ΦD〉+
∑
T

aT |ΦT 〉+
∑
Q

aQ|ΦQ〉+ . . .

=
∑
i=0

ai|Φi〉, (23)

where ai is an expansion coefficient and the indices S, D, T and Q refer to
singly, doubly, triply and quadruply excited determinants respectively.10, 12

17



Not all of the configurations generated from a given HF reference
wave function are eigenfunctions of the Ŝ2 operator, and thus not all are
spin eigenfunctions. As the full electronic Hamiltonian and the Ŝ2 op-
erator commute, these states are unphysical. Spin eigenfunctions can,
however, be generated by taking proper linear combinations of the non-
eigenfunction configurations. These combinations are known as config-
uration state functions (CSFs). The simplest example of such a configu-
ration is the singly excited state of the hydrogen molecule which can be
written as a linear combination of a configuration where α electron is pro-
moted to the lowest unoccupied molecular orbital (LUMO) and a configu-
ration where a β electron is promoted. For configurations with larger num-
ber of excitations, the number of determinants in a CSF increases rapidly.12

The expansion coefficients ai can be solved by diagonalizing the CI
matrix:

H00 H01 H02 . . .

H10 H11 H12 . . .

H20 H21 H22 . . .
...

...
... . . .



a0
a1
a2
...

 =


E0 0 0 . . .

0 E1 0 . . .

0 0 E2 . . .
...

...
... . . .



a0
a1
a2
...

 , (24)

where
Hij = 〈Φi|Ĥ|Φj〉. (25)

Once all the matrix elements are calculated, only a single diagonalization
is necessary. For large systems the size of the matrix becomes enormous.
Some matrix elements can, however, be eliminated. The Hamiltonian is
totally symmetric and does not operate on spin (when absence of exter-
nal fields and spin-orbit coupling is assumed). This means that matrix
elements between CSFs are zero if the direct product of the symmetries
of the respective CSFs does not produce the totally symmetric representa-
tion or if the CSFs are of different spin symmetry (singlet, doublet, triplet,
etc.). Furthermore, Brillouin’s theorem12 states that the matrix elements
between the HF reference state and singly excited configurations is zero.
Excitations from core orbitals can in most cases also be neglected. While
these excitations do affect the total energy, in chemistry one is usually in-
terested of relative energies and most chemically interesting phenomenon
take place in the valence orbitals. Thus the error introduced from the ne-
glect of core electron correlation tends to cancel out.

If all possible configurations are included in a CI expansion, all the
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electron correlation up to the basis set limit is included. This method is
known as full CI (FCI). If the basis set were infinite, the FCI solution would
be the exact solution to the non-relativistic, time-independent Schrödinger
equation within the Born–Oppenheimer approximation. In practice, how-
ever, FCI is computationally extremely exhaustive and thus only feasible
for very small systems such as diatomics. For larger systems, the expan-
sion has to be truncated at some point. The most common method is CISD
were only singly and doubly excited determinants are considered. In most
closed shell systems the majority of electron correlation can be recovered
with this method. For example, a CISD calculation for water molecule us-
ing the cc-pVDZ basis set84 reproduces 94.5% of the correlation energy.10, 85

However, in the water molecule electron correlation rises mainly from dy-
namic effects. For systems where static electron correlation plays a key
part, CISD is a poorer approximation. The higher order excitations also
become very important for systems with near-degenerate orbitals such as
in diradicals.10

3.1.4 Other electron correlation methods

A number of other correlation methods besides CI have been developed
and are widely used.10 Results obtained with DFT calculations are often
compared to results from these theories and they will be briefly introduced
here. Full theoretical descriptions can be found in the accompanying ref-
erences.

Dynamic electron correlation can be added to the HF wave function
using Møller–Plesset (MP) perturbation theory.10, 12, 86 The most commonly
used implementation is the MP2 method where the perturbation series is
truncated at the second order.87 MP methods are not variational and ex-
panding the perturbation series does not necessarily mean convergence to-
wards the exact energy. MP2 is computationally much cheaper than CISD
but is in many cases surpassed in accuracy by DFT. An advantage of MP2
over DFT is that MP2 can describe weak long range interactions such as
dispersion, though it is known to overestimate these effects.88 The MP2
method can also use an unrestricted HF reference wave function but will
suffer from the same spin contamination problem as the UHF solution.

Another widely used method to add dynamic electron correlation is
the much more accurate coupled cluster (CC) theory.9, 10 In CC theory the
exact wave function is expanded by operating on an HF reference wave
function with an exponential cluster operator eT̂ that can be expressed as
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an infinite series:

|ΨCC〉 = eT̂|ΦSD〉 =

(
1 + T̂ +

1

2
T̂2 +

1

3!
T̂3 . . .

)
|ΦSD〉. (26)

The cluster operator has the form

T̂ = T̂1 + T̂2 + T̂3 + . . . , (27)

where T̂1 creates all the singly excited determinants, T̂2 all the doubly
excited determinants and so on. If all excitations are included to the ba-
sis set limit the CC wave function is equivalent to the FCI wave function
in that basis. In any practical implementation, the CC expansion is trun-
cated at some point, most commonly at T̂2 with the CC singles and dou-
bles (CCSD) method,89 although theories with higher excitations do ex-
ist.90, 91 A commonly used “hybrid” method is CCSD(T) where the triple
excitations are included as a perturbative correction to the CCSD expan-
sion.92 The nature of the CC expansion leads, in addition to the connected
excitations such as T̂2 or T̂3, to disconnected excitations such as T̂2T̂2.
These terms make the CCSD expansion more accurate than the CISD ex-
pansion without the need of additional higher order determinants. The
difficulty that arises from the exponential form of the cluster operator is
that the optimization problem is highly nonlinear and can no longer be
solved by a simple diagonalization as in CI. The computational costs as-
sociated with CC methods are largely dependent on the optimization al-
gorithm employed but rank somewhere slightly above the correspond-
ing CI calculation with the same amount of excitations. CC methods are
in principle variational, but the commonly used optimization algorithms
are not. Regardless of this limitation, some of the most accurate bench-
mark calculations for medium sized systems are nowadays made using
CC methods.9, 93 The CCSD(T) method is often called the “gold standard
of quantum chemistry”. This is true for single reference systems, but sys-
tems with high static electron correlation require the triple excitations to
be treated iteratively (CCSDT) in order to obtain a quantitative description
of the system.13–15

Static electron correlation can be included in the wave function by us-
ing the multi-configuration self-consistent field (MCSCF) method.10, 12, 16, 17

In a MCSCF calculation, optimization of not only the CI expansion co-
efficients but also the molecular orbital expansion coefficients is carried
out. The most commonly used variation of the MCSCF method is the
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complete active space multi-configuration self-consistent field (CASSCF),
where only a small number of determinants that contribute significantly
to the total wave function (known as the active space) are optimized. This
again leads to a nonlinear optimization problem but the MCSCF equations
can be solved variationally. The CASSCF method can reliably describe
static correlation only if the active space is chosen correctly. This requires
chemical intuition and may not always be possible if the space is too large
to be computationally feasible.

Both static and dynamic electron correlation can be included in a wave
function with dynamic correlation methods using an MCSCF reference
wave function. The widely used CASPT2 method adds a second order
perturbative correction to an MCSCF wave function.18, 19 Further correla-
tion can also be added to an MCSCF wave function by using CI theory in
MRCI methods94–96 or by using CC theory in MRCC methods.97–99 Most
variations of these two approaches are truncated at the singles and dou-
bles level of approximation.

3.2 Magnetic interactions of singly occupied molecular or-
bitals

The simplest description for magnetic interactions between two unpaired
electrons in terms of electronic structure theory can be obtained by using
a basis of two SOMOs. These orbitals are assumed to lie well separated in
energy from the inner orbitals, and thus the unpaired electrons move in a
constant potential formed by rest of the electrons of the system. Most of
the interactions do take place in this limited space and this treatment does
offer qualitative results but is of course an idealization of the true problem
where all orbital interactions should be considered.

The six configurations presented in Figure 4 can be built from two elec-
trons on two orbitals φ1 and φ2. Configurations ΦD and ΦE are not spin
eigenstates, but two CSFs can be formed from them:

ΦD+E =
1√
2

(ΦD + ΦE) (28)

and
ΦD−E =

1√
2

(ΦD − ΦE). (29)

ΦA corresponds to the singlet state |S0〉 with energy E(S0). This is the
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RHF solution in this orbital basis if φ1 lies lower in energy than φ2. ΦF

corresponds to a singlet state |S2〉 with energy E(S2) and the CSF ΦD−E
to a singlet state |S1〉 with energy E(S1). Configurations ΦB, ΦC and the
CSF ΦD+E are all degenerate and correspond to the MS = 1, MS = 0 and
MS = −1 components of a triplet state |T 〉with energy E(T ).

ΦA ΦCΦB ΦD

φ1

φ2

ΦFΦE

Figure 4: All possible configurations of a system of two orbitals and two electrons.

For the following derivation a somewhat different indexing system as
in the previous equations will be employed. For the rest of this section
C12 will mean a Coulomb integral between an electron lying at orbital φ1

and one lying on φ2, while C11 is the Coulomb integral between two elec-
trons both lying on φ1. The derivation is based on the one published by
Huang and Kertesz.70 Using the expression in equation (18) energies for
the energy states described above can be written as

E(S0) = 2h1 + C11

E(S1) = h1 + h2 + C12 +K12

E(S2) = 2h2 + C22

E(T ) = h1 + h2 + C12 −K12, (30)

where the energy of the inner electrons is roughly constant for all terms
and has been excluded. Using equation (17), the orbital energies ε1 and ε2
for φ1 and φ2 respectively can be written as

ε1 = h1 + C11

ε2 = h2 + 2C12 −K12. (31)

Combining equations (30) and (31), the energies E can be rewritten as

E(S0) = 2ε1 − C11

E(S1) = ε1 + ε2 − C11 − C12 + 2K12

E(S2) = 2ε2 − 4J12 + 2K12 + C22

E(T ) = ε1 + ε2 − C11 − C12. (32)
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Owning to Brillouin’s theorem and the spin-symmetries of the energy
states, a diagonalization of the CI-matrix (equation (24)) produces three
possible solutions:

|ΨS〉 = a0|S0〉+ a2|S2〉
|ΨS

′〉 = |S1〉
|ΨT 〉 = |T 〉 (33)

with energies

E(S) = |a0|2E(S0) + |a2|2E(S2)

E(S ′) = E(S1)

E(T ) = E(T ). (34)

The singlet solution |ΨS〉 describes describes a fully covalent bond if a0 = 1

and a2 = 0. If a0 = a2 = 1/
√

2 the bond is fully dissociated and φ1 and φ2

are degenerate. Any intermediate values of a0 and a1 describe a partially
dissociated bond between the two SOMOs—i.e. a singlet diradical. |ΨS

′〉
describes a condition where two non-degenerate SOMOs interact but can-
not mix to form a molecular orbital. This situation rises, for example, if the
two SOMOs belong to different symmetry representations or are orthogo-
nal because of their nodal properties. This leads to a very weakly bound
system where both electrons lie at their respective SOMOs. In general,
|ΨS〉with a0 = 1 is the energetically preferred solution if the SOMOs over-
lap sufficiently, and the same state with a0 ≈ a2 becomes more favorable
when the two interacting orbitals are degenerate and nearly orthogonal.
|ΨS

′〉 is more favorable when the SOMOs are nearly orthogonal but not de-
generate. The different possible SOMO–SOMO interactions are presented
using molecular orbital diagrams in Figure 5.

Using equations (32) and the normalization condition |a0|2 + |a2|2 = 1,
the coupling constant for the |ΨS〉 system can be written as

J12 = E(S)− E(T ) = E(S0)− E(T )− |a2|2[E(S0)− E(S2)]

= ε1 − ε2 + C12 − |a2|2[E(S0)− E(S2)]. (35)

The negative of the HOMO–LUMO gap ε1− ε2 is less than or equal to zero
thus favoring a singlet ground state, whereas the−|a2|2[E(S0)−E(S2)] and
C12 terms are always positive (E(S0) ≤ E(S2) by definition) stabilizing the
triplet state. In general, J12 is positive only if the HOMO–LUMO gap is
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a) b)

c)

|ΨS〉 = |S0〉

φ1

φ2

|ΨS
′〉 = |S1〉

φ1

φ2

|ΨS〉 = 1√
2
|S0〉+ 1√

2
|S2〉

φ1 φ2

Figure 5: Molecular orbital diagrams of SOMO–SOMO interactions in case of a) extensive or-
bital overlap between the SOMOs resulting in strong bonding interaction, b) two non-degenerate
orthogonal SOMOs leading to nonexistent orbital mixing and c) degenerate orbitals of a fully
dissociated bond .

zero or very small as often occurs in transition metal complexes. For the
|ΨS

′〉 system the coupling constant is

J12 = E(S ′)− E(T ) = 2K12. (36)

The exchange integral K12 is always positive and thus for these kind of
systems a triplet ground state is always favored.

This somewhat lengthy excursion into electronic structure theory has
led to two mechanisms of ferromagnetic interaction between two singly
occupied molecular orbitals. The first requires a very small HOMO–
LUMO gap or degeneracy of the SOMOs. The second requires orthogonal-
ity or near-orthogonality and non-degeneracy of the SOMOs. In the latter
case, the magnitude of the magnetic coupling constant is determined by
the magnitude of the SOMO–SOMO exchange integral. Thus, the HOMO–
LUMO gaps in transition metal complexes and exchange interactions are
both key concepts in calculating quantitative values for magnetic coupling
constants. Indeed, Martin and Illas have shown that the values of mag-
netic coupling constants calculated with DFT are very much dependent
on how the exchange interactions are approximated and depend little on
the actual implementation of electron correlation.100 Obtaining reliable es-
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timates of HOMO–LUMO gaps and exchange interactions are both prob-
lematic with DFT, and thus understanding these concepts in the frame-
work of electronic structure theory is vital in order to overcome the prob-
lems in the DFT framework.20, 25
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4 Density functional theory

In its original formulation quantum theory is built around a mathematical
entity known as the wave function that is used to describe all properties
of a system and its time evolution.44, 55, 75, 80 The mathematical form of the
wave function becomes immensely complex with increasing system size.
For a system as simple as the helium atom some approximation has to
be made in order to solve an analytical form for the corresponding wave
function. Very early in the history of quantum mechanics a rivaling ap-
proach emerged that used a quantity known as the electron density in-
stead of wave function as the fundamental entity to describe a quantum
system. The electron density is a function of only three coordinates (four
if time dependence is included). The early pioneering work on this theory
by Thomas, Fermi, Bloch and Dirac10, 20, 101–104 actually precedes the wave
function based formulations of Hartree and Fock, which form the founda-
tion of modern electronic structure theory. However, the modern form of
density functional theory is a newer product originating from the work of
Hohenberg, Kohn and Sham in the sixties.26, 105

This section will introduce modern density functional theory in its
most common practical implementation, the Kohn–Sham theory. The fo-
cus of the discussion is on issues encountered when the theory is applied
to calculation of magnetic coupling constants.

4.1 Electron density as the fundamental quantity

The aim of density functional theory is to describe energy and all other
properties of a quantum system as functionals of the three-dimensional
electron density n(r).10, 20, 21, 24, 80 In wave function theory, everything that
can be known of a given state of a quantum system is contained in the
wave function Ψ associated with that state.44, 75, 80 Ψ is a function of 3N

spatial coordinates, where N is the number of particles in the system, N
spin coordinates and a time coordinate. If the system’s Hamiltonian is
independent of time and Ψ is an energy eigenstate—i.e. it is a stationary
state—it can be separated into a time-independent spatial part ψ and a
phase factor:

Ψ(r1,r2, . . . ,rN ,t) = ψ(r1,r2, . . . ,rN)e−iEt, (37)
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where E is the energy of the state Ψ. Any observable measured from
a stationary state is independent of time. From here on we will as-
sume that any state is stationary unless otherwise specified and discard
the time coordinate and the phase factor. ψ is defined by the time-
independent Schrödinger equation (also known as the energy eigenvalue
equation)44, 75, 80, 106

Ĥψ = Eψ. (38)

Equation (38) is completely defined by the Hamiltonian which for the elec-
tronic part of a many electron system of static nuclei in the absence of ex-
ternal fields takes the form

Ĥ = T̂ + V̂Ne + V̂ee

= −1

2

N∑
i=1

∇2 −
N∑
i=1

Nnuclei∑
A=1

ZA
|ri −RA|

+
N∑
i=1

N∑
j=1

1

|ri − rj|
, (39)

where T̂ , V̂Ne and V̂ee are the kinetic energy, nuclear–electron attraction
and electron–electron repulsion operators respectively. Dimensionality of
ψ grows exponentially with system size and for a large system of interact-
ing particles ψ becomes immensely complex. Equation (38) can be solved
analytically only for the simplest of systems such as the hydrogen atom.
Furthermore, the wave function is a purely mathematical entity and only
its squared modulus has a physical interpretation. Density functional the-
ory can—to some extent—offer a mathematically simpler description of
many particle systems by using a function of only three dimensions. Fur-
thermore, DFT is built around the electron density, a measurable quan-
tity.10, 80

The electron density n(r) for N electron system is defined as

n(r) = N

∫∫
. . .

∫
|Ψ(x1,x2, . . . ,xN)|2ds1dx2 . . . dxN , (40)

where the integration runs over all spin coordinates and all but one spatial
coordinate. n(r) gives the probability of finding an electron in a volume
element dr at point r in space multiplied by N . Thus, n(r) integrates to
the total number of electrons. The electron density should not be confused
with the 3N dimensional conditional probability density

P (x1,x2, . . . ,xN) = |Ψ(x1,x2, . . . ,xN)|2dr1dr2 . . . drN , (41)
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which gives the probability of finding electron 1 in a volume element dr1
at r1 when electron 2 is at r2, electron 3 is at r3 and so on. P (x1,x2, . . . ,xN)

integrates to unity. The difference between n(r) and P (x1,x2, . . . ,xN) is
that the electron density n(r) gives the probability of finding a single elec-
tron at a given point when the location of all other electrons is arbitrary
whereas P (x1,x2, . . . ,xN) gives the probability of finding all the electrons
at specific points in space.

In practical applications of DFT introduced in the next section, n(r) is
usually employed in the form of spin densities

n(r) = nα(r) + nβ(r), (42)

which are formed by separately integrating over the α and β electrons in
equation (40). Only the difference between the spin densities nα(r)−nα(r)

is a measurable quantity and nα(r) and nβ(r) themselves are theoretical
entities with no real physical meaning.

If n(r), similar to Ψ, is to be used as an entity that contains all infor-
mation of every measurable property of a system it is associated with, a
mapping of the ground state density n0(r) to the ground state energy E0

must exist. E0 is defined by the ground state wave function Ψ0 which is
completely defined by the Hamiltonian in accordance with equation (38).
The Hamiltonian for a system of stationary nuclei and N electrons (in the
absence of external fields) is defined by the nuclear charges ZA, nuclear
coordinates RA and the number of electrons N as shown in equation (39).
The electron density integrates to N , has discontinuous cusps at the nu-
clear coordinates RA due to the 1/|ri −RA| dependence of the Coulombic
potential and is related to the nuclear charges by Kato’s theorem:24, 107

ZA = − a0
2n(r)

lim
r→RA

{
dn(r)

dr

}
, (43)

where a0 is the Bohr radius. Therefore it can be reasoned that the Hamilto-
nian is completely defined by the electron density, and thus all measurable
properties of the state Ψ can also be extracted from the corresponding elec-
tron density.

The existence of a mapping between n0(r) and E0, however, was not
rigorously proven until 1964 when Hohenberg and Kohn published their
famous theorems.105 The first theorem proves through reductio ad absur-
dum that two different external potentials (i.e. potentials defined by the
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nuclear properties RA and ZA) cannot produce the same electron density,
and thus the external potential Vext is a unique functional of n(r). Vext de-
fines the last two terms in the Hamiltonian in equation (39) whereas the
first is defined by N . Therefore, the theorem proves that all measurable
properties of a given state are defined by its electron density. The second
theorem proves that the true ground state density minimizes the energy.
In other words, the energy is variational with respect to n(r). For any trial
density ñ(r) the functional will give a value Ẽ that is greater than E0 un-
less ñ(r) = n0(r). The second proof is not complete in the sense that the
variational property of the energy is true only for densities that can be as-
sociated with some external potential V̂ext. This property is known as the
V-representability of a density. This condition was later replaced by the
much weaker condition that the trial densities must originate from an an-
tisymmetric wave function in the constrained-search approach by Levy.108

This approach also lifts the restriction of the Hohenberg–Kohn theorems
to non-degenerate ground states only.

Because E0 is a functional of n0(r), so must be the individual compo-
nents that comprise E0:

E0[n0(r)] = T [n0(r)] + Eee[n0(r)] + ENe[n0(r)]. (44)

T , Eee, ENe are the kinetic, electron–electron repulsion and electron–
nuclear attraction energies respectively. The form of the last term is known
since it is the classic electrostatic interaction between a charge density and
the nuclear potential. This is also the only term that depends on the nu-
clear geometry whereas the other two are universal. The energy expres-
sion can thus be written

E0[n0(r)] =

∫
n0(r)VNedr + T [n0(r)] + Eee[n0(r)]

=

∫
n0(r)VNedr + FHK [n0(r)], (45)

where FHK [n0(r)] is the universal Hohenberg–Kohn functional. Levy’s
constrained-search approach features a functional identical to that of equa-
tion (45) except it is defined for all densities originating from an an-
tisymmetric wave function as opposed to the V-representability of the
Hohenberg–Kohn approach.

Even though the Hohenberg–Kohn theorems are remarkable from a
theoretical point of view, they merely prove the existence of a mapping
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between n0(r) and E0. They tell nothing of the actual form of the univer-
sal functional FHK [n0(r)]. Furthermore, nothing indicates that, even if the
form of FHK [n0(r)] was known, any practical application of it would be
in any way simpler than solving the exact Schrödinger equation (or Dirac
equation if relativistic effects are included). Thus, some compromises have
to be made in order to employ density functional theory to any practi-
cal quantum chemical problem. By far the most common approach is the
Kohn–Sham theory introduced in the next section.

4.2 Kohn–Sham theory

Kohn–Sham (KS) theory10, 20, 21, 24, 26 abandons the purely 3-dimensional ap-
proach of DFT and re-introduces a 4N -dimensional wave function. KS
theory assumes the existence of a wave function in the form of a Slater
determinant ΦKS(x1,x2, . . . ,xN) of N non-interacting electrons that corre-
sponds to the exact ground state electron density n0(r). The determinant
consists of a set of single particle functions {φi(r)}, and the summation
over their squared module produces the exact ground state density:

N∑
i=1

∑
s=α,β

|φi(r,s)|2 = n0(r), (46)

where the summation runs over both spatial and spin coordinates. It
should be noted that the existence of a reference state ΦKS that satisfies
equation (46) is an assumption and not proven. This issue will be dis-
cussed further in section 6.3.2. The single particle functions (or KS or-
bitals) can be solved with N single particle eigenvalue equations known
as the KS equations. These equations are in many ways analogous to HF
equations in equation (12):[

−1

2
∇2 + Veff (r)

]
φi(r) = εiφi(r)

f̂KSφi(r) = εiφi(r). (47)

f̂KS is the KS operator, the eigenvalue εi is the energy of the correspond-
ing KS orbital φi(r) and Veff (r) is the effective potential. Veff (r) is the
potential a single electron experiences as a result of averaged interaction
between rest of the electrons and the nuclear charges. The KS potential is
analogous to the HF potential. Once the form of Veff (r) is known the KS
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equations, and thus the orbital structure, can (in principle) be solved. In
other words KS theory transforms the problem of finding the correct wave
function that is an infinite series of Slater determinants into a problem of
finding an effective potential. The density of the infinitely expanded wave
function can then be expressed as a density produced from a single Slater
determinant that can be solved by the use of the effective potential. In a
strict sense, KS orbitals (and more generally the KS reference wave func-
tion) have no physical meaning as they are mere mathematical artifacts
of the KS theory. The KS theory cannot reproduce the true wave func-
tion of any interacting system.35 However, in practical applications, they
have been shown to have similar interpretative power as the canonical HF
orbitals.109

The form of the effective potential can be derived from the exact energy
expression in KS theory:

E[{φi(r)}] =TS[{φi(r)}] + C[{φi(r)}] + ENe[{φi(r)}] + EXC [{φi(r)}]

=− 1

2

N∑
i=1

∫
φ∗i (r)∇2φ∗i (r)dr

+
1

2

N∑
i=1

N∑
j=1

∫∫
|φi(r1)|2|φj(r2)|2

|r1 − r2|
dr1dr2

−
N∑
i=1

∫ Nnuclei∑
A=1

ZA|φi(r)|2

|r−RA|
dr + EXC [n(r)]. (48)

The terms in equation (48) are the non-interacting kinetic energy, Coulom-
bic repulsion between electrons, Coulombic attraction between nuclei and
electrons and the exchange-correlation (XC) functional. The first three
terms are known exactly but the last is not. The XC functional represents
everything that can not be exactly expressed in KS theory: electron correla-
tion energy, exchange energy and the component of kinetic energy arising
from these effects. It should be noted that the exchange energy is not the
same exchange energy as in HF theory but contains some spurious static
electron correlation contributions. If the energy expression in (48) is min-
imized with respect to n(r), the effective potential in equation (47) takes
the form24, 26

Veff (r1) =

∫
n(r)

|r1 − r2|
dr2 −

Nnuclei∑
A=1

ZA
|r1 −RA|

+ VXC(r1), (49)
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where the XC potential VXC(r) is defined as the functional derivative of
EXC [n(r)]:

VXC(r) ≡ δEXC [n(r)]

δn(r)
. (50)

Up to this point KS theory is exact. However, to proceed any further, an
approximation to the form of the XC potential has to be introduced. Much
of the modern theoretical study of DFT has to do with obtaining better
approximations to VXC .20, 21, 24 The number of available approximations
and their variants is tremendous.20 It is a common practice to separate the
XC functional (and thus the XC potential) into exchange and correlation
parts in these approximations:

EXC [n(r)] = EX [n(r)] + EC [n(r)] (51)

and
VXC(r) = VX(r) + VC(r). (52)

It should however be stressed that only the combined XC functional has
any real physical meaning and separated exchange and correlation poten-
tials are only mathematical entities.

The simplest approximation to VXC is the local density approxima-
tion (LDA), or the local spin-density approximation (LSDA) in the case
of open-shell systems, and their variants. In these methods the density is
assumed to behave locally like uniform electron gas. The uniform elec-
tron gas is a theoretical system for which an exact DFT solution exists.
LDA-based variants of XC potentials have enjoyed a wide success in solid
state physics but generally perform badly when applied to chemical prob-
lems.20 The LDA and LSDA XC functionals are functionals of the density
only and can thus be written as ELSDA

XC [n(r)]. The next step towards a
more accurate approximation is to write EXC as a functional of the den-
sity and its first derivative. Methods that employ ∇n(r) (or more exactly
|∇n(r)|/n(r)4/3) in their parametrization are known as generalized gradi-
ent approximations (GGA). GGA functionals, such as the BLYP functional
(which is a combination of the B88 exchange part by Becke110 and the LYP
correlation part by Lee and co-workers111, 112), can be built by parameter-
izing experimental and ab initio data. It is a common practice to combine
different approximations to exchange and correlation energies, although,
only an XC functional with both correlation and exchange parts has phys-
ical meaning. Another approach is to set parameters in such a way that
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the functional reproduces properties that the exact functional is known to
possess. Examples include the PBE functional of Perdew et al. and its pre-
decessors PW86 and PW91.113–115 LDA, LSDA and GGA functionals are
often called pure, local or semi-local functionals. Even though GGA ef-
fective potentials can in many cases produce good numerical results, the
potentials are in poor agreement with near-exact potentials extracted from
high quality ab initio wave functions, and thus, the good numerical per-
formance is often due to error cancellation.10, 116 Functionals employing
higher order derivatives of n(r), known as meta-GGA functionals are also
used but in general they do not much improve over the GGA.10 Examples
of such a functionals are the TPSS of Tao et al.117 and the M06-L of Zhao
and Truhlar.118 A much greater increase in accuracy can be obtained by
adding exact exchange energy calculated with HF theory to the GGA ex-
change energy. These functionals are known as a hybrid functionals and
will be discussed in detail in section 5.1.

It is worth mentioning at this point that in much of the literature con-
cerning DFT the terms XC functional and functional are used interchange-
ably. For instance, it is very common to speak of hybrid functionals even
though the correct term would be hybrid XC functional. This practice will
also be used in this text if the meaning is clear from the context in which
the term is used.

It is clear from equation (49) that the form of the effective potential and
thus the form of a given single particle wave function in equations (47) de-
pends on all the other single particle wave functions as in HF equations.
Thus, the KS equations have to be solved iteratively. The process is analo-
gous to HF theory introduced in section 3.1.1 and will not be repeated in
detail here. The KS orbitals are expanded in a chosen basis. The size of the
basis introduces a new approximation to the KS solution in addition to the
XC functional. The Roothan–Hall equation in KS theory is written as

FKSC = SCε

Fmn = 〈χm(r)|f̂KS|χn(r)〉 =

∫
χm(r)f̂KSχn(r)dr, (53)

where the only difference from HF theory is that instead of the FockK op-
erator, the KS operator is used. Like HF theory, KS theory can be used
in restricted (RKS) and unrestricted (UKS) formalisms. Generalization of
equation (53) to unrestricted orbitals is completely analogous to HF the-
ory. A detailed discussion of unrestricted KS theory is given in the re-
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view of Jacob and Reiher and references therein.54 Like UHF, UKS solu-
tions are not spin eigenstates. Spin-contamination in UKS reference wave
functions is, however, usually less prevalent than in their UHF counter-
parts. How the spin-contamination problem should be treated in UKS
solutions—especially in the case of magnetic coupling constants where
knowing the exact spin state is very important—is discussed in detail in
section 6.2.

4.3 DFT and multireference systems

In section 3.1.1 the magnetic coupling between two SOMOs was discussed
in terms of configuration interaction theory. The singlet solution |ΨS〉 =

a0|S0〉+ a2|S2〉 is a multireference solution when |a2| is non-negligible and
it cannot be described by a single determinant wave function. This is true
for practically every magnetic molecular system as the singlet solution to
a coupling problem leads to a very weakly bound system with low-lying
excited states. Nearly degenerate energy levels lead to high levels of static
electron correlation that can only be described by a multi-determinant
wave function.25 KS DFT is a single determinant model, and thus the KS
reference wave function in a multireference system is very dissimilar to the
true wave function. In principle, KS theory is exact, and the KS reference
wave function is just a mathematical artifact. If the exact XC functional
were known (under the assumptions discussed in section 4.2) it would be
able to overcome this problem. Gritsenko and Baerends have shown that
using an effective potential extracted from high level ab initio calculations,
the stretched H2 molecule can be described by KS theory.119 The stretched
H2 molecule is a text book example of a near-degenerate multireference
system. It is necessary in this case that the KS reference wave function
should differ considerably from its non-correlated HF counterpart in order
to include the correlation effects. However, in practice all approximation
to the XC functional will fail if the KS reference wave function differs much
from the true wave function. This is most evident in systems with strong
static electron correlation. Because of this, the common approximations
are in many cases incapable of describing multireference systems. Better
approximations such as hybrid or range-separated functionals (described
in section 5) can to some extent alleviate the problem but not remove it.120

The UKS formalism can considerably mitigate the problem of describ-
ing multireference systems as it can introduce static correlation into the
KS solutions. Numerical results from UKS calculations on multireference
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systems are often remarkably good but this is done at the expense of los-
ing the spin symmetry of the KS reference wave function.120 For the same
model system as in section 3.1.1 an RKS solution gives a doubly occupied
orbital φ1 and a virtual orbital φ2 similar to the HF solution. The UKS
(or UHF) solution gives two orbitals γ1 and γ2, both occupied by a single
electron. In the following example we will assume that the two orbitals
are identical but located at different centers as in the partly dissociated H2
molecule. These orbital form a complete set in the same space as the RKS
orbitals φ1 and φ2 and thus it must be possible to expand the UKS orbitals
in the RKS orbitals:

γ1 = (cos θ)φ1 + (sin θ)φ2

γ2 = (cos θ)φ1 − (sin θ)φ2, (54)

where θ is a mixing parameter and the trigonometric functions are used to
ensure normalization as cos2 θ+ sin2 θ = 1.121 The value of θ is determined
by solving the Pople–Nesbet equations (22). If θ = 0, then γ1 = γ2 = φ1

and the RKS and UKS solutions are identical. This solution is the state
|ΦS〉 = |S0〉 and is found when the orbital overlap S between the SOMOs
is strong. At the opposite extreme when S = 0, θ = π/4 and the bond is
fully dissociated. This solution mimics the state |ΦS〉 = 1√

2
|S0〉 + 1√

2
|S2〉.

Any value of θ between these two extremes shows some level of singlet
diradical character. A UKS solution can also mimic the singly excited |S1〉
state if the |S0〉 and |S1〉 states have different symmetry so that singly ex-
cited solution can be located as a minimum constrained to that symmetry
species.12, 121 In addition to unphysical properties arising from the break-
ing of spin symmetry, any state that is not the true ground state is inher-
ently unphysical since KS theory is a ground state theory. Gunnarsson and
Lundqvist have shown that Hohenberg–Kohn theorems and KS theory ap-
ply also to the lowest energy state of each spin symmetry.122 This means
that if a system has a singlet ground state, energy of the triplet state can
be obtained if triplet spin symmetry can be enforced on the density. How-
ever, as mentioned before, a spin symmetry can only be enforced on the
KS reference wave function and not on the density itself. Thus one must
again make the assumption that the spin state of the KS reference wave
function is a good approximation to the spin state of the true wave func-
tion. The ground state electron density does include information about all
the excited states of the system but there is no known way to access this
within the KS formalism. Numerical results do show that a UKS solution
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to a triplet state of a system with singlet ground state does offer, in many
cases, a good approximation to the true triplet state energy.20, 21, 25

If the system has higher than C1 symmetry, in addition to the spin sym-
metry, the spatial symmetry of the density will also in many cases be bro-
ken. This is most easily illustrated by considering the dissociation of the
H2 molecule. Once the nuclei are far enough apart, the UKS solution pro-
duces α electron density at one nuclei and β density at the other. No sym-
metry operation can change α density to β density and thus the resulting
total density has only C∞v symmetry. Furthermore, for singlet densities,
the spin polarization density nα(r) − nβ(r) should be zero everywhere,
but this is clearly not the case near the nuclei.121 These problems can be
averted by an interpretation developed by Perdew et al.123 where the spin
polarization density is not taken as a physical prediction of DFT, but the
on-top pair density is used instead. In the same paper it is further argued
that there is no obvious reason why the KS effective potential should have
the same symmetry as the true external potential nor why the KS reference
wave function should have the same symmetry as the true Hamiltonian.
This is further discussed in section 6.1.

By far the most widespread methods of calculating magnetic coupling
constants within the DFT framework employ the UKS method.25, 121 The
lack of proper spin symmetry introduces serious problems in calculation
of coupling constants with equation (6) which requires energies of well
defined spin states. This problem is discussed in detail in section 6.2.
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5 Higher quality approximations to the ex-
change correlation functional

Even though GGA level approximations to the XC functional introduced
in section 4.2 can produce very good results in a variety of situations, it
was not until the advent of hybrid functionals in the early nineties when
DFT became a de facto method in quantum chemistry.20, 23 The term ’hy-
brid’ stems from the fact that these functionals include (in addition to
GGA exchange) a portion of exchange energy calculated with the HF for-
malism.27, 28 This portion is often called exact exchange as HF theory takes
exchange into account in a non-approximate manner by imposing a sym-
metry constraint on the trial wave function. Since their advent a vast num-
ber of hybrid functionals and variations thereof have been developed.23, 25

These higher quality approximations to the XC functional are essential in
order to produce magnetic coupling constants within DFT framework that
are in quantitative agreement with experimental results.

In order to impose some hierarchy between different quality approxi-
mations Perdew has developed a figurative model known as the “Jacob’s
ladder” of DFT summarized in Table 1.10, 35 Steps on the ladder represent
the climb towards the exact XC functional by adding more ingredients to
the approximation. The first rung are the LDA and LSDA that are func-
tionals of the density only. The second and third rungs include GGA and
meta GGA functionals that add the first and second derivatives of the den-
sity. The fourth rung includes the addition of dependence on occupied
KS orbitals such as in hybrid functionals and range-separated function-
als. The fifth rung adds dependence on unoccupied virtual orbitals also.
Double-hybrid functionals can be included in this last category.

Table 1: Perdew’s “Jacob’s ladder” classification of XC functional approximations.

Rung Name Variables
1 LDA and LSDA n(r)
2 GGA n(r),∇n(r)
3 Meta GGA n(r),∇n(r),∇2n(r)
4 Hybrid and range-separated n(r),∇n(r),∇2n(r), exact exchange
5 Double-hybrid n(r),∇n(r),∇2n(r), exact exchange,

dependence on virtual orbitals

This section will introduce the theoretical concepts and rationale be-
hind hybrid functionals, range-separated functionals and double-hybrid
functionals. How these functionals mitigate self-interaction error, an im-
portant problem in KS theory, and its role in calculation of magnetic cou-
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pling constants are also discussed.

5.1 Hybrid functionals

The mixing of exchange energy calculated with GGA approximation with
exact energy can be theoretically justified by the adiabatic connection for-
mula.20, 21, 27, 28, 124 The formula can be derived by considering a Hamilto-
nian

Ĥ = T̂ + λV̂ee + V̂ext,λ, (55)

where T̂ and V̂ee are the kinetic and electron–electron repulsion ener-
gies as in equation (39). λ is a coupling strength parameter that can be
used to “switch on” electron–electron interactions. When λ = 0, there
is no Coulombic interaction between the electrons, and the only two-
electron term rises from the antisymmetry of the N particle wave func-
tion. When λ = 1 the electrons are fully interacting and fully correlated
as in the real physical situation. Intermediate values of λ connect the non-
interacting and interacting states in a continuous (adiabatic) fashion by
non-physical partially interacting states. The external potential (that in-
cludes the Coulombic nuclear–electron attraction) is chosen in such a way
for each value of λ that the ground state electron density of the interacting
system is retained. Using the Hellmann–Feynman theorem Langreth and
Perdew have shown that125

EXC =

∫ 1

0

EXC,λdλ, (56)

where
EXC,λ = Vee,λ − C. (57)

Vee,λ is the expectation value of the Coulombic electron–electron repulsion
for the ground state wave function produced as a solution to the KS equa-
tions with coupling constant λ. C is the Coulombic electron–electron re-
pulsion in the expression for the KS energy as in equation (48).

For a hypothetical system for which λ = 0, the HF and KS reference
wave functions would be identical if the approximate exchange energy
is replaced by HF exchange. EXC for this system includes only the ex-
change contribution, and because HF theory considers exchange exactly
the exact value for EXC can be calculated by inserting the GGA KS or-
bitals into equation (18). Since the integration in equation (56) starts from
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this limit and because exchange usually plays much larger role in EXC
than correlation, it would seem very plausible that if a portion of exact
exchange is mixed with the GGA exchange the XC approximation should
improve. This approach was first pursued by Becke in 1993 leading to the
B3PW91 XC functional.27, 28 This functional uses Becke’s 1988 exchange
functional110 and Perdew and Wang’s 1991 correlation functional115 with
the following parametrization:

EB3PW91
XC = ELSDA

XC + a(EHF
X − ELSDA

X ) + bEB
X + cEPW91

C . (58)

EHF
X is the exact exchange energy and the subscripts X and C refer to ex-

change and correlation energies, respectively, calculated with the method
in the superscript. The coefficients a = 0.20, b = 0.72 and c = 0.81 have
been determined empirically by fitting to a set of atomic data. The same
parametrization was used for the B3LYP functional by Stephens et al.30

In B3LYP the PW91 correlation part is replaced with the correlation func-
tional of Lee, Yang and Parr.111, 112 B3LYP has experienced tremendous
success and nearly two decades after its appearance it remains by far the
most popular DFT method in use.23

Later Becke parametrized a new functional known as the B1B95 that
uses only a single fitting parameter according to equation

EB1B95
XC = EGGA

XC + a(EHF
X − EGGA

XC ), (59)

where EGGA
XC is the XC energy calculated with Becke’s 1988 exchange part

and a new B95 correlation part.126 The empirical parameter is a = 0.16 or
0.28 depending on the choice of GGA. Perdew and Ernzerhof used pertur-
bation arguments instead of an empirical fit to obtain a value of a = 0.25

for the mixing parameter in equation (59).127 This in conjunction with
the PBE exchange and correlation functionals113 gives the zero parameter
PBE0 hybrid functional (also known as PBE1PBE and PBEh, although the
latter is used for other functionals as well).128, 129 The same mixing parame-
ter is also used in Adamo and Barone’s B1LYP and B1PW91 functionals.130

Zhao et al. have more recently developed a suite of meta hybrid
functionals generally known as the M06 family (or Minnesota function-
als).118, 131–133 Meta hybrids are functionals that are based on a meta GGA
functional. The M06 family is a revise of its original incarnation, the M05
family of functionals, introduced a year earlier.134, 135 All Minnesota func-
tionals are parametrized by fitting a large number of variables to exper-
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imental data. The family consists of four members: M06-L, M06, M06-
2X and M06-HF that include 0%, 27%, 54% and 100% of exact exchange
respectively. All of these functionals are parametrized and fitted to per-
form well in specific areas of chemistry, and a more detailed discussion of
their properties can be found in the corresponding references. Improved
versions of M06 and M06-2X were developed and are known as M08-SO
and M08-HF.136 However, these functionals are not widely implemented
in quantum chemistry codes.

Other hybrid functionals in common use that are not reviewed in de-
tail here include B3LYP*,137 X3LYP,138 O3LYP,139 TPSSh,117 OPBE0140 and
BMK.141

Hybrid and meta hybrid functionals can overcome much of the short-
comings of pure LSDA and GGA functionals—but not all of them. Com-
mon hybrid DFT methods such as B3LYP can sometimes fail even in fairly
simple problems.142, 143 Thus, further progress is still required until they
can be used as black box methods. The following subsections will intro-
duce some of the more recent developments in the field functional design.

5.2 Range-separated functionals

The exact exchange potential decays asymptotically as −1/r.144, 145 None
of the standard approximations to the XC functionals have this property.20

This leads to errors for example in describing charge transfer and higher
level excitations within time-dependent DFT formalism.146 For LSDA and
GGA functionals the form of the decay is exponential and they perform
very badly for the aforementioned properties. Hybrid functionals have
−c/r decay where c is the percentage of exact exchange included. This
behavior is much better than that of the GGA but not enough to com-
pletely overcome the same problems.147 Range-separated functionals aim
to remedy this problem by splitting the exchange potential to short and
long range parts and treating these in a different manner.148–151 Correla-
tion effects usually take place over much shorter range than exchange in-
teractions and thus only exchange potential is considered in the separation
process.20, 147 The separation can be achieved by partitioning the Coulomb
operator with the help of the standard error function

1

|r1 − r2|
=

1− erf(ω|r1 − r2|)
|r1 − r2|

+
erf(ω|r1 − r2|)
|r1 − r2|

, (60)
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where ω is a parameter defining the range separation. Splitting of the
Coulomb operator is known as the Coulomb-attenuated method (CAM).
The error function is computationally efficient in quantum chemistry
codes that use Gaussian type basis sets. Separation processes also exist
that use exponential separation function exp(−ω|r1 − r2|) in conjunction
with Slater type basis sets.152 A process separating the potential into three
regions (short, middle and long range) has also been proposed.147 Range-
separated functionals and the hybrid functionals introduced in the previ-
ous section both lie on the fourth rung of Perdew’s ladder classification.
From here on the term hybrid functional applies to functionals introduced
in this and the previous subsection. The term traditional hybrid functional
will be reserved for hybrids without range separation.

How the range-separated parts are treated depends on the choice of
functional. In periodic systems, the range separation can be used to in-
clude exact exchange only at short range which thus avoids many com-
putational difficulties. An example of such a model is the functional of
Heyd, Scuseria and Ernzerhof (HSE) that uses a portion of exact exchange
at short range and the PBE GGA exchange at long range.153–155 In molec-
ular calculations, it is more common to use GGA exchange at short range
and exact exchange at long range in order to reproduce the correct asymp-
totic behavior of the effective potential (the exact exchange decays physi-
cally correctly). Such a hybrid functional using the separation process of
equation (60) has the form

ELC
XC = EGGA

X (ω) + EHF
X (ω) + EGGA

C , (61)

where LC stands for long-range corrected and both of the exchange con-
tributions are now functions of the separation parameter ω. The amount of
exact exchange is zero when |r1−r2| = 0 and the amount of GGA exchange
is zero as |r1 − r2| → ∞. The LC-ωPBE model of Vydrov et al. uses the
functional form of equation (61) with a modified version of the PBE GGA
known as ωPBE and a range separation parameter ω = 0.4 bohr−1.156–158

The CAM-B3LYP method of Yanan et al.159 uses CAM with two addi-
tional parameters, α and β, added to equation (60):

1

|r1 − r2|
=

1− [α + β erf(ω|r1 − r2|)]
|r1 − r2|

+
α + β erf(ω|r1 − r2|)

|r1 − r2|
. (62)

This parametrization allows a portion of exact exchange to be included at
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Figure 6: A schematic representation of the range separation of the exchange potential in four
different types of hybrid functionals: a) the PBE0 model with 25% of exact exchange throughout
the range, b) the HSE model with 25% of exact exchange at |r1 − r2| = 0 and zero as distance
tends towards infinity, c) the LC-ωPBE model with zero exact exchange at |r1 − r2| = 0 and zero
GGA exchange at long distance and d) the CAM-B3LYP model with 20% of exact exchange at
|r1 − r2| = 0 and about 60% at long distance.

every distance. α determines how much exact exchange is included over
the whole range and β determines how much DFT exchange is present.
Values of α = 0.2 and β = 1.0 were used in the original version. A varia-
tion of this functional known as CAMY-B3LYP uses exponential functions
instead of error functions in the range separation process.160, 161 Figure 6
gives a schematic representation of the different approaches to the range
separation process.

A number of studies have shown that range-separated functionals per-
form relatively well compared to the traditional hybrid functionals in a
variety of chemical problems.156, 157, 161–164 This suggests that enforcing cor-
rect asymptotic behavior of the exchange potential does offer an improve-
ment over traditional hybrid functionals. As Riviero et al. have shown,162
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the long range behavior of the exchange potential also plays a key role in
calculation of magnetic coupling constants.

5.3 Double-hybrid functionals

Hybrid functionals are orbital-dependent in the sense that the exact ex-
change energy depends on the exact form of the occupied KS orbitals. The
next logical step in improving the approximation is to include dependence
also on the unoccupied virtual KS orbitals. In a similar way, the HF energy
depends only on the occupied orbitals, whereas the fully correlated CI en-
ergy depends on all the orbitals. The inclusion of the virtual KS orbitals
would bring DFT methods closer to wave function based correlation meth-
ods. Coupled cluster and second order perturbation theory versions of KS
theory have been proposed but none of them has achieved wide-spread
success.165–168 This prompted Grimme to design an empirical version of a
hybrid that includes a portion of correlation energy calculated with second
order perturbation theory.169 The functional—known as B2-PLYP—has the
general form

EB2−PLY P
XC = aEHF

X + (1− a)EGGA
X + (1− b)EGGA

C + bEMP2
C , (63)

where EMP2
C is the correlation energy calculated with the MP2 method

using the GGA orbitals. The GGA part uses Becke’s 1988 exchange func-
tional and the LYP correlation functional as in B3LYP. The two empirical
parameters a = 0.53 and b = 0.27 have been optimized by fitting to experi-
mental data. The first three terms are calculated in the usual self-consistent
manner, and the perturbation term is added non-iteratively as in a conven-
tional wave function based MP2 calculation.

A number of functionals that employ the form of equation (63) have
been proposed using different exchange or correlation GGA parts and co-
efficients determined by fits to different sets of chemical data. These in-
clude mPW2-PLYP that uses the modified exchange functional of Perdew
and Wang (mPW)170 and coefficients a = 0.55 and b = 0.25 and B2GP-PLYP
of Karton et al.171 with coefficients a = 0.65 and b = 0.36. It is worth not-
ing that the percentages of exact exchange in these functionals are much
higher than in traditional hybrids (20% in B3LYP and 25% in PBE0 for
example). XC functionals that include perturbative correlation energy
in an empirical fashion are collectively known as double-hybrids. Chai
and Head-Gordon172, 173 have combined the range separation and double-
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hybrid schemes to give a double-hybrid version of their earlier long-range
corrected functional ωB97X designated as ωB97X-2 in its double-hybrid
incarnation.174

Sharkas et al.175 have derived a theoretically rigorous way of building
a one-parameter density-scaled double-hybrid (DS1DH) of the form

EDS1DH
XC = aEHF

X +(1−a)EGGA
X [n]+EGGA

C [n]−a2EGGA
C [n1/a]+a

2EMP2
C . (64)

EGGA
C [n1/a] is the GGA correlation functional that is evaluated with a

scaled density n1/a(r) = ( 1
a
)3n( r

a
). a is the only empirical parameter

present in the DS1DH model. A connection to the model in equation (63)
can be drawn by neglecting the density scaling and setting EC [n1/a] ≈
EC [n]. Bremond and Adamo have very recently built a double-hybrid
based on the PBE0 hybrid functional with zero empirical parameters.176

The coefficients have been determined theoretically starting from the adi-
abatic connection formula. The model—denoted PBE0-DH—has the form

EPBE0−DH
XC =

1

2
(EHF

X + EGGA
X ) +

1

2

(
7

4
EGGA
C +

1

4
EMP2
C

)
. (65)

This model was further theoretically rationalized by Toulouse et al.177 To
date, PBE0-DH remains the only zero-parameter double-hybrid.

Double-hybrids represent the cutting edge of approximations to the
exact XC functional.178 They are also a relatively new addition to the ever
growing field of functional design and have not been tested by time like
traditional hybrids which have been standard quantum chemical tools for
well over a decade. It should also be noted that the perturbation correction
does add to the computational cost of the method. Nevertheless double-
hybrids offer new promising possibilities, including more accurate ways
to calculate values for magnetic coupling constants.179, 180

5.4 Role of self-interaction error

Self-interaction error (SIE) means the unphysical interaction of a charge
density with itself that is present in all common approximations to the XC
functional.20, 31 The Coulombic term

C[{φi(r)}] =
1

2

N∑
i=1

N∑
j=1

∫∫
|φi(r1)|2|φj(r2)|2

|r1 − r2|
dr1dr2 (66)
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in equation (48) does not vanish when i = j and thus the term produces a
Coulombic repulsion between an electron and itself. In HF theory this
problem is avoided because when i = j the Coulombic and exchange
terms become identical and the term

1

2

N∑
i=1

N∑
j=1

(Cij −Kij) (67)

in equation (18) vanishes. Thus, HF theory is SIE-free as are all elec-
tron correlation methods based on it. Because of the approximate man-
ner in which KS theory treats exchange (as well as correlation) the self-
interaction does not vanish in common approximations used in KS for-
malism. The self-interaction manifests itself as a spurious form of static
electron correlation.181–183 This problem becomes much more severe for
systems with non-integer numbers of electrons (a situation that can phys-
ically arise when a system is partitioned into subsystems).184 SIE can be
divided into two categories: one-electron SIE and N -electron SIE.31, 185, 186

One-electron SIE is easily understood by considering the hydrogen atom.
In the one electron limit there should be no electron–electron interactions
and the Coulombic and XC terms in equation (48) should cancel:

C[{φi(r)}] =
1

2

N∑
i=1

N∑
j=1

∫∫
|φi(r1)|2|φj(r2)|2

|r1 − r2|
dr1dr2 = −EXC [n(r)]

=⇒ C[{φi(r)}] + EXC [n(r)] = 0 (68)

However, all common approximations to the XC functional, including hy-
brid, range-separated and double-hybrid functionals, fail to reproduce this
limit correctly. Approximations that are one-electron SIE-free reproduce
the correct ground state density and energy for the hydrogen atom. This
does not, however, mean that they would produce the correct SIE-free en-
ergy for N -electron systems. The N -electron SIE is a much more compli-
cated property of KS theory and very difficult to formulate mathemati-
cally.185 N -electron SIE results in a phenomenon known as the delocaliza-
tion error. This behavior leads to energies for delocalized densities that
are too low.25, 187 In HF theory an opposite problem known as localization
error arises which leads to localized charge distribution being energeti-
cally more favorable.187 If an approximation to the XC functional that was
N -electron SIE-free existed, it would also be one-electron SIE-free.
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Hybrid functionals are generally thought to suffer from SIE less than
pure functionals. The inclusion of exact exchange should include a partial
cancellation of the terms in equation (68). The reduction of SIE is depen-
dent on the percentage of exact exchange included. However, even if the
percentage is 100%, SIE would still not be absent because of the correlation
contribution toEXC . Range-separated functionals that treat the long-range
exchange exactly (as in LC-ωPBE) are practically SIE-free at the long range
limit. The correlation potentials decay very quickly as dynamic correlation
is a short-range effect but a minor part still remains at the long range limit
and contributes to SIE. Range-separated functionals that include GGA ex-
change at long range (as in CAM-B3LYP) suffer from SIE throughout their
range. SIE is absent only in regions where correlation is zero and only ex-
act exchange is used. It is worth noting that functionals that are largely
empirically built (such as the M06 family) are likely to suffer less from SIE
as it is treated indirectly in the fitting process.

One-electron SIE can be corrected for any XC approximation with the
method proposed by Perdew and Zunger.188 This method removes the SIE
for each orbital individually:

EPZ
XC = EXC −

N/2∑
i=1

∑
σ=α,β

(C[ni,σ(r)] + EX [ni,σ(r)]) , (69)

where the summation runs over all KS orbitals i and both spins and ni,σ(r)

is a density produced from electronσ on orbital i:

ni,σ(r) = |φi,σ(r)|2. (70)

The Perdew–Zunger correction removes all of the one-electron SIE for
any XC functional without tampering with the functional, but it is diffi-
cult and computationally expensive to implement in practical quantum
chemistry codes. To alleviate this problem scaled versions of the correc-
tion have been designed.189, 190 SIE free functionals have also been de-
vised. These include Becke’s B05191 and Mori-Sanchez, Cohen and Yang’s
MCY functional.192 Both of the functionals include 100% of exact exchange
and employ orbital-dependent correlation schemes. However, all of these
approaches only treat the one-electron SIE and thus still suffer from N -
electron SIE that can be just as—or more so—disastrous to results in cer-
tain chemical problems such as homolytic bond cleavage.185 In fact, the
Perdew–Zunger SIE correction can worsen the performance of many func-
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tionals on thermochemical properties. This may be a consequence of dis-
turbing the balance of error cancellations in the functional approximation
by removing the one-electron SIE component.193 No definite cure exists
for N -electron SIE within the standard KS formalism. Cohen et al.194 have
tried to alleviate the problem by designing two range-separated function-
als called MCY3 and rCAM-B3LYP that are especially designed to reduce
N -electron SIE.

Ruiz et al.37 claim that SIE can lead to overestimation of magnitudes
of magnetic coupling constants by a factor of roughly two, although this
error can be compensated by projection schemes (to be introduced in sec-
tion 6.2). These results have led to some controversy.195, 196 In any case, the
N -electron SIE is by no means a minor problem. It is also rooted deep in
the foundations of KS theory, and thus a simple remedy to it is unlikely
to surface anytime soon. Acknowledging its existence is very important
in any first-principles application of KS theory to calculation of magnetic
coupling constants.
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6 Dealing with spin symmetry

The magnetic coupling constant of a system with two magnetic centers for
which S1 = S2 = 1/2 was defined in section 2.3 as the gap between the
energies of the lowest singlet and triplet states:

J = ∆ES−T = E(S)− E(T ) (71)

This simplest case of magnetic coupling will be considered exclusively in
this section. Generalization to larger values of S can be found in the cor-
responding references for non-trivial cases. Calculation of singlet–triplet
splitting is very straightforward with wave function based methods. As
discussed in section 4.3 the calculations of coupling constants requires an
unrestricted approach in the standard KS formalism. This leads to ill-
defined spin states which are eigenstates of the Ŝz operator but not of the
Ŝ2 operator and thus the use of some mapping—or a projection—of the
energies of these states to the true spin states might be required in order to
use them in equation (71). However, no consensus currently exists in the
scientific community as to how this problem should be solved. A number
of approaches have been proposed and the most common ones will be re-
viewed in this section. In addition to these, alternative formulations of KS
theory that circumvent the spin symmetry problem will also be described.
Finally, an approach that involves the time-dependent DFT will also be
briefly discussed.

In this section E(LS) and E(HS) will be used to denote low-spin and
high-spin states of a system when no clear spin state is defined and thus
the use of E(S) and E(T ) would be incorrect.

6.1 Neglect of spin symmetry

The simplest approach to dealing with spin symmetry is neglecting it and
thus setting

E(LS) ' E(S) (72)
E(HS) ' E(T ). (73)

For the ground state this approach can be justified. The ground state den-
sity is produced by a Hamiltonian of a non-interacting KS model system
with the same density as the real system. Thus, the Hamiltonian used

48



in the KS approach is not the true Hamiltonian of the system. The real
Hamiltonian must commute with Ŝ2 and Ŝz, but KS theory sets no such
limitation on the model Hamiltonian.35 The theory does not offer us any
access to the real wave function. With this reasoning the KS reference
wave function is a mere mathematical artifact, and its spin state serves no
physical interpretation. If the ground state of the system is a singlet, then
KS theory produces (in principle) the singlet density and energy. Thus,
E(LS) = E(S) applies for the ground state. However, this reasoning only
applies to the ground state and equation (71) requires the energy of the
first excited singlet or triplet state. If the ground state is a singlet then in
order to realize equation (73) an assumption has to be made that if a high-
spin configuration is enforced on the KS reference wave function the en-
ergy minimization process produces E(T ) and thus E(HS) = E(T ). There
is no theoretical justification for this other than numerical results.197–200 Il-
las et al. have argued that the numerical success is a simple coincidence
and this approach gives good results for the wrong theoretical reasons.33

Ruiz et al. have claimed that the good numerical results are due to er-
ror cancellation because of double-counting of static correlation as a result
of the N -electron SIE.37 This reasoning has, however, raised some con-
troversy.195, 196 Moreira and Illas have further argued that if one cannot
assign definite multiplicities to UKS descriptions, then KS theory should
be abandoned altogether as means to predicting magnetic coupling con-
stants.8 Thus, some physical meaning must be placed on the 〈S2〉 values
derived from the KS reference wave function.

On the other hand, it can also be argued that because the standard KS
theory is non-relativistic, it is an incomplete theory and a correct treatment
of a relativistic property such as spin symmetry can never arise from it.
Thus, one cannot make the assumption that the KS minimization process
would converge to a solution with the correct spin state even if it would
produce the correct ground state energy; the spin state must be enforced
in some ad hoc manner in order to prevent the variational procedure from
collapsing to a non-physical solution.33, 36 This line of reasoning leads back
to the argument of Moreira and Illas that either some physical meaning
must be ascribed to the KS reference wave function or the UKS approach
needs to be abandoned.
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6.2 Mapping results from unrestricted calculations

6.2.1 On the interpretation of the spin symmetry of an UKS reference
wave function

A spin projection technique to extract the value of a magnetic coupling
constant from an unrestricted single determinant calculation was first pro-
posed by Noodleman et al.201–204 This model was originally used in con-
junction with HF theory as well as the Hartree–Fock–Slater method.∗ The
HF wave function is by definition an approximation to the true wave func-
tion and thus imposing the same symmetry constraints on it is theoreti-
cally justified. However, to apply this reasoning to KS theory one must
assume that the spin state of the KS reference wave function is a reason-
able approximation to the spin state of the exact wave function. In other
words:

〈ψexact|Ŝ2|ψexact〉 ' 〈ΦKS|Ŝ2|ΦKS〉. (74)

No theoretical justification for this exists other than that ΦKS and ψexact
both produce (in principle) the exact ground state density.

A single unrestricted determinant is an eigenfunction of the Sz opera-
tor so this value can at least be uniquely defined for the KS reference wave
function. The Ŝ2 operator, however, is a two-particle operator and KS the-
ory is an effective one-electron model. Whether a two particle operator
acting on an effective single particle wave function can produce any phys-
ical result is very much questionable.36 A method has been developed to
calculate 〈Ŝ2〉 directly from the density using one- and two-particle den-
sity matrices.205, 206 This would seem a very promising way to evaluate
spin contamination in the true wave function corresponding to the den-
sity, but unfortunately two-particle density matrices are not available in
KS calculations and have to be approximated in some manner.

The commonly used projection schemes presented in the next subsec-
tion all assume, in some sense, that the spin-state of the KS reference wave
function has physical meaning.

∗The Hartree–Fock–Slater method is an early density functional approach that pre-
dates the Hohenberg–Kohn theorems and KS theory. It has enjoyed some success in the
field of solid state physics.20
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6.2.2 Projection schemes

Noodleman’s theory (also derived by Ginsberg207) aims to express the en-
ergies of the pure singlet and triplet states with the energies of broken
symmetry states.201 In the following derivation we will once again limit
the discussion to the simplest case of two SOMOs and two electrons.

Let us consider two low-spin broken symmetry determinants with
UKS orbitals γ1 and γ2

|LS1〉 =

[
γ1(r1)α(s) γ2(r1)α(s)

γ1(r2)β(s) γ2(r2)β(s)

]
and

|LS2〉 =

[
γ1(r1)β(s) γ2(r1)β(s)

γ1(r2)α(s) γ2(r2)α(s)

]
. (75)

The determinants have opposite spins but are otherwise identical. In the
high-spin state spin contamination is usually much less prevalent than in
the low-spin configuration and thus it will be assumed that

|T 〉 ' |HS〉. (76)

It is possible to express the pure singlet and triplet states as linear combi-
nations of the broken symmetry low-spin states201

|S〉 =
|LS1〉+ |LS2〉√
2 + 2〈LS1|LS2〉

|T 〉 =
|LS1〉 − |LS2〉√
2− 2〈LS1|LS2〉

, (77)

where the denominator is a normalization constant (|LS1〉 and |LS2〉 are
not orthogonal in general) and 〈LS1|LS2〉 is the overlap integral between
the broken symmetry states. By taking the energy expectation values of
equations (77), the following expressions are obtained:

E(S) = 〈S|Ĥ|S〉 =
E(LS) + 〈LS1|Ĥ|LS2〉

1 + 〈LS1|LS2〉

E(T ) = 〈T |Ĥ|T 〉 = E(HS) =
E(LS)− 〈LS1|Ĥ|LS2〉

1− 〈LS1|LS2〉
. (78)

By combining equations (71) and (78), the unknown matrix element
〈LS1|Ĥ|LS2〉 vanishes, and the magnetic coupling constant can be written
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as
J = E(S)− E(T ) =

2[(E(LS)− E(HS)]

1 + 〈LS1|LS2〉
. (79)

If spin-polarization in the orbitals outside the magnetic space defined by
γ1 and γ2 is assumed to be negligible the overlap integral reduces to the
overlap of the two interacting SOMOs:34

〈LS1|LS2〉 = 〈γ1|γ2〉. (80)

In the strongly localized (weakly interacting) limit of the SOMOs, the over-
lap can be taken to be zero and equation (79) takes the simple form201, 202

J = E(S)− E(T ) = 2[E(LS)− E(HS)]. (81)

Equation (81) is the Noodleman’s projection scheme in its most often em-
ployed form. Caballol et al. have, however, shown through explicit cal-
culations of the overlap integral that its value is rarely small enough to
be neglected.34 The expression for the magnetic coupling constant in the
weak interaction limit generalized to two spins with magnitudes SA and
SB is

J =
E(LS)− E(HS)

2|SA||SB|
. (82)

For the derivation of equation (82) see reference 201.
Ruiz et al.208 have suggested that in the strong interaction limit the

low-spin broken symmetry state represents the singlet state sufficiently
well and thus renders equation (82) to the unprojected form

J = E(LS)− E(HS) (83)

for the S1 = S2 = 1/2 case.
Yamaguchi et al.209–212 have proposed another spin projection scheme

that is valid regardless whether the interaction is strong or weak:

J =
2[E(LS)− E(HS)]

〈Ŝ2〉HS − 〈Ŝ2〉LS
. (84)

〈Ŝ2〉HS and 〈Ŝ2〉LS are the expectation values of the Ŝ2 operator calculated
for the high and low-spin determinants, respectively. A typical spin con-
tamination in a broken symmetry singlet KS reference wave function is
〈Ŝ2〉LS ≈ 1. This means that the low-spin KS reference wave function is
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a roughly 50:50 mix of the pure singlet and triplet states.33 For the triplet
state, spin contamination is much less prevalent and thus 〈Ŝ2〉HS ≈ 2.
When these values are inserted into equation (84), it reduces to Noodle-
man’s projection in the weak interaction limit in equation (81). In the
strongly interacting case the interaction approaches that of a covalent
bond and 〈Ŝ2〉LS ≈ 0. At this limit, equation (84) reduces to the unpro-
jected form of equation (83). Thus, Yamaguchi’s projection scheme repro-
duces the results of Noodleman’s projection at both interaction extremes.
The main difference between the two projection schemes is that Noodle-
man’s theory connects the extremes with the overlap integral 〈LS1|LS2〉 or
〈γ1|γ2〉whereas Yamaguchi’s theory connects them by spin contamination
of the low-spin state. Equation (84) has also been generalized by Shoji et
al. to systems with more than two interacting magnetic centers.213

In addition to schemes that project the energies of low- and high-spin
states after they have been optimized separately, research ongoing in to de-
velop schemes that project the energies during the self-consistent process
with the projected Hartree–Fock method.214, 215 This theory has originally
been designed to be used in conjunction with UHF, but a DFT implementa-
tion is also under development.216 Very recent development has also been
made by Saito and Thiel217 who implemented analytical gradients to Yam-
aguchi’s projection method. This enables geometry optimization of high
and low-spin states to be carried out within the projection scheme.

6.2.3 Mapping based on the Ising model

Another approach to mapping UKS results to the eigenstates of the HDV
Hamiltonian is to simplify the model Hamiltonian.8 Such an approach can
be achieved by using the Ising Hamiltonian which has the form

ĤIsing = −JŜz,1Ŝz,2 (85)

for a system of two magnetic centers. Equation (85) acts on the magnetic
centers 1 and 2 only with the single-particle Ŝz operator that produces a
well-defined value from a UKS reference wave function. This avoids the
need to introduce the ill-defined two-particle Ŝ2 operator to the calcula-
tion. The Ising Hamiltonian can be approximated from the HDV Hamil-
tonian by neglecting the ladder operators in the expansion of equation (5).
It should be noted that the spectra of the HDV Hamiltonian and the Ising
Hamiltonian are not identical. For example, the Ising model predicts the
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two electron states with S = 1,MS = 0 and S = 0,MS = 0 to be degenerate
whereas the HDV model does not.8 Several authors have employed the
Ising Hamiltonian to map results from UHF calculations218–220 and more
recently from UKS calculations.33, 221

For two interacting electrons it is trivial to show, that once applied on
the low- and high-spin broken symmetry states, the Ising Hamiltonian
produces energies

E(LS) = −1

4
J and E(HS) =

1

4
J (86)

and thus
J = 2[E(LS)− E(HS)]. (87)

This is again the same result that both Noodleman’s and Yamaguchi’s pro-
jection schemes produce in the weak interaction limit. The result in equa-
tion (87) has now been derived from three different contexts, although
two of these only in the weak interaction limit. Dai and Whangbo have
shown that the magnetic coupling constants between two magnetic sites
calculated both with the Ising Hamiltonian and the HDV Hamiltonian are
identical if the magnetic orbitals at the two sites do not significantly over-
lap.222, 223 This adds theoretical justification for the use of equation (87)
which is the most commonly used mapping approach (although not nec-
essarily derived from the same theoretical starting points). One serious
problem with the Ising model approach still remains. In the strong in-
teraction limit the low-spin state approaches that of a covalent bond and
thus |LS〉 → |S〉. Equation (87) does not reproduce this limit while both
equations (79) and (84) do.

6.3 Alternative DFT formulations that retain spin symme-
try of the KS reference wave function

The third alternative to treating spin symmetry problems that arise in UKS
calculations is to reformulate KS theory to a form that does not suffer from
these problems. This of course does not remove the fundamental problem
that true spin states are not defined in KS DFT. Two such approaches will
be described below. Both of them improve the standard KS theory by ex-
panding the variational entity. Complete active space multireference DFT
methods use a CI expansion of the reference wave function whereas the re-
stricted ensemble KS formalism expands the density as a linear combina-
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tion of the densities of several states. Neither of the methods has seen even
remotely as widespread success in static correlation problems as the UKS
approach has, and they remain—at the moment—theoretical curiosities.
They do, however, offer a way to circumvent the spin symmetry problems
present in the UKS solutions. These methods can also be seen as additions
to the list of higher quality approximations to the XC functional reviewed
in section 5.

6.3.1 Complete active space multireference DFT methods

Complete active space multireference DFT (CAS-MR-DFT) methods com-
bine DFT with a complete active space (CAS) expansion of a wave func-
tion. The standard wave function based CAS method partitions the orbital
space to active and inactive subspaces. The active orbitals are the ones
which include most of the chemically interesting interactions, and they
are usually chosen by using chemical intuition. The wave function within
the active space is expanded in a full CI fashion, whereas the orbitals in the
inactive space are treated with the HF formalism. Thus, the active space
includes all correlation and the inactive none. This is a very efficient mean
of including static electron correlation.10, 12 In electronic structure theory
a CAS wave function can be optimized in two ways. In a CASCI proce-
dure, only the CI expansion coefficients are optimized, and thus the energy
minimization can be done in a single diagonalization as in the standard
CI method (introduced in section 3.1.3). To further relax the wave func-
tion the molecular orbital coefficients can also be optimized in the vari-
ational process with the CASSCF method (briefly introduced in section
3.1.4). CASSCF presents a highly non-linear optimization problem that
must be solved in a self-consistent manner. Both of these methods can be
combined with DFT to yield the CASCI-DFT and CASSCF-DFT methods.
In these approaches the inactive orbitals are correlated with DFT while the
active ones are treated as in the wave function approach. This should, in
principle, increase the accuracy of the results compared to wave function
based CASCI and CASSCF methods and offer an alternative way of treat-
ing multireference problems in DFT framework.

The problem of combining correlation energies calculated with
CASCI/CASSCF and DFT formalisms is far from trivial as wave function
based methods and DFT approaches treat correlation completely differ-
ently. In any simple combination of these methods some correlation effects
end up being counted twice.224, 225 There are in general two approaches
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to overcome the double counting problem: i) employing a scheme that
projects the doubly counted energy from the XC approximation224–230 or
ii) employing a range-separated approach where the short range part is
treated with DFT and the long range part with a CAS method.231–235

In the first CAS-MR-DFT approach, the universal Hohenberg–Kohn
functional FHK [n(r)] is divided into a modified universal functional
FCAS[n(r)] and a residual correlation functional ECAS

RC [n(r)]:224–230

FHK [n(r)] = FCAS[n(r)] + ECAS
RC [n(r)]. (88)

The modified universal functional is evaluated by minimizing the expec-
tation value of the kinetic energy and electron–electron Coulombic opera-
tors on a CAS wave function ψCAS that is constrained to the ground state
density |ψCAS|2 = n0(r):

FCAS[n0(r)] = min
ψCAS→n0(r)

〈ψCAS|T̂ + V̂ee|ψCAS〉. (89)

The CAS wavefunction ψCAS is built by generating all possible deter-
minants in the active orbital subspace. The residual correlation energy
represents all correlation that is not included in FCAS[n(r)]. The modi-
fied functional accounts for all correlation included in a wave function
based CASCI calculation and the residual correlation term adds correla-
tion beyond this limit. In order to evaluate ECAS

RC [n(r)], the correlation
effects covered by FCAS[n(r)] must be projected out from the XC func-
tional used to approximate the DFT part of correlation. How the pro-
jection is handled depends on the form of the XC approximation. Fur-
thermore, the XC energy must be scaled to the length of the CAS expan-
sion. Details of this process can be found in references 225 and 224. The
value of ECAS

RC [n(r)] depends on the CAS wave function, and thus equa-
tion (88) must be evaluated in a self-consistent manner in both CASCI-
DFT and CASSCF-DFT. Earlier multireference DFT methods employing
this approach optimized the CI coefficients only, but newer developments
gravitate towards a CASSCF-DFT model.236, 237

In the second CAS-MR-DFT approach the V̂ee operator is split into short
range (SR) and long range (LR) parts using the standard error function in
the same way as introduced in the context of range-separated function-
als:231–235

V̂ee,LR =
1

2

N∑
i=1

N∑
j=1

erf(µ|r1 − r2|)
|r1 − r2|

. (90)
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The short range part is treated with KS formalism and the long range
part using a CAS expansion of the wave function. The minimization is
again done under the constraint that the CAS wave function produces
the ground state density. In this approach the universal Hohenberg–Kohn
functional has the form

FHK [n(r)] = min
ψCAS→n0(r)

{
〈ψCAS|T̂ + V̂ee,LR|ψCAS〉

+ CSR[n(r)] + EXC,SR[n(r)]

}
, (91)

where CSR[n(r)] treats the short range electron–electron interaction and
EXC,SR[n(r)] is the XC functional evaluated on the short range part of the
density.

Sharkas et al. have recently proposed a multireference DFT approach
that is very similar to the single-parameter double-hybrid of equation
(64).238 This hybrid adds a portion λ of exact exchange as well as exact
static correlation to the DFT approximation. In this approach the univer-
sal functional takes the form

FHK [n(r)] = min
ψCAS→n0(r)

{
〈ψCAS|T̂ + λV̂ee|ψCAS〉

+ (1− λ)EHF
X + (1− λ2)EC [n(r)]

}
. (92)

All CAS-MR-DFT methods depend on the virtual orbitals and are
thus rung five approximations in Perdew’s ladder classification. Double-
hybrid functionals include a portion of exact dynamic correlation in the
functional, whereas CAS-MR-DFT methods add a portion of exact static
correlation. Standard hybrid DFT can describe dynamic correlation rea-
sonably well, but it struggles in the description of static correlation that
is very important in near-degeneracy problems present in the calculation
of magnetic coupling constants. However, much like with double-hybrid
functionals, CAS-MR-DFT is still an emerging method and applications
of it are not yet (if they ever will be) widespread. The CAS-MR-DFT ap-
proaches have not yet been subject to large systematic studies, although
they have been applied to some magnetic coupling problems.71, 239
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6.3.2 Ensemble Kohn–Sham formalism

In section 4.2, it was mentioned that the KS theory makes the assumption
that it is always possible to find a single Slater determinant that produces
the ground state density. As Perdew has pointed out,35 there is no guar-
antee that this is the case. However, a rigorous proof does exist that any
physical density can be represented as an ensemble of densities produced
from various single-determinant states:240–243

n(r) =
∑
i

wini(r). (93)

A classic example of the success of ensemble densities over conventional
single determinant KS theory is the calculation of energies of orbitals that
are degenerate due to symmetry reasons. For instance, a Sc 2+ ion with a d 1

configuration should have the same energy regardless of which of the five
d-orbitals the electron occupies. However, all common approximations to
the XC functional will produce a different energy if the dz2 orbital is occu-
pied as opposed to the other four d-orbitals. This problem can be solved
by expanding the total density as an ensemble of five densities; each of
which have the unpaired electron occupying a different d-orbital.20, 244

In the KS approach the ensemble is built of densities produced from
KS orbitals

n(r) =
∑
k

pk|φk(r)|2, (94)

where pk is the occupation number of orbital k and has a value between
0 and 2. The summation runs over all orbitals, occupied and virtual.243

The expansion of equation (94) offers a way of representing the density of
a system with strong static correlation without the need to resolve to an
unrestricted approach. This avoids all the spin symmetry problems asso-
ciated with the UKS method. Ensemble densities are the DFT analogue
of a CI expansion of the wave function. An ensemble density is used as
the variational entity in the restricted ensemble-referenced Kohn–Sham
(REKS) method of Filatov and Shaik.245, 246

The REKS method will be formulated here for a system of two mag-
netic centers with spins S1 = S2 = 1/2.33, 34, 245, 246 This system can be de-
scribed by an active orbital subspace of two orbitals φr and φs occupied by
two electrons. These orbitals are the HOMO and LUMO of a conventional
KS calculation. This is again analogous to the wave function formulation
of the same system described in section 3.2. The ensemble density of such
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a system is

nREKS(r) = 2

(N−2)/2∑
k=1

|φk(r)|2 + pr|φr(r)|2 + ps|φs(r)|2, (95)

where the summation runs over all doubly occupied orbitals of the inac-
tive subspace. The active orbitals are occupied by numbers pr and ps. The
REKS energy expression for this particular type of system is

EREKS =
pr
2
EKS[. . . ,φαβr ,φ0

s, . . .] +
ps
2
EKS[. . . ,φ0

r,φ
αβ
s , . . .]

+ f(pr,ps)

{
EKS[. . . ,φαs ,φ

α
r , . . .]

− 1

2
EKS[. . . ,φαs ,φ

β
r , . . .]−

1

2
EKS[. . . ,φβs ,φ

α
r , . . .]

}
, (96)

where the superscripts of the orbitals indicate their occupations; αβ means
that the orbital is doubly occupied, α means the orbital is occupied by a
single α electron and 0 means that the orbital is vacant. The energy expres-
sion consists of the energies of the two doubly occupied states weighted
by their occupation numbers and a coupling term that includes energies of
the singly excited KS determinants. f(ps,pr) is a factor measuring the cou-
pling strength. The REKS energy is an ensemble of energies of individual
states (microstates) represented by single determinants. In the optimiza-
tion process the energy is minimized in terms of the orbital coefficients
as well as the fractional occupation numbers of the active orbitals. En-
ergies for the microstates are evaluated with the standard KS formalism
using any standard approximation to the XC functional. The functional
form of EREKS introduces static correlation in addition to the correlation
included in EXC . Much like in CAS-MR-DFT approaches, this leads to
double counting of some static correlation.

The error introduced from double counting can be minimized by a
proper choice of the coupling factor f(ps,pr). When the KS orbitals φr and
φs are degenerate and thus pr = ps = 1, the coupling strength is

f(ps,pr) =
√
pspr. (97)

Combining equations (96) and (97) yields an expression used to evaluate
the energy of a CASSCF wave function with a two-orbital-two-electron ac-
tive subspace. When the orbitals are well separated in energy (the system
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has a large HOMO–LUMO gap) the coupling strength can be extracted
from the energy functional of DFT-FON (DFT with fractional occupation
numbers) method:247

f(ps,pr) = prps. (98)

Originally a geometric average

f(ps,pr) = (prps)
3/4 (99)

of the forms (97) and (98) was used,246 but later a more advanced form
which interpolates between the asymptotic regions of (97) and (98) has
been developed:243

f(ps,pr) = (prps)
1− 1

2prps
+ δ

1+δ , (100)

where δ = 0.4. This model is shown to more efficiently reduce double
counting than that in equation (99).

The REKS method offers a very attractive approach to DFT calcula-
tions on systems with high static electron correlation. The clear advantage
of this method as compared to CAS-MR-DFT approaches is that it can em-
ploy any XC approximation used in standard KS calculations. Further-
more, it employs a functional form very similar to that used in wave func-
tion based CASSCF method that is implemented in a wide range of quan-
tum chemical codes.248 Equation (96) does however include the coupling
factor f(pr,ps) that introduces a new approximation to the DFT approach
in addition to the XC functional. The REKS method has been applied to
strong static correlation problems including the calculation of magnetic
coupling constants.243, 248 Despite its formally correct way of treating spin
symmetry, the REKS method has not, however, been shown to consider-
ably improve results compared to the UKS approach.

6.4 Spin-flip time-dependent DFT

The spin-flip time-dependent DFT (SF-TDDFT) method249–252 uses a time
dependent DFT formalism21, 253–257 to build the singlet and triplet states as
excitations from a reference state. The main advantage of this approach is
that it produces a singlet state that is nearly completely free of spin con-
tamination. TDDFT will not be reviewed in detail here; a more thorough
description can be found, for example, in references 257 and 21. The foun-
dation of TDDFT is in the Runge–Cross theorem, which proves that at
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any given time t the time-dependent density n(r,t) uniquely determines
the external potential as in the time-independent approach.253 This allows
a time-dependent perturbation, such as a semi-classical interaction with
the electric field, to be included in the ground-state Hamiltonian, which
makes it possible to use DFT as a tool in predicting excitation energies. In
SF-TDDFT the interaction is further assumed to be weak enough so that
the response function is linear. Also, the XC potential is assumed to be
independent of the frequency of the excitation so that the conventional
ground-state potential can be employed. An in-depth description of the
theoretical formulation of SF-TDDFT requires knowledge of TDDFT and
will thus be described here in a superficial manner. A detailed discussion
can be found in the review of Bernard et al.252

Figure 4 in section 3.2 shows all possible spin states that can be formed
in an orbital space of two orbitals and two electrons. The determinants
ΦA and ΦF represent the ground state singlet |S0〉 and the doubly excited
singlet |S2〉 respectively. These are the two states used to describe two-
electron systems of strong static correlation as described in section 3.2. The
determinants ΦB and ΦC describe degenerate triplet states |T1〉. A third
triplet state can be built as a CSF by combining the two singly excited
determinants ΦD and ΦE that are not by themselves spin eigenstates:

ΦD+E =
1√
2

(ΦD + ΦE). (101)

This CSF corresponds to triplet state |T2〉. The states |T1〉 and |T2〉 are
degenerate in the wave function approach but not necessarily so in SF-
TDDFT and are thus treated separately here. The SF-TDDFT approach
uses the |T1〉 state calculated with standard KS formalism as a reference
state. Single determinant KS reference wave functions corresponding to
states |S0〉, |S2〉 and also |T2〉 can be generated from the |T1〉 determinant
by a single excitation and a spin-flip. The excitation energy can also be
negative in the antiferromagnetic case, when the singlet state has lower
energy than the triplet reference state. The approximations introduced
above allow only single excitations, and thus the |S2〉 state cannot be gen-
erated from a |S0〉 reference state.

Recently two different implementations of SF-TDDFT—collinear
Tamm–Dancoff SF-TDDFT249, 258, 259 and second order spin-flip constricted
variational DFT260, 261—have been used to calculate magnetic coupling
constants.261–264 The results are comparable or slightly better than ones
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obtained with the UKS approach. What is remarkable about these results,
however, is that in all the cases spin contamination in the reference wave
function is negligible. SF-TDDFT can be seen as a way to optimize singlet
and triplet wave functions in a manner that does not lead to a variational
collapse to an unphysical spin state as happens in the standard UKS pro-
cedure does.
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7 Performance of models

DFT has been applied to a tremendous number of magnetic coupling prob-
lems with varying results. In all these studies different methodologies
such as XC functionals, basis sets and projection schemes have been ap-
plied to very different types of problems. The amount of adjustable pa-
rameters present in these models makes it possible to produce practically
any predefined result. Thus, reviewing these studies in any systematic
way that would provide some wider insight into the performance of DFT
methods in coupling problems would be neither feasible nor of practi-
cal use. Many such case studies have been briefly described in the ref-
erences 25, 68 and 69 and the references therein. Fortunately there exist
two databases which have been used (at least in part) in a number of sys-
tematic studies.163, 179, 243, 262, 265–268 The first of these has been collected by
Valero et al.,265 originally for a validation study of the M06 family of func-
tionals, and the second by Rudra et al.269

The following subsections first discuss the performance of the com-
monly applied projection schemes applied to a simple H−He−H model
system. The next subsection introduces the two databases mentioned
above. The final subsection discusses, in detail, the performance of var-
ious DFT methods that have been used to calculate coupling constants for
the compounds in these databases.

7.1 H−He−H model and projection schemes

The problem with numerical validation of any projection scheme is that
the performance of an individual projection model is always coupled with
the performance of the XC functional with which it is used. There is no
way of separating these two approximations, and thus one must always
study the performance of a functional–projection pair. Of course this ap-
plies vice versa to validations of XC approximations. The errors arising
from the inaccurate treatment of exchange and correlation can—to some
extent—be minimized by using simple enough system such that these
properties can be reasonably well described. One of the simplest magnetic
systems available is the hypothetical H−He−H moiety. It is small enough
for a full CI calculation of its singlet and triplet energies to be compu-
tationally feasible.270 Comparing the coupling constants calculated with
DFT methods to those calculated with the full CI approach, as opposed to
experimental values, offers the added advantage of neglecting all possible
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Table 2: Magnetic coupling constants (in wave numbers) calculated for the H−He−H system
with various methods, basis sets, projection schemes and H−He bond distances.

B3LYP34 B3LYP37, 212 SIC-B3LYP37 UHF34 Full CI270

Projection R(H−He) 6-31++G** 6-311++G** 6-311++G** 6-31++G** 6-311G**
1.250 Å 4196 4367 2660 1928 4860

J = E(LS)− E(HS) 1.625 Å 497 513 315 213 544
2.000 Å 55 57 210 21 50

1.250 Å 8393 8734 5320 3856
J = 2[E(LS)− E(HS)] 1.625 Å 994 1026 630 425

2.000 Å 110 114 64 42

1.250 Å 6712 3655
J =

2[E(LS)−E(HS)]
1+〈γ1|γ2〉

1.625 Å 971 423
2.000 Å 109 42

1.250 Å 6944
J =

2[E(LS)−E(HS)]

〈Ŝ2〉HS−〈Ŝ2〉LS
1.625 Å 1198

2.000 Å 138

errors that can arise from experimental procedures, structural properties
of the molecule or the size of the basis set; the DFT result is simply com-
pared with the best possible computational result within the chosen basis
set.

The H−He−H system has been used by several authors as a model
system for magnetic studies.34, 37, 163, 212, 265, 271 This study will focus on the
results of Caballol et al.,34 Ruiz et al.37 and Soda et al.212 Unfortunately all
of these studies use slightly different basis sets. This means that the differ-
ent calculations cannot be quantitatively compared but differences in the
size of the chosen basis sets in these studies should not effect the qualita-
tive trends. All studies use Pople-type split valence basis sets. Caballol
et al. have used a valence double-ζ set with two sets of diffuse functions
and two sets of polarization functions (6-31++G**). Ruiz et al. have used
a valence triple-ζ set with the same number of diffuse and polarization
functions (6-311++G**). The study of Soda et al. as well as the full CI cal-
culations both use a triplet-ζ basis set with two sets of polarization func-
tions but without any diffuse functions (6-311G**). A detailed description
on notation of basis sets can be found in reference 10. The results of these
studies are summarized in Table 2 and Table 3.

The B3LYP functional shows a very large deviation from the full CI
results with all projection schemes and the best result is obtained without
projection. Noodleman’s projection in the weak interaction limit (equation
(81), second row in Table 2) shows the worst performance. The same pro-

64



Table 3: SOMO–SOMO overlaps and 〈Ŝ2〉 values for both high and low-spin states of H−He−H
calculated with B3LYP and UHF.34

B3LYP UHF
R(H−He) 〈γ1|γ2〉 〈Ŝ2〉LS 〈Ŝ2〉HS 〈γ1|γ2〉 〈Ŝ2〉LS 〈Ŝ2〉HS

1.250 Å 0.5004 0.750 2.001 0.2347 0.945 2.001
1.625 Å 0.1544 0.976 2.000 0.0761 0.994 2.000
2.000 Å 0.0484 0.998 2.000 0.0247 0.999 2.000

jection scheme that explicitly includes the overlap of the SOMOs (equation
(79), third row) performs much better although still fails to reproduce the
CI results even in a remotely quantitative manner. Yamaguchi’s projec-
tion (equation (84), bottom row) follows close behind. In stark contrast,
the Perdew–Zunger one-electron SIE-corrected B3LYP (SIC-B3LYP) with
equation (81) shows the best performance. This suggests that the single-
electron SIE plays an important role in the calculation of magnetic cou-
pling constants and leads to the failure of the B3LYP approximation as
discussed in section 5.4. Values calculated with UHF are also included in
Table 2 for comparison. As opposed to B3LYP, UHF underestimates the
magnitude of the coupling constants. This behavior is most likely due to
the localization error present in UHF whereas the UKS results suffer from
the delocalization error as a consequence of the N -electron SIE. Increasing
the size of the basis set in a B3LYP calculation from valence double-ζ to
valence triplet-ζ shows negligible improvement.

The SOMO–SOMO overlaps listed in Table 3 show that UHF produces
more localized orbitals than B3LYP. For both methods, the SOMOs are
clearly not orthogonal at bond lengths 1.250 Å and 1.625 Å. Only at the
2.000 Å distance can the 1 + 〈γ1|γ2〉 ' 1 assumption of Noodleman’s weak
interaction limit be made. This is the reason for large deviations between
the coupling constants calculated with (79) at the 1.250 Å bond length. For
both methods the low-spin states are highly spin contaminated. B3LYP
suffers from spin contamination slightly less at the 1.250 Å bond length
where the SOMO–SOMO overlap is about 0.5. At all other calculated dis-
tances 〈Ŝ2〉LS ≈ 1 for both models whereas the triplet states are practi-
cally free of spin contamination. This justifies the |T 〉 ' |HS〉 assumption
made in both Noodleman’s and Yamaguchi’s projections. Values for the
SOMO–SOMO overlap and spin contamination are not available for the
SIC-B3LYP results.

The results in Table 2 suggest that the non-projected approach is nu-
merically the most justifiable. On the other hand, the one-electron SIE
free method provides better results with the Noodleman’s projection at
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the weak interaction limit. Ruiz et al. have also calculated the coupling
constants of H−He−H with other hybrid functionals. For example, the un-
projected values calculated with B3LYP and PBE0 at 1.250 Å distance are
4367 cm−1 and 3663 cm−1, respectively.37 Thus, even for this very simple
magnetic system there are considerable functional-dependent variations.

7.2 Systematic studies

7.2.1 Magnetic coupling constant databases

The two databases discussed in this study are summarized in Table 4; the
structures of the molecular systems involved are illustrated in Figure 7.
The compounds are identified in this study by the IDs they have in the
Cambridge Structural Database272 except in cases for which there is no
deposited structure.

The database of Valero et al. contains two organic diradicals273, 274

and seven binuclear Cu complexes.275–282 The first organic diradical, α-4-
dehydrotoluene (DHT), shows strong intramolecular ferromagnetic inter-
action, whereas the second, biverdazyl, shows antiferromagnetic coupling
between two π-electrons localized in two separate rings. The Cu com-
plexes cover a wide range of magnetic coupling strengths, from highly an-
tiferromagnetic (BISDOW) to ferromagnetic (YAFZOU), as well as a large
variety of bridging ligands and coordination geometries.

The second database of Rudra et al. consists of ten binuclear complexes
of the first row transition-metals. In addition to Cu-only complexes this
set includes Cu−Cr, Cu−MnV−V, Fe−Fe, and Mn−Mn systems. The Mn
ions are present in varying oxidation states. Like the database of Valero et
al., it covers a large variety of coupling magnitudes.

With the exception of the two organic diradicals, both databases con-
sist solely of first row transition-metals with heavy emphasis on copper.
The reason is that these compounds have fairly simple, well characterized
structures with minimal zero field splitting effects that would complicate
the magnetic spectrum. Also, calculations on heavier transition metal cen-
ters require some approximation of relativistic effects.25 This would intro-
duce yet another ingredient to the ever growing pool of approximations
one must use to calculate magnetic coupling constants with DFT. How-
ever, this fairly narrow focus does introduce some bias in validation stud-
ies conducted with these databases. The low- and high-spin energies have
been calculated as single points on the potential energy surface with no ge-
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Figure 7: Structures of the open shell systems in the databases of Valero et al.265 (first three rows)
and Rudra et al.269 (last four rows). Solvent molecules and small coordinated species such as
water and nitroxide have been omitted for clarity. For full crystal structures see the references in
Table 4.
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Table 4: A summary of the magnetic coupling constant database of Valero et al.265 (listed first)
and of Rudra et al.269 (listed second).

IDa Name/formula J [cm−1] Ref.
DHT α-4-dehydrotoluene 1050 to 1749 273
Biverdazyl 1,1’,5,5’-tetramethyl-6,6’-dioxo-3,3’-biverdazyl -769 274
[Cu2Cl6] 2 – [Cu2Cl6] 2 – -40 to 0 275
YAFZOU [{Cu(phen)]}2(µ-AcO)(µ-OH)](NO3)2·H2O 111 276
XAMBUI [{Cu(dpt)}2{µ-O2C-(η5-C5H4)Fe(η5-Cp)}2] 2 277
PATFIA [{Cu(dmen)}2(µ-OMe){µ-O2C-(η5-C5H4)Fe(η5-Cp)}](ClO4)2 -11 278
CAVXUS [{Cu(petdien)}2(µ-C2O4)](PF6)2 -19 279, 280
CUAQAC02 [{Cu(H2O)}2(µ-AcO)4] -286 281
BISDOW [{Cu(bpy)(H2O)(NO3)}2(µ-C2O4)] -382 282

ICISOC [Cu2(MeC(OH)(PO3)2)2] 4 – -62 283
EDNCOX10 [(petdien)2Cu2(µ-C2O4)] 2+ -74 284
HANGOS [Mn(NH3)4Cu(oxpn)] 2+ -32 285
PUTBAH [(µ-OCH3)VO(maltolato)]2 -214 286
SUJWEZ [Ph4P]2[Fe2OCl6] -224 287
QABHAC [Mn2(µ-O)2(µ-OAc)dtne] 2+ -220 288
YETYOL [Cu2(DMPTD)(µ2-N3)(µ2-Cl)Cl2]CH3CN 168 289
PEMPEC10 [Cu2(µ-OH)2(bipym)2](NO3)2 · 4 H2O 114 290
HEWMAX [(Dopn)Cu(OH2)Cr(OCH3)L](ClO4)2 ·H2O 38 291
HEWMEB [(Dopn)Cu(µ-CH3COO)-MnL](ClO4)2 ·H2O 110 291

phen = 1,10-phenantroline oxpn = N,N’-bis(3-aminopropyl)oxamide
petdien = NNN’N”N”-pentaethyldiethylenetriamine maltolato = 3-hydroxy-2-methyl-4H-pyran-4-one
dpt = dimethylpropylenetriamine DTNE = 1,2-bis(1,4,7-triazacyclonon-1-yl)ethane
Cp = cyclopentadienyl DMPTD = 2,5-bis(pyridylmethyl)thio
dmen = NN-dimethylethylenediamine bipym = 2,2’-bipyrimidine
bpy = 2,2-bipyridine Dopn = oximato dianion
L = 1,4,7-trimethyl-1,4,7-triazacyclononane
a The IDs are those used in the Cambridge Structural Database except for the first three compounds which
have no deposited structure.

ometry optimizations. The only exception to this is the structure of DHT
which is obtained from theoretical calculations.273

7.2.2 Results

Table 5 summarizes the results from six different studies on the databases
introduced in the previous subsection. The coupling constants calculated
with B3LYP, PBE0, M06, M06-2X and M06-HF for the first database are
from the original paper of Valero et al.265 Results with the range-separated
functionals HSE and LC-ωPBE and double-hybrids B2-PLYP and B2GP-
PLYP on the same database are from the papers of Rivero et al163 and
Schwabe and Grimme,179 respectively. The results obtained for the sec-
ond database with B3LYP, HSE and LC-ωPBE are calculated by Peralta and
Melo.266 All the results with the REKS formalism have been calculated by
Moreira et al.,243 and the SF-TDDFT calculations have been performed by
Valero et al.262
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As a whole, the results mix three different types of basis sets. Valero
et al. have originally used Pople-type basis sets on their database. For
DHT, a 6-31++G** basis has been used for all atoms, whereas for the biver-
dazyl 6-31G* has been used for C, N and O atoms and 6-31++G** for H
atoms. For the transition-metal complexes, 6-3111+G has been used for
the metal centers and 6-31G* for all other atoms. The above choice of basis
sets has been employed in the B3LYP, PBE0, M06, M06-2X, M06-HF, HSE
and LC-ωPBE calculations on the first database as well as in all REKS and
SF-TDDFT calculations. The double-hybrid calculations employ Ahlrichs’
def2-SVP292–295 valence double-ζ basis set. The B3LYP, HSE and LC-ωPBE
calculations on the second database use Ahlrichs’ def-TZVP296 for transi-
tion metal centers and def-SVP292 for the rest of the atoms. The def-SVP
and def2-SVP sets are somewhat smaller than the Pople-type basis sets
originally used by Valero et al. All UKS results are projected using Noodle-
man’s projection in the weak interaction limit (equation (81)). SF-TDDFT
results are calculated with Yamaguchi’s projection (equation 84) although
spin contamination in results calculated with SF-TDDFT formalism is, in
general, negligible. REKS formalism produces pure spin states and thus
no projection has been employed for REKS data.

It is evident from Table 5 that different XC functionals and DFT for-
malisms produce highly varying results. The most extensive and consis-
tent set of data available is for the complexes YAFZOU to BISDOW. These
structures also have clearly defined experimental magnetic coupling con-
stants and therefore these complexes will be examined here in further de-
tail.

A common statistical approach to evaluating functional performance
on a set of experimentally characterized systems is to calculate the mean
absolute error (MEA) which is the average deviation of calculated values
from experimental values. Table 6 lists the MEA values and standard de-
viations of MEA for the calculated coupling constants of YAFZOU to BIS-
DOW using various functionals and DFT formalisms. The values are listed
first with Noodleman’s projection and for comparison also without projec-
tion. Based on these numbers the best results are obtained with LC-ωPBE
and B2-PLYP. PBE0 and HSE also perform reasonably well. Interestingly,
three of these functionals are based on the non-empirical PBE GGA func-
tional. If no projection is used B3LYP performs the best, followed by HSE
and PBE0.

A number of authors have pointed out that plots of experimental vs.
calculated magnetic coupling constants show very high linear correla-
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Table 5: Magnetic coupling constants (in wave numbers) calculated for various compounds us-
ing hybrid, range-separated and double hybrid functional with the UKS, SF-TDDFT and REKS
formalisms with experimental values listed for comparison..163, 179, 243, 262, 265, 266, 273–291

Compound Exp. B3LYP PBE0 M06 M06-2X M06-HF HSE LC-ωPBE
DHT 1050–1749 1924 2339 2632 2599 2641 2345 2963
Biverdazyl -769 -1224 -1313 -1184 -1185 -1226 -1336 -1636
[Cu2Cl6] 2 – -40–0 -91 -49 5 0.1 -18 -55 -15
YAFZOU 111 194 170 294 75 11 169 154
XAMBUI 2 4 3 3 0.8 0.2 3 1.5
PATFIA -11 -61 -35 -15 -19 -39 -38 -39
CAVXUS -19 -21 -16 -28 -6 -1 -17 -14
CUAQAC02 -286 -429 -346 -436 -143 -44 -357 -273
BISDOW -382 -634 -492 -218 -177 -64 -514 -371
ICISOC -62 -168.4 -127 -80.6
EDNCOX10 -74 -203.6 -166.8 -116.4
HANGOS -32 -72.8 -59.4 -37
PUTBAH -214 -200.4 -174.8 -124.8
SUJWEZ -224 -342 -285 -305.4
QABHAC -220 207 267.6 495.4
YETYOL 168 263.8 238.4 240.4
PEMPEC10 114 29.2 338.2 16.2
HEWMAX 38 151.2 21.6 93.8

REKSa REKSb SF-TDDFT SF-TDDFT SF-TDDFT SF-TDDFT

Compound B2-PLYP B2GP-PLYP B3LYP B3LYP B3LYP M06 M06-2X M06-HF
DHT 1769 1627
Biverdazyl -214 32
[Cu2Cl6] 2 – -121 -61 -342 -210 -13 35
YAFZOU 164 123 269 264 96 91 65 90
XAMBUI -15 -11 7 6.2 -1 1 0 3
PATFIA 15 19 247 139 -399 -198 -22 32
CAVXUS -17 -14 19.6 3.3 -65 -37 -8 -2
CUAQAC02 -262 -177 -158 -285 -721 -523 -129 -31
BISDOW -336 -222 -1126 -743 -181 -40
ICISOC -426 -226 -29 -8
EDNCOX10 -397 -280 -56 -8
HANGOS
PUTBAH -444 -290 -81 -3
SUJWEZ
QWABHAC
YETYOL -421 -145 194 143
PEMPEC10 35 79 104 72
HEWMAX
a The values have been calculated using the coupling function f = (prps)3/4.
b The values have been calculated using the coupling function f = (prps)

(1− 1
2prps

+ δ
1+δ

).
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tion.163, 243 This led Ko et al. to propose that a fixed scaling factor could
be used to improve the overall performance of the B3LYP functional.297

This approach is justified by assuming that B3LYP introduces a system-
atic error, due to SIE, that can be eliminated by a scaling factor. To further
study this approach, a linear fit of y = Ax + B was made to a data set
of experimental vs. calculated magnetic coupling constants for various
functionals and formalisms. The results are presented in Table 6. Most
methods show very high linear correlation indicated by the high R2 val-
ues. The worst correlation is observed with the values calculated with M06
and M06-HF using the UKS formalism, B3LYP using the REKS formalism
with the older coupling function and M06-HF with the SF-TDDFT formal-
ism. All other methods showR2 > 0.9. It should be noted that M06-2X and
M06-HF are designed for main-group chemistry and are thus expected to
perform poorly for transition-metal systems. An optimal linear fit should
have A = 1.0 and B = 0.0. The best gradient A is obtained with the LC-
ωPBE method, followed closely by B2-PLYP, M06 and B3LYP with REKS
formalism and the older coupling function. M06 yields a very large con-
stant term B and a poor correlation as discussed above. Regardless of the
negligible spin contamination in the SF-TDDFT results, all the functionals
studied herein fail with this formalism. REKS is able to produce reason-
able gradients with the older coupling function but the constant term is
very large with both coupling functions.

Table 6: The mean absolute error, its standard deviation and the R2, A and B parameters of a
linear fit made to a data set of experimental vs. calculated coupling constants.

Projected w/o projection
Method MAEa SDVb MAEa SDVb R2 A B
B3LYP 88.7 96.1 29.8 30.6 0.993 1.609 0.995
PBE0 42.8 41.9 48.8 59.7 0.995 1.299 6.42
M06 85.2 88.8 64.3 105.5 0.747 1.103 40.833
M06-2X 67.7 85.4 100.1 124.7 0.985 0.495 3.442
M06-HF 118.0 132.1 124.7 148.6 0.770 0.138 9.323
HSE 48.5 49.9 46.3 55.1 0.995 1.332 4.221
LC-ωPBE 16.8 15.9 67.0 84.2 0.986 1.007 7.944
B2-PLYP 28.0 18.8 72.8 88.8 0.981 0.968 19.227
B2GP-PLYP 54.8 64.3 93.0 112.8 0.969 0.663 17.624
REKSc/B3LYP 124.3 91.4 0.799 0.944 118.798
REKSd/B3LYP 62.9 70.5 0.954 1.328 79.253
SF-TDDFT/B3LYP 271.8 300.8 0.910 2.379 -137.363
SF-TDDFT/M06 137.3 147.7 0.957 1.684 -70.636
SF-TDDFT/M06-2X 71.3 85.9 0.988 0.473 0.306
SF-TDDFT/M06-HF 113.2 146.8 0.733 0.212 29.336
a Mean absolute error between the calculated and experimental values.
b Standard deviation of the mean absolute error.
c Coupling function f = (prps)3/4 has been used.
d Coupling function f = (prps)

(1− 1
2prps

+ δ
1+δ

) has been used.
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To summarize the discussion above, the best systematic results can be
obtained with the LC-ωPBE functional followed closely by B2-PLYP. At-
tempts to circumvent the broken symmetry problem with REKS or SF-
TDDFT are unable to improve the results. Of the traditional hybrids, PBE0
performs the best. This is most likely a result of the non-empirical design
of the functional. B3LYP and the M06 family are both fitted to thermo-
chemical data, and while this assures good performance in thermochem-
ical problems it does not guarantee that the functional performs well in
unrelated problems such as calculation of magnetic coupling constants.
The excellent performance of the LC-ωPBE model can be explained by
the lack of SIE in the long-range part of the exchange potential which is
treated as 100% HF exchange. This is in good agreement with the results
on the H−He−H system where the one-electron SIE free SIC-B3LYP per-
formed the best. B2-PLYP performs very well but its re-parametrized ver-
sion B2GP-PLYP performs roughly as well as PBE0. This would suggest
that double-hybrids do not, in general, offer a clear improvement over tra-
ditional hybrids especially considering the increased computational costs.

The good performance of the LC-ωPBE model has been demonstrated
by studies on other magnetic systems as well.266 Bandeira and Le Guen-
nic have applied a variety of DFT methods to hydrogen-bonded Cu com-
plexes and have come to the conclusion that B2-PLYP and LC-ωPBE (as
well as CAM-B3LYP) offer the best description with spin projected meth-
ods.180 They also noted that the improvement offered by double-hybrid
functionals is not worth the increased computational cost. A recent study
of Saito et al. showed that for a nitroxide dimer model system, LC-ωPBE
can nearly reproduce the results of multireference coupled cluster calcu-
lations.15 Considering the tremendous difference in computational cost
between the two models, this achievement is truly remarkable.

A much discussed aspect in the field of magnetic coupling constants
and traditional hybrid functionals is the specific amount of exact exchange
included in the functional parametrization. Various authors have sug-
gested that improved values of magnetic coupling constants can be ob-
tained by increasing the amount of exact exchange.298–301 There is some
theoretical justification for this as increasing the percentage of exact ex-
change does reduce the amount of SIE present in the functional approx-
imation and improves the long-range decay of the exchange potential.
The results in Table 6 however do not show any clear validation for this
reasoning. The M06 family of functionals shows decreasing performance
with increasing percentage of exact exchange (27% in M06, 54% in M06-
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2X and 100% in M06-HF). The percentage in the best performing tradi-
tional hybrid, PBE0, is only 25%. Also, of the two double-hybrids studied
the one that performs better, B2-PLYP, has 53% of exact exchange whereas
the worse performing B2GP-PLYP has 65%. The best approximation, LC-
ωPBE, does include 100% of exact exchange, but only in the long range
part of the exchange potential whereas at short-range there is only GGA
exchange. In a study of various DFT methods on six binuclear complexes
Ruiz has shown that CAM-B3LYP, which includes 60% of exact exchange
in the long-range part, performs only slightly worse than LC-ωPBE.267

Thus, it can be concluded that increasing the overall percentage of exact
exchange does not improve the approximation but improving the long-
range behavior of the exchange potential does.

As a final remark, it should also be mentioned that the above discus-
sion has considered only binuclear Cu complexes. The results most likely
show qualitative trends of the overall performance of these methods but
there is no guarantee that they could be generalized to other categories of
magnetic coupling problems. This is evident in the study of Ko et al.297 on
a set of organic diradicals. Their data set produced a gradient of 2.632 for
B3LYP. This is very different from the gradient of 1.609 for the Cu com-
plexes. A thorough validation study of DFT methods on magnetic cou-
pling problems would require a wide range of magnetic compounds in-
cluding organic diradicals, organic molecular magnet systems, first row
transition-metal complexes as well as heavier paramagnetic centers.
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8 Conclusions

The currently available density functional methods for the calculation
of magnetic coupling constants have been reviewed. Magnetic coupling
problems expose many of the deficiencies of practical KS theory such as
description of multireference systems and the lack of clear definition for
〈Ŝ2〉. It is commonplace to use the spin state of the KS reference wave
function as an approximation to the spin state of the true wave function
although there is little theoretical validation for this. No consensus ex-
ists as to how the broken symmetry problem of the UKS method is best
treated although spin projection schemes are routinely employed. In or-
der to enforce the correct spin symmetry of the KS reference wave function
and avert the projection process, alternative methods to the standard UKS
approach such as the REKS method have been developed. These do not,
however, show great improvement over UKS. Another problem is choos-
ing the right XC functional as no universally valid approximation exists.
Even the much used and very successful B3LYP fails in magnetic cou-
pling problems as does the highly parametrized M06 family of functionals.
Combining a functional with an inappropriate projection scheme can pro-
duce numerically good results due to error cancellation, but this approach
can hardly be theoretically justified. This is most evident in applications
of the B3LYP functional without spin projection. Despite all these prob-
lems, good results can be obtained without the need to completely aban-
don theoretical rigor. The LC-ωPBE and B2-PLYP functionals show very
good performance when coupled with a spin-projected approach. The for-
mer approach can nearly reproduce results of much higher level coupled
cluster calculations for certain systems.

The success of LC-ωPBE suggests that the key to improving functional
approximations to better suit magnetic coupling problems is the correct
treatment of self-interaction error. The one-electron self-interaction error
can be routinely corrected, but the much more mathematically compli-
cated N -electron self-interaction error is a more difficult problem for fu-
ture functional design. At present, the best approach to SIE-free func-
tionals seems to be that of LC-ωPBE, where the long-range part of the
exchange potential is treated as 100% exact exchange. The good perfor-
mance of the Perdew–Zunger self-interaction-corrected SIC-B3LYP on the
H−He−H model system suggests that removing the one-electron self-
interaction error in the short range part of LC-ωPBE could further improve
its performance.
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Overall, hybrid density functional theory can offer the means to predict
accurate values of magnetic coupling constants at a fraction of the compu-
tational cost of quantitative ab initio methods. In order to maintain at least
some theoretical rigor in the calculations, one must be careful in choosing
functionals and projection methods. Simply relying on good numerical
results, that can arise from error cancellation, might lead to validation of a
combination of methods that does not necessarily work on other types of
magnetic coupling problems.
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