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makataja
Typewriter
ISBN 978-951-39-6442-9 (PDF)



AknowledgementsI wish to express my gratitude to my advisor Stefan Geiss for suggestinginteresting topis, orreting my errors, and his ontinuing help during mystudies. Everyone at the Department of Mathematis and Statistis of theUniversity of Jyväskylä deserves my thanks for making my studies enjoyableand eduational. In partiular I want to thank Tuula Blå�eld, Taimi Närhi,Eeva Partanen and Hannele Säntti-Ahomäki for making sure I don't needto worry about the pratial work-related matters. Also, the people at theDepartment of Mathematis of the University of Innsbruk made my manyvisits there delightful.For �nanial support I am indebted to the projet "Stohasti and HarmoniAnalysis, interations, and appliations", No. 133914, of the Aademy ofFinland, as well as to the Vilho, Yrjö and Kalle Väisälä foundation of theFinnish Aademy of Siene and Letters.I am grateful to "Bebetos of Pirttilä" for always providing failities and op-ponents in any sport. Finally, I would like to thank my parents and brothersfor keeping me as sane as possible.Jyväskylä, April 2015Juha Ylinen



This thesis onsists of an introdutory part and the following artiles:List of inluded artiles[A℄ S. Geiss, J. Ylinen: Deoupling on the Wiener spae and appliationsto BSDEs. http://arxiv.org/abs/1409.5322v2[B℄ J. Ylinen: Tales and tails of BSDEs. http://arxiv.org/abs/1501.01183In the introdutory part, these artiles are referred to as [A℄ and [B℄, whereasthe other referenes will be numbered as [1℄, [2℄, . . .The author of this dissertation has atively taken part in the researh of thejoint paper [A℄.
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1 IntrodutionThe main subjet of this thesis are Bakward Stohasti Di�erential Equa-tions, BSDEs from now on, of type
Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (1)where T > 0 is a �xed time horizon and W is a d-dimensional Brownianmotion. The pair (ξ, f) is referred to as the data, and the pair (Y, Z) (orjust the proess Y ) as the solution. We dedue di�erent types of upperbounds for the variation of the solution on subintervals of [0, T ]. Theseupper bounds are given, as is usual with BSDEs, in terms of the data. In [A℄an Lp-quantity of the variation is upper bounded by an Lp-quantity of thedata, with p ∈ [2,∞). The upper bound is obtained using a new deouplingtehnique, whih also gives rise to anisotropi Besov spaes. These spaesinlude for example the Besov spaes obtained by real interpolation, and wealso show a onnetion of a ertain anisotropi Besov spae to the Malliavinderivative. In [B℄ we show that the solution is of weighted bounded meanosillation (weighted BMO), where the weight proess is given in terms ofthe data. Using the theory of weighted BMO, the variation of the solution isshown to satisfy a tail estimate that is better than what would be obtainedfrom an Lp-estimate.2 BSDEsWe start by introduing our setting and �xing some notation. In this thesiswe work on a omplete stohasti basis (Ω,F ,P, (Ft)t∈[0,T ]), where"the information" (Ft)t∈[0,T ] is given by a d-dimensional Brownian motion
W = (Wt)t∈[0,T ] with d ≥ 1, and F = FT . To be preise, (Ft)t∈[0,T ] is theaugmented natural �ltration of W . The preditable σ-algebra generated byleft-ontinuous (Ft)t∈[0,T ]-adapted proesses is denoted by P.For X ∈ L1(Ω,F ,P) and a sub-σ-algebra G ⊆ F we will use the notation
EGX = E

[

X
∣

∣ G
] for the onditional expetation of X given G. Inequalitiesonerning random variables, suh as EGX ≤ Y , hold in general only almostsurely even though this is not always expliitly mentioned. The notations 1Aand χA are reserved for the indiator funtion of a set A. That is,

1A(x) = χA(x) =

{

1 , if x ∈ A,
0 , if x 6∈ A.4



In the BSDE (1) we are given a pair (ξ, f), where the terminal value ξ is an
FT -measurable random variable (i.e. at time T you know the exat value of
ξ). The generator f : [0, T ]× Ω× R× Rd → R is assumed to be suh that

• (t, ω) 7→ f(t, ω, y, z) is (Ft)t∈[0,T ]-preditable for all (y, z) ∈ R×Rd, and
• (y, z) 7→ f(t, ω, y, z) is ontinuous for all (t, ω) ∈ [0, T ]× Ω.The solution onsists of the pair of stohasti proesses (Y, Z), where t 7→ Ytis ontinuous, Y is (Ft)t∈[0,T ]-adapted, Z is (Ft)t∈[0,T ]-preditable, and (Y, Z)satisfy (1) almost surely.1The philosophy is that if we know the struture or mehanism of ξ, and thedynamis of the system (the generator f), then we want to �nd (Y, Z). The

Y -proess starts from a deterministi onstant, and travels ontinuously intime into ξ, almost surely. An important point here is the adaptedness of Y ;at time t we know the value of Yt. The Z-proess on the other hand ats asa ontrol proess that guides Y into ξ.In the speial ase f ≡ 0, Yt equals the onditional expetation of ξ given Ft.Furthermore, if it happens to be that ξ belongs to the Malliavin Sobolev spae
D1,2, then the Clark-Oone formula tells us that Z equals the preditableprojetion of the Malliavin derivative of Y .The original motivation for studying BSDEs omes from optimal stohastiontrol theory [2℄, later onnetions to mathematial �nane were disoveredfor example in [12℄ and [19℄. BSDEs are also losely onneted to a groupof partial di�erential equations, as was already proven through a nonlinearFeynman-Ka theorem in the seminal work [27℄.The researh of BSDEs was initiated by Bismut, who introdued BSDEswith a generator f that is linear in y, z, i.e. linear BSDEs. One the aseof a uniformly Lipshitz f (in y, z) with data in L2 was handled in [26℄, theamount of related papers hugely inreased. Another important benhmarkwith a uniformly Lipshitz f is [5℄, where the ase of data in Lp with 1 ≤ p < 2is handled. A typial estimate with BSDEs is the following "apriori estimate"from [5℄:
∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Yt|
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

0

|Zr|2dr
)

1
2

∥

∥

∥

∥

∥

p

≤ Cp

[

‖ξ‖p +
∥

∥

∥

∥

∫ T

0

|f(r, 0, 0)|dr
∥

∥

∥

∥

p

]

, (2)where Cp > 0, p > 1, and ‖ · ‖p stands for ‖ · ‖Lp(Ω).For example in onnetion to utility maximization with exponential utility,the generator f may grow quadratially in the z-variable. These quadrati1This is often abbreviated to P-a.s., also to emphasize the measure used.5



BSDEs are onsidered with a bounded ξ for example in [22℄ and [19℄, and withexponential moments in ξ for example in [7℄ and [9℄. An important ingredientwhen proving the well-posedness in the quadrati ase are BMO-martingales(see Setion 5). In [10℄ the authors go a step further by onsidering martin-gales that are slieable in BMO, and this onept is exploited in this thesisas well.To give more insight into BSDEs, we onsider a basi example of asset priingas desribed in [12℄:Example 2.1. For simpliity of the presentation we assume here that theBrownian motion (Wt)t∈[0,T ] is 1-dimensional. Our market model is that wehave two assets: one riskless asset ("bank aount") with prie per unit P 0governed by the equation
dP 0

t = P 0
t rtdt, (3)where r is the interest rate, and one risky seurity (the stok) where the prieproess P 1 is modeled by the SDE

dP 1
t = P 1

t (btdt+ σtdWt) , (4)where b is the stok appreiation rate and σ is the volatility. Moreover, theoe�ients in (3) and (4) are "nie", i.e.(i) r is a preditable non-negative bounded proess,(ii) b and σ are preditable and bounded,(iii) σt 6= 0 for any t ∈ [0, T ] almost surely, and σ−1 is a bounded proess,(iv) there exists a preditable and bounded proess θ (alled the risk pre-mium) suh that bt − rt = σtθt for all t ∈ [0, T ] almost surely.We onsider a small investor who at time t deides what amount πt of thewealth Vt to invest in the stok. Sine his deisions an be based only on theurrent information (no insider trading), the proesses πt and π0
t := Vt − πtare preditable.A strategy (V, π) is self-�naning if the investor's wealth at time t onsistsof the initial wealth V0 and the losses or gains that he has obtained using

(πs)s∈[0,t]. That is, the wealth proess satis�es
Vt = V0 +

∫ t

0

π0
s

dP 0
s

P 0
s

+

∫ t

0

πs
dP 1

s

P 1
s

,6



whih, using equations (3) and (4), is equivalent to the wealth proess satis-fying the SDE
dVt = rtVtdt+ πtσt[dWt + θtdt].For this to make sense it has to also hold, P-a.s., that

∫ T

0

|πtσt|2dt <∞.The strategy is alled feasible if Vt ≥ 0 for all t ∈ [0, T ], P-a.s., i.e. noborrowing is allowed in the model.Now we onsider a non-negative European ontingent laim ξ ≥ 0 settled attime T . This is an FT -measurable random variable, and an be thoughtof as a ontrat that pays the amount ξ at maturity T . For example,
ξ = 1(K,∞)(P

1
T ) with K ∈ (0,∞) is a European ontingent laim. A buyer ofthis laim reeives one unit of urreny if the value of the stok at time Texeeds the value K. If the value of the stok at maturity is below or equalto K, then the buyer gets nothing.How muh should this laim ost at time 0? It seems fair that if we let V0 bethe prie of the laim, then it should be possible to invest this amount intothe assets P 0 and P 1 suh that at time T we have VT = ξ. This means thatwe an repliate the laim using the prie as an initial endowment. Moreover,the fair prie should be the smallest amount V0 with whih this an be done.This priniple is the basis of arbitrage-free priing of the laim.We say that a hedging strategy against a non-negative ontingent laim ξ isa feasible self-�naning strategy (V, π) suh that VT = ξ.With our assumptions, any square-integrable non-negative laim ξ an behedged, i.e. there is a hedging strategy against ξ.The fair prie (at time 0) of the laim ξ is the smallest initial endowmentneeded to hedge ξ.Now, with our assumptions, we have the following:Theorem 2.2 ([12, Theorem 1.1℄).Let ξ be a non-negative square-integrable ontingent laim. Then there existsa hedging strategy (V, π) against ξ suh that

dVt = rtVtdt+ πtσtθtdt+ πtσtdWt, VT = ξ, (5)and suh that V0 is the fair prie of the laim.
7



Now we an �nally write this as a BSDE. It follows from Theorem 2.2 that
(V, πσ) is a solution of the (linear) BSDE

Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (6)where f(t, y, z) := rty + θtz.The model used in Example 2.1 is very simple in this form. However, onean easily inorporate for example borrowing with a higher interest rate than
r, onsumption, and transation osts to the BSDE-formulation.3 DeouplingIn this Setion we reall the new general funtional mapping proedure thatwas introdued in [A℄.We assume that there are two omplete probability spaes where the random-ness is, up to nullsets, indued by a ountable family of random variables.Moreover, these two families should have the same �nite-dimensional distri-butions. In partiular we do not require this distribution to be Gaussian.Then we an map equivalene lasses of random variables from the �rst spaeto equivalene lasses of random variables in the seond spae. This is donein suh a way that we do not hange the struture of the random variable inquestion.More generally, the same proedure applies to stohasti proesses takingvalues in spaes of ontinuous funtions.This proedure an be applied to a Wiener spae as a basis for deoupling,2and as a fatorization through a anonial spae. Beause our approah isdistributional, anonial spae here refers to the sequene spae RN, but asa by-produt we an also map all random variables and proesses to thestandard Wiener spae C0([0, T ]).Some advantages of this funtional mapping proedure are that the approahis robust, but also easy to use. It is robust, sine we only assume that therandomness omes from a ountable sequene of random variables. It is alsoeasy to use sine, as one an see from the results in Setion 3.3 below, itpreserves the struture of the random objets.2Why are we interested in deoupling? See Setion 3.1 below.

8



The origins of this proedure are in [13℄, where the Lp-variation of er-tain BSDEs is onsidered. One of the assumptions in [13℄ is, that thereis an underlying di�usion (Xr)r∈[0,T ] and the terminal value of the BSDEan be written as ξ = g(Xt1, . . . , Xtn), where g is a Borel-funtion and
0 ≤ t1 < · · · < tn ≤ T . Moreover, the randomness of the generator fomes only from the di�usion, i.e. we have f(r, ω, y, z) = h(r,Xr(ω), y, z)for a measurable funtion h. These assumptions an be dropped using ourdeoupling tehnique.This deoupling also gives rise to Banah spaes of random variables known asanisotropi Besov spaes (see Setion 4). These spaes measure the frationalsmoothness of random variables.3.1 MotivationWe start this Setion by onsidering Example 2.1 in real life. Unfortunatelyit is not possible to trade ontinuously in time as is required in Theorem2.2, but instead you only trade a stok at a �nite number of time points
0 = t0 < t1 < · · · < tN = T , i.e. on a time-grid π := {t0, . . . , tN}. Tryingto repliate the option with only a �nite number of adjustments will mostlikely fail, but it is of interest to know how large the di�erene is.The same phenomenon ours if one wishes to simulate a (solution of a)BSDE; for the omputer the system needs to be disretized. That is, weevaluate our proesses only on a �nite time-grid π as before. Beause of this,there is a di�erene between the solution and the result of the simulation.This, or some norm of this, is the simulation error. Naturally, it is importantto know how large the simulation error is.To illustrate how the error aused by the time disretization an be estimated,we will follow the approah from [4, Chapter 2℄: Let T = 1 and onsider theFBSDE

Xt = x+

∫ t

0

b(Xr)dr +

∫ t

0

σ(Xr)dWr, t ∈ [0, T ],

Yt = g(XT ) +

∫ T

t

h(Xr, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (7)where x ∈ Rd, and the funtions b : Rd → Rd, σ : Rd → Rd×d, g : Rd → R,
h : Rd × R × Rd → R are assumed to be Lipshitz-ontinuous. Given atime-grid π as before, with modulus

|π| := sup
k=0,...,N−1

(tk+1 − tk),9



the Euler sheme of the forward proess X is de�ned as
Xπ

0 = x, Xπ
tk+1

= b(Xπ
tk
)∆tk + σ(Xπ

tk
)∆Wtkfor k < N , where ∆tk = tk+1− tk and ∆Wtk = Wtk+1
−Wtk . To motivate thede�nition of the bakward Euler sheme we �rst write

Ytk = Ytk+1
+

∫ tk+1

tk

h(Xr, Yr, Zr)dr −
∫ tk+1

tk

ZrdWr,and then formally approximate the righthand-side to arrive at:
Ytk ≈ Ytk+1

+ h(Xπ
tk
, Ytk , Ztk)∆tk − Ztk∆Wtk . (8)First, by taking onditional expetation given Ftk on both sides of (8), weget that

Ytk ≈ E
[

Ytk+1

∣

∣

∣
Ftk

]

+ h(Xπ
tk
, Ytk , Ztk)∆tk.Seondly, by multiplying both sides of (8) by ∆Wtk , and then taking ondi-tional expetation given Ftk , we get by It�'s isometry that

0 ≈ E
[

Ytk+1
∆Wtk

∣

∣

∣
Ftk

]

− Ztk∆tk.These steps lead to the (impliit) bakward Euler sheme
Z
π

tk
=

1

∆tk
E
[

Y π
tk+1

∆Wtk

∣

∣

∣
Ftk

]

, (9)
Y π
tk

= E
[

Y π
tk+1

∣

∣

∣
Ftk

]

+ h(Xπ
tk
, Y π

tk
, Z

π

tk
)∆tk, (10)with k < N , and Y π

T = g(Xπ
T ). We de�ne the (squared) simulation error asErr(π)2 := max

0≤k<N
E

[

sup
r∈[tk,tk+1]

|Yr − Y π
tk
|2
]

+ E

[

N−1
∑

k=0

∫ tk+1

tk

|Zr − Z
π

tk
|2dr

]

.Now, letting
Ztk =

1

∆tk
E

[
∫ tk+1

tk

Zrdr
∣

∣

∣
Ftk

]

,we de�ne the (squared) modulus of regularity of Y and Z as
10



R2
Y (π) := max

0≤k<N
E

[

sup
r∈[tk,tk+1]

|Yr − Ytk |2
]

, (11)
R2
Z(π) := E

[

N−1
∑

k=0

∫ tk+1

tk

|Zr − Ztk |2dr
]

. (12)Then it follows ([4, Proposition 2.2.1℄) that there exists a onstant C > 0,independent of π, suh thatErr(π) ≤ C
(

|π|+R2
Y (π) +R2

Z(π)
)

1
2 .Moreover, in the ase that h ≡ 0 it even follows ([4, Remark 2.2.4℄) thatthere exists a onstant c > 0 suh that

c
(

R2
Y (π) +R2

Z(π)
)

1
2 ≤ Err(π),and up to a term depending on |π| this holds also when h 6≡ 0.The above example indiates that the simulation error an be approximatedby regularity of the exat solution itself. This is one reason why we want to�nd upper bounds of |Yt − Ys| in some sense for all 0 ≤ s < t ≤ T . It is alsoan interesting task in itself. In [A℄ we onsider the Lp-quantity E|Yt−Ys|p for

2 ≤ p <∞, and in [B℄ we onsider the onditional Lp-quantity EFs |Yt − Ys|pfor 2 ≤ p <∞.The strategy in both ases was the same: we start with
EFs |Yt − Ys|p ≤ cp

[

EFs |Yt − EFsYt|p + EFs |EFsYt − Ys|p
]

, (13)where cp > 0. With p = 2 this inequality is atually an equality, with c2 = 1.The seond part in equation (13), EFs |EFsYt−Ys|p, an be estimated diretly(see Theorem 6.5) using estimates that are mostly standard. The only non-standard argument, an extension of Fe�erman's inequality (see Proposition5.4 or [B, Corollary 2.10℄), is used if f grows superlinearly in the z-variable.Now we fous on the more di�ult problem, upper bounding EFs |Yt−EFsYt|p.To explain the idea, onsider �rst the ase s = 0. Then, taking Xt to be anindependent opy of Yt, we have
1

2p
E|Yt −Xt|p ≤ E|Yt − EYt|p ≤ E|Yt −Xt|p, (14)where p ≥ 1. 11



Naturally, we want Xt to be suh that we an (without too muh of an extrae�ort) upper bound the quantity E|Yt−Xt|p mentioned above. If Xt is indeeda opy of Yt, then Xt itself should be a solution of a BSDE. This is essentialfor us; both Xt and Yt are solutions of BSDEs at time t, so we an also writetheir di�erene Xt − Yt as a solution of a BSDE at time t. After this we usean apriori estimate (similar to equation (2)) to �nd an upper bound in termsof the data.To indiate how we an handle the ase s > 0, reall that our �ltration isgenerated by the Brownian motionW , so it makes sense to �rst onsider thease Yt = Wt (for simpliity we may think that W is 1-dimensional). In thease s = 0 we took Xt to be an independent opy of Yt, and this leads usto assume that there exists (W ′
r)r∈[0,T ] whih is a Brownian motion that isindependent of W .Let now s > 0, and let us try to use W ′ to �nd a random variable Xt suhthat

1

2p
EFs |Wt −Xt|p ≤ EFs |Wt − EFsWt|p ≤ EFs |Wt −Xt|p.We simplify the setting one more by onsidering the ase p = 2. Now, usingproperties of the Brownian motion, we have

EFs |Wt − EFsWt|2 = EFs |Wt −Ws|2

=
1

2
EFs |Wt − (W ′

t −W ′
s +Ws)|2,where we used the fat that W and W ′ are independent. This leads us tohoose Xt = W ′

t −W ′
s +Ws, or in terms of stohasti integrals,

Xt = W
(s,t]
t :=

∫ t

0

1− 1(s,t](r)dWr +

∫ t

0

1(s,t](r)dW
′
r.Then Xt is a onditionally independent opy of Wt given Fs.For illustration we have a �gure of the di�erent Brownian motions:

12
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Figure 1: Brownian motions W ,W ′ and W (s,t]. Here s = 0.3, t = 0.6 and
T = 1.Can we do the same for any Ft-measurable Yt? Reall that Ft is (essentially)generated by the Brownian motionW until time t. This means that the ran-domness of Yt omes, in some sense, from the underlying proess (Wr)r∈[0,t].Next we explain how we an hange the random variable Yt by hanging theunderlying Brownian motion W into the new Brownian motion W (s,t].3.2 SettingLet us be preise on how we an �nd a Brownian motionW ′ that is indepen-dent ofW . We start by taking another stohasti basis (Ω′,F ′,P′, (F ′

r)r∈[0,T ]),where (F ′
r)r∈[0,T ] is the augmented �ltration of the d-dimensional Brownianmotion W ′, and F ′ = F ′

T . 13



To speak of independene, we must have W and W ′ de�ned on the sameprobability spae. Thus, we let
Ω := Ω× Ω′, P := P× P′, F := F ⊗F ′P,and work on the probability spae (Ω,F ,P). By onsidering the anonialextensions W (ω, ω′) := W (ω) and W ′(ω, ω′) := W ′(ω′) for all (ω, ω′) ∈

Ω × Ω′, we then have that W and W ′, both de�ned on Ω, are independent
d-dimensional Brownian motions. The augmented natural �ltration3 of the
2d-dimensional Brownian motionW = (W,W ′) is denoted by (F t)t∈[0,T ]. Wealso use the notation

(ΩT ,ΣT ,PT ) := ([0, T ]× Ω,B([0, T ])⊗F , λ
T

× P),

(ΩT ,ΣT ,PT ) := ([0, T ]× Ω,B([0, T ])⊗F , λ
T

× P),where λ is the Lebesgue-measure on [0, T ].Now we let ϕ : [0, T ] → [0, 1] be Borel measurable, and de�ne for all r ∈ [0, T ]

W ϕ
r =

∫ r

0

√

1− ϕ2(u)dWu +

∫ r

0

ϕ(u)dW ′
u.Beause of Lévy's haraterization of the Brownian motion, (W ϕ

r )r∈[0,T ] is astandard Brownian motion, and we use (Fϕ
r )r∈[0,T ] to denote its augmentednatural �ltration and Fϕ := Fϕ

T . The preditable σ-algebra on the stohastibasis (Ω,Fϕ,P, (Fϕ
r )r∈[0,T ]) is denoted by Pϕ, and we will also make use ofthe notation ΣϕT = B([0, T ])⊗ Fϕ.Denoting the funtion ϕ ≡ 0 simply by 0, we have thatW 0 and (the extensionof) W are indistinguishable. Sine F0 ontains all P-nullsets, it follows that

(F0
t )t∈[0,T ] and the augmentation of σ(Wr, r ∈ [0, t])t∈[0,T ] oinide. Thus, wemay agree to use the notation W 0 for the extension of W and (F0

r )r∈[0,T ] forthe orresponding �ltration.For our purposes the Brownian motionW (s,t] :=W χ(s,t] , where 0 ≤ s < t ≤ T ,plays an essential role.One may view the de�nition of W ϕ, and the soon-to-be introdued teh-niques, as an extension of the tehniques used to obtain Mehler's formula(see for example [25, Equation (1.67)℄). The same tehnique that was usedto obtain Mehler's formula has also been used in haraterizing (isotropi)Besov spaes obtained by real interpolation in [18℄.3Whenever we augment a �ltration in Ω, we augment it by P-nullsets.14



The di�erene between our de�nition and these ases is, that they only on-sidered onstant-valued funtions ϕ. The reason why we want to have aovariane-funtion that does depend on time is, that we want to estimate
EFs |Yt − EFsYt|p.Now we desribe how the randomness of a proess X ∈ L0(ΩT ,ΣT ,PT ) ishanged to ome from W ϕ instead of W . Changing the randomness of arandom variable ξ ∈ L0(Ω,F ,P) to ome fromW ϕ instead ofW is analogous.1. For X ∈ L0(ΩT ,ΣT ,PT ) take the anonial extension X(t, ω, ω′) :=

X(t, ω), and onsider the orresponding equivalene lass of randomvariables [X ] ∈ L0(ΩT ,Σ
0
T ,PT ).2. 4Letting (gn)n∈N : Ω → R be the family of �nite di�erenes of W 0generated by Haar funtions, there exists a B([0, T ]) ⊗ σ(gn, n ∈ N)-measurable X0 ∈ [X ].3. 5De�ning JT : ΩT → [0, T ]×RN, JT (t, η) = (t, gn(η))n∈N, there existsa random variable X̂ : [0, T ] × RN → R so that X0 an be fatorizedthrough [0, T ]× RN:

X0 : ΩT
JT→ [0, T ]× RN X̂→ R.4. 6 De�ning JϕT analogously, but using W ϕ instead of W 0, we have that

X̂(JϕT ) : ΩT → R is a well-de�ned B([0, T ])⊗ σ(gϕn , n ∈ N)-measurablerandom variable.5. Finally, we let Xϕ ∈ L0(ΩT ,Σ
ϕ
T ,PT ) be the equivalene lass that on-tains all ΣϕT -measurable random variables that are PT -a.s. the same as

X̂(JϕT ).In step 2 it is essential that the σ-algebras F0 and σ(gn, n ∈ N) di�er onlyby nullsets. Following steps 1-5 we now have the well-de�ned funtionalmappings
CT : L0(ΩT ,Σ

0
T ,PT ) → L0(ΩT ,Σ

ϕ
T ,PT ), CT ([X ]) := Xϕ,and, analogously, C0 : L0(Ω,F0,P) → L0(Ω,Fϕ,P).4[A, Lemma 2.2℄5[A, Lemma 2.3(1)℄6[A, Lemma 2.3(2)℄ 15



In fat, in [A℄ we start with a omplete probability spae (Ω1,F1,P1), andwe assume:
• There exists a sequene (ξ1n)n∈N of random variables in Ω1 suh that
F1 = σ(ξ1n, n ∈ N) ∨N 1, where N 1 are the P1-nullsets,

• There exists a omplete probability spae (Ω2,F2,P2) suh that
F2 = σ(ξ2n, n ∈ N) ∨ N 2, where N 2 are the P2-nullsets, and (ξ2n)n∈N isa sequene of random variables in Ω2,

• (ξ1n)n∈N and (ξ2n)n∈N have the same �nite-dimensional distributions.Then we follow steps 1-5, with (gn)n∈N replaed by (ξ1n)n∈N and (gϕn)n∈N by
(ξ2n)n∈N, thus de�ning the funtional mappings

CT : L0(Ω
1
T ,Σ

1
T ,P

1
T ) → L0(Ω

2
T ,Σ

2
T ,P

2
T )and C0 : L0(Ω

1,F1,P1) → L0(Ω
2,F2,P2).However, we restrit here ourselves to the mentioned ase (Ω1,F1,P1) =

(Ω,F0,P), and (Ω2,F2,P2) = (Ω,Fϕ,P). Then, for X ∈ L0(ΩT ,Σ
0
T ,PT ),we have that CT (X) and X are equivalene lasses that onsist of stohastiproesses that are in the same probability spae (Ω,F ,P).In partiular, this approah does not require ontinuous paths or a gaussiandistribution. As suh, the approah might be useful also in other situations.It should also be mentioned that a similar distributional approah is usedin [23, Chapter V.1.6℄ (see also [20℄) on Gaussian random variables to de�nethe Gaussian Sobolev spaes (or the Malliavin Sobolev spaes).This approah being so �exible and "general", the question arises whetherit is strong enough to preserve some regularity strutures of the randomvariables and stohasti proesses. So far we have only positive answers.3.3 PropertiesWe present some natural and expeted properties that make our methodappliable in various situations, for example with BSDEs.To shorten the presentation, we sometimes work in Ω and ΩT in parallel.This is done by onsidering S ∈ {0, T}, and using the notation Ω0 := Ω and

Σ0 := F .
16



Also, we �x X 6= ∅ to be a omplete metri spae that is loally σ-ompat,i.e. there exist ompat subsets ∅ 6= K1 ⊆ K2 ⊆ . . . , suh that K̊n = Knand X =
⋃∞
n=1 K̊n.The basi form of the results in this Setion is the following: If the origi-nal random objet X ∈ L0(ΩS,ΣS,PS) satis�es some property, then in theequivalene lass Xϕ ∈ L0(ΩS,Σ

ϕ
S,PS) we an �nd a representative thatsatis�es, in the proper sense, the same property.De�nition 3.1. We let f ∈ L0(ΩS,ΣS,PS;C(X)) if f : ΩS ×X → R is suhthat

• η 7→ f(η, y) is ΣS-measurable for all y ∈ X,
• y 7→ f(η, y) is ontinuous for all η ∈ ΩS.The ontinuity of a stohasti proess is preserved in the following sense:Proposition 3.2 ([A, Lemma 2.9℄).If f ∈ L0(ΩS ,ΣS,PS;C(X)), then there exists fϕ ∈ L0(ΩS,Σ

ϕ
S,PS;C(X))suh that fϕ(y) ∈ (f(y))ϕ for all y ∈ X. Given fϕ1 and fϕ2 with these twoproperties, it follows that fϕ1 (·) = fϕ2 (·) (PS-a.s.).Given f ∈ L0(ΩS,ΣS,PS;C(X)), Proposition 3.2 is used to de�ne fϕ as theequivalene lass7 of elements in L0(ΩS,Σ

ϕ
S,PS;C(X)) suh that

fϕ(y) ∈ (f(y))ϕ for all y ∈ X.Preditability and adaptedness are transferred in the following sense:Proposition 3.3 ([A, Lemma 3.1 and Theorem 2.8℄).(i) If ξ ∈ L0(Ω,Ft,P) for some t ∈ [0, T ], then all representatives of
ξϕ ∈ L0(Ω,Fϕ,P) are Fϕ

t -measurable.(ii) If f ∈ L0(ΩT ,P,PT ;C(X))8, then there is a Pϕ-measurable9 represen-tative of fϕ ∈ L0(ΩT ,Σ
ϕ
T ,PT ;C(X)).(iii) If Y ∈ L0(Ω,F ,P;C([0, T ])) is (Ft)t∈[0,T ]-adapted, then all representa-tives of Y ϕ ∈ L0(Ω,Fϕ,P;C([0, T ])) are (Fϕ

t )t∈[0,T ]-adapted.We summarize some further properties proven in [A℄:7We identify f1, f2 ∈ L0(ΩS ,Σ
ϕ
S ,PS ;C(X)) if PS (f1(y) = f2(y) for all y ∈ X) = 1.8i.e. η 7→ f(η, x) is P-measurable for all x ∈ X.9i.e. η 7→ fϕ(η, x) is Pϕ-measurable for all x ∈ X.17



Proposition 3.4 ([A, Theorems 2.6, 2.11, and Lemma 3.2℄).Let N ∈ N, g : RN → R a Borel funtion, S ∈ {0, T}, X,X1, . . . , XN ∈
L0(ΩS,ΣS,PS), Y ∈ L1(ΩT ,ΣT ,PT ), f ∈ L0(ΩS ,ΣS,PS;C(R

N)), and Z ∈
L2(ΩT ,P,PT ). Then(i) X d

= Xϕ.(ii) (g(X1, . . . , XN))
ϕ = g(Xϕ

1 , . . . , X
ϕ
N).(iii) (f(X1, . . . , XN))

ϕ = fϕ(Xϕ
1 , . . . , X

ϕ
N).(iv) (∫ T

0
Y (t)1{

∫ T
0 |Y (s)|ds<∞}dt

)ϕ

=
∫ T

0
Y ϕ(t)1{

∫ T
0 |Y ϕ(s)|ds<∞}dt.(v) (∫ T

0
Z(t)dWt

)ϕ

=
∫ T

0
Zϕ(t)dW ϕ

t , for any preditable representative of
Zϕ.10Our next result states that if we have a strong solution of an SDE in the �rstspae, then hanging the randomness of the solution results into a strongsolution of another SDE. Naturally, the randomness of the data is hanged.It is noteworthy that we do not assume uniqueness of the solution.Proposition 3.5 ([A, Theorem 3.3℄).Assume that f, gi ∈ L0(ΩT ,P,PT ;C(R1+d)), Zi ∈ L0(ΩT ,P,PT ), i = 1, . . . , d,that Y ∈ L0(Ω,F ,P;C([0, T ])) is (Ft)t∈[0,T ]-adapted, and that

E

[
∫ T

0

|f(r, Yr, Zr)|dr +
∫ T

0

|g(r, Yr, Zr)|2dr
]

<∞.If ξ ∈ L0(Ω,F ,P) and
Yu = ξ +

∫ T

u

f(r, Yr, Zr)dr −
∫ T

u

g(r, Yr, Zr)dWr (15)for u ∈ [0, T ], P-a.s., then �xing any preditable representatives of fϕ, gϕi , Zϕ
i ,and (Fϕ

t )t∈[0,T ]-adapted (ontinuous) representative of Y ϕ, we have
E

[
∫ T

0

|fϕ(r, Y ϕ
r , Z

ϕ
r )|dr +

∫ T

0

|gϕ(r, Y ϕ
r , Z

ϕ
r )|2dr

]

<∞,and
Y ϕ
u = ξϕ +

∫ T

u

fϕ(r, Y ϕ
r , Z

ϕ
r )dr −

∫ T

u

gϕ(r, Y ϕ
r , Z

ϕ
r )dW

ϕ
r (16)for u ∈ [0, T ], P-a.s.10By Proposition 3.3(ii) there exists suh a representative.18



We want to obtain onditional estimates in the probability spae (Ω,F ,P)from estimates obtained using the oupling tehnique. Here the next resultis vital:Lemma 3.6 ([B, Lemma 4.9℄).Let p ≥ 1, 0 ≤ s < t ≤ T , ξ ∈ Lp(Ω,F0,P), and put
Gts := σ(W 0

r , r ∈ [0, s]) ∨ σ(W 0
r −W 0

t , r ∈ [t, T ]).Then
1

2p
EF0

s |ξ − ξ(s,t]|p ≤ EF0
s |ξ − EGt

sξ|p ≤ EF0
s |ξ − ξ(s,t]|p. (17)Moreover, if ξ is F0

t -measurable, then
1

2p
EF0

s |ξ − ξ(s,t]|p ≤ EF0
s |ξ − EF0

s ξ|p ≤ EF0
s |ξ − ξ(s,t]|p.Remark 3.7. Reall what we disussed in Setion 3.1: our goal is to upperbound EFs |Yt −EFsYt|p, where Yt is a solution of a BSDE at time t. Lemma3.6 tells us that

EFs |Yt − EFsYt|p ≤ EF0
s |Yt − Y

(s,t]
t |p P-a.s.,where EFs |Yt−EFsYt|p stands for the anonial extension. Using Proposition3.5 we notie that Y (s,t] solves a BSDE just like Y did. We again emphasizethat we only need (y, z) 7→ f(r, ω, y, z) to be ontinuous for all (r, ω) ∈ ΩT ,and we need to know that Y is a solution of the BSDE. In partiular thesolution need not be unique, the existene is enough.Now it remains to use an apriori estimate to upper bound EF0

s |Yt − Y
(s,t]
t |p.For this we need to introdue a lot of assumptions that guarantee for us anatural upper bound. To understand some of these assumptions better, itis best to introdue the onept of bounded mean osillation (BMO) beforewe state our main results onerning BSDEs. But �rst we show what elsean be done with our deoupling tehnique; we introdue anisotropi Besovspaes.4 Anisotropi Besov SpaesIn this Setion we reall the family of Banah spaes desribing funtionalfrational smoothness of random variables, as introdued in [A℄.To de�ne these spaes we only need to use the deoupling tehnique fromSetion 3. Although we do not use Malliavin Calulus, in Theorem 4.9 aertain anisotropi Besov spae is haraterized using Malliavin derivatives.19



We mention also some onnetions to previously studied Besov spaes ob-tained by real interpolation.We �rst de�ne the metri spae of parameter funtions that we use:De�nition 4.1. We de�ne the metri spae (∆, δ) as the equivalene lassesof the pseudo-metri spae (D, δ) with
D = {ψ ∈ L2((0, T ]) : 0 ≤ ψ ≤ 1} and δ(ϕ, ψ) = ‖ϕ− ψ‖L2((0,T ]).Let p ∈ (0,∞), ξ ∈ Lp(Ω,F ,P), and ϕ ∈ ∆. Then we exploit our notion ofdeoupling to study "the sensitivity of ξ to the diretion ϕ", by measuringthe map Fξ,p(ϕ) = ‖ξ − ξϕ‖Lp(Ω) in di�erent ways. First we note that ϕ →

‖ξ − ξϕ‖p is a ontinuous map:Lemma 4.2 ([A, Lemma 4.9℄). For p ∈ (0,∞) and ξ ∈ Lp(Ω,F ,P) the map
Fξ,p : ∆ → [0,∞) de�ned by Fξ,p(ϕ) = ‖ξ − ξϕ‖p is ontinuous.Next we de�ne the onept of anisotropi Besov spaes. This is done bymeasuring the map Fξ,p using an admissible funtional:De�nition 4.3. Let C+(∆) be the spae of all non-negative ontinuous fun-tions F : ∆ → [0,∞). A funtional Φ : C+(∆) → [0,∞] is alled admissibleprovided that
(C1) Φ(F +G) ≤ Φ(F ) + Φ(G),
(C2) Φ(λF ) = λΦ(F ) for λ ≥ 0,
(C3) Φ(F ) ≤ Φ(G) for 0 ≤ F ≤ G,
(C4) Φ(F ) ≤ lim supnΦ(Fn) for supϕ∈∆ |Fn(ϕ)− F (ϕ)| →n 0.De�nition 4.4. For p ∈ (0,∞), ξ ∈ Lp(Ω), and an admissible Φ : C+(∆) →
[0,∞] we let ξ ∈ BΦ

p provided that Φ(ϕ→ ‖ξ − ξϕ‖p) <∞ and set
‖ξ‖BΦ

p
:=
[

E|ξ|p + ‖ξ‖pΦ,p
]

1
p with ‖ξ‖Φ,p := Φ(ϕ→ ‖ξ − ξϕ‖p).This de�nition yields a Banah spae.Theorem 4.5 ([A, Proposition 4.13℄).For p ∈ [1,∞) the spae (of equivalene lasses) BΦ

p is a Banah spae.
20



4.1 Interpolation spaes as (an)isotropi Besov spaesWe give two examples of admissible funtionals that orrespond to Besovspaes obtained by real interpolation method.De�nition 4.6. For 0 = r0 < r1 < · · · rL = T , θl ∈ (0, 1), ql ∈ [1,∞], and
F ∈ C+(∆) we let

Φ(θ1,q1),...,(θL,qL)
r1,...,rL

(F ) := sup
l=1,...,L

∥

∥(rl − t)−θl/2F (χ(t,rl])
∥

∥

Lql
([rl−1,rl),

dt
rl−t

)
.Using the notation γd for the standard d-dimensional gaussian distribution,the spaes Bθp,q(Rd, γd) are interpolation spaes between Lp and the MalliavinSobolev spae D1,p. Here θ ∈ (0, 1) desribes the frational smoothness, and

q ∈ [1,∞] is the �netuning-index. For more information see for example [17℄and [A, Setions 7.1-7.2℄.Proposition 4.7 ([A, Proposition 4.16℄).For θ ∈ (0, 1), p ∈ [2,∞), q ∈ [1,∞], and f(W1) ∈ Lp one has
f ∈ Bθp,q(R

d, γd) if and only if f(W1) ∈ BΦ
(θ,q)
1

p .De�nition 4.8. Let K : [0, 1] → R be non-negative and Borel-measurable,
q ∈ [1,∞), and let ϕr : (0, T ] → R be given by

ϕr ≡ r for r ∈ [0, 1].Then we de�ne
Φ(K,q)(F ) :=

(
∫ 1

0

K(r)|F (ϕr)|qdr
)

1
q

.The de�nition above means that we use the map ξ → ξϕr that exhanges inan isotropi way the full Brownian motionW by its mixture√1− r2W+rW ′.Using the notation
ξ(W ) = ξ and ξ(

√
1− r2W + rW ′) = ξϕrthis yields to the expression

(
∫ 1

0

K(r)‖ξ(W )− ξ(
√
1− r2W + rW ′)‖qpdr

)

1
q

.21



Using the partiular kernel
K(r) :=

2r

1− r2

(

ln
1

1− r2

)−1− θq
2

,for θ ∈ (0, 1) and p = q ∈ (1,∞) this gives
∫ ∞

0

t−1− θp
2 ‖ξ(W )− ξ(e−

t
2W +

√
1− e−tW ′)‖ppdt.Spaes based on this type of expression were onsidered in [18, Remark onp. 428℄ and identi�ed as interpolation spaes. The same idea was also usedin [25, Setion 1.4.1℄ to haraterize the Ornstein-Uhlenbek semigroup.4.2 Connetion to Malliavin derivativesHere we give an example of another anisotropi Besov spae, and haraterizeit using Malliavin derivatives.We study the spae BΦ2

p , where the funtional Φ2 : C
+(∆) → [0,∞] is givenby

Φ2(F ) := sup
0≤s<t≤T

F (χ(s,t])√
t− s

. (18)This means that the Besov spae BΦ2
p onsists of ξ ∈ Lp(Ω,F ,P) suh that

sup0≤s<t≤T
‖ξ−ξ(s,t]‖p√

t−s <∞. In other words, ξ ∈ BΦ2
p if and only if there exists

C > 0 suh that
‖ξ − ξ(s,t]‖p ≤ C

√
t− sfor all 0 ≤ s < t ≤ T . In a sense ξ is Lipshitz.To desribe these spaes we let, for ξ ∈ D1,2 and D being the Malliavinderivative operator,

‖Dξ‖L∞([0,T ];Lp(Ω)) := esssups∈[0,T ]‖Dsξ‖p,

‖Dξ‖L∗
p(Ω;L2([0,T ]))

:= sup
0≤a<b≤T

∥

∥

∥

∥

∥

(

1

b− a

∫ b

a

|Dsξ|2ds
)

1
2

∥

∥

∥

∥

∥

p

.By the Lebesgue di�erentiation theorem one has that
‖Dξ‖L∞([0,T ];L2(Ω)) = ‖Dξ‖L∗

2(Ω;L2([0,T ]))
.To formulate our main result, the notation A ∼c B, where A,B ≥ 0 and

c ≥ 1, stands for (1/c)A ≤ B ≤ cA. Our main result is that BΦ2
2 ( D1,2, and22



Theorem 4.9 ([A, Theorem 4.19℄).(1) For p ∈ [2,∞) and ξ ∈ D1,2 ∩ Lp one has
‖ξ‖Φ2,p ∼c1 ‖Dξ‖L∗

p(Ω;L2([0,T ]))
,where c1 > 0 depends on p only.(2) For p ∈ (1, 2) and ξ ∈ D1,2 one has

1

c2
‖Dξ‖L∞([0,T ];Lp(Ω)) ≤ ‖ξ‖Φ2,p ≤ c2 ‖Dξ‖L∗

p(Ω;L2([0,T ]))
,where c2 > 0 depends on p only.(3) There is a ξ ∈ D1,2 suh that for all p ∈ [1,∞) one has ξ ∈ Lp(Ω),

Dξ ∈ Lp(Ω;L2([0, T ])), and ξ 6∈ BΦ2
p .In deriving the upper bounds of Theorem 4.9(1) and (2), the following gen-eralization of Stein's lemma is used:Lemma 4.10 ([A, Lemma A.6℄).Let p ∈ (1,∞). Assume a proess a = (at)t∈[0,1] ⊆ Lp with values in ℓN2that has left-ontinuous paths for all ω ∈ Ω, a �ltration (Ht)t∈[0,1], and an

(Ht)t∈[0,1]-adapted proess (bt)t∈[0,1] ⊆ Lp with values in ℓN2 that has left-ontinuous paths for all ω ∈ Ω as well and suh that bt = E(at|Ht) a.s. forall t = k/2n with n = 0, 1, 2, ... and k = 0, ..., 2n − 1. If supt |at| ∈ Lp, thenone has that
∥

∥

∥

∥

∥

(∫ 1

0

|bt|2dt
)

1
2

∥

∥

∥

∥

∥

p

≤ cp

∥

∥

∥

∥

∥

(∫ 1

0

|at|2dt
)

1
2

∥

∥

∥

∥

∥

pwhere the onstant cp > 0 depends at most on p.To further justify the term anisotropi, we note that the admissible funtionalin equation (18) an be generalized by letting r ≥ 2, 0 ≤ A < B ≤ T , and
ΦA,Br (F ) := sup

A≤s<t≤B

F (χ(s,t])

(t− s)
1
r

. (19)Moreover, it is possible to study di�erent frational smoothness on di�erentintervals. This an be done for example by putting23



A1 :=

{

ϕ ∈ ∆
∣

∣

∣
ϕ = χ(s,t], 0 ≤ s < t ≤ T

2

}

,

A2 :=

{

ϕ ∈ ∆
∣

∣

∣
ϕ = χ(s,t],

T

2
≤ s < t ≤ T

}

,and
α(ϕ) =

{

(t− s)
1
2 , ϕ = χ(s,t] ∈ A1,

(t− s)
1
4 , ϕ = χ(s,t] ∈ A2.Then, putting A = A1 ∪A2, one an study the admissible funtional

Φ(F ) := sup
ϕ∈A

F (ϕ)

α(ϕ)
.Next we indiate how one an verify using deoupling that a random variablebelongs to a ertain anisotropi Besov spae. The following is a speial aseof [A, Theorem 4.23℄.Example 4.11. Consider ξ := χ[K,∞)(|XT |), where 0 < K < ∞ and

(Xr)r∈[0,T ] is the solution of
Xr = x0 +

∫ r

0

b(u,Xu)du+

∫ r

0

σ(u,Xu)dWu, r ∈ [0, T ].Here x0 ∈ Rd, and the oe�ients b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd →
Rd×d satisfy

(Ab,σ) b, σ ∈ C0,2
b ([0, T ]×Rd), where the derivatives up to order two are takenwith respet to the spae-variables and, for some γ ∈ (0, 1], are assumedto be γ-Hölder ontinuous (w.r.t. the paraboli metri) on all ompatsubsets of [0, T ]×Rd. Moreover, letting A = σσ∗, there is a δ > 0 suhthat 〈Ax, x〉 ≥ δ|x|2 for x ∈ Rd and b and σ are 1

2
-Hölder ontinuousin time, uniformly in spae.Then it follows from [13, Proposition B.3℄ that XT has a bounded density

fXT
. Moreover, using Proposition 3.4(ii) and [1, Lemma 3.4℄ we have thatfor any 0 < p, q <∞

‖ξ − ξ(s,t]‖pp = ‖χ[K,∞)(|XT |)− χ[K,∞)(|XT |)(s,t]‖1
= ‖χ[K,∞)(|XT |)− χ[K,∞)(|X(s,t]

T |)‖1
≤ 3‖fXT

‖
q

q+1
∞ ‖XT −X

(s,t]
T ‖

q
q+1
q .24



Sine [13, Theorem 3℄ implies that there exists C > 0 depending at most on
(q, T, b, σ) suh that

∥

∥

∥

∥

∥

sup
r∈[0,T ]

|Xr −X(s,t]
r |

∥

∥

∥

∥

∥

q

≤ C
√
t− s,we have that there exists a onstant c = c(p, T, q, fXT

, b, σ) > 0 suh that
‖ξ − ξ(s,t]‖p ≤ c(

√
t− s)

q
q+1

1
p .This means that given p ∈ [2,∞) we have ξ ∈ BΦr

p for any r > 2p.5 Bounded Mean OsillationThis Setion reviews some of the �ne properties that martingales of boundedmean osillation, BMO-martingales from now on, satisfy, and we also reallthe results from the theory of weighted BMO that we used. The results thatare new (Setion 5.2) are easy observations, but they were useful to us. Wepresent them here as they might be of independent interest. For simpliity,we present all de�nitions and results in the setting that was �xed in thebeginning of Setion 2.5.1 BMO and weighted BMOFirst we reall what it means that a martingale is of bounded mean osilla-tion.De�nition 5.1. A martingale M = (Mt)t∈[0,T ] is a BMO-martingale pro-vided that M0 ≡ 0 and there is onstant c > 0 suh that for all stoppingtimes τ : Ω → [0, T ] one has that
E(|MT −Mτ−|2|Fτ) ≤ c2, (20)where
Mτ− := lim

n→∞
M((τ− 1

n)∨0)
.We let ‖M‖BMO := inf c where the in�mum is taken over all c > 0 as above.In our setting every martingale is ontinuous, and the probability spae isomplete. It follows from optional stopping theorem that:25



Lemma 5.2. Let M = (Mt)t∈[0,T ] a martingale with M0 ≡ 0. Then M is aBMO-martingale if and only if there is a onstant c > 0 suh that
E(|MT −Mt|2|Ft) ≤ c2for all t ∈ [0, T ]. Moreover, ‖M‖2BMO = supt∈[0,T ] ‖EFt |MT −Mt|2‖∞.At this point an eduated reader might be worried of the notation "BMO";why is it not emphasized that we study EFt |MT − Mt|2 instead of

EFt |MT −Mt|p for some p ∈ [1,∞)? The answer is remarkable:
sup
t∈[0,T ]

‖EFt |MT −Mt|q‖∞ <∞ for some q ∈ (0,∞)if and only if
sup
t∈[0,T ]

‖EFt |MT −Mt|p‖∞ <∞ for all p ∈ (0,∞).This follows from the elebrated John-Nirenberg inequality [21, Theorem2.1℄, and is ontained in [21, Corollary 2.1℄.For p ∈ [1,∞] we denote by Hp the spae of martingales that satisfy
‖M‖Hp := ‖〈M〉

1
2
T‖Lp <∞,where 〈M〉 is the quadrati variation proess of M . If M is of the form

(Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ], where B is a Brownian motion, then

‖M‖Hp =

∥

∥

∥

∥

∥

(
∫ T

0

|αs|2ds
)

1
2

∥

∥

∥

∥

∥

Lp

.One important property of BMO is, that it an be haraterized as the dualof H1. One part of this result, the fat that BMO ⊆ H∗
1 , is proven in [21,Theorem 2.5℄. A speial ase of this result an be written as follows:Theorem 5.3. (Fe�erman's inequality)Assume that B = (Br)r∈[0,T ] is a one-dimensional Brownian motion, that

M = (Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ] ∈ BMO, and that N = (Nt)t∈[0,T ] =

(
∫ t

0
βsdBs)t∈[0,T ] ∈ H1. Then

E

[
∫ T

0

|αsβs|ds
]

≤
√
2‖M‖BMO‖N‖H1 . (21)26



In [10, Lemma 1.6℄ the inequality (21) is generalized to inlude the followingase:Proposition 5.4. Let p ∈ [1,∞), assume that B = (Br)r∈[0,T ] is a one-dimensional Brownian motion, M = (Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ] ∈ BMOand that N = (Nt)t∈[0,T ] = (

∫ t

0
βsdBs)t∈[0,T ] ∈ Hp. Then

(

E

(
∫ T

0

|αsβs|ds
)p)1/p

≤
√
2p‖M‖BMO‖N‖Hp . (22)In [15℄ the traditional BMO is generalized by replaing the onstant c inequation (20) by an adapted weight proess. We will use CL0 for the set ofàdlàg adapted proesses A = (At)t∈[0,T ] with A0 = 0, and CL+ for the set ofàdlàg adapted proesses A with At(ω) > 0 for all (t, ω) ∈ ΩT .De�nition 5.5 ([15, De�nition 1℄).Let A ∈ CL0, and Φ ∈ CL+. We de�ne for p ∈ (0,∞)

‖A‖BMOΦ
p
:= sup

σ

∥

∥

∥

∥

E

[ |AT − Aσ−|p
Φpσ

∣

∣

∣
Fσ

]∥

∥

∥

∥

1/p

L∞

,where the supremum is taken over all stopping times σ : Ω → [0, T ].The main use of this theory for us is, that it gives nie tail estimates. Thetraditional BMO an even be haraterized by a tail estimate; the followingresult is mentioned in [21, page 26℄ and goes bak to Emery:Proposition 5.6. A uniformly integrable martingale M = (Mt)t∈[0,∞) is ofbounded mean osillation if and only if there exist two onstants a ≥ 0 and
0 < ǫ < 1 suh that

P

(

sup
0≤t<∞

|Mσ+t −Mσ| > a
∣

∣

∣
Fσ

)

≤ 1− ǫfor any stopping time σ.With weighted BMO we do not neessarily have a haraterization, but wedo have an additive upper bound onsisting of an exponential part and apart that is a tail estimate of the weight proess. We will make use of thenotation
PB (·) := P(B ∩ ·)

P(B)for B ∈ FT of positive measure. The �rst step towards a tail estimate is thefollowing: 27



Proposition 5.7 ([15, Example 1 and proof of Corollary 1(a)℄).Let p ∈ (0,∞) and assume that Y ∈ CL0 and Φ ∈ CL+ are suh that
‖Y ‖BMOΦ

p
≤ C,where C > 0. Then, letting θ ∈ (0, 1

2
), and de�ning A ∈ CL0 by A := Y θ1/p

C
,we have for any ν > 0, stopping time σ, and B ∈ Fσ that

PB (|AT − Aσ−| > ν) ≤ θ + PB(Φσ > ν).Now we onsider Φ ∈ CL+, and let
WΦ(B, ν; σ) := P

(

B ∩
{

sup
u∈[σ,T ]

Φu > ν

})

,for ν > 0, a stopping time σ, and B ∈ Fσ. After this we an proeed with:Theorem 5.8 ([15, Theorem 1℄).Assume that A ∈ CL0, Φ ∈ CL+, and that there is θ ∈ (0, 1
2
) suh that

PB(|AT − Aσ| > ν) ≤ θ +
WΨ(B, ν; σ)

P(B)
(23)for all ν > 0, stopping times σ, and B ∈ Fσ of positive measure. Then thereare onstants a, α > 0, depending on θ only, suh that

PB

(

sup
u∈[σ,T ]

|Au −Aσ| > λ+ aµν

)

≤ e1−µPB

(

sup
u∈[σ,T ]

|Au − Aσ| > λ

)

+α
WΨ(B, ν; σ)

P(B)for all λ, µ, ν > 0, stopping times σ, and B ∈ Fσ of positive measure.
BMO-martingales have many nie properties as explained in the exellent le-ture notes [21℄, we will now onentrate on one that is relevant with BSDEs.In our apriori estimate onerning BSDEs (Lemma 6.1), we remove the su-perlinear (up to quadrati) drift term using a Girsanov transformation. Thistehnique was already used in [19℄ to prove uniqueness of the solution to er-tain quadrati BSDE. In [6℄ it is niely presented how to proeed to obtainan apriori estimate, whih then results into an existene result. The fat thatthe Girsanov transformation is well-de�ned follows from the Reverse Hölderinequality: 28



De�nition 5.9. Assume a martingale M=(Mt)t∈[0,T ] with M0 ≡ 0 suh that
E(M) with

E(M)t = eMt− 1
2
〈M〉tfor t ∈ [0, T ] is a martingale as well. For β ∈ (1,∞) we let E(M) ∈ RHβprovided that there is a onstant c > 0 suh that for all stopping times τ :

Ω → [0, T ] one has that
E(|E(M)T |β|Fτ)

1
β ≤ cE(M)τ a.s.The smallest possible c ≥ 0 is denoted by RHβ(E(M)).The reason why this leads to BMO-martingales is the following result:Proposition 5.10 ([21, Theorems 2.4 and 3.4℄).Let M be a martingale with M0 ≡ 0 suh that E(M) is a martingale. Then

M ∈ BMO if and only if E(M) ∈ ⋃p∈(1,∞)RHp.In our appliation of the reverse Hölder inequalities this is still a bit unsatis-fatory, as we would like to know for whih p ∈ (1,∞) we have E(M) ∈ RHp.For this purpose we let
Φ : (1,∞) → (0,∞), Φ(p) =

(

1 +
1

p2
log

(

1 +
1

2p− 2

))1/2

− 1, (24)so that Φ is ontinuous and dereasing, with limβ→∞Φ(β) = 0 and
limβ→1Φ(β) = ∞. Furthermore, we let

Ψ :
{

(γ, p) ∈ [0,∞)× (1,∞) : 0 ≤ γ < Φ(p) <∞
}

→ [0,∞),

Ψ(γ, p) :=

(

2

1− 2p−2
2p−1

ep2[γ2+2γ]

)
1
p

.Then, aording to [21, Proof of Theorem 3.1℄, we have that
Ψ(γ1, p) ≤ Ψ(γ2, p) for 0 ≤ γ1 ≤ γ2 < Φ(p),and

‖M‖BMO < Φ(p) implies RHp(E(M)) ≤ Ψ(‖M‖BMO, p). (25)
29



5.2 New resultsWe will improve (25) by onsidering the approah of slieable numbers. Toformulate it, we reall the notation σM τ := (Mτ∧t−Mσ∧t)t∈[0,T ] for stoppingtimes σ, τ .De�nition 5.11 ([A, De�nition 5.2℄).For a BMO-martingale M = (Mt)t∈[0,T ] and N ≥ 1 we let
slN(M) := inf ε,where the in�mum is taken over all ε > 0 suh that there are stopping times

0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T with
sup

k=1,...,N
‖τk−1M τk‖BMO ≤ ε.Moreover, we let

sl∞(M) := lim
N

slN(M).We all slN(M) the N-slieable number of M . The BMO-martingale M isalled slieable provided that sl∞(M) = 0.Some properties of these numbers are:Lemma 5.12 ([A, Lemma 5.4℄).For M,M1,M2 ∈ BMO one has the following:(i) sl1(M) = ‖M‖BMO.(ii) sl1(M) ≥ sl2(M) ≥ · · · ≥ 0.(iii) slN1+N2−1(M1 +M2) ≤ slN1(M1) + slN2(M2).(iv) For ǫ > 0 we have sl∞(M) < ǫ if and only if dBMO(M,H∞) < ǫ, where
dBMO(M,H∞) is the distane of M to H∞ with respet to the BMO-norm.Part (iv) of Lemma 5.12 follows from [29, Theorem 1.1℄. Parts (i),(ii), and(iii) on the other hand imply that slieable numbers are a relative of thes-numbers from operator-theory, see for example [28, Chapter 2.2℄.Now we an improve the index p in (25) by the followingTheorem 5.13 ([A, Theorem 5.8℄).If slN(M) < Φ(p), then RHp(E(M)) ≤

[

Ψ(slN(M), p)
]N. In partiular, if Mis slieable then E(M) ∈ ⋂p∈(1,∞)RHp.30



In our approah to BSDEs it is useful to onsider BMO and slieable numbersfor proesses as well.De�nition 5.14 ([A, De�nition 5.9℄).For m ∈ N and an Rm-valued preditable proess Z = (Zt)t∈[0,T ] we let
‖Z‖BMO(S2) := sup

t∈[0,T ]

∥

∥

∥

∥

E

(∫ T

t

|Zs|2ds|Ft

)∥

∥

∥

∥

1
2

∞
.This is quanti�ed using for any N ≥ 1

slN(Z) := inf ε,where the in�mum is taken over all ε > 0 suh that there are stopping times
0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T with

sup
k=1,...,N

‖χ(τk−1,τk]Z‖BMO(S2) ≤ ε.Moreover, we let sl∞(Z) := limN slN(Z).We illustrate two possible ways of exploiting the martingale setting:(1) For a d-dimensional proess Z it follows from It�'s isometry that
‖Z‖BMO(S2) = ‖

∫ ·
0
ZrdWr‖BMO, so that for example Theorem 5.13 is ap-pliable for this type of proesses.(2) Assume that the proess Z is m-dimensional for some m ∈ N, and suhthat ‖|Z|θ‖BMO(S2) < ∞ for some θ ∈ [0,∞). Then we let (Bt)t∈[0,T ] be(for example) the �rst omponent of the d-dimensional Brownian motion

(Wt)t∈[0,T ], and onsider the martingale
M = (Mt)t∈[0,T ] :=

(
∫ t

0

|Zr|θdBr

)

t∈[0,T ]
.Using It�'s isometry we one again have that ‖M‖BMO < ∞, so that forexample Proposition 5.4 and Lemma 5.12 are appliable for this type ofproesses.Note that by onsidering ‖|Z|θ‖BMO(S2) < ∞ for θ ∈ (1,∞) we obtain aondition that is stronger than the lassial BMO ondition ‖Z‖BMO(S2) <∞,whereas for θ ∈ (0, 1) the ondition gets weaker.If the generator of our BSDE is loally Lipshitz with parameter θ ∈ [0, 1],then we need to assume that the ontrol proess Z satis�es

‖|Z|θ‖BMO(S2) < ∞. At the same time we need to have (∫ T
0
|Zr|2dr

)
1
2 ∈ Lq,31



where q ≥ 2 is determined by the slieability-number sl∞(|Z|θ) (see assump-tion (A1) in subsetion 6.2 below).To see that all these onditions an hold at the same time, we have an exampleof a proess Z that satis�es the additional ondition that (∫ T
0
|Zt|2dt

)1/2

∈
Lexp, where the Orliz spae Lexp is given by

‖F‖Lexp := inf
{

λ > 0 : Ee
|F |
λ ≤ 2

}for a random variable F taking values in R.Example 5.15 ([A, Example 5.10℄).For eah η ∈ (0, 1) there is a preditable proess Z = (Zt)t∈[0,T ] suh that1. (∫ T
0
|Zt|2dt

)1/2

∈ Lexp,2. |Z|η ∈ BMO(S2),3. Z 6∈ BMO(S2).The ase that |Z|θ is slieable is important to us, as then we do not need toimpose any additional integrability on (∫ T
0
|Zr|2dr

)
1
2 . Thus, we present twoases for sl∞(|Z|θ) = 0:Example 5.16 ([A, Remark 6.5℄).(i) For θ = 0 (with the onvention 00 := 1) we have that

slN
(

|Z|θ
)

≤
√

T

Nif we take equidistant time-nets.(ii) Let 0 < θ < η ≤ 1 and assume that ‖|Z|η‖BMO(S2) < ∞. Then weobtain for any 0 ≤ a < b ≤ T that
‖(χ(a,b](t)|Zt|θ)t∈[0,T ]‖

1
θ

BMO(S2)
≤ (b−a) 1

2θ
− 1

2η ‖(χ(a,b](t)|Zt|η)t∈[0,T ]‖
1
η

BMO(S2)and, by using equidistant grids, that
slN
(

|Z|θ
)

≤
(

T

N

)
1
2(1−

θ
η )

‖|Z|η‖
θ
η

BMO(S2)
.32



Example 5.16(ii) an be seen as an embedding theorem: Let (Br)r∈[0,T ] be a1-dimensional Brownian motion, let (αr)r∈[0,T ] be a 1-dimensional preditableproess suh that E ∫ T
0
|αr|2dr <∞, and de�ne

Tθ

(
∫ ·

0

αrdBr

)

:=

∫ ·

0

|αr|θsgn(αr)dBr,for θ ∈ [0, 1]. Then it follows from Example 5.16(ii) and Lemma 5.12(iv) that
Tθ(
∫ ·
0
αrdWr) ∈ H∞

BMO, whenever ‖|α|η‖BMO(S2) <∞ and 0 ≤ θ < η ≤ 1.6 Main results onerning BSDEsWe begin this Setion with the apriori estimate Lemma 6.1. The proof ofthis result uses the reverse Hölder inequalities, and it is a ontinuation of thearguments from [6, Proposition 2.3℄. Their apriori estimate upper boundedan Lp-quantity of the solution by an L2p-quantity of the data. Using Propo-sition 5.4 we were able to improve this so that an Lp-quantity of the solutionis upper bounded by an Lp-quantity of the data.Using the apriori estimate together with deoupling, espeially with Propo-sition 3.5, we dedue the stability result Theorem 6.3. Applying this resultwe obtain results on Lp-variation of the solution of BSDE (26), as well asan embedding theorem with respet to anisotropi Besov spaes. Moreover,the onditional version of the stability result (Proposition 6.9) implies thatthe solution is in a weighted BMO-spae where the weight depends only onthe data. As mentioned in Setion 5, this yields to tail estimates (like in theJohn-Nirenberg theorem) for the variation of the Y -proess of our BSDE.6.1 Apriori estimateIn this setion we follow the ideas of [6, Proof of Proposition 2.3℄ but adaptand extend the ideas for our purpose. Let B = (Bt)t∈[0,T ] be an n-dimensionalstandard Brownian motion (where all paths are ontinuous) on a basis
(A,A, µ, (At)t∈[0,T ]), where (A,A, µ) is omplete, (At)t∈[0,T ] the augmentationof the natural �ltration of B, and AT = A. We onsider the two bakwardequations

Y 0
t = ξ0 +

∫ T

t

f 0(s, Y 0
s , Z

0
s )ds−

∫ T

t

Z0
sdBs, t ∈ [0, T ],

Y 1
t = ξ1 +

∫ T

t

f 1(s)ds−
∫ T

t

Z1
sdBs, t ∈ [0, T ],33



where we assume the following onditions:(D1) The proesses f 1, Z0 and Z1 are preditable and the proesses Y 0 and
Y 1 ontinuous and adapted,(D2) E|ξi|2 <∞ and E

∫ T

0
|Z i

s|2ds <∞ for i = 0, 1,(D3) E
∣

∣

∣

∫ T

0
|f 0(s, Y 0

s , Z
0
s )|ds

∣

∣

∣

2

<∞ and E
∣

∣

∣

∫ T

0
|f 1(s)|ds

∣

∣

∣

2

<∞,(D4) the generator f 0 : ΩT ×R×Rn → R is suh that (t, ω) 7→ f 0(t, ω, y, z)is preditable for all (y, z), (y, z) → f 0(t, ω, y, z) is ontinuous for all
(t, ω), and there is an LY ≥ 0 suh that, for all (t, ω, y0, y1, z),

|f 0(t, ω, y0, z)− f 0(t, ω, y1, z)| ≤ LY |y0 − y1|.We let ∆ξ := ξ1 − ξ0, and for s ∈ [0, T ],
∆Ys := Y 1

s − Y 0
s ,

∆Zs := Z1
s − Z0

s ,

as := f 1(s)− f 0(s, Y 1
s , Z

1
s ),

cs :=
f 0(s, Y 0

s , Z
1
s )− f 0(s, Y 0

s , Z
0
s )

|∆Zs|2
χ{∆Zs 6=0}∆Zs,

Ξs := |∆ξ|+
∫ T

s

|ar|dr.Lemma 6.1 ([A, Lemma 6.17℄).Assume that c = (ct)t∈[0,T ] is n-dimensional with ‖c‖BMO(S2) ≤ β < ∞,and that λt := exp(
∫ t

0
csdBs − 1

2

∫ t

0
|cs|2ds) and p0 ∈ (1,∞) are suh that

RHp′0
(λ) ≤ ρ < ∞ with 1 = 1

p0
+ 1

p′0
. Assume p ∈ [2,∞) with p > p0 suhthat

(∫ T

0

|∆Zs|2ds
)

1
2

∈ Lp.Then there is a c(6.1) ∈ (0,∞), depending at most on (T, LY , p, p0, β, ρ, n),suh that for all t ∈ [0, T ] one has that
∥

∥

∥

∥

∥

sup
s∈[t,T ]

|∆Ys|
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

|∆Zs|2ds
)

1
2

∥

∥

∥

∥

∥

p

≤ c(6.1)‖Ξt‖p.
34



6.2 Basi resultWe start by listing the assumptions that will be used throughout this Setion.These onditions are imposed on random objets de�ned on Ω, even thoughwe use our deoupling tehnique that is de�ned for objets on Ω. However,in [A] and [B] we have shown that these onditions hold for appropriateelements of Ω as well. The validity of these assumptions, as well as exampleswhen they hold, are onsidered in [A, Setion 18℄.(A1) There exists a solution (Y, Z) to the equation
Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (26)where we assume that there exists p ∈ [2,∞) and θ ∈ [0, 1] suh thatthe following onditions are satis�ed:(i) The proess Y is (Fr)r∈[0,T ]-adapted and path-wise ontinuous,and the proess Z is (Fr)r∈[0,T ]-preditable(ii) There are Ly, Lz ≥ 0 suh that for all (t, ω, y0, y1, z0, z1) one has
|f(t, ω, y0, z0)− f(t, ω, y1, z1)|

≤ Ly|y0 − y1|+ Lz[1 + |z0|+ |z1|]θ|z0 − z1|(iii) ∫ T
0
|f(s, 0, 0)|ds ∈ Lp(iv) (∫ T
0
|Zs|2ds

)
1
2 ∈ Lp(v) We assume

‖|Z|θ‖2BMO(S2)
= sup

t∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

t

|Zs|2θds|Ft

)∥

∥

∥

∥

L∞

<∞,and quantify this assumption by �xing a non-inreasing sequene
s = (sN)N≥1 ⊆ [0,∞) suh that

slN(|Z|θ) ≤ sN,and put s∞ := limN sN(vi) If s∞ > 0, then the onstant p ∈ [2,∞) satis�es additionally
p >

Φ−1(2
√
2Lzs∞)

Φ−1(2
√
2Lzs∞)− 1

∈ (1,∞),where Φ : (1,∞) → (0,∞) is de�ned in equation (24).35



Remark 6.2. Assumption (A1)(v) is an impliit frational BMO assumptionon the ontrol proess Z. This assumption is used to remove the (up toquadrati) drift term of the generator in the z-variable. Here we need to usethe reverse Hölder inequalities, whih by Theorem 5.13 hold for all q ∈ (1,∞)if s∞ = 0. In ase s∞ > 0, we only have the reverse Hölder inequalities forsmall enough q, and this is why we need to assume some more integrabilityas imposed by (A1)(vi). Two examples of the ase s∞ = 0 were disussed inExample 5.16, now we explain its impat regarding Lipshitz and quadratiBSDEs.(i) Assume that f satis�es (A1)(ii) and (A1)(iii) with θ = 0 and 1 < p <∞,and that ξ ∈ Lp. Then there exists a unique solution (Y, Z) of BSDE(26), and (A1) is satis�ed with θ = 0. This follows for example from[5, Theorem 4.2℄. Note that sine θ = 0, we have s∞ = 0.(ii) Assume that f satis�es (A1)(ii) with θ = 1, that ∫ T
0
|f(s, 0, 0)|ds ∈ L∞,and that ξ ∈ L∞. Then there exists a unique solution (Y, Z) of BSDE(26), and (A1) is satis�ed with θ = 1 and all p ∈ [2,∞). The solutionis unique in the lass S∞ × L2(ΩT ), where S∞ onsists of boundedontinuous proesses. This follows for example from [24, Theorem 2.6and Lemma 3.1℄. However, it might be that s∞ > 0, so that our resultsonly hold when p ≥ 2 is large enough as imposed by (A1)(vi).(iii) Assume that f satis�es (A1)(ii) with 0 < θ < 1, that ∫ T

0
|f(s, 0, 0)|ds ∈

L∞, and that ξ ∈ L∞. Then, as above, we have a unique solution and
(A1) is satis�ed with θ = 1 and all p ∈ [2,∞). Now it follows as inExample 5.16(ii) that s∞ = 0, so that our results hold for all p ≥ 2.Now we an state our basi result:Theorem 6.3 ([A, Theorem 6.4℄).Assume (A1). Then we have for all t ∈ [0, T ] that

∥

∥

∥

∥

∥

sup
s∈[t,T ]

|Y ϕ
s − Y ψ

s |
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

D
[

ϕ(s), ψ(s)
]

|Zs|2ds
)

1
2

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

|Zϕ
s − Zψ

s |2ds
)

1
2

∥

∥

∥

∥

∥

p

≤ c(6.3) [‖ξϕ − ξψ‖p +
∥

∥

∥

∥

∫ T

t

|fϕ(s, Y ψ
s , Z

ψ
s )− fψ(s, Y ψ

s , Z
ψ
s )|ds

∥

∥

∥

∥

p

]

, (27)36



where ϕ, ψ ∈ ∆, D[ν, η] := 1−
√
1− ν2

√

1− η2 − νη, and c(6.3) > 0 dependsat most on (Ly, Lz, T, (sN)
∞
N=1, p, d).Remark 6.4. The funtion D[ν, η] : [0, 1]2 → [0, 1] measures the distanebetween ν and η, by projeting the vetor (ν,√1− ν2) onto (η,

√

1− η2) andomparing the projetion to (η,
√

1− η2). In partiular, D[ν, η] = 0 if andonly if ν = η.6.3 Lp-variationAs it was explained in Setion 3.1, it is important to estimate the Lp-variationof the solution of a BSDE. Our main result in this respet isTheorem 6.5 ([A, Theorem 6.16℄).Assume (A1). Then there is a onstant c(6.5) > 0 suh that for all
0 ≤ s < t ≤ T one has
‖Yt − Ys‖p ≤ c(6.5)[ ∥∥∥

∥

∫ t

s

[1 + |f(r, 0, 0)|]dr
∥

∥

∥

∥

p

+ ‖ξ − ξ(s,t]‖p

+

∥

∥

∥

∥

∫ T

s

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

.Proof. Fix 0 ≤ s < t ≤ T . Sine Yt is Ft-measurable, we obtain
‖Yt − Ys‖p ≤ ‖Yt − EFsYt‖p + ‖EFsYt − Ys‖p

≤ ‖Yt − Y
(s,t]
t ‖p + ‖EFsYt − Ys‖p

≤ c(6.3) [‖ξ − ξ(s,t]‖p +
∥

∥

∥

∥

∫ T

t

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

+‖EFsYt − Ys‖p,where we applied Theorem 6.3 with the pair (0, χ(s,t]) ∈ ∆ × ∆. The lastterm an be upper bounded by
‖EFsYt − Ys‖p

=

∥

∥

∥

∥

EFs

∫ t

s

f(r, Yr, Zr)dr

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∫ t

s

|f(r, 0, 0)|dr
∥

∥

∥

∥

p

+ Ly

∥

∥

∥

∥

∫ t

s

|Yr|dr
∥

∥

∥

∥

p

+ Lz

∥

∥

∥

∥

∫ t

s

[1 + |Zr|]θ|Zr|dr
∥

∥

∥

∥

p

.37



It follows from our assumptions that supr∈[0,T ] |Yr| ∈ Lp so that
supr∈[0,T ] ‖Yr‖p < ∞. On the other hand, we an use Proposition 5.4 (with
B one of the omponents of W ) and Theorem 6.3 to dedue

∥

∥

∥

∥

∫ t

s

[1 + |Zr|]θ|Zr|dr
∥

∥

∥

∥

p

≤
√
2p

∥

∥

∥

∥

∥

(
∫ t

s

|Zr|2dr
)

1
2

∥

∥

∥

∥

∥

p

sup
r∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

r

χ(s,t](u)[1 + |Zu|]2θdu
∣

∣

∣
Fr

)∥

∥

∥

∥

1
2

L∞

≤
√
2pc(6.3) [‖ξ − ξ(s,t]‖p +

∥

∥

∥

∥

∫ T

s

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

×

×
[

√
t− s+ sup

r∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

r

|Zu|2θdu
∣

∣

∣
Fr

)∥

∥

∥

∥

1
2

L∞

]

.This onludes the proof.6.4 Anisotropi Besov SpaesIn this Setion we present our non-linear embedding theorem for BSDEs andanisotropi Besov spaes. The main result is Theorem 6.8, whih states thatif the data (ξ, f) is in ertain anisotropi Besov spaes, then so is the solution
(Y, Z).De�nition 6.6. For q, r ∈ [1,∞), a preditable proess (At)t∈[0,T ] with

∥

∥

∥

∥

∥

(
∫ T

0

|As|rds
)

1
r

∥

∥

∥

∥

∥

q

<∞,for t ∈ [0, T ], and for an admissible funtional11 Φ : C+(∆) → [0,∞] we let
‖A‖r,tΦ,q := Φ



ϕ→
∥

∥

∥

∥

∥

(
∫ T

t

|As −Aϕs |rds
)

1
r

∥

∥

∥

∥

∥

q



 .First we note that this de�nition is possible:Lemma 6.7 ([A, Lemma 6.13℄). The map
ϕ→

∥

∥

∥

∥

∥

(
∫ T

t

|As − Aϕs |rds
)

1
r

∥

∥

∥

∥

∥

qis ontinuous as a map from ∆ into [0,∞).11In the sense of De�nition 4.3. 38



Theorem 6.8 ([A, Corollary 6.14℄).Let t ∈ [0, T ], assume (A1), and that there are preditable proesses (V l
s )s∈[t,T ]suh that, for all ϕ ∈ ∆,

∥

∥

∥

∥

∫ T

t

|f(s, Y ϕ
s , Z

ϕ
s )− fϕ(s, Y ϕ

s , Z
ϕ
s )|ds

∥

∥

∥

∥

p

≤
L
∑

l=1

‖V l
· − (V l

· )
ϕ‖Lql

(Lrl
([t,T ]))for some ql ∈ [p,∞) and rl ∈ [1,∞)12. Let Φ be admissible. Then we havethat

‖Yt‖Φ,p + ‖Z‖2,tΦ,p ≤ 2c(6.3) [‖ξ‖Φ,p + L
∑

l=1

‖V l‖rl,tΦ,ql

]

.Proof. Follows diretly from Theorem 6.3 applied to the pair (0, ϕ).Examples how to obtain proesses V in Theorem 6.8 are disussed in[A, Setion 19℄.6.5 Weighted BMOIn this Setion we show how we an exploit the idea of self-iteratinginequalities that are used to prove exponential tail estimates under assump-tions on the mean osillation of funtions or proesses in the ontext ofBSDEs. Roughly speaking, we onsider our results onditionally and obtainvia iteration better tail estimates than Lp-estimates would give.We use the notation (F r)r∈[0,T ] for the natural �ltration of the 2d-dimensionalBrownian motion (W,W ′), augmented by all P-nullsets. The onditionalversion of Theorem 6.3 is as follows:Proposition 6.9 ([B, Proposition 5.4℄).Assume (A1). Then for any 0 ≤ s < t ≤ T and u ∈ [0, T ] we have
EFu sup

r∈[u,T ]
|Yr − Y (s,t]

r |p

+EFu

(
∫ T

u

1(s,t](r)[|Zr|2 + |Z(s,t]
r |2] + [1− 1(s,t](r)]|Zr − Z(s,t]

r |2dr
)

p
2

≤ cp(6.9)EFu

(

|ξ − ξ(s,t]|+
∫ T

u

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
)p

,where c(6.9) > 0 depends at most on (T, d, p, Ly, Lz, (sN)N), and sN is takenfrom (A1)(v).12The V l may depend on (ξ, f, Y, Z, p, ql, rl).39



To be able to use the theory of weighted BMO, we assume that ξ and fsatisfy a ertain weighted BMO-assumption on a subinterval [s, t] ⊆ [0, T ].If this assumption holds on a subinterval [s, t], then on this interval we willhave that the solution of our BSDE is of weighted BMO, and this gives us atail estimate for the variation of the solution.(A2) There are 0 ≤ s < t ≤ T suh that there exist àdlàg (Fr)r∈[0,T ]-supermartingales (wξp,s,u,t)u∈[s,t] and (wfp,s,u,t)u∈[s,t], whose anonial ex-tensions (wξp,s,u,t)u∈[s,t] and13 (wfp,s,u,t)u∈[s,t], satisfy for any u ∈ [s, t](i) EF0
u |ξ − ξ(u,t]|p ≤ wξp,s,u,t,(ii) EF0
u

(

∫ T

u
|f(r, Yr, Zr)− f (u,t](r, Yr, Zr)|dr

)p

≤ wfp,s,u,t.Assumption (A2) is in fat a ondition imposed in the produt probabil-ity spae (Ω,F ,P), and we used, as usual, the notation (ξ, f, Y, Z) for theanonial extensions.We made an exeption with the weight proesses wξp and wfp to emphasizethe fat that our main result, a weighted John-Nirenberg-type theorem forBSDEs, is a result in the probability spae (Ω,F ,P).Theorem 6.10 ([B, Theorem 3.10 and Theorem 3.11℄).Assume (A1) and (A2). Then there exists c(6.10) > 0 depending at most on
(T, d, p, Ly, Lz, (sN)N) suh that for any stopping time σ ∈ [s, t]

EFσ |Yt − Yσ|p ≤ (c(6.10)wp,s,σ,t)p, (28)where
wpp,s,u,t =

(

wξp,s,u,t + wfp,s,u,t

)

+ EFu

(
∫ t

u

|f(r, 0, 0)|dr
)p

+(t− u)p
[

EFu

(

|ξ|+
∫ T

t

|f(r, 0, 0)|dr
)p]

.Consequently, there exists c > 0 suh that for any stopping time σ ∈ [s, t]one has
PB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > λ+ cµν

)

≤ e1−µPB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > λ

)

+cPB

(

sup
u∈[σ,t]

wp,s,u,t > ν

)

,for all λ, µ, ν > 0, and any B ∈ Fσ of positive measure.13These proesses are àdlàg (F0
r )r∈[0,T ]-supermartingales.40



Proof. The �rst laim is a onditional version of Theorem 6.5, and an beproven similarly with use of assumption (A2). The onsequently-part followsfrom the �rst part of Theorem 6.10 applied together with Proposition 5.7and Theorem 5.8 on the subinterval [s, t] ⊆ [0, T ].For simpli�ation, we may take λ → 0 in the seond part of Theorem 6.10,so that for all stopping times σ ∈ [s, t] we have
PB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > cµν

)

≤ e1−µ + cPB

(

sup
u∈[σ,t]

wp,s,u,t > ν

)

,for all µ, ν > 0, and any B ∈ Fσ of positive measure.As an example of the ase when (A1) and (A2) hold, we onsider for x ∈ Rdthe deoupled FBSDE
Xt = x+

∫ t

0

b(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr, t ∈ [0, T ],

Yt = g(XT ) +

∫ T

t

h(r,Xr, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ]. (29)For the funtions b, σ, h, and g we assume that σ is uniformly bounded inaddition to the usual onditions of joint ontinuity and uniform Lipshitzondition in the state variables (the preise set of onditions is given in[B, Setion 3.1℄). Then it follows that (A1) holds with θ = 0 and all
p ∈ [2,∞), and (A2) holds on all subintervals [s, t] ⊆ [0, T ] with the weightfuntions

wfp,s,u,t = wξp,s,u,t = cp(t− u)
p
2 ,where c > 0 depends at most on (T, d, p, g, h, σ, b).Now, from Theorem 6.10 and from the properties of the forward proess X ,we obtain the following result:Theorem 6.11 ([B, Theorem 3.1 and Theorem 3.2℄).Let the assumptions stated for FBSDE (29) hold, and let p ≥ 2. Then thereexists c(6.11) = c(6.11)(p, b, σ, g, h) > 0, suh that for all 0 ≤ s < t ≤ T and allstopping times τ : Ω → [s, t] we have

E

( |Yt − Yτ |p
1 + |Xτ |p(t− τ)p/2

∣

∣

∣
Fτ

)

≤ cp(6.11)(t− τ)p/2.41



Consequently, there exists c > 0 suh that for any p ≥ 2, 0 ≤ s < t ≤ T andany stopping time τ ∈ [s, t] we have
PB

(

sup
u∈[τ,t]

|Yu − Yτ |
c(6.11)√t− s

> cµν

)

≤ e1−µ+cPB

(

sup
u∈[τ,t]

|Xu|p(t− u)
p
2 > νp − 1

)

,for all µ, ν > 0, and all B ∈ Fτ of positive measure.It should be mentioned that Theorem 6.11 holds in this form as g is Lipshitz,and the Lipshitz property is saling invariant. Moreover, it is shown in[B, Example 3.3℄ that the weight proess of Theorem 6.11 is sharp. That is,there exist b, σ, h, g that satisfy our assumptions, and the solution of FBSDE(29) satis�es
E
[

|Yt − Yτ |p
∣

∣

∣
Fτ

]

≥ (t− τ)p/2(1 + |Xτ |p(t− τ)p/2)for all p ≥ 2, all 0 ≤ s < t ≤ T and all stopping times τ : Ω → [s, t].7 Some perspetivesWe onlude with open questions and possible topis for future researh.1. Whih parts of this thesis an be extended to the ase where the drivingproess is a Lévy-proess other than a Brownian motion? In partiular,does Proposition 3.2 still hold when "ontinuity" is replaed by "àdlàg-property"? Some related work in this diretion is in [14℄.2. The ondition (A1)(v) is needed for the proof of Theorem 6.3, as itimplies that for a ertain martingale M , the Doléan-Dade exponential
E(M) satis�es the reverse Hölder inequalities for q ∈ (1,∞) that aresmall enough. The ritial index is de�ned in terms of the slieabilitynumber sl∞(|Z|θ), and if sl∞(|Z|θ) = 0, we have that the reverse Hölderinequalities are satis�ed for all q ∈ (1,∞). However, if M ∈ BMO,then [21, Theorem 3.8℄ provides the haraterization

E(λM) ∈
⋂

q∈(1,∞)

RHq for all λ ∈ R ⇔M ∈ L∞
BMO

.Hene, it would be interesting to investigate whether the ondition
(
∫ t

0
|Zr|θdBr)t∈[0,T ] ∈ L∞

BMO for a 1-dimensional Brownian motion Bimplies that our results hold for all p ∈ [2,∞), i.e. that assumption(A1)(vi) ould be dropped in this ase.42



3. Is there a ounterpart of Theorem 4.9 for Φr (see (19))? Similarly to[16, page 932℄, this might hold with the Derivative operator replaedby a Riemann-Liouville operator.4. For the proof of the tail estimate of Theorem 6.10 on [s, t] we only needan upper bound of EFu |Yt−EFuYt|p or, equivalently, of EFu |Yt−Y (u,t]
t |pwith u ∈ [s, t]. However, the result we used (Proposition 6.9) givesus an upper bound of EFu

(

supr∈[t,T ] |Yr − Y
(u,t]
r |p

). This raises thequestion whether it would su�e in (A2), for example, to upper bound
EFu |EFtξ − EFuξ|p instead of EFu |ξ − EGt

uξ|p, and to use this as anassumption in a modi�ed version of Proposition 6.9. The di�erene ofthese onepts is that the latter one additionally measures how muh
ξ hanges on the interval [t, T ] if it is perturbed on the interval [u, t].My onjeture is that this stability is needed in order to �nd an upperbound of EFu |Yt−EFuYt|p, but sine I have not found a ounterexample,it remains open whether the �rst quantity is enough to give us a tailestimate or not.Referenes[1℄ R. Avikainen: On irregular funtionals of SDEs and the Euler sheme.Finane Stoh. 13, 381-401, 2009.[2℄ J-M. Bismut: Conjugate onvex funtions in optimal stohasti ontrol.Journal of Mathematial Analysis and Appliations, Vol.44(2), 384-404,1973.[3℄ B. Bouhard, N. Touzi: Disrete Time Approximation and Monte-Carlo Simulation of Bakward Stohasti Di�erential Equations.Stohasti Proess. Appl. Vol. 111(2), 175-206, 2004.[4℄ B. Bouhard, R. Elie, N. Touzi: Disrete-time approximation of BS-DEs and probabilisti shemes for fully nonlinear PDEs. Radon SeriesComp. Appl. Math, 8, 1-34, 2009.[5℄ P. Briand, B. Delyon, Y. Hu, E. Pardoux, L. Stoia: Lp solutions ofBakward Stohasti Di�erential Equations. Stohasti Proess. Appl.Vol. 108(1), 109-129, 2003.[6℄ P. Briand, R. Elie: A simple onstrutive approah to quadrati BSDEswith or without delay. Stoh. Pro. App., Vol. 123(8), 2921-2939, 2013.43
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134. TÖRMÄKANGAS, TIMO, Simulation study on the properties of quantitative trait model
estimation in twin study design of normally distributed and discrete event-time phenotype
variables. (417 pp.) 2012

135. ZHANG, GUO, Liouville theorems for stationary flows of generalized Newtonian fluids. (14 pp.)
2012

136. RAJALA, TUOMAS, Use of secondary structures in the analysis of spatial point patterns.
(27 pp.) 2012

137. LAUKKARINEN, EIJA, On Malliavin calculus and approximation of stochastic integrals for
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