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1 Introduction

The main subject of this thesis are Backward Stochastic Differential Equa-
tions, BSDEs from now on, of type

T T
Yi— 6+ / F(r, Yo Z,)dr / Z,dW,, te0.T), (1)

where T" > 0 is a fixed time horizon and W is a d-dimensional Brownian
motion. The pair (£, f) is referred to as the data, and the pair (Y, Z) (or
just the process Y') as the solution. We deduce different types of upper
bounds for the variation of the solution on subintervals of [0,7]. These
upper bounds are given, as is usual with BSDEs, in terms of the data. In [A]
an L,-quantity of the variation is upper bounded by an L,-quantity of the
data, with p € [2,00). The upper bound is obtained using a new decoupling
technique, which also gives rise to anisotropic Besov spaces. These spaces
include for example the Besov spaces obtained by real interpolation, and we
also show a connection of a certain anisotropic Besov space to the Malliavin
derivative. In we show that the solution is of weighted bounded mean
oscillation (weighted BMO), where the weight process is given in terms of
the data. Using the theory of weighted BMO, the variation of the solution is
shown to satisfy a tail estimate that is better than what would be obtained
from an L,-estimate.

2 BSDEs

We start by introducing our setting and fixing some notation. In this thesis
we work on a complete stochastic basis (Q,F,P,(F;)wcpr)), Wwhere
"the information" (F;)co,r] is given by a d-dimensional Brownian motion
W = (Wi)ieppr) with d > 1, and F = Fp. To be precise, (F;)scp,r is the
augmented natural filtration of . The predictable o-algebra generated by
left-continuous (F;)¢ejo,r-adapted processes is denoted by P.

For X € £,(Q,F,P) and a sub-c-algebra G C F we will use the notation
E‘X =E [X } g} for the conditional expectation of X given G. Inequalities
concerning random variables, such as E9X <Y, hold in general only almost
surely even though this is not always explicitly mentioned. The notations 14
and x4 are reserved for the indicator function of a set A. That is,

1, ifxeA,
1A(x) :XA(x):{ 0 ifr & A.



In the BSDE ([l) we are given a pair (£, f), where the terminal value £ is an
Fr-measurable random variable (i.e. at time 7" you know the exact value of
£). The generator f: [0,7] x Q x R x R? — R is assumed to be such that

o (t,w)— f(t,w,y, z)is (F;)ieor-predictable for all (y, z) € RxR?, and
e (y,2)— f(t,w,y, z) is continuous for all (t,w) € [0,T] x €.

The solution consists of the pair of stochastic processes (Y, Z), where ¢ — Y
is continuous, Y is (F;)co,r-adapted, Z is (F;)cjo,r-predictable, and (Y, Z)
satisfy ([II) almost surelyj-_lll

The philosophy is that if we know the structure or mechanism of &, and the
dynamics of the system (the generator f), then we want to find (Y, Z). The
Y -process starts from a deterministic constant, and travels continuously in
time into &, almost surely. An important point here is the adaptedness of Y
at time t we know the value of Y;. The Z-process on the other hand acts as
a control process that guides Y into &.

In the special case f = 0, Y; equals the conditional expectation of £ given F;.
Furthermore, if it happens to be that £ belongs to the Malliavin Sobolev space
Dy 2, then the Clark-Ocone formula tells us that Z equals the predictable
projection of the Malliavin derivative of Y.

The original motivation for studying BSDEs comes from optimal stochastic
control theory [2], later connections to mathematical finance were discovered
for example in [12] and [I9]. BSDEs are also closely connected to a group
of partial differential equations, as was already proven through a nonlinear
Feynman-Kac theorem in the seminal work [27].

The research of BSDEs was initiated by Bismut, who introduced BSDEs
with a generator f that is linear in y, z, i.e. linear BSDEs. Once the case
of a uniformly Lipschitz f (in y, z) with data in L, was handled in [20], the
amount of related papers hugely increased. Another important benchmark
with a uniformly Lipschitz f is [5], where the case of datain L, with 1 < p < 2
is handled. A typical estimate with BSDEs is the following "apriori estimate"

from [G]:
(/ T|zr|2dr)% ] o

where C), > 0, p > 1, and || - ||, stands for || - ||, )
For example in connection to utility maximization with exponential utility,
the generator f may grow quadratically in the z-variable. These quadratic

sup |Yil|| +

te[0,7)

lell + H [ 0.0

<c,
p

IThis is often abbreviated to P-a.s., also to emphasize the measure used.



BSDEs are considered with a bounded ¢ for example in [22] and [19], and with
exponential moments in £ for example in [7] and [9]. An important ingredient
when proving the well-posedness in the quadratic case are BMO-martingales
(see Section [l). In [I0] the authors go a step further by considering martin-
gales that are sliceable in BMO, and this concept is exploited in this thesis
as well.

To give more insight into BSDESs, we consider a basic example of asset pricing
as described in [12]:

Example 2.1. For simplicity of the presentation we assume here that the
Brownian motion (W}).c(o,77 is 1-dimensional. Our market model is that we
have two assets: one riskless asset ("bank account") with price per unit P°

governed by the equation
dP) = PPr.dt, (3)

where r is the interest rate, and one risky security (the stock) where the price
process P! is modeled by the SDE

dPtl = Ptl (btdt -+ O'tth) y (4)

where b is the stock appreciation rate and o is the volatility. Moreover, the
coefficients in (B]) and (@) are "nice", i.e.

(i) r is a predictable non-negative bounded process,

)
(ii) b and o are predictable and bounded,
(iii) o # 0 for any ¢ € [0, 7] almost surely, and o~! is a bounded process,
)

(iv) there exists a predictable and bounded process 0 (called the risk pre-
mium) such that b, — r, = 0,0, for all t € [0, T] almost surely.

We consider a small investor who at time ¢ decides what amount m; of the
wealth V; to invest in the stock. Since his decisions can be based only on the
current, information (no insider trading), the processes 7; and 70 := V; — m,
are predictable.

A strategy (V,m) is self-financing if the investor’s wealth at time t consists
of the initial wealth V{, and the losses or gains that he has obtained using
(7s)se0,- That is, the wealth process satisfies

tdp® [t 4p!
Vt=Vo+/ 0 s+/ —=
0 0

e s
s 0 § 17
Ps Ps



which, using equations ([B]) and (H), is equivalent to the wealth process satis-
fying the SDE
d‘/t = Tt‘/;gdt + WtUt[th -+ etdt]

For this to make sense it has to also hold, P-a.s., that

T
/ |7Tt0't|2dt < 00.
0

The strategy is called feasible if V; > 0 for all t € [0,7], P-a.s., i.e. no
borrowing is allowed in the model.

Now we consider a non-negative European contingent claim £ > 0 settled at
time 7. This is an Fpr-measurable random variable, and can be thought
of as a contract that pays the amount ¢ at maturity 7. For example,
§ = 1(k,00)(P}) with K € (0, 00) is a European contingent claim. A buyer of
this claim receives one unit of currency if the value of the stock at time T
exceeds the value K. If the value of the stock at maturity is below or equal
to K, then the buyer gets nothing.

How much should this claim cost at time 07 It seems fair that if we let Vj be
the price of the claim, then it should be possible to invest this amount into
the assets P’ and P! such that at time 7" we have V; = £. This means that
we can replicate the claim using the price as an initial endowment. Moreover,
the fair price should be the smallest amount V{, with which this can be done.
This principle is the basis of arbitrage-free pricing of the claim.

We say that a hedging strategy against a non-negative contingent claim & is
a feasible self-financing strategy (V, ) such that Vp = €.

With our assumptions, any square-integrable non-negative claim £ can be
hedged, i.e. there is a hedging strategy against &.

The fair price (at time 0) of the claim & is the smallest initial endowment
needed to hedge €.

Now, with our assumptions, we have the following:

Theorem 2.2 (|12, Theorem 1.1]).
Let & be a non-negative square-integrable contingent claim. Then there exists
a hedging strategy (V, ) against & such that

dv, = r Vidt + mo,0,dt + mo dWy,  Vp =€, (5)

and such that Vy is the fair price of the claim.



Now we can finally write this as a BSDE. It follows from Theorem that
(V, 7o) is a solution of the (linear) BSDE

T T
Yi— 6+ / (Y, Z,)dr — / Z,dW,. e[0T, (6)

where f(t,y,z) :=ry + 6;2.

The model used in Example 2.1 is very simple in this form. However, one
can easily incorporate for example borrowing with a higher interest rate than
r, consumption, and transaction costs to the BSDE-formulation.

3 Decoupling

In this Section we recall the new general functional mapping procedure that
was introduced in [A].

We assume that there are two complete probability spaces where the random-
ness is, up to nullsets, induced by a countable family of random variables.
Moreover, these two families should have the same finite-dimensional distri-
butions. In particular we do not require this distribution to be Gaussian.

Then we can map equivalence classes of random variables from the first space
to equivalence classes of random variables in the second space. This is done
in such a way that we do not change the structure of the random variable in
question.

More generally, the same procedure applies to stochastic processes taking
values in spaces of continuous functions.

This procedure can be applied to a Wiener space as a basis for decouplingE
and as a factorization through a canonical space. Because our approach is
distributional, canonical space here refers to the sequence space RY, but as

a by-product we can also map all random variables and processes to the
standard Wiener space Cy([0,T7]).

Some advantages of this functional mapping procedure are that the approach
is robust, but also easy to use. It is robust, since we only assume that the
randomness comes from a countable sequence of random variables. It is also
easy to use since, as one can see from the results in Section below, it
preserves the structure of the random objects.

2Why are we interested in decoupling? See Section [3.1] below.



The origins of this procedure are in [I3|, where the L,-variation of cer-
tain BSDEs is considered. One of the assumptions in [I3] is, that there
is an underlying diffusion (X,),cjo,r) and the terminal value of the BSDE
can be written as £ = ¢(Xy,,...,X;,), where g is a Borel-function and
0<t <---<t, <T. Moreover, the randomness of the generator f
comes only from the diffusion, i.e. we have f(r,w,y,z) = h(r, X, (w),y, 2)
for a measurable function h. These assumptions can be dropped using our
decoupling technique.

This decoupling also gives rise to Banach spaces of random variables known as
anisotropic Besov spaces (see Section ). These spaces measure the fractional
smoothness of random variables.

3.1 Motivation

We start this Section by considering Example 2Tl in real life. Unfortunately
it is not possible to trade continuously in time as is required in Theorem
2.2 but instead you only trade a stock at a finite number of time points
0=ty <ty <---<ty=T,ie on atimegrid m := {to,...,ty}. Trying
to replicate the option with only a finite number of adjustments will most
likely fail, but it is of interest to know how large the difference is.

The same phenomenon occurs if one wishes to simulate a (solution of a)
BSDE; for the computer the system needs to be discretized. That is, we
evaluate our processes only on a finite time-grid 7 as before. Because of this,
there is a difference between the solution and the result of the simulation.
This, or some norm of this, is the simulation error. Naturally, it is important
to know how large the simulation error is.

To illustrate how the error caused by the time discretization can be estimated,
we will follow the approach from [4, Chapter 2|: Let T'= 1 and consider the
FBSDE

t t
X, = « +/ b(X,)dr +/ o(X,)dW,, te0,T],
0 0
T T
Y = g(Xo) +/ WX Y, Z,)dr — / Zdaw,. te0.T), (7)
t t
where € R?, and the functions b : R? — R%, o : R — R¥>4 ¢ :R? = R,

h : RYx R xR?Y — R are assumed to be Lipschitz-continuous. Given a
time-grid 7 as before, with modulus

|m| = sup  (tgs1 — tr),
k=0,...N—1



the Euler scheme of the forward process X is defined as

Xy =z, X[

tet1

= b(X] ) Aty + o (X]) AW,

for k < N, where Aty =t —tp and AW, =W, . — W, . To motivate the
definition of the backward Euler scheme we first write

tea1 tht1
thk - }/tk-ﬁ—l +/ h(Xra Y;,, Zr)dr - / ZrdWra
ti ty

and then formally approximate the righthand-side to arrive at:

ka ~ szﬂ + h’(Xﬂ

tr)

Y, Zu, )Mty — Zy, AW, . (8)

First, by taking conditional expectation given F;, on both sides of (&), we
get that

Yy %E Y,

Foy| + hXE Vi, Z,) M

Secondly, by multiplying both sides of (8) by AW}, , and then taking condi-
tional expectation given F;,, we get by Ito’s isometry that

0~ E|Y,, AW,

ftk} ~ Z, Aty

These steps lead to the (implicit) backward Euler scheme

— 1 -
Ztk - A—tkE [Y;kﬂAWt’“ ‘Ftk}’ (9)
Vi = B[YL,| B OV Z) A, (10)

with k£ < N, and Y = g(X7). We define the (squared) simulation error as

N-1 thy1 sy
E / | Z, — Ztk| dr
k=0 7 tr

Err(7)? := max E

T2
[max_ sup Y, — Y|

Te[tk,tk+1}

+E

Now, letting

_ 1 tet1
Ztk:A—tkE|:/tk Zrdr) ftk:|a

we define the (squared) modulus of reqularity of Y and Z as

10



Ry (7) = max E

0<k<N
N—1
k=0
Then it follows ([4, Proposition 2.2.1]) that there exists a constant C' > 0,
independent of 7, such that

sup |V, =V, [?

T‘e[tk,tk+1]

tet1 .
/ | Z, — Z,, |*dr
t

k

, (11)

E

R%(m) (12)

Err(r) < C (|n| + R2 (x) + Ry(r)) .

Moreover, in the case that A = 0 it even follows ([4, Remark 2.2.4|) that
there exists a constant ¢ > 0 such that

¢ (R} (m) + Ry(m))? < Enx(r),

and up to a term depending on |7| this holds also when h # 0.

The above example indicates that the simulation error can be approximated
by regularity of the exact solution itself. This is one reason why we want to
find upper bounds of |Y; — Y| in some sense for all 0 < s <t < T'. It is also
an interesting task in itself. In [A] we consider the L,-quantity E|Y; —Y;|? for
2 < p < o0, and in [B] we consider the conditional L,-quantity E**|Y; — Y|P
for 2 < p < .

The strategy in both cases was the same: we start with
EZY, - Y[ < ¢ [EX|Y, - E7Y, P + EZ[ERY, - Y], (13)

where ¢, > 0. With p = 2 this inequality is actually an equality, with c; = 1.
The second part in equation ([3)), E”*|E”*Y; — Y|P, can be estimated directly
(see Theorem [6.0]) using estimates that are mostly standard. The only non-
standard argument, an extension of Fefferman’s inequality (see Proposition
B4 or [Bl, Corollary 2.10]), is used if f grows superlinearly in the z-variable.
Now we focus on the more difficult problem, upper bounding E”+|Y; —E*Y;|?.
To explain the idea, consider first the case s = 0. Then, taking X; to be an
independent copy of Y;, we have

1
EIY - XP <E|Y, —EY]? <E[Y; - X,J” (14)

where p > 1.

11



Naturally, we want X; to be such that we can (without too much of an extra
effort) upper bound the quantity E|Y; — X;|? mentioned above. If X, is indeed
a copy of Y;, then X; itself should be a solution of a BSDE. This is essential
for us; both X; and Y; are solutions of BSDEs at time ¢, so we can also write
their difference X; — Y} as a solution of a BSDE at time ¢t. After this we use
an apriori estimate (similar to equation (2))) to find an upper bound in terms
of the data.

To indicate how we can handle the case s > 0, recall that our filtration is
generated by the Brownian motion W, so it makes sense to first consider the
case Y; = W, (for simplicity we may think that W is 1-dimensional). In the
case s = 0 we took X; to be an independent copy of Y;, and this leads us
to assume that there exists (W) cjo,r; which is a Brownian motion that is
independent of W.
Let now s > 0, and let us try to use W’ to find a random variable X; such
that
Lpr
op
We simplify the setting once more by considering the case p = 2. Now, using
properties of the Brownian motion, we have

W, — X,|P < EX|\W, - EXW, P <E”

W, — X,JP.

E]—'slwt _ EJ:SWt|2 — E}-Slwt _ WS‘Z

1
= SERIW— (W = W W),

where we used the fact that W and W’ are independent. This leads us to
choose X; = W/ — W!+ Wy, or in terms of stochastic integrals,

t t
X, = w .= / 1— 1o (r)dW, + / 1 (r)dW.
0 0

Then X, is a conditionally independent copy of Wy given Fi.

For illustration we have a figure of the different Brownian motions:

12
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Figure 1: Brownian motions W,JW’ and W&, Here s = 0.3, t = 0.6 and
T=1.

Can we do the same for any F;-measurable Y;? Recall that F; is (essentially)
generated by the Brownian motion W until time ¢. This means that the ran-
domness of Y; comes, in some sense, from the underlying process (W,),c[04-
Next we explain how we can change the random variable Y; by changing the
underlying Brownian motion W into the new Brownian motion W4,

3.2 Setting

Let us be precise on how we can find a Brownian motion W’ that is indepen-
dent of W. We start by taking another stochastic basis (', 7', ', (F).),eo,17)-
where (F)),co,r is the augmented filtration of the d-dimensional Brownian
motion W', and F' = FF.

13



To speak of independence, we must have W and W’ defined on the same
probability space. Thus, we let

Q:=0xQ, P=PxP, ?::}—@}"’F,

and work on the probability space (Q, F,P). By considering the canonical
extensions W(w,w’) = W(w) and W' (w,w’) = W'(w') for all (w,w') €
Q x €, we then have that W and W', both defined on Q, are independent
d-dimensional Brownian motions. The augmented natural ﬁltrationﬁ of the
2d-dimensional Brownian motion W = (W, W) is denoted by (F;).cjo,r)- We

also use the notation

(Qr, X7, Pp) = ([0,7] x Q,B([0,T]) @ F,

X
=

Rl
N> N>

(ﬁT,iTapT) = ([O,T] X Q,B([O,T]) ®

X
&

Y

where )\ is the Lebesgue-measure on [0, 7.
Now we let ¢ : [0,T] — [0, 1] be Borel measurable, and define for all r € [0, T]]

w# :/ V1= (u)dW, +/ o(u)dw,.
0 0
Because of Lévy’s characterization of the Brownian motion, (W¢),cp1 is a

standard Brownian motion, and we use (F¢),co.7] to denote its augmented
natural filtration and F¥ := Fr. The predictable o-algebra on the stochastic
basis (Q, 72, P, (F¢),cio7) is denoted by P¥, and we will also make use of
the notation X7 = B([0,T]) ® F¥.

Denoting the function ¢ = 0 simply by 0, we have that W° and (the extension
of) W are indistinguishable. Since F° contains all P-nullsets, it follows that
(FD)iepo,r) and the augmentation of o(W,,r € [0,])seo,r] coincide. Thus, we
may agree to use the notation W9 for the extension of W and (F)),ep,r) for

the corresponding filtration.

For our purposes the Brownian motion W := 1WXe4, where 0 < s <t < T,
plays an essential role.

One may view the definition of W%, and the soon-to-be introduced tech-
niques, as an extension of the techniques used to obtain Mehler’s formula
(see for example [25] Equation (1.67)]). The same technique that was used
to obtain Mehler’s formula has also been used in characterizing (isotropic)
Besov spaces obtained by real interpolation in [I8].

3Whenever we augment a filtration in , we augment it by P-nullsets.

14



The difference between our definition and these cases is, that they only con-
sidered constant-valued functions ¢. The reason why we want to have a
covariance-function that does depend on time is, that we want to estimate
EFs |Y;t _ E]—'s}/”p_

Now we describe how the randomness of a process X € Lo(Qr, X7, Pr) is
changed to come from W¥ instead of W. Changing the randomness of a
random variable & € Ly(£2, F,P) to come from W*¥ instead of W is analogous.

1.

For X € Lo(Qr, %7, Pr) take the canonical extension X (t,w,w’) =
X(t,w), and consider the corresponding equivalence class of random
variables [X] € Lo(Qr, X%, Pr).

2. Letting (gn)nen : © — R be the family of finite differences of W°

generated by Haar functions, there exists a B([0,7]) ® o(g,,n € N)-
measurable X € [X].

3. ﬁDeﬁning Jr: Qr — [0, T] xRN, Jp(t,n) = (t, gn(n))nen, there exists

a random variable X : [0,7] x RY — R so that X° can be factorized
through [0, 7] x RM:

X0 0, 300, 7] x RY 5 R

4. ﬁ Defining J7 analogously, but using W¥ instead of W?, we have that

X(J2) : Qp — R is a well-defined B([0,T]) ® o(g¢,n € N)-measurable
random variable.

. Finally, we let X% € Ly(Qp, B2, Pr) be the equivalence class that con-

tains all X% -measurable random variables that are Pr-a.s. the same as
X (J7).

In step 2 it is essential that the o-algebras F° and o(g,,n € N) differ only
by nullsets. Following steps 1-5 we now have the well-defined functional
mappings

Cr: Lo(ﬁTv 23’7@71) - L0<§T7 2?,@7—‘), CT([X]) = X7,

and, analogously, Cy : Lo(Q, F°,P) — Lo(Q, F¢,P).

Al Lemma 2.2]
°[Al Lemma 2.3(1)]
S[A] Lemma 2.3(2)]

15



In fact, in [A] we start with a complete probability space (Q, F!,P!), and
we assume:

e There exists a sequence (£!),cn of random variables in Q! such that
Flt=o0(&l,n e N) VN, where N are the Pl-nullsets,

e There exists a complete probability space (2%, F2 P?) such that
Fr=0(& n € N) VN2 where N? are the P2-nullsets, and (£2),en is
a sequence of random variables in 2,

o (&1),en and (€2),cn have the same finite-dimensional distributions.

Then we follow steps 1-5, with (g, )nen replaced by (£1),en and (g%)nen by
(€2),en, thus defining the functional mappings

Cr: Lo(Qp, X%, Pr) — Lo(Q5, 35, P3)

and CO : L()(Ql,.Fl,Pl) — Lo(QQ,IQ,PQ).

However, we restrict here ourselves to the mentioned case (Q', F',P') =
(Q, F° P), and (92, F%,P?) = (Q, F%,P). Then, for X € Lo(Qr, X%, Pr),
we have that Cr(X) and X are equivalence classes that consist of stochastic
processes that are in the same probability space (2, F,P).

In particular, this approach does not require continuous paths or a gaussian
distribution. As such, the approach might be useful also in other situations.
It should also be mentioned that a similar distributional approach is used
in [23, Chapter V.1.6] (see also [20]) on Gaussian random variables to define
the Gaussian Sobolev spaces (or the Malliavin Sobolev spaces).

This approach being so flexible and "general", the question arises whether
it is strong enough to preserve some regularity structures of the random
variables and stochastic processes. So far we have only positive answers.

3.3 Properties
We present some natural and expected properties that make our method
applicable in various situations, for example with BSDEs.

To shorten the presentation, we sometimes work in 2 and {7 in parallel.
This is done by considering S € {0, T}, and using the notation € := 2 and
20 = .F
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Also, we fix X # () to be a complete metric space that is locally o-compact,
i.e. there exist compact subsets () # K; C Ky C ..., such that Kn =K,
and X = J>°, K,.

The basic form of the results in this Section is the following: If the origi-
nal random object X € Ly({g, X, Ps) satisfies some property, then in the
equivalence class X¥ € Lo(ﬁs,Zﬁ,Pg) we can find a representative that
satisfies, in the proper sense, the same property.

Definition 3.1. We let f € Ly(Qs, Xg,Ps; C(X)) if f: Qs x X — R is such
that

o n— f(n,y) is Yg-measurable for all y € X
e y— f(n,y) is continuous for all n € Qg.
The continuity of a stochastic process is preserved in the following sense:

Proposition 3.2 (JAl Lemma 2.9]).

If f € Lo(Qs,X5,Ps; C(X)), then there exists f¢ € Lo(Qgs, X%, Ps; C(X))
such that f(y) € (f(y))¥ for all y € X. Given f{ and f3 with these two
properties, it follows that f7(-) = () (Ps-a.s.).

Given f € Lo(Qs, X5, Ps; C(X)), Proposition B.2]is used to define f¢ as the
equivalence clasd] of elements in Lo(Qs, 3%, Ps; C(X)) such that

f?(y) € (f(y))¢ for all y € X.
Predictability and adaptedness are transferred in the following sense:

Proposition 3.3 (JAl, Lemma 3.1 and Theorem 2.8|).

(i) If & € Lo(Q% F, P) for some t € [0,T], then all representatives of
£ € Lo(Q, F#,P) are Ff-measurable.

(i) If f € Lo(Qp, P, Pr; C(X)_)H, then there is a P?-measurabld] represen-
tative of f? € Lo(Qr, B2, Pr; C(X)).

(iii) If Y € Lo(Q, F,P; C([0,T7)) is (Fi)icpo,r-adapted, then all representa-
tives of Y¥ € Lo(Q, F#,P; C([0,T))) are (Ff)iejo)-adapted.

We summarize some further properties proven in [A]:

"We identify f1, fo € Lo(Qs, 2§, Ps; C(X)) if Ps (f1(y) = fa(y) for all y € X) = 1.
8i.e. n > f(n,x) is P-measurable for all z € X.
%e. nr fP(n,x) is P¥-measurable for all z € X.
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Proposition 3.4 ([Al Theorems 2.6, 2.11, and Lemma 3.2]).

Let N € N, g : RY — R a Borel function, S € {0,T}, X, X1,..., Xy €
Lo(Qs,ES,PS), Y e El(QT,ET,]P)T), fe Eo(Qs,Es,Ps;CORN)), and Z €
£2(QT,P7]P)T>. Then

(i) X £ xv.
(i) (9(X1,..., Xn))? = g(XT, .., X7).
(iii) (f(X1,..., XN))? = fE(XE,..., XE).

¥ T
VLT v (9lds<oo} ) = Jo YO r v (ojas<on dt-

<f0 th> = fo Z¢(t)dW?, for any predictable representative of

z¢e[19

Our next result states that if we have a strong solution of an SDE in the first
space, then changing the randomness of the solution results into a strong
solution of another SDE. Naturally, the randomness of the data is changed.
It is noteworthy that we do not assume uniqueness of the solution.

Proposition 3.5 (JAl Theorem 3.3]).
Assume that f, g; € Lo(Qp, P, Pr; C(RY™Y)), Z; € Lo(Qp, P, Pr), i =1,...,d,
that Y € Lo(Q, F,P;C([0,T7)) is (Fi)ieo,r)-adapted, and that

T T
El/ |f(7‘7Yr,Zr)|dT+/ lg(r,Y,, Z,)|?dr| < oo.
0 0
If £ € Lo(Q, F,P) and
T T
= g _'_/ f(T,Y;, Zr)d’f’ - / g(T’,Y;, Zr)dWr (15)

foru € [0,T], P-a.s., then fizing any predictable representatives of ¢, g7, Z7,
and (Fy )iepo, - adapted (continuous) representative of Y?, we have

T T
E{/ e 2+ [ |g@<r,w,2f>|2dr]<oo,
0 0

and

T T
Ye = ¢ 4 / F(r, Y8, 28)dr — / GP(r, Y2, Z8)AWE  (16)

for uw €1[0,T), P-a.s.

0By Proposition B.3(ii) there exists such a representative.
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We want to obtain conditional estimates in the probability space (€2, F,P)
from estimates obtained using the coupling technique. Here the next result
is vital:

Lemma 3.6 (|B, Lemma 4.9]). B
Letp>1,0<s<t<T,¢€LQFP), and put
Gli=o(W? rel0,s]) VoW —W reltT)).

Then

iEFS
op

Moreover, if £ is F-measurable, then

(S,t]‘p S E}-g

(st (17)

0 s 0 0 0 s
SElE - 0P < EPle — B < B g — g0,

Remark 3.7. Recall what we discussed in Section [31l: our goal is to upper
bound EZ+|Y; — EZ=Y;|P, where Y; is a solution of a BSDE at time t. Lemma
tells us that

E|Y; - EZY PP <ER|Y, - VP Poas.,

where B = |Y; — EZ=Y;|P stands for the canonical extension. Using Proposition
we notice that YU solves a BSDE just like Y did. We again emphasize
that we only need (y,z) — f(r,w,y,z) to be continuous for all (r,w) € Qr,
and we need to know that Y is a solution of the BSDE. In particular the
solution need not be unique, the existence is enough.

Now it remains to use an apriori estimate to upper bound E7? ’}|p.
For this we need to introduce a lot of assumptions that guarantee for us a
natural upper bound. To understand some of these assumptions better, it
is best to introduce the concept of bounded mean oscillation (BMO) before
we state our main results concerning BSDEs. But first we show what else
can be done with our decoupling technique; we introduce anisotropic Besov
spaces.

4 Anisotropic Besov Spaces

In this Section we recall the family of Banach spaces describing functional
fractional smoothness of random variables, as introduced in [A].

To define these spaces we only need to use the decoupling technique from
Section Bl Although we do not use Malliavin Calculus, in Theorem a
certain anisotropic Besov space is characterized using Malliavin derivatives.

19



We mention also some connections to previously studied Besov spaces ob-
tained by real interpolation.

We first define the metric space of parameter functions that we use:

Definition 4.1. We define the metric space (A, ) as the equivalence classes
of the pseudo-metric space (D,0) with

D ={Yely((0,T):0<¢ <1} and 6(p,¥) = [l — ¢l Loqo,m)-

Let p € (0,00), £ € L,(Q, F,P), and ¢ € A. Then we exploit our notion of
decoupling to study "the sensitivity of £ to the direction ", by measuring
the map F¢,(p) = [|€ — %[, @) in different ways. First we note that ¢ —
|€ — &%||, is a continuous map:

Lemma 4.2 (JA] Lemma 4.9]). Forp € (0,00) and £ € L,(Q2, F,P) the map
Fep: A —[0,00) defined by Fe (@) = ||§ — £7]], is continuous.

Next we define the concept of anisotropic Besov spaces. This is done by
measuring the map F¢, using an admissible functional:

Definition 4.3. Let C*(A) be the space of all non-negative continuous func-
tions F: A — [0,00). A functional ® : CT(A) — [0, 00] is called admissible
provided that

(C1) (F +G) < O(F) + 9(G),
(02) BAF) = AO(F) for A > 0,

(C3) ®(F) < ®(G) for 0 < F <G,

(C4) B(F) < limsup, D(F,) for sup,en [Falp) = F(2)] = 0.

Definition 4.4. For p € (0,00), £ € £,(Q2), and an admissible ® : CT(A) —
[0, 00] we let & € By provided that ®(¢ — [|€ —£7]|,) < oo and set

B =

I€llzg == [EIEP +[Igl5,] 7 with  [[€lla, = (e = [I€ = €°[l,)-

This definition yields a Banach space.

Theorem 4.5 ([Al Proposition 4.13]).
For p € [1,00) the space (of equivalence classes) By is a Banach space.
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4.1 Interpolation spaces as (an)isotropic Besov spaces

We give two examples of admissible functionals that correspond to Besov
spaces obtained by real interpolation method.

Definition 4.6. For O =rq <r <---r, =T, 6, € (0,1), ¢ € [1,00], and
F e CT(A) we let

(91,Q1) 7777 (€L7QL) R _ 791/2
@7’1 ..... TL (F) . lzsll:lp7L H(Tl t) F(X(t,f'l}) HL(I[([rlflvrl)vrldit)

Using the notation v, for the standard d-dimensional gaussian distribution,
the spaces ]B%g,q(Rd, ~a) are interpolation spaces between L, and the Malliavin
Sobolev space D ,. Here § € (0, 1) describes the fractional smoothness, and
q € [1,00] is the finetuning-index. For more information see for example [17]
and [Al Sections 7.1-7.2].

Proposition 4.7 ([A, Proposition 4.16]).
For 6 € (0,1), p € [2,00), q € [1,00], and f(W;) € L, one has

0 (md . - 3"
feB, (R vg) if and only if f(W1) € Br .

Definition 4.8. Let K : [0,1] — R be non-negative and Borel-measurable,
q € [1,00), and let ¢, : (0,T] — R be given by

o =1 for re0,1].

Then we define

v ey = ([ K<r>|F<sor>|er)%

The definition above means that we use the map & — &%~ that exchanges in
an isotropic way the full Brownian motion W by its mixture /1 — r2W +rW’.
Using the notation

EW)=¢ and (V1 —r2W +rW') =9

this yields to the expression

1

(/01 K(r)[[€(W) = (V1T —r2W + TW')Hgdr) 7 |
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Using the particular kernel

2r 1\
K(r):zl_r2 (lnl—r2> :

for 6 € (0,1) and p = ¢ € (1,00) this gives

|l - gl tw VI
0

Spaces based on this type of expression were considered in [I8, Remark on
p. 428] and identified as interpolation spaces. The same idea was also used
in [25) Section 1.4.1] to characterize the Ornstein-Uhlenbeck semigroup.

4.2 Connection to Malliavin derivatives

Here we give an example of another anisotropic Besov space, and characterize
it using Malliavin derivatives.

We study the space B2, where the functional ®, : C*(A) — [0, o0] is given
by

F(X(s t])
Oy(F) := su —_—
2(F) 0§s<$§T Vi—s

This means that the Besov space IB%g’Q consists of £ € L,(Q2, F,P) such that

_elsit] . . :
SUDg<s<t<T % < 00. In other words, ¢ € Bg’? if and only if there exists

C' > 0 such that
€ = &), < OViE—s
forall 0 < s <t <T. In asense ¢ is Lipschitz.

To describe these spaces we let, for £ € D;5 and D being the Malliavin
derivative operator,

(18)

IDEl . orryiz,@) = €58SuPseor) | Dsllps

Lo ;
DE| 7o = su — D.£|?ds
| §|LP(Q,L2([O,T])) 0§a<11?§T (b—a/G‘ g )

p

By the Lebesgue differentiation theorem one has that

||D€||Loo([0,T};L2(Q)) = [|D¢|

To formulate our main result, the notation A ~. B, where A, B > 0 and
¢ > 1, stands for (1/¢)A < B < cA. Our main result is that B3> C D, and

L3 (:L2([0,71)) -
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Theorem 4.9 ([Al Theorem 4.19]).

(1) Forpe [2,00) and £ € Dy N L, one has

1€ll@sp ~er D€

Ly (;L2([0,77)) 2
where ¢y > 0 depends on p only.

(2) Forpe (1,2) and £ € Dy 5 one has

1
0_2 ||D€||Loo([o,T};Lp(Q)) < ||€||<I>2,p <6 ||D§||L;;(Q;L2([0,T])) )

where co > 0 depends on p only.

(3) There is a & € Dy such that for all p € [1,00) one has & € Ly(),
DE € Ly(; Ls((0. 7)), and £ & B

In deriving the upper bounds of Theorem [L.9(1) and (2), the following gen-
eralization of Stein’s lemma is used:

Lemma 4.10 ([Al Lemma A.6]).

Let p € (1,00). Assume a process a = (a)iepp1] C L, with values in (5
that has left-continuous paths for all w € Q, a filtration (Hy)icp,1), and an
(Hi)iejoa)-adapted process (by)icpo) S Lp with values in 0Y that has left-
continuous paths for all w € Q as well and such that b, = E(a¢|H:) a.s. for
allt =k/2" withn =0,1,2,... and k = 0,...,2" — 1. If sup, |a;| € L,, then

one has that
1 2 1 %
(f mea) | o] )
0 0
p p

where the constant c, > 0 depends at most on p.

<6

To further justify the term anisotropic, we note that the admissible functional
in equation (I8) can be generalized by letting r > 2, 0 < A< B < T, and

F
@f’B(F) = sup 7(X(S’t]>
A<s<t<B (t — s

(19)

3=

Moreover, it is possible to study different fractional smoothness on different
intervals. This can be done for example by putting
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T
A = {@EA)SOZX(s,t}, 0§8<t§§},
T
A2 = {QOEA)QO:X(Sﬂ, §§S<t§T},

and )
t— _7 = st € A )
a(p) = { ( 5); ¥ - X (s,t] 1
(t —s)7, © = X(sq) € Aa.
Then, putting A = A; U A, one can study the admissible functional

Next we indicate how one can verify using decoupling that a random variable
belongs to a certain anisotropic Besov space. The following is a special case
of [Al Theorem 4.23].

Example 4.11. Consider ¢ := X[k0)(|X7|), where 0 < K < oo and
(X )rejo,r) is the solution of

X, = xg +/ b(u,Xu)du—l—/ o(u, Xy)dW,, 1 e€0,T].
0 0

Here zy € R%, and the coefficients b : [0, 7] x R — R? and o : [0, 7] x R? —
R4 gatisfy

(Apo) b,o € CP*([0,T] x RY), where the derivatives up to order two are taken
with respect to the space-variables and, for some v € (0, 1], are assumed
to be y-Holder continuous (w.r.t. the parabolic metric) on all compact
subsets of [0, 7] x RY. Moreover, letting A = oo*, there is a § > 0 such
that (Az,z) > é|z|* for z € R? and b and o are 3-Holder continuous
in time, uniformly in space.

Then it follows from [I3, Proposition B.3| that X, has a bounded density
fx,. Moreover, using Proposition B.4(ii) and [I, Lemma 3.4] we have that
for any 0 < p,q¢ < o0
1€ = €512 = X0 (1 X7]) = Xiso0) (1 X)) T
= X0 (1 X)) = Xixoe (X5 D1
3 |87 17 = X7

IA
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Since [13, Theorem 3| implies that there exists C' > 0 depending at most on
(¢, T,b,0) such that

sup | X, — X (1]
rel0,7]

< CVt—s,

q

we have that there exists a constant ¢ = ¢(p, T\, q, fx,,b,0) > 0 such that

€ — €], < c(VE—s) w0,

This means that given p € [2,00) we have £ € ]B%g)’" for any r > 2p.

5 Bounded Mean Oscillation

This Section reviews some of the fine properties that martingales of bounded
mean oscillation, BMO-martingales from now on, satisfy, and we also recall
the results from the theory of weighted BMO that we used. The results that
are new (Section (£.2)) are easy observations, but they were useful to us. We
present them here as they might be of independent interest. For simplicity,
we present all definitions and results in the setting that was fixed in the
beginning of Section

5.1 BMO and weighted BMO

First we recall what it means that a martingale is of bounded mean oscilla-
tion.

Definition 5.1. A martingale M = (My)cjor) ts « BMO-martingale pro-
vided that My = 0 and there is constant ¢ > 0 such that for all stopping
times T : Q@ — [0, T] one has that

E(| My — M._|*|F,) < ¢, (20)
where

MT_ = lim M((T*%)\/O)'

n— o0

We let || M||gmo := inf ¢ where the infimum is taken over all ¢ > 0 as above.

In our setting every martingale is continuous, and the probability space is
complete. It follows from optional stopping theorem that:
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Lemma 5.2. Let M = (M;)cjo,r) @ martingale with My = 0. Then M is a
BMO-martingale if and only if there is a constant ¢ > 0 such that

E(|My — M*|F) < ¢
for all t € [0,T]. Moreover, | M|%yo = SUDye(0,7] |EZt | My — My)?||so-

At this point an educated reader might be worried of the notation "BMO";
why is it not emphasized that we study E7*|M; — M,|> instead of
E7t| My — M;|P for some p € [1,00)? The answer is remarkable:

sup ||[E”*| My — M;|%|o < 0o for some ¢ € (0, 00)
te[0,7

if and only if

sup [[E7H[ My — My|?||o < oo for all p € (0,00).
t€[0,T]

This follows from the celebrated John-Nirenberg inequality [2I, Theorem
2.1], and is contained in [2I], Corollary 2.1].

For p € [1, 00] we denote by H, the space of martingales that satisfy

1
M|, == [{M) 7], < o0,

where (M) is the quadratic variation process of M. If M is of the form
(My)tejor) = (fot @sdBy) 0,1, where B is a Brownian motion, then

T 3
1M1, = ([:kafw)

One important property of BMO is, that it can be characterized as the dual
of Hy. One part of this result, the fact that BMO C HY, is proven in [21]
Theorem 2.5]. A special case of this result can be written as follows:

Ly

Theorem 5.3. (Fefferman’s inequality)
Assume that B = (Br)re[o,T] 1s a one-dimensional Brownian motion, that

M = (Mt)te[O,T} = (fot Oésst)te[O,T} € BMO, and that N = (Nt)te[O,T] —
(fot Bsst)te[QT} € H,. Then

T
ﬂl%@ﬂﬁﬂWMMWm (21)
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In [I0, Lemma 1.6] the inequality (2I)) is generalized to include the following
case:

Proposition 5.4. Let p € [1,00), assume that B = (B,),cpo,r) s a one-
dimensional Brownian motion, M = (My)icjor) = (fot asdBs)iepo,r) € BMO
and that N = (N,)icjo.r) = ([ BsdBs)icior) € Hy. Then

T p\ L/p
(( [ 1asids) ) < VBl Mol (22)
0

In [I5] the traditional BMO is generalized by replacing the constant ¢ in
equation (20) by an adapted weight process. We will use CL, for the set of
cadlag adapted processes A = (A;)efo,r] with Ag = 0, and CL™ for the set of
cadlag adapted processes A with A;(w) > 0 for all (t,w) € Qr.

Definition 5.5 (|15, Definition 1]).
Let A€ CLy, and ® € CLT. We define for p € (0,00)

g

where the supremum is taken over all stopping times o : Q — [0, T].

|AT _ A07|p 1/p
iz

)

[ Allmsiop = sup HE [
o Lo

The main use of this theory for us is, that it gives nice tail estimates. The
traditional BMO can even be characterized by a tail estimate; the following
result is mentioned in [21], page 26| and goes back to Emery:

Proposition 5.6. A uniformly integrable martingale M = (My)icjo,00) 15 Of
bounded mean oscillation if and only if there exist two constants a > 0 and
0 < e <1 such that

IP( sup |M0+t—M0|>a’ .7:0) <l-c¢

0<t<o0o
for any stopping time o.

With weighted BMO we do not necessarily have a characterization, but we
do have an additive upper bound consisting of an exponential part and a
part that is a tail estimate of the weight process. We will make use of the
notation

P(BN-)

P(B)

for B € Fr of positive measure. The first step towards a tail estimate is the
following:

Py (-) ==
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Proposition 5.7 ([I5, Example 1 and proof of Corollary 1(a)]).
Let p € (0,00) and assume that Y € CLy and ® € CL" are such that

||Y||BMog> <G,
where C' > 0. Then, letting 6 € (0, %), and defining A € CLy by A = %ﬂp,
we have for any v > 0, stopping time o, and B € F, that

Pg (|AT — AJ,| > I/) < ¢9—|—PB<(I)J > I/).

Now we consider ® € CL™, and let

We(B,v;o0):=P| BNg sup &, >v, |,
u€lo,T|

for v > 0, a stopping time o, and B € F,. After this we can proceed with:

Theorem 5.8 ([15, Theorem 1]).
Assume that A € CLy, ® € CL", and that there is 6 € (0, %) such that

W\II<B7 v, U)

— <
]P)B(|AT A0| >l/) _0+ ]P)(B)

(23)
for all v > 0, stopping times o, and B € F, of positive measure. Then there
are constants a,« > 0, depending on 6 only, such that

Pp | sup |Ay — Ag| > A+auv | < 7P| sup |A, — A, > A
u€lo,T| u€lo, T
W\I/(Ba v; U)

+o P(B)

for all X\, u,v > 0, stopping times o, and B € F, of positive measure.

BMO-martingales have many nice properties as explained in the excellent lec-
ture notes [21], we will now concentrate on one that is relevant with BSDEs.
In our apriori estimate concerning BSDEs (Lemma [6.]), we remove the su-
perlinear (up to quadratic) drift term using a Girsanov transformation. This
technique was already used in [19] to prove uniqueness of the solution to cer-
tain quadratic BSDE. In [6] it is nicely presented how to proceed to obtain
an apriori estimate, which then results into an existence result. The fact that
the Girsanov transformation is well-defined follows from the Reverse Holder
inequality:
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Definition 5.9. Assume a martingale M = (M).cjo,r) with My = 0 such that
E(M) with

E(M), = i3
fort € [0,T] is a martingale as well. For § € (1,00) we let E(M) € RHp

provided that there is a constant ¢ > 0 such that for all stopping times T :
Q — [0,T] one has that

E(|E(M)r|?|F,)F < cE(M), a.s.

The smallest possible ¢ > 0 is denoted by RHp(E(M)).

The reason why this leads to BMO-martingales is the following result:

Proposition 5.10 (|21, Theorems 2.4 and 3.4]).
Let M be a martingale with My = 0 such that E(M) is a martingale. Then
M € BMO if and only if E(M) € U,c(1.00) RHyp-

In our application of the reverse Holder inequalities this is still a bit unsatis-
factory, as we would like to know for which p € (1, 00) we have £(M) € RH,,.
For this purpose we let

B : (1,00) — (0,00), <I>(p):(1+Z%log(1+2p1_2))1/2—1, (24)

so that & is continuous and decreasing, with limg ,,, ®(8) = 0 and
limg_,; ®(f) = oco. Furthermore, we let

v {(p) €[0,00) x (1,00) : 0 < 7 < B(p) < 00} > [0,00),
1
2 P
@(7717) = (1 o MePQhQJr?”) :
2p—1

Then, according to |21, Proof of Theorem 3.1], we have that

U(v,p) < U(y,p) for 0<7 <y < ®(p),

and
[M[[gmo < @(p) implies RH,(E(M)) < V(|| M|lBmo,p)-  (25)
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5.2 New results

We will improve (25) by considering the approach of sliceable numbers. To
formulate it, we recall the notation “M7™ := (M, — Myas)icpo,r) for stopping
times o, T.

Definition 5.11 ([Al Definition 5.2]).
For a BMO-martingale M = (M)cor) and N > 1 we let

sin(M) :=infe,

where the infimum is taken over all € > 0 such that there are stopping times
O=m <7 <--- <7y =T with

supN |t M™||gmo < €.

-----

Moreover, we let
sloo (M) := lil{ln sin(M).

We call slx(M) the N-sliceable number of M. The BMO-martingale M is
called sliceable provided that slo.(M) = 0.

Some properties of these numbers are:

Lemma 5.12 (JAl Lemma 5.4]).
For M, M, My € BMO one has the following:

(i) sli(M) = |[M|[smo-

)
(i) sly(M) > slp(M) > --- > 0.
(111) SIN1+N2 1(M1 + Mg) < SlNl(Ml) + SIN2(M2)
)

(iv) For e > 0 we have sloo(M) < € if and only if dgmo(M, Hy) < €, where
dpmo(M, Hy) is the distance of M to H., with respect to the BMO-
norm.

Part (iv) of Lemma 512 follows from [29] Theorem 1.1|. Parts (i),(ii), and
(iii) on the other hand imply that sliceable numbers are a relative of the
s-numbers from operator-theory, see for example |28, Chapter 2.2].

Now we can improve the index p in (25) by the following

Theorem 5.13 ([Al Theorem 5.8]).
If sixn(M) < ®(p), then RH,(E(M)) < [\Il(slN(M),p)}N. In particular, if M
is sliceable then E(M) € (1 o) RHyp-
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In our approach to BSDEs it is useful to consider BMO and sliceable numbers
for processes as well.

Definition 5.14 ([A] Definition 5.9]).
For m € N and an R™-valued predictable process Z = (Zy)cjo.1) we let

T
E(/ |Zs|2d8‘Ft)
t

siN(Z) :==infe,

1
2
[ZllBmo(s,) = sup

t€[0,T]

o0

This is quantified using for any N > 1

where the infimum is taken over all € > 0 such that there are stopping times

sup ||X(7'k—177'k]Z||BMO(S2) <e.

Moreover, we let sl (Z) := limy sIN(Z).

We illustrate two possible ways of exploiting the martingale setting:

(1) For a d-dimensional process Z it follows from It6’s isometry that
1 Z|lBmoes) = | Jy ZrdW,|lBMmo, so that for example Theorem B.I3] is ap-
plicable for this type of processes.

(2) Assume that the process Z is m-dimensional for some m € N, and such
that [||Z]%||smo(s,) < oo for some 6 € [0,00). Then we let (By)cpor be
(for example) the first component of the d-dimensional Brownian motion
(Wi)icpo,r), and consider the martingale

t
M = (M) == (/0 |ZT|9dBr) .
te[0,7)

Using Itd’s isometry we once again have that |[|[M||pyo < oo, so that for
example Proposition (.4l and Lemma [B.12] are applicable for this type of
processes.

Note that by considering |||Z]%|lpmo(s,) < oo for 6 € (1,00) we obtain a
condition that is stronger than the classical BMO condition || Z||gmo(s,) < 00,
whereas for 6 € (0, 1) the condition gets weaker.

If the generator of our BSDE is locally Lipschitz with parameter 6 € [0, 1],

then we mneed to assume that the control process Z satisfies
1

11Z1%lBmo(ss) < co. At the same time we need to have <f0T |Zr|20l7“>5 € Ly,
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where ¢ > 2 is determined by the sliceability-number sl (|Z]%) (see assump-
tion (A;p) in subsection [6.2] below).

To see that all these conditions can hold at the same time, we have an example

1/2
of a process Z that satisfies the additional condition that (fOT \Zt\zdt> €
Lexp, where the Orlicz space Ley, is given by

£

fo = inf{)\ >0:Ee'x < 2}

for a random variable F' taking values in R.

Example 5.15 (Al Example 5.10]).
For each n € (0,1) there is a predictable process Z = (Z;)icpo,m such that

1/2
1. (fOT |Zt|2dt> € Lo,
2. |Z" € BMO(S,),
3. Z ¢ BMO(S,).

The case that |Z|% is sliceable is important to us, as then we do not need to

1
impose any additional integrability on ( fOT |Zr|2dr> *. Thus, we present two

cases for sl (|Z]?) = 0:
Example 5.16 (JAL Remark 6.5]).

i) For @ = 0 (with the convention 0° := 1) we have that
(i)

sy (12)7) <

Zl 4

if we take equidistant time-nets.

(ii) Let 0 < 0 < n < 1 and assume that [||Z|"||gmo(s,) < 00. Then we
obtain for any 0 < a < b <T that

1 11 1
”(X(a,b}(t)|Zt|0)te[0,T}”]%M()(SQ) S (b_a) 26 ”(X(a,b}(t)|Zt|n)t€[0,T]”]gMo(SQ)

and, by using equidistant grids, that

T %(17%) 9
(2= () 12 o
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Example B.16](ii) can be seen as an embedding theorem: Let (B, ),cjo.r] be a
1-dimensional Brownian motion, let (c.),¢cjo,7] be a 1-dimensional predictable

process such that EfOT |, |?dr < oo, and define

Th (/ o, dB, ) / |Oér‘95gn Oér B,,

for 0 € [0,1]. Then it follows from Example 5.16](ii) and Lemma [B.12)(iv) that
To( [, cndWV,) € oM , whenever |[||a|"||gmos,) < 0o and 0 <60 <n < 1.

6 Main results concerning BSDEs

We begin this Section with the apriori estimate Lemma The proof of
this result uses the reverse Holder inequalities, and it is a continuation of the
arguments from [6, Proposition 2.3|. Their apriori estimate upper bounded
an L,-quantity of the solution by an Ly,-quantity of the data. Using Propo-
sition we were able to improve this so that an L,-quantity of the solution
is upper bounded by an L,-quantity of the data.

Using the apriori estimate together with decoupling, especially with Propo-
sition 3.5, we deduce the stability result Theorem Applying this result
we obtain results on L,-variation of the solution of BSDE (28]), as well as
an embedding theorem with respect to anisotropic Besov spaces. Moreover,
the conditional version of the stability result (Proposition [6.9]) implies that
the solution is in a weighted BMO-space where the weight depends only on
the data. As mentioned in Section [ this yields to tail estimates (like in the
John-Nirenberg theorem) for the variation of the Y-process of our BSDE.

6.1 Apriori estimate

In this section we follow the ideas of [6, Proof of Proposition 2.3| but adapt
and extend the ideas for our purpose. Let B = (B).c(o.7] be an n-dimensional
standard Brownian motion (where all paths are continuous) on a basis
(A, A, i1, (A)eor)), where (A, A, 1) is complete, (Ay)ieo,r) the augmentation
of the natural filtration of B, and Ay = A. We consider the two backward
equations

T T
Y = g%/ fo(s,YsO,Zg)ds—/ Z%dB,, tel0,T),
tT . t
Y = §1+/ fl(s)ds—/ ZldB,, telo,T),
t t
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where we assume the following conditions:

(D1) The processes f!, Z° and Z' are predictable and the processes Y° and
Y! continuous and adapted,

(D2) E|¢'|* < oo and EfOT |Z!|?ds < oo for i = 0,1,
2 2
(D3) E ’fOT |fO(s, Y2, Zg)|d3’ <ocand E ’fOT |f1(s)|d3’ < 00,

(D4) the generator f°: Qr x R x R" — R is such that (¢,w) — fO(t,w,y, 2)
is predictable for all (y, 2), (y,2) — f°(t,w,y,2) is continuous for all
(t,w), and there is an Ly > 0 such that, for all (¢,w, yo, 1, 2),

| fO(t,w, 0, 2) — fO(t,w,y1, 2)| < Ly |yo — v1l-

We let A¢ := ¢l — €9 and for s € [0, 77,

AY, = Y! -Y?
ANZ, = 7} -2°
Fi(s) = (s, Y2, Z1),
s, Y2, Z1) = [0, Y2, 29)

)8 )8

cy = |AZ ‘2 X{AZS;éO}AZS7

as =

T
= = |A§|+/ la,|dr.

Lemma 6.1 ([Al Lemma 6.17]).

Assume that ¢ = (ci)weo,r) 45 n-dimensional with ||c||smocs,) < B < o0,
and that \, = exp( [ c,dB, — L [|cs?ds) and py € (1,00) are such that
RHp (N) < p < oo with 1 = pio + pig)' Assume p € [2,00) with p > poy such

that
T 2
(/ |AZ8|2ds) €L,
0

Then there is a cgy € (0,00), depending at most on (T, Ly,p,po, B, p,n),
such that for all t € [0,T] one has that

T 3
(/ |AZS\2d3)
K p

sup |AY|

< C(E:D”Eth-
s€t,T)
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6.2 Basic result

We start by listing the assumptions that will be used throughout this Section.
These conditions are imposed on random objects defined on 2, even though
we use our decoupling technique that is defined for objects on Q. However,
in [A] and [B] we have shown that these conditions hold for appropriate
elements of Q as well. The validity of these assumptions, as well as examples
when they hold, are considered in [Al, Section 18].

(A;) There exists a solution (Y, Z) to the equation

T T
Y, =¢ +/ f(r,Y,, Z.)dr — / Z.dW,, te0,T], (26)
t t

where we assume that there exists p € [2,00) and 6 € [0,1] such that
the following conditions are satisfied:

(i) The process Y is (F;)rcpm-adapted and path-wise continuous,
and the process Z is (F;),c[o,r)-predictable
(ii) There are L,, L, > 0 such that for all (¢,w, yo,¥1, 20, 21) one has

If(t’w7y05 ZO) - f(taw7y1721)|
< Lylyo — t1| + La[1 + |20] + |21])°|20 — 21

(ii)) [ |£(s,0,0)|ds € £,

(iv) ( s |Z8|2ds>§ €L,
(v) We assume

< 00,
Loo

1121 [3mo(s,) = sup
t€[0,T]

T
E (/ |Zs|29dsm)
t

and quantify this assumption by fixing a non-increasing sequence
s = (sn)n>1 C [0,00) such that

sin(|Z]”) < s,

and put s, := limy sy
(vi) If s > 0, then the constant p € [2, 00) satisfies additionally
d1(2v/2L.54)
®-1(2v/2L.54) — 1
where @ : (1,00) — (0, 00) is defined in equation (24).

€ (1,00),

p >
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Remark 6.2. Assumption (A;)(v) is an implicit fractional BMO assumption
on the control process Z. This assumption is used to remove the (up to
quadratic) drift term of the generator in the z-variable. Here we need to use
the reverse Holder inequalities, which by Theorem .13 hold for all ¢ € (1, o0)
if s,o = 0. In case so > 0, we only have the reverse Holder inequalities for
small enough ¢, and this is why we need to assume some more integrability
as imposed by (A4;)(vi). Two examples of the case s, = 0 were discussed in
Example .16 now we explain its impact regarding Lipschitz and quadratic
BSDEs.

(i) Assume that f satisfies (A;)(ii) and (A;)(iii) with = 0and 1 < p < o0,
and that £ € L,. Then there exists a unique solution (Y, 2) of BSDE
28), and (A;) is satisfied with # = 0. This follows for example from
[, Theorem 4.2]. Note that since § = 0, we have s,, = 0.

(ii) Assume that f satisfies (A;)(ii) with 8 = 1, that fOT |f(s,0,0)|ds € Lo,
and that £ € Lo,. Then there exists a unique solution (Y, Z) of BSDE
[26), and (A;) is satisfied with # = 1 and all p € [2,00). The solution
is unique in the class S> x Ly(€Q7), where S consists of bounded
continuous processes. This follows for example from [24] Theorem 2.6
and Lemma 3.1]. However, it might be that s,, > 0, so that our results
only hold when p > 2 is large enough as imposed by (A;)(vi).

(iii) Assume that f satisfies (A;)(ii) with 0 < 6 < 1, that fOT |f(s,0,0)|ds €
L, and that £ € L. Then, as above, we have a unique solution and
(Ay) is satisfied with & = 1 and all p € [2,00). Now it follows as in
Example [.T6|(ii) that s., = 0, so that our results hold for all p > 2.

Now we can state our basic result:

Theorem 6.3 (JA, Theorem 6.4]).
Assume (Ay). Then we have for all t € [0,T] that

sup V¢ - Y|
s€t,T)
p
T 3 T :
([ et izias) | 4| ([ 12z - zepas)
t p t p
T
SC@ [”é‘v_éwnp—i_ / |fip<87Y‘5¢7Z;b> —fd}(S,Yt;p,Z;/}”dS ) (27)
t |
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where o, € A, D[v,n] :=1—+/1—1v2/1—n2—vny, and cgz) > 0 depends
at most on (Ly, L., T, (sn)¥—1, D, d).

Remark 6.4. The function D[v,n] : [0,1]*> — [0, 1] measures the distance
between v and n, by projecting the vector (v,/1 — v?) onto (n,v/1 —n?) and
comparing the projection to (n,/1 —n?). In particular, Dlv,n] = 0 if and
only if v =m.

6.3 L,-variation

As it was explained in Section[3.1] it is important to estimate the L,-variation
of the solution of a BSDE. Our main result in this respect is

Theorem 6.5 ([Al Theorem 6.16]).
Assume (Ay). Then there is a constant cgm > 0 such that for all
0<s<t<T one has

/u+umumwr

IY; — Vil < Cm[ + (1€ = g,
V4

T
+ / \f(r, Yy, Z,) — fS0(r, Y, Z,)|dr

J

Proof. Fix 0 < s <t <T. Since Y, is F;-measurable, we obtain

IY: = Yill, < [Yi=EZY[l, +[[E7Y; - Yill,
< Y = YO, + IBFY, - il
T
S C(m) ”§ - é(Sﬂ”p + / ‘f(,rv Y;“a ZT) - f(&t}(n Yrﬁ ZT)‘dT ]
t P
HETY, = Y|l

where we applied Theorem with the pair (0, x(s4) € A x A. The last
term can be upper bounded by

IE7Y; — Yill,

= ' E” /tf(r,K,Zr)dr

p

t
/ 1+ 12,1 Z,)dr

t
[ Wiiar
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It follows from our assumptions that sup,co7|Y.] € £, so that
Sup,cpo.7] ||Yrll, < 00. On the other hand, we can use Proposition 5.4l (with
B one of the components of W) and Theorem [6.3 to deduce

t
‘/ [1+1Z.°1Z,|dr

p
t 3 T 3
< V2p (/ \Zrﬁdr) sup ||E (/ X(s (w)[1 + |Zu|]29du‘ ]_-T)
s rel0,7] r Loo
p
T
< Vapegm |ll€ - €I, + ’ / (Y, Z0) = fO(r, Y, Z,)ldr | |
s p
T 3
X [Vt—s+ sup ||E (/ \Zu|29du’ .7-}) .
ref0,T)] r Loo
This concludes the proof. O

6.4 Anisotropic Besov Spaces

In this Section we present our non-linear embedding theorem for BSDEs and
anisotropic Besov spaces. The main result is Theorem [6.8], which states that

if the data (£, f) is in certain anisotropic Besov spaces, then so is the solution
(Y, 2).

Definition 6.6. For ¢,r € [1,00), a predictable process (A)icjo.r) with

T 1
([0
0
q

fort €[0,T], and for an admissible functionald @ : CH(A) — [0, 00] we let
1

T
1AllgS =@ | v — H (/ |As — Aflrd8>
t

First we note that this definition is possible:
Lemma 6.7 ([Al Lemma 6.13]). The map

T ;
= (/ |A8—Af|7"ds)
¢
q

is continuous as a map from A into [0, c0).

< 00,

q

Tn the sense of Definition
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Theorem 6.8 ([A Corollary 6.14]).
Lett € [0,T), assume (Ay), and that there are predictable processes (V}) s
such that, for all ¢ € A,

for some q € [p,00) and 1, € [l,oo). Let @ be admissible. Then we have
that

T
/ (s, Y2, 28) — [#(s,YF, 2¢)\ds
t

l
Z IVE = (V|4 2y e

p

L
Yoo + 1215}, < 2c@ [Hé‘l!cb,p + > 1V 1a,
=1

Proof. Follows directly from Theorem applied to the pair (0, ¢). !

Examples how to obtain processes V in Theorem are discussed in
[Al Section 19].

6.5 Weighted BMO

In this Section we show how we can exploit the idea of self-iterating
inequalities that are used to prove exponential tail estimates under assump-
tions on the mean oscillation of functions or processes in the context of
BSDEs. Roughly speaking, we consider our results conditionally and obtain
via iteration better tail estimates than L,-estimates would give.

We use the notation (7—"7")706[01] for the natural filtration of the 2d-dimensional
Brownian motion (W, W’), augmented by all P-nullsets. The conditional
version of Theorem is as follows:

Proposition 6.9 (|Bl Proposition 5.4]).
Assume (Ay). Then for any 0 < s <t <T andu € [0,T] we have

E7 sup [V, — V1P
réu,T]

- T
e (/ Ve (M1 Z:? + 12892 + [1 = 1oy (]| 2, — 28] d’“)

[Nl

p

T
< dpg BT (\§ -9+ / \f(rr,Yr,Zr)—f@’ﬂ(r%%)idr)»

where cgg > 0 depends at most on (T,d,p, Ly, L., (sy)n), and sy is taken
from (Ap)(v).

2The V! may depend on (&, f,Y, Z, p,qi, 7).

39



To be able to use the theory of weighted BMO, we assume that & and f
satisfy a certain weighted BMO-assumption on a subinterval [s,t] C [0,T].
If this assumption holds on a subinterval [s, t], then on this interval we will
have that the solution of our BSDE is of weighted BMO, and this gives us a
tail estimate for the variation of the solution.

(Az) There are 0 < s < ¢t < T such that there exist cadlag (F,),cpo,r-

supermartingales (wﬁ,w,t)ue[s 4 and (w!

saut)ucls,], Whose canonical ex-

tensions (W s, ¢)uels,g and (w}{,s,u,t)UE[S,t]ﬂ satisfy for any u € [s, ]

(i) E7|¢ — ¢t <

p787u7t,

(i) B7 (J] 1705 Z0) = £ Y2, 2 ldr ) < )

p7s7u7t.

Assumption (Ap) is in fact a condition imposed in the product probabil-
ity space (Q, F,P), and we used, as usual, the notation (¢, f,Y, Z) for the
canonical extensions.

We made an exception with the weight processes wf) and w;: to emphasize
the fact that our main result, a weighted John-Nirenberg-type theorem for
BSDEs, is a result in the probability space (2, F,P).

Theorem 6.10 ([B, Theorem 3.10 and Theorem 3.11]).
Assume (Ay) and (Az). Then there exists cgam > 0 depending at most on
(T,d,p, Ly, L., (sn)n) such that for any stopping time o € [s, ]

E7|Y; = Yo" < (cempsot) (28)

where

t p
wg,s,u,t - <w1§),s,u,t + wf,s,u,t) + E]:u (/ If(r’ 07 O)IdT)
T b p
+(t — u)P [Ef“ (|§|+/ |f(7’,0,0)|d7’) } .
t

Consequently, there exists ¢ > 0 such that for any stopping time o € [s,t]
one has

Yu - Ya — Yu - YO’
Pg | sup g>)\+c;ﬂ/ < el THPy sup g>)\
uelot]  CEIM uelot]  CEID

+cPg ( SUp Wy gt > 1/) ,

u€[o,t]

for all X\, u,v > 0, and any B € F, of positive measure.

"3These processes are cadlag (F}),e[o,r)-supermartingales.
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Proof. The first claim is a conditional version of Theorem [6.5, and can be
proven similarly with use of assumption (As). The consequently-part follows
from the first part of Theorem applied together with Proposition 5.1
and Theorem 0.8 on the subinterval [s,t] C [0, 7. O

For simplification, we may take A — 0 in the second part of Theorem (.10
so that for all stopping times o € [s,t] we have

Y, —-Y, _
Pg | sup g >cuy | < e 4 Py | sup Wy sut >V |,
u€loyt]  CEIN) u€|o,t]

for all p, v > 0, and any B € F, of positive measure.

As an example of the case when (A;) and (A;) hold, we consider for z € R?
the decoupled FBSDE

Xy

t t
x+/ b('r,Xr)der/ o(r, X)W, te[0.T],
0 0
T T
Y, = g(XT)+/ h(r,Xr,Yr,Zr)dfr—/ Z,dW,, t€[0,T]. (29)
t t

For the functions b, o, h, and g we assume that ¢ is uniformly bounded in
addition to the usual conditions of joint continuity and uniform Lipschitz
condition in the state variables (the precise set of conditions is given in
Bl Section 3.1]). Then it follows that (A;) holds with # = 0 and all
p € [2,00), and (Ay) holds on all subintervals [s,¢] C [0, 7] with the weight
functions

wzjj,s,u,t = wg,s,u,t = Cp(t - u)ga

where ¢ > 0 depends at most on (7', d, p, g, h,o,b).

Now, from Theorem [6.10] and from the properties of the forward process X,
we obtain the following result:

Theorem 6.11 ([Bl, Theorem 3.1 and Theorem 3.2]).

Let the assumptions stated for FBSDE [29) hold, and let p > 2. Then there
exists cgrn = c@m (p, b, 0, 9, h) > 0, such that for all0 < s <t <T and all
stopping times T : Q0 — [s,t] we have

Y, — Y, [P
<
. <1+ | X, |P(t — 7)P/2 ) Fr | = g

(t —7)P/%
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Cons

equently, there exists ¢ > 0 such that for any p > 2, 0<s <t <T and

any stopping time T € [s,t] we have

]pB(

Y. - Y;
sup =Y >cuv | < et PPy | osup | XuP(E—uw)? > 0P — 1
uelrt] CEIMVE — S uelr,]

for all p,v >0, and all B € F, of positive measure.

It should be mentioned that Theorem [6.11holds in this form as ¢ is Lipschitz,
and the Lipschitz property is scaling invariant. Moreover, it is shown in
Bl Example 3.3| that the weight process of Theorem [6.11]is sharp. That is,

there

exist b, o, h, g that satisfy our assumptions, and the solution of FBSDE

([29) satisfies

E ||, - Y,

F] 2 (=710 X, )

for all p> 2, all 0 < s <t <T and all stopping times 7: Q — s, t].

7

We ¢

1.

Some perspectives
onclude with open questions and possible topics for future research.

Which parts of this thesis can be extended to the case where the driving
process is a Lévy-process other than a Brownian motion? In particular,
does Proposition 3.2 still hold when "continuity" is replaced by "cadlag-
property"? Some related work in this direction is in [14].

The condition (A;)(v) is needed for the proof of Theorem B3] as it
implies that for a certain martingale M, the Doléan-Dade exponential
E(M) satisfies the reverse Holder inequalities for ¢ € (1,00) that are
small enough. The critical index is defined in terms of the sliceability
number sl (|Z|%), and if sl (]Z|°) = 0, we have that the reverse Holder
inequalities are satisfied for all ¢ € (1,00). However, if M € BMO,
then [2I) Theorem 3.8] provides the characterization

EMM)e | RH forall \eReMeLy .

q€(1,00)

Hence, it would be interesting to investigate whether the condition
(fot | Z,|°dB, )ep,1) € EBMO for a 1-dimensional Brownian motion B
implies that our results hold for all p € [2,00), i.e. that assumption
(Ay)(vi) could be dropped in this case.
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3.

Is there a counterpart of Theorem for @, (see (I9))? Similarly to
[16, page 932|, this might hold with the Derivative operator replaced
by a Riemann-Liouville operator.

. For the proof of the tail estimate of Theorem [E.I0 on [s,t| we only need

an upper bound of E”*|Y; — E”«Y;|? or, equivalently, of E**|Y; — VAR P
with u € [s,t]. However, the result we used (Proposition [6.9) gives
us an upper bound of E*« (supre[t’T] Y, — Yr(u’ﬂ|p>. This raises the

question whether it would suffice in (A,), for example, to upper bound
E7e|EFt¢ — E7«£|P instead of EF«|¢ — E94¢|P, and to use this as an
assumption in a modified version of Proposition The difference of
these concepts is that the latter one additionally measures how much
¢ changes on the interval [¢, 7] if it is perturbed on the interval [u,].
My conjecture is that this stability is needed in order to find an upper
bound of E7+|Y; —E**Y;|P, but since I have not found a counterexample,
it remains open whether the first quantity is enough to give us a tail
estimate or not.
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