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2015





UNIVERSITY OF JYVÄSKYLÄ
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This thesis 
onsists of an introdu
tory part and the following arti
les:List of in
luded arti
les[A℄ S. Geiss, J. Ylinen: De
oupling on the Wiener spa
e and appli
ationsto BSDEs. http://arxiv.org/abs/1409.5322v2[B℄ J. Ylinen: Tales and tails of BSDEs. http://arxiv.org/abs/1501.01183In the introdu
tory part, these arti
les are referred to as [A℄ and [B℄, whereasthe other referen
es will be numbered as [1℄, [2℄, . . .The author of this dissertation has a
tively taken part in the resear
h of thejoint paper [A℄.
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1 Introdu
tionThe main subje
t of this thesis are Ba
kward Sto
hasti
 Di�erential Equa-tions, BSDEs from now on, of type
Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (1)where T > 0 is a �xed time horizon and W is a d-dimensional Brownianmotion. The pair (ξ, f) is referred to as the data, and the pair (Y, Z) (orjust the pro
ess Y ) as the solution. We dedu
e di�erent types of upperbounds for the variation of the solution on subintervals of [0, T ]. Theseupper bounds are given, as is usual with BSDEs, in terms of the data. In [A℄an Lp-quantity of the variation is upper bounded by an Lp-quantity of thedata, with p ∈ [2,∞). The upper bound is obtained using a new de
ouplingte
hnique, whi
h also gives rise to anisotropi
 Besov spa
es. These spa
esin
lude for example the Besov spa
es obtained by real interpolation, and wealso show a 
onne
tion of a 
ertain anisotropi
 Besov spa
e to the Malliavinderivative. In [B℄ we show that the solution is of weighted bounded meanos
illation (weighted BMO), where the weight pro
ess is given in terms ofthe data. Using the theory of weighted BMO, the variation of the solution isshown to satisfy a tail estimate that is better than what would be obtainedfrom an Lp-estimate.2 BSDEsWe start by introdu
ing our setting and �xing some notation. In this thesiswe work on a 
omplete sto
hasti
 basis (Ω,F ,P, (Ft)t∈[0,T ]), where"the information" (Ft)t∈[0,T ] is given by a d-dimensional Brownian motion
W = (Wt)t∈[0,T ] with d ≥ 1, and F = FT . To be pre
ise, (Ft)t∈[0,T ] is theaugmented natural �ltration of W . The predi
table σ-algebra generated byleft-
ontinuous (Ft)t∈[0,T ]-adapted pro
esses is denoted by P.For X ∈ L1(Ω,F ,P) and a sub-σ-algebra G ⊆ F we will use the notation
EGX = E

[

X
∣

∣ G
] for the 
onditional expe
tation of X given G. Inequalities
on
erning random variables, su
h as EGX ≤ Y , hold in general only almostsurely even though this is not always expli
itly mentioned. The notations 1Aand χA are reserved for the indi
ator fun
tion of a set A. That is,

1A(x) = χA(x) =

{

1 , if x ∈ A,
0 , if x 6∈ A.4



In the BSDE (1) we are given a pair (ξ, f), where the terminal value ξ is an
FT -measurable random variable (i.e. at time T you know the exa
t value of
ξ). The generator f : [0, T ]× Ω× R× Rd → R is assumed to be su
h that

• (t, ω) 7→ f(t, ω, y, z) is (Ft)t∈[0,T ]-predi
table for all (y, z) ∈ R×Rd, and
• (y, z) 7→ f(t, ω, y, z) is 
ontinuous for all (t, ω) ∈ [0, T ]× Ω.The solution 
onsists of the pair of sto
hasti
 pro
esses (Y, Z), where t 7→ Ytis 
ontinuous, Y is (Ft)t∈[0,T ]-adapted, Z is (Ft)t∈[0,T ]-predi
table, and (Y, Z)satisfy (1) almost surely.1The philosophy is that if we know the stru
ture or me
hanism of ξ, and thedynami
s of the system (the generator f), then we want to �nd (Y, Z). The

Y -pro
ess starts from a deterministi
 
onstant, and travels 
ontinuously intime into ξ, almost surely. An important point here is the adaptedness of Y ;at time t we know the value of Yt. The Z-pro
ess on the other hand a
ts asa 
ontrol pro
ess that guides Y into ξ.In the spe
ial 
ase f ≡ 0, Yt equals the 
onditional expe
tation of ξ given Ft.Furthermore, if it happens to be that ξ belongs to the Malliavin Sobolev spa
e
D1,2, then the Clark-O
one formula tells us that Z equals the predi
tableproje
tion of the Malliavin derivative of Y .The original motivation for studying BSDEs 
omes from optimal sto
hasti

ontrol theory [2℄, later 
onne
tions to mathemati
al �nan
e were dis
overedfor example in [12℄ and [19℄. BSDEs are also 
losely 
onne
ted to a groupof partial di�erential equations, as was already proven through a nonlinearFeynman-Ka
 theorem in the seminal work [27℄.The resear
h of BSDEs was initiated by Bismut, who introdu
ed BSDEswith a generator f that is linear in y, z, i.e. linear BSDEs. On
e the 
aseof a uniformly Lips
hitz f (in y, z) with data in L2 was handled in [26℄, theamount of related papers hugely in
reased. Another important ben
hmarkwith a uniformly Lips
hitz f is [5℄, where the 
ase of data in Lp with 1 ≤ p < 2is handled. A typi
al estimate with BSDEs is the following "apriori estimate"from [5℄:
∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Yt|
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

0

|Zr|2dr
)

1
2

∥

∥

∥

∥

∥

p

≤ Cp

[

‖ξ‖p +
∥

∥

∥

∥

∫ T

0

|f(r, 0, 0)|dr
∥

∥

∥

∥

p

]

, (2)where Cp > 0, p > 1, and ‖ · ‖p stands for ‖ · ‖Lp(Ω).For example in 
onne
tion to utility maximization with exponential utility,the generator f may grow quadrati
ally in the z-variable. These quadrati
1This is often abbreviated to P-a.s., also to emphasize the measure used.5



BSDEs are 
onsidered with a bounded ξ for example in [22℄ and [19℄, and withexponential moments in ξ for example in [7℄ and [9℄. An important ingredientwhen proving the well-posedness in the quadrati
 
ase are BMO-martingales(see Se
tion 5). In [10℄ the authors go a step further by 
onsidering martin-gales that are sli
eable in BMO, and this 
on
ept is exploited in this thesisas well.To give more insight into BSDEs, we 
onsider a basi
 example of asset pri
ingas des
ribed in [12℄:Example 2.1. For simpli
ity of the presentation we assume here that theBrownian motion (Wt)t∈[0,T ] is 1-dimensional. Our market model is that wehave two assets: one riskless asset ("bank a

ount") with pri
e per unit P 0governed by the equation
dP 0

t = P 0
t rtdt, (3)where r is the interest rate, and one risky se
urity (the sto
k) where the pri
epro
ess P 1 is modeled by the SDE

dP 1
t = P 1

t (btdt+ σtdWt) , (4)where b is the sto
k appre
iation rate and σ is the volatility. Moreover, the
oe�
ients in (3) and (4) are "ni
e", i.e.(i) r is a predi
table non-negative bounded pro
ess,(ii) b and σ are predi
table and bounded,(iii) σt 6= 0 for any t ∈ [0, T ] almost surely, and σ−1 is a bounded pro
ess,(iv) there exists a predi
table and bounded pro
ess θ (
alled the risk pre-mium) su
h that bt − rt = σtθt for all t ∈ [0, T ] almost surely.We 
onsider a small investor who at time t de
ides what amount πt of thewealth Vt to invest in the sto
k. Sin
e his de
isions 
an be based only on the
urrent information (no insider trading), the pro
esses πt and π0
t := Vt − πtare predi
table.A strategy (V, π) is self-�nan
ing if the investor's wealth at time t 
onsistsof the initial wealth V0 and the losses or gains that he has obtained using

(πs)s∈[0,t]. That is, the wealth pro
ess satis�es
Vt = V0 +

∫ t

0

π0
s

dP 0
s

P 0
s

+

∫ t

0

πs
dP 1

s

P 1
s

,6



whi
h, using equations (3) and (4), is equivalent to the wealth pro
ess satis-fying the SDE
dVt = rtVtdt+ πtσt[dWt + θtdt].For this to make sense it has to also hold, P-a.s., that

∫ T

0

|πtσt|2dt <∞.The strategy is 
alled feasible if Vt ≥ 0 for all t ∈ [0, T ], P-a.s., i.e. noborrowing is allowed in the model.Now we 
onsider a non-negative European 
ontingent 
laim ξ ≥ 0 settled attime T . This is an FT -measurable random variable, and 
an be thoughtof as a 
ontra
t that pays the amount ξ at maturity T . For example,
ξ = 1(K,∞)(P

1
T ) with K ∈ (0,∞) is a European 
ontingent 
laim. A buyer ofthis 
laim re
eives one unit of 
urren
y if the value of the sto
k at time Tex
eeds the value K. If the value of the sto
k at maturity is below or equalto K, then the buyer gets nothing.How mu
h should this 
laim 
ost at time 0? It seems fair that if we let V0 bethe pri
e of the 
laim, then it should be possible to invest this amount intothe assets P 0 and P 1 su
h that at time T we have VT = ξ. This means thatwe 
an repli
ate the 
laim using the pri
e as an initial endowment. Moreover,the fair pri
e should be the smallest amount V0 with whi
h this 
an be done.This prin
iple is the basis of arbitrage-free pri
ing of the 
laim.We say that a hedging strategy against a non-negative 
ontingent 
laim ξ isa feasible self-�nan
ing strategy (V, π) su
h that VT = ξ.With our assumptions, any square-integrable non-negative 
laim ξ 
an behedged, i.e. there is a hedging strategy against ξ.The fair pri
e (at time 0) of the 
laim ξ is the smallest initial endowmentneeded to hedge ξ.Now, with our assumptions, we have the following:Theorem 2.2 ([12, Theorem 1.1℄).Let ξ be a non-negative square-integrable 
ontingent 
laim. Then there existsa hedging strategy (V, π) against ξ su
h that

dVt = rtVtdt+ πtσtθtdt+ πtσtdWt, VT = ξ, (5)and su
h that V0 is the fair pri
e of the 
laim.
7



Now we 
an �nally write this as a BSDE. It follows from Theorem 2.2 that
(V, πσ) is a solution of the (linear) BSDE

Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (6)where f(t, y, z) := rty + θtz.The model used in Example 2.1 is very simple in this form. However, one
an easily in
orporate for example borrowing with a higher interest rate than
r, 
onsumption, and transa
tion 
osts to the BSDE-formulation.3 De
ouplingIn this Se
tion we re
all the new general fun
tional mapping pro
edure thatwas introdu
ed in [A℄.We assume that there are two 
omplete probability spa
es where the random-ness is, up to nullsets, indu
ed by a 
ountable family of random variables.Moreover, these two families should have the same �nite-dimensional distri-butions. In parti
ular we do not require this distribution to be Gaussian.Then we 
an map equivalen
e 
lasses of random variables from the �rst spa
eto equivalen
e 
lasses of random variables in the se
ond spa
e. This is donein su
h a way that we do not 
hange the stru
ture of the random variable inquestion.More generally, the same pro
edure applies to sto
hasti
 pro
esses takingvalues in spa
es of 
ontinuous fun
tions.This pro
edure 
an be applied to a Wiener spa
e as a basis for de
oupling,2and as a fa
torization through a 
anoni
al spa
e. Be
ause our approa
h isdistributional, 
anoni
al spa
e here refers to the sequen
e spa
e RN, but asa by-produ
t we 
an also map all random variables and pro
esses to thestandard Wiener spa
e C0([0, T ]).Some advantages of this fun
tional mapping pro
edure are that the approa
his robust, but also easy to use. It is robust, sin
e we only assume that therandomness 
omes from a 
ountable sequen
e of random variables. It is alsoeasy to use sin
e, as one 
an see from the results in Se
tion 3.3 below, itpreserves the stru
ture of the random obje
ts.2Why are we interested in de
oupling? See Se
tion 3.1 below.

8



The origins of this pro
edure are in [13℄, where the Lp-variation of 
er-tain BSDEs is 
onsidered. One of the assumptions in [13℄ is, that thereis an underlying di�usion (Xr)r∈[0,T ] and the terminal value of the BSDE
an be written as ξ = g(Xt1, . . . , Xtn), where g is a Borel-fun
tion and
0 ≤ t1 < · · · < tn ≤ T . Moreover, the randomness of the generator f
omes only from the di�usion, i.e. we have f(r, ω, y, z) = h(r,Xr(ω), y, z)for a measurable fun
tion h. These assumptions 
an be dropped using ourde
oupling te
hnique.This de
oupling also gives rise to Bana
h spa
es of random variables known asanisotropi
 Besov spa
es (see Se
tion 4). These spa
es measure the fra
tionalsmoothness of random variables.3.1 MotivationWe start this Se
tion by 
onsidering Example 2.1 in real life. Unfortunatelyit is not possible to trade 
ontinuously in time as is required in Theorem2.2, but instead you only trade a sto
k at a �nite number of time points
0 = t0 < t1 < · · · < tN = T , i.e. on a time-grid π := {t0, . . . , tN}. Tryingto repli
ate the option with only a �nite number of adjustments will mostlikely fail, but it is of interest to know how large the di�eren
e is.The same phenomenon o

urs if one wishes to simulate a (solution of a)BSDE; for the 
omputer the system needs to be dis
retized. That is, weevaluate our pro
esses only on a �nite time-grid π as before. Be
ause of this,there is a di�eren
e between the solution and the result of the simulation.This, or some norm of this, is the simulation error. Naturally, it is importantto know how large the simulation error is.To illustrate how the error 
aused by the time dis
retization 
an be estimated,we will follow the approa
h from [4, Chapter 2℄: Let T = 1 and 
onsider theFBSDE

Xt = x+

∫ t

0

b(Xr)dr +

∫ t

0

σ(Xr)dWr, t ∈ [0, T ],

Yt = g(XT ) +

∫ T

t

h(Xr, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (7)where x ∈ Rd, and the fun
tions b : Rd → Rd, σ : Rd → Rd×d, g : Rd → R,
h : Rd × R × Rd → R are assumed to be Lips
hitz-
ontinuous. Given atime-grid π as before, with modulus

|π| := sup
k=0,...,N−1

(tk+1 − tk),9



the Euler s
heme of the forward pro
ess X is de�ned as
Xπ

0 = x, Xπ
tk+1

= b(Xπ
tk
)∆tk + σ(Xπ

tk
)∆Wtkfor k < N , where ∆tk = tk+1− tk and ∆Wtk = Wtk+1
−Wtk . To motivate thede�nition of the ba
kward Euler s
heme we �rst write

Ytk = Ytk+1
+

∫ tk+1

tk

h(Xr, Yr, Zr)dr −
∫ tk+1

tk

ZrdWr,and then formally approximate the righthand-side to arrive at:
Ytk ≈ Ytk+1

+ h(Xπ
tk
, Ytk , Ztk)∆tk − Ztk∆Wtk . (8)First, by taking 
onditional expe
tation given Ftk on both sides of (8), weget that

Ytk ≈ E
[

Ytk+1

∣

∣

∣
Ftk

]

+ h(Xπ
tk
, Ytk , Ztk)∆tk.Se
ondly, by multiplying both sides of (8) by ∆Wtk , and then taking 
ondi-tional expe
tation given Ftk , we get by It�'s isometry that

0 ≈ E
[

Ytk+1
∆Wtk

∣

∣

∣
Ftk

]

− Ztk∆tk.These steps lead to the (impli
it) ba
kward Euler s
heme
Z
π

tk
=

1

∆tk
E
[

Y π
tk+1

∆Wtk

∣

∣

∣
Ftk

]

, (9)
Y π
tk

= E
[

Y π
tk+1

∣

∣

∣
Ftk

]

+ h(Xπ
tk
, Y π

tk
, Z

π

tk
)∆tk, (10)with k < N , and Y π

T = g(Xπ
T ). We de�ne the (squared) simulation error asErr(π)2 := max

0≤k<N
E

[

sup
r∈[tk,tk+1]

|Yr − Y π
tk
|2
]

+ E

[

N−1
∑

k=0

∫ tk+1

tk

|Zr − Z
π

tk
|2dr

]

.Now, letting
Ztk =

1

∆tk
E

[
∫ tk+1

tk

Zrdr
∣

∣

∣
Ftk

]

,we de�ne the (squared) modulus of regularity of Y and Z as
10



R2
Y (π) := max

0≤k<N
E

[

sup
r∈[tk,tk+1]

|Yr − Ytk |2
]

, (11)
R2
Z(π) := E

[

N−1
∑

k=0

∫ tk+1

tk

|Zr − Ztk |2dr
]

. (12)Then it follows ([4, Proposition 2.2.1℄) that there exists a 
onstant C > 0,independent of π, su
h thatErr(π) ≤ C
(

|π|+R2
Y (π) +R2

Z(π)
)

1
2 .Moreover, in the 
ase that h ≡ 0 it even follows ([4, Remark 2.2.4℄) thatthere exists a 
onstant c > 0 su
h that

c
(

R2
Y (π) +R2

Z(π)
)

1
2 ≤ Err(π),and up to a term depending on |π| this holds also when h 6≡ 0.The above example indi
ates that the simulation error 
an be approximatedby regularity of the exa
t solution itself. This is one reason why we want to�nd upper bounds of |Yt − Ys| in some sense for all 0 ≤ s < t ≤ T . It is alsoan interesting task in itself. In [A℄ we 
onsider the Lp-quantity E|Yt−Ys|p for

2 ≤ p <∞, and in [B℄ we 
onsider the 
onditional Lp-quantity EFs |Yt − Ys|pfor 2 ≤ p <∞.The strategy in both 
ases was the same: we start with
EFs |Yt − Ys|p ≤ cp

[

EFs |Yt − EFsYt|p + EFs |EFsYt − Ys|p
]

, (13)where cp > 0. With p = 2 this inequality is a
tually an equality, with c2 = 1.The se
ond part in equation (13), EFs |EFsYt−Ys|p, 
an be estimated dire
tly(see Theorem 6.5) using estimates that are mostly standard. The only non-standard argument, an extension of Fe�erman's inequality (see Proposition5.4 or [B, Corollary 2.10℄), is used if f grows superlinearly in the z-variable.Now we fo
us on the more di�
ult problem, upper bounding EFs |Yt−EFsYt|p.To explain the idea, 
onsider �rst the 
ase s = 0. Then, taking Xt to be anindependent 
opy of Yt, we have
1

2p
E|Yt −Xt|p ≤ E|Yt − EYt|p ≤ E|Yt −Xt|p, (14)where p ≥ 1. 11



Naturally, we want Xt to be su
h that we 
an (without too mu
h of an extrae�ort) upper bound the quantity E|Yt−Xt|p mentioned above. If Xt is indeeda 
opy of Yt, then Xt itself should be a solution of a BSDE. This is essentialfor us; both Xt and Yt are solutions of BSDEs at time t, so we 
an also writetheir di�eren
e Xt − Yt as a solution of a BSDE at time t. After this we usean apriori estimate (similar to equation (2)) to �nd an upper bound in termsof the data.To indi
ate how we 
an handle the 
ase s > 0, re
all that our �ltration isgenerated by the Brownian motionW , so it makes sense to �rst 
onsider the
ase Yt = Wt (for simpli
ity we may think that W is 1-dimensional). In the
ase s = 0 we took Xt to be an independent 
opy of Yt, and this leads usto assume that there exists (W ′
r)r∈[0,T ] whi
h is a Brownian motion that isindependent of W .Let now s > 0, and let us try to use W ′ to �nd a random variable Xt su
hthat

1

2p
EFs |Wt −Xt|p ≤ EFs |Wt − EFsWt|p ≤ EFs |Wt −Xt|p.We simplify the setting on
e more by 
onsidering the 
ase p = 2. Now, usingproperties of the Brownian motion, we have

EFs |Wt − EFsWt|2 = EFs |Wt −Ws|2

=
1

2
EFs |Wt − (W ′

t −W ′
s +Ws)|2,where we used the fa
t that W and W ′ are independent. This leads us to
hoose Xt = W ′

t −W ′
s +Ws, or in terms of sto
hasti
 integrals,

Xt = W
(s,t]
t :=

∫ t

0

1− 1(s,t](r)dWr +

∫ t

0

1(s,t](r)dW
′
r.Then Xt is a 
onditionally independent 
opy of Wt given Fs.For illustration we have a �gure of the di�erent Brownian motions:

12
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Figure 1: Brownian motions W ,W ′ and W (s,t]. Here s = 0.3, t = 0.6 and
T = 1.Can we do the same for any Ft-measurable Yt? Re
all that Ft is (essentially)generated by the Brownian motionW until time t. This means that the ran-domness of Yt 
omes, in some sense, from the underlying pro
ess (Wr)r∈[0,t].Next we explain how we 
an 
hange the random variable Yt by 
hanging theunderlying Brownian motion W into the new Brownian motion W (s,t].3.2 SettingLet us be pre
ise on how we 
an �nd a Brownian motionW ′ that is indepen-dent ofW . We start by taking another sto
hasti
 basis (Ω′,F ′,P′, (F ′

r)r∈[0,T ]),where (F ′
r)r∈[0,T ] is the augmented �ltration of the d-dimensional Brownianmotion W ′, and F ′ = F ′

T . 13



To speak of independen
e, we must have W and W ′ de�ned on the sameprobability spa
e. Thus, we let
Ω := Ω× Ω′, P := P× P′, F := F ⊗F ′P,and work on the probability spa
e (Ω,F ,P). By 
onsidering the 
anoni
alextensions W (ω, ω′) := W (ω) and W ′(ω, ω′) := W ′(ω′) for all (ω, ω′) ∈

Ω × Ω′, we then have that W and W ′, both de�ned on Ω, are independent
d-dimensional Brownian motions. The augmented natural �ltration3 of the
2d-dimensional Brownian motionW = (W,W ′) is denoted by (F t)t∈[0,T ]. Wealso use the notation

(ΩT ,ΣT ,PT ) := ([0, T ]× Ω,B([0, T ])⊗F , λ
T

× P),

(ΩT ,ΣT ,PT ) := ([0, T ]× Ω,B([0, T ])⊗F , λ
T

× P),where λ is the Lebesgue-measure on [0, T ].Now we let ϕ : [0, T ] → [0, 1] be Borel measurable, and de�ne for all r ∈ [0, T ]

W ϕ
r =

∫ r

0

√

1− ϕ2(u)dWu +

∫ r

0

ϕ(u)dW ′
u.Be
ause of Lévy's 
hara
terization of the Brownian motion, (W ϕ

r )r∈[0,T ] is astandard Brownian motion, and we use (Fϕ
r )r∈[0,T ] to denote its augmentednatural �ltration and Fϕ := Fϕ

T . The predi
table σ-algebra on the sto
hasti
basis (Ω,Fϕ,P, (Fϕ
r )r∈[0,T ]) is denoted by Pϕ, and we will also make use ofthe notation ΣϕT = B([0, T ])⊗ Fϕ.Denoting the fun
tion ϕ ≡ 0 simply by 0, we have thatW 0 and (the extensionof) W are indistinguishable. Sin
e F0 
ontains all P-nullsets, it follows that

(F0
t )t∈[0,T ] and the augmentation of σ(Wr, r ∈ [0, t])t∈[0,T ] 
oin
ide. Thus, wemay agree to use the notation W 0 for the extension of W and (F0

r )r∈[0,T ] forthe 
orresponding �ltration.For our purposes the Brownian motionW (s,t] :=W χ(s,t] , where 0 ≤ s < t ≤ T ,plays an essential role.One may view the de�nition of W ϕ, and the soon-to-be introdu
ed te
h-niques, as an extension of the te
hniques used to obtain Mehler's formula(see for example [25, Equation (1.67)℄). The same te
hnique that was usedto obtain Mehler's formula has also been used in 
hara
terizing (isotropi
)Besov spa
es obtained by real interpolation in [18℄.3Whenever we augment a �ltration in Ω, we augment it by P-nullsets.14



The di�eren
e between our de�nition and these 
ases is, that they only 
on-sidered 
onstant-valued fun
tions ϕ. The reason why we want to have a
ovarian
e-fun
tion that does depend on time is, that we want to estimate
EFs |Yt − EFsYt|p.Now we des
ribe how the randomness of a pro
ess X ∈ L0(ΩT ,ΣT ,PT ) is
hanged to 
ome from W ϕ instead of W . Changing the randomness of arandom variable ξ ∈ L0(Ω,F ,P) to 
ome fromW ϕ instead ofW is analogous.1. For X ∈ L0(ΩT ,ΣT ,PT ) take the 
anoni
al extension X(t, ω, ω′) :=

X(t, ω), and 
onsider the 
orresponding equivalen
e 
lass of randomvariables [X ] ∈ L0(ΩT ,Σ
0
T ,PT ).2. 4Letting (gn)n∈N : Ω → R be the family of �nite di�eren
es of W 0generated by Haar fun
tions, there exists a B([0, T ]) ⊗ σ(gn, n ∈ N)-measurable X0 ∈ [X ].3. 5De�ning JT : ΩT → [0, T ]×RN, JT (t, η) = (t, gn(η))n∈N, there existsa random variable X̂ : [0, T ] × RN → R so that X0 
an be fa
torizedthrough [0, T ]× RN:

X0 : ΩT
JT→ [0, T ]× RN X̂→ R.4. 6 De�ning JϕT analogously, but using W ϕ instead of W 0, we have that

X̂(JϕT ) : ΩT → R is a well-de�ned B([0, T ])⊗ σ(gϕn , n ∈ N)-measurablerandom variable.5. Finally, we let Xϕ ∈ L0(ΩT ,Σ
ϕ
T ,PT ) be the equivalen
e 
lass that 
on-tains all ΣϕT -measurable random variables that are PT -a.s. the same as

X̂(JϕT ).In step 2 it is essential that the σ-algebras F0 and σ(gn, n ∈ N) di�er onlyby nullsets. Following steps 1-5 we now have the well-de�ned fun
tionalmappings
CT : L0(ΩT ,Σ

0
T ,PT ) → L0(ΩT ,Σ

ϕ
T ,PT ), CT ([X ]) := Xϕ,and, analogously, C0 : L0(Ω,F0,P) → L0(Ω,Fϕ,P).4[A, Lemma 2.2℄5[A, Lemma 2.3(1)℄6[A, Lemma 2.3(2)℄ 15



In fa
t, in [A℄ we start with a 
omplete probability spa
e (Ω1,F1,P1), andwe assume:
• There exists a sequen
e (ξ1n)n∈N of random variables in Ω1 su
h that
F1 = σ(ξ1n, n ∈ N) ∨N 1, where N 1 are the P1-nullsets,

• There exists a 
omplete probability spa
e (Ω2,F2,P2) su
h that
F2 = σ(ξ2n, n ∈ N) ∨ N 2, where N 2 are the P2-nullsets, and (ξ2n)n∈N isa sequen
e of random variables in Ω2,

• (ξ1n)n∈N and (ξ2n)n∈N have the same �nite-dimensional distributions.Then we follow steps 1-5, with (gn)n∈N repla
ed by (ξ1n)n∈N and (gϕn)n∈N by
(ξ2n)n∈N, thus de�ning the fun
tional mappings

CT : L0(Ω
1
T ,Σ

1
T ,P

1
T ) → L0(Ω

2
T ,Σ

2
T ,P

2
T )and C0 : L0(Ω

1,F1,P1) → L0(Ω
2,F2,P2).However, we restri
t here ourselves to the mentioned 
ase (Ω1,F1,P1) =

(Ω,F0,P), and (Ω2,F2,P2) = (Ω,Fϕ,P). Then, for X ∈ L0(ΩT ,Σ
0
T ,PT ),we have that CT (X) and X are equivalen
e 
lasses that 
onsist of sto
hasti
pro
esses that are in the same probability spa
e (Ω,F ,P).In parti
ular, this approa
h does not require 
ontinuous paths or a gaussiandistribution. As su
h, the approa
h might be useful also in other situations.It should also be mentioned that a similar distributional approa
h is usedin [23, Chapter V.1.6℄ (see also [20℄) on Gaussian random variables to de�nethe Gaussian Sobolev spa
es (or the Malliavin Sobolev spa
es).This approa
h being so �exible and "general", the question arises whetherit is strong enough to preserve some regularity stru
tures of the randomvariables and sto
hasti
 pro
esses. So far we have only positive answers.3.3 PropertiesWe present some natural and expe
ted properties that make our methodappli
able in various situations, for example with BSDEs.To shorten the presentation, we sometimes work in Ω and ΩT in parallel.This is done by 
onsidering S ∈ {0, T}, and using the notation Ω0 := Ω and

Σ0 := F .
16



Also, we �x X 6= ∅ to be a 
omplete metri
 spa
e that is lo
ally σ-
ompa
t,i.e. there exist 
ompa
t subsets ∅ 6= K1 ⊆ K2 ⊆ . . . , su
h that K̊n = Knand X =
⋃∞
n=1 K̊n.The basi
 form of the results in this Se
tion is the following: If the origi-nal random obje
t X ∈ L0(ΩS,ΣS,PS) satis�es some property, then in theequivalen
e 
lass Xϕ ∈ L0(ΩS,Σ

ϕ
S,PS) we 
an �nd a representative thatsatis�es, in the proper sense, the same property.De�nition 3.1. We let f ∈ L0(ΩS,ΣS,PS;C(X)) if f : ΩS ×X → R is su
hthat

• η 7→ f(η, y) is ΣS-measurable for all y ∈ X,
• y 7→ f(η, y) is 
ontinuous for all η ∈ ΩS.The 
ontinuity of a sto
hasti
 pro
ess is preserved in the following sense:Proposition 3.2 ([A, Lemma 2.9℄).If f ∈ L0(ΩS ,ΣS,PS;C(X)), then there exists fϕ ∈ L0(ΩS,Σ

ϕ
S,PS;C(X))su
h that fϕ(y) ∈ (f(y))ϕ for all y ∈ X. Given fϕ1 and fϕ2 with these twoproperties, it follows that fϕ1 (·) = fϕ2 (·) (PS-a.s.).Given f ∈ L0(ΩS,ΣS,PS;C(X)), Proposition 3.2 is used to de�ne fϕ as theequivalen
e 
lass7 of elements in L0(ΩS,Σ

ϕ
S,PS;C(X)) su
h that

fϕ(y) ∈ (f(y))ϕ for all y ∈ X.Predi
tability and adaptedness are transferred in the following sense:Proposition 3.3 ([A, Lemma 3.1 and Theorem 2.8℄).(i) If ξ ∈ L0(Ω,Ft,P) for some t ∈ [0, T ], then all representatives of
ξϕ ∈ L0(Ω,Fϕ,P) are Fϕ

t -measurable.(ii) If f ∈ L0(ΩT ,P,PT ;C(X))8, then there is a Pϕ-measurable9 represen-tative of fϕ ∈ L0(ΩT ,Σ
ϕ
T ,PT ;C(X)).(iii) If Y ∈ L0(Ω,F ,P;C([0, T ])) is (Ft)t∈[0,T ]-adapted, then all representa-tives of Y ϕ ∈ L0(Ω,Fϕ,P;C([0, T ])) are (Fϕ

t )t∈[0,T ]-adapted.We summarize some further properties proven in [A℄:7We identify f1, f2 ∈ L0(ΩS ,Σ
ϕ
S ,PS ;C(X)) if PS (f1(y) = f2(y) for all y ∈ X) = 1.8i.e. η 7→ f(η, x) is P-measurable for all x ∈ X.9i.e. η 7→ fϕ(η, x) is Pϕ-measurable for all x ∈ X.17



Proposition 3.4 ([A, Theorems 2.6, 2.11, and Lemma 3.2℄).Let N ∈ N, g : RN → R a Borel fun
tion, S ∈ {0, T}, X,X1, . . . , XN ∈
L0(ΩS,ΣS,PS), Y ∈ L1(ΩT ,ΣT ,PT ), f ∈ L0(ΩS ,ΣS,PS;C(R

N)), and Z ∈
L2(ΩT ,P,PT ). Then(i) X d

= Xϕ.(ii) (g(X1, . . . , XN))
ϕ = g(Xϕ

1 , . . . , X
ϕ
N).(iii) (f(X1, . . . , XN))

ϕ = fϕ(Xϕ
1 , . . . , X

ϕ
N).(iv) (∫ T

0
Y (t)1{

∫ T
0 |Y (s)|ds<∞}dt

)ϕ

=
∫ T

0
Y ϕ(t)1{

∫ T
0 |Y ϕ(s)|ds<∞}dt.(v) (∫ T

0
Z(t)dWt

)ϕ

=
∫ T

0
Zϕ(t)dW ϕ

t , for any predi
table representative of
Zϕ.10Our next result states that if we have a strong solution of an SDE in the �rstspa
e, then 
hanging the randomness of the solution results into a strongsolution of another SDE. Naturally, the randomness of the data is 
hanged.It is noteworthy that we do not assume uniqueness of the solution.Proposition 3.5 ([A, Theorem 3.3℄).Assume that f, gi ∈ L0(ΩT ,P,PT ;C(R1+d)), Zi ∈ L0(ΩT ,P,PT ), i = 1, . . . , d,that Y ∈ L0(Ω,F ,P;C([0, T ])) is (Ft)t∈[0,T ]-adapted, and that

E

[
∫ T

0

|f(r, Yr, Zr)|dr +
∫ T

0

|g(r, Yr, Zr)|2dr
]

<∞.If ξ ∈ L0(Ω,F ,P) and
Yu = ξ +

∫ T

u

f(r, Yr, Zr)dr −
∫ T

u

g(r, Yr, Zr)dWr (15)for u ∈ [0, T ], P-a.s., then �xing any predi
table representatives of fϕ, gϕi , Zϕ
i ,and (Fϕ

t )t∈[0,T ]-adapted (
ontinuous) representative of Y ϕ, we have
E

[
∫ T

0

|fϕ(r, Y ϕ
r , Z

ϕ
r )|dr +

∫ T

0

|gϕ(r, Y ϕ
r , Z

ϕ
r )|2dr

]

<∞,and
Y ϕ
u = ξϕ +

∫ T

u

fϕ(r, Y ϕ
r , Z

ϕ
r )dr −

∫ T

u

gϕ(r, Y ϕ
r , Z

ϕ
r )dW

ϕ
r (16)for u ∈ [0, T ], P-a.s.10By Proposition 3.3(ii) there exists su
h a representative.18



We want to obtain 
onditional estimates in the probability spa
e (Ω,F ,P)from estimates obtained using the 
oupling te
hnique. Here the next resultis vital:Lemma 3.6 ([B, Lemma 4.9℄).Let p ≥ 1, 0 ≤ s < t ≤ T , ξ ∈ Lp(Ω,F0,P), and put
Gts := σ(W 0

r , r ∈ [0, s]) ∨ σ(W 0
r −W 0

t , r ∈ [t, T ]).Then
1

2p
EF0

s |ξ − ξ(s,t]|p ≤ EF0
s |ξ − EGt

sξ|p ≤ EF0
s |ξ − ξ(s,t]|p. (17)Moreover, if ξ is F0

t -measurable, then
1

2p
EF0

s |ξ − ξ(s,t]|p ≤ EF0
s |ξ − EF0

s ξ|p ≤ EF0
s |ξ − ξ(s,t]|p.Remark 3.7. Re
all what we dis
ussed in Se
tion 3.1: our goal is to upperbound EFs |Yt −EFsYt|p, where Yt is a solution of a BSDE at time t. Lemma3.6 tells us that

EFs |Yt − EFsYt|p ≤ EF0
s |Yt − Y

(s,t]
t |p P-a.s.,where EFs |Yt−EFsYt|p stands for the 
anoni
al extension. Using Proposition3.5 we noti
e that Y (s,t] solves a BSDE just like Y did. We again emphasizethat we only need (y, z) 7→ f(r, ω, y, z) to be 
ontinuous for all (r, ω) ∈ ΩT ,and we need to know that Y is a solution of the BSDE. In parti
ular thesolution need not be unique, the existen
e is enough.Now it remains to use an apriori estimate to upper bound EF0

s |Yt − Y
(s,t]
t |p.For this we need to introdu
e a lot of assumptions that guarantee for us anatural upper bound. To understand some of these assumptions better, itis best to introdu
e the 
on
ept of bounded mean os
illation (BMO) beforewe state our main results 
on
erning BSDEs. But �rst we show what else
an be done with our de
oupling te
hnique; we introdu
e anisotropi
 Besovspa
es.4 Anisotropi
 Besov Spa
esIn this Se
tion we re
all the family of Bana
h spa
es des
ribing fun
tionalfra
tional smoothness of random variables, as introdu
ed in [A℄.To de�ne these spa
es we only need to use the de
oupling te
hnique fromSe
tion 3. Although we do not use Malliavin Cal
ulus, in Theorem 4.9 a
ertain anisotropi
 Besov spa
e is 
hara
terized using Malliavin derivatives.19



We mention also some 
onne
tions to previously studied Besov spa
es ob-tained by real interpolation.We �rst de�ne the metri
 spa
e of parameter fun
tions that we use:De�nition 4.1. We de�ne the metri
 spa
e (∆, δ) as the equivalen
e 
lassesof the pseudo-metri
 spa
e (D, δ) with
D = {ψ ∈ L2((0, T ]) : 0 ≤ ψ ≤ 1} and δ(ϕ, ψ) = ‖ϕ− ψ‖L2((0,T ]).Let p ∈ (0,∞), ξ ∈ Lp(Ω,F ,P), and ϕ ∈ ∆. Then we exploit our notion ofde
oupling to study "the sensitivity of ξ to the dire
tion ϕ", by measuringthe map Fξ,p(ϕ) = ‖ξ − ξϕ‖Lp(Ω) in di�erent ways. First we note that ϕ →

‖ξ − ξϕ‖p is a 
ontinuous map:Lemma 4.2 ([A, Lemma 4.9℄). For p ∈ (0,∞) and ξ ∈ Lp(Ω,F ,P) the map
Fξ,p : ∆ → [0,∞) de�ned by Fξ,p(ϕ) = ‖ξ − ξϕ‖p is 
ontinuous.Next we de�ne the 
on
ept of anisotropi
 Besov spa
es. This is done bymeasuring the map Fξ,p using an admissible fun
tional:De�nition 4.3. Let C+(∆) be the spa
e of all non-negative 
ontinuous fun
-tions F : ∆ → [0,∞). A fun
tional Φ : C+(∆) → [0,∞] is 
alled admissibleprovided that
(C1) Φ(F +G) ≤ Φ(F ) + Φ(G),
(C2) Φ(λF ) = λΦ(F ) for λ ≥ 0,
(C3) Φ(F ) ≤ Φ(G) for 0 ≤ F ≤ G,
(C4) Φ(F ) ≤ lim supnΦ(Fn) for supϕ∈∆ |Fn(ϕ)− F (ϕ)| →n 0.De�nition 4.4. For p ∈ (0,∞), ξ ∈ Lp(Ω), and an admissible Φ : C+(∆) →
[0,∞] we let ξ ∈ BΦ

p provided that Φ(ϕ→ ‖ξ − ξϕ‖p) <∞ and set
‖ξ‖BΦ

p
:=
[

E|ξ|p + ‖ξ‖pΦ,p
]

1
p with ‖ξ‖Φ,p := Φ(ϕ→ ‖ξ − ξϕ‖p).This de�nition yields a Bana
h spa
e.Theorem 4.5 ([A, Proposition 4.13℄).For p ∈ [1,∞) the spa
e (of equivalen
e 
lasses) BΦ

p is a Bana
h spa
e.
20



4.1 Interpolation spa
es as (an)isotropi
 Besov spa
esWe give two examples of admissible fun
tionals that 
orrespond to Besovspa
es obtained by real interpolation method.De�nition 4.6. For 0 = r0 < r1 < · · · rL = T , θl ∈ (0, 1), ql ∈ [1,∞], and
F ∈ C+(∆) we let

Φ(θ1,q1),...,(θL,qL)
r1,...,rL

(F ) := sup
l=1,...,L

∥

∥(rl − t)−θl/2F (χ(t,rl])
∥

∥

Lql
([rl−1,rl),

dt
rl−t

)
.Using the notation γd for the standard d-dimensional gaussian distribution,the spa
es Bθp,q(Rd, γd) are interpolation spa
es between Lp and the MalliavinSobolev spa
e D1,p. Here θ ∈ (0, 1) des
ribes the fra
tional smoothness, and

q ∈ [1,∞] is the �netuning-index. For more information see for example [17℄and [A, Se
tions 7.1-7.2℄.Proposition 4.7 ([A, Proposition 4.16℄).For θ ∈ (0, 1), p ∈ [2,∞), q ∈ [1,∞], and f(W1) ∈ Lp one has
f ∈ Bθp,q(R

d, γd) if and only if f(W1) ∈ BΦ
(θ,q)
1

p .De�nition 4.8. Let K : [0, 1] → R be non-negative and Borel-measurable,
q ∈ [1,∞), and let ϕr : (0, T ] → R be given by

ϕr ≡ r for r ∈ [0, 1].Then we de�ne
Φ(K,q)(F ) :=

(
∫ 1

0

K(r)|F (ϕr)|qdr
)

1
q

.The de�nition above means that we use the map ξ → ξϕr that ex
hanges inan isotropi
 way the full Brownian motionW by its mixture√1− r2W+rW ′.Using the notation
ξ(W ) = ξ and ξ(

√
1− r2W + rW ′) = ξϕrthis yields to the expression

(
∫ 1

0

K(r)‖ξ(W )− ξ(
√
1− r2W + rW ′)‖qpdr

)

1
q

.21



Using the parti
ular kernel
K(r) :=

2r

1− r2

(

ln
1

1− r2

)−1− θq
2

,for θ ∈ (0, 1) and p = q ∈ (1,∞) this gives
∫ ∞

0

t−1− θp
2 ‖ξ(W )− ξ(e−

t
2W +

√
1− e−tW ′)‖ppdt.Spa
es based on this type of expression were 
onsidered in [18, Remark onp. 428℄ and identi�ed as interpolation spa
es. The same idea was also usedin [25, Se
tion 1.4.1℄ to 
hara
terize the Ornstein-Uhlenbe
k semigroup.4.2 Conne
tion to Malliavin derivativesHere we give an example of another anisotropi
 Besov spa
e, and 
hara
terizeit using Malliavin derivatives.We study the spa
e BΦ2

p , where the fun
tional Φ2 : C
+(∆) → [0,∞] is givenby

Φ2(F ) := sup
0≤s<t≤T

F (χ(s,t])√
t− s

. (18)This means that the Besov spa
e BΦ2
p 
onsists of ξ ∈ Lp(Ω,F ,P) su
h that

sup0≤s<t≤T
‖ξ−ξ(s,t]‖p√

t−s <∞. In other words, ξ ∈ BΦ2
p if and only if there exists

C > 0 su
h that
‖ξ − ξ(s,t]‖p ≤ C

√
t− sfor all 0 ≤ s < t ≤ T . In a sense ξ is Lips
hitz.To des
ribe these spa
es we let, for ξ ∈ D1,2 and D being the Malliavinderivative operator,

‖Dξ‖L∞([0,T ];Lp(Ω)) := esssups∈[0,T ]‖Dsξ‖p,

‖Dξ‖L∗
p(Ω;L2([0,T ]))

:= sup
0≤a<b≤T

∥

∥

∥

∥

∥

(

1

b− a

∫ b

a

|Dsξ|2ds
)

1
2

∥

∥

∥

∥

∥

p

.By the Lebesgue di�erentiation theorem one has that
‖Dξ‖L∞([0,T ];L2(Ω)) = ‖Dξ‖L∗

2(Ω;L2([0,T ]))
.To formulate our main result, the notation A ∼c B, where A,B ≥ 0 and

c ≥ 1, stands for (1/c)A ≤ B ≤ cA. Our main result is that BΦ2
2 ( D1,2, and22



Theorem 4.9 ([A, Theorem 4.19℄).(1) For p ∈ [2,∞) and ξ ∈ D1,2 ∩ Lp one has
‖ξ‖Φ2,p ∼c1 ‖Dξ‖L∗

p(Ω;L2([0,T ]))
,where c1 > 0 depends on p only.(2) For p ∈ (1, 2) and ξ ∈ D1,2 one has

1

c2
‖Dξ‖L∞([0,T ];Lp(Ω)) ≤ ‖ξ‖Φ2,p ≤ c2 ‖Dξ‖L∗

p(Ω;L2([0,T ]))
,where c2 > 0 depends on p only.(3) There is a ξ ∈ D1,2 su
h that for all p ∈ [1,∞) one has ξ ∈ Lp(Ω),

Dξ ∈ Lp(Ω;L2([0, T ])), and ξ 6∈ BΦ2
p .In deriving the upper bounds of Theorem 4.9(1) and (2), the following gen-eralization of Stein's lemma is used:Lemma 4.10 ([A, Lemma A.6℄).Let p ∈ (1,∞). Assume a pro
ess a = (at)t∈[0,1] ⊆ Lp with values in ℓN2that has left-
ontinuous paths for all ω ∈ Ω, a �ltration (Ht)t∈[0,1], and an

(Ht)t∈[0,1]-adapted pro
ess (bt)t∈[0,1] ⊆ Lp with values in ℓN2 that has left-
ontinuous paths for all ω ∈ Ω as well and su
h that bt = E(at|Ht) a.s. forall t = k/2n with n = 0, 1, 2, ... and k = 0, ..., 2n − 1. If supt |at| ∈ Lp, thenone has that
∥

∥

∥

∥

∥

(∫ 1

0

|bt|2dt
)

1
2

∥

∥

∥

∥

∥

p

≤ cp

∥

∥

∥

∥

∥

(∫ 1

0

|at|2dt
)

1
2

∥

∥

∥

∥

∥

pwhere the 
onstant cp > 0 depends at most on p.To further justify the term anisotropi
, we note that the admissible fun
tionalin equation (18) 
an be generalized by letting r ≥ 2, 0 ≤ A < B ≤ T , and
ΦA,Br (F ) := sup

A≤s<t≤B

F (χ(s,t])

(t− s)
1
r

. (19)Moreover, it is possible to study di�erent fra
tional smoothness on di�erentintervals. This 
an be done for example by putting23



A1 :=

{

ϕ ∈ ∆
∣

∣

∣
ϕ = χ(s,t], 0 ≤ s < t ≤ T

2

}

,

A2 :=

{

ϕ ∈ ∆
∣

∣

∣
ϕ = χ(s,t],

T

2
≤ s < t ≤ T

}

,and
α(ϕ) =

{

(t− s)
1
2 , ϕ = χ(s,t] ∈ A1,

(t− s)
1
4 , ϕ = χ(s,t] ∈ A2.Then, putting A = A1 ∪A2, one 
an study the admissible fun
tional

Φ(F ) := sup
ϕ∈A

F (ϕ)

α(ϕ)
.Next we indi
ate how one 
an verify using de
oupling that a random variablebelongs to a 
ertain anisotropi
 Besov spa
e. The following is a spe
ial 
aseof [A, Theorem 4.23℄.Example 4.11. Consider ξ := χ[K,∞)(|XT |), where 0 < K < ∞ and

(Xr)r∈[0,T ] is the solution of
Xr = x0 +

∫ r

0

b(u,Xu)du+

∫ r

0

σ(u,Xu)dWu, r ∈ [0, T ].Here x0 ∈ Rd, and the 
oe�
ients b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd →
Rd×d satisfy

(Ab,σ) b, σ ∈ C0,2
b ([0, T ]×Rd), where the derivatives up to order two are takenwith respe
t to the spa
e-variables and, for some γ ∈ (0, 1], are assumedto be γ-Hölder 
ontinuous (w.r.t. the paraboli
 metri
) on all 
ompa
tsubsets of [0, T ]×Rd. Moreover, letting A = σσ∗, there is a δ > 0 su
hthat 〈Ax, x〉 ≥ δ|x|2 for x ∈ Rd and b and σ are 1

2
-Hölder 
ontinuousin time, uniformly in spa
e.Then it follows from [13, Proposition B.3℄ that XT has a bounded density

fXT
. Moreover, using Proposition 3.4(ii) and [1, Lemma 3.4℄ we have thatfor any 0 < p, q <∞

‖ξ − ξ(s,t]‖pp = ‖χ[K,∞)(|XT |)− χ[K,∞)(|XT |)(s,t]‖1
= ‖χ[K,∞)(|XT |)− χ[K,∞)(|X(s,t]

T |)‖1
≤ 3‖fXT

‖
q

q+1
∞ ‖XT −X

(s,t]
T ‖

q
q+1
q .24



Sin
e [13, Theorem 3℄ implies that there exists C > 0 depending at most on
(q, T, b, σ) su
h that

∥

∥

∥

∥

∥

sup
r∈[0,T ]

|Xr −X(s,t]
r |

∥

∥

∥

∥

∥

q

≤ C
√
t− s,we have that there exists a 
onstant c = c(p, T, q, fXT

, b, σ) > 0 su
h that
‖ξ − ξ(s,t]‖p ≤ c(

√
t− s)

q
q+1

1
p .This means that given p ∈ [2,∞) we have ξ ∈ BΦr

p for any r > 2p.5 Bounded Mean Os
illationThis Se
tion reviews some of the �ne properties that martingales of boundedmean os
illation, BMO-martingales from now on, satisfy, and we also re
allthe results from the theory of weighted BMO that we used. The results thatare new (Se
tion 5.2) are easy observations, but they were useful to us. Wepresent them here as they might be of independent interest. For simpli
ity,we present all de�nitions and results in the setting that was �xed in thebeginning of Se
tion 2.5.1 BMO and weighted BMOFirst we re
all what it means that a martingale is of bounded mean os
illa-tion.De�nition 5.1. A martingale M = (Mt)t∈[0,T ] is a BMO-martingale pro-vided that M0 ≡ 0 and there is 
onstant c > 0 su
h that for all stoppingtimes τ : Ω → [0, T ] one has that
E(|MT −Mτ−|2|Fτ) ≤ c2, (20)where
Mτ− := lim

n→∞
M((τ− 1

n)∨0)
.We let ‖M‖BMO := inf c where the in�mum is taken over all c > 0 as above.In our setting every martingale is 
ontinuous, and the probability spa
e is
omplete. It follows from optional stopping theorem that:25



Lemma 5.2. Let M = (Mt)t∈[0,T ] a martingale with M0 ≡ 0. Then M is aBMO-martingale if and only if there is a 
onstant c > 0 su
h that
E(|MT −Mt|2|Ft) ≤ c2for all t ∈ [0, T ]. Moreover, ‖M‖2BMO = supt∈[0,T ] ‖EFt |MT −Mt|2‖∞.At this point an edu
ated reader might be worried of the notation "BMO";why is it not emphasized that we study EFt |MT − Mt|2 instead of

EFt |MT −Mt|p for some p ∈ [1,∞)? The answer is remarkable:
sup
t∈[0,T ]

‖EFt |MT −Mt|q‖∞ <∞ for some q ∈ (0,∞)if and only if
sup
t∈[0,T ]

‖EFt |MT −Mt|p‖∞ <∞ for all p ∈ (0,∞).This follows from the 
elebrated John-Nirenberg inequality [21, Theorem2.1℄, and is 
ontained in [21, Corollary 2.1℄.For p ∈ [1,∞] we denote by Hp the spa
e of martingales that satisfy
‖M‖Hp := ‖〈M〉

1
2
T‖Lp <∞,where 〈M〉 is the quadrati
 variation pro
ess of M . If M is of the form

(Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ], where B is a Brownian motion, then

‖M‖Hp =

∥

∥

∥

∥

∥

(
∫ T

0

|αs|2ds
)

1
2

∥

∥

∥

∥

∥

Lp

.One important property of BMO is, that it 
an be 
hara
terized as the dualof H1. One part of this result, the fa
t that BMO ⊆ H∗
1 , is proven in [21,Theorem 2.5℄. A spe
ial 
ase of this result 
an be written as follows:Theorem 5.3. (Fe�erman's inequality)Assume that B = (Br)r∈[0,T ] is a one-dimensional Brownian motion, that

M = (Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ] ∈ BMO, and that N = (Nt)t∈[0,T ] =

(
∫ t

0
βsdBs)t∈[0,T ] ∈ H1. Then

E

[
∫ T

0

|αsβs|ds
]

≤
√
2‖M‖BMO‖N‖H1 . (21)26



In [10, Lemma 1.6℄ the inequality (21) is generalized to in
lude the following
ase:Proposition 5.4. Let p ∈ [1,∞), assume that B = (Br)r∈[0,T ] is a one-dimensional Brownian motion, M = (Mt)t∈[0,T ] = (
∫ t

0
αsdBs)t∈[0,T ] ∈ BMOand that N = (Nt)t∈[0,T ] = (

∫ t

0
βsdBs)t∈[0,T ] ∈ Hp. Then

(

E

(
∫ T

0

|αsβs|ds
)p)1/p

≤
√
2p‖M‖BMO‖N‖Hp . (22)In [15℄ the traditional BMO is generalized by repla
ing the 
onstant c inequation (20) by an adapted weight pro
ess. We will use CL0 for the set of
àdlàg adapted pro
esses A = (At)t∈[0,T ] with A0 = 0, and CL+ for the set of
àdlàg adapted pro
esses A with At(ω) > 0 for all (t, ω) ∈ ΩT .De�nition 5.5 ([15, De�nition 1℄).Let A ∈ CL0, and Φ ∈ CL+. We de�ne for p ∈ (0,∞)

‖A‖BMOΦ
p
:= sup

σ

∥

∥

∥

∥

E

[ |AT − Aσ−|p
Φpσ

∣

∣

∣
Fσ

]∥

∥

∥

∥

1/p

L∞

,where the supremum is taken over all stopping times σ : Ω → [0, T ].The main use of this theory for us is, that it gives ni
e tail estimates. Thetraditional BMO 
an even be 
hara
terized by a tail estimate; the followingresult is mentioned in [21, page 26℄ and goes ba
k to Emery:Proposition 5.6. A uniformly integrable martingale M = (Mt)t∈[0,∞) is ofbounded mean os
illation if and only if there exist two 
onstants a ≥ 0 and
0 < ǫ < 1 su
h that

P

(

sup
0≤t<∞

|Mσ+t −Mσ| > a
∣

∣

∣
Fσ

)

≤ 1− ǫfor any stopping time σ.With weighted BMO we do not ne
essarily have a 
hara
terization, but wedo have an additive upper bound 
onsisting of an exponential part and apart that is a tail estimate of the weight pro
ess. We will make use of thenotation
PB (·) := P(B ∩ ·)

P(B)for B ∈ FT of positive measure. The �rst step towards a tail estimate is thefollowing: 27



Proposition 5.7 ([15, Example 1 and proof of Corollary 1(a)℄).Let p ∈ (0,∞) and assume that Y ∈ CL0 and Φ ∈ CL+ are su
h that
‖Y ‖BMOΦ

p
≤ C,where C > 0. Then, letting θ ∈ (0, 1

2
), and de�ning A ∈ CL0 by A := Y θ1/p

C
,we have for any ν > 0, stopping time σ, and B ∈ Fσ that

PB (|AT − Aσ−| > ν) ≤ θ + PB(Φσ > ν).Now we 
onsider Φ ∈ CL+, and let
WΦ(B, ν; σ) := P

(

B ∩
{

sup
u∈[σ,T ]

Φu > ν

})

,for ν > 0, a stopping time σ, and B ∈ Fσ. After this we 
an pro
eed with:Theorem 5.8 ([15, Theorem 1℄).Assume that A ∈ CL0, Φ ∈ CL+, and that there is θ ∈ (0, 1
2
) su
h that

PB(|AT − Aσ| > ν) ≤ θ +
WΨ(B, ν; σ)

P(B)
(23)for all ν > 0, stopping times σ, and B ∈ Fσ of positive measure. Then thereare 
onstants a, α > 0, depending on θ only, su
h that

PB

(

sup
u∈[σ,T ]

|Au −Aσ| > λ+ aµν

)

≤ e1−µPB

(

sup
u∈[σ,T ]

|Au − Aσ| > λ

)

+α
WΨ(B, ν; σ)

P(B)for all λ, µ, ν > 0, stopping times σ, and B ∈ Fσ of positive measure.
BMO-martingales have many ni
e properties as explained in the ex
ellent le
-ture notes [21℄, we will now 
on
entrate on one that is relevant with BSDEs.In our apriori estimate 
on
erning BSDEs (Lemma 6.1), we remove the su-perlinear (up to quadrati
) drift term using a Girsanov transformation. Thiste
hnique was already used in [19℄ to prove uniqueness of the solution to 
er-tain quadrati
 BSDE. In [6℄ it is ni
ely presented how to pro
eed to obtainan apriori estimate, whi
h then results into an existen
e result. The fa
t thatthe Girsanov transformation is well-de�ned follows from the Reverse Hölderinequality: 28



De�nition 5.9. Assume a martingale M=(Mt)t∈[0,T ] with M0 ≡ 0 su
h that
E(M) with

E(M)t = eMt− 1
2
〈M〉tfor t ∈ [0, T ] is a martingale as well. For β ∈ (1,∞) we let E(M) ∈ RHβprovided that there is a 
onstant c > 0 su
h that for all stopping times τ :

Ω → [0, T ] one has that
E(|E(M)T |β|Fτ)

1
β ≤ cE(M)τ a.s.The smallest possible c ≥ 0 is denoted by RHβ(E(M)).The reason why this leads to BMO-martingales is the following result:Proposition 5.10 ([21, Theorems 2.4 and 3.4℄).Let M be a martingale with M0 ≡ 0 su
h that E(M) is a martingale. Then

M ∈ BMO if and only if E(M) ∈ ⋃p∈(1,∞)RHp.In our appli
ation of the reverse Hölder inequalities this is still a bit unsatis-fa
tory, as we would like to know for whi
h p ∈ (1,∞) we have E(M) ∈ RHp.For this purpose we let
Φ : (1,∞) → (0,∞), Φ(p) =

(

1 +
1

p2
log

(

1 +
1

2p− 2

))1/2

− 1, (24)so that Φ is 
ontinuous and de
reasing, with limβ→∞Φ(β) = 0 and
limβ→1Φ(β) = ∞. Furthermore, we let

Ψ :
{

(γ, p) ∈ [0,∞)× (1,∞) : 0 ≤ γ < Φ(p) <∞
}

→ [0,∞),

Ψ(γ, p) :=

(

2

1− 2p−2
2p−1

ep2[γ2+2γ]

)
1
p

.Then, a

ording to [21, Proof of Theorem 3.1℄, we have that
Ψ(γ1, p) ≤ Ψ(γ2, p) for 0 ≤ γ1 ≤ γ2 < Φ(p),and

‖M‖BMO < Φ(p) implies RHp(E(M)) ≤ Ψ(‖M‖BMO, p). (25)
29



5.2 New resultsWe will improve (25) by 
onsidering the approa
h of sli
eable numbers. Toformulate it, we re
all the notation σM τ := (Mτ∧t−Mσ∧t)t∈[0,T ] for stoppingtimes σ, τ .De�nition 5.11 ([A, De�nition 5.2℄).For a BMO-martingale M = (Mt)t∈[0,T ] and N ≥ 1 we let
slN(M) := inf ε,where the in�mum is taken over all ε > 0 su
h that there are stopping times

0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T with
sup

k=1,...,N
‖τk−1M τk‖BMO ≤ ε.Moreover, we let

sl∞(M) := lim
N

slN(M).We 
all slN(M) the N-sli
eable number of M . The BMO-martingale M is
alled sli
eable provided that sl∞(M) = 0.Some properties of these numbers are:Lemma 5.12 ([A, Lemma 5.4℄).For M,M1,M2 ∈ BMO one has the following:(i) sl1(M) = ‖M‖BMO.(ii) sl1(M) ≥ sl2(M) ≥ · · · ≥ 0.(iii) slN1+N2−1(M1 +M2) ≤ slN1(M1) + slN2(M2).(iv) For ǫ > 0 we have sl∞(M) < ǫ if and only if dBMO(M,H∞) < ǫ, where
dBMO(M,H∞) is the distan
e of M to H∞ with respe
t to the BMO-norm.Part (iv) of Lemma 5.12 follows from [29, Theorem 1.1℄. Parts (i),(ii), and(iii) on the other hand imply that sli
eable numbers are a relative of thes-numbers from operator-theory, see for example [28, Chapter 2.2℄.Now we 
an improve the index p in (25) by the followingTheorem 5.13 ([A, Theorem 5.8℄).If slN(M) < Φ(p), then RHp(E(M)) ≤

[

Ψ(slN(M), p)
]N. In parti
ular, if Mis sli
eable then E(M) ∈ ⋂p∈(1,∞)RHp.30



In our approa
h to BSDEs it is useful to 
onsider BMO and sli
eable numbersfor pro
esses as well.De�nition 5.14 ([A, De�nition 5.9℄).For m ∈ N and an Rm-valued predi
table pro
ess Z = (Zt)t∈[0,T ] we let
‖Z‖BMO(S2) := sup

t∈[0,T ]

∥

∥

∥

∥

E

(∫ T

t

|Zs|2ds|Ft

)∥

∥

∥

∥

1
2

∞
.This is quanti�ed using for any N ≥ 1

slN(Z) := inf ε,where the in�mum is taken over all ε > 0 su
h that there are stopping times
0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T with

sup
k=1,...,N

‖χ(τk−1,τk]Z‖BMO(S2) ≤ ε.Moreover, we let sl∞(Z) := limN slN(Z).We illustrate two possible ways of exploiting the martingale setting:(1) For a d-dimensional pro
ess Z it follows from It�'s isometry that
‖Z‖BMO(S2) = ‖

∫ ·
0
ZrdWr‖BMO, so that for example Theorem 5.13 is ap-pli
able for this type of pro
esses.(2) Assume that the pro
ess Z is m-dimensional for some m ∈ N, and su
hthat ‖|Z|θ‖BMO(S2) < ∞ for some θ ∈ [0,∞). Then we let (Bt)t∈[0,T ] be(for example) the �rst 
omponent of the d-dimensional Brownian motion

(Wt)t∈[0,T ], and 
onsider the martingale
M = (Mt)t∈[0,T ] :=

(
∫ t

0

|Zr|θdBr

)

t∈[0,T ]
.Using It�'s isometry we on
e again have that ‖M‖BMO < ∞, so that forexample Proposition 5.4 and Lemma 5.12 are appli
able for this type ofpro
esses.Note that by 
onsidering ‖|Z|θ‖BMO(S2) < ∞ for θ ∈ (1,∞) we obtain a
ondition that is stronger than the 
lassi
al BMO 
ondition ‖Z‖BMO(S2) <∞,whereas for θ ∈ (0, 1) the 
ondition gets weaker.If the generator of our BSDE is lo
ally Lips
hitz with parameter θ ∈ [0, 1],then we need to assume that the 
ontrol pro
ess Z satis�es

‖|Z|θ‖BMO(S2) < ∞. At the same time we need to have (∫ T
0
|Zr|2dr

)
1
2 ∈ Lq,31



where q ≥ 2 is determined by the sli
eability-number sl∞(|Z|θ) (see assump-tion (A1) in subse
tion 6.2 below).To see that all these 
onditions 
an hold at the same time, we have an exampleof a pro
ess Z that satis�es the additional 
ondition that (∫ T
0
|Zt|2dt

)1/2

∈
Lexp, where the Orli
z spa
e Lexp is given by

‖F‖Lexp := inf
{

λ > 0 : Ee
|F |
λ ≤ 2

}for a random variable F taking values in R.Example 5.15 ([A, Example 5.10℄).For ea
h η ∈ (0, 1) there is a predi
table pro
ess Z = (Zt)t∈[0,T ] su
h that1. (∫ T
0
|Zt|2dt

)1/2

∈ Lexp,2. |Z|η ∈ BMO(S2),3. Z 6∈ BMO(S2).The 
ase that |Z|θ is sli
eable is important to us, as then we do not need toimpose any additional integrability on (∫ T
0
|Zr|2dr

)
1
2 . Thus, we present two
ases for sl∞(|Z|θ) = 0:Example 5.16 ([A, Remark 6.5℄).(i) For θ = 0 (with the 
onvention 00 := 1) we have that

slN
(

|Z|θ
)

≤
√

T

Nif we take equidistant time-nets.(ii) Let 0 < θ < η ≤ 1 and assume that ‖|Z|η‖BMO(S2) < ∞. Then weobtain for any 0 ≤ a < b ≤ T that
‖(χ(a,b](t)|Zt|θ)t∈[0,T ]‖

1
θ

BMO(S2)
≤ (b−a) 1

2θ
− 1

2η ‖(χ(a,b](t)|Zt|η)t∈[0,T ]‖
1
η

BMO(S2)and, by using equidistant grids, that
slN
(

|Z|θ
)

≤
(

T

N

)
1
2(1−

θ
η )

‖|Z|η‖
θ
η

BMO(S2)
.32



Example 5.16(ii) 
an be seen as an embedding theorem: Let (Br)r∈[0,T ] be a1-dimensional Brownian motion, let (αr)r∈[0,T ] be a 1-dimensional predi
tablepro
ess su
h that E ∫ T
0
|αr|2dr <∞, and de�ne

Tθ

(
∫ ·

0

αrdBr

)

:=

∫ ·

0

|αr|θsgn(αr)dBr,for θ ∈ [0, 1]. Then it follows from Example 5.16(ii) and Lemma 5.12(iv) that
Tθ(
∫ ·
0
αrdWr) ∈ H∞

BMO, whenever ‖|α|η‖BMO(S2) <∞ and 0 ≤ θ < η ≤ 1.6 Main results 
on
erning BSDEsWe begin this Se
tion with the apriori estimate Lemma 6.1. The proof ofthis result uses the reverse Hölder inequalities, and it is a 
ontinuation of thearguments from [6, Proposition 2.3℄. Their apriori estimate upper boundedan Lp-quantity of the solution by an L2p-quantity of the data. Using Propo-sition 5.4 we were able to improve this so that an Lp-quantity of the solutionis upper bounded by an Lp-quantity of the data.Using the apriori estimate together with de
oupling, espe
ially with Propo-sition 3.5, we dedu
e the stability result Theorem 6.3. Applying this resultwe obtain results on Lp-variation of the solution of BSDE (26), as well asan embedding theorem with respe
t to anisotropi
 Besov spa
es. Moreover,the 
onditional version of the stability result (Proposition 6.9) implies thatthe solution is in a weighted BMO-spa
e where the weight depends only onthe data. As mentioned in Se
tion 5, this yields to tail estimates (like in theJohn-Nirenberg theorem) for the variation of the Y -pro
ess of our BSDE.6.1 Apriori estimateIn this se
tion we follow the ideas of [6, Proof of Proposition 2.3℄ but adaptand extend the ideas for our purpose. Let B = (Bt)t∈[0,T ] be an n-dimensionalstandard Brownian motion (where all paths are 
ontinuous) on a basis
(A,A, µ, (At)t∈[0,T ]), where (A,A, µ) is 
omplete, (At)t∈[0,T ] the augmentationof the natural �ltration of B, and AT = A. We 
onsider the two ba
kwardequations

Y 0
t = ξ0 +

∫ T

t

f 0(s, Y 0
s , Z

0
s )ds−

∫ T

t

Z0
sdBs, t ∈ [0, T ],

Y 1
t = ξ1 +

∫ T

t

f 1(s)ds−
∫ T

t

Z1
sdBs, t ∈ [0, T ],33



where we assume the following 
onditions:(D1) The pro
esses f 1, Z0 and Z1 are predi
table and the pro
esses Y 0 and
Y 1 
ontinuous and adapted,(D2) E|ξi|2 <∞ and E

∫ T

0
|Z i

s|2ds <∞ for i = 0, 1,(D3) E
∣

∣

∣

∫ T

0
|f 0(s, Y 0

s , Z
0
s )|ds

∣

∣

∣

2

<∞ and E
∣

∣

∣

∫ T

0
|f 1(s)|ds

∣

∣

∣

2

<∞,(D4) the generator f 0 : ΩT ×R×Rn → R is su
h that (t, ω) 7→ f 0(t, ω, y, z)is predi
table for all (y, z), (y, z) → f 0(t, ω, y, z) is 
ontinuous for all
(t, ω), and there is an LY ≥ 0 su
h that, for all (t, ω, y0, y1, z),

|f 0(t, ω, y0, z)− f 0(t, ω, y1, z)| ≤ LY |y0 − y1|.We let ∆ξ := ξ1 − ξ0, and for s ∈ [0, T ],
∆Ys := Y 1

s − Y 0
s ,

∆Zs := Z1
s − Z0

s ,

as := f 1(s)− f 0(s, Y 1
s , Z

1
s ),

cs :=
f 0(s, Y 0

s , Z
1
s )− f 0(s, Y 0

s , Z
0
s )

|∆Zs|2
χ{∆Zs 6=0}∆Zs,

Ξs := |∆ξ|+
∫ T

s

|ar|dr.Lemma 6.1 ([A, Lemma 6.17℄).Assume that c = (ct)t∈[0,T ] is n-dimensional with ‖c‖BMO(S2) ≤ β < ∞,and that λt := exp(
∫ t

0
csdBs − 1

2

∫ t

0
|cs|2ds) and p0 ∈ (1,∞) are su
h that

RHp′0
(λ) ≤ ρ < ∞ with 1 = 1

p0
+ 1

p′0
. Assume p ∈ [2,∞) with p > p0 su
hthat

(∫ T

0

|∆Zs|2ds
)

1
2

∈ Lp.Then there is a c(6.1) ∈ (0,∞), depending at most on (T, LY , p, p0, β, ρ, n),su
h that for all t ∈ [0, T ] one has that
∥

∥

∥

∥

∥

sup
s∈[t,T ]

|∆Ys|
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

|∆Zs|2ds
)

1
2

∥

∥

∥

∥

∥

p

≤ c(6.1)‖Ξt‖p.
34



6.2 Basi
 resultWe start by listing the assumptions that will be used throughout this Se
tion.These 
onditions are imposed on random obje
ts de�ned on Ω, even thoughwe use our de
oupling te
hnique that is de�ned for obje
ts on Ω. However,in [A] and [B] we have shown that these 
onditions hold for appropriateelements of Ω as well. The validity of these assumptions, as well as exampleswhen they hold, are 
onsidered in [A, Se
tion 18℄.(A1) There exists a solution (Y, Z) to the equation
Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (26)where we assume that there exists p ∈ [2,∞) and θ ∈ [0, 1] su
h thatthe following 
onditions are satis�ed:(i) The pro
ess Y is (Fr)r∈[0,T ]-adapted and path-wise 
ontinuous,and the pro
ess Z is (Fr)r∈[0,T ]-predi
table(ii) There are Ly, Lz ≥ 0 su
h that for all (t, ω, y0, y1, z0, z1) one has
|f(t, ω, y0, z0)− f(t, ω, y1, z1)|

≤ Ly|y0 − y1|+ Lz[1 + |z0|+ |z1|]θ|z0 − z1|(iii) ∫ T
0
|f(s, 0, 0)|ds ∈ Lp(iv) (∫ T
0
|Zs|2ds

)
1
2 ∈ Lp(v) We assume

‖|Z|θ‖2BMO(S2)
= sup

t∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

t

|Zs|2θds|Ft

)∥

∥

∥

∥

L∞

<∞,and quantify this assumption by �xing a non-in
reasing sequen
e
s = (sN)N≥1 ⊆ [0,∞) su
h that

slN(|Z|θ) ≤ sN,and put s∞ := limN sN(vi) If s∞ > 0, then the 
onstant p ∈ [2,∞) satis�es additionally
p >

Φ−1(2
√
2Lzs∞)

Φ−1(2
√
2Lzs∞)− 1

∈ (1,∞),where Φ : (1,∞) → (0,∞) is de�ned in equation (24).35



Remark 6.2. Assumption (A1)(v) is an impli
it fra
tional BMO assumptionon the 
ontrol pro
ess Z. This assumption is used to remove the (up toquadrati
) drift term of the generator in the z-variable. Here we need to usethe reverse Hölder inequalities, whi
h by Theorem 5.13 hold for all q ∈ (1,∞)if s∞ = 0. In 
ase s∞ > 0, we only have the reverse Hölder inequalities forsmall enough q, and this is why we need to assume some more integrabilityas imposed by (A1)(vi). Two examples of the 
ase s∞ = 0 were dis
ussed inExample 5.16, now we explain its impa
t regarding Lips
hitz and quadrati
BSDEs.(i) Assume that f satis�es (A1)(ii) and (A1)(iii) with θ = 0 and 1 < p <∞,and that ξ ∈ Lp. Then there exists a unique solution (Y, Z) of BSDE(26), and (A1) is satis�ed with θ = 0. This follows for example from[5, Theorem 4.2℄. Note that sin
e θ = 0, we have s∞ = 0.(ii) Assume that f satis�es (A1)(ii) with θ = 1, that ∫ T
0
|f(s, 0, 0)|ds ∈ L∞,and that ξ ∈ L∞. Then there exists a unique solution (Y, Z) of BSDE(26), and (A1) is satis�ed with θ = 1 and all p ∈ [2,∞). The solutionis unique in the 
lass S∞ × L2(ΩT ), where S∞ 
onsists of bounded
ontinuous pro
esses. This follows for example from [24, Theorem 2.6and Lemma 3.1℄. However, it might be that s∞ > 0, so that our resultsonly hold when p ≥ 2 is large enough as imposed by (A1)(vi).(iii) Assume that f satis�es (A1)(ii) with 0 < θ < 1, that ∫ T

0
|f(s, 0, 0)|ds ∈

L∞, and that ξ ∈ L∞. Then, as above, we have a unique solution and
(A1) is satis�ed with θ = 1 and all p ∈ [2,∞). Now it follows as inExample 5.16(ii) that s∞ = 0, so that our results hold for all p ≥ 2.Now we 
an state our basi
 result:Theorem 6.3 ([A, Theorem 6.4℄).Assume (A1). Then we have for all t ∈ [0, T ] that

∥

∥

∥

∥

∥

sup
s∈[t,T ]

|Y ϕ
s − Y ψ

s |
∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

D
[

ϕ(s), ψ(s)
]

|Zs|2ds
)

1
2

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

(
∫ T

t

|Zϕ
s − Zψ

s |2ds
)

1
2

∥

∥

∥

∥

∥

p

≤ c(6.3) [‖ξϕ − ξψ‖p +
∥

∥

∥

∥

∫ T

t

|fϕ(s, Y ψ
s , Z

ψ
s )− fψ(s, Y ψ

s , Z
ψ
s )|ds

∥

∥

∥

∥

p

]

, (27)36



where ϕ, ψ ∈ ∆, D[ν, η] := 1−
√
1− ν2

√

1− η2 − νη, and c(6.3) > 0 dependsat most on (Ly, Lz, T, (sN)
∞
N=1, p, d).Remark 6.4. The fun
tion D[ν, η] : [0, 1]2 → [0, 1] measures the distan
ebetween ν and η, by proje
ting the ve
tor (ν,√1− ν2) onto (η,

√

1− η2) and
omparing the proje
tion to (η,
√

1− η2). In parti
ular, D[ν, η] = 0 if andonly if ν = η.6.3 Lp-variationAs it was explained in Se
tion 3.1, it is important to estimate the Lp-variationof the solution of a BSDE. Our main result in this respe
t isTheorem 6.5 ([A, Theorem 6.16℄).Assume (A1). Then there is a 
onstant c(6.5) > 0 su
h that for all
0 ≤ s < t ≤ T one has
‖Yt − Ys‖p ≤ c(6.5)[ ∥∥∥

∥

∫ t

s

[1 + |f(r, 0, 0)|]dr
∥

∥

∥

∥

p

+ ‖ξ − ξ(s,t]‖p

+

∥

∥

∥

∥

∫ T

s

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

.Proof. Fix 0 ≤ s < t ≤ T . Sin
e Yt is Ft-measurable, we obtain
‖Yt − Ys‖p ≤ ‖Yt − EFsYt‖p + ‖EFsYt − Ys‖p

≤ ‖Yt − Y
(s,t]
t ‖p + ‖EFsYt − Ys‖p

≤ c(6.3) [‖ξ − ξ(s,t]‖p +
∥

∥

∥

∥

∫ T

t

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

+‖EFsYt − Ys‖p,where we applied Theorem 6.3 with the pair (0, χ(s,t]) ∈ ∆ × ∆. The lastterm 
an be upper bounded by
‖EFsYt − Ys‖p

=

∥

∥

∥

∥

EFs

∫ t

s

f(r, Yr, Zr)dr

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∫ t

s

|f(r, 0, 0)|dr
∥

∥

∥

∥

p

+ Ly

∥

∥

∥

∥

∫ t

s

|Yr|dr
∥

∥

∥

∥

p

+ Lz

∥

∥

∥

∥

∫ t

s

[1 + |Zr|]θ|Zr|dr
∥

∥

∥

∥

p

.37



It follows from our assumptions that supr∈[0,T ] |Yr| ∈ Lp so that
supr∈[0,T ] ‖Yr‖p < ∞. On the other hand, we 
an use Proposition 5.4 (with
B one of the 
omponents of W ) and Theorem 6.3 to dedu
e

∥

∥

∥

∥

∫ t

s

[1 + |Zr|]θ|Zr|dr
∥

∥

∥

∥

p

≤
√
2p

∥

∥

∥

∥

∥

(
∫ t

s

|Zr|2dr
)

1
2

∥

∥

∥

∥

∥

p

sup
r∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

r

χ(s,t](u)[1 + |Zu|]2θdu
∣

∣

∣
Fr

)∥

∥

∥

∥

1
2

L∞

≤
√
2pc(6.3) [‖ξ − ξ(s,t]‖p +

∥

∥

∥

∥

∫ T

s

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
∥

∥

∥

∥

p

]

×

×
[

√
t− s+ sup

r∈[0,T ]

∥

∥

∥

∥

E

(
∫ T

r

|Zu|2θdu
∣

∣

∣
Fr

)∥

∥

∥

∥

1
2

L∞

]

.This 
on
ludes the proof.6.4 Anisotropi
 Besov Spa
esIn this Se
tion we present our non-linear embedding theorem for BSDEs andanisotropi
 Besov spa
es. The main result is Theorem 6.8, whi
h states thatif the data (ξ, f) is in 
ertain anisotropi
 Besov spa
es, then so is the solution
(Y, Z).De�nition 6.6. For q, r ∈ [1,∞), a predi
table pro
ess (At)t∈[0,T ] with

∥

∥

∥

∥

∥

(
∫ T

0

|As|rds
)

1
r

∥

∥

∥

∥

∥

q

<∞,for t ∈ [0, T ], and for an admissible fun
tional11 Φ : C+(∆) → [0,∞] we let
‖A‖r,tΦ,q := Φ



ϕ→
∥

∥

∥

∥

∥

(
∫ T

t

|As −Aϕs |rds
)

1
r

∥

∥

∥

∥

∥

q



 .First we note that this de�nition is possible:Lemma 6.7 ([A, Lemma 6.13℄). The map
ϕ→

∥

∥

∥

∥

∥

(
∫ T

t

|As − Aϕs |rds
)

1
r

∥

∥

∥

∥

∥

qis 
ontinuous as a map from ∆ into [0,∞).11In the sense of De�nition 4.3. 38



Theorem 6.8 ([A, Corollary 6.14℄).Let t ∈ [0, T ], assume (A1), and that there are predi
table pro
esses (V l
s )s∈[t,T ]su
h that, for all ϕ ∈ ∆,

∥

∥

∥

∥

∫ T

t

|f(s, Y ϕ
s , Z

ϕ
s )− fϕ(s, Y ϕ

s , Z
ϕ
s )|ds

∥

∥

∥

∥

p

≤
L
∑

l=1

‖V l
· − (V l

· )
ϕ‖Lql

(Lrl
([t,T ]))for some ql ∈ [p,∞) and rl ∈ [1,∞)12. Let Φ be admissible. Then we havethat

‖Yt‖Φ,p + ‖Z‖2,tΦ,p ≤ 2c(6.3) [‖ξ‖Φ,p + L
∑

l=1

‖V l‖rl,tΦ,ql

]

.Proof. Follows dire
tly from Theorem 6.3 applied to the pair (0, ϕ).Examples how to obtain pro
esses V in Theorem 6.8 are dis
ussed in[A, Se
tion 19℄.6.5 Weighted BMOIn this Se
tion we show how we 
an exploit the idea of self-iteratinginequalities that are used to prove exponential tail estimates under assump-tions on the mean os
illation of fun
tions or pro
esses in the 
ontext ofBSDEs. Roughly speaking, we 
onsider our results 
onditionally and obtainvia iteration better tail estimates than Lp-estimates would give.We use the notation (F r)r∈[0,T ] for the natural �ltration of the 2d-dimensionalBrownian motion (W,W ′), augmented by all P-nullsets. The 
onditionalversion of Theorem 6.3 is as follows:Proposition 6.9 ([B, Proposition 5.4℄).Assume (A1). Then for any 0 ≤ s < t ≤ T and u ∈ [0, T ] we have
EFu sup

r∈[u,T ]
|Yr − Y (s,t]

r |p

+EFu

(
∫ T

u

1(s,t](r)[|Zr|2 + |Z(s,t]
r |2] + [1− 1(s,t](r)]|Zr − Z(s,t]

r |2dr
)

p
2

≤ cp(6.9)EFu

(

|ξ − ξ(s,t]|+
∫ T

u

|f(r, Yr, Zr)− f (s,t](r, Yr, Zr)|dr
)p

,where c(6.9) > 0 depends at most on (T, d, p, Ly, Lz, (sN)N), and sN is takenfrom (A1)(v).12The V l may depend on (ξ, f, Y, Z, p, ql, rl).39



To be able to use the theory of weighted BMO, we assume that ξ and fsatisfy a 
ertain weighted BMO-assumption on a subinterval [s, t] ⊆ [0, T ].If this assumption holds on a subinterval [s, t], then on this interval we willhave that the solution of our BSDE is of weighted BMO, and this gives us atail estimate for the variation of the solution.(A2) There are 0 ≤ s < t ≤ T su
h that there exist 
àdlàg (Fr)r∈[0,T ]-supermartingales (wξp,s,u,t)u∈[s,t] and (wfp,s,u,t)u∈[s,t], whose 
anoni
al ex-tensions (wξp,s,u,t)u∈[s,t] and13 (wfp,s,u,t)u∈[s,t], satisfy for any u ∈ [s, t](i) EF0
u |ξ − ξ(u,t]|p ≤ wξp,s,u,t,(ii) EF0
u

(

∫ T

u
|f(r, Yr, Zr)− f (u,t](r, Yr, Zr)|dr

)p

≤ wfp,s,u,t.Assumption (A2) is in fa
t a 
ondition imposed in the produ
t probabil-ity spa
e (Ω,F ,P), and we used, as usual, the notation (ξ, f, Y, Z) for the
anoni
al extensions.We made an ex
eption with the weight pro
esses wξp and wfp to emphasizethe fa
t that our main result, a weighted John-Nirenberg-type theorem forBSDEs, is a result in the probability spa
e (Ω,F ,P).Theorem 6.10 ([B, Theorem 3.10 and Theorem 3.11℄).Assume (A1) and (A2). Then there exists c(6.10) > 0 depending at most on
(T, d, p, Ly, Lz, (sN)N) su
h that for any stopping time σ ∈ [s, t]

EFσ |Yt − Yσ|p ≤ (c(6.10)wp,s,σ,t)p, (28)where
wpp,s,u,t =

(

wξp,s,u,t + wfp,s,u,t

)

+ EFu

(
∫ t

u

|f(r, 0, 0)|dr
)p

+(t− u)p
[

EFu

(

|ξ|+
∫ T

t

|f(r, 0, 0)|dr
)p]

.Consequently, there exists c > 0 su
h that for any stopping time σ ∈ [s, t]one has
PB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > λ+ cµν

)

≤ e1−µPB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > λ

)

+cPB

(

sup
u∈[σ,t]

wp,s,u,t > ν

)

,for all λ, µ, ν > 0, and any B ∈ Fσ of positive measure.13These pro
esses are 
àdlàg (F0
r )r∈[0,T ]-supermartingales.40



Proof. The �rst 
laim is a 
onditional version of Theorem 6.5, and 
an beproven similarly with use of assumption (A2). The 
onsequently-part followsfrom the �rst part of Theorem 6.10 applied together with Proposition 5.7and Theorem 5.8 on the subinterval [s, t] ⊆ [0, T ].For simpli�
ation, we may take λ → 0 in the se
ond part of Theorem 6.10,so that for all stopping times σ ∈ [s, t] we have
PB

(

sup
u∈[σ,t]

|Yu − Yσ|
c(6.10) > cµν

)

≤ e1−µ + cPB

(

sup
u∈[σ,t]

wp,s,u,t > ν

)

,for all µ, ν > 0, and any B ∈ Fσ of positive measure.As an example of the 
ase when (A1) and (A2) hold, we 
onsider for x ∈ Rdthe de
oupled FBSDE
Xt = x+

∫ t

0

b(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr, t ∈ [0, T ],

Yt = g(XT ) +

∫ T

t

h(r,Xr, Yr, Zr)dr −
∫ T

t

ZrdWr, t ∈ [0, T ]. (29)For the fun
tions b, σ, h, and g we assume that σ is uniformly bounded inaddition to the usual 
onditions of joint 
ontinuity and uniform Lips
hitz
ondition in the state variables (the pre
ise set of 
onditions is given in[B, Se
tion 3.1℄). Then it follows that (A1) holds with θ = 0 and all
p ∈ [2,∞), and (A2) holds on all subintervals [s, t] ⊆ [0, T ] with the weightfun
tions

wfp,s,u,t = wξp,s,u,t = cp(t− u)
p
2 ,where c > 0 depends at most on (T, d, p, g, h, σ, b).Now, from Theorem 6.10 and from the properties of the forward pro
ess X ,we obtain the following result:Theorem 6.11 ([B, Theorem 3.1 and Theorem 3.2℄).Let the assumptions stated for FBSDE (29) hold, and let p ≥ 2. Then thereexists c(6.11) = c(6.11)(p, b, σ, g, h) > 0, su
h that for all 0 ≤ s < t ≤ T and allstopping times τ : Ω → [s, t] we have

E

( |Yt − Yτ |p
1 + |Xτ |p(t− τ)p/2

∣

∣

∣
Fτ

)

≤ cp(6.11)(t− τ)p/2.41



Consequently, there exists c > 0 su
h that for any p ≥ 2, 0 ≤ s < t ≤ T andany stopping time τ ∈ [s, t] we have
PB

(

sup
u∈[τ,t]

|Yu − Yτ |
c(6.11)√t− s

> cµν

)

≤ e1−µ+cPB

(

sup
u∈[τ,t]

|Xu|p(t− u)
p
2 > νp − 1

)

,for all µ, ν > 0, and all B ∈ Fτ of positive measure.It should be mentioned that Theorem 6.11 holds in this form as g is Lips
hitz,and the Lips
hitz property is s
aling invariant. Moreover, it is shown in[B, Example 3.3℄ that the weight pro
ess of Theorem 6.11 is sharp. That is,there exist b, σ, h, g that satisfy our assumptions, and the solution of FBSDE(29) satis�es
E
[

|Yt − Yτ |p
∣

∣

∣
Fτ

]

≥ (t− τ)p/2(1 + |Xτ |p(t− τ)p/2)for all p ≥ 2, all 0 ≤ s < t ≤ T and all stopping times τ : Ω → [s, t].7 Some perspe
tivesWe 
on
lude with open questions and possible topi
s for future resear
h.1. Whi
h parts of this thesis 
an be extended to the 
ase where the drivingpro
ess is a Lévy-pro
ess other than a Brownian motion? In parti
ular,does Proposition 3.2 still hold when "
ontinuity" is repla
ed by "
àdlàg-property"? Some related work in this dire
tion is in [14℄.2. The 
ondition (A1)(v) is needed for the proof of Theorem 6.3, as itimplies that for a 
ertain martingale M , the Doléan-Dade exponential
E(M) satis�es the reverse Hölder inequalities for q ∈ (1,∞) that aresmall enough. The 
riti
al index is de�ned in terms of the sli
eabilitynumber sl∞(|Z|θ), and if sl∞(|Z|θ) = 0, we have that the reverse Hölderinequalities are satis�ed for all q ∈ (1,∞). However, if M ∈ BMO,then [21, Theorem 3.8℄ provides the 
hara
terization

E(λM) ∈
⋂

q∈(1,∞)

RHq for all λ ∈ R ⇔M ∈ L∞
BMO

.Hen
e, it would be interesting to investigate whether the 
ondition
(
∫ t

0
|Zr|θdBr)t∈[0,T ] ∈ L∞

BMO for a 1-dimensional Brownian motion Bimplies that our results hold for all p ∈ [2,∞), i.e. that assumption(A1)(vi) 
ould be dropped in this 
ase.42



3. Is there a 
ounterpart of Theorem 4.9 for Φr (see (19))? Similarly to[16, page 932℄, this might hold with the Derivative operator repla
edby a Riemann-Liouville operator.4. For the proof of the tail estimate of Theorem 6.10 on [s, t] we only needan upper bound of EFu |Yt−EFuYt|p or, equivalently, of EFu |Yt−Y (u,t]
t |pwith u ∈ [s, t]. However, the result we used (Proposition 6.9) givesus an upper bound of EFu

(

supr∈[t,T ] |Yr − Y
(u,t]
r |p

). This raises thequestion whether it would su�
e in (A2), for example, to upper bound
EFu |EFtξ − EFuξ|p instead of EFu |ξ − EGt

uξ|p, and to use this as anassumption in a modi�ed version of Proposition 6.9. The di�eren
e ofthese 
on
epts is that the latter one additionally measures how mu
h
ξ 
hanges on the interval [t, T ] if it is perturbed on the interval [u, t].My 
onje
ture is that this stability is needed in order to �nd an upperbound of EFu |Yt−EFuYt|p, but sin
e I have not found a 
ounterexample,it remains open whether the �rst quantity is enough to give us a tailestimate or not.Referen
es[1℄ R. Avikainen: On irregular fun
tionals of SDEs and the Euler s
heme.Finan
e Sto
h. 13, 381-401, 2009.[2℄ J-M. Bismut: Conjugate 
onvex fun
tions in optimal sto
hasti
 
ontrol.Journal of Mathemati
al Analysis and Appli
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146. JYLHÄ, HEIKKI, On generalizations of Evans and Gangbo’s approximation method and L∞

transport. (20 pp.) 2014
147. KAURANEN, AAPO, Space-filling, energy and moduli of continuity. (16 pp.) 2015

ISBN 978-951-39-6193-0
ISSN 1457-8905


	Introduction
	BSDEs
	Decoupling
	Motivation
	Setting
	Properties

	Anisotropic Besov Spaces
	Interpolation spaces as (an)isotropic Besov spaces
	Connection to Malliavin derivatives

	Bounded Mean Oscillation
	BMO and weighted BMO
	New results

	Main results concerning BSDEs
	Apriori estimate
	Basic result
	Lp-variation
	Anisotropic Besov Spaces
	Weighted BMO

	Some perspectives



