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Summary  

Background Systolic blood pressure, total cholesterol and smoking are known predictors of 

cardiovascular disease (CVD) mortality. Less is known about the effect of lifetime accumulation and 

changes of risk factors over time as predictors of CVD mortality, especially in very long follow-up 

studies.  

Methods Data from the Finnish cohorts of the Seven Countries Study were used. The baseline 

examination was in 1959 and seven re-examinations were carried out approximately in five-year 

intervals. Cohorts were followed up for mortality until the end of 2011. Time-dependent Cox models 

with regular time-updated risk factors, time-dependent averages of risk factors and latest changes in 

risk factors, using smoothing splines to discover nonlinear effects were used to analyse the predictive 

effect of risk factors for CVD mortality. 

Results A model using cumulative risk factors, modelled as the individual-level averages of several 

risk factor measurements over time, predicted CVD mortality better than a model using the most 

recent measurement information. This difference seemed to be most prominent for systolic blood 

pressure. U-shaped effects of the original predictors can be explained by partitioning a risk factor 

effect between the recent level and the change trajectory. The change in body mass index predicted the 

risk although body mass index itself did not. 

Conclusions The lifetime accumulation of risk factors and the observed changes in risk factor levels 

over time are strong predictors of CVD mortality. It is important to investigate different ways of using 

the longitudinal risk factor measurements to take full advantage of them. 

Keywords Cardiovascular diseases, risk factors, longitudinal study, mortality 
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Introduction  

Cardiovascular disease (CVD) risk factors have been studied widely, but there is still a demand for 

advice on the utilization of longitudinal risk factor measurements in risk prediction. Most cohorts 

include only baseline measurements with follow-up of outcomes using registers or other means of data 

collection. Thus using only the baseline measurements has been the primary approach in building risk 

prediction models (1, 2) resulting in challenges with unknown risk factor changes in long follow-ups 

and inverse associations immediately prior to death because of severe diseases. Less attention is so far 

paid to taking advantage of longitudinal risk factor measurements. 

Recently, research has been done on utilizing longitudinal risk factor measurements in risk prediction. 

The effect of visit-to-visit variability in blood pressure has been shown to be associated with all-cause 

mortality and stroke (3, 4). In connection with a patient’s hospital death, it has been found out that 

using time-dependent risk factors improves the predictive ability of a model compared to a time-fixed 

(time-independent) model (5). Longitudinal measurements have also been used to describe the relation 

of population-level changes in risk factors to the risk of coronary death (6). 

There have been some earlier efforts to utilize longitudinal measurements by calculating individual-

level changes and averages of risk factors (7-9). Nevertheless, using only linear effects of predictors 

may prevent researchers from finding true, possibly nonlinear, effects of risk factors. Categorisation of 

continuous variables has sometimes been used in order to overcome this problem (10), but it may be 

an inefficient way in finding nonlinearities and therefore other methods, e.g., splines, should be 

considered (11). 

Our aim is to predict CVD mortality using longitudinal risk factor measurements and two individual-

level variables derived from them, namely, changes between the latest two measurements and time-

Key Messages 

 Both long-term exposure to increased risk factors on individual-level and changes in 

classical risk factors predict the risk of cardiovascular disease mortality. 

 Especially the cumulative value of systolic blood pressure is a stronger predictor than 

the most recent value. 

 Simplistic use of longitudinal risk factor measurements in modelling may underestimate 

the importance of them. 
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dependent averages. We also compare the predictive ability of models that use longitudinal 

measurement information differently. Data from the Finnish cohorts of the Seven Countries Study are 

used in the analyses. These data suit our purposes well, because the cohorts have seven re-

examinations carried out approximately in five-year intervals after the baseline measurements in 1959 

and are followed up for over 50 years. 

Methods 

Cohorts 

The analyses were conducted using the Finnish cohorts of the Seven Countries Study. These cohorts 

consisted of all men who were born between 1900 and 1919 in two geographically defined rural areas 

located in Eastern and South-Western Finland (12). The baseline survey was conducted in 1959 and 

the re-examinations in 1964, 1969, 1974, 1984, 1989, 1994 and 1999. Information on individuals’ 

lifetime and the cause of death is available until the end of 2011. 

These two cohorts consist of 1711 men aged 40 to 59 at the baseline. Characteristics of the cohorts are 

presented in detail in Table 1. At the end of the follow-up period, 16 men were still alive and 850 had 

died from cardiovascular disease (CVD). Mortality data was obtained from the National Causes of 

Death Register through record linkage. CVD deaths were defined as ICD-8 codes 390-458, ICD-9 

codes 390-459 and ICD-10 codes I00-I99. The median follow-up time from baseline to death or the 

end of the follow-up was 23.1 years. For the purposes of our study, we restricted the analyses to men 

who were examined at least twice, which resulted in data with 1540 individuals. 

(Table 1 here) 

Statistical analysis 

In the modelling of the follow-up data with longitudinal risk factor measurements, we applied time-

dependent Cox models (13), where we used age as the time-scale (14, 15). For continuous predictor 

variables, smoothing splines (16) were used to identify possibly nonlinear effects. Four degrees of 

freedom (three with change in cholesterol) were used for splines to control the amount of smoothing. 

The proportional hazards assumption of the Cox models was checked using Schoenfeld residuals (16). 

As predictor variables we used classical chronic disease risk factors and two variables derived from 

them: 1) latest change and 2) time-dependent average. Assume we have a risk factor x and longitudinal 

measurements on it at time points t(i), i = 0, 1, 2, …. In a regular time-dependent Cox model, the 

baseline measurement xt(0) is used in the time interval (t(0), t(1)], the second measurement xt(1) is used 

in the interval (t(1), t(2)], and so on.  
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The latest change was calculated on individual-level as the difference of the latest two measurements. 

That is, the value xt(i) – xt(i-1) is used in the interval (t(i), t(i+1)]. The time-dependent average was 

calculated on individual-level as a mean of the most recent and all previous measurements. In other 

words, the value mean(xt(i), xt(i-1), …, xt(0)) is used in the interval (t(i), t(i+1)]. Both of these derived 

variables are time-dependent. 

CVD death was the end-point in all models. Four different approaches to model the longitudinal risk 

factor information were considered: 

(a) Traditional time-dependent model in which the risk factors are updated approximately every 

five years to use only the most recent risk factor measurements. 

(b) Model (a) with individual-level risk factor specific latest changes. 

(c) Time-dependent model in which the risk factors are updated approximately every five years to 

use the individual-level risk factor specific averages. 

(d) Model (c) with individual-level risk factor specific latest changes. 

In each model, systolic blood pressure (SBP), body mass index (BMI, kg/m
2
), total cholesterol, resting 

heart rate, smoking status and physical activity were considered. Smoking status (current smoking) is 

dichotomous (yes/no), physical activity is categorical with three levels (sedentary or invalid / light 

work / hard work) and all other variables are continuous. Physical activity, which was measured only 

in 1959, 1964 and 1969, was used as an adjustment variable rather than a variable of direct interest.   

The time-dependent average was also calculated for smoking, which resulted in a continuous variable 

and is interpreted as the percentage of the follow-up time the individual has been smoking. If a risk 

factor measurement was missing, the previous observed value was used in the modelling. The 

participation rate was high in all examinations but declined over time when members of the cohorts 

grew very old (Table 1). 

The model selection for Models (a)-(d) was carried out so that in the beginning all appropriate 

variables were in the model and smoothing splines were used with all continuous variables. Then, the 

variable or nonlinear component of a spline with the largest p-value was dropped one by one until 

each variable had a p-value less than 0.05. When a nonlinear component of a spline was dropped, the 

variable was treated as a regular continuous variable. All analyses were carried out with the R 

statistical software (17). Cox models were fitted using the coxph function from the survival 

package (18). 

When comparing the predictive ability of different models, the continuous version of net 

reclassification improvement (NRI) (19) and integrated discrimination improvement (IDI) (20) indices 

were used. These two indices have become popular alternatives for using the area under the receiver 
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operating characteristic curve (AUC) since it has been observed that the improvement in AUC 

between two models is not so good in detecting changes in model discrimination as expected (21, 22). 

The NRI and IDI indices use predicted event probabilities in their estimation. Here, ten-year predicted 

probabilities for CVD death were used. They were obtained using the appropriate Cox models, and as 

the interest was in the prediction of CVD mortality, we excluded the individuals died for other causes 

during the prediction interval from the calculations of the model comparison indices. The NRI 

measures the amount of correct reclassification when the predicted risk of CVD death is compared 

between the ‘new’ and the ‘old’ model. A reclassification is considered to be correct if an event 

obtains a higher predicted risk by the new model than by the old model or if a non-event obtains a 

lower predicted risk. The NRI is estimated as the proportion of correct minus incorrect 

reclassifications among events, plus the proportion of correct minus incorrect reclassifications among 

non-events. The IDI is the difference in discrimination slopes between the two models. The 

discrimination slope of a model is defined as the average predicted risk of events minus the average 

risk of non-events. The IDI can also be seen as a difference in average sensitivity minus average (1 - 

specificity) between the models.  

Results 

Model (a) is a traditional time-dependent model, used as a starting point in the modelling. Table 2 

shows the results for the model and Figure 1 illustrates the effects of continuous variables on hazard. 

BMI  seemed to have no effect on CVD mortality, and is therefore not included in the model.   

Nonlinear effects of SBP and cholesterol suggest that also low risk factor values would be associated 

with a high risk of CVD death. 

Adding the differences of the latest two measurements as predictors to describe individual-level 

changes in risk factors, we have Model (b). Now SBP is not a nonlinear predictor anymore (Table 2 

and Figures 1 and 2), but the effect can be considered linear. The change variables for SBP, 

cholesterol, BMI, and heart rate in this model indicate that lowering risk factor levels predicts CVD 

death. It is worth noting that even though BMI itself does not seem to predict the CVD mortality in 

Models (a) and (b), the change in BMI clearly predicts the risk. 

(Table 2 here) 

The third model does not only update the risk factor values when the new measurements become 

available, but it uses individual-level averages of the most recent and all the previous measurements. 

These averages can be interpreted to model the cumulative effect of risk factors rather than the effect 

of the current risk factor level. In this Model (c) the change variables are not used, so this is 

comparable with Model (a). Model (c) shows that when using the time-dependent averages instead of 
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the regular time-dependent variables, the effects of SBP and cholesterol can be considered linear 

(Table 2 and Figure 1), unlike in Model (a). Moreover, especially for SBP, the use of the average 

seems to make it a stronger predictor. 

Model (d) uses the averages of risk factors and change variables. The results of Model (d) are 

presented in Table 2 and Figures 1 and 2. Again, the change in BMI predicts CVD mortality although 

BMI itself does not. The difference between these models is that in Model (d) the change in heart rate 

does not predict the risk. 

The statistical significance of a risk factor does not necessarily tell much about its epidemiological 

relevance. To understand better the importance of the predictors, the rank-hazard plots (23) were used 

to compare average and change variables of SBP and cholesterol from Model (d) (Figure 3). Both 

average variables seem to have steeper lines than the change variables, so they are stronger predictors 

of CVD mortality and average SBP is stronger than average cholesterol. 

In the change in cholesterol values, the entire range from the lower quartile to the upper quartile has 

virtually the same risk of CVD mortality, but the values below the lower quartile clearly have an 

increased risk (Figure 3). The strange bend in the right tail of the change in cholesterol can be ignored 

as it refers only to a few observations and the related confidence interval is large, which is seen in 

Figure 2. 

The differences of the predictive ability of the presented models (b) and (d) were investigated using 

NRI and IDI indices. All the estimates of indices are positive and their confidence intervals indicate 

that Model (d) can separate CVD death events and non-events better than Model (b) (Table 3). Thus, 

the use of averages of risk factors usually improves the model compared to the use of regular time-

dependent risk factors, suggesting that the cumulative effects of the risk factors would predict the risk 

of CVD mortality better than only the most recent information of the risk factor levels. 

(Table 3 here) 

 

Discussion 

In this study, we presented different ways to use longitudinal risk factor measurements in modelling 

the risk of CVD mortality in a long-term follow-up study. A model using the individual-level averages 

of risk factor measurements, representing the lifetime accumulation of the risk, was shown to have a 

better predictive ability than a model using only the most recent measurement information. It was 

found out that the partitioning of risk factor effects between the recent level and the change trajectory 

can explain the U-shaped effects of the original predictors. 
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The approach employed in this paper belongs to the field of life course epidemiology (24, 25), as we 

consider accumulation and change trajectories of risk factors rather than single measurements. We 

note that despite the long follow-up, this study is restricted to adults over 40 years of age. For 

example, Lynch and Davey Smith (25) consider the associations of early-life conditions with stroke 

and coronary heart disease. 

The strengths of this study are eight longitudinal risk factor measurements in regular intervals and the 

50-year mortality follow-up.  These data provide a good overview of the individual level risk factor 

profiles and their changes in a lifetime. There are some limitations in the present study related to the 

data as well. The baseline measurement was carried out in 1959, so all the relevant risk factors known 

nowadays were not measured. Also the development of causes of death diagnostics and the medical 

treatment of hypertension and high cholesterol may have some effect on the results. However, the 

medication effects are reflected to risk factor levels, and the role of risk factors in predicting the 

changes in mortality is greater than the effects of invasive treatments (26). Particularly, if the main 

interest was to obtain probabilities of CVD mortality, competing risks models could be considered. 

However, in Finland the autopsy rates are high and the quality of causes of death registering has been 

shown to be good, especially in relation to cardiovascular diseases (27-29). Several other diseases 

have the same risk factors as CVD. It has been shown that the adjustment for competing causes of 

death will reduce the risk of CVD mortality, especially of older people and groups with less 

favourable risk-factor profiles. (30)  

In an earlier study, using a time-dependent model, BMI  did not predict a CVD incidence (2). In 

addition to this, it has been observed that weight decrease is associated with high CVD risk (31). In 

this study a concordant result was observed showing that even though BMI itself does not predict a 

CVD risk, a change in BMI does. Decrease in BMI in late life is usually related to frailty and 

morbidity leading to higher mortality (32, 33). 

In earlier studies from the Framingham Heart Study, systolic blood pressure, total cholesterol and 

smoking have been shown to be significant predictors of CVD (2). Our results also demonstrated the 

predictive power of these same risk factors in traditional time-dependent models. Using the 

accumulation of individual risk factors (average over all previous measurements) provided new 

information about the effect of traditional risk factors, demonstrating the impact of the individual-level 

history of the risk factor levels on the risk of CVD. 

In a time-dependent model the use of a measurement carried out just prior death may result in a 

misleading effect due to frailty and co-morbidity (34-36). An illness can lead to the lowering of, e.g., 

blood pressure and cholesterol, which causes an apparent negative relation between risk factors and 

mortality. In addition, if we do not take into account that risk factor levels may vary over time and use 

only the baseline measurements, we encounter the regression dilution problem (37). Different 
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adjustment methods have been proposed to overcome this problem (38). This study demonstrated that 

when changes in risk factors are used as predictors in a time-dependent model, the spurious 

associations caused by frailty and co-morbidity can be eliminated. 

This study confirms the value of longitudinal risk factor information in risk prediction. The results 

imply that using a simplistic method in handling longitudinal risk factor measurements in a prediction 

model may produce misleading estimates. The traditional time-dependent Cox model assumes that 

only the most recent risk factor level affects the risk. This assumption may be too restrictive and 

prevent researchers from understanding the true importance of the risk factors. We recommend 

investigators to study different ways to utilize the longitudinal risk factor information. We found out 

that, especially with SBP, the long-term individual-level average is a stronger predictor of the risk of 

CVD death than the most recent measurement. However, it remains a topic for further studies to 

investigate in more detail with which risk factors it is worth using the long-term average and with 

which the most recent measurement is appropriate. 

Conclusions 

The risk of CVD mortality was predicted with individual-level changes and long-term averages of 

classical risk factors using the data from Finnish cohorts of the Seven Countries Study. A model using 

long-term individual-level averages of risk factors was shown to have a better predictive ability than a 

standard time-dependent model using only the most recent measurements. The results indicate that it is 

important to investigate different ways of using the longitudinal risk factor measurements to take full 

advantage of them. 
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Table 1 Characteristics of the follow-up data by the examination years
a
 

    Year     

 1959 1964 1969 1974 1984 1989 1994 1999 

Participation 

rate for 

individuals 

alive (%) 

98 97 97 96 92 86 87 68 

Age for 

individuals 

alive 

49.8 

(5.5) 

54.7 

(5.5) 

59.4 

(5.5) 

64.0 

(5.4) 

73.0 

(5.1) 

76.9 

(4.7) 

80.9 

(4.1) 

84.1 

(3.9) 

Age for 

participants 

49.9 

(5.5) 

54.7 

(5.5) 

59.4 

(5.5) 

64.0 

(5.4) 

73.0 

(5.1) 

76.8 

(4.8) 

80.9 

(4.2) 

83.5 

(3.5) 

Cumulative 

all-cause 

mortality 

0 117 282 486 945 1186 1393 1522 

Cumulative 

CVD 

mortality 

0 41 110 209 480 616 713 777 

SBP 

(mmHg) 

143.8 

(20.7) 

139.4 

(21.3)   

147.6 

(23.6)   

151.3 

(22.3)   

154.0 

(22.7)   

155.1 

(22.9)   

151.1 

(21.0)   

142.2 

(21.2) 

BMI (kg/m
2
) 23.7 

(3.2) 

24.3 

(3.6) 

24.8 

(3.9) 

25.0 

(3.8)  

25.7 

(4.1) 

26.3 

(3.9) 

26.4 

(4.1) 

26.2 

(3.3) 

Total 

cholesterol 

(mmol/l) 

6.7 (1.3)        6.8 (1.2)      6.9 (1.3)         6.6 (1.2)        6.1 (1.2)        5.7 (1.1)        5.5 (1.0)        5.7 (1.0) 

Heart rate 67.7 

(13.0) 

68.5 

(12.6) 

67.3 

(13.0) 

70.7 

(14.3) 

67.9 

(12.1) 

68.3 

(12.3) 

70.0 

(14.8) 

69.7 

(13.3) 

Current 

smoker (%) 

63 54 49 36 18 13 11 2 

Physical 

activity (%) 

(sedentary 

or invalid / 

light work / 

hard work) 

10/16/74 9/15/76 2/38/61 - - - - - 

a
 Values for continuous variables are mean (SD) 
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Table 2 Model (a): time-dependent model using only the most recent risk factor measurements, Model (b): time-dependent model using only the most recent 

risk factor measurements and the changes in continuous variables, Model (c): time-dependent model using the averages of the risk factor measurements and 

Model (d): time-dependent model using the averages of the risk factor measurements and the changes in continuous variables 

  Model (a)   Model (b)   Model (c)   Model (d)  

Risk factor Hazard 

ratio 

95% CI p-value Hazard 

ratio 

95% CI p-value Hazard 

ratio 

95% CI p-value Hazard 

ratio 

95% CI p-value 

SBP (per 10 mmHg), linear part of the 

splinea 

1.07 (1.04, 1.10) < 0.01 1.11 (1.08, 1.16) < 0.01 1.19 (1.15, 1.24) < 0.01 1.18 (1.13, 1.23) < 0.01 

SBP (per 10 mmHg), nonlinear part of the 

spline 

     0.03          

Chol. (mmol/l), linear part of the splinea 1.10 (1.04, 1.16) < 0.01 1.14 (1.07, 1.21) < 0.01 1.16 (1.09, 1.24) < 0.01 1.15 (1.08, 1.24) < 0.01 

Chol. (mmol/l), nonlinear part of the spline      0.01      0.02       

Heart rate 1.01 (1.00, 1.01) < 0.01 1.01 (1.01, 1.02) < 0.01 1.01 (1.00, 1.02)    0.01 1.01 (1.00, 1.02)    0.01 

Smoking, yes 1.42 (1.21, 1.67) < 0.01 1.44 (1.22, 1.69) < 0.01 1.59 (1.33, 1.90) < 0.01 1.59 (1.33, 1.90) < 0.01 

Physical activity (sedentary, invalid)b 1.81 (1.18, 2.79)    0.01 1.76 (1.14, 2.72)    0.01 1.69 (1.10, 2.60)    0.02 1.67 (1.08, 2.57)    0.02 

Physical activity (light work)b 1.31 (1.13, 1.53) < 0.01 1.29 (1.11, 1.51) < 0.01 1.26 (1.08, 1.47) < 0.01 1.25 (1.08, 1.46) < 0.01 

Change in SBP (per 10 mmHg), linear part 

of the spline 

   0.89 (0.86, 0.93) < 0.01    0.96 (0.93, 0.99)    0.01 

Change in SBP (per 10 mmHg), nonlinear 

part of the spline 

        0.01         0.05 

Change in BMI    0.96 (0.92, 0.99)    0.02    0.96 (0.92, 0.99)    0.02 

Change in chol. (mmol/l), linear part of the 

splinea 

   0.91 (0.84, 0.98)    0.01    0.98 (0.91, 1.05)    0.55 

Change in chol. (mmol/l), nonlinear part of 

the spline 

              0.04 

Change in heart rate    0.99 (0.99, 1.00)    0.03       

a If the model does not use a spline for this variable, these are the results for the usual linear predictor. 

b Reference level for physical activity is heavy work. 
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Figure 1 Models (a) - (d): log-hazard ratios and 95% confidence intervals for continuous variables 

except for the change variables, which are presented in Figure 2. Small ticks at the bottom of each 

panel represent the observed values and help to identify outliers causing wide confidence intervals. 
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Figure 2 Models (b) and (d): log-hazard ratios and 95% confidence intervals for change variables. 

Small ticks at the bottom of each panel represent the observed values and help to identify outliers 

causing wide confidence intervals. 
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Figure 1 Rank-hazard plots showing the relative importance of average and change variables of SBP 

and cholesterol in Model (d). The values of each predictor are scaled evenly on the horizontal axis and 

the values of minimum, first quartile, median, third quartile and maximum are presented. Plots are 

created using the measurement information of the year 1974 (15 years after the baseline). Reference 

hazards are the hazards related to median values of average variables and zero values of change 

variables 
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Table 3 Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) 

indices with 95% confidence intervals comparing Model (d) to Model (b). A positive index value 

indicates that Model (d) has better predictive ability than Model (b) 

Prediction interval (years) NRI (95% CI) IDI (95% CI) 

1964 – 1973 0.283 (0.117, 0.449) 0.011 (0.006, 0.017) 

1974 – 1983 0.105 (-0.035, 0.245) 0.007 (-0.000, 0.015) 

1984 – 1993 0.190 (0.019, 0.361) 0.015 (0.005, 0.026) 

1994 – 2003 0.087 (-0.207, 0.382) 0.015 (-0.009, 0.038) 

 

 


