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consistently negatively associated with ribosome
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Abstract

Background: The scale and complexity of genomic data lend themselves to analysis using sophisticated
mathematical techniques to yield information that can generate new hypotheses and so guide further experimental
investigations. An ensemble clustering method has the ability to perform consensus clustering over the same set of
genes from different microarray datasets by combining results from different clustering methods into a single
consensus result.

Results: In this paper we have performed comprehensive analysis of forty yeast microarray datasets. One recently
described Bi-CoPaM method can analyse expressions of the same set of genes from various microarray datasets
while using different clustering methods, and then combine these results into a single consensus result whose
clusters’ tightness is tunable from tight, specific clusters to wide, overlapping clusters. This has been adopted in
a novel way over genome-wide data from forty yeast microarray datasets to discover two clusters of genes that
are consistently co-expressed over all of these datasets from different biological contexts and various experimental
conditions. Most strikingly, average expression profiles of those clusters are consistently negatively correlated in all
of the forty datasets while neither profile leads or lags the other.

Conclusions: The first cluster is enriched with ribosomal biogenesis genes. The biological processes of most of the
genes in the second cluster are either unknown or apparently unrelated although they show high connectivity in
protein-protein and genetic interaction networks. Therefore, it is possible that this mostly uncharacterised cluster
and the ribosomal biogenesis cluster are transcriptionally oppositely regulated by some common machinery.
Moreover, we anticipate that the genes included in this previously unknown cluster participate in generic, in
contrast to specific, stress response processes. These novel findings illuminate coordinated gene expression in yeast
and suggest several hypotheses for future experimental functional work. Additionally, we have demonstrated the
usefulness of the Bi-CoPaM-based approach, which may be helpful for the analysis of other groups of (microarray)
datasets from other species and systems for the exploration of global genetic co-expression.
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Background
Advances in microarray technology have enabled
measurements of expression of a vast number of
genes simultaneously. Most microarray experiments
consider measuring the expression values of the entire
genome of a specific organism over multiple time-points,
several biological developmental stages, different types of
tissues, or different conditions [1]. Many different methods
of microarray analysis have been designed and applied in
order to address such diverse questions. Some methods
aim to identify genes that are differentially expressed
between certain phenotypes or conditions, which would be
then predicted to participate in causing such phenotypes or
in the response to such conditions [1-3]. Other methods
have been proposed to look for, and model the expression
of, genes that have co-ordinated expression over cell or
metabolic cycles [4-7]. Moreover, various supervised and
unsupervised methods have been designed to answer
questions related to the co-expression of genes [8-12].
One class of supervised methods, which search for

co-expressed genes, is template-based mining. Here, the
microarray dataset is mined for genes whose expression
profiles are similar (based on a similarity criterion, e.g.
Euclidean distance) to an a priori known template of
expression. For example, Nilsson and colleagues searched
in a large number of blood-related human and mice
microarray datasets for genes that are consistently
co-expressed with the average expression profile of eight
well-known genes that participate in haem biosynthesis
[10]. Similarly, Wade and colleagues mined four budding
yeast datasets for genes that are consistently co-expressed
with the average expression profile of 65 previously
reported ribosomal biogenesis genes [9]. Although
these template based methods can confirm the consistency
of co-expression of the genes matching the query template
in multiple datasets, they cannot determine if there are any
other clusters of genes that consistently match different
templates of expression.
Amongst the classes of unsupervised methods that

mine for co-expressed genes, gene clustering is the most
commonly used. The objective of any of the various
methods belonging to this class is to group genes into
clusters such that genes included in a cluster are similar to
each other while being dissimilar from the genes included
in the other clusters based on a specific criterion of
similarity [2]. In this way, genes are grouped into
subsets of co-expressed genes. Examples of methods
used for gene clustering are k-means [11], hierarchical
clustering (HC) [8], self-organizing maps (SOMs) [13,14]
and self-organizing oscillator networks (SOON) [15], as
well as ensemble methods, e.g. relabeling and voting [16],
co-association matrix [17], hypergraph methods [18], and
the recently proposed binarisation of consensus partition
matrices (Bi-CoPaM) [19-21].
A major drawback of most clustering methods is that they
impose the constraint that each gene must be exclusively
assigned to one and only one cluster. Thus, feeding genome
wide data to such clustering methods always produces
clusters that include all of the genes in this genome;
therefore, the size and complexity of the data are not
decreased significantly. We have tackled this problem
by our recently published unconventional ensemble
clustering method (Bi-CoPaM), which provides a platform
that allows for generating conventional complementary
clusters in which each gene is exclusively assigned to a
single cluster, as well as unconventional clusters such
as wide overlapping clusters in which genes can be
simultaneously assigned to multiple clusters, and tight
clusters which leave many genes unassigned to any cluster
[19,20]. Producing such varying forms of unconventional
clusters allows tuning, such that different gene discovery
studies can tune the Bi-CoPaM to produce the particular
form of clusters that helps in answering that study’s
specific questions. Moreover, the tuneable partitions
produced by the Bi-CoPaM are based on the consistency of
co-expression of a set of genes across multiple microarray
datasets and when clustered by various clustering methods
[19,20]. The Bi-CoPaM method does not combine the
profiles of the genes in multiple datasets in order to
analyse them collectively. It rather achieves this collective
analysis by examining each dataset independently and
then combining their results into a single consensus
result [19,20].
Wade and colleagues identified a subset of genes

consistently co-expressed with a template of 65 ribosomal
biogenesis genes in four different datasets [9]. That subset
was found to be enriched with rRNA processing and
ribosomal biogenesis genes (RRB), and was found to
be up-regulated when released from cell-cycle arrest
while being down-regulated under stress [9]. Other
studies have identified RRB-enriched subsets of genes
with profiles that are consistently positively correlated
with growth and negatively correlated with stress [22,23].
On the other hand, other subsets of genes, mainly enriched
with stress response genes, were identified as negatively
correlated with growth and positively correlated with stress
[22,23]. The regulation of such subsets of datasets has been
discussed by various studies which listed different con-
firmed or potential regulators such as Tod6p, Stb3p, and
Sfp1p for RRB genes, and Msn2/4p, Rgt1p, and Adr1p for
stress response genes [9,22-25]. Also, the relations between
growth rate and stress resistance, as well as between the
expression of RRB genes and other regulons such as
ribosomal proteins and cell cycle genes were discussed
while considering signal transduction pathways (e.g. TOR1
and Ras/PKA pathways) or transcription factors as
regulatory connections [9,23,24]. Each of those studies
considered one or few datasets to obtain its conclusions.
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In this study, we adopt a novel approach of the Bi-CoPaM
method to analyse genome-wide data from forty microarray
yeast datasets from a wide range of biological conditions
and contexts in order to identify the subsets of genes that
are consistently co-expressed in Saccharomyces cerevisiae
budding yeast under such various conditions [19,20]. We
investigate if the RRB genes are consistently co-expressed in
a wider range of conditions than those investigated by
previous studies [9,22,23]. Moreover, we explore if there are
other novel subsets of budding yeast genes that are consist-
ently co-expressed over such wide range of different micro-
array datasets and, if so, we investigate their previous
characterisations and known function(s), and we draw
hypotheses regarding their regulation as well as the poten-
tial roles of their poorly understood genes in cell biology.

Methods
Bi-CoPaM
The Bi-CoPaM method consists of four main steps
(Figure 1) [19,20]:

1. Generation of many partitions for the same set of
genes by applying various clustering methods over
the expression profiles of these genes from multiple
microarray datasets.

2. Relabelling the generated partitions such that each
cluster from one partition is matched with its
corresponding cluster from every other partition.

3. Generation of the fuzzy consensus partition matrix
(CoPaM) by element-by-element averaging of the
relabelled partitions.

4. Binarization of the CoPaM by one or more of the six
tunable binarization techniques proposed in [19].

To amplify the variation in cluster assignment caused
by the differences in microarray datasets over the one
Partition 1,1
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Individual partitions generation

Partition 1,C

Clustering 
Method 1
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Figure 1 The pipeline of steps in the Bi-CoPaM method.
caused by the differences amongst clustering methods,
the partitions generated by applying different clustering
methods over any single microarray dataset are first
combined into a single intermediate fuzzy consensus
partition matrix (CoPaM) whose membership values are
processed by pushing them towards the binary values
of zero and one (Figure 1); this is mathematically
formulated as
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where ui,j and �ui;j are the fuzzy membership values for
the jth gene in the ith cluster before and after processing,
respectively, and mj is mean of the fuzzy membership
values of the jth gene in all of the clusters in which it has
non-zero values. After all CoPaM matrices from all of
the microarray datasets are generated and processed as
described herein, they are combined to produce the final
CoPaM, which is then binarised to produce the final
binary partitions.
The six binarization techniques scrutinize the CoPaM in

different ways to produce binary partitions with different
features. Our concentration in this study is on the difference
threshold binarization (DTB) technique and its two extreme
special cases maximum value binarization (MVB) and
intersection binarization (IB).
The MVB technique assigns each gene to the cluster

in which it has its maximum fuzzy membership; this
generates conventional complementary clusters in which
each gene is exclusively assigned to one and only one
cluster. The DTB technique imposes a stricter policy; it
assigns this gene to that maximum-membership cluster
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only if the closest cluster competing on this gene has a
fuzzy membership value which is lower than the maximum
by at least the value of the parameter (δ). Otherwise, the
gene is not considered clearly belonging to a specific cluster
and is unassigned from all of the clusters accordingly.
When this DTB parameter (δ) is zero, it is equivalent to the
MVB technique. Tighter clusters with more unassigned
genes are obtained when δ is increased until it reaches
one. When its value is one, only genes that have been
consensually assigned to the same clusters by all of
the single partitions are preserved; all of the other
genes are left unassigned. This tightest case is equivalent
to the IB technique.

Mean Squared Error (MSE) metric
The mean squared error (MSE) metric has been used by
many studies to evaluate the quality of the generated
clusters so that comparisons between different methods
can be performed [26,27]. We adopt the MSE metric for
evaluating the generated clusters.
Because the total number of genes assigned to the

clusters by Bi-CoPaM at any specific tightness level is
variable, we use a normalized MSE measure to be per
gene. The MSEcluster metric which quantifies the total MSE
for the kth cluster is defined as:

MSEcluster kð Þ ¼ 1
N⋅Mk

X
xi∈Ck

xi−zkk k2;

Where N is the number of dimensions (time-points) in
the dataset, Mk is the number of genes in the kth cluster,
Ck is the set of zero-centred unity-standard-deviation
genetic expression profiles {xi} for the genes in the kth

cluster, and zk is the mean expression profile for the
genes in the kth cluster.
If multiple datasets were used for clustering, genes

profiles and the clusters centroids will vary from one
dataset to another for the same partition. In this case,
the MSE metric can be calculated multiple times for
each dataset and then averaged over them.

Datasets & experimental procedures
In this study, we consider forty recent Saccharomyces
cerevisiae microarray datasets which were generated by
using the Affymetrix yeast genome 2.0 array in the last
six years, and include at least four different conditions
or time-points. Although choosing datasets generated by
using the same array is not a condition for Bi-CoPaM
analysis, it allows for more genes to be included in the
analysis as some genes might not be represented by
probes in all types of arrays, and therefore have to be
discarded from the analysis in such a case. Each of these
datasets measures the genetic expression of the entire
yeast genome (5,667 genes) over multiple time-points or
conditions. The details of the datasets are listed in Table 1.
The datasets span a wide range of biological conditions
such as cell-cycle, stress response, mutated strains growth,
treatment with various types of agents, and others. The
5,667 genes are listed in Additional file 1: Table S1.
These 5,667 genes were clustered into sixteen clus-

ters by k-means with Kauffman initialisation (KA) [48],
self-organising maps (SOMs) with bubble neighbourhood
and four-by-four grid [13], and hierarchical clustering
(HC) with Ward’s linkage [8]. This was applied to their
profiles from all of the forty datasets. The generated
partitions were combined into a single consensus partition
matrix (CoPaM) as explained in Bi-CoPam where a
min-min approach was adopted for relabeling at the
CoPaM generation step. The final CoPaM was binarised
by the difference threshold binarization (DTB) technique
with δ values ranging from zero to one and then analysed
by the MSE metric described in Mean Squared Error
(MSE) metric. Prior to clustering, the datasets were nor-
malized by quantile normalization [49]. Then each gene’s
expression profile was shifted and scaled to be zero-mean
and unity standard deviation. Also, when many replicates
exist for the same time-point or condition, they are
summarised by considering their median value.

Results
The numbers of genes in the sixteen clusters at all of the
varying δ values are shown in Table 2. Clusters were
ordered based on their tightness such that those clusters
that preserve at least seven genes up to higher values of
δ are considered tighter. When many clusters preserve
at least seven genes up to the same value of δ, they are
ordered based on the number of genes they include at
that level. The number ‘seven’ is just used for ordering
and is not a critical parameter; if it had been set to ‘ten’
instead for example, no significant change in cluster
ordering would have be observed. The complete lists of
genes included in each of these clusters at all of the δ
values are provided in Additional file 1: Table S1.

MSE analysis
The MSE values for each of the tightest six clusters were
calculated at all of the DTB δ values as explained in
Mean Squared Error (MSE) metric. Each of these values
was calculated based on the forty datasets and then
averaged and plotted in Figure 2(A). Figure 2(B)
shows the numbers of genes included in each of these
six clusters at all of the δ values. Missing points in
both plots represent empty clusters.
We have considered the mean standard error (MSE)

evaluation metric in tandem with the number of genes
included in the clusters to choose a few clusters for further
analysis and discard the other ones. The objective here is
to minimise the MSE values while maximising the number



Table 1 Budding yeast microarray datasets

ID GEO accession Year N Description Ref.

D01 GSE8799 2008 15 Two mitotic cell-cycles (w/t). [28]

D02 GSE8799 2008 15 Two mitotic cell-cycles (mutated cyclins). [28]

D03 E-MTAB-643* 2011 15 Response to an impulse of glucose. [14]

D04 E-MTAB-643* 2011 15 Response to an impulse of ammonium. [14]

D05 GSE54951 2014 6 Response of dal80Δ mutant yeast to oxidative stress induced by linoleic acid hydroperoxide. -

D06 GSE25002 2014 9 Osmotic stress response and treatment of transformants expressing the C. albicans Nik1 gene. -

D07 GSE36298 2013 6 Mutations of OPI1, INO2, and INO4 under carbon-limited growth conditions. [29]

D08 GSE50728 2013 8 120-hour time-course during fermentation. -

D09 GSE36599 2013 5 Stress adaptation and recovery. [30]

D10 GSE47712 2013 6 Combinations of the yeast mediator complex’s tail subunits mutations. [31]

D11 GSE21870 2013 4 Combinations of mutations in DNUP60 and DADA2. -

D12 GSE38848 2013 6 Various strains under aerobic or anaerobic growth. [32]

D13 GSE36954 2012 6 Response to mycotoxic type B trichothecenes. [33]

D14 GSE33276 2012 6 Response to heat stress for three different strains. -

D15 GSE40399 2012 7 Response to various perturbations (heat, myriocin treatment, and lipid supplement). -

D16 GSE31176 2012 6 W/t, rlm1Δ, and swi3Δ cells with or without Congo Red exposure. [34]

D17 GSE26923 2012 5 Varying levels of GCN5 F221A mutant expression. [35]

D18 GSE30054 2012 31 CEN.PK122 oscillating for two hours. -

D19 GSE30051 2012 32 CEN.PL113-7D oscillating for two hours. [36]

D20 GSE30052 2012 49 CEN.PL113-7D oscillating for four hours. [36]

D21 GSE32974 2012 15 About 5 hours of cell-cycle (w/t). [37]

D22 GSE32974 2012 15 About 4 hours of cell-cycle (mutant lacking Cdk1 activity). [37]

D23 GSE24888 2011 5 Untreated yeast versus yeasts treated with E. arvense herbs from the USE, China, Europe, or India. -

D24 GSE19302 2011 6 Response to degron induction for w/t and nab2-td mutant. [38]

D25 GSE33427 2011 5 Untreated w/t, and wt/t, yap1Δ, yap8Δ, and double mutant treated with AsV. [39]

D26 GSE17716 2011 7 Effect of overexpression and deletion of MSS11 and FLO8. [40]

D27 GSE31366 2011 4 Presence and absence of mutli-inhibitors for parental and tolerant strains. -

D28 GSE26171 2011 4 Response to patulin and/or ascorbic acid. [41]

D29 GSE22270 2011 4 PY1 and Met30 strains in room temperature or 35 C. -

D30 GSE29273 2011 4 Time-series during yeast second fermentation. -

D31 GSE29353 2011 5 Different haploid strains growing in low glucose medium. [42]

D32 GSE21571 2011 8 Different combinations of mutations in HTZ1, SWR1, SWC2, and SWC5. [43]

D33 GSE17364 2010 4 Untreated w/t and Slt2-deficient yeasts, or treated with sodium arsenate for two hours. [44]

D34 GSE15352 2010 8 24-hour time-course of yeast grown under a low temperature (10 C). [45]

D35 GSE15352 2010 8 24-hour time-course of yeast grown under a normal temperature (28 C). [45]

D36 GSE15352 2010 8 24-hour time-course of yeast grown under a high temperature (37 C). [45]

D37 GSE16799 2009 21 UC-V irradiation of w/t, mig3Δ, SNF1Δ, RAD23Δ, RAD4Δ, and snf1Δrad23Δ. [46]

D38 GSE16346 2009 4 BY474 cells grown to mid-log under presence versus absence of L-carnitine and/or H2O2. -

D39 GSE14227 2009 10 Two hours of wild-type yeast growth. [47]

D40 GSE14227 2009 9 Two hours of sch9Δ mutant yeast growth. [47]

The first column shows the unique identifier which is used hereinafter to refer to each of these datasets. The second to the sixth columns respectively show the
Gene Expression Omnibus (GEO) accession number, the year in which the dataset was published, number of time-points or conditions after replicate summarisation,
dataset description, and reference.
*D03 and D04 have accession numbers in the European Bioinformatics Institute (EBI) repository rather than GEO accession numbers.
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Table 2 Numbers of genes included in each of the 16 clusters at all of the considered δ values

Tightness δ Cluster

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Complementary 0.0 1085 1457 610 655 592 268 303 175 175 154 143 92 51 49 29 10

0.1 516 394 84 105 79 12 9 3 1 2 2 0 0 0 0 0

0.2 344 47 17 14 2 0 0 0 0 0 0 0 0 0 0 0

0.3 257 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0.4 164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tightest 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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of genes included in the clusters. This approach overcomes
the dependency of MSE values on the numbers of genes
included in the clusters. As can be seen in Figure 2(A) and
(B), the cluster C1 shows significantly lower (better) values
of MSE while including significantly higher numbers of
genes. The cluster C2 comes next to C1 in terms of having
lower MSE values with more genes.
On the other hand, while the clusters C3 and C4 have

comparative MSE values at δ = 0.2 with C2 (Figure 2
(A)), they have significantly lower numbers of genes
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Figure 2 Average MSE values and the number of genes
included in the tightest six clusters at all of the adopted δ
values. (A) Average MSE values and (B) number of genes included.
(17 and 14 genes respectively for C3 and C4 in comparison
with 47 in C2; see Table 2). Furthermore, the clusters C5
and C6 are significantly worse (higher MSE values with
fewer genes) than the first four clusters (Figure 2). While
the average MSE values for the seventh to the sixteenth
clusters have not been included in that Figure, the numbers
of genes included in these clusters at relatively lower levels
of tightness, as shown in Table 2, are sufficient to filter
them out. Therefore, we have considered the clusters C1
and C2 for further analysis in this study.

Average expression profiles
The average expression profiles for the clusters C1 and
C2 at DTB with δ = 0.3 and 0.2 respectively, in each of
the forty datasets are plotted in Figure 3. For clarity,
error bars have been suppressed as the information,
which they provide can be obtained from the MSE analysis
in Figure 2 and the plots in Additional file 2: Figure S1,
which shows the expression profiles of all of the genes in
these two clusters at various δ values.
Detailed scrutiny of Figure 3 leads to the general

observations that the first cluster, C1, is up-regulated
when cells are released from stress conditions such as
nutrient limitation; they are down-regulated when stress
conditions are re-imposed. Most interestingly, the cluster
C2 shows opposite average expression profiles in almost
all of the forty datasets to the average profiles of cluster
C1 with no phase shift, i.e. with neither profile leading or
lagging the other; its genes are up-regulated under stress
conditions and down-regulated under growth conditions.
It is interesting, but had not been anticipated at the time
of experimental design before obtaining the results, that
the two most consistently co-expressed clusters of genes
in budding yeast show such clear opposite expression
profiles across large number of datasets.
To assess that observed opposite co-expression quan-

titatively, we have calculated the Pearson’s correlation
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values between the average expression profiles of C1 at
δ = 0.3 and C2 at δ = 0.3 from each of the forty datasets.
A very strong negative correlation has been found, that
is lower than the value of −0.75 at 37 out of 40 datasets
and never exceeds the value of −0.6 except at a single
outlier dataset, D35. This strong negative correlation is
consistent even when the δ values are varied. For instance,
when considering C1 at the δ values of 0.2 and 0.4, the
calculated correlation values are lower than −0.75 at 38 and
36 out of 40 datasets, respectively. Even when considering
C2 at δ = 0.1, the case at which its size is many folds larger
than at δ = 0.2 (394 genes versus 84), 35 out of 40 datasets
show strong negative correlation with values lower
than −0.75, and only couple of datasets exceed the value
of −0.7. The single outlier dataset D35 has consistently
shown notably weaker negative correlation at all of the
aforementioned δ values. These experiments demonstrate
the robustness of our observation that C1 and C2 are
consistently negatively correlated.

Promoters enrichment analysis
Because co-expression over large number of different
microarray datasets strongly indicates co-regulation, we
have analysed the upstream DNA sequences for the genes
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in the clusters C1 and C2 to explore potential common
transcription factors’ binding sites. We have used the
MEME tool [50,51] to search for the most enriched DNA
sequence motifs within the 300 upstream base-pairs of the
164 genes included in C1 at DTB with δ = 0.4. The three
discovered motifs, which we label as C1-1, C1-2, and C1-3
respectively, were then fed to the TOMTOM tool [52,53]
to mine for previously known motifs with high similarity.
The first motif, with an E-value of 3.3 × 10−333, was found
to be the PAC motif, which is the binding site of the
two paralogous transcription factors Dot6p and Tod6p
Figure 4 Upstream sequence analysis for the cluster C1. (A), (B), and (
matched known transcription factors’ binding sites. (D) is a Venn diagram t
contain each of these three motifs.
with p-values of 2.1 × 10−5 and 1.4 × 10−4, respectively, and
it significantly matches the binding site of the transcription
factor Sfl1p with a p-value of 1.3 × 10−4 (Figure 4(A)). The
E-value estimates the expected number of motifs with the
given probability or higher, and with the same width and
site count, that would be found in a set of random
sequences of a similar size. The second motif, with
an E-value of 2.2 × 10−115, was found to be the RRPE
motif, which is the binding site of the transcription
factor Stb3p with a p-value of 8.9 × 10−7 (Figure 4(B));
it also significantly matches the binding sites of the
C) show the motifs C1-1, C1-2, and C1-3 respectively and their highly
hat shows the numbers of genes’ upstream sequences in C1 that
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transcription factors Sum1p and Sfp1p with p-values
of 2.7 × 10−5 and 3.2 × 10−5, respectively (Figure 4
(B)). The third motif, with an E-value of 3.2 × 10−63,
was found to match the binding sites of the transcrip-
tion factors Azf1 and Sfl1p with p-values of 1.3 × 10−4

and 2.0 × 10−4, respectively (Figure 4(C)). The three motifs
were respectively found in the upstream sequences of 148,
119, and 56 genes out of 164 possible ones. Figure 4 (D) is
a Venn diagram, which shows the numbers of genes the
upstream DNA sequences of which contain each of these
three motifs.
Similarly, the MEME tool was used over the 47 genes

included in the cluster C2 at DTB with δ = 0.2. The
logos of the two discovered motifs, which we label as
C2-1 and C2-2, are shown in Figure 5 (A) and (B),
respectively. The E-values for the two motifs are
1.6 × 10−23 and 5.3 × 10−4 respectively, and they were
found in the upstream sequences of 31 genes and 21
genes, out of 47 genes in C2 at DTB with δ = 0.2
(Figure 5(C)). A third motif was found by the MEME
tool in this cluster but with the high E-value of 2.8 × 10+1

and in the upstream sequences of 13 genes only; therefore
it has been discarded from further analysis. The motifs
C2-1 and C2-2 were then fed to the TOMTOM tool
[52,53] to mine for previously known motifs that have
high similarity to them. The motif C2-1 was found to
match the binding site of the transcription factor Azf1p
Figure 5 Upstream sequence analysis for the cluster C2. (A) and (B) sh
known transcription factors’ binding sites. (C) is a Venn diagram that show
of these two motifs.
(p-value 5.4 × 10−6), while C2-2 was found to match
the STRE element which is the binding site of the
transcription factor Msn4p (p-value 5.4 × 10−4) and its
paralogue Msn2p (p-value 6.2 × 10−4). The logos of
the binding sites of these transcription factors aligned
with the discovered motifs are shown in Figure 5(A)
and (B), respectively.

GO analysis
To link our observations over the clusters’ expression
profiles with biological terms, we have performed Gene
Ontology (GO) analysis [54] over the clusters C1 and C2
at different tightness levels by using the GO Term Finder
tool [55], and the GO Slim Mapper tool [56]. The most
enriched GO process terms in these clusters, as well
as the numbers of genes annotated with the GO term
“biological process unknown”, are listed in Table 3.
Additional file 3: Table S2 and Additional file 4: Table S3
include the complete GO Term Finder and GO Slim
Mapper tools results, respectively, for the clusters C1 and
C2 at all of the values of δ at which they are not empty.
The cluster C1 is extraordinarily highly enriched with

genes that participate in ribosome biogenesis and rRNA
processing (RRB), and it includes a small number of
genes of unknown biological process. In contrast, the
genes included in the cluster C2 include a large group of
unknowns (12 genes, 25.5%, with unknown biological
ow the motifs C2-1 and C2-2 respectively and their highly matched
s the numbers of genes’ upstream sequences in C2 that contain each



Table 3 Most enriched GO terms in the clusters C1 and C2 at various levels of tightness

GO process Back.
frequency

δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Freq. P-val. Freq. P-val. Freq. P-val. Freq. P-val. Freq. P-val.

C1 Ribosome biogenesis 411/7167 210/516 E-140 183/344 E-146 153/257 E-129 124/164 E-123 65/79 E-66

Biological process unknown* 1189/6334 46/516 26/344 17/257 9/164 4/79

C2 Response to oxidative stress 101/7167 23/394 E-6 6/47 E-3

Oxidation-reduction process 174/7167 33/394 E-7 3/47 >E-1

Biological process unknown* 1189/6334 114/394 12/47

*The enrichment of the “biological process unknown” term has been found by the GO Slim Mapper tool rather than the GO Term Finder tool. Note that the
p-value is only provided by the GO Term Finder tool.

vacuole

ER
nucleus

cytoplasm

plasma membrane

Response to oxidative stress (6 genes)
Carbohydrate metabolic process (4 genes)

Lipid metabolic process (4 genes)

Unknown biological process (12 genes)
Other process (17 genes)

Location unknown

Cellular amino acid metabolic process (4 genes)

Protein phosphorylation (3 genes)

mitochondrion

mitochondrial 
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Figure 6 The distribution of the 47 genes included in C2 at
DTB with δ = 0.2 based on the biological processes with
which they have been associated and over the major cellular
components. Note that any single gene might be found in
multiple cellular components, and thus the total number of
gene markers in the Figure does not directly correspond to the
total number of genes considered.
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process out of 47 in C2 at δ = 0.2, and 114 out of 394,
28.9% at δ = 0.1), and even the genes with currently
known processes do not show dominant enrichment for
any single process. Relatively, the most enriched known
biological processes within the 47 genes included in this
cluster at δ= 0.2 are response to oxidative stress (six genes,
12.8%) and oxidation-reduction (three genes, 6.4%); no genes
are shared between these two processes. Other processes
with which some genes in this cluster have been associated
are lipid metabolic process (four genes, 8.5%), carbohydrate
metabolic process (four genes, two of which has also been
associated with oxidation-reduction, and one with response
to oxidative stress), cellular amino acid metabolic process
(four genes, one of which has also been associated with
response to oxidative stress), protein phosphorylation
(three genes, one of which has also been associated
with oxidation-reduction), mitochondrial organisation
(two genes), cofactor metabolic process (two genes),
regulation of cell cycle (two genes, one of which has also
been associated with oxidation-reduction), endocytosis
(two genes, one of which has also been associated with
protein phosphorylation), and response to heat (two
genes, one of which has also been associated with protein
phosphorylation).
We have also searched for the enrichment of the cellular

components in which the C2 genes included at DTB with
δ = 0.2 localise. The complete lists of results are provided in
Additional file 5: Table S4. Figure 6 shows the distribution
of the genes included in C2 at that tightness level over main
cellular components while marked based on their biological
processes. It can be seen that there is a large distribution of
processes as well as components with no single process or
component dominating.
In conclusion, we name the subset of genes in C2

as “anti-phase with ribosome biogenesis regulon”, or
APha-RiB regulon. This is because its main characterising
feature is its consistently opposite expression with the RRB
regulon (C1).

Gene network analysis
GeneMANIA is a tool which mines a database of various
types of interactions identified by high-throughput studies
in the literature to draw networks of interactions for
a subset of query genes [57]. By using this tool, we
have obtained networks of genetic interactions (Figure 7)
and protein-protein physical interactions (Figure 8)
between the 47 genes included in the APha-RiB regulon
(cluster C2 at δ = 0.2).
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Figure 7 Genetic interaction network between the genes in the APha-RiB regulon (C2 at DTB with δ = 0.2). A sub-network of eight genes
is highlighted and the types of genetic interactions between its genes are labelled. This is the same sub-network which is highlighted in Figure 8.
A genetic interaction exists between two genes if the impact of perturbing both genes is different from the additive impact of perturbing each
gene individually. A positive genetic interaction is that in which perturbing both genes results in a higher fitness, i.e. a weaker defect, than the
additive defect of perturbing each one individually. On the other hand, a negative genetic interaction exists when the defect caused by perturbing
both genes is stronger than the additive defect caused by perturbing each gene individually. A similar profile (S) genetic interaction indicates high
correlation between both genes’ genetic interaction profiles with the rest of the genes.
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We have also used GeneMANIA to find the network
of genetic co-expression between the 47 APha-RiB genes
in order to validate their consistent co-expression.
The produced network contains 962 co-expression
links out of 1,081 possible ones (89%) in this undirected
graph of 47 nodes. To test the statistical significance of
these figures, we randomly generated ten different groups
of genes, each of which has 47 genes, and fed them to the
GeneMANIA tool. The average number of co-expression
links was 380 links with a standard deviation of 32.
Therefore, by assuming a normal distribution, the p-value
of having 962 links between 47 nodes is 6.7 × 10−73,
which proves the validity of including those 47 genes
in a single cluster.
A sub-network of eight genes is highlighted in Figure 7

and Figure 8 because they have high connectivity in both
genetic and protein-protein physical interactions networks.
The types of the genetic interactions between those
eight genes are also labelled in Figure 7. Based on the
high-throughput study by Costanzo and colleagues [58],
two genes have positive genetic interaction between them
if the effect of perturbing both genes is higher than the
additive effect of perturbing each gene individually.
Similarly, they have negative genetic interaction if the
effect of perturbing both of them is less than the
additive effect of perturbing each one of them indi-
vidually. If the effect of perturbing both of them is
similar to the additive effect of perturbing each of
them individually, they do not have genetic interaction.
The interactions labelled with (S) in Figure 7 indicate that
there is high correlation between the genetic interaction
profiles of those two genes with the other genes in the
yeast genome.
It is interesting that, within the selected sub-network,

there is a perfect one-to-one correspondence between
protein-protein physical interactions and negative genetic
interactions (Figure 7 and Figure 8). When this is added
to their consistent co-expression over forty different
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and recent datasets, it can be hypothesised that they
are related functionally, which can be tested in future
biological studies.

Experiments with different numbers of clusters
We have repeated the Bi-CoPaM experiment over the
same datasets but with different K values other than
sixteen, i.e. different numbers of clusters. We tried the K
values 8, 9, 10, 18, 24, 30, and 40. At all of the given K
values, the cluster RRB was found as the absolutely
tightest cluster with very high similarity in its gene
content to the cluster found at K = 16. At the K
values of 8, 9, and 10, the results have shown that
the second tightest cluster is similar to the APha-RiB
regulon found in this study, while at the K values of 18 and
24, it was split into two smaller clusters. Moreover, at the K
values of 30 and 40, many other small tight clusters
appeared but many of them are redundant in terms
of their expression profiles and should be rather combined.
Interestingly, no other significant cluster found in any
of those results. This experiment shows that our proposed
approach of applying the Bi-CoPaM method to genome-
wide datasets is robust over a wide range of K values.
Discussion
Our results, based on a Bi-CoPaM-analysis of forty
different and recent yeast microarray datasets each
measuring the genetic expression of the yeast genome
(~6000 genes) over multiple time-points or conditions,
illustrate that the two most consistently co-expressed
subsets of S. cerevisiae genes are the ribosomal biogenesis
regulon (RRB) and a subset of genes which is in anti-
phase (negative correlation) with ribosome biogenesis
(APha-RiB). The genes in the latter subset have thus far
been considered apparently unrelated as it includes a large
proportion of genes of unknown function. We propose
that expression of APha-RiB subset of genes is associated
with control of cellular processes required under general
stress conditions. These findings strongly suggest that a
common machinery exists to regulate both subsets at their
transcriptional level and we propose candidate regulators
of these subsets of genes. Finally, our results demonstrate
a successful novel application of the Bi-CoPaM method to
analyse gene expression over multiple genome-wide
datasets, which could be generalised to other groups
of microarray datasets from budding yeast and indeed
other species.
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Ribosome biogenesis genes are the most consistently
co-expressed in budding yeast
The fact that ribosome biogenesis genes are highly
consistently co-expressed across various conditions has
been reported previously by different studies which
adopted different approaches [9,22,23,59]. Wade and
colleagues mined four microarray datasets for the
subset of genes consistently co-expressed with a template
of genes known to participate in rRNA and ribosome
biogenesis (RRB) [9]. Their results unveiled a set of 188
genes, which were consistently co-expressed with the RRB
query genes, and their upstream sequences were enriched
(158/188) with the PAC and/or RRPE motifs [9]. Brauer
and colleagues produced an expression dataset which
includes six sub-series of yeast that experiences different
levels of growth under different types and levels of stress
[22]. They then identified two subsets of genes which are
consistently, positively or negatively, linearly corre-
lated with growth rate [22]. Roy and colleagues also
identified modules (subsets) of genes which are positively
or negatively correlated with heat stress in a conserved
manner across eight species of Ascomycota yeast; indeed
one of them is Saccharomyces cerevisiae [23]. The cluster
C1 is highly similar to the subsets of genes positively
correlated with growth and highly enriched with ribo-
some biogenesis in those three studies, but in most
cases C1 has higher enrichment and/or lower false-
positive rate discovery (Additional file 6: Figure S2).
Therefore, our results recapture this biological fact
while defining a more focused subset of genes based
on forty different datasets.
Figure 9 Venn diagram showing the size of overlap between our novel
with expression reported to be positively correlated with stress and neg
Many other previous studies have also observed
co-regulation of the ribosome biogenesis genes in responses
to environmental conditions such as being up-regulated
when cells are released from stress conditions such as
alpha factor arrest and nutrient limitation [9,14], or
down-regulated when stress conditions are re-imposed
[6,60], or cyclically regulated during the yeast metabolic
cycle (YMC) [6].

A novel subset of largely unknown genes (APha-RiB) is
consistently in anti-phase (Oppositely Co-Regulated) with
ribosome biogenesis genes
One of the most striking findings of our in silico experi-
ments is the discovery of the C2 cluster of genes, which are
consistently oppositely co-regulated with RRB genes over
forty different and recent datasets with no phase shift
(i.e. their average expression profile neither lags nor
leads the average time profile of the RRB genes), as
can be seen in Figure 3. Therefore, we have labelled this
subset of genes, which is in anti-phase with ribosome bio-
genesis, as the APha-RiB regulon. This suggests that the
APha-RiB and the RRB regulons may be transcriptionally
oppositely regulated by some common machinery.
The phenomenon of opposite co-expression of RRB

and stress response genes in budding yeast was reported
by various studies [22,23,59,60]. As shown in Figure 9,
the subsets of genes identified by the studies of Gasch
(2000) [60], Brauer (2008) [22], and Roy (2013) [23], and
their collaborators are much larger than the APha-RiB
regulon defined in our study (hundreds of genes versus
47 genes). Moreover, the largest overlap between any of
APha-RiB cluster (C2 at DTB with δ = 0.2) and the subsets of genes
atively correlated with growth in three previous studies [22,23,60].
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those subsets of genes and APha-RiB does not reach half
of the genes in APha-RiB, where the largest overlap,
which is between APha-RiB and the subset identified
by Gasch and colleagues [60], includes 22 genes.
Furthermore, none of those previously reported, relatively
large, subsets includes more than two of the eight genes
highlighted for their importance in Figure 7 and Figure 8,
and discussed below. This illustrates the novelty of
this focused and specific cluster which has been found by
our large scale genome-wide analysis of forty different and
recent datasets.
Taken together, firstly, we have observed and reconfirmed

the reciprocal behaviour of RRB and some genes participat-
ing in stress response over datasets which cover much wider
conditions including ones that are not directly related
to stress changes, e.g. cell-cycle datasets. Secondly,
our APha-RiB subset of genes consistently reciprocally
expressed with RRB largely includes genes with unknown
or apparently unrelated biological processes, in addition
to few genes known to participate in stress response.
Thirdly, our method does not require that the microarray
samples are combined into a single dataset, in contrast to
the studies by Gasch [60] and Brauer [22] and their
colleagues. It is therefore now possible to analyse large
number of datasets in the literature in a single experiment,
even if the datasets are diverse in time, location, condition,
and use different microarray platforms. Finally, although a
proportion of the APha-RiB genes has been explicitly
associated with response to oxidative stress processes
(six out of 47 genes), the processes in which the rest
of the genes in APha-RiB participate are either unknown
or apparently unrelated. Additionally, the forty datasets
considered in this study cover a much wider range of
stress and growth conditions than oxidative stress.
Given that, most of the genes in APha-RiB are yet to
be associated with biological processes and/or their
function to be understood within the context of
generic, not specific, stress response; our results suggest
these areas would be the subject for fertile future
investigation.

Proposed model for the transcriptional regulation of RRB
and APha-RiB
The temporal expression of the cluster APha-RiB (C2)
in opposite direction of regulation to the RRB genes
(C1), as well as the high enrichment of common motifs in
the upstream DNA sequences of genes in APha-RiB
(Figure 5), strongly support the hypothesis that genes
in the subsets RRB and APha-RiB are regulated by
the same biological machinery, or possibly that the
transcriptional regulators for both clusters are regulated
by a common regulator. Therefore, we propose an outline
model of regulation for the genes included in RRB and
APha-RiB clusters (Figure 10).
The model in Figure 10 shows parts of the TOR and
the PKA signalling pathways which are regulated by the
presence of some growth factors (e.g. glucose) or the
presence of some stress conditions, and then they
regulate RRB and stress response modules of genes.
Although we use the general terms “growth conditions”
and “generic stress conditions” instead of more specific
terms such as “glucose abundance”, “oxidative stress”,
most of the previously discovered links of regulation were
in the context of one or few growth conditions such as the
presence of glucose [14,61,62], ammonium [14], or other
specific nutrients, or to types of stress such as oxida-
tive stress [63] or methyl methanesulfonate (MMS)
DNA-damage stress [64]. However, using such general
terms here reflects the comprehensive nature of the
data analysed by the Bi-CoPaM approach as we have been
able to consider and analyse a wide range of different
growth and stress conditions in a comprehensive and
systematic way. Indeed, we can now reach a consensus
conclusion, that up- and down-regulation of the RRB and
APha-RiB clusters are influenced by a wide range of
growth and stress conditions (Table 1).
Many of the direct regulators detected in this study

by upstream sequence analysis of the RRB and the
APha-RiB subsets of genes (dashed links in Figure 10)
were also previously identified in the literature (ticked
dashed links). Indeed, the regulatory links from the
literature to the novel APha-RiB cluster are based on the
assumption that it is a stress response subset of genes.
It could be argued that one of the two clusters actually

negatively regulates the other. This seems unlikely for
several reasons. First, the synchronisation between both
clusters is very high such that there is insufficient phase
shift between them for one to regulate the other. Second,
the functionality of a transcription factor is likely to be
regulated post-translationally in many ways, such as the
existence of another metabolite or signal, localisation
changes, or others [62,65]. It is doubtful that many
regulators could be functionally active in a consistently
similar profile for a very large number of target genes.
Therefore, we would suggest that these two clusters of
genes are transcriptionally regulated by common machinery
rather than one of the clusters transcriptionally regulates
the other.
It could also be hypothesised that the two clusters are

regulated by two separate pathways that are oppositely
activated in synchrony with growth and stress conditions.
Though, this hypothesis necessitates that those two
transcriptional regulation pathways are consistently
and synchronically regulated by various types of growth
and stress signals, or that those signals regulate a single
signalling pathway which regulates both transcriptional
regulatory machineries. In this case, the common upstream
regulator of the two clusters would be a signalling pathway



C1
RRB

Growth 
conditions

Generic
stress 

conditions

C2
APha-RiB

Stb3

Dot6/
Tod6

Sfp1

Sfp1
Stb3Dot6/

Tod6

Sch9

TORC1

Sch9
P

PKA

Tpk1-3 Bcy1

Tpk1-3 Bcy1

Msn2/4

Crf1

Crf1

Yak1

Azf1

Metabolic 
interaction / 
translocation

Repression (from 
literature)

Repression (from 
this study)

Activation (from 
literature)

Activation (from 
this study)

Link also detected 
by the literature

Link hypothesised 
in this study

Nucleus

Cytoplasm

Figure 10 Regulation of the RRB cluster (C1) and the APha-RiB cluster (C2). Ticked dashed links have been detected in this study and were
also previously identified in the literature while dashed links with question marks have been only detected in this study. However, most of the
previous studies consider one or few stress conditions in contrast to “generic stress conditions”. Notice that the cluster “C2 APha-RiB” is novel and
that the links from the literature that point at it are based on the assumption that it is a stress response module.

Abu-Jamous et al. BMC Bioinformatics 2014, 15:322 Page 15 of 20
http://www.biomedcentral.com/1471-2105/15/322
or the signals themselves. Although this is a possible
proposal, the fact that the signals that consistently
and synchronically regulate both groups are largely
variant, we focus on the hypothesis that both groups
are regulated by a common machinery, or that their
regulatory machineries regulated by a common regulator.
Indeed, the latter proposal conforms to the more general
statement of Brauer and colleagues that such consistent
positive or negative correlation reflects system-level
regulatory mechanisms [22].

Potential regulators for APha-RiB and common regulators
for RRB and APha-RiB
Gasch and Roy and their collaborators commonly identified
the Msn2p and its paralogue Msn4p as regulators for the
subsets of genes which they identified as negatively
correlated with growth [23,60]. Gasch and colleagues
also identified Yap1p as a regulator for their group
[60] while Roy and colleagues identified Rtg1p and
Adr1p [23]. Interestingly, upstream analysis for our
novel cluster APha-RiB (C2) has identified Azf1p and the
paralogous pair Msn2p and Msn4p as potential regulators
(Figure 5). It is worth noticing that the three studies
mutually identify Msn2p and Msn4p, which are well
known for their role in stress response regulation through
binding to the STRE motif (Figure 10) [66,67].
More interestingly, Azf1p has been identified by our

results as a potential regulator for in both clusters RRB
(C1) and APha-RiB (C2) (Figures 4, 5, and 10). Azf1p is a
zinc-finger transcription factor, which has been predicted
to have role in one of the putative stress response regula-
tory modules [68,69]. Moreover, it is exclusively localised
in the nucleus and it was found to be synthesised in higher
amounts under non-fermentable growth conditions [70].
By monitoring differentially expressed genes when AZF1
was knocked down, Slattery and colleagues showed that
this gene’s product participates in the transcription of
two non-overlapping subsets of genes under two different
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conditions. The common aspect between these non-
overlapping subsets of genes is having the motif
AAAAGAAA in their promoters [71]. Although our
C2 genes at δ = 0.2 are not included in any of these two
subsets, the existence of the AZF1 binding site in their
promoters indicates that AZF1 may regulate expression of
genes in this cluster under other conditions.
Another candidate common regulator is Stb3p

(Figure 10), which binds to the consensus motif
TGAAAAA [61,62,72]. This motif largely overlaps with
the RRPE motif found in the upstream sequences of the
RRB genes in our results, as identified by the TOMTOM
tool (Figure 4(B)). Although not identified by the
TOMTOM tool as a potential binding transcription
factor, its binding motif TGAAAA largely overlaps
with the part of the motif C2-1 (Figure 5). Moreover,
Stb3p overexpression was shown to increase resistance to
oxidative stress [63] and to result in down-regulation of
ribosome biogenesis genes [61,62,72], and Liko and
colleagues also predicted that Stb3p would be expected to
regulate transcription of other unknown sets of genes
positively [61,62].
The evidence for Azf1p or Stb3p acting as a transcription

activator and/or repressor with relation to both groups of
genes – RRB genes (C1), and APha-RiB genes (C2) is
unclear. Nevertheless, there are enough observations
to speculate that one of them or both of them may
play a role in the mutual transcriptional regulation of
both RRB and APha-RiB. The molecular mechanism(s)
and significance of those transcription factors in this
context remain to be established.

A subset of eight genes in the APha-RiB cluster are highly
connected across various gene networks
Strikingly, a novel subset of eight out of the 47 genes in
APha-RiB (C2 at DTB with δ = 0.2) have shown high
connectivity in co-expression, protein-protein physical
interactions, and genetic interactions (highlighted in
Figure 7 and Figure 8). The genes YIR016W, AIM19,
and OM14 have unknown biological processes. The latter
two localise in the mitochondria while the localisation of
YIR016W is unknown. UGA2 is an oxidative stress
response gene which localises in the cytoplasm. PMP3 is a
plasma membrane gene that participates in response to
drugs and regulation of membrane potential. YOR228C’s
product is a mitochondrial protein which is involved in
lipid homeostasis but with an unknown function. NCR1’s
product is a vacuolar membrane protein which partici-
pates in vacuolar protein sorting pathway. Finally, YSA1’s
product participates in ribose phosphate metabolism and
was found localising in the mitochondrion, cytoplasm,
and the nucleus. Clearly, those genes, generally, have
unknown or apparently unrelated functions despite this
high connectivity.
One focal gene with previously unknown function is
YIR016W. Large scale overexpression screening in yeast
revealed that this gene’s overexpression causes cell-cycle
to be arrested by accumulating cells at the G2/M stage
[73], which is consistent with its down-regulation during
the cell-cycle as shown in our results (e.g. datasets D01,
D02, D21, and D22 in Figure 3). Arresting the cell-cycle
under stress is one of the known mechanisms for stress
response [9]. Its co-expression, protein-protein physical
interaction, and negative genetic interaction with the
stress response gene UGA2 strengthens the hypothesis
that this gene may participate in stress response, and its
connections with UGA2, YSA1, and AIM19 provide a
concise platform for future functional studies. This
gene’s role in cell-cycle arrest/delay and in any other
mechanisms of stress response has to be revealed in
future functional studies.
The highly consistent up-regulation under stress,

down-regulation under growth, and high network
connectivity for this novel and concise subset of
genes across such wide range of conditions in forty
different datasets indeed indicate that they have roles
in some of the mechanisms related to generic stress
response. After scrutinising this sub-network, as well as
the APha-RiB cluster in general, it becomes clear that
many details regarding generic stress response mechanisms
and their member genes are yet to be elucidated.

The Bi-CoPaM method is useful for genome-wide
consistently co-expressed genes discovery
Our results have demonstrated the usefulness of our novel
approach of using the Bi-CoPaM method to explore
genome-wide expression data, from various microarray
datasets from different biological contexts and conditions.
More specifically, we have defined subsets of genes that
are consistently co-expressed across various microarray
datasets using a tunable method and without the need for
a priori knowledge-based filtering.
In contrast to other clustering and ensemble clustering

methods, configuring the Bi-CoPaM method to generate
sixteen clusters does not imply that the final objective is
to get sixteen informative clusters; the final objective is
rather to mine for the few subsets of genes which are
consistently co-expressed in all or most of the considered
datasets [18]. A larger number of clusters than expected
to be informative is required to account for the large
variation in the genome-wide expression. In Bi-CoPaM,
the genes that are consistently co-expressed in all or most
of the datasets when considered by various clustering
methods will constantly appear in the same cluster. The
majority of genes, which will show low consistency in
co-expression, are allowed a wide space of sixteen
clusters to be assigned to. These genes will appear in
different clusters when their expression profiles indifferent
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datasets are considered from by the various clustering
methods. Therefore, inconsistency in co-expression is
reflected by inconsistency in cluster assignment.
Our results have demonstrated that a wide range of

numbers of clusters (K) will result in the same tight
clusters. The Bi-CoPaM’s difference threshold binarisation
(DTB) technique tunably tightens the clusters to include
the most consistently co-expressed genes while leaving the
large bulk of the poorly co-expressed genes unassigned
from all of the clusters [19,20]. This tunable tightening is
controlled by the parameter δ, which increases the
tightness as it is increased. As can be seen in Table 2,
most of the sixteen clusters lose all of their genes at
relatively low δ value, which is to be expected as
most of the genes will not be co-expressed in most of
the studies and datasets considered.
In their 2001 study, Wade and colleagues clustered

about half of the genome into 24 clusters from three
different datasets by a single clustering method, which
is the partitioning around medoids (PAM) method [74].
They then performed statistical analysis to identify
overlapping clusters from different results, which led
to finding that only one cluster from one dataset has
significant overlap to another cluster from one other
dataset. The intersection between both clusters had
65 genes, which were found to be largely participating
in ribosome biogenesis [74].
When comparing the two approaches, three major

differences are the most important. First, our approach is
more suitable when larger numbers of datasets are consid-
ered because of the systematic way of fusing the results
into a single consensus result that reflects all information.
Second, Bi-CoPaM allows for various crisp and/or fuzzy
clustering methods to be applied over each single dataset,
which adds another level of diversity. Third, and most
importantly, our Bi-CoPaM-based approach is tunable
and is not merely limited to the intersections of clusters; if
direct intersection worked well for two datasets in Wade’s
approach, it would result in empty clusters in the case of
forty datasets with various clustering methods. This can
be directly and clearly seen in our results as intersection is
a special case of Bi-CoPaM’s results, and is obtained
by DTB with δ = 1.0, the case at which all of the sixteen
clusters have been found completely empty (Table 2). On
the other hand, considering conventional complementary
clusters, which is again a special case of the Bi-CoPaM
results (DTB with δ = 0.0), is impractical as it does
not reduce the complexity of the datasets, and the
clusters at this level are generally looser than acceptable
(see Figure 2 and Table 2). Therefore, the most fruit-
ful analysis, as demonstrated by our study, is when
clusters are tightened while maintaining significant
numbers of genes and here the Bi-CoPaM approach
allows observation of clusters’ behaviour when δ
parameter is tuned to produce tight clusters in Table 2
and Figure 2.
Taken together, our approach can analyse large amounts

of high-throughput datasets to produce relatively focused
and comprehensible results that capture the most consistent
aspects of the raw data. The method can therefore discover
those subsets of genes most consistently co-expressed under
various conditions.

Conclusions
We have applied the Bi-CoPaM method over genome-wide
data from forty microarray datasets with wide range of
different biological contexts and experimental conditions in
order to identify the subsets of budding yeast genes that are
most consistently co-expressed. We found two clusters of
genes that have significant consistency of co-expressions,
which we have labelled as RRB (C1) and APha-RiB (C2).
These two clusters preserved their status as the tightest
two clusters at varying values of K, which shows their
importance as well as the robustness of the proposed
Bi-CoPaM approach. By GO analysis, C1 has been found
to be highly enriched with ribosome biogenesis and rRNA
processing (RRB) genes. On the other hand, most of
the genes included in C2 have unknown or apparently
unrelated functions.
Finding RRB genes (C1) in the tightest cluster by this

completely unsupervised approach, confirms not only
that these genes are consistently co-expressed under
various conditions [9], but also that they are the
most consistently co-expressed genes across the
whole genome. Additionally, our C1 cluster includes
few genes with unknown processes that may be worthy of
biological investigation.
The most interesting cluster of genes in our results a-

ppears to be C2, and this is for three main reasons – first,
these genes are mostly unknown or apparently unrelated
to each other, despite the fact that they are the second
most consistently co-expressed subset of genes in budding
yeast; second, their average expression profiles show
consistently anti-phase (opposite) expression to the
average expression profiles of RRB genes (C1) across
all of the forty datasets; and third, significant genetic
and protein-protein physical interactions have been
reported between them by high-throughput studies in
the literature. These observations lead us to label C2
as the subset of genes in anti-phase with ribosome
biogenesis (APha-RiB), to suggest that many of the
unknown genes in APha-RiB (C2), such as YIR016W, may
participate in different generic, in contrast to specific,
stress response mechanisms, and to suggest that RRB
genes (C1) and the APha-RiB genes (C2) may be
transcriptionally regulated by common machinery or
that their regulation machineries may be controlled by
common post-translational regulators. We have identified
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potential factors that might be involved in such reciprocal
regulation, for example Azf1p and Stb3p.
This study has yielded globally consistent co-expression

in budding yeast and produced new, focused insights for
future work to elucidate and confirm the components of
the common regulatory machinery for RRB and APha-RiB,
and to define the function of poorly characterised genes in
both clusters. The results from the application of the
Bi-CoPaM method to yeast datasets strongly suggests
that it may be helpful for the analysis of other groups
of microarray datasets from other species and systems
for the exploration of global genetic co-expression.
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