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The effect of steric hindrance is an important aspect of granular packings as it gives rise to, e.g.,
limitations on the densities of ordered and disordered packings, both of which are essentially defined
by the geometry of the constituents. Here we focus on random packing of rods via deposition and
their distributions of contact number and segment length. Such statistical properties are relevant
for mechanical properties of the structures, but the (quite large) steric effects on them have not been
addressed in previous studies. We therefore develop a theory that describes the statistical properties
of rod packings, while taking into account that the deposited rods cannot overlap and thus induce
steric hindrances. The distributions derived from the theory are compared with experimental results
and numerical simulations of networks constructed via deposition. Results explain the non-Poisson
statistics observed in the experiments and show that the induced steric range of the rods can be
large compared to their diameter and decreases with compactification of the pile, implying local
orientational ordering of the structure.

There is a wide variety of ubiquitous materials based
on random packing of elongated objects, such as, for
instance, colloidal suspensions, granular powders, poly-
mer networks, paper, and filter materials. In addition,
new similar materials are being developed, such as car-
bon nanotube films in flexible electronics [1] and fibrous
scaffolds in tissue engineering [2], which are essentially
formed by random deposition of fibers (very thin rods).
Understanding the geometry and structural properties
of such random packings, and how they are related to,
e.g., their mechanical or electrical properties, is impor-
tant from the basic scientific point of view, but especially
for their engineering applications.

Random packing of stiff constituents is governed pre-
dominantly by their geometry. For example, random
packing of spheres can maximally reach a solids content
of φs ≈ 0.64 corresponding to the Bernal sphere pack-
ing [3] with a mean coordination number of 6, i.e., the
mean number of contacts per particle. For elongated par-
ticles packing density φs approaches zero as the aspect
ratio of the particles increases [4], and the coordination
number approaches about 10 in the limit of large aspect
ratios [5]. Even though particle correlations play a sig-
nificant role in the packing of low-aspect-ratio particles
[6, 7], averaged quantities of isotropic random packings
of high aspect-ratio particles (rods), such as density and
mean coordination number, can well be described by the
random-contact model [4] which assumes uncorrelated
contacts between rods and involves therefore only simple
excluded-volume arguments. That model does not, how-
ever, describe correctly the distribution of, e.g., contact
numbers in individual rods, which has been observed to
differ [5, 8] from the Poisson distribution, i.e., the result
of an uncorrelated process. It thus seems that contacts
between rods in their random packings are not uncorre-
lated after all, and that this effect is rather important.

Random networks are typically formed of fibers by
deposition or some other random-packing process. So

far analysis of their mechanics and geometry has mainly
been based on the properties of relatively simple two-
dimensional (2D) random networks made of infinitely
long lines. Motivation to this starting point has been
that many such networks are formed by unidirectional
compression under gravity (e.g., by sedimentation of a
dilute suspension) or otherwise have a predominantly pla-
nar orientation. 2D networks of infinite lines are fairly
well understood theoretically [9, 10] and have an uncorre-
lated structure: Poissonian distribution of contact num-
bers along individual lines and a negative-exponential
distribution of segment lengths. Although experimental
results have a negative-exponential tail in the segment-
length distribution, significant deviations from it have
been found at short segment lengths [11]. Distribution
of segment lengths is particularly important for the me-
chanical properties of three-dimenstional (3D) networks
of fibers [12, 13].

In order for a 2D deposited network of fibers to grow
vertically, or their 3D isotropic packings to be stable,
hard-core interactions between fibers must also be ac-
counted for. These interactions introduce steric hin-
drances for fibers, and thus contacts in their packings
are not necessarily uncorrelated. Although the effect of
steric hindrance on global properties such as density has
been investigated previously [14, 15], statistical proper-
ties have remained elusive. In this article we introduce
a theoretical framework to account for these hard-core
interactions and give distributions for the both coordi-
nation number and segment length. Comparison of the-
oretical results with those of experiments and numerical
simulations suggest that both of the above distributions
can be understood on this theoretical basis: correlation
between contacts is related to the steric hindrance be-
tween fibers, and these induce local orientational order
in the structure.

To clarify why Poisson statistics is an inevitable con-
sequence if hard-core interactions are not taken into ac-
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count, we start by considering a 2D network composed
randomly of rectangular objects of finite length lf and
non-zero width wf. Given two rectangles of the same
size, the probability that they cross is proportional to
their excluded area, i.e., the area where the center point
of the other rectangle must be placed such that the two
rectangles would intersect. For two rectangles with a dif-
ference of θ in their orientation, this area of intersection
is given by Ai = (lf sin θ + wf + wf cos θ)(lf + wf sin θ +
lf cos θ)− (l2f − w2

f ) sin θ cos θ [16].
Now consider a deposited network of Nf such rect-

angles on area A. For an individual rectangle, all the
other Nf − 1 rectangles have a probability of Ai/A to
intersect with it. Therefore the total number of cross-
ings on this rectangle can be expressed in the form
〈C〉 = (Nf − 1)〈Ai〉/A. For a dense network (Nf � 1) of
narrow rectangles (lf � wf) with uniformly distributed
centers and crossing angles, this result is consistent with
that of Korte and Callmes [10], and we find that

〈C〉 =
2l2f
π

Nf

A
. (1)

For uniformly distributed centers and orientations of the
rectangles, contacts can be considered to be formed by
successive Bernoulli trials with a probability of 〈Ai〉/A,
and thus, if an average 〈C〉 > 0 exists for a large sys-
tem, the coordination number of a rectangle is Poisson
distributed. This results approximately (exactly in the
case of random infinitely long lines [9]) in an exponential
distribution of segment lengths. The same approach of
uncorrelated contacts (i.e., soft-core objects), which only
involves the excluded volume, can be extended to other
dimensions. For example, Onsager [17] has given the
excluded volume in 3D for both regular and spherically-
capped cylinders. Also in these cases the random place-
ment of the constituents in space can be considered as
successive Bernoulli trials, and the resulting distribution
of coordination number would be Poissonian.

Real packings or networks are not, however, formed
by uncorrelated packings of soft-core objects. They are
formed by, e.g., deposition, and hard-core interactions are
needed between fibers so that these structures can grow
vertically. We will thus consider packing (networks) of
randomly deposited fibers, in which their non-zero diam-
eter will necessarily involve steric hindrances. Even if
these fibers would be infinitely long, a newly deposited
fiber will not make contact with all previously deposited
fibers as in the 2D networks of infinitely long lines (thus
Eq. (1) will always overestimate the coordination num-
ber). Instead, the newly deposited fiber makes contact
with a subset of fibers, which can still be considered ran-
dom.

We base our model on the assumption that the fiber-
fiber contacts in a deposited network may be divided so
that they are either on the top or bottom side of a fiber.
This division is possible if the fibers were deposited one
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FIG. 1: Schematic illustration of different models for
the contact forming process, and the resulting segment
length distributions. Poissonian, i.e., soft core (red, a),
Tonks gas (green, b), disperse Tonks gas (blue, c), and

two superposed disperse Tonks gases (olive, d).

by one, and had a high enough friction to prevent them
from sliding below previously deposited fibers. Further-
more, we assume that the contact formation on either
side of the fibers is random, but sterically hindered by
the hard-core interactions between adjacent fibers. This
means that we can treat the two contact-forming pro-
cesses, viz.: contacts on the either top or bottom sides
of the fibers, as two separate hard-core systems. The fi-
nal contacts are then obtained by superposing these two
(one-sided) processes (Fig. 1c) on the same fiber, result-
ing in a two-sided process (contacts on the both top and
bottom sides of the fibers, Fig. 1d).

If the fibers would always cross at right angles, the
process of contact formation on one side of a fiber is
sterically hindered such that the minimum length be-
tween two contact centers would be wf (contacts would
be impenetrable spheres of diameter wf). A system that
describes this kind of process is the Tonks gas of hard
spheres [18, 19]. By treating the contacts on both sides
of the fibers as separate linear gases of hard spheres (con-
tacts) of diameter d = wf in a one-dimensional (1D) space
of length L = lf, we have available both the probability-
density function (PDF) of segment lengths [18] (distri-
bution of inter-particle distances in the Tonks gas, Fig.
1b), and the distribution of coordination numbers [20] for
this one-sided process. In reality, the steric hindrances
of one-sided contacts are not simple hard-core limits, but
they will depend, e.g., on the crossing angles of the fibers
in contact. If two fibers in contact on the same side of
the fiber differ in their orientation, they can be sterically
hindered well beyond the fiber width wf, similar to the
system in Ref. [21]. In addition, cylindrical rods are not
strictly two-sided, which means that contacts can form
anywhere on their perimeters so that rod width is not
an exact lower bound for the lengths of the steric hin-
drance. The main idea is, however, to classify contacts
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into distinct (1D) groups, and for simplicity we consider
here distinction into contacts on the top or bottom sides
of the fibers.

For the segment-length distribution of one-sided con-
tacts, the original derivation of Tonks [18] can easily be
extended to polydisperse gases with particle sizes di (Fig.
1c, details in SI) and we find that

P (ls ∈ [x, x+ dx]) = dx

∫ x

0

fd12(y)µe−µ(x−y) dy , (2)

where fd12 is the PDF for the combined steric effect of two
adjacent fibers, such that P (d1/2 + d2/2 ∈ [y, y+ dy]) =
fd12(y) dy, and µ is process frequency in the reduced
space µ = 〈C〉/(L − 〈C〉〈d〉) = (〈ls〉 − 〈d〉)−1. Details
of the choice of fd12 can be found in SI.

The final segment-length distribution is now obtained
by superposing the two contact-forming processes (con-
tacts on the both top and bottom sides of the fibers,
Fig. 1d). As the distances (’segment lengths’) between
particle centers in a Tonks gas are uncorrelated this pro-
cess can be thought of as a renewal process (it is not
strictly true, due to correlations between adjacent seg-
ment lengths, but has no effect on the resulting distribu-
tion as explained in SI), and the cumulative distribution
function (CDF) of segment lengths (Fp(x)) of p super-
posed processes is given by [22]

1−Fp(x) = (1− F1(x))

[
〈C〉
L

∫ ∞
x

1− F1(s)ds

]p−1
, (3)

where F1(x) is the CDF of the one-sided process (contacts
on the either top or bottom side of the fibers). Conse-
quently, the PDF of segment lengths for two combined
processes is given by fls(x) = d

dxF2(x).
For the coordination number, no solution was found

for the disperse Tonks gas, so we had to approximate
the system as a homogeneous Tonks gas for which the
coordination-number distribution is given by [20],

P1(C = N) =
µL
[
µd(Ld −N + 1)

]N
〈C〉N !

e−µd(L/d+1−N).

(4)
Distribution of the coordination number of all contacts
along a fiber can be obtained by superposing the two
processes. Exact solutions for n = {2, 3, . . .} superposed
processes are given by the convolutions

Pn(C = N) = P1(C = N)⊗ Pn−1(C = N). (5)

No analytical solution was found for these convolutions
directly for any n > 1, and thus they were solved numer-
ically when necessary.

To test the distribution of the coordination number
(Eq. (5)) against experimental data, we used the results
of Blouwolff and Fraden [5], who studied packing of es-
sentially rigid rods. The measured coordination-number
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FIG. 2: Distributions of the coordination number of
random packings of rods for different aspect ratios,

(L/D), together with their best fits by the two-sided
Tonks gas distributions (solid lines) and by Poisson

distributions (dashed lines). The experimental data are
from Blouwolff and Fraden [5].

TABLE I: Average coordination number and
particle-size of the fitted two-sided Tonks-gas
distributions for non-compactified (nonc.) and

compactified (comp.) packings of rods shown in Fig. 2,
and experimental results for short-cut spaghetti. All

lengths are scaled with rod diameter D.

L 50 32 16 12.3

nonc. comp. nonc. comp. nonc. comp. spag.

C 8.1 9.7 7.4 9.7 6.5 7.0 9.4

d 4.2 2.7 3.4 2.8 2.1 1.7 0.8

d/L 0.08 0.05 0.11 0.09 0.13 0.11 0.06

distributions were fitted by the distribution for two-sided
contacts (Eq. (5)) using the range of steric interaction
(d) and the mean contact number (〈C〉) as the fitting pa-
rameters. For comparison, a fit by Poissonian distribu-
tion was also made, using the mean coordination number,
〈C〉, as the fitting parameter. It is evident from Fig. 2
that the experimental and theoretical distributions agree
very well, and that they are quite different from a Poisso-
nian distribution, i.e., the uncorrelated-contacts approx-
imation. From the results of these fits (Table I), we can
draw two conclusions. First, the hard-core diameter d
decreases when the packing of rods is compactified. Sec-
ond, as the aspect ratio increases, the relative hard-core
diameter d/L decreases. It remains unclear, however, if
the effect of hard cores vanishes in the limit of diverging
aspect ratio. For more comments on these conclusions
see below.

To test the segment-length distributions against exper-
imental data, a pile of raw, short-cut spaghetti was im-
aged with x-ray tomography. Individual rods of spaghetti
were segmented from each other, which allowed determi-
nation of the coordination numbers and segment lengths
in each rod, and thus their distributions. These measured



4

16

12

8

4

(a)

0.0

0.05

0.1

0.15

0.2

P
ro
b
a
b
il
it
y

0 2 4 6 8 10 12 14

Coordination Number

Experimental
Tonks
Poissonian

(b)

10−3

10−2

10−1

1

P
ro
b
ab

il
it
y
D
en
si
ty

0 2 4 6 8 10 12

Segment Length

Experimental
Tonks
Poissonian

(c)

FIG. 3: (a) A random pile of raw (short-cut) spaghetti as imaged by x-ray tomography. Color indicates the
coordination number of the individual rods of spaghetti. (b) Distribution of coordination numbers for this pile. (c)

Distribution of segment lengths for this pile (scaled by rod width). So as to minimize the effect of finite length,
contacts at the ends of each rod of spaghetti were not included.

distributions were then fitted by the corresponding the-
oretical results, both for the coordination number (Eq.
(5)) and the segment lengths (Eq. (S20)), shown in Figs.
3b and 3c, respectively. Here the fitting parameters were
the range of steric interaction (〈d〉) and the mean contact
number (C, for P (C)), or the process frequency (µ, for
P (ls)). The measured distributions deviate clearly from
Poissonian and negative-exponential distributions.

For the pile of short-cut spaghetti, division of contacts
into two subgroups, viz.: ’top’ and ’bottom’ contacts, was
not well defined, and thus only the ’two(or more)-sided’
segment-length distributions could be analyzed (i.e., all
contacts were included in the analysis). Because of this,
distributions of segment lengths were also determined
for numerically deposited 3D packings (networks) of thin
rods (fibers) [23]. In the simulated networks, fibers were
deposited one by one so that contacts in each fiber could
be classified into top and bottom contacts by the chrono-
logical order of the fibers (see SI, especially Fig. S7, for
details and visualization). We could thus easily deter-
mine the one-sided (cf. Eq. (S13)) as well as the two-
sided (cf. Eq. (S20)) distributions of segment lengths.
Both these distributions were fitted by theoretical ones
(Fig. 4) using the range of steric interaction (〈d〉) and
the process frequency (µ) as the fitting parameters. The
two-sided division of contacts was in very good agreement
with the numerical result, and the effect of steric hin-
drances is evident as the distributions of segment lengths
deviate notably from negative-exponential distributions.

It is evident from the results shown in Table I that
the steric hindrance (d) is larger than the rod diame-
ter for rods of high aspect ratios. This implies that, al-
though the non-zero diameter of the rods induces hard-
core restrictions, the actual steric hindrance has a fiber-
orientation-dependent component. Decrease of this hin-
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FIG. 4: Distributions of segment lengths between
contacts on one side of a fiber and on both sides of
fibers in a deposited network. The solid and dashed

lines show the best fits by Eqs. (S13) and (S20),
respectively. The inset shows a comparison between the

two-sided distribution (all contacts) and a
negative-exponential distribution (dashed line).
Although the distribution has the characteristic

negative-exponential tail, there is a notable deviation
from that distribution at small segment lengths.

drance upon compactification of the packing is suggestive
of some kind of orientational ordering of adjacent crossing
rods, i.e., neighboring rods become more parallel on the
average. So as to test the existence of local orientational
order, we determined the distribution of difference be-
tween the crossing angles in two adjacent contacts along
individual fibers. The results (see SI for details) indicate
that a local nematic order exists between adjacent con-
tacts along a rod even though the global orientation of
the packings is isotropic.

We introduced a theoretical approach for the descrip-
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tion of random packing of rods (or, more generally, of
elongated objects), which accounts for the effect of their
steric (hard-core) interactions. We considered in partic-
ular the distributions of contacts and segment lengths in
these packings. It is evident that steric hindrances in-
troduce correlations between adjacent contacts, and the
properties of these packings can no longer be described
accurately with Poissonian statistics. For the contact
number, steric hindrances decrease the variation of its
PDF, as the relative volume of the allowed configuration
space becomes smaller with increasing steric effects. As
for the segment length, steric effects tend to eliminate
short segments such that its PDF has a peak near the
average steric length, 〈d〉, which depends on the aspect
ratio and flexibility of the fibers. Furthermore, steric ef-
fects of (crossing) rods which belong to adjacent contacts
along a rod induce local nematic order in the globally
isotropic packing. Previous and present experimental re-
sults support these findings. They are expected to have
implications on the stability and mechanical properties
of random packings and networks.

We thank Seth Fraden and Joshua Blouwolff for pro-
viding us with their experimental data, all of which could
not be deduced from [5], and Michael Thorpe, Robin
Stinchcombe, and Lasse Leskelä for useful discussions.
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