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ABSTRACT

Saari, Pasi
Music Mood Annotation Using Semantic Computing and Machine Learning
Jyväskylä: University of Jyväskylä, 2015, 58 p.(+included articles)
(Jyväskylä Studies in Humanities
ISSN 1456-5390;
ISBN (nid.)
ISBN (PDF)
Finnish summary
Diss.

The main appeal of music lies in its capability to express moods, so mood-based
music discovery and management is highly beneficial. Online music services en-
able access to wide music catalogues, and social and editorial tagging produces
large amounts of semantic information on music mood. However, tag data are
not as reliable at representing moods expressed by music as self-report data ob-
tained from listening experiments. The primary aim of the present work was to
examine computational methods for enhancing the existing mood tag data and
to enable automatic annotation of music according to the expressed mood. Se-
mantic computing based on large-scale tag data aims to improve the accuracy
of tags at representing moods, and a novel technique called Affective Circum-
plex Transformation (ACT) was proposed for this purpose. Improvements to the
generalizability of audio-based mood annotation performance were sought us-
ing audio feature selection and a proposed technique termed as Semantic Layer
Projection (SLP) that efficiently incorporates large-scale tag data. Moreover, a
genre-adaptive technique was proposed to take into account genre-specific as-
pects of music mood in audio-based annotation. Performance evaluation of the
techniques was carried out using social and editorial tags, listener ratings, and
large corpora representing popular and production music. ACT led to clear im-
provements in the accuracy as opposed to raw tag data and conventional seman-
tic analysis techniques. Moreover, ACT models could be generalized across tag
types and different music corpora. Audio-based annotation results showed that
exploiting tags and semantic computing using SLP can lead to similar or even
higher performance than tag-based mood inference. Adapting both the semantic
mood models and audio-based models to different genres led to further improve-
ments, especially in terms of the valence dimension.

Keywords: music mood annotation, music emotion recognition, social tags, ed-
itorial tags, circumplex model, feature selection, genre-adaptive, se-
mantic computing, audio feature extraction
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1 INTRODUCTION

Music listening has been revolutionized in recent times with the shift to the dig-
ital age and the introduction of online music services. Online digital music cata-
logues include millions of tracks, and music streaming enables listeners to access,
virtually, all the music ever recorded. Moreover, music listening is increasingly
linked to social networking, which produces a vast amount of contextual infor-
mation that is of interest to both the music industry and researchers. To facili-
tate access to large-scale music data, the interdisciplinary research field of Music
Information Retrieval (MIR) has promoted the development of techniques and
applications for automatic music annotation. Advances in this field have been
made by combining areas as diverse as musicology, signal processing, data min-
ing, machine learning, social sciences, psychology, and cognitive sciences.

The ability of music to express and evoke moods is one of the key reasons
why it appeals to people (Juslin & Sloboda, 2009), and an extensive body of re-
search in music psychology and affective sciences is found to be dedicated to
seeking the understanding of the phenomena related to music-mediated moods.
It is therefore important to support mood-based music discovery in modern-day
music listening. A number of online music services incorporate mood informa-
tion as the mode of access to music1. The development of techniques that facil-
itate the organizing and retrieving of music by mood has also been one of the
central topics in MIR research.

Music mood annotation that relies on audio content is one of the key tech-
nologies enabling mood-based music discovery. Audio-based music mood an-
notation or music emotion recognition (Lu, Liu, & Zhang, 2006; Yang, Lin, Su,
& Chen, 2008) refers to the automated recognition and annotation of the mood
associated with music items, such as tracks or clips, represented by digital audio.
A system extracts computational features from audio tracks and applies machine
learning to train models that map the features to mood, based on a set of human-
labeled music items (Kim et al., 2010; Barthet, Fazekas, & Sandler, 2012). Manual
mood annotations are therefore considered the ground truth, and the way moods

1 These currently include Gracenote (http://www.gracenote.com/), Musicovery
(http://musicovery.com/) and Allmusic (http://www.allmusic.com/).
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are represented typically conforms to scientifically justified dimensional (Russell,
1980; Thayer, 1989) or categorical (Ekman, 1992; Hevner, 1936) emotion models.
The ground truth gathered in controlled or semi-controlled listening experiments
and aggregated from multiple participants is arguably the most reliable semantic
data attainable for representing moods in music (Zentner & Eerola, 2010). How-
ever, the laborious task of obtaining these types of listener ratings restrict the data
set sizes, affecting the generalizability of the obtained models to the large music
catalogues typical of today’s music listening.

The present work studies three approaches to increase the generalizability
and thereby the performance of music mood annotation. First, advances can be
made by focusing on improving the robustness of machine learning techniques
to better exploit the limited data available for model training. This approach re-
quires finding a balance to robustly exploit the training data while not blindly re-
lying on it. Blind reliance would lead to problems related to overfitting (Hawkins,
2004) and hence decrease the generalizability of the obtained models. The present
work addresses this problem by applying audio feature selection to optimize the
input feature subset employed for annotation.

The second approach is to include a large amount of annotated training data
that might be less reliable than listener ratings. Free-form and unstructured so-
cial tags provided by user communities in online music services (Lamere, 2008)
and editorial tags for music catalogues offer large-scale semantic data useful for
model training. Tags have been exploited to index music according to seman-
tic concepts including mood and genre, mainly for the purposes of music rec-
ommendation (Eck, Lamere, Bertin-Mahieux, & Green, 2007; Kaminskas & Ricci,
2012). However, exploiting such data demands attention to the reliability of the
data itself and applicable data analysis techniques. The reliability of tags at rep-
resenting the mood of music items has not been evaluated systematically with
reliable listener ratings. Previous studies have shown that semantic computing
based on social tags associated with music can yield mood representations re-
sembling those suggested by emotion research (Levy & Sandler, 2007; Laurier,
Sordo, Serra, & Herrera, 2009). Moreover, semantic analysis has yielded posi-
tive results for music recommendations (Symeonidis, Ruxanda, Nanopoulos, &
Manolopoulos, 2008). The advantages of semantic computing at inferring the
mood of music tracks and its utility in music mood indexing have not been sub-
stantiated with reliable ground truth that conforms to emotion models. MIR re-
search has widely applied audio-based techniques to predict tags associated to
music items, alleviating the so-called cold-start problem, i.e., the problem of rec-
ommending items not yet tagged or seen by users (Lam, Vu, Le, & Duong, 2008).
Audio-based semantic annotation or auto-tagging can, therefore, complement
item-based collaborative filtering in music recommendation (Sarwar, Karypis,
Konstan, & Riedl, 2001). Auto-tagging has been successful at annotating mu-
sic with various concepts including mood, genre, instrumentation, and usage
(Turnbull, Barrington, Torres, & Lanckriet, 2008; Bertin-Mahieux, Eck, Maillet.,
& Lamere, 2008; Bischoff et al., 2009). Furthermore, semantic computing applied
in conjunction with audio-based annotation has yielded positive results for mu-
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sic auto-tagging (Levy & Sandler, 2009; Law, Settles, & Mitchell, 2010). However,
despite the benefit of semantic computing for improving auto-tagging and de-
termining mood representations from tag data (Levy & Sandler, 2007; Laurier et
al., 2009), previous studies have not sufficiently examined the benefit of semantic
computing for audio-based music mood annotation.

Finally, the third approach tackles the annotation of large and heteroge-
neous music catalogues by adapting audio-based models to music genres. Gen-
res are the most typical categories used to organize music catalogues in libraries
and music stores (Scaringella, Zoia, & Mlynek, 2006). Large music catalogues
comprise a large variety of musical genres, so robust audio-based music mood
annotation that can perform well across diverse musical materials is required.
Previous studies have shown that music genre is related to mood at various lev-
els. Different genres represent different moods (Hu & Downie, 2007), and the
patterns in which audio features relate to moods differ between genres (Eerola,
2011). Moreover, exploiting music genre in mood annotation has been shown to
improve annotation accuracy (Lin, Yang, & Chen, 2009, 2011). However, previ-
ous studies have not shown whether tag-based semantic models of music mood
benefit from adapting to different genres.

The present work is organized as follows. Chapter 2 provides a theoretical
background to the definition and conceptualization of music mood. Chapter 3 re-
views previous studies on music mood annotation, concentrating on self-reports,
semantic analysis of tags, and audio-based approaches. Chapters 4 and 5 intro-
duce the aims of the study and review the materials, methods, and results of the
included research articles (Studies I-VI). Finally, Chapter 6 presents implications
and conclusions of the study.



2 MUSIC MOOD

2.1 Definition

Defining the theoretically distinguishable but often interchangeably applied con-
cepts of mood, emotion, affect, and feeling is a challenging and non-trivial prob-
lem (Russell & Barrett, 1999; Scherer, 2005). A commonly accepted view is that
emotion comprises a set of components: cognitive appraisal, bodily reactions,
action tendencies, motor expressions, and subjective feelings (Scherer, 2005). No-
tably, per this view, the term “feeling” is often regarded synonymous to emotion,
while it is actually one of the components of emotion. Moods, on the other hand,
have been described as diffuse and enduring affect states (Scherer, 2005) that have
a lower intensity than emotions, last longer than emotions, and have no clear ob-
ject (Juslin, 2013a). However, no clear consensus exists in the academic literature
as to under which criteria mood and emotion can be distinguished (Beedie, Terry,
& Lane, 2005). “Affect” is considered an umbrella term encompassing both emo-
tion and mood as well as preferences (Juslin & Västfjäll, 2008). On the other
hand, Russell and Barrett (1999) distinguished between prototypical emotional
episodes concerned with, or directed at, specific objects – persons, conditions or
events – and “core affects” that are the most elementary affective feelings not nec-
essarily directed to anything. Russell and Barrett (1999) also defined mood as a
prolonged core affect.

Emotions involved in music listening differ from everyday emotions (Juslin,
2013a). Affective states evoked by music listening are related to utilitarian emo-
tions that are close to those experienced in the everyday context such as happi-
ness and sadness as well as to aesthetic or music-specific emotions that are in-
duced by the appreciation of intrinsic qualities of a music piece (Scherer, 2004;
Juslin, 2013a), such as wonder, admiration, ecstasy, and solemnity. Emotions in-
volved in music listening could also be mixtures of several emotions such as hap-
piness and sadness (Gabrielsson, 2010). When studying emotions involved in
music listening, a distinction must be made between emotions evoked by music
and emotions expressed by music. Similar emotions may be induced and ex-
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pressed by music, but self-reports of induced and expressed emotions related to
a music piece are not necessarily the same (Gabrielsson, 2002). Similar to induced
moods, assessment of expressed moods relies on the unique impressions of indi-
vidual listeners (Juslin, 2013b). The present work, however, focuses on emotions
expressed by music.

For music information retrieval purposes, this research has mainly focused
on the emotions expressed by music, also termed as “music mood” (Lu et al.,
2006). In MIR research, the most frequently used term is “mood”, while “emo-
tion” and “affect” have also been used to a similar extent1. However, terminolog-
ical choices do not necessarily reflect the theoretical distinctions, and as in general
emotion research (Beedie et al., 2005), the terms have been applied interchange-
ably. Taking the duration criterion as an example, “emotion” has been used to
describe both the static emotion of an entire music clip (Yang et al., 2008) and
the time-varying emotion within a clip (Schmidt, Turnbull, & Kim, 2010). Simi-
larly, the term “mood” has been used for referring to both the time-varying and
clip-level moods (Lu et al., 2006).

Although the MIR view of music mood focuses on the properties of a music
piece, music mood is ultimately composed of the unique impressions of individ-
ual listeners (Juslin, 2013b). The moods a listener perceives in music tracks are
influenced by multiple factors: the musical structure (Gabrielsson & Lindström,
2001), listener attributes such as individual mood and personality (Vuoskoski &
Eerola, 2011), and listening context (Scherer & Zentner, 2001). Although the in-
fluence of listener-related and contextual factors limits the degree to which music
mood can be derived from the musical structure, the influence of musical struc-
ture transcends the cultures of the listeners to some degree (Balkwill & Thomp-
son, 1999; Fritz et al., 2009) and is not highly dependent on the listeners’ musical
expertise (Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005).

2.2 Models

Although several different approaches have been applied in music research to
model emotions in music, two main types have been used frequently: the cate-
gorical and dimensional models. Over 70% of the articles on music and emotion
published between 1988 and 2008 apply either of these models (Eerola & Vu-
oskoski, 2013). MIR research has adopted these emotion models either directly or
with modifications to represent music moods.

2.2.1 Categorical Model

The categorical model is closely related to the theory of basic emotions (Ekman,
1992) postulating that all emotions can be derived from a limited set of innate

1 This can be confirmed by searching for these terms in paper titles in the proceedings of the
ISMIR in 2000-2012 (See http://www.ismir.net)
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and universal basic emotions such as anger, fear, sadness, happiness, surprise,
and disgust. The distinct and identifiable characteristics of these six emotions
are clearly indicated by the analysis of facial expressions and autonomic nervous
system patterns (Ekman, 1999).

The set of emotion categories have typically been modified to better account
for the emotions that are relevant to music. Either slight modifications or com-
pletely different categorizations have been proposed. Vieillard et al. (2008) used
the categories happy, sad, scary, and peaceful to represent emotions expressed
by musical excerpts, whereas Eerola and Vuoskoski (2011) replaced disgust with
tenderness in the typical set of basic emotions and omitted surprise owing to
low agreement between listeners. Categorizations specifically developed to rep-
resent emotions related to music include a set of adjectives organized into eight
groups (Hevner, 1936) and the updated version featuring nine groups (Schubert,
2003). An attractive property of these two models is that the groups form a cir-
cular structure in an emotion plane, providing a link between the categorical and
dimensional models. Nevertheless, evidence also speaks in favor of the basic
emotion categorization of music, since anger, fear, sadness, happiness, and ten-
derness are among the emotions most frequently expressed by music according
to listeners (Juslin, 2013b).

2.2.2 Dimensional Model

The dimensional model is based on the assumption that affective states arise
from a few common neurophysiological systems (Plutchik, 1980). In 1897, Wundt
(1897) proposed a dimensional model that included the dimensions of pleasure–
displeasure, arousal–calmness, and tension–relaxation. Since then, different for-
mulations of the model have been proposed, comprising typically two or three
dimensions. A notable commonality between most of the models is the inclu-
sion of some form of the arousal component (the intensity of emotion or activity)
and valence component (corresponding to the pleasure–displeasure or positive–
negative affect) (Scherer, 2000). The most well-known example of the two-dimens-
ional model is the circumplex model of emotion (Russell, 1980) which suggests
that all emotions can be identified and distinguished by their placement in the
dimensions of valence and arousal and that the terms form a circular structure
at the perimeters of the space. This structure was derived using factor analy-
ses of the ratings of similarities between emotion-related terms. The circumplex
model thus implies that emotions close to one another in the space are similar,
and conversely, emotions at the opposite ends of the space can be considered to
be bipolar. Scherer (1984) performed factor analysis similar to Russell (1980) on
similarity judgment of emotion terms and provided evidence disputing the cir-
cular structure of emotions, claiming that the entire two-dimensional space may
be filled when a larger number of emotion terms are evaluated. Nevertheless, the
analyses supported fairly well the two-dimensional valence-arousal representa-
tion although different labels of the underlying dimensions of the factor model
could have also been justified.
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A variant of the two-dimensional model widely used in emotion research
is the multidimensional model of activation proposed by Thayer (1989). This
model divides the affect space into bipolar dimensions of energetic arousal and
tense arousal. However, this model has been seen as being compatible with the
circumplex model if the two dimensions are rotated by 45◦ and represented by
a mixture of valence and arousal (Yik, Russell, & Barrett, 1999). Schimmack and
Grob (2000), on the other hand, claimed that valence, energy, and tension cannot
be reduced to two dimensions and that more than three dimensions are required
to sufficiently account for the structure of emotions. Bradley and Lang (1994)
suggested using dominance instead of tension as the third dimension to mea-
sure a person’s affective reactions to a wide variety of stimuli. This model of
valence, arousal, and dominance has been applied to collect affective ratings for
large numbers of words in English language (Bradley & Lang, 1999; Warriner &
Brysbaert, 2013).

Zentner, Grandjean, and Scherer (2008) argued that the dominant dimen-
sional and categorical models cannot explain music-specific emotions and pro-
posed a model consisting of nine music-specific dimensions (wonder, transcen-
dence, tenderness, nostalgia, peacefulness, power, joyful activation, tension, and
sadness) and three higher-level dimensions (sublimity, vitality, and unease). Nev-
ertheless, valence and arousal are the two dimensions frequently employed to
study music and emotion (Eerola & Vuoskoski, 2013). The circumplex model, in
particular, has favorable qualities for music research, since it lends itself to the
study of a variety of affect states, represented by points in the emotion space, in
relation to the underlying dimensions. Analysis of self-reports of the expressed
emotion in music has also shown that music represented by valence and arousal
can be robustly mapped to the basic emotions, indicating high correspondence
between the categorical and dimensional model (Eerola & Vuoskoski, 2011).



3 MUSIC MOOD ANNOTATION

A wealth of research has been dedicated to automated music mood annotation,
also frequently termed as Music Emotion Recognition (MER) (Kim et al., 2010;
Yang & Chen, 2012; Barthet et al., 2012). This section reviews the relevant back-
ground literature on the topic.

3.1 Self-reports

MIR research on music mood annotation essentially relies on self-report data.
Self-reports on music mood can be divided into data gathered from listening
tests taken by participants specifically for research purposes, editorial annota-
tions organizing commercial and production music catalogues, and social tags
crowd-sourced from web communities. Scattered semantic information about
music may also be obtained from diverse sources such as microblogs (Schedl,
Hauger, & Urbano, 2013), web searches (Knees, Pampalk, & Widmer, 2004), and
lyrics (Hu, Downie, & Ehmann, 2009), but exploiting these sources is out of the
scope of the present work.

3.1.1 Listener Ratings

Research-oriented data refers to data collected from self-reports of music mood,
derived from emotion studies in psychology, conforming in general to the cat-
egorical or dimensional models of emotion (Zentner & Eerola, 2010). Data are
typically obtained from participants who are asked to listen to music pieces and
report the related emotions, either perceived or induced. This approach is sup-
ported by patterns observed in psychophysiological (Gomez & Danuser, 2004)
and neurological (Juslin, Harmat, & Eerola, 2013) data. Self-report methods in-
clude the use of ordinal Likert scales and adjective checklists. Since the assess-
ment of music mood relies on unique impressions of individual listeners (Juslin,
2013b), a more objective measure can be achieved by aggregating self-reports ob-
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tained from several individuals. It can be argued that the mood expressed by a
music item can be reliably assessed in a listening test involving a large pool of
annotators.

Focusing on the perceived emotion, Eerola and Vuoskoski (2011) conducted
two listening experiments where participants were asked to rate clips of film
soundtracks according to arousal, valence, tension, and six basic emotions. For
the first experiment, 12 expert musicologists selected 360 excerpts between 10 and
30 seconds long and evaluated the excerpts using seven-point Likert scales. The
ratings were analyzed, and a subset of 110 excerpts that clearly expressed dis-
tinct emotions were selected for further analysis. In the second experiment, 116
university students were asked to rate the excerpts on nine-point Likert scales.
The inter-rated consistency was sufficient enough to represent the excerpts as the
mean across participants. The mean ratings from the second experiment were
subsequently used for audio-based modeling by Eerola, Lartillot, and Toiviainen
(2009). Study I in the present work, on the other hand, transforms the rating data
to discrete basic emotion categories. In another study, Yang et al. (2008) collected
ratings of valence and arousal from multiple participants for 25-second-long clips
from 195 tracks comprising a range of musical styles and cultures (Western, Chi-
nese, and Japanese). In all, 253 volunteers participated in the experiment, and
each participant rated 10 excerpts randomly drawn from the data set on 11-point
Likert scales. Each clip was then represented by the average rating across partic-
ipants in further audio-based modeling. Hu, Downie, Laurier, Bay, and Ehmann
(2008) employed a web survey to collect categorical self-report data, forming a
ground-truth set for the Music Information Research Evaluation eXchange Audio
Mood Classification task (MIREX AMC)1. A data set of 600 music clips was sam-
pled from a large production music catalogue so that it was distributed evenly
across five mood adjective clusters according to pre-assigned mood labels by cat-
alogue curators. The online listening experiment involved a mini-training on
exemplar songs to articulate to the participants what each mood cluster meant.
Moreover, participants were instructed to ignore lyrics in the evaluations to facil-
itate audio-based mood inference. The listeners agreed on 68% of the labels, and,
thus, the authors recommended to exclude clips that do not receive agreement to
reduce ambiguity in future evaluation data sets.

Turnbull et al. (2008) established the CAL500 data set by recruiting partici-
pants to listen to music tracks and evaluate them according to 135 semantic con-
cepts related to mood, genre, instrumentation, solo, usage, and vocals. The data
set consists of 500 tracks by unique artists and covers Western popular music. In
particular, participants were asked to rate 18 mood-related words on a three-point
bipolar scale. For each track, annotations were collected from at least three par-
ticipants, and the labels obtained from each participant were aggregated. Mood
words that were rated using the bipolar scale were transformed to unipolar la-
bels by separating each scale into two unipolar tags indicative of negative and
positive associations. The CAL500 is useful for benchmarking auto-tagging al-
gorithms since it comprises strongly labeled tags, i.e., the absence of a tag means
1 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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that the tag is not relevant although the subjectivity of moods makes this assump-
tion problematic.

The laboriousness of collecting self-reports tends to limit the number of mu-
sic pieces that can be assessed. This is a serious limitation to audio-based mod-
eling of music mood where model training is typically performed with majority
of the data, resulting in only a few excerpts being available for model evaluation.
In order to build larger data sets, previous studies have resorted to recruiting
few human evaluators (Trohidis, Tsoumakas, Kalliris, & Vlahavas, 2008; Schuller,
Hage, Schuller, & Rigoll, 2010) or even a single labeler (Li & Ogihara, 2003; Wiec-
zorkowska, Synak, & Zbigniew, 2006). Nevertheless, the gains to the amount
of data usually come at the expense of reliability, generalizability, and accuracy.
When subjective annotations are gathered from few participants, the responses
may not be generalizable to larger populations, and human error may play a sig-
nificant role in the aggregated data.

3.1.2 Editorial Tags

Several commercial music catalogues are actively annotated by music experts us-
ing semantic tags. Although the details of the annotation process are considered
classified information and the data are proprietary, industry collaborations and
public availability have enabled MIR research to exploit certain parts of the data
sets.

The most well-known study that gathered editorial tags was conducted by
Pandora’s Music Genome Project 2, mainly for the purpose of personalized ra-
dio playlist generation. Expert musicologists are trained to annotate music tracks
according to several hundreds of “musically objective” tags, mostly related to
genre, sound, musical structure, and instrumentation. It is estimated that as
many as one million tracks were annotated in the first 14 years of the project.
Tingle, Kim, and Turnbull (2010) harvested a 10,000-track subset of this data to
be shared with MIR researchers. However, because of the objective nature of the
evaluated tags, moods were not represented in the data. In contrast, mood data
in the Allmusic.com web service 3 constituted a major part of editorial tags sub-
mitted for music albums along with album reviews and genre tags. The mood
tag vocabulary in the service comprises more than 300 unique tags, which is why
the produced data are frequently exploited in MIR research on mood (B. Han,
Rho, Jun, & Hwang, 2009; Lin et al., 2009). However, the album-level tags do not
represent very well the music mood at the track-level.

Production music available from various stock media houses is also fre-
quently tagged by editors according to mood. Moods are considered an im-
portant search criteria for this type of music, usually composed to be included
in productions such as films, commercials, and radio broadcasts. For example,
the I Like Music (ILM) catalogue, aggregating several production music libraries,

2 http://www.pandora.com/about/mgp
3 http://www.allmusic.com
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refers to production music as “mood music”4. Another aggregated production
music catalogue was exploited by Hu et al. (2008) to sample tracks according to
the mood content for the MIREX AMC data set. An alternative to collecting tag
data by conducting typical listening tests or hiring music experts is the so-called
games-with-a-purpose recommended and developed by (Law & Von Ahn, 2009;
Mandel & Ellis, 2008). Although these games involve mechanisms for curating
the annotation process, the obtained tag data are not strongly labeled, and mood-
related tags represent only a small minority of all the tags in the existing data sets.
However, Kim, Schmidt, and Emelle (2008) developed an online game focusing
on mood, involving participants to collaboratively assign tracks to coordinates
on the valence-arousal plane while curating each other’s assignments.

Editorial tags provide semantic data about large collections of music. How-
ever, exploiting these data in the research on music mood is problematic because
of the proprietary nature of these editorial data and because a major proportion of
the data are not necessarily related to mood. Moreover, the efficiency of editorial
tags in the evaluation of ground truth for music mood modeling is questionable
since editorial tags may neither describe mood accurately at the track level nor
represent the agreement of a large group of listeners.

3.1.3 Social Tags

Social tags can be defined as free-form textual labels or phrases collaboratively
applied to particular resources by users in online services. Social tagging pro-
duces a vast amount of information on many websites, such as Del.icio.us (web
bookmarks), Flickr (photos), and Pinterest (images, videos, etc.)5. The most well-
known site supporting social tagging of music is Last.fm6 that exploits user-
generated data for music discovery and for generating personalized recommen-
dations. Last.fm users apply tags to music tracks, albums, and artists and register
their music listening via specified desktop and mobile applications on the website
profile. Last.fm tags have been of interest to MIR research since a significant pro-
portion of the tag data is accessible through a developer API, allowing the study
of music listening behavior to be conducted at an unprecedentedly large scale.
On looking at the data from the Last.fm website and data used in the present
work and in other research papers, e.g., Laurier et al. (2009), it can be seen that
the Last.fm tag data comprises tens of millions of tracks and millions of unique
tags applied by millions of users. The majority of Last.fm tags are descriptors
of the type of music content, referring typically to genres (Bischoff, Firan, Nejdl,
& Paiu, 2008) as well as to moods, locales, and instrumentations that are well
represented in the data as well. Moods account for an estimated 5% of the most
prevalent tags (Lamere, 2008).

There are a number of incentives and motivations for users to apply social

4 C.f. http://media.ilikemusic.com/ilm-media/faqs.php
5 Del.icio.us: http://www.delicious.com; Flickr: http://www.flickr.com; Pinter-

est: http://pinterest.com.
6 http://www.last.fm/
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tags to music, such as task organization, social signaling, opinion expression, and
social contribution (Ames & Naaman, 2007). For instance, tags such as “Female”,
“Electronic”, or “Check out” may be applied for future personal retrieval and dis-
covery, and tags such as “Awesome” or “Seen live” may be used to express one’s
musical taste and opinions about music. Moreover, tags such as “Not metal” may
be applied simply to contribute to group knowledge (Lamere, 2008). Although
social tags are essentially applied for personal use, and, as such, are subjective
by nature, aggregating data from a large number of users helps create valuable
information, commonly referred to as a “folksonomy” (Sinclair & Cardew-Hall,
2008). The free-form nature of social tags makes the data a rich source of informa-
tion. Generated by a large user base and for millions of tracks, Last.fm provides
aggregated track-level tag data represented by “counts” of the most popular tags
associated to a track.

Because of the free-form nature of social tags, research focusing on social
tags needs to deal with several issues that reduce the reliability of the data. Pol-
ysemy and synonymy and user error are frequent issues in studies on social tags
(Golder & Huberman, 2006). Polysemy refers to the phenomenon where one
word can have more than one meaning. For example, the tag “Free” may ex-
press that a particular track can be heard for free or may simply relate to the band
“Free”, and the tag “Blue” may refer to the blues genre, color of the album cover,
mood of the listener, or mood of the track. Also, synonymous words (such as
“R&B”, “Rhythm and blues”, “R ’n’ B” and “Happy”, “Happiness”) as well as ty-
pographical errors that are regularly found in tag data pose major challenges. The
distribution of social tags is highly uneven and many tracks are sparsely tagged
or untagged (Levy & Sandler, 2009). The absence of a tag for a track does not
therefore necessarily indicate that a tag is not required for the track. On the other
hand, tag data are highly biased toward popular tags such as “Rock” and “Pop”,
which may be overrepresented. Tag scarcity is related to the well-known problem
termed as cold-start: as new tracks are created, they remain untagged until dis-
covered, but these untagged tracks are less likely to be discovered. Moreover, the
reliability of tag data is reduced by malicious tagging behavior, especially toward
artists disliked by the user community (Lamere, 2008). Listeners are also more
likely to tag tracks which they like strongly (Marlin, Zemel, Roweis, & Slaney,
2007), and tag data, in general, may be biased toward tastes and opinions of,
probably, the young and affluent users who are not representative of the general
population (Lamere, 2008).

Despite the issues described above, social tagging provides a rich and exten-
sive source of information about music mood unattainable through listening tests
or editorial tagging although exploiting social tags involves a trade-off between
quality and quantity (Mandel & Ellis, 2008). MIR research has exploited social
tags, for instance, for audio-based tag generation (Eck et al., 2007), determin-
ing music similarities (Schedl & Knees, 2009), and making music recommenda-
tions (Nanopoulos, Rafailidis, Symeonidis, & Manolopoulos, 2010). Track-level
Last.fm tags are also provided for a subset of the Million Song data set (Bertin-
Mahieux, Ellis, Whitman, & Lamere, 2011) which is, at present, the largest pub-
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licly available music data set useful for benchmarking MIR algorithms. Social
tags also serve as a promising avenue for MIR research on emotion. MIR research
has focused on inferring representations of mood (Levy & Sandler, 2007; Laurier
et al., 2009) and training audio-based mood annotation models based on social
tags (Sordo, Laurier, & Celma, 2007), but these analyses have been explorative
rather than systematic. Recently, basic emotion categories derived from social
tags were found to predict the perceived and induced emotion of music tracks
measured on the arousal-valence quadrants, but the accuracy was not above the
chance level for all emotions (Song, Dixon, Pearce, & Halpern, 2013). In order to
better benefit from the vast source of information from social tags about music
mood, further studies and new techniques are needed. Appropriate assessment
of the accuracy with which social tags represent music mood still requires reliable
ground truth, preferably gathered from listening tests.

3.2 Semantic Analysis of Tags

The large number of unique tags in social tag data are correlated to a varying de-
gree. For example, the tags “Alternative” and “Alternative metal” are frequently
associated to the same track, whereas “Alternative Metal” and “Classical” are
not. Based on this information, the tag “Alternative” may be associated with a
track tagged as “Alternative Metal” with some certainty, even if the former has
not been applied by users. In contrast, it is highly unlikely that the tag “Classi-
cal” applies to a track tagged as “Alternative Metal”. The process of inferring the
semantic relationships between tags can be automated by semantic analysis of
tag co-occurrences using a large collection of tracks or other tagged resources. In
particular, semantic analysis provides a means for tackling many of the problems
related to social tags.

3.2.1 Techniques

Latent Semantic Analysis (LSA) (Deerwester, Dumais, Furnas, & Landauer, 1990)
is a technique widely used to infer semantic information from tag data. LSA mit-
igates the problems arising with the use of social tags, such as synonymy, user er-
ror, and data scarcity, and also increases the robustness of searching and retrieval
in large data collections (Levy & Sandler, 2008). To enable computational anal-
ysis, tag data are first transformed into the Vector Space Model (VSM) (Salton,
Wong, & Yang, 1975), representing associations between documents and tags in a
matrix form. Strong dominance of popular tags in the VSM representation is typ-
ically countered by normalizing the VSM by Term Frequency–Inverse Document
Frequency (TF-IDF) scoring. This reduces the weight given to popularly applied
tags and conversely increases the weight of tags associated to fewer tracks. The
TF-IDF matrix is then mapped to a lower-dimensional space using low-rank ap-
proximation. In LSA, the low-rank approximation is computed by Singular Value
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Decomposition (SVD), but other techniques such as Nonnegative Matrix Factor-
ization (NMF) (Seung & Lee, 2001) and Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 2001) have been used for this purpose as well. The obtained
approximation represents both tracks and tags as mixtures of dimensions related
to semantic concepts or topics. Semantic similarities between documents or tags
in the low-rank space may be computed using, for example, the Cosine distance
measure.

While LSA is the dominant approach followed for semantic analysis, vari-
ous other techniques have been applied for the analysis of the semantics of tag
data. Variants of NMF have been exploited to enhance image tagging (Zhou,
Cheung, Qiu, & Xue, 2011), and PLSA has been used for collaborative tagging of
websites (Wetzker, Umbrath, & Said, 2009). Peter, Shivapratap, Divya, and So-
man (2009) compared the performance of SVD and NMF as a means for low-rank
approximation of the LSA matrix in a bibliographic metadata retrieval task but
found no significant differences between the two. On the other hand, NMF out-
performed SVD and PLSA in the classification of text documents into mood cat-
egories (Calvo & Mac Kim, 2012). Garcia-Silva, Corcho, Alani, and Gomez-Perez
(2012) reviewed several research papers inferring semantic relationships between
tags using clustering techniques, ontology-based techniques, e.g., via Wikipedia7

searches, and hybrid approaches. Also, user-centered representations have been
employed in semantic analysis; these retain the associations between tags and the
users that applied them in a tripartite form (term-document-user). For instance,
Heymann, Ramage, and Garcia-Molina (2008) included the user as a factor for
predicting tags to websites using the Support Vector Machine (SVM) classifier,
while (Peng, Zeng, & Huang, 2008) proposed a technique for user-centered col-
laborative tagging of websites, research papers, and movies. On the other hand,
Song, Zhang, and Giles (2011) claimed that the tripartite representation increases
the problems related to tag scarcity and resorted to the traditional VSM represen-
tation, proposing a graph-based approach to recommend tags to academic papers
and websites.

In the MIR domain, Levy and Sandler (2008) employed LSA and PLSA for
topic modeling of Last.fm tags and compared these techniques in genre and artist
retrieval. Genre ground truth for the artists was obtained from several sources in-
cluding the Allmusic editorial tags. PLSA outperformed LSA with various model
dimensionalities and showed a performance comparable to that obtained using
the original VSM. This indicates that semantic analysis that maps tags to low-
dimensional semantic space still robustly accounts for relevant information in
the higher-dimensional tag data. The topics learnt with PLSA were highly dom-
inated by genres, accounting for 60 topics in a 90-topic model. Only one topic,
related to sadness or melancholy, represented the mood unambiguously. A sub-
sequent study (Levy & Sandler, 2009) using the same data showed that including
audio features describing the musical content as “tags” in PLSA improved the re-
trieval performance over the original PLSA model, especially for sparsely tagged
tracks. Other previous studies include topic modeling of game-based tags using
7 http://www.wikipedia.org/
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Latent Dirichlet Allocation (LDA) combined with audio-based topic prediction
(Law et al., 2010) and modeling the tripartite representation of Last.fm tags using
an SVD-based tensor-reduction algorithm to provide user-specific music recom-
mendations (Symeonidis et al., 2008).

3.2.2 Uncovering Structured Representations of Music Mood

Several studies in MIR have employed semantic analysis of tags to determine
structured representations of music mood. The analyses of tag similarities emerg-
ing from co-occurrence data have yielded semantic spaces resembling both the
dimensional and categorical models of emotion. The majority of the studies have
either analyzed the relationships between album-level editorial mood labels (Lin
et al., 2009; Hu & Downie, 2007) or crawled Last.fm tags for a large set of tracks
and analyzed the sub-space of mood-related tags (Levy & Sandler, 2007; Laurier
et al., 2009).

Levy and Sandler (2007) retrieved Last.fm tags for 5,000 tracks and selected
57 tags that were related to moods. Applying LSA with 40 dimensions and map-
ping tags to a 2-dimensional space using the Self-organizing Map (SOM) yielded
a space that showed a relationship with the circumplex model of affect. Levy
(2012) employed Multidimensional Scaling (MDS) instead of SOM for the same
purpose. Laurier et al. (2009) analyzed Last.fm tags associated with over 60,000
tracks and assessed how well the mood representations emerging from the tag
data corresponded with expert knowledge and emotion models. First, a reference
vocabulary of 120 mood words was created by aggregating word lists from sev-
eral sources including studies in psychology, music, and emotion, and MIR. The
vocabulary was then matched with the tag data, and 80 words were retained. A
dimensional representation of mood was inferred using the LSA and SOM, again
resulting in a space that resembled the circumplex model. Clustering of tags
using the Expectation Maximization (EM) algorithm yielded categories charac-
terized by anger, sadness, tenderness, and happiness, which corresponded well
the basic emotion model. Moreover, tag similarities found with the LSA were
strongly linked to Hevner’s adjective groups (Hevner, 1936) as well as MIREX
AMC mood clusters (Hu et al., 2008).

Also, editorial tags, especially those from Allmusic, have been used to cre-
ate semantic representations of mood. The five mood clusters used in the MIREX
AMC were created by clustering Allmusic mood tags associated with albums
and songs8 (Hu & Downie, 2007). Robust mood categories were obtained by
subjecting track- and album-level tags to agglomerative hierarchical clustering
separately and retaining only those mood tags that were consistently clustered
together. Also, Lin et al. (2009) used clustering to infer mood categories from All-
music tags. This time, tags associated with over 6,000 albums were subjected to
spectral clustering, yielding 12 mood categories. However, the goodness of fit of

8 Mood tags for songs were obtained from “Top lists” associated with each mood. However,
these lists are likely to be created by the web service by propagating album-level mood tags
according to the “song picks” from each album
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the categorization was not evaluated.
The analysis of tag co-occurrences has also enabled investigation of the rela-

tionship between mood and genre. Hu and Downie (2007) assessed the statistical
significance of associations between mood and genre tag pairs using Allmusic
data. The associations for less than 10% of the pairs were statistically significant,
so the authors concluded that genre and mood provide different and, to a large
degree, independent modes of access to music. The result was further corrobo-
rated by the analysis of Last.fm tags. Levy (2012) used other means of statistical
analysis for analyzing Last.fm tags and concluded that moods characterized gen-
res to some extent.

Deriving semantic mood spaces from tags can be seen as an alternative to
the factor analysis of direct similarity in judgments of emotion terms (Russell,
1980; Scherer, 1984) or self-reports of emotion term co-occurrences (Zentner et
al., 2008) on which several of the original emotion models are based. Exploiting
large-scale social tag data provides arguably a high ecological validity for this
type of analysis, since tag folksonomies emerge in an “organic” fashion (Levy,
2012). However, this approach faces inevitable challenges related to the unrelia-
bility of data. Although attempts have been made to evaluate the external valid-
ity of the semantic mood spaces by comparing them to emotion models, further
studies are needed to assess how robustly music items can be represented in these
spaces. In particular, previous studies have neither projected music tracks to the
semantic mood spaces nor evaluated the results with reliable data from listening
tests.

3.3 Audio-based Annotation

An audio-based music mood annotation system receives a digital audio signal
as an input and maps the signal to a specified representation of mood, such as
categories or dimensions. This is typically achieved by means of audio feature
extraction and machine learning.

3.3.1 Audio Feature Extraction

Audio feature extraction aims to automatically present a complex digital audio
signal in the form of a feature as suitable as an input to a machine learning
model. MIR studies have applied several approaches to audio feature extraction
for audio-based annotation. These can be generally divided into those attempting
to model structural characteristics relevant to the target concept (cf. Eerola et al.
(2009) for moods), those motivated or inspired by other music-related tasks such
as beat tracking (Goto, 2001) or other fields of research such as signal processing
and speech perception (e.g., MFCCs (Logan, 2000)), and those applying unsuper-
vised machine learning to infer feature representations (e.g., feature learning us-
ing deep neural networks (Lee, Pham, Largman, & Ng, 2009)). In practice, many
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methods combine the first two approaches to produce large numbers of features,
thus relying on the machine learning stage to identify relevant patterns between
the features and the target (Yang et al., 2008; Tzanetakis & Cook, 2002).

The influence of musical structure on the perceived mood has been estab-
lished already before the dawn of the digital age and the emergence of MIR by
analyzing the correlations between listener ratings of the expressed mood and
structural characteristics of music or structurally manipulated music pieces and
passages (Gabrielsson & Lindström, 2001). For example, Hevner (1937) con-
ducted experiments with several versions of the same piano pieces manipulated
in terms of various structural factors and concluded that listener ratings of the ex-
pressed mood are affected by musical structure. The strongest effect was found
when changes were made to musical tempo and mode, followed by pitch level,
harmony, and rhythm. Other structural characteristics found relevant to mood
perception, reviewed at length by Gabrielsson and Lindström (2001) include ar-
ticulation (staccato/legato), harmony (consonant/dissonant), loudness, melodic
range, timbre (e.g., soft/sharp), tonality (tonal/atonal/chromatic), and musical
form (e.g., complexity, repetition). These types of features have been modeled
computationally with various techniques, typically involving spectrogram com-
putation, i.e., the extraction of time-frequency representation of audio, pitch de-
tection (Tolonen & Karjalainen, 2000), chromagram extraction (Pauws, 2004), and
onset detection (Bello et al., 2005).

Features developed in the other research fields are also regularly employed
in music mood annotation. One of the most frequently adopted features from re-
search on speech recognition are the Mel-Frequency Cepstral Coefficients (MFCCs)
(Logan, 2000). MFCCs are computed by grouping and smoothing the magni-
tude spectrum according to the perceptually motivated Mel-frequency scale and
decorrelating the resulting values using the Discrete Cosine Transform (DFT).
MFCCs have particularly been employed to model musical timbre (Casey et al.,
2008). Various other features relevant to sound perception have been applied
to music mood prediction, such as spectral shape features (e.g., centroid, flat-
ness, roll-off, and spread) and spectral dissonance (Yang et al., 2008; Barthet et
al., 2012).

The third approach to audio feature extraction, not examined in the present
work, employs machine learning to automatically produce features useful for fur-
ther mapping to the target concepts. This can be achieved by using deep neural
networks (Lee et al., 2009) or sparse coding (Blumensath & Davies, 2006) or via
simple means of feature clustering (Dieleman & Schrauwen, 2013). The potential
of these approaches has been demonstrated for various music-related tasks in-
cluding auto-tagging (Hamel & Eck, 2010) and recognition of time-varying mood
(Schmidt & Kim, 2011).

In audio feature extraction, the signal is usually first cut into short over-
lapping time frames, and audio features are extracted from each frame. The
frame length is determined by the feature type. For example, low-level spec-
tral features are computed from short frames of 23–50 ms, whereas tempo is typ-
ically computed from 1–3-second-long frames. Various approaches have been
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used to compute the representation of features that are presented as input to a
machine-learning model. Clip- or song-level features can be computed by calcu-
lating the statistical means and covariances or standard deviations over multiple
frames (Mandel & Ellis, 2005). This is the so-called “bag-of-frames” approach
(Aucouturier, Defreville, & Pachet, 2007). A variant of this approach was used
by Ness, Theocharis, Tzanetakis, and Martins (2009), who computed the running
mean and standard deviation over 1-second-long texture frames and represented
full songs by computing another set of mean values and standard deviations over
the texture frames. Models have also been trained on the original frame-based
features, leaving the song-level aggregation for the prediction stage (Turnbull et
al., 2008; Coviello, Chan, & Lanckriet, 2011; Miotto & Lanckriet, 2012).

3.3.2 Machine Learning

Machine learning research has a long history, and techniques developed in the
field have been applied to almost all domains, ranging from bioinformatics to
computer visions (J. Han & Kamber, 2001). The first applications of machine
learning to audio-based music annotation included classification of musical in-
struments (Wold, Blum, Keislar, & Wheaton, 1996) and genres (Tzanetakis &
Cook, 2002). Later, the first techniques applied to moods were found to be strongly
grounded on similar approaches (Li & Ogihara, 2003). This is reasonable since the
same audio features may be used for different tasks, and shifting the focus from
genres to mood categories is technically equivalent to replacing the category la-
bels irrelevant to a machine-learning model.

3.3.2.1 Exploiting Listener Ratings

Classification of music tracks into categorical representation of moods has been
the dominant approach used in MIR. Li and Ogihara (2003) extracted 30 features
related to timbre, rhythm, and pitch and trained the binary SVM models to clas-
sify 499 music clips into 13 hand-labeled mood categories. Training and testing
the model on 50%–50% splits of the data resulted in accuracies ranging from 50%
to 80%, depending on the category. Wieczorkowska, Synak, Lewis, and Ras (2005)
analyzed the same data set but used a rather compact grouping of moods into six
clusters. The results obtained with the binary (k-NN) classifiers trained on 29
features related to loudness and timbre yielded classification accuracies between
64% and 96%. Feng, Zhuang, and Pan (2003) obtained relatively high recall (0.66)
and precision (0.67) values for four basic emotions by employing the binary MLP
models trained on tempo and articulation features representing 223 popular mu-
sic tracks. On the other hand, Lu et al. (2006) developed a hierarchical approach
based on the GMM to classify music into four quadrants in Thayer’s emotion
model. A first-level GMM trained on intensity features was applied to classify
tracks into low vs. high arousal, and based on the output, a second-level GMM,
trained on timbre and rhythm features, classified tracks into negative and posi-
tive valence. The system was evaluated using a set of 800 classical music clips and
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it achieved a classification accuracy of 85%. Schmidt et al. (2010) performed the
classification using the SVM also into the quadrants of the valence-arousal space.
Ground truth associated with 15-second-long clips of 240 popular music tracks
was obtained by averaging second-by-second valence-arousal ratings across the
clips. On comparing different audio feature sets, the highest accuracy achieved
was found to be 50% by combining spectral contrast and MFCC features. Several
studies have argued that one mood category is not always enough to represent
the mood of a music piece, and, thus, music mood classification may better be
formulated as a multi-label classification problem (Wieczorkowska et al., 2006;
Trohidis et al., 2008).

Although it is tempting to draw conclusions regarding the overall perfor-
mance of music mood classification, it is not reasonable to compare systems based
on the performance observed using different data sets, ground truth, and evalua-
tion metrics. By analyzing the results of the MIREX AMC contest, a more system-
atic comparison across systems may be performed and the general picture of the
state-of-the-art performances may be obtained. Submitted systems are evaluated
with 3-fold cross-validation of a data set of 600 popular music clips divided into
5 mood categories. The year-by-year results show that the mean accuracy has
increased from 52% to 60%, with the best accuracy increase ranging from 62% to
70%. However, the increasing accuracy may be attributed partly to the learning
from trial-and-error each year, as systems may be specifically developed to per-
form well on this particular data set rather than on mood classification in general.
To date, all high-performing systems in the MIREX AMC have employed SVM,
except the year 2007, when the GMM-based system yielded the highest perfor-
mance.

Common regression techniques employed to predict emotion dimensions
include the MLR, PLS regression, and SVR. Typically, models have been trained
to predict the valence and arousal for music pieces by training separate regression
models for both dimensions. MacDorman and Ho (2007) employed the MLR to
predict the valence and arousal ratings for 6-second-long excerpts of 100 songs.
The prediction error using features related to spectrum, periodicity, fluctuation,
and MFCC was 0.17 z-score for valence and 0.12 z-score for arousal, correspond-
ing to R2 > 0.95, i.e., the proportion of variance in the ratings was explained by
the predictions. This prediction rate is extremely high, considering that the re-
ported inter-rater reliability was more than four times higher than that in other
studies and that other studies have reported drastically lower prediction rates.
For example, Yang et al. (2008) employed the SVR trained on 114 features to pre-
dict listener ratings of valence and arousal for 195 popular Western, Chinese, and
Japanese songs and obtained R2 = 0.28 for valence and R2 = 0.58 for arousal.
Moreover, Korhonen, Clausi, and Jernigan (2006), with regard to performance,
obtained R2 of 0.22 and 0.78 at predicting time-varying valence and arousal, re-
spectively, in 6 classical music pieces using system identification, whereas Yang,
Su, Lin, and Chen (2007) employed the SVR and obtained similar rates of 0.17 and
0.80, respectively. It is notable that prediction rates for valence have been consis-
tently lower than those for arousal. Yang and Chen (2012) argued that this is



28

partly because valence perception is more subjective and elusive in terms of mu-
sical characteristics. On the other hand, some studies have also reported higher
rates for valence. Eerola et al. (2009) obtained a peak R2 performance of 0.72
for valence and of 0.85 for arousal in 110 film soundtrack excerpts using PLS re-
gression. Regression models were trained also for other mood scales including
tension, happiness, and sadness, yielding a performance between 0.58 and 0.79.
The modeling was based on a theoretically selected set of audio features related
to timbre, harmony, register, rhythm, articulation, and structure. Regression has
been employed also for predicting time-varying valence-arousal positions of mu-
sic clips (Schmidt et al., 2010; Schmidt, Scott, & Kim, 2012).

Eerola (2011) examined the genre-specificity of moods in music by applying
Random Forest regression to predict arousal-valence ratings in various data sets
representing classical, film, popular music, and mixed genres; 39 features were
extracted from audio tracks, and models were evaluated both within genres and
across genres. With regard to valence, for the model performance using tracks
from genres used for training (proper cross-validation was applied) the R2 = 0.31
(classical), 0.58 (film music), 0.25 (pop music), and 0.52 (mixed genres). In con-
trast, the models using genres not used for model training yielded dramatically
lower performance rates. Prediction of arousal showed similar patterns although
the rates were higher and the performance did not suffer as much across genres.
The results indicated that different features and model parameterizations are op-
timal for different genres in music mood prediction. On the other hand, (Schuller
et al., 2010) showed that relying solely on genre information can yield mood pre-
diction performance comparable to that obtained using audio features or lyrics.

Owing to the laboriousness of obtaining listener ratings of music mood,
the number of music items available for model training is limited. Model train-
ing with limited amount of data easily leads to problems related to overfitting
(Jensen & Cohen, 2000), as evidenced by the high prediction performance with
training data and the low performance with new data unseen during training.
The tendency of a model to overfit increases with a large number of input fea-
tures (Kohavi & John, 1997). Dimension reduction of the input feature space has
therefore been proposed as a way to improve the generalizability of the models.
Dimension reduction has been used in audio-based music mood annotation with
success (Yang et al., 2008; Eerola et al., 2009; Schuller et al., 2010). Cunningham
(2008) distinguished between two forms of dimension reduction: feature selec-
tion that selects an appropriate feature subset for model training and feature
transformation that maps the original features to a smaller number of latent di-
mensions. A well-known feature selection technique is the wrapper selection
technique that cross-validates a large number of candidate feature subsets us-
ing the learning algorithm corresponding to that employed for training the final
model (Kohavi & John, 1997). This technique has been employed in MIR for
audio-based recognition of moods (Yang, Liu, & Chen, 2006) and genres (Yaslan
& Cataltepe, 2006). Wrapper selection is effective since it inherently takes into
account the biases of the learning algorithm in order to select the subset with the
highest estimated prediction accuracy (John, Kohavi, & Pfleger, 1994). However,
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Kohavi and John (1997) showed that wrapper selection itself causes model over-
fitting owing to the likelihood of the candidate subsets yielding high predictive
accuracy, irrespective of the effectiveness of the subsets. It was therefore recom-
mended that evaluation and reporting of wrapper selection be based on an outer
loop of cross-validation that ensures that the test data remains unseen by the se-
lection process. Reunanen (2007) argued that the outer loop of cross-validation
does not alleviate the problem of the choice of the optimal subset still being, prob-
ably, biased, yielding a suboptimal result in terms of generalizability. A proposed
meta-algorithm called cross-indexing was found to be able to eliminate this bias
and outperform the outer loop of cross-validation in a series of experiments.

3.3.2.2 Exploiting Tags

Exploiting large-scale tag data in model training can help prevent problems re-
lated to using limited listener ratings. Audio-based generation of semantic tags
for music items, often termed as auto-tagging, has been a major topic in MIR.
Although the majority of auto-tagging studies consider tags in general and do
not concentrate on mood, equivalent techniques can be applied for multi-label
mood classification. A straightforward approach to building auto-tagging sys-
tems is to train separate classification models for each tag. This has been done,
for example, with social tags (Eck et al., 2007), CAL500 tags (Turnbull et al., 2008;
Hoffman, Blei, & Cook, 2009) and game-based tags (Mandel & Ellis, 2008).

Improvements have been made to auto-tagging performance by exploit-
ing relationships between tags. Several studies have employed two-stage ap-
proaches, where in the first stage, models are trained separately for each tag, and
in the second stage, the model for each tag is trained with the outputs obtained
in the first stage (Bertin-Mahieux et al., 2008; Ness et al., 2009; Miotto & Lanck-
riet, 2012). For example, a second-stage model may improve the performance
for a tag “Happy” by combining first-stage models corresponding to “Happy”,
“Sad”, and “Energetic”. While these techniques exploit correlations observed in
auto-tags, correlations observed in the original tag data have also been exploited.
For example, Bertin-Mahieux et al. (2008) reweighed the first-stage auto-tag out-
puts relative to observed tag co-occurrences. On the basis of empirically observed
tag correlations, Yang, Lin, Lee, and Chen (2009) transformed binary tag data to
ordinal relevance scores and trained regression models for each tag. Auto-tags
were then modified by a second-stage discriminative model, again based on tag
correlations.

Techniques that merge audio-based models with other sources of informa-
tion have also been implemented (Knees, Pohle, Schedl, & Widmer, 2007; Bu
et al., 2010; Levy & Sandler, 2009; Miotto & Orio, 2012). Combining different
sources has yielded positive results. For example, Turnbull, Barrington, Lanck-
riet, and Yazdani (2009) predicted CAL500 tags with a combination of auto-tags,
social tags, and web-mined text and found statistically significant improvements
as compared to using any one of the information sources alone. Notably, an algo-
rithm relying solely on MFCCs outperformed social tags with respect to accuracy.
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This rather surprising result may be attributed to the scarcity of social tag data.
Apart from mapping audio features directly to tags, audio features can also

be mapped to latent concepts inferred by semantic analysis. Law et al. (2010) em-
ployed LDA topic modeling and inferred a small number of topics from game-
based tags. Audio-based models first predicted binary topic labels for each track,
and then, the LDA model transformed the predicted topics to labels correspond-
ing to the original tags. This approach improved the performance more than the
approach using the modeling tags alone.

Music auto-tagging studies concentrating on moods have mostly relied on
editorial mood tags from Allmusic (B. Han et al., 2009; Lin et al., 2009, 2011).
B. Han et al. (2009) manually organized 11 Allmusic mood tags on an emotion
plane derived from Thayer’s model and placed tracks on the plane according to
the associated mood tags. SVR yielded high performance at predicting the mood
positions from audio tracks. Lin et al. (2009) examined the benefit of using genre
information in the classification of tracks into 12 mood clusters automatically de-
rived from the Allmusic tags. A two-level mood classification approach was em-
ployed, where a genre classifier was applied first, followed by a mood classifier
trained on tracks corresponding to the predicted genre. As compared to using a
single-level mood classifier, the use of the two-level scheme improved the perfor-
mance, especially for moods that were the most challenging for the single-level
model. Furthermore, consistent improvement was observed by combining sev-
eral genre-specific mood classifiers according to predicted probabilities of song
genres. Similar results were obtained by Lin et al. (2011) using a larger set of
mood tags (183 in total) and replacing the genre classifier with a web-crawler of
genre tags.

As discussed previously in 3.2.2, semantic analysis of tags has been success-
ful at inferring structured representations of music mood. However, audio-based
means to map tracks to such representations has not been studied in the past
although progress has been made in that direction. For instance, Wang, Yang,
Chang, Wang, and Jeng (2012) showed that both editorial and social mood tags
can be mapped to valence-arousal representation on the basis of audio features.
However, mapping of tags to the emotion space was not completely based on
tags, since it relied on track-level listener ratings of arousal and valence. More-
over, the technique was evaluated only at the tag level, by comparing the map-
pings to emotion models. Tags provide a large amount of data on music mood,
and audio-based techniques combined with semantic analysis enable mood pre-
diction without the need for listener ratings in model training. However, past
accounts of audio-based mood prediction exploiting tag data have only evalu-
ated the proposed techniques on tags itself, which do not necessarily represent a
reliable ground truth.



4 AIMS OF THE STUDIES

The primary aim of the present work is to facilitate the annotation of large and
heterogeneous music collections in terms of mood for the benefit of modern-day
music listening. Therefore, the work investigates computational means that in-
corporate information inferred from large-scale semantic tag data and audio fea-
tures. Empirical studies aim to predict listener ratings of moods expressed by
music by using machine learning based on audio features (I, IV–VI) and by se-
mantic analysis based on social (II–VI) and editorial (III, V) tags. Audio-based
machine learning models are trained either with small data sets to directly map
audio features to listener ratings (I, IV) or with large data sets by exploiting tag
data (IV–VI). The employed information sources and projections between them
are presented schematically in Fig. 1.

Previous studies on music mood annotation have frequently employed ma-
chine learning to predict listener ratings of music mood based on audio features.
However, the laboriousness of collecting reliable listener ratings tends to drasti-
cally limit the amount of data available for model training. Model training with
a small amount of data, coupled with the use of a large number of input fea-
tures, increases the risk of overfitting, thereby limiting the generalizability of the
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FIGURE 1 An overview of the sources of information employed in the studies (I – VI).
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model to the new data. Study I aims to investigate whether the generalizability
of audio-based models trained with a small amount of data can be improved by
using the wrapper selection process (Kohavi & John, 1997) that prefers models
trained with few robust features over those trained with large feature sets. The
focus of this study is to optimize the feature subset size employed by a learn-
ing algorithm. Three methods applicable for this purpose are compared: outer
loop of cross validation (Kohavi & John, 1997), cross-indexing (Reunanen, 2007),
and the proposed modified version of cross-indexing. The study also aims to con-
tribute to the understanding of the audio feature combinations related to emotion
perception in music.

Studies II–VI examine the robustness of large-scale social and editorial tag
data in music mood annotation. Studies II and III aim to improve and evaluate
music mood inference solely on the basis of tags associated with music tracks.
Tags have been exploited in music mood annotation in previous studies (Lin et
al., 2011), but the reliability of such data has not been assessed. Moreover, struc-
tured representations of music mood have been identified from social and edito-
rial tags using semantic analysis (Levy & Sandler, 2007; Laurier et al., 2009), but it
has not been shown whether the proposed representations facilitate the annota-
tion of music items. Study II aims to fill these gaps in the knowledge by proposing
a novel technique called Affective Circumplex Transformation (ACT) that infers
the emotion from tags and projects tracks to representations based on associated
tags. ACT is evaluated using listener ratings of music mood collected for 600
tracks from different genres and compared to raw tags and other semantic anal-
ysis techniques. The study also aims to investigate whether the dimensional or
categorical representation better describes the structure of music mood emerging
from tag data. Study III aims to evaluate the performance of ACT at representing
the mood based on tags obtained from two different sources: 1) crowd-sourced
tags available from Last.fm, and 2) curated editorial annotations used in a pro-
duction music catalogue. Moreover, the study seeks to assess the width of the
gap between the semantic representations of mood from these two data sources
by applying semantic models across the corpora. ACT is applied for semantic
modeling, and the evaluation is conducted using listener ratings from Study II
and another set of ratings collected for 205 production music tracks.

The rest of the studies (IV–VI) aim to demonstrate how large-scale tag data
can be exploited to improve audio-based music mood prediction. Previous stud-
ies have proposed audio-based techniques for the generation of semantic tags
(Turnbull et al., 2008; Eck et al., 2007), but these techniques have either been de-
veloped specifically to predict moods or evaluated using reliable listener rating
data. Moreover, the benefit of incorporating semantic analysis of tags into audio-
based mood prediction has not been assessed. Study IV proposes and evaluates
a novel technique termed as Semantic Layer Projection (SLP) that maps audio
features to a semantic mood space and then maps these obtained estimates to lis-
tener ratings. SLP performance is compared to conventional methods that map
the audio directly to listener ratings. On the basis of the evaluations in Studies
II and III, the semantic mood space is inferred using ACT, exploiting social tags
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FIGURE 2 An overview of ACT and SLP processing stages and the sources of informa-
tion (highlighted in gray).

as the source of semantic information. While Study IV exploits listener ratings
in the training for the second stage of mapping from the semantic space, Study
V evaluates a variant of SLP that does not require listener ratings in the model
training. Study V also evaluates SLP using both social tags and editorial tags and
compares the tags and audio tracks as model inputs for novel tracks. Fig. 2 out-
lines the processing stages and sources of information involved in the ACT and
the SLP techniques. The techniques are briefly explained in the next section and
detailed in the included studies.

Previous studies suggest that using different audio features may be an op-
timal technique for predicting valence and arousal in different genres (Eerola,
2011), and adapting audio-based auto-tagging models to genres is beneficial (Lin
et al., 2009, 2011). Even using genre information directly as input for mood pre-
diction has been found to be an effective strategy (Schuller et al., 2010), indicat-
ing the fact that the relevance of moods differs between genres (Hu & Downie,
2007). However, previous studies have not tested whether adapting semantic
mood models and subsequent audio-based models to different genres would be
beneficial for mood prediction; moreover, genre information has not been shown
to improve the prediction of listener ratings of emotion dimensions. Study VI
aims to fill these gaps in the knowledge by adapting both the semantic and audio-
based models to different genres.



5 MATERIALS, METHODS, AND RESULTS

This chapter presents a summary of the materials, methods, and findings of Stud-
ies I–VI (Please refer to the original publications for details). All studies eval-
uated mood annotation performance primarily using listener ratings collected
from pools of participants. The focus of all ratings was on the expressed mood.
Study I took listener ratings and audio materials from a previous study by Eerola
and Vuoskoski (2011), whereas Studies II–VI used listener ratings collected in the
present work (Studies II and III). All audio features in Studies I and IV–VI were
extracted using MIRtoolbox (Lartillot & Toiviainen, 2007).

5.1 Improving the Generalizability using Feature Selection (I)

Study I used wrapper selection as a means for feature subset selection and com-
pared different methods to optimize the feature subset size for different classi-
fiers. Three methods were compared: the outer loop of cross-validation (Kohavi
& John, 1997), cross-indexing (Reunanen, 2007), and a proposed modified version
of cross-indexing that introduces a parameter that inherently favors subsets with
a smaller number of features in subset size optimization.

The experiments were run on two data sets of film soundtrack excerpts
taken from listening tests conducted by Eerola and Vuoskoski (2011): 1) a smaller
set of excerpts rated by 116 non-musicians was used as the primary set for feature
selection, and 2) a larger set rated by 12 expert musicologists was used for exter-
nal validation of the feature selection performance. The listener ratings, originally
given in terms of basic emotions on seven-point Likert scales, were transformed
to classes according to the highest-rated emotion for each excerpt. Subsets of the
data sets were selected in order to avoid emotionally ambiguous excerpts and
obtain an equal number of excerpts for each class. Moreover, anger and fear were
grouped as one category owing to their high correlation. The resulting primary
and validation sets consisted of 64 and 160 excerpts, respectively. Audio fea-
tures related to dynamics, rhythm, pitch, harmony, timbre, and structure were
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extracted in a frame-based manner, and each excerpt was finally represented by
a vector of 66 features corresponding to the mean and standard deviation of each
feature over the excerpt lengths.

The experiment was run using three well-known classifiers: the Naive Bayes,
k-NN, and SVM. The hypothesis was that the performance of k-NN and Naive
Bayes would be significantly improved by wrapper selection since they are highly
influenced by redundancy and irrelevance of features, whereas SVM would pro-
vide an example of a more sophisticated classifier less prone to overfitting. Two
search methods were compared for feature selection: forward selection (FS) and
backward elimination (BE) that involve a stepwise addition (FS) or removal (BE)
of one feature at a time, starting from the empty (FS) or full (BE) feature set. The
wrapper selection process was run with each classifier – a search method combi-
nation – until the full or empty feature set was reached, depending on the search
method. For the wrapper selection, the primary set was split into a number of
50% training–50% test folds. The selection process was run on each training fold,
and the performance of each successive subset was evaluated on the correspond-
ing test folds and the validation set. The optimal subset size was then estimated
based on the test fold performances using the three optimization methods. Fi-
nally, the methods were compared by examining how well they could predict the
optimal subset size and classification rate for the validation set.

The estimates obtained using the modified cross-indexing estimates corre-
sponded fairly well with the optimal subset sizes and classification rates observed
in the validation set and outperformed the original cross-indexing. Moreover, the
results showed that the outer loop of cross-validation provides inaccurate esti-
mates of the optimal subset size and performance of the classifiers. In general,
smaller subsets (with less than ten features) led to better generalization of the
models than larger subsets. This pattern was insufficiently uncovered using the
outer loop of cross validation and the original cross-indexing algorithm. When
taking into account the classification rates and the simplicity of the optimized
models, the k-NN with BE yielded the most promising results: 56.5% classifi-
cation accuracy with only 4 features. The most useful feature subsets for k-NN
included the majorness of mode and key clarity in combination with dynamical,
rhythmical, and structural features.

5.2 Incorporating Tag Data as Information Sources (II–III)

Studies II and III examined how accurately moods expressed by music can be
predicted on the basis of social and editorial tags. In particular, the studies in-
vestigated whether semantic analysis based on tag data to infer structured repre-
sentations of mood can improve tag-based mood prediction. Study II focused on
social tag data and crawled a substantially large data set of track-level tags using
the Last.fm API. In order to build a data set balanced in terms of moods as well
as genres, vocabularies consisting of 568 mood terms and 864 genre terms were
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used as queries for data crawling. These vocabularies were gathered in a similar
manner as in the study by (Laurier et al., 2009) by aggregating term lists from
different research papers and online sources. The final set comprised 1,338,463
tracks and 924,230 unique tags. After a series of data cleaning procedures, mood-
related data included 259,593 tracks and 357 terms. Partitions of the data set were
formed similarly for genres, instruments, opinions, and locations.

LSA (Deerwester et al., 1990) followed by MDS was applied to the mood
data to map tags to a three-dimensional space reflecting the semantic similarities
between tags. The choice of the dimensionality was based on previous studies on
emotion modeling suggesting that emotions would be explained by two to three
underlying dimensions (Russell, 1980; Schimmack & Grob, 2000; Zentner et al.,
2008). Tracks were then projected to the space on the basis of associated tags. To
examine whether the dimensional or categorical representation of mood provides
a better fit to the data, the clusterability of tracks in the mood space was analyzed
using the Hopkins’ index (Hopkins & Skellam, 1954). For comparison, the same
analysis was conducted also with the data related to genres, instruments, opin-
ions, and locations. The Hopkins’ index for moods remained at a range of 0.6–0.7,
supporting the fact that tracks are distributed continuously rather than categor-
ically in the mood space. In contrast, the index for the other concepts was con-
sistently higher, i.e., 0.7–0.95. In particular, this finding supported the common
practice of assigning songs categorically to genres.

The abovementioned typical LSA and MDS procedures may not be ade-
quate for characterizing moods since the obtained dimensions do not explicitly
represent the dimensional model of emotion. Therefore, a novel technique, ACT,
based on Russell’s circumplex model of emotion (Russell, 1980) was proposed to
conceptualize the dimensions of the MDS mood space. This technique involved
a mapping process to conform the MDS space to the circumplex model on the
basis of reference positions for mood terms on the valence-arousal dimensions
obtained from previous studies by Russell (1980) and Scherer (1984). This was
achieved using classical Procrustes analysis (Gower & Dijksterhuis, 2004). Fi-
nally, music items could be projected to the resulting space based on the associ-
ated tags. In particular, the track positions along the first and second dimensions
in the space represent valence and arousal, respectively. A listening experiment
was conducted to evaluate ACT performance at track-level mood prediction. An
evaluation set of 600 tracks, not overlapping with the already analyzed data, was
obtained from Last.fm. This set was sampled in a balanced manner to cover
the semantic mood space as well as the six main genres: electronic, folk, jazz,
metal, pop, and rock. The listening experiment involved a total of 59 partici-
pants who were asked to rate 15-second-long clips of the tracks on 9-point Likert
scales. The three core affect dimensions of valence (negative–positive), arousal
(calm–energetic), tension (relaxed–tense) were rated in terms of bipolar scales,
and seven mood terms (atmospheric, happy, dark, sad, angry, sensual, and senti-
mental) were rated on unipolar scales. For further analysis, the ratings were ag-
gregated by calculating the mean value for ratings provided by all participants.
The ACT’s ability to predict the listener ratings based on tag data associated with
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the evaluation set was then evaluated, and for comparison, several conventional
tag-based techniques including SVD, NMF, PLSA, as well as the raw tag data
were employed.

ACT outperformed the baseline techniques consistently, regardless of the
number of dimensions used in the LSA stage. Moreover, ACT and all semantic
analysis techniques outperformed the raw tag data, supporting the use of seman-
tic analysis in tag-based music mood prediction. The median correlation between
the ACT estimates and listener ratings was 0.58 for valence and 0.64 for arousal.
For the other mood scales, the overall performance level of all examined tech-
niques was slightly lower. Further analysis showed that ACT performance is
robust even if there is a scarcity of track-level mood tags. In general, the results
suggested that significant performance improvements can be made by represent-
ing the moods of music tracks in an interpretable and robust fashion based on
semantic computing of social tags and research on emotion modeling.

Study III examined the performance of ACT across the corpora of curated
editorial tags associated with production music tracks and the data from Study
II. A corpus of 226,344 production music tracks was extracted from I Like Music’s
(ILM) collection that aggregates 29 individual production music catalogues; 288
mood terms could be identified from the ILM corpus. ACT models were then
trained separately with social and editorial tags, and these models were applied
to predict listener ratings in two evaluation sets: one collected in Study I, and the
other collected for a subset of the ILM corpus. For the listening experiment, a set
of 205 tracks was sampled from the ILM corpus, again in a balanced manner, to
sufficiently cover different moods and genres. The ratings were collected from 46
participants for the 3 core affect dimensions and additionally for 3 bipolar scales
related to dominance (submissive/dominant), romance (cold/romantic), and hu-
mor (serious/funny). The evaluations however focused on the core affects.

ACT models trained with editorial tags outperformed the models trained
with social tags at predicting the listener ratings from Study II. This result was
partly expected since curated editorial tags are considered more reliable than
crowd-sourced social tags but, nevertheless, surprising owing to the difference
between the musical material in the two corpora. Unsurprisingly, when tested
with the listener ratings related to production music, ACT models trained with
editorial tags again outperformed those trained with social tags. However, the
performance of the models trained with social tags did not suffer when evalu-
ated with production music tracks, except in the case of arousal. In general, these
results showed that semantic models of moods obtained using ACT could be gen-
eralized across tag types and musical material.

5.3 Exploiting Tag Data for Audio-based Annotation (IV–VI)

Studies IV–VI focused on improving audio-based music mood annotation by ex-
ploiting large-scale tag data. Study IV sought to demonstrate whether an audio-
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based model exploiting a large set of audio and tags improves the prediction of
listener ratings more than a model trained directly to map audio features to the
ratings. To achieve this aim, tag data and listener ratings were taken from Study
II, and an experiment was conducted to predict the listener ratings of valence
and arousal. A novel technique, i.e., SLP, derived from ACT was proposed for
the tag-based prediction. SLP involves mapping audio features (audio level) to a
semantic mood space inferred using ACT (semantic layer) first and then mapping
the semantic mood space to listener ratings (perceptual level). The idea behind
using a semantic layer rather than raw tags as an intermediate representation
was to make use of the benefit of the high performance of ACT at representing
the moods of music tracks.

The ACT model was trained in the same manner as in Study II to create
the semantic layer. However, the semantic layer in this study was represented
by ten dimensions rather than three dimensions. A subset of 9,662 tracks was
then sampled from the full training corpus for the audio-based modeling, and
15–30-second-long preview audio clips were obtained from Last.fm. A total of
128 audio features were extracted to represent the clips in a similar manner as in
Study I. Regression models were then trained to map audio features separately
to each semantic layer dimension using the PLS regression, bearing in mind its
effectiveness in previous studies (Eerola et al., 2009). The resulting mappings
were then applied to the evaluation set of 600 tracks. Within the evaluation set,
linear regression models were trained to map the track estimates on the semantic
layer to the listener ratings. Two inputs for the linear regression were compared:
(1) track estimates along all dimensions together, and (2) track estimates along
separate dimensions corresponding to valence (1st dimension) and arousal (2nd
dimension). The former input would result in exploitation of tag data merely
as a means of dimension reduction of audio features, whereas the latter would
produce estimates of the listener ratings without adapting to the rating data (only
the overall range of the estimates would need to be adjusted). SLP was compared
to two baseline techniques that mapped audio features directly to the listener
ratings: PLS and SVR. These techniques were chosen since they were found to
be successful in previous MIR studies, e.g. (Yang et al., 2008; Eerola et al., 2009;
B. Han et al., 2009).

To obtain the final performance, 2-fold cross-validation was run 50 times
within the evaluation set. With regard to valence, SLP using all semantic layer
dimensions produced, by far, the highest performance of R2 = 0.34, outperform-
ing the other SLP variant (R2 = 0.25) as well as the baseline techniques (R2 = 0.15
for PLS and R2 = 0.25 for SVR). This showed the efficiency of exploiting tag data
in audio-based modeling. A notable result was that the SLP variant that modeled
the ratings directly with the semantic layer dimensions outperformed (although
slightly) the techniques that carried out complex model training to adapt to the
ratings. The overall performance level was higher for arousal than for valence,
consistent with the findings of previous studies (Yang & Chen, 2012). SLP (all
dimensions) again showed the highest performance (R2 = 0.78), but this time
outperformed SVR only slightly. The lowest performance was obtained by SLP
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with a single semantic layer dimension (R2 = 0.75). However, this performance
was still promising considering that no adaptation to listener ratings was per-
formed1. Finally, SLP performance using different subsets of audio features was
examined to determine the type of features that would be the most useful ones
for modeling valence and arousal. Harmony-related features were found to be
the most useful ones for modeling valence (R2 = 0.19), supporting the findings
from Study I, whereas timbral features representing characteristics of the audio
spectrogram were the most useful ones for arousal (R2 = 0.687). In general, the
results proved the usefulness of exploiting tag data in audio-based music mood
prediction and highlighted the difficulty in modeling the valence dimension in
music.

Study V carried out further exploration with the SLP technique. In compar-
ison to Study IV, in this study, the ILM data set and listener ratings from Study III
were employed, and performance was examined for all rated mood scales. The
SLP variant 2) from Study IV that produces mood estimates without the need to
adapt to listener ratings was employed since it provided promising results and
could be directly compared to tag-based prediction using ACT. Instead of cross-
validation, the R2 performance was obtained by computing the squared corre-
lations between the estimates and the ratings. Another difference in Study IV
was that SLP involved a three-dimensional rather than ten-dimensional seman-
tic layer. This way both of these techniques would employ the same semantic
mood representation and thus enable fair performance comparison. Two exper-
iments were carried out: (1) comparison of SLP to baseline techniques that map
audio features to each tag separately, and (2) comparison of audio-based predic-
tion using SLP and tag-based prediction using ACT. In the first experiment, SLP
outperformed the baseline techniques by a clear margin using both Last.fm and
ILM data, showing the efficiency of mapping audio features to the semantic layer
rather than to the tags. Concerning the Last.fm data, using the three-dimensional
rather than ten-dimensional semantic layer in SLP improved the performance for
valence (R2 = 0.32), but decreased the performance for arousal (R2 = 0.71). The
other mood scales that were strongly associated with valence, e.g., happy, sad,
and dark, were the most difficult to predict. The prediction rate for valence was
considerably higher (R2 = 0.49) with the ILM data than with the Last.fm data,
probably because the aim of production music is to provide clear structural cues
conveying positive or negative emotion.

The second experiment allowed direct comparison of prediction performance
achieved when using audio and tags as information sources for novel tracks.
Audio-based prediction using SLP consistently outperformed tag-based predic-
tion using ACT; ACT outperformed SLP only for valence and happy with the
Last.fm data. The most radical performance difference was observed for arousal,
for which the audio-based prediction improved tag-based prediction from R2 =
0.42 (Last.fm) and 0.50 (ILM) to over 0.70. Also, the performance of the combina-
tion of ACT and SLP was examined. The performance showed notable improve-

1 The performance is actually surprisingly high as compared to the tag-based prediction of
arousal with ACT in Study II. This difference was further examined in Study V.
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ments, especially for valence. However, giving more weight to SLP estimates
led to higher results for all moods, suggesting that audio and tags can be used
effectively as complementary information sources of music mood.

The rather surprising results related to the performance difference in SLP
and ACT lead to two obvious questions: First, how can the tag data that provides
direct human-labeled semantic information be inferior to audio features? Second,
since SLP models were originally trained to map audio to ACT dimensions, how
could they yield higher prediction performance than the actual dimensions? The
scarcity of tag data coupled with their inherent unreliability may provide answers
to both of these questions. Although ACT alleviates the problems related to tag
scarcity, tracks are still mapped to the semantic space based only on a few tags,
causing local inconsistencies. In contrast, mapping audio features to ACT dimen-
sions using SLP may tap into more global patterns and provide a way to “smooth
out” these inconsistencies. Nevertheless, these results have positive implications
for music mood annotation since they indicate that human-generated labels are
not necessarily required for efficient mood inference of novel tracks.

Study VI examined whether the audio-based prediction exploiting tags could
be improved by taking into account the genre of music tracks. Although audio-
based prediction using SLP was found to be efficient in Studies IV and V, the
results showed that there was room for improvement, especially for the valence
dimension. A novel genre-adaptive technique called ACT+SLPwg was employed
in the study: First, a number of genre-specific SLP models were trained separately
using tracks associated with different genres, and these models were applied to
novel tracks according to the associated genres. By allowing the semantic mood
space to adapt to different genres, the technique took genre-adaptivity beyond
the previous approaches presented by Lin et al. (2009) and Lin et al. (2011). This
technique was compared to the general non-genre-adaptive SLP techniques and
several variants of SLP that exploited genre information. Performance evaluation
was carried out using Last.fm social tag data, comprising 100 mood and genre
tags, and the listener ratings from Study II associated with the Last.fm evaluation
set.

Genre information of tracks was represented by a weighted combination of
genre clusters inferred from the social tag data. A genre clustering survey was
conducted to evaluate different clustering techniques for this task and to deter-
mine the number of genre clusters needed to represent the tag data. In the survey,
participants were asked to arrange the 100 genre tags into a number of groups us-
ing an online interface. The ability of three conventional clustering techniques,
in terms of the Mirkin metric (Mirkin, 1996), to produce the human-generated
clusters automatically based on tag data was compared: K-means, Agglomera-
tive hierarchical clustering, and Spectral clustering. Based on the evaluation, the
K-means technique was chosen for further mood prediction analyses. The survey
did not yield a clear optimal number of genre clusters. However, K-means with
six clusters produced a result resembling the main genres in the evaluation set.
Therefore, the subsequent mood prediction analyses were primarily conducted
using this clustering.
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In the first mood prediction experiment, various general models not exploit-
ing genre information were considered. First, tag-based mood prediction was
performed using ACT with three alternative mood term reference configurations.
This was done to obtain a tag-based performance reference and to optimize the
mappings from mood tags to the semantic mood space for the subsequent audio-
based analyses. In this evaluation, a reference configuration consisting of a sub-
set of mood terms from Study II (happy, calm, sad, and angry) outperformed the
original configuration. Furthermore, mood space inferred directly from human-
labeled normative data obtained from Warriner and Brysbaert (2013) did not yield
convincing results. This supported the exploiting of music-specific tag data in
forming the semantic mood space rather than using a mood space that describes
affective connotations of mood words in general. In the audio-based mood pre-
diction analysis, SLP yielded a prediction performance of R2 = 0.36, 0.73, and
0.49 for the core affects valence, arousal, and tension, respectively. The perfor-
mance level was found to be more favorable than that of stacked SVM classifiers
that had been found to be efficient in previous studies on music auto-tagging
(Ness et al., 2009).

The second mood prediction experiment compared ACT+SLPwg to differ-
ent genre-adaptive techniques and to the general models not exploiting genre in-
formation. The genre-adaptive techniques exploited genre either directly as input
features to SLP or trained a collection of mood prediction models within different
genres. Moreover, genre information for novel tracks was either derived from tag
data or predicted from audio. ACT+SLPwg showed the highest performance us-
ing both the tag- and audio-based genres. In particular, ACT+SLP showed more
improvements than general SLP and outperformed the technique that did not
involve genre-adaptive modeling of the semantic mood space. The highest per-
forming technique overall was ACT+SLPwg using audio-based genres, yielding
a statistically significant improvement as opposed to general SLP for all core af-
fects (R2 = 0.43, 0.74, and 0.52 for valence, arousal, and tension, respectively).
Further analysis showed that the performance of ACT+SLPwg was not sensitive
to the number of genre clusters.



6 CONCLUSIONS

The ability of music to express moods is one of the main reasons why people are
attracted to music listening. Annotation of music in terms of the expressed mood
is therefore useful for various purposes, such as music catalogue organization,
music recommendation, mood regulation, and research on cognitive disorders,
to name a few. The present work aimed to improve techniques to annotate music
according to the expressed mood by employing semantic computing based on
social and editorial tag data and machine learning based on audio features.

Social and editorial tags are abundantly and increasingly available for mil-
lions of music tracks, and a considerable proportion of the tag data is related to
mood. However, the findings of Study II suggested that tag-based annotation is
not adequate as such to represent moods of music tracks. As a solution, seman-
tic computing applied to tag data to infer a mood representation, resembling the
well-known dimensional model of emotion, led to significant improvements to
the annotation accuracy. The proposed ACT technique performed well at rep-
resenting moods of music tracks based on social tags when compared to other
semantic analysis techniques (Study II). Moreover, ACT models were generaliz-
able across tag data types (social vs. editorial tags) and musical corpora (popular
vs. production music) (Study III). These results have positive implications for the
use of various sources of semantic information about music to represent mood.
Use of computational means to improve the accuracy of these annotations is ar-
guably the most economical approach to improve the quality of the data since
additional manual labeling is not required in this case. In the present work, only
tag data were studied, but similar approaches could be applied to other data as
well, such as microblogs, lyrics, and web-mined text.

Owing to the sheer pace of the emergence of new music, all of the world’s
music is not, and will never be, labeled by editors or tagged by online commu-
nities in terms of mood. The benefit of using audio-based annotation is that it
does not rely on human-generated labels of new music items, so these audio-
based techniques are more applicable to music in general. In previous studies,
performance improvements have been made by applying audio feature selection
as a pre-processing step prior to training the final predictive models. However,
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according to Study I, carrying out automatic feature selection using typical cross-
validation procedures leads to suboptimal results, and the obtained models can-
not be generalized to unknown data. Clear improvements in this approach were
achieved using the proposed cross-indexing procedure that optimized the feature
subset size by favoring small subsets that simplified the training data. Concern-
ing the examined models employing audio features, such as an input to music
mood classification, cross-indexing increased the accuracy of the optimal subset
size and classification performance estimates. Although cross-indexing was ap-
plied to optimize the feature subset size, in principle, it can be applied to any
model parameter optimization task. For example, the number of components in
the PLS regression models was optimized using cross-indexing in Studies III and
IV. Examining the influence of cross-indexing on prediction performance was,
however, out of the scope of these studies.

While Study I exploited a limited amount of listener ratings as the ground
truth for model training, Studies IV–VI sought to increase the amount of training
data available by exploiting large-scale social and editorial tag data. The results of
Study IV showed that a model using a semantic mood space inferred from social
tags as an intermediate layer, to which audio features are mapped, can outper-
form models that are trained to directly map audio to listener ratings. Overall,
the proposed SLP technique yielded a relatively high performance. However,
the performance for valence remained at a low level, in line with the findings of
previous studies, indicating that audio-based prediction of valence is more chal-
lenging than that of arousal. These results, i.e., the efficiency of SLP and the low
prediction accuracy for valence, were further generalized by subjecting the edi-
torial tag data to SLP in Study V. These results indicate that the trade-off between
(1) the amount of data available when exploiting tags and (2) the reliability of
training data when exploiting listener ratings is not crucial if the tag data are
processed using appropriate semantic computing techniques.

Study VI aimed to improve the performance of audio-based mood predic-
tion by exploiting genre information. The novel technique ACT+SLPwg pro-
duced the most accurate predictions by adapting both the semantic mood space
and audio-based models to different genres. In particular, as compared to mod-
els not exploiting genre information, ACT+SLPwg largely improved the predic-
tion of valence, suggesting that semantic relationships between mood tags are
not static across different genres of music and that audio-based modeling bene-
fits from taking into account these genre-specific aspects. The results for valence
indicate different ways in which positive and negative aspects of moods are con-
ceptualized in different musical genres. The study also showed that inferring a
semantic mood space in a bottom-up manner from music-specific tag data was
more efficient in producing music mood representations than the space built on
the basis of normative data collected in studies in the field of affective sciences.
This result indicates that although the emotion models grounded on everyday
emotions can be applied as the general framework to represent music mood,
music-specific data are needed to produce robust music mood representations.
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6.1 Methodological Considerations

Computational modeling of music mood is such a wide topic that many impor-
tant methodological aspects were not addressed in the present work. The first
consideration is related to the listener ratings on the basis of which a major pro-
portion of the evaluation was carried out. Although the ratings were collected
on clearly defined mood scales, the choice of mood term-based scales might have
caused a bias in the evaluation. In Study II, the ratings were collected only for
seven terms, all related to the most typical moods expressed by music. If the
proposed techniques were to be evaluated using more uncommon terms, such
as “dramatic”, “quirky”, or “bittersweet”, perhaps, the low-dimensional mood
model would not have been as efficient as a representative as the studies indi-
cated. Although the low-dimensional models have been widely supported in
music research, it could have been more adequate to use higher dimensional
representations such as the GEMS (Zentner et al., 2008) as the basis for mood
modeling. Moreover, the choice of collecting responses on Likert scales might
have exaggerated the fit of the dimensional model to the rating data. Therefore,
it would be useful to cross-validate the listener ratings using other self-report
methods such as adjective checklists, open-ended questionnaires, or non-verbal
measures (e.g., assessing the similarity in music clips in terms of mood).

The second methodological consideration is related to the music corpora.
The corpora employed in Studies II–VI consisted of sampled tracks associated
with both mood and genre tags, which led to the omission of a large proportion
of the original data. Since the number of tags associated with music items was
arguably correlated with popularity, this undoubtedly caused a bias toward more
popular tracks not representative of the whole corpora. Further analysis would
be needed to determine how the proposed techniques would perform with music
that was methodologically disregarded from the analysis. As shown in Study II,
performance of tag-based mood annotation is influenced by the scarcity of tag
data. One way to increase the model performance with sparsely tagged music
items would be to complement the tag data with textual data from other sources,
such as web-mined text or lyrics. Further research is thus needed to assess such
options. Another possible bias caused by the choice of music corpora is related to
the included musical genres. As the studies focused on Western popular music,
and, in particular, on music that is popular on online music services, the analysis
largely ignored classical and non-Western music. For example, instead of consid-
ering different popular music genres in the genre-adaptive analysis, a plausible
genre configuration could have been obtained by distinguishing classical music,
popular music, and non-western, non-popular music. It remains to be seen how
the proposed genre-adaptive technique would perform with data showing such
a wide variety of musical and cultural characteristics.

The third consideration is related to the semantic modeling techniques. Smooth-
ing out noise in the tag data is considered, in general, a favorable feature of se-
mantic modeling, but this also causes the loss of inherent nonlinearities or ir-
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regularities that might be conceptually important characteristics. Disregarding
these characteristics as noise reduces the granularity at which moods are mod-
eled. Also, the use of low-dimensional semantic mood space may have exagger-
ated the semantic similarity of certain mood terms, such as “intense” and “dark”
or “sleepy” and “peaceful.” Higher-dimensional semantic models or nonlinear
techniques might be more suitable for dealing with these issues. Moreover, the
use of existing ontologies such as the Wordnet (Fellbaum, 1998) to infer semantic
knowledge about tags was left unexplored. This avenue could provide a potential
alternative to deal with semantic data.

The fourth consideration is related to content-based analysis. The perfor-
mance of audio-based techniques is highly dependent on the quality of the ex-
tracted audio features. Prediction errors in audio-based mood annotation can
be partly attributed to the inaccuracy of audio features at capturing perceptu-
ally meaningful features of music. For example, audio features modeling par-
ticular musical features such as mode or rhythmic clarity have been inconsistent
in terms of listener evaluations of the target features (Friberg, Schoonderwaldt,
Hedblad, Fabiani, & Elowsson, 2014). Development and fine-tuning of the au-
dio feature extraction is therefore an effective way to enhance the audio-based
mood prediction accuracy. Moreover, an avenue that was left unexplored in the
content-based analysis was the use of lyrics as a source of information for mood
prediction. Lyrics can either detract or enhance the emotions perceived in music
(Ali & Peynircioğlu, 2006), and studies predicting mood based on a combination
of lyrics and audio have yielded positive results (Kim et al., 2010) although dis-
puting evidence has also been presented (Schuller, Weninger, & Dorfner, 2011).
Acknowledging the multi-modal nature of music-related emotional expression
could be another way to improve the performance of the proposed techniques.

6.2 Future Directions

A major benefit of the explored mood modeling approach is that the produced
models can be adapted to real-world data produced by everyday music listen-
ing activities. This capability also entails flexible modification of the models as
music culture evolves, new genres emerge, and online user communities change
their tagging behavior. Application of the proposed techniques is by no means re-
stricted to the music domain. The techniques could be adapted to any multimedia
content such as films and books as well as to online shopping and social network-
ing. Semantic computing methods will be increasingly useful as online activity
grows and the smallest details of our daily lives are tracked. For example, linking
various modalities and sources of information could produce a system that facil-
itates safe traffic by tracking drivers’ mood and health based on music listening,
recently read news articles and purchased items, heart-rate changes and affective
qualities of recent social interactions.

All tag and audio data employed in the present work were obtained from
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proprietary sources, so the practical use of the obtained data is restricted by copy-
right licensing. Restrictions are also applicable to the evaluation data: while the
collected listener ratings can be freely disseminated to researchers, the related au-
dio is copyright protected. This is a common problem faced during the process
of conducting reproducible research in the MIR field. A potential future direction
is to circumvent copyright issues by examining how efficient mood annotation
models could be obtained by relying on open-access music catalogues and web-
mined textual data.

Another future direction is to develop models that take into account the
subjective aspects and situational factors of music mood perception. As noted
earlier, listener’s mood, personality, musical preferences, and listening context
play a significant role in how moods are perceived (Vuoskoski & Eerola, 2011;
Scherer & Zentner, 2001). Personalized music mood annotation systems are there-
fore highly needed, and some advances have already been made toward this aim
(Yang & Chen, 2012). In the simplest form, rather than dealing with the averaged
listener ratings as done in the present work, ratings of each listener could be
modeled separately, and data from a listener background questionnaire could be
employed to assess personal differences. For example, mood prediction models
trained with one genre could be particularly applicable to predicting the ratings
of the listeners that are most familiar with that genre. A more ambitious direction
would be to retain the user information of the tag data and infer personal and
situational factors for each tag from the users’ listening profiles and linked data
related to social networking, activities, and events attended. Modeling all these
aspects together would produce personalized mood models, and these models
could be validated by behavioral experiments. Methodologically, this type of re-
search would be positioned in the wider context of opinion mining and sentiment
analysis (Pang & Lee, 2008). Also, assessing the moods induced by music would
be beneficial for this approach in order to gain a more complete picture of the
affective phenomena related to music listening.
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TIIVISTELMÄ

Musiikin ilmaisemien tunnetilojen mallinnus käyttäen semanttisen lasken-

nan ja koneoppimisen menetelmiä

Musiikin vetovoima ja merkitys perustuvat vahvasti musiikin kykyyn il-
maista tunnetiloja. Siksi on tarpeellista kehittää menetelmiä, jotka mahdollistavat
musiikin löytämisen musiikin ilmaisemiin tunnetiloihin perustuen. Nykypäivän
verkkopohjaiset musiikkipalvelut tarjoavat käyttäjilleen kuunneltavaksi miljoo-
nia kappaleita käsittäviä kokoelmia, ja useat musiikkipalvelut hyödyntävät sosi-
aalisten verkkoyhteisöjen tai musiikkitoimittajien tuottamia merkintöjä, niin sa-
nottuja semanttisia tageja. Tunnetiloja kuvaavat tagit eivät kuitenkaan ole yhtä
luotettavia kuin kuuntelukokeissa perinteisin menetelmin kerätyt tunnearviot,
koska tagit sisältävät niiden käyttötavoista johtuen monenlaisia epätarkkuuksia.
Semanttisen laskennan menetelmillä on mahdollista tehostaa tagien perusteel-
la tehtäviä päätelmiä. Myös yleisesti käytetyillä sisältöpohjaisilla tunnistusmene-
telmillä kyetään arvioimaan tunnetiloja digitaalisesta musiikkitiedostosta lasken-
nallisesti irrotettuihin audio-piirteisiin sekä koneoppimiseen perustuen.

Tämän väitöskirjan päätavoitteena oli tarkastella ja kehittää laskennallisia
menetelmiä, joiden avulla voidaan hyödyntää musiikin tunnetageja sekä annotoi-
da musiikkikappaleita automaattisesti musiikin ilmaisemilla tunnetiloilla aiem-
paa tehokkaammin. Työssä kehitettiin uusi semanttisen laskennan menetelmä ni-
meltään Affective Circumplex Transformation (ACT), jolla pyrittiin parantamaan
tunnetagien tarkkuutta aiempiin menetelmiin verrattuna peilaamalla tagiaineisto
emootiopsykologiasta tuttuun dimensionaaliseen emootiomalliin. Työssä pyrit-
tiin myös parantamaan audio-piirteisiin pohjautuvien tunnetila-arvioiden yleis-
tettävyyttä käyttäen piirteiden valintamenetelmiä sekä semanttista laskentaa. Tä-
hän tarkoitukseen kehitettiin työssä uusi menetelmä nimeltään Semantic layer
Projection (SLP), joka hyödyntää laajaa tagiaineistoa ACT-mallien avulla. Lisäksi
työssä tutkittiin voidaanko audio-pohjaisen tunnetilojen tunnistuksen tarkkuutta
parantaa mukauttamalla malleja eri musiikkityylien ominaispiirteisiin.

Väitöskirjan pohja-aineistona käytettiin mittavia populaari- ja tuotantomu-
siikkia sisältäviä musiikkikokoelmia, jotka yhdistettiin sosiaalisiin ja toimituk-
sellisiin tageihin sekä audio-tiedostoihin. Menetelmien arviointi suoritettiin em-
piirisesti kuuntelukokeissa. Tulokset paljastivat, että ACT-menetelmän tuottamat
tunnearviot ovat ylivertaisia verrattuna alkuperäiseen tagitietoon sekä perintei-
siin semanttisen laskennan menetelmien tuottamiin arvioihin. Sosiaalisten ja toi-
mituksellisten tagien pohjalta muodostettujen ACT-mallien havaittiin lisäksi ole-
van hyvin yhtenevät, joten niitä on mahdollista käyttää ristikkäin ilman merkit-
tävää annotointitarkkuuden putoamista. Audio-pohjaisten menetelmien arvoin-
nissa havaittiin, että SLP kykenee tuottamaan samantasoisia tai jopa tarkempia
arvioita kuin ACT. Tämä osoitti yllättäen, että käytettäessä tehokkaita menetel-
miä audio-tiedostosta lasketut piirteet voivat olla malleille hyödyllisempiä tun-
netilojen vihjeitä kuin semanttinen tagitieto. Sekä tagi- että audio-pohjaisten mal-
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lien mukauttaminen eri musiikkityyleihin paransi tunnistustarkkuutta entises-
tään, erityisesti arvioitaessa musiikin positiivisia ja negatiivisia tunnetiloja.

Väitöskirjassa osoitettiin ensi kertaa kattavasti laajan tagiaineiston hyödyt
musiikin tunnetilojen mallinnuksessa. Lisäksi väitöskirjassa kehitetyt uudet me-
netelmät ovat käyttökelpoisia kehitettäessä entistä tehokkaampa musiikkisovel-
luksia.
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Abstract—Classification of musical audio signals according
to expressed mood or emotion has evident applications to
content-based music retrieval in large databases. Wrapper
selection is a dimension reduction method that has been
proposed for improving classification performance. However,
the technique is prone to lead to overfitting of the training
data, which decreases the generalizability of the obtained
results. We claim that previous attempts to apply wrapper
selection in the field of Music Information Retrieval (MIR)
have led to disputable conclusions about the used methods due
to inadequate analysis frameworks, indicative of overfitting
and biased results. This paper presents a framework based
on cross-indexing for obtaining realistic performance estimate
of wrapper selection by taking into account the simplicity and
generalizability of the classification models. The framework is
applied on sets of film soundtrack excerpts that are consen-
sually associated with particular basic emotions, comparing
Naive Bayes, k-NN and SVM classifiers using both forward
selection (FS) and backward elimination (BE). K-NN with
BE yields the most promising results – 56.5% accuracy with
only four features. The most useful feature subset for k-
NN contains mode majorness and key clarity, combined with
dynamical, rhythmical, and structural features.

Index Terms—Music and emotion, musical features, feature
selection, wrapper selection, overfitting, cross-indexing.

I. INTRODUCTION

AUTOMATIC recognition of emotions in musical audio

has gained increasing attention in the field of Music

Information Retrieval (MIR) during the past few years.

The development in the field has coincided with the need

for managing large collections of digital audio for the

public via web services such as Spotify1 and Last.fm2.

This is reflected, for example, in the increasing number

of submitted systems in the annual Audio Music Mood

Classification (AMC) contest part of the Music Information

Retrieval Evaluation eXchange3 (MIREX). The substantial

Copyright (c) 2010 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes the
analyzed feature sets and MATLAB scripts that enable experimenting
with the used methods and reproducing some of the reported results and
visualizations. This material is 156 KB in size.

P. Saari, T. Eerola and O. Lartillot are with the Finnish Centre of
Excellence in Interdisciplinary Music Research, Music Department of the
University of Jyväskylä, Finland.

1http://www.spotify.com/
2http://www.last.fm/
3http://www.music-ir.org/mirex/20xx/index.php/Main Page

variance in the submitted systems in the contest and in

the approaches in the MIR field in general indicates a

lack of consensus concerning the choice of an underlying

psychological model for emotions or moods in music and

the establishment of precise machine learning conventions.

Despite research in musicology studying the influence of

specific cues in the musical structure on emotional expres-

sions [1], there is no complete analytical consensus about

the required ‘ingredients’ – i.e. acoustical features extracted

from music – to build the optimal models for emotion

recognition, in the limits imposed by the subjectivity of

emotions. Machine learning comprises methods developed

for detecting these types of relations automatically by

taking into account the interrelations between features, but

the potential of these methods is limited by the ability of

the chosen set of features to describe music in the same

way as how listeners perceive it [2] or by the complexity

or technical deficiencies in the feature sets [3].

A part of the research field has adopted the view that

regression models are more useful for understanding emo-

tions in music than classifiers [4]. The most adequate

linear models transform the feature space used in learning

into few dimensions constituting of sets of input features

while retaining the predictive information about the target

concept. On the other hand, classifiers traditionally exploit

the features independently when building the model. The

prevalent downside to this approach in MIR has been the

large dimensionality of the feature space, which leads to

models that are quite difficult to interpret, contributing

therefore rather modestly to the understanding of the phe-

nomenon under study.

Another ‘curse’ relating to the high dimensionality of

the input data given to the learning method is that it

leads to overfitting, which is reflected in the low degree of

generalizability of the models in classifying unknown data.

Different dimension reduction methods applied to the input

data have been developed to deal with problems related to

high dimensionality in machine learning. Wrapper selection

[5] is a method that can be used to find a subset of input

features optimal for a given classifier. Perhaps surprisingly,

wrapper selection too is highly prone to overfitting when

the found subsets are used to build classification models

[6]. The analysis of the previous research in MIR (detailed

in the section V) shows that the use of wrapper approach

has almost constantly led to disputable results indicating

overfitting of the data. This pitfall was addressed in music
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classification in [7] by applying guidelines given in machine

learning studies [6] and [8] for building a wrapper selection

and classification framework. Since then, the guidelines

have been developed further in a proposed cross-indexing

algorithm that has been shown to yield unbiased estimates

of the performance of classification models [9], [10]. Ap-

plying the algorithm leads to a framework that is essentially

a realization of a model parameter selection problem where

the optimal dimensionality of the feature space for a given

classifier is searched. Cross-indexing has not been used in

music classification previously.

This study aims at developing a framework for studying

wrapper selection in music classification based on the cross-

indexing algorithm. It will be shown that classification in

MIR, specifically in the recognition of expressed emotions

in music, can lead to interpretable and efficient models

when the number of input features is reduced dramatically,

taking into account the simplicity and generalizability of

the models. This required a novel modification proposed

to the cross-indexing algorithm. The advantage of the

chosen approach is that rather than combining a large

number of features to represent few dimensions open to

interpretations as in linear modeling, the gained dimensions

will be exactly those single features itself whose relations

to the phenomenon under study are understood, at least

abstractly.

II. FEATURE SELECTION

Given the data, comprised of instances described by

features and the targets, the problem of feature selection
can be formulated as the task of finding a subset of the

original features that maximizes the performance of a given

learning algorithm run on the data. By reducing the amount

of data used in learning, feature selection can reduce the

problems related to feature redundancy, feature irrelevance

and the curse of dimensionality [3]. Consequently, feature

selection is crucial in reducing the required computational

effort in learning and classification, reducing the complexity

of the obtained models and increasing the generalization

capabilities of the models.

Feature ranking, perhaps the most straightforward feature

selection technique, evaluates each feature independently

from the other features according to a pre-defined measure.

N top-ranked features can then be used in the final subset.

Because of the independent evaluation, feature relevance

and redundancy cannot be taken into account in feature

ranking, thus potentially harming the predictive capabilities

of the results. To avoid such drawback, feature selection

commonly implements subset selection, which evaluates

features in the context of the whole feature subset. In

such approach, called feature subset selection, an initial

feature set – which can be the empty set – is iteratively

transformed based on pre-specified evaluation criterion and

search method until a given termination condition has been

met.

Two main approaches can be distinguished based on

the type of evaluation criterion used in the search: filter

Search Method

Performance Assessment

Induction Algorithm

Feature set

Hypothesis

Performance 
estimation

Feature set

Train set

Feature set

Induction 
Algorithm

Final Evaluation
Estimated 
accuracy

Train set

Test set

Fig. 1. Wrapper selection (chart adopted and slightly modified from [5]).

and wrapper. In the filter approach, a chosen information-

theoretic measure is used as evaluation criterion. In the

wrapper approach [5], [11], each feature subset is evaluated

using the learning algorithm that will ultimately perform

the final data classification. The approach is based on a

claim [11] that subset selection must take into account the

biases of the induction algorithm in order to select a subset

with highest possible prediction accuracy of that algorithm

on unseen data. In an extensive evaluation on various real-

world and artificial data, wrapper performed favorably in

comparison to a Relieved-F filter algorithm and induction

with no selection [5].

Fig. 1 illustrates the wrapper selection process. First the

data is split into train and test sets. The train set is used

for feature selection while keeping the test set only for

the final evaluation of the performance of the induction

algorithm. The search is conducted by iteratively evaluating

each candidate subset with respect to the performance of the

induction algorithm. The performance is assessed usually

either through cross-validation or using a validation set that

is separate from the train and test sets. After the terminating

condition is met the learning phase is conducted on the

train set represented by the selected feature subset. Last,

the output model is evaluated based on the test set.

Finding the optimal subset of features requires searching

the whole feature space, involving as many evaluations as

there are possible feature subsets. When the number of

features increases, an exhaustive search encompassing all

possible subsets becomes prohibitively expensive. There-

fore, heuristic search methods have been developed in order

to reduce the number of evaluated subsets. Many popular

heuristic algorithms used in feature selection exploit greedy
selection heuristics, where choices are based on the local

context defined at each successive step of the search [12, p.

370]. By making locally optimal choices, greedy heuristic

does not guarantee that the search will lead to the globally

optimal subset. Two of the most famously used greedy se-

lection algorithms are forward selection (FS) and backward
elimination (BE). They are called stepwise algorithms since

they involve addition or removal of only one feature at each

modification of the feature subset.
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III. MINIMIZING OVERFITTING BY CROSS-INDEXING

Overfitting relates to a problem that occurs when a learn-

ing algorithm fits the training data too well, considering

peculiarities in the data such as noise or possible outliers as

important characteristics of the phenomenon under analysis.

While the problem is well-known in classification and

regression models, the effect grows in feature selection,

especially in the wrapper approach. Overfitting in wrapper

selection is caused by the large number of evaluated feature

subsets, which makes it likely that one subset leads to high

predictive accuracy on the hold-out data used in selection

[5]. Therefore evaluation and reporting of wrapper selection

must be based on the performance on a test set unseen

to the search process – or on test sets generated by an

outer loop of cross-validation – not on the (cross-validation)

estimates used in the selection process [5]. In fact, the

cross-validation estimates used in the selection process

were found to be seriously misleading estimates of the

performance of wrappers in subsequent studies [6], [8].

The problem of overfitting in wrapper selection was

further analyzed in [9] and [10] for the purpose of estimat-

ing the optimal subset size for a given learning algorithm

and assessing its performance. The results obtained in [9]

showed that the outer loop of cross-validation was able to

decrease bias in performance assessment only to a certain

degree, but the proposed cross-indexing algorithms A and

B decreased the bias virtually to zero. The algorithms

were proposed to circumvent bias emerging from using the

same estimates in picking a certain model from a large set

of candidates as those used in assessing the performance

obtainable with the model.

In [10] the two algorithms were merged into a gen-
eralized (N,K −N)-fold cross-indexing algorithm. The

difference between the outer loop of cross-validation and

cross-indexing is that in cross-indexing, rather than by

the averaged performances in the K iterations, the opti-

mal subset size is estimated separately at each iteration

k ∈ [1, 2, . . . ,K] by the maximum averaged performance

of N (1 < N < K) iterations. Then, the performance at

the kth iteration, with the subset size, is obtained by the

averaged performance of K −N other iterations. The final

estimates for the optimal subset size and its performance is

then obtained by averaging the K estimates. The parameter

N can be considered as a trade-off between leaning towards

accurate estimation of the optimal subset and towards

accurate estimation of the performance attainable with the

obtained subset size. Based on the preliminary results with

the algorithm [10], the choice of 1 < N < K−1 is a good

trade-off between these two.

IV. EMOTION AND MOOD RECOGNITION IN MIR

To enable direct comparison of the systems dedicated

to audio mood recognition, classification in the annual

Audio Music Mood Classification (AMC) task organized

by MIREX is conducted on a collectively agreed large

ground-truth set, measuring the performance with 3-fold

cross-validation [13]. During the three years that the contest

has been held, the average classification accuracies of all

submitted systems have increased from 53% to 58% and the

performance of the winning systems have increased from

62% to 66%4. The 66% accuracy in music classification can

be considered rather high considering the estimated glass-

ceiling performance of around 70% in music classification

based on timbre similarity [14].

Some previous studies on classification of music ac-

cording to emotions such as [15], [16] and [17] have

reported drastically higher performances than AMC sug-

gests. However, comparing the results obtained in the AMC

evaluations with previous research into mood recognition is

problematic due to fundamental differences in ground-truth,

performance evaluation and reporting.

V. WRAPPER SELECTION IN MIR

The bias of the cross-validation estimates used in wrap-

per selection process has not been given enough con-

sideration within MIR community. In fact, reviewing the

few studies in MIR using wrapper selection reveals likely

inadequate frameworks for obtaining performance estimates

for the used methods. For example, wrapper selection with

genetic search algorithm was used in [18], comparing the

performance of the Decision Tree, 3-NN, Naive Bayes,

Multi-layer Perceptron and Support Vector Machine in

genre classification. The results were reported to indicate

that wrapper selection procedure is effective for Decision

Tree, 3-NN and Naive Bayes but the authors did not base

their arguments on classification performance on indepen-

dent test sets. This may have led to positively biased results

given that overfitting in wrapper selection with genetic

algorithms is an acute problem [19]. Similar conclusions

can be drawn from [20] that exploited wrapper selection

with fuzzy classifiers and BE to emotion recognition. The

results showed increasing performance with both classifiers

with the estimated optimal subset size. However, the found

effects might have been optimistic since the final perfor-

mance assessment and reporting of the results was based

only on cross-validation accuracies used in the selection

process.

In [21] wrapper selection was applied to genre clas-

sification using FS and BE with ten different classifiers.

The dataset was first split randomly into train and test sets

constituting of 90% and 10% of the excerpts, respectively.

Then, wrapper selection was run with the train set and fi-

nally the test set accuracies with different subset sizes were

reported. However, since the whole process was run only

once, the results might have been somewhat random. Using

the outer loop of cross-validation would have improved the

validity to some extent.

In the single exception [7] within MIR community that

specifically addressed overfitting in feature selection, the

authors re-evaluated the claims made in their previous

study [22] where feature weighting with genetic algorithm

4The results of the corresponding years are shown in
http://www.music-ir.org/mirex/20xx/index.php/Audio Music Mood
Classification Results.
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TABLE I
SUMMARY OF THE DATASETS.

Set Features Classes Excerpts
Primary set 66 anger/fear, happy, sad, tender 64
Validation set 66 anger/fear, happy, sad, tender 160

increased the performance of k-NN in timbre recognition

from snare-drum attack and beat-box sounds. Performance

assessment and evaluation of the results in [22] was based

solely on cross-validation accuracies obtained in the se-

lection process while the re-evaluation was based on the

guidelines given in [6] and [8]. Re-evaluation incorporated

the outer loop of cross-validation and concentrated on the

wrapper with k-NN and FS with the same datasets as in

[22]. The results, obtained in the same manner as in the

previous study, indicated significant degree of overfitting

as the performance of k-NN decreased in the independent

test sets. Moreover, the performance improvement with

the selected feature sets, when compared to full sets,

provided little or no benefit. To gain further evidence on the

usability of wrapper selection, the framework was evaluated

in a genre classification task. Also Principal Component

Analysis (PCA) was used for dimensionality reduction for

comparison purposes. In genre classification, wrapper selec-

tion provided significant improvement in terms of test set

accuracies when compared to classification without feature

selection but PCA yielded similar increase in accuracy in

a fraction of computation time. The authors concluded by

stressing the importance of a well-founded framework for

feature selection in MIR areas.

VI. PROPOSED CROSS-INDEXING FRAMEWORK

The aim of the study is reached by testing the behaviors

and benefits of feature selection, namely wrapper selection,

on a task of classification of musical audio according to

the expressed emotion. The analysis was conducted in a

comparative manner to obtain information about different

selection methods. For the sake of convenience, the anal-

ysis was split into two experiments. In Experiment 1 all

selection methods were used. The most promising ones in

Experiment 1 were chosen for Experiment 2 whose aim was

to give more reliable and detailed information about the

performance of these methods. The framework, illustrated

in Fig. 2, is explained in the forthcoming sections.

A. Data Pre-Processing

This section describes how the primary and validation

sets were obtained and how they were preprocessed for the

purposes of the analysis. The sets are summarized in Table

I.

1) Audio Material and Its Annotation: The audio ma-

terial5 constitutes of two sets of film soundtrack excerpts

containing 360 and 110 excerpts with length from 10 to 30
seconds detailed in [23]. Both of the sets were annotated by

5The material is downloadable at https://www.jyu.fi/hum/laitokset/
musiikki/en/research/coe/materials/emotion/soundtracks.

Standardization

Test setTrain set
- standardization

Wrapper selection
- search method

- performance assessment
- induction algorithm

Induction Algorithm

Test classi cation
- test set with  1,2,...,66 top features

Validation set
- excerpt selection
- feature extraction

Standardization

Validation classi cation
- validation set with  1,2,...,66 top features

Strati ed split
- randomly K times

The optimal subset size and its performance

Cross-indexing

Cross-indexing loop

Wrapper selection

Primary set
- excerpt selection
- feature extraction

Feature setTrain set

Fig. 2. A chart describing the cross-indexing framework.

the listeners in terms of basic emotions anger, fear, happy,
sad and tender, each emotion on a scale from 1 to 7. First,

the set of 360 excerpts was rated by 12 musicology experts.

Then, 110 of the excerpts with unambiguous emotion

content were rated by 116 non-musician participants.

High correlation between ratings of anger and fear
indicates that they might not be easily distinguished in the

analyzed data [23]. Therefore these emotions were grouped

into one category in the present study. The annotated ma-

terial was adapted for classification purposes by assigning

the highest rated emotion of each musical excerpt as the

single representative emotion label anger/fear, happy, sad,

or tender.

2) Excerpt Selection: The excerpts from Experiments 1
and 2 in [23] were evaluated according to their applicability

for classification purposes. The aim was to omit excerpts

whose expressed emotions had been ambiguous according

to the participants’ ratings. A selection measure for each

excerpt, similar to that in [23], was computed by taking a

ratio between the mean rating of the highest rated emotion

category and the mean rating of the emotion that was rated

second highest. Thus the same amount of excerpts was

preserved for each emotion, corresponding to those scoring

highest in terms of the selection measure. In this way,

the primary set with 64 excerpts was selected from the

set of 110 samples by preserving 16 excerpts in each of

the four emotion categories. The validation set was formed

by first removing the excerpts that overlapped with the

primary set. Then, 40 excerpts in each emotion category

were selected in the same manner as the examples in the

primary set. The fact that the primary and validation sets

were rated by different groups of participants can induce

slight inconsistency between the sets, but gives also an

opportunity to assess model performances with data that

are truly separate from the data used in the learning phase.
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TABLE II
EXTRACTED FEATURE SET. m = MEAN, d = STANDARD DEVIATION, l =

SLOPE, h = ENTROPY.

Category No. Feature Acronyms
Dynamics 1-3 RMS energy Em, Ed, El

4 Low-energy ratio LEm
5 Attack time ATm
6-7 Attack slope ASm, ASd

Rhythm 8 Event density EDm
9-10 Fluctuation peak (pos., mag.) FPm, FMm
11 Fluctuation centroid FCm
12-13 Tempo Tm, Td
14-15 Pulse clarity PCm, PCd

Pitch 16-17 Pitch Pm, Pd
18-21 Chromagram (unwrapped) centr. Cm, Cd, Cl, Ch

Harmony 22-23 Key clarity KCm, KCd
24-25 Key mode (majorness) Mm, Md
26 HCDF Hm
27 Entropy (oct. collapsed spectr.) ESm
28 Roughness Rm
29-30 Inharmonicity Im, Id

Timbre 31-32 Brightness (cut-off 110 Hz) Bm, Bd
33-34 Spectral centroid SCm, SCd
35-36 Zerocross Zm, Zd
37 Spread Sm
38 Skewness Km
39-40 Spectral entropy SEm, SEd
41 Spectral flux SFm
42 Flatness Fm
43-44 Regularity REm, REd
45-46 1st MFCC + delta M1m, D1m

.

.

.
.
.
.

.

.

.
.
.
.

57-58 7th MFCC + delta M7m, D7m
Structure 59-60 Repetition (spectrum) RSm, RSd

61-62 Repetition (rhythm) RRm, RRd
63-64 Repetition (tonality) RTm, RTd
65-66 Repetition (register) RGm, RGd

3) Feature Extraction: A total of 66 audio features,

presented in table II were extracted with MIRtoolbox6 [24].

The set contained 52 features suggested in [25] and 14
MFCC features.

The extraction was done with the frame-based approach

[26], with 46 ms, 50% overlapping frames for most of

the features. For low-energy ratio and high-level features

that require longer frame length (fluctuation, harmony-

related features), as well as tempo and pulse clarity, the

analysis frame was 2 seconds with 50% overlap whereas the

structure-related features were computed with frame length

of 100 ms and 50% overlap. The values of frame length

and overlap were based on the aforementioned analysis. In

the case of MFCC features, the window was the same as

with most other low-level features, i.e. 46 ms with 50%

overlap.

B. Wrapper Selection

At each wrapper selection run the primary set was split in

a random stratified manner into train and test sets. Stratified

splitting was used to create random equal-sized subsets of

samples for analysis while maintaining the relative numbers

of excerpts expressing each emotion. In each of the K folds,

a different random number seed was used for shuffling the

6Version 1.1.17. MIRtoolbox is available from www.jyu.fi/music/coe/
material/mirtoolbox.

dataset. The train set was standardized at each run to give

each feature initially the same importance in the feature

selection process and test and validation sets were z-score-

transformed based on means and standard deviations of the

train sets. Wrapper selection was done in Weka7 software

[27].

1) Performance Assessment: The performance of each

candidate subset was assessed by cross-validation8 with

4 folds. This relatively low number of folds in cross-

validation was chosen to limit the computation time as the

number corresponds to the number of times the learning

algorithm must be used to estimate the performance of a

single candidate subset.

a) Classifiers: The choice of the classifiers used in

the wrapper selection is based on their popularity and

efficiency in previous studies in musical emotion or mood

classification. Three classifiers were chosen: Naive Bayes

with Flexible Bayes modification [28], k-Nearest Neigh-

bor (k-NN) with k = 10, and Support Vector Machine

(SVM) with Pairwise coupling [29], Sequential Minimal

Optimization [30] and fitting into linear regression models.

Although k-NN and Naive Bayes are simple classifiers,

they are competitive and sometimes can outperform more

sophisticated classifiers, as pointed out in [31, p. 60]. More-

over, it was hypothesized that the performance of k-NN and

Naive Bayes in particular could be significantly improved

by wrapper selection since they are highly influenced by

redundancy and irrelevance of features. SVM, on the other

hand, is an example of a more sophisticated classifier with

successful implementations in MIR.

b) Search Methods: Two search methods, FS and BE,

were used to avoid reliance on one particular technique.

These methods were chosen because of their popularity and

simplicity, found as an advantage for example in [6].

2) Classification: Once the features were selected, the

classifier taught on the whole train set, represented by the

subsets of 1 to 66 top-ranked features according to the

wrapper selection, was applied to the test and validation

sets. In addition to the classification of the test data, the

cross-validation accuracies, used in the selection process,

were also recorded.

C. Cross-Indexing Loop

The wrapper selection methods were evaluated and com-

pared primarily in terms of estimates obtained by the gen-
eralized (N,K −N)-fold cross-indexing algorithm [10]

outlined in Fig. 3. Step 1 refers to the cross-indexing loop

visualized in Fig. 2. Stratified splitting, feature selection

and classification are conducted as described in the previous

sections. Only the classification results on the test set are

taken into account in the algorithm.

The loop in Step 2 produces the K optimal subset

size and performance estimates. Each optimal subset size

estimate is based on the values computed in Step 3 by

7Weka is available from http://www.cs.waikato.ac.nz/ml/weka.
8This refers to the inner cross-validation used in the selection process

as opposed to the outer loop of cross-validation.
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averaging N classification accuracies on the test set and

the estimate of the performance attainable with the obtained

optimal subset size in the kth fold is computed in Step 12

by averaging the other K−N classification accuracies not

used in Step 3. The final estimate of the optimal subset

size and performance are obtained in Step 15 and Step

16. Based on the variances of the K size and performance

estimates obtained with the algorithm, the value of N = K
2

was chosen as it produced low amount of variance in both

estimates.

When analyzing the preliminary results, the initial algo-

rithm was found to produce relatively large optimal subset

size estimates while almost as high prediction accuracy

estimates would have been obtained with notably smaller

subsets. This means that the algorithm found the estimate

of the optimal subset size although there existed a subset

size that would potentially produce less complex models

with nearly equally high prediction potential. Therefore

a modification, outlined in Steps 4–11, was added in

the algorithm. The rationale behind the modification was

avoiding the curse of dimensionality by determining a cost

for increasing the feature subset size at each cross-indexing

fold.

The modification proceeds as follows: In each of the K
folds, all D values obtained in Step 3 are considered as

in the original algorithm. That is, the subset size estimate

is determined by examining all the local maximum values

rather than the global maximum of the D values. First, the

local maximum with the smallest subset size is considered

as the optimal. Then, comparison with the other local

maxima is conducted by a selection criterion, which states

that, when increasing the size by one feature, an increase of

at least s percents in the maximum values is required for a

bigger subset size to win the comparison. In such case, the

new subset size is selected, replacing the smaller subset

size estimate previously selected. These comparisons are

repeated iteratively until all maxima have been evaluated.

Parameter s of the modification controls the emphasis

given to smaller subset sizes. The value s = 0 yields

the original cross-indexing algorithm since the cost of the

subset size is omitted. Therefore the proposed algorithm can

be thought of as a generalized version of the original cross-

indexing algorithm. Increasing the value of s presumably

yields smaller subset sizes. Although the algorithm aims

at retaining the level of accuracy estimates, an excessively

high value of s strongly reduces the accuracies. Therefore it

is rather crucial to choose the right parameter value. Prelim-

inary results indicated that the value s = 1 both reduced the

estimated optimal subset size significantly while maintained

the prediction accuracy at similar level. Increasing the value

of s above 1 generally reduced the accuracy estimates by

presumably over-emphasizing the small subset sizes. The

modification also reduced the variance of the optimal subset

size estimates across folds.

TABLE III
CROSS-INDEXING ESTIMATES OBTAINED IN EXPERIMENT 1 WITH THE

MODIFIED ALGORITHM (s = 1). THE LAST COLUMN SHOWS THE

RELATIVE EFFECT IN THE SUBSET SIZE AND ACCURACY ESTIMATES

WHEN THE MODIFICATION WAS USED, COMPARED TO THE INITIAL

ALGORITHM (S=0).

Method Subset Size Accuracy (%) Size / Acc. (%)
NB FS 16.3 ± 2.9 59.4 ± 3.4 -22.6 / 1.9
NB BE 12.3 ± 7.2 52.3 ± 3.7 -53.8 / 0.8
k-NN FS 11.0 ± 3.9 52.7 ± 5.0 -25.4 / -3.6
k-NN BE 3.5 ± 0.6 57.4 ± 1.5 0 / 0
SVM FS 8.8 ± 5.6 55.5 ± 3.7 -56.8 / 0.7
SVM BE 3.0 ± 1.4 57.4 ± 5.5 -73.3 / -4.5

VII. RESULTS AND DISCUSSION

A. Experiment 1

In Experiment 1 the cross-indexing loop was run with

four iterations. Table III summarizes the cross-indexing

estimates and shows the effect of the modification (s = 1)
compared to the initial algorithm (s = 0). It can be

seen that the modified cross-indexing algorithm generally

retained the level of the accuracy estimates, with maximum

4.5% decrease, while reducing the needed amount of fea-

tures.

Fig. 4 displays the averaged accuracy estimates as well

as the cross-indexing estimates for the optimal subset size

and its performance. The cross-validation (cv) and test

set accuracies correspond to the measures used to guide

the selection and to the ones produced by the traditional

external cross-validation loop, respectively. It is evident that

the traditional methods – the cross-validation measures used

to guide the selection as well as the outer loop of cross-

validation – failed at predicting the performance of the fea-

ture selection methods when the obtained models were used

for validation, as discussed in Section III. It would therefore

be misleading to use the averaged values for estimating the

optimal subset sizes for a given learning method and to use

these values for estimating the performance of the method

with that size.

When comparing the cross-indexing estimates (denoted

by circles in the figure and summarized in Table III) to

the validation set performances, it is notable that these

estimates generally correspond fairly well to the optimal

subset sizes in terms of validation. Naive Bayes with FS

as well as k-NN and SVM with BE yielded the highest

performances. However, the accuracies varied notably be-

tween the iterations (with standard deviations from 1.5%
to 5.5%) causing uncertainty into the comparison of the

mean accuracies, which differ by 6.7% at most. Therefore

a high importance must be given to the subset sizes, which

should be as small as possible in order to keep the models

simple and interpretable. In this comparison SVM and k-

NN with BE consistently yielded the smallest subset sizes

with under 5 features whereas the subset sizes found with

Naive Bayes and FS were the largest. Therefore SVM and

k-NN with BE were chosen for Experiment 2.
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1: Conduct feature selection and classification K times, each time with a given train-test split specific to the kth run

(k = 1, . . . ,K). Test set accuracies with every subset size, denoted by
(
x
(k)
1 , x

(k)
2 , . . . , x

(k)
D

)
are obtained.

2: for k = 1, to K do
3: For each subset size (i = 1, . . . , D), compute the mean of N estimates: ẋ

(k)
i = 1

N

(∑K
j=α x

(j)
i +

∑k
j=β x

(j)
i

)
,

where α = K + k −N + 1 and β = max (1, k −N + 1).
4: Use them to estimate the optimal model complexity:

5: Find local maxima p
(k)
l from ẋ(k). The maxima are ordered by the subset size, starting from the maximum with the

smallest size (starting points of local maximum plateaus are considered as local maxima). Initialize the complexity

d(k) = p
(k)
1 .

6: for each remaining local maximum l = 2, to numberofmaxima do
7: if ẋ(k)

p
(k)

l

> ẋ
(k)

d(k) + ẋ
(k)

d(k) · s
100 · (p(k)l − d(k)) then

8: Assign the current maximum as the complexity d(k) = p
(k)
l .

9: end if
10: end for
11: The remaining complexity d(k) is considered the best subset size in the kth fold.

12: Calculate the average performance at this level of complexity for the other K − N folds: ẍ
(k)

d(k) =
1

K−N

(∑k−N
l=1 x

(l)

dk +
∑γ

l=k+1 x
l
d(k)

)
, where γ = min (K,K + k −N).

13: For comparison purposes, the performance for the full feature set in the kth fold (ẍ
(k)
D ) can also be recorded.

14: end for
15: Average all the K subset sizes d(k) obtained during the different executions of Step 11. This average is the estimate

for the optimal subset size.

16: Average all the K performance estimates obtained in Step 12. This average is the estimate for the performance of

the best subset having the size discovered during Step 15.

Fig. 3. Generalized (N,K −N)-fold cross-indexing algorithm, modified from [10]. In this study, the value N = K
2

, the maximum subset size

D = 66 and s = 1 were used. (When a > b,
∑b

a
(·) = 0.)

TABLE IV
CROSS-INDEXING ESTIMATES OBTAINED IN EXPERIMENT 2.

Method Subset Size Accuracy (%) Size / Acc. (%)
k-NN BE 3.5 ± 0.9 56.5 ± 2.8 -86.6 / 3.5
SVM BE 6.3 ± 1.8 54.3 ± 1.9 -84.1 / -12.2

B. Experiment 2

Cross-indexing was run with 30 iterations in Experiment

2 to obtain reliable estimates. Table IV shows that k-NN

yielded better results than SVM in all measures. Although

difference in the estimated accuracies between the methods

was minor due to considerable variation, the difference in

the obtained subset sizes was larger. The estimated optimal

subset size was 3.5 for k-NN and 6.3 for SVM. The

modification reduced the obtained subset sizes substantially

with both k-NN and SVM and also increased the accuracy

estimates with k-NN. However, the accuracy estimates

decreased rather significantly with SVM.

Cross-indexing estimates were again compared to vali-

dation, visualized in Fig. 5(a) and Fig. 5(b). When using

k-NN, it is notable that the average validation set accuracies

generally decreased after adding more than six features

in the set. This indicates that k-NN truly benefits from

BE. Fig. 5(a) shows that the mean cross-indexing estimate

of the optimal subset size corresponds to validation: the

maximal validation performance level was attained with

three features, which exactly matches most of the subset

size estimates.

While the optimal subset size in terms of validation was

estimated reliably, there exists large variation between the

accuracy estimates, which are also slightly optimistic in

general when compared to validation. However, it must

be noted that the groups of participants who rated the

primary and validation sets were different, which could

have induced slight inconsistency between the sets.

Fig. 5(b) shows the performance of SVM with BE.

Validation implies that SVM gives relatively good per-

formances with subsets of 4 to 7 features, but models

built on larger sets with more than 25 features generalize

also well. This indicates that SVM is not overly prone to

overfitting. However, the reason for adding the modification

to the cross-indexing algorithm was to weight the algorithm

towards finding small but effective feature sets. The figure

shows that cross-indexing yielded accurate estimates of the

validation set performance peaks with small subset sizes.

To test the efficiency of the modification to the cross-

indexing algorithm in more detail, the mean estimates

obtained with the initial algorithm (s = 0), represented

by triangles in Fig. 5(a) and Fig. 5(b), were compared to

the validation accuracies. It can be seen that the subset size

estimate obtained with the initial algorithm and k-NN does

not correspond to the peak in the validation accuracies, and

with SVM the accuracy with the obtained subset size is

over-optimistic compared to validation. This gives strong

indication that the modified version of the algorithm gives

more reliable estimates than the original version.
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Fig. 4. Cross-indexing (CI) estimates and the averaged accuracies obtained in Experiment 1.
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Fig. 5. Cross-indexing (CI) estimates and the averaged accuracies obtained in Experiment 2.

TABLE V
CONFUSION MATRICES OF THE 4-FEATURE MODELS WITH K-NN AND

6-FEATURE MODELS WITH SVM, AVERAGED OVER 30 RUNS. VALUES

ARE REPRESENTED IN PERCENTS. ALSO AVERAGED PRECISION (THE

PROPORTION OF TRUE POSITIVES TO THE SUM OF TRUE POSITIVES

AND FALSE POSITIVES), RECALL (THE PROPORTION OF TRUE

POSITIVES TO THE SUM OF TRUE POSITIVES AND FALSE NEGATIVES),
AND F-MEASURE (THE HARMONIC MEAN OF PRECISION AND RECALL)

FOR THE CLASSES ARE PRESENTED.

(a) k-NN BE.

Predicted
Actual Anger/Fear Happy Sad Tender Precision Recall F
Anger/Fear 14.5 3.9 5.0 1.7 0.60 0.58 0.58
Happy 3.4 11.8 2.4 7.4 0.59 0.47 0.50
Sad 4.9 1.8 12.8 5.6 0.52 0.51 0.50
Tender 2.2 4.2 4.5 14.2 0.50 0.57 0.52

(b) SVM BE.

Predicted
Actual Anger/Fear Happy Sad Tender Precision Recall F
Anger/Fear 12.3 4.1 6.1 2.4 0.54 0.49 0.50
Happy 3.1 13.5 2.1 6.2 0.62 0.54 0.56
Sad 5.6 1.6 13.0 4.8 0.51 0.52 0.50
Tender 3.0 3.8 4.6 13.7 0.50 0.55 0.52

1) Confusions Between Emotions: As the overall accura-

cies of the models left room for improvement, the confusion

patterns in validation were explored in detail. Table V(a)

and Table V(b) show that most confusion between classes

concentrated within class pairs anger/fear - sad and happy
- tender, which represent similar affective dimension in va-

lence (negative or positive emotions). Especially happy and

sad as well as anger/fear and tender were well-separated.

Most confusions between the class pairs were evident in

the excerpts belonging to the class sad, which had tendency

to be classified as tender. Again, these confusions, whilst

infrequent, are understandable due to the fact that these two

emotions are situated in the same dimension in the affective

space (low arousal).

2) Best Models: Finally, the k-NN models with the

obtained subset size four were further analyzed in order

to find explanation for the variances in the validation accu-

racies and to contribute to the understanding of the feature

combinations explaining emotion perception in music. The

4-feature sets were found to vary across the iterations of the

cross-indexing loop – total of 33 features appeared in the 30

sets and none of the sets appeared more than once –, which

explains the variance in the obtained validation accuracies.

Analysis focused therefore on similarities between the sets.

To that end, dissimilarity matrix D of all 30 feature sets

was computed.

The dissimilarity between feature sets X and Y contain-

ing four features Xi and Yi (i ∈ {1, 2, 3, 4}) was computed

by

DXY = 1−max(
1

4

4∑
i=1

corr(Xi, YP
(j)
i

)), (1)

where corr(Xi, Yi) is correlation between the features in

the validation set and P (j) is a permutation of {1, 2, 3, 4}.

The maximal averaged correlation was expected for par-

ticular permutation of Y with overlapping and highly

correlating features aligned according to X .

Non-metric Multi-Dimensional Scaling (MDS) according

to Kruskals Stress-1 criterion [32] into two dimensions was

applied to visualize the obtained dissimilarity matrix. MDS

is a set of mathematical techniques for exploring dissimi-

larity data by representing objects geometrically in a space

of the desired dimensionality, where the distances between

objects in the obtained space approximate a monotonic

transformation of the corresponding dissimilarities in the

original data. Interpretation of the MDS results should be

done mainly in terms of inter-object distances. The stress

value of the MDS result denotes the variance in the original

data not accounted for in the scaled distances. The results

of MDS are displayed in Fig. 6.

MDS results indicated that harmony-related features Mm
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Fig. 6. Multi-dimensional scaling (stress = 0.18) of dissimilarities
between four-feature sets obtained with k-NN. As a way to assess the
efficiency of the feature sets, the color bar in the figure indicates the
corresponding validation accuracies. For explanation of the acronyms, see
Table II.

and KCm were found to be most useful for k-NN since

all except one set contained at least one of them and 9

out of 10 of the most efficient sets in terms of validation

accuracy contained both of the features, yielding 61.6%
mean accuracy. It was also notable that Mm and KCm

were almost exclusively coupled with one of the highly

co-varying dynamics-related features ASm, ASd, or Em

(the average inter-correlation rmean = 0.80), one of the

structural features RSm, RRm, or RTm (rmean = 0.83)

or/and rhythm-related FMm or PCd. Therefore it can be

concluded that harmony and dynamics, structure and/or

rhythm together constitute the most efficient models ex-

plaining emotions in the analyzed data sets.

VIII. CONCLUSION

The results in this study showed that classification in

emotion recognition, or generally in the field of MIR, can

be improved by wrapper selection when the methods are

evaluated by taking into account the generalizability and

simplicity of the produced models. Moreover, the proposed

framework gave reliable estimates for the optimal subset

sizes for the utilized classifiers, shown by the performances

of the validation set. The modified cross-indexing algorithm

was found to considerably improve the performance of the

framework compared to the original algorithm and the outer

loop of cross-validation.

The results also indicated that simple classifiers per-

form favorably in comparison to the more complex SVM

classifier. This exhibits somewhat contrasting view to the

common assumption in the field that have stated the supe-

riority of SVM in emotion and mood recognition. Wrapper

selection with k-NN and BE was found to yield the most

promising performance – 56.5% classification rate with

only 4 features. It was shown that relatively high level

features – mode majorness and key clarity were most useful

whereas most of the low-level timbral features were not

found to increase the performance of the classifier. The

effect of mode majorness and key clarity was congruent

with their perceptual meanings.

The suggested framework is not intended to produce

a single ‘best’ feature subset for a given classifier but

rather a set of subsets for deriving general conclusions

about the features useful for a chosen classifier. It must

be noted that suggesting a single optimal subset would be

trivial both research-wise and application-wise. Considering

the sensitivity of the problem, applicability of such subset

would be highly hypothetical in any utilization out of this

study.

Although the results of the present framework were

promising, the classification rate of 56.5% was not entirely

satisfactory as previous studies have reported accuracies up

to 66% [13]. However, several reasons for the lower overall

accuracy can be identified. First, serious effort was made to

minimize overfitting and avoid the reporting of optimistic

recognition accuracies with the selected classifiers. Finding

more efficient classifiers or tuning the model parameters in

order to obtain higher classification accuracies was left out

of the scope of this study. Secondly, the sets of only 32

excerpts used in training, standardization, and testing were

rather small in order to account for all important aspects of

emotions in the analyzed music style, possibly reducing the

classification rates and causing high variance in the results

obtained at each run. Third, the classification categories

were established by a simple selection principle, which may

hide the underlying patterns of closely related emotions.

Hierarchical classifiers [33] could potentially uncover such

structures more easily than single-level classifiers. It is clear

that the performance of the framework is still essentially

limited by the degree at which the features capture percep-

tually relevant information. Therefore the performance of

the framework could be improved by studying the repre-

sentativeness and reliability of the features by modifying

certain parameters in the feature extraction such as the

frame length or filtering. Moreover, one must acknowledge

that the pursuable accuracies of classification according to

perceptual categories are always bounded by the certainty at

which humans recognize the concepts – previous research

has reported 80% accuracies in the human recognition of

clearly expressed emotions in artificial musical examples

[34], [35].
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Semantic Computing of Moods Based on Tags
in Social Media of Music

Pasi Saari and Tuomas Eerola

Abstract—Social tags inherent in online music services such as Last.fm provide a rich source of information on musical
moods. The abundance of social tags makes this data highly beneficial for developing techniques to manage and retrieve mood
information, and enables study of the relationships between music content and mood representations with data substantially
larger than that available for conventional emotion research. However, no systematic assessment has been done on the accuracy
of social tags and derived semantic models at capturing mood information in music. We propose a novel technique called Affective
Circumplex Transformation (ACT) for representing the moods of music tracks in an interpretable and robust fashion based on
semantic computing of social tags and research in emotion modeling. We validate the technique by predicting listener ratings of
moods in music tracks, and compare the results to prediction with the Vector Space Model (VSM), Singular Value Decomposition
(SVD), Nonnegative Matrix Factorization (NMF), and Probabilistic Latent Semantic Analysis (PLSA). The results show that ACT
consistently outperforms the baseline techniques, and its performance is robust against a low number of track-level mood tags.
The results give validity and analytical insights for harnessing millions of music tracks and associated mood data available
through social tags in application development.

Index Terms—Semantic analysis, social tags, music, Music Information Retrieval, moods, genres, prediction.

�

1 INTRODUCTION

MINING moods inherent in online content, such
as web forums and blogs [1], [2], images [3],

and news stories [4], brings benefits to document
categorization and retrieval due to the availability of
large data. The need for automatic mood-based music
management is increasingly important as music listen-
ing, consumption and music-related social behaviors
are shifting to online sources, and a large proportion
of all recorded music is found online. An extensive
body of research in music psychology has shown that
moods1 are, in many aspects, fundamental to music
[5]: music expresses and evokes moods, appeals to
people through moods, and is conceptualized and
organized according to moods. Online music services
based on social tagging, such as Last.fm,2 exhibit rich
information about moods related to music listening
experience. Last.fm has attracted wide interest from
music researchers, since crowd-sourced social tags
enable study of the links between moods and music-
listening in large music collections; these links have
been unattainable in the past research, which has
typically utilized laborious survey-based annotations.

Social tags can be defined as free-form labels or
keywords collaboratively applied to documents by
users in online services, such as Del.icio.us (web

• P. Saari and T. Eerola are with the Department of Music, University
of Jyväskylä, Jyväskylä, Finland.
E-mail: pasi.saari@jyu.fi.

This work was funded by the Academy of Finland (Finnish Centre of
Excellence in Interdisciplinary Music Research).

1. In this paper, we use terms mood, emotion, and affect inter-
changeably.

2. Last.fm: http://www.last.fm/.

bookmarks), Flickr (photos), and Pinterest (images,
videos, etc.)3. Obtaining semantic information from
social tags is, in general, a challenge not yet met. Due
to the free-form nature of social tags, they contain
a large amount of user error, subjectivity, polysemy
and synonymy [6]. In particular, the sparsity of social
tags, referring to the fact that a typical document is
associated to only a subset of all relevant tags, is
a challenge to the indexing and retrieval of tagged
documents. Various techniques in semantic comput-
ing, such as Latent Semantic Analysis (LSA) [7],
that infer semantic relationships between tags from
within-document tag co-occurences, provide solutions
to tackle these problems, and techniques have been
proposed to automatically predict or recommend new
tags to documents bearing incomplete tag information
[8], [9]. However, no agreement exists on how to map
tags to the space of semantic concepts, as indicated
by the large number of approaches dedicated to the
task [10].

In the music domain, the majority of social tags are
descriptors of the type of music content, referring typ-
ically to genres [11], but also to moods, locales and in-
strumentations, which are well represented in the data
as well. In particular, moods are estimated to account
for 5% of the most prevalent tags [12]. Several studies
in the field of Music Information Retrieval (MIR) have
applied bottom-up semantic computing techniques,
such as LSA to uncover mood representations emerg-
ing from the semantic relationships between social
tags [13], [14]. These representations have resembled

3. Del.icio.us: http://www.delicious.com; Flickr: http://www.
flickr.com; Pinterest: http://pinterest.com.
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mood term organizations in the dimensional [15] or
categorical [16], [17] emotion models, which have
regularly been used to model moods in music [18].
However, we claim that the previous studies in tag-
based music mood analysis have not given compre-
hensive evaluation of the models proposed, utilized
knowledge emerging from emotion modeling to the
full potential, or presented systematic evaluation of
the accuracy of the models at the track level.

In this paper we propose a novel technique called
Affective Circumplex Transformation (ACT), opti-
mized to uncover the mood space of music by bottom-
up semantic analysis of social tags. The key aspect
of ACT is that it is a predictive model that can
be used to predict the expressed moods in novel
tracks based on associated tags. We train ACT with
a large collection of approximately 250,000 tracks and
associated mood tags from Last.fm and evaluate its
predictive performance with a separate test set of 600
tracks according to the perceived moods rated by a
group of participants. We compare ACT to predictive
models devised based on various semantic analysis
techniques, as well as to the predictions based on raw
tag data. We also estimate the applicability of ACT to
large collections of weakly-labeled tracks by assessing
ACT performance as a factor of the number of tags
associated to tracks. Furthermore, we gain insights
into the general views on mood modeling in music by
examining the structure of the mood semantic space
inherent in social tags.

The rest of the paper is organized as follows: Section
2 goes through related work in semantic computing
and emotion modeling. Section 3 describes the process
of obtaining tracks and associated social tags from
Last.fm and details the method for semantic analy-
sis of the data. The semantic structures of the data
are examined in Section 3.6. Section 4 presents the
ACT technique and Section 5 introduces the baseline
techniques for comparatively evaluating its prediction
performance on listener ratings of the perceived mood
in music. The test set used in the evaluation is de-
scribed in Section 6. The results are presented and
discussed in Section 7 and conclusions are drawn in
Section 8.

2 RELATED WORK

2.1 Semantic Analysis of Social Tags
Latent Semantic Analysis (LSA) [7], has been widely
used to infer semantic information from tag data. To
enable computational analysis, tag data is first trans-
formed into the Vector Space Model (VSM) [19], repre-
senting associations between documents and tags in
a sparse term-document matrix. Semantically mean-
ingful information is then inferred from a low-rank
approximation of the VSM, alleviating the problems
with synonymy, polysemy and data sparsity. Low-
rank approximation is typically computed by Singu-

lar Value Decomposition (SVD), but other techniques
such as Nonnegative Matrix Factorization (NMF) [20]
and Probabilistic Latent Semantic Analysis (PLSA)
[21] have been proposed for the task as well.

SVD has been used in past research for music auto-
tagging [22] and music mood modeling [13], [14].
Variants of NMF have been exploited for collaborative
tagging of images [23] and user-centered collaborative
tagging of web sites, research papers and movies
[24]. PLSA has been used for collaborative tagging
of web sites [25] and topic modeling of social tags in
music [26]. In the latter paper, SVD and PLSA were
compared in a task of genre and artist retrieval based
on social tags for music, showing the advantage of
PLSA in these tasks. Performance of SVD and NMF
were compared in [27], in a bibliographic metadata
retrieval task, but no significant difference was found.
On the other hand, NMF outperformed SVD and
PLSA in classification of text documents into mood
categories [28].

2.2 Structure of Moods

Emotion modeling in psychology and music psychol-
ogy research typically relies on explicit – textual or
scale-based – participant assessments of emotion term
relationships [15], [29], [30] and their applicability to
music [31], [16], [32]. Based on these assessments,
dimensional [15] and categorical [17] models of emo-
tions have been proposed. Categorical emotion mod-
els either stress the existence of a limited set of univer-
sal and innate basic emotions [17], or explain the vari-
ance between moods by means of a few underlying
affect dimensions [30] or a larger number of emotion
dimensions based on factor analyses [16]. With re-
gards to music, an ongoing related theoretical debate
considers whether moods in music can most realis-
tically be described as categories or dimensions [33].
Two variants of the dimensional models of emotions
[15], [30] are particularly interesting here since these
have received support in music-related research [18].
Russell’s [15] affective circumplex postulates two or-
thogonal dimensions, called Valence and Arousal, and
these dimensions are thought to have distinct physio-
logical substrates. Thayer’s popular variant [30] of this
dimensional model assumes the two dimensions to be
rotated by 45◦, labeling them as Tension and Energy.
However, divergent views exist as to whether two
dimensions is enough to represent affect. In particular,
a three-dimensional model of Sublimity, Vitality and
Unease has been proposed as underlying dimensions
of affect in music [16], whereas a model of Arousal,
Valence and Dominance has been proposed as a nor-
mative reference for English words [34].

Importantly, these models lend themselves to a
coherent spatial representation of the individual affect
terms, which is valuable property with respect to
semantic analysis of mood-related social tags.
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Past accounts of mood detection in MIR have ap-
plied the various emotion models coupled with ad-
vanced techniques of machine learning and signal
processing to identify acoustic substrates for moods.
Both categorical [35] and dimensional [36] models
of emotions have been used to represent the mood
in music tracks. These studies prove that insights
and findings from emotion modeling research are
useful to new computational approaches to automatic
mood modeling. Moreover, and as noted above, past
studies have recovered mood spaces based on seman-
tic analysis of social tags that resemble the emotion
models [13], [14]. Here, we go further by quantifying
the predictive value of applying insights from the
psychology of emotion to the analysis of large-scale
and diffuse meta-data, such as information provided
by social tags.

3 SEMANTIC ANALYSIS

This section describes the process of collecting tracks
and associated social tags from Last.fm, and details
the semantic analysis method to infer spatial repre-
sentation of tags.

3.1 Gathering Vocabularies

To obtain the corpus of tracks and associated tags
from Last.fm, we systematically crawled the Last.fm
online database through a dedicated API4. We used
extensive vocabularies of mood- and music genre-
related terms as search words for populating the cor-
pus. This approach suits our purposes since it controls
the relevance of the track content and to some degree
balances the data according to mood and genre.

The mood vocabulary was aggregated from sev-
eral research papers and from an expert-generated
word list. A number of research fields provided rele-
vant sources: affective sciences [37], music psychology
studying the use of emotion words in music [16], [38],
[15] and MIR [39], [14], studying the mood prevalence
in social tags. As an expert-generated source we used
an extensive mood word list at Allmusic5 web service.
The vocabulary was then edited manually to identify
inflected terms, such as “depressed”, “depressing”,
“depression” and “depressive”.

Genre vocabulary was aggregated from several
expert-generated sources. A reference for music gen-
res and styles available through Allmusic6 was used
as the main source. This included over 1,000 popular
and classical music styles. Moreover, we included
several Finnish music styles out of curiosity. Manual
editing was then carried out for the genre vocabu-
lary to aggregate regular alternate spellings, such as

4. http://www.last.fm/api, accessed during November - Decem-
ber 2011.

5. http://www.allmusic.com/moods
6. http://www.allmusic.com/genres

“rhythm and blues”, “R’n’B”, and “R&B” as well as
“indie pop” and “indiepop”.

The number of terms in the resulting vocabularies
was 568 for moods and 864 for genres (1,083 and 1,603
including the inflected forms, respectively).

Moreover, the following reference vocabularies
were collected for evaluating the mood structures in
Section 3.6: Locations – 464 terms: Country names in-
cluding nationality-related nouns and adjectives (e.g.,
“Finland”, “Finn”, “Finnish”), as well as continents
and certain geographical terms (e.g., “arctic”). Instru-
ments – 147 terms: Comprehensive list of instrument
names. Opinions – 188 terms: Manually identified
from the tags associated to more than 1,000 tracks, and
not included in the other vocabularies (e.g., “favorite”,
“one star”, “wicked”, “check out”).

3.2 Fetching Tags and Tracks from Last.fm
The mood and genre vocabularies, including the in-
flected terms, were used as search words via the
Last.fm API7 to populate the track corpus. The process
is visualized in Fig. 1.

The tracks were collected using two tag-specific
API functions: tag.getTopTracks returning up to 50 top
tracks and tag.getSimilar returning up to 50 most
similar tags. First, the top tracks for each term were
included in the corpus, amounting to up to 2, 686 ×
100 = 134, 300 tracks. In parallel, for each term we
fetched the similar tags and included the associated
top tracks. This process potentially visited up to
2, 686 × 50 × 50 = 6, 715, 000 tracks, and using both
fetching processes combined we were able to fetch up
to approximately 7M tracks. In practice, the number
was reduced by many overlapping tracks and similar
tags.

Finally, track-level tags in the final corpus were
fetched using the function track.getTopTags, returning
up to 100 tags. The returned track-level tags are
represented by normalized “counts” indicating the
relative number of times each tag has been applied
to a track. Although the exact definition of these
counts is not publicly available, they are often used in
semantic analysis [12], [14]. All tags were cleaned by
lemmatizing [40] and by removing non-alphanumeric
characters. The final set consisted of 1,338,463 tracks
and 924,230 unique tags.

3.3 Vector Space Modeling
A standard Vector Space Model (VSM) [19] was built
separately for each of the vocabularies. Tags related to
the vocabulary terms were identified from the corpus
following the bag-of-words approach also taken in
[26]. All tags that included a term as a separate word
(or separate consecutive words in the case of multi-
word terms) were associated with the corresponding

7. Find detailed information on the used functions from the API
documentation referenced above.
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Fig. 1. Data collection process.
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Fig. 2. Distribution of the number of mood terms
associated to tracks in the test set.

terms. We also filtered out those track-specific term
associations where a term was included in either track
title or artist name. This was due to the fact that many
social tags describe these actual track metadata.

To avoid obtaining overly sparse and uncertain in-
formation, we excluded all terms that were associated
to less than 100 tracks. At this point 493,539 tracks
were associated to at least one mood term. However,
we excluded tracks associated to only one mood term,
as it was assumed that these tracks would provide
little additional information for the further semantic
analysis of mood term relationships. This resulted in
a corpus of 259,593 tracks and 357 mood terms. As
shown in Fig. 2, distribution of the number of terms
associated to each track was exponential, indicating
the sparsity of the data. Similar procedures were
applied to all other vocabularies as well. Statistical
measures related to the resulting corpora are shown
in Table 1. The five most frequently applied within
each corpora are as follows: Moods: “chill”, “mellow”,
“relaxing”, “dark” and “melancholy”; Genres: “rock”,
“pop”, “alternative”, “electronic” and “metal”; Instru-
ments: “guitar”, “bass”, “drum”, “piano” and “acous-
tic guitar”; Locales: “British”, “UK”, “American”,
“USA” and “German”; and Opinions: “favorite”,
“love”, “beautiful”, “awesome” and “favourite”.

Finally, the normalised counts ni,j provided by
Last.fm for term (wi) – track (tj) associations were
used to form the VSM N defined by Term Frequency-
Inverse Document Frequency (TF-IDF) weights n̂ in a
similar manner as in [26]:

n̂i,j = (ni,j + 1) log(
R

fi
), (1)

where R is the total number of tracks, fi is the number
of tracks term wi has been applied to. Separate models

TABLE 1
Statistical measures related to each

vocabulary-related corpus.

|Tracks| |Terms| # Terms per track (Avg.)
Moods 259,593 357 4.44
Genres 746,774 557 4.83
Instruments 46,181 53 4.44
Locales 72,229 126 2.26
Opinions 305,803 192 5.67

were formed for each vocabulary-related corpora.

3.4 Singular Value Decomposition
SVD is the typical low-rank matrix approximation
technique utilized in LSA to reduce the rank of the TF-
IDF matrix, alleviating problems related to term syn-
onymy, polysemy and data sparsity. SVD decomposes
a sparse matrix N so that N = USV T , where matrices
U and V are orthonormal and S is the diagonal matrix
containing the singular values of N . Rank k approx-
imation of N is computed by Nk = UkSk(V k)T ,
where the i:th row vector Uk

i represents a term wi as
a linear combination of k dimensions. Similarly, V k

j

represents track tj in k dimensions. Based on a rank
k approximation, dissimilarity between terms wi and
wî is computed by the cosine distance between Uk

i S
k

and Uk
î
Sk.

In the present study, all data sets summarized in
Table 1 are subjected to LSA. While the main content
of this paper deals with the Mood corpus, we use
Genres to balance our data sampling in Section 6, and
the other sets for comparison of different concepts in
Section 3.6.

3.5 Multidimensional Scaling
Past research in emotion modeling, reviewed above,
suggests two to three underlying dimensions of emo-
tions, which indicates that very concise representa-
tion of the mood data at hand would successfully
explain most of its variance. Therefore, we develop
further processing steps to produce a semantic space
of moods congruent with the dimensional emotion
model. Genres, Locales, Instruments and Opinions
were subjected to the same procedures to allow com-
parative analysis described in Section 3.6.
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We applied non-metric Multidimensional Scaling
(MDS) [41] according to Kruskal’s Stress-1 criterion
into three dimensions on the term dissimilarities pro-
duced by SVD with different rank k-values. MDS is a
set of mathematical techniques for exploring dissimi-
larity data by representing objects geometrically in a
space of a desired dimensionality, where the distances
between objects in the obtained space approximate a
monotonic transformation of the corresponding dis-
similarities in the original data. When used with a
low number of dimensions, MDS allows for concise
representation of data, which is why it is a typical
tool for data visualization. In particular, [42] showed
with several high-dimensional biochemical data sets
that the combination of SVD followed by MDS is more
efficient at dimension reduction than either technique
alone.

The resulting mood and genre term configurations
with k = 16 are shown in Fig. 3. The stress φk,
indicating the goodness-of-fit varied between (φ4 =
0.02, φ256 = 0.29) depending on the rank k. Similar
values were obtained for both moods and genres.

To represent a track in the MDS term space, we
applied projection based on the positions of the as-
sociated terms. Given an MDS term configuration
yi = (yi1, yi2, yi3), i ∈ (1, ..., |w|), position of a track
represented by a sparse TF-IDF-weighted term vector
q is computed by the center-of-mass:

t̂ =
Σiqiyi
Σiqi

. (2)

For example, the position of a track associated to
“happy”, with no other terms assigned, coincides with
the position of the term. On the other hand, a track
with “happy” and “atmospheric” is positioned along
the segment happy–atmospheric. In general, tracks are
located in the MDS space within a convex polyhedron
with vertices defined by positions of the associated
terms.

3.6 Mood Structures Emerging from the Semantic
Data

Because of the different views on how to treat mood-
related data, whether as categories or dimensions, we
used semantic information of music tracks obtained
by the MDS analysis to gain evidence on this issue.
If tracks in the MDS space would have clear cluster
structure, we should choose the categorical repre-
sentation; whereas, if tracks would scatter somewhat
evenly across the space, continuous description of
moods would be appropriate.

Hopkins’ index [43] can be used to estimate the
degree of clusterability of multidimensional data. It
is based on the hypothesis that the clustering ten-
dency of a set of objects is directly reflected in a
degree of non-uniformity in their distribution. Non-
uniformity is estimated by comparing the sum of

(a)

(b)

Fig. 3. MDS configurations (k = 16) of (a) mood and
(b) genre terms in three dimensions (bubble size =
prevalence, where prevalence ≥ 4,000 and 10,000 for
(a) and (b)). Six highlighted genres refer to listening
experiment (see Section 6).

nearest-neighbor distances Rj within a set of real
objects to the sum of distances Aj between artificial
objects and their nearest real neighbors:

H =

∑
Aj∑

Aj +
∑

Rj
. (3)

Following an extension by [44], artificial objects are
sampled from univariate distributions that match
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Fig. 4. The mean Hopkins’ indices for each
vocabulary-related corpus across various k (sd ≤
.0067 ∀ k).

those of the real objects. Value H ≈ 0.50 indicates
uniform structure (

∑
Rj ≈ ∑

Aj), whereas H ≈ 1.0
indicates perfect clusterability. In particular, the value
H = 0.75 indicates that null hypothesis of uniform
structure can be rejected at 90% confidence level.

For each corpus, we computed Hopkins’ index for
the track positions in the MDS spaces (see Eq. 2)
obtained with ranks k = (4, 8, 16, ..., 256) and k =
|terms|. The latter corresponds to computing MDS
without LSA, i.e. based on term distances in the orig-
inal TF-IDF matrices. Preliminary analyses indicated
that Hopkins’ index is affected by the number of terms
associated to each track. Since the characteristics of
the vocabulary-related corpora differed in this respect,
we randomly sampled for each corpus a subset of
4088 tracks with exponential terms-per-track distribu-
tion (2048 + 1024 + 512 + ... + 8 tracks associated to
2, 3, 4, ..., 10 terms, respectively) and computed H for
the subset. The results shown in Fig. 4 are computed
as an average of ten separate runs of this process.

The results showed that Hopkins’ indices for Moods
remained at the range of 0.6 < H < 0.7, which
means that track positions are uniformly distributed
across the mood space. This suggests that the optimal
representation of Moods is continuous rather than
categorical. Comparison to other corpora supports
this view, as mood values remain at a clearly lower
level than those of any other set. Genre-related values
indicated that genre-data is fairly clusterable (H > .75,
when k ≤ 128), supporting the common practice
of assigning songs categorically into genres. Further-
more, semantic spaces of Instruments and Locales
had the clearest cluster structure. This is in line with
the intuition that music tracks can, in general, be
characterized with distinct instruments or instrumen-
tations and geographical locations. Clusterability of
data related to Opinions was in general at the same
level as that of Genres. However, Opinions yielded

particularly high values of H with low k. We consider
this high dependence on k as an artefact caused
by ill-conditioned distances between Opinion terms:
almost all of the most prevalent terms were highly
positive (“favorite”, “killer”, “amazing”, “awesome”,
etc.), and the computed distances between these terms
may not reflect any true semantic relationships.

In summary, the results support the use of the
dimensional representation of mood information of
music tracks. In the next section we develop further
processing steps to comply with this finding.

4 AFFECTIVE CIRCUMPLEX TRANSFORMA-
TION

Typical MDS operations, described above, may not be
adequate to characterize moods, since the dimensions
obtained do not explicitly represent the dimensional
models of emotion. We therefore propose a novel tech-
nique called Affective Circumplex Transformation (ACT)
influenced by Russell’s affective circumplex model of
emotions [15] to conceptualize the dimensions of the
MDS mood spaces. First, reference positions for mood
terms on the Valence-Arousal (VA) space are obtained
from past research on emotion modeling. Then, the
MDS space is linearly transformed to conform to
the reference. Finally, explicit mood information of
music tracks is computed by projecting those onto the
transformed space.

4.1 ACT of Mood Term Space

Reference locations for a total of 101 unique mood
terms on the VA space were extracted from Rus-
sell’s [15, p. 1167] and Scherer’s [29, p. 54] studies. In
the case of seven overlapping mood terms between
the two studies, Scherer’s term positions were chosen
since they are scattered on a larger part of the plane
and thus may provide more information. Further-
more, the model by [30] was projected on the space
diagonally against the negative valence and positive
arousal to obtain explicit representation of the tension
dimension.

Three-dimensional MDS spaces were conformed to
the extracted VA space by first identifying the corre-
sponding mood terms in the semantic data. Identifica-
tion of mood terms resulted in a set of 47 mood terms
out of the 101 candidates. The fact that less than half
of the mood terms used in the past studies exist in
the semantic mood data may indicate the difference
between affect terms used to describe everyday expe-
riences in general versus terms used in the context of
the aesthetic experience.

Transformation of the MDS space to optimally con-
form to the VA reference was determined by classical
Procrustes analysis [45], using sum of squared er-
rors as goodness-of-fit. Given the MDS configuration
yî = (yî1, yî2, yî2) and VA reference xî = (xî1, xî2) for
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mood terms î matched between the two, Procrustes
transformation gives x̂î = ByîT + C, where B is an
isotropic scaling component, T is an orthogonal rota-
tion and reflection component, and C is a translation
component. B, T , and C minimize the goodness-of-fit
measure X2 = Σî(xî− x̂î)

2. Based on the components,
configuration x̂i including all mood terms can be
obtained by

x̂i = ByiT + C. (4)

Procrustes retains the relative distances between ob-
jects since it allows only translation, reflection, or-
thogonal rotation and isotropic scaling. Therefore, the
relative configuration of the terms in the original MDS
space is not affected. Changing the rank parameter in
SVD had no significant effect on the goodness-of-fit
of the Procrustes transformation. The criterion varied
between 0.75 < X2 < 0.79.

A peculiarity of ACT is in conforming the three-
dimensional MDS space to two-dimensional reference.
The transformation is thus provided with an addi-
tional degree of freedom, producing two explicitly
labeled dimensions and a third residual dimension.
Using three dimensions in the MDS space is based
on the unresolved debate of whether the underlying
emotion space is actually two- or three-dimensional
(see Section 2.2).

Fig. 5 shows the transformed mood term config-
uration based on SVD with rank 16, also indicating
Russell’s dimensions of Arousal and Valence, and
Thayer’s dimensions of Energy and Tension. VA-
reference and the transformed term positions corre-
spond well, in general, as they are located roughly at
the same area of the space. For example, positions of
terms “happy”, “joy”, “sad”, “tense” and “peaceful”
have only minor discrepancy between the reference.
Moreover, dimension labels and the dimensions im-
plied by the mood term organization correspond as
well and the positions of popular mood terms not
used as reference for the transformation make sense
in general. For example, “fun”, “party” and “upbeat”
all have positive valence and arousal, “dark” has neg-
ative valence and negative arousal, whereas “brutal”
has negative valence and positive arousal.

However, certain terms such as “solemn”, “de-
light”, “distress” and “anxious” show larger discrep-
ancy, and the terms “atmospheric” and “ethereal”,
which could intuitively be considered as neutral or
even positive, both have negative valence. The cause
of these inconsistencies could again be traced back to
the difference between aesthetic and everyday affec-
tive experience, but could also be due to the subjec-
tivity of mood-related associations in music listening.
For example, a solemn or atmospheric track that one
enjoys may be regarded as depressing by another. This
multi-faceted aspect of music listening is discussed in
[32].

Fig. 5. Mood space obtained by ACT based on rank
16 semantic space. Mood term positions are shown in
black dots and the reference positions in grey circles.
Mood terms having no reference, but that are associ-
ated to at least 4,000 tracks are shown in grey stars.
Highlighted terms relate to the seven scales rated in
listening experiment (see Section 6).

4.2 Mood Prediction of Tracks with ACT

In this section we describe how ACT can be used to
predict the prevalence of moods in novel tracks that
have been associated to one or more mood terms.
The prediction performance of ACT related to mood
dimensions and individual mood terms is evaluated
later in Section 7 with listener ratings of the perceived
mood in a separate test set.

Projection in Eq. 2 can be used in itself to estimate
the valence and arousal of a track – the estimations are
represented explicitly by the dimensions in the pro-
jection. However, in order to estimate the prevalence
of a certain mood term in a track, another projection
is needed.

We assigned continuous mood term-specific weight
for a track by projecting the track position given by
Eq. 2 in the MDS space along the direction determined
by the term. A track with position t̂ = (t̂1, t̂2, t̂3) in
the transformed mood space was projected according
to the direction of a mood term with position x̂i =
(x̂i1, x̂i2, x̂i3) by

Pi =
x̂i

|x̂i| · t̂, (5)

where | · | denotes the l2-norm. To obtain an estimate
for Tension we projected the track along the direction
(−1, 1, 0) (note the inverted valence axis according to
a convention used in emotion modeling).
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5 BASELINE TECHNIQUES FOR MOOD PRE-
DICTION

We compared the performance of ACT in predicting
moods of tracks to several techniques based on low-
rank matrix approximation. For a track t represented
by a sparse TF-IDF-weighted term vector q, we com-
puted rank k mood weight related to term wi with
SVD, NMF and PLSA. All of the techniques involve
computing the low-rank approximation of the TF-IDF
matrix, transforming an unknown track t to the VSM
by Eq. 1 and folding it into the low-rank semantic
space, and approximating the weight of a mood wi

related to the track. In addition to the low-rank ap-
proximation of the VSM, we used the original sparse
VSM representation q as a baseline as well.

5.1 Singular Value Decomposition
Track represented with a sparse TF-IDF-weighted
term vector q = (q1, q2, ..., q|w|, ) is first folded in to
the rank k space obtained with SVD by:

q̂k = (Sk)−1(Uk)T q. (6)

The weight Nk
i related to the track and a mood term

wi is then computed by

Nk
i = Uk

i S
k(q̂k)T . (7)

5.2 Nonnegative Matrix Factorization
NMF [20] is a method proposed for low-rank ap-
proximation of a term-document matrix. The method
distinguishes from SVD by its use of nonnegative
constraints to learn parts-based representation of ob-
ject semantics. Given a nonnegative TF-IDF matrix
N ⊂ R

C×D and a desired rank parameter k, NMF
constructs nonnegative matrices W k ⊂ R

C×k contain-
ing k basis components and Hk ⊂ R

k×D such that
N ≈ W kHk. This is done by optimizing

min
Wk,Hk

f(W k, Hk) =
1

2
||N−W kHk||2F , s.t. W k, Hk > 0,

(8)
where F denotes the Frobenius norm. We solve the
optimization problem using multiplicative updating
rules in an iterative manner [20]. The ith row of W can
be interpreted as containing k “importance” weights a
mood term wi has in each basis component. Similarly,
the jth column of H can be regarded as containing k
corresponding weighting coefficients for track tj .

Folding in a new track represented by a TF-IDF-
weighted term vector q to obtain q̂k is achieved by
solving an optimization problem by keeping Hk fixed:

min
q̂k

f(q̂k, Hk) =
1

2
||q − q̂kHk||2F , s.t. q̂k > 0. (9)

Finally, to estimate the weight Nk
i related to track t

and mood term wi, we compute

Nk
i = W k

i q̂
k. (10)

5.3 Probabilistic Latent Semantic Analysis
In the core of PLSA [21], is the statistical aspect model,
a latent variable model for general co-occurrence data.
Aspect model associates an unobserved class variable
z ∈ Z = (z1, ..., zk) with each occurrence of a term wi

in a track tj .
PLSA states that the probability P (tj , wi) that term

wi is associated with a track tj can be expressed as a
joint probability model using latent class variable z:

P (tj , wi) = P (tj)P (wi|tj) = P (tj)
∑
z∈Z

P (wi|z)P (z|tj),
(11)

where P (t) is the probability of a track tj , P (z|tj)
is the probability of a latent class z in track tj , and
P (wi|z) is the probability of a term wi in the latent
class. The model is fitted to the collection of tracks by
maximizing log-likelihood function

L =
∑
t

∑
w

Ni,j logP (tj , wi), (12)

where Ni,j is the nonnegative TF-IDF matrix. The
procedure for fitting the model to training data is
the Expectation Maximization (EM) algorithm [21]. To
estimate the probability P (q, wi) of a mood term wi for
a new track represented by a TF-IDF-weighted term
vector q, we first fold in the track using EM, keeping
the parameters of P (wi|z) fixed and then calculate
weights P (z|q). The mood weight for the track is
finally computed by

P (q, wi) = P (wi|z)P (z|q). (13)

5.4 Predicting the Mood Dimensions
Since all baseline techniques predict mood primarily
according to explicit mood terms, the techniques must
be optimised to achieve mood dimension predictions
comparable to ACT. We considered that a mood term
representative of a mood dimension would yield the
highest predictive performance for the corresponding
dimension. We assessed the representativeness of the
mood terms by computing the angle between each
mood dimension and mood term location in the ACT
configurations with k ∈ [4, 8, 16, ..., 256], and limited
the choice to terms associated to at least 10% of all
tracks in the corpus. This yielded the following terms,
indicating the number of track associations and the
maximum angle across k between the term position in
the ACT configurations and the corresponding dimen-
sion: “happy” for Valence (n = 28, 982, αk ≤ 9.29◦),
“melancholy” for Arousal (n = 31, 957, αk ≤ 5.11◦)
and “mellow” for Tension (n = 46, 815, αk ≤ 4.48◦)

6 GROUND-TRUTH DATA OF MOODS IN MU-
SIC

We evaluated the performance of ACT and the base-
line techniques by comparing the estimates produced
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by these methods to listener ratings of the perceived
moods in music tracks. Participants listened to short
music clips (15s) and rated their perception of moods
expressed by music in terms of ten scales. The test set
of tracks was retrieved from the Last.fm in a random
fashion, balancing the sampling to cover semantic
genre and mood spaces. This section describes the
ground-truth collection process in detail8.

6.1 Choosing Moods and Genres as Focus
To systematically cover the concurrent characteriza-
tions of moods in music, ratings were done for both
the dimensional mood model and individual mood
terms. All ratings were given in nine-step Likert-scales
to capture the continuous nature of mood uncovered
in Section 3.6. We used bipolar and unipolar scales for
the mood dimensions and terms, respectively.

For dimensional model we used three scales: Va-
lence, Arousal and Tension, later denoted as VAT;
whereas for the mood term representation we used
seven scales: Atmospheric, Happy, Dark, Sad, Angry,
Sensual and Sentimental. The choice was based on
several criteria: i) to cover the semantic space as well
as the basic emotion model; ii) to use representative
terms as implied by high prevalence in the data (“sen-
timental” used 4,957 times – “dark” 33,079 times); and
iii) to comply with research in the affect prevalence
and applicability in music [31], [16], [32].

Six popular and distinct genres according to the
Last.fm track collection (see Fig. 3 (b)) – Rock, Pop,
Electronic, Metal, Jazz and Folk – were chosen as the
focus of the study to retain a wide variance in the
stylistic characteristics of popular music.

6.2 Sampling of Tracks
We fetched a set of 600 tracks from Last.fm, separate to
the mood track corpus used in the semantic modeling,
to be rated in the listening experiment. To obtain a
track collection that allows multifaceted comparison
between tag information and the ratings, we utilized
balanced random sampling of tracks based on: i)
mood coverage – reciprocal of the track density in the
rank 16-based MDS mood space; and ii) genre cover-
age – closeness of track positions in the MDS genre
space to one of the six chosen genre terms. Moreover,
quality and variability of semantic information in the
data was ensured by: i) favoring tracks associated
to many mood tags; ii) favoring tracks with many
listeners according to statistics provided by Last.fm;
and iii) choosing no more than one track from each
artist.

Tracks in the resulting test set are associated with
8.7 mood terms on average, which is a higher number
than that of the larger mood set due to sampling

8. Ground-truth and semantic mood data are publicly available
at http://hdl.handle.net/1902.1/21618.
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Fig. 6. Distribution of the number of mood terms
associated to tracks in the test set.

according to the number of associated mood terms.
The details of the term occurrences are shown in
Fig. 6. The number of times each mood term re-
lated to the chosen scales appear in the set are: 90
(Atmospheric), 137 (Happy), 109 (Dark), 166 (Sad),
28 (Angry), 43 (Sensual) and 52 (Sentimental). For
genres, the corresponding figures are: 422 (rock), 353
(pop), 149 (electronic), 139 (metal), 147 (jazz) and 144
(folk). Considering the high frequency of genres such
as rock and pop, these genres have naturally wider
representation in the set – a track in the electronic genre
has likely been tagged with pop, for instance.

6.3 Listening Experiment
An online interface was used to allow participants to
login on their own computers and save their ratings
on a server in real time. At each session, tracks were
presented in a randomized order. Participants were
allowed to rate as many or as few songs as they liked.
However, to encourage the rating of many tracks, the
task was rewarded by Spotify9 and Amazon10 gift
cards proportional to the amount of tracks rated.

The task was to rate 15 second clips of the
tracks in terms of the perceived moods expressed by
music, rather than moods induced by music. VAT
scales were presented with bipolar mood term la-
bels: “negative”/“positive”, “calm”/“energetic” and
“relaxed”/“tense”, respectively. In addition to mood,
participants rated their personal liking of the tracks,
and in half of the cases, genre representativeness. In
this paper, however, we utilize only the mood ratings.

We based the sampling of each song on the au-
dio previews on Last.fm service, arguing that, since
the previews are track summarizations sampled for
marketing purposes, consisting of the most prolific
section, they are fairly representative of the full tracks.
The previews typically consist of a build-up and part
of chorus, starting either at 30 or 60 seconds into the
beginning. While some studies have highlighted the
difference between clip- and track-level content [46],
it has been argued that using short clips lessens the
burden of human evaluation and reduces problems in
annotation caused by time variation of moods [47].

A total of 59 participants, mostly Finnish university
students (mean age 25.8 years, SD = 5.1 years, 37 fe-

9. http://www.spotify.com/
10. http://www.amazon.co.uk/
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TABLE 2
Correlations (rs) between mood ratings.

Valence Arousal Tension
Valence −.073 −.639∗∗∗
Arousal .697∗∗∗
Atmospheric .180∗∗∗ −.901∗∗∗ −.687∗∗∗
Happy .940∗∗∗ .114∗∗ −.478∗∗∗
Dark −.940∗∗∗ .059 .640∗∗∗
Sad −.413∗∗∗ −.662∗∗∗ −.253∗∗∗
Angry −.687∗∗∗ .633∗∗∗ .876∗∗∗
Sensual .320∗∗∗ −.733∗∗∗ −.688∗∗∗
Sentimental .114∗∗ −.722∗∗∗ −.621∗∗∗
Note: ∗p < .05; ∗∗p < .01; ∗∗∗p < .001, df = 599.

males), took part in the experiment. Musical expertise
of the participants spanned from listeners (N = 23), to
musicians (N = 28) and trained professionals (N = 8).
Each participant rated 297 clips on average, and 22
participants rated all 600 clips. Cronbach’s alpha for
mood scales vary between 0.84 (sentimental) and 0.92
(arousal), which indicates high internal consistency
[48]. Such high agreement among the participants
gives support for (a) using all participants in further
analysis, and (b) representing each song by single
value on each mood scale, computed as the average
across participants.

Spearman’s rho correlations (rs) between mood rat-
ings in different scales, presented in Table 2, showed
no correlation between valence and arousal, which
supports treating these moods as separate dimen-
sions. On the other hand, tension is highly correlated
with arousal and negative valence, which in turn
supports projecting tension diagonally against these
dimensions. Ratings of all 7 mood terms are highly
related to valence (happiness, darkness), arousal (at-
mospheric, sentimental), or a combination of these
(sad, angry, sensual). This extends previous findings
about high congruence between term-based and di-
mensional emotion models in emotion ratings of film
soundtracks [49] to a large variety of tracks in popular
music genres.

7 RESULTS AND DISCUSSION

We compared the prediction rates of ACT with var-
ious rank values k ∈ (4, 8, 16, ..., 256) to those of the
baseline techniques SVD, NMF, PLSA and VSM. All
prediction rates were computed by correlating the
estimates with the listener ratings of moods, using
Spearman’s rank correlation (rs). Fig. 7 shows the
results in detail with different rank k values, while
Table 3 summarizes the results into the average per-
formance across k, assessing also the significance of
the performance differences between ACT and the
baseline techniques. Section 7.3 (Table 3: ACT alt.) pro-
vides results obtained with alternative configurations
of ACT. Finally, Section 7.4 assesses the performance
of ACT as a factor of the number of terms applied to
tracks in the test set.

7.1 Performance for VAT Dimensions
Fig. 7 shows that ACT yielded the highest perfor-
mance for all VAT scales, outperforming the baseline
techniques consistently across k. For Valence the me-
dian performance of ACT was rs = .576, varying be-
tween .519 < rs < .606. The performance was slightly
higher for Arousal (Mdn rs = .643, .620 < rs < .683)
and Tension (Mdn rs = .622, .585 < rs < .642).
Performance difference to the baseline techniques was
significant for all scales – NMF gave the highest
median performances (rs = .348, .514, .579), while
SVD performed the worst (rs = .302, .414, .443) at
predicting Valence, Arousal and Tension, respectively.
VSM yielded performance levels comparable to the
baseline methods, outperforming SVD for all three
scales, and PLSA for Valence and Arousal. However,
devising baseline techniques to infer predictions for
VAT scales from highly prevalent mood terms pos-
sibly benefits VSM more than the other techniques.
While SVD, NMF and PLSA utilize the semantic
relationships with other terms in making predictions,
VSM predictions rely solely on the individual terms.
The chosen mood terms are popular also within the
test set (n = 137, 189, 227 for “happy”, “melancholy”
and “mellow”, respectively).

The results also show that ACT is less sensitive to
the value of k than SVD, NMF and PLSA. While ACT
performance varied by Δrs ≤ .087, SVD (Δrs ≤ .222)
and PLSA (Δrs ≤ .412) were clearly more inconsis-
tent. For Valence and Arousal, PLSA yielded particu-
larly low performance with k < 16. NMF was more
robust than other baseline techniques against k as
shown by the performance differences of Δrs ≤ .112.

The high prediction rate of Arousal compared to
that of Valence bears similarity to the results from pre-
diction of affect dimensions from the musical features
across different genres of music [50]. This was also
highlighted by an analysis of ACT prediction rates at
the genre-level. The median rs across k for subsets
of the test tracks associated to different main genres
was consistently high for Arousal regardless of genre
(.585 < rs < .701), whereas for Valence the rates
spanned rs = .390 (Jazz) and rs = .614 (Metal).

In summary, the results suggest that conventional
techniques of semantic analysis are inadequate at
reliably inferring mood predictions congruent with
the dimensional model of emotions, whereas ACT
yields consistently high performance at this task.

7.2 Performance for Individual Mood Terms
Since the rated mood term scales relate to the mood
term associations explicitly represented in the test set,
comparison between ACT and the baseline techniques
is more direct than with VAT dimensions. Still, the
same patterns in the performances were prevalent.
ACT, again, clearly gave the highest overall perfor-
mance, while NMF was the most successful baseline
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Fig. 7. Prediction rates (rs) of listener ratings in (a – c) VAT scales and (d – j) mood term scales.

TABLE 3
Comparison of the performances of ACT, baseline techniques, and alternative ACT implementations (Mdn =

median across k). Significances of the performance differences were computed by Wilcoxon rank sum test for
equal medians between ACT and SVD, NMF and PLSA, and Wilcoxon signed rank test for median rs between

ACT and VSM, SVD only, and MDS only.

ACT BASELINE ACT alt.
SVD NMF PLSA VSM SVD-only MDS-only

rs (Mdn) rs (min) rs (max) rs (Mdn) rs (Mdn) rs (Mdn) rs rs rs
Valence .576 .519 .606 .302∗∗∗ .348∗∗∗ .313∗∗∗ .326∗ .475∗ .558
Arousal .643 .620 .683 .414∗∗∗ .514∗∗∗ .416∗∗∗ .429∗ .373∗ .643
Tension .622 .585 .642 .443∗∗ .579∗∗ .534∗∗ .469∗ .591∗ .596∗
Atmospheric .525 .482 .640 .112∗∗∗ .229∗∗∗ .186∗∗∗ .161∗ .247∗ .581
Happy .552 .506 .612 .330∗∗∗ .419∗∗∗ .373∗∗∗ .376∗ .279∗ .455∗
Dark .552 .425 .630 .334 .472 .401∗ .409∗ .595∗ .239∗
Sad .496 .361 .563 .396 .516 .445 .455 .328∗ .469
Angry .576 .480 .644 .241∗∗∗ .258∗∗∗ .265∗∗∗ .286∗ −.131∗ .432∗
Sensual .603 .446 .643 .319∗∗ .520∗ .424∗∗ .226∗ .589 .542
Sentimental .498 .334 .568 .380 .486 .309 .220∗ .420 .356

Note: ∗p < .05; ∗∗p < .01; ∗∗∗p < .001, df = 6.

method. NMF outperformed ACT only at predicting
Sad, but this difference was not, however, statistically
significant.

In general, median performances of ACT were
lower for the individual mood scales than for VAT
dimensions, ranging from rs = .496 (Sad) to rs =
.603 (Sensual). Performance difference between ACT
and baseline techniques was the most notable for
Atmospheric and Angry. While ACT yielded median
performances rs = .525 for the former scale and
rs = .576 for the latter, the most successful baseline
techniques (NMF and VSM, respectively) produced

only rs = .229 and rs = .286.
ACT performance was generally more sensitive to

the value of k for the individual mood terms than
for the VAT dimensions. The performance range was
smallest for Happy (Δrs = .105, .506 ≤ rs ≤ .612) and
largest for Sentimental (Δrs = .234, .334 ≤ rs ≤ .568).
However, the corresponding numbers were higher for
all baseline techniques.

All in all, these results show that ACT is efficient
at predicting the individual mood terms and gives
consistent performance for mood terms (Atmospheric,
Angry), which the baseline techniques fail at predict-
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ing. Together with the findings for VAT dimensions,
this suggests that domain knowledge on moods can
be utilized to great benefit in semantic computing.

7.3 ACT with Alternative Implementations
While ACT clearly outperformed the baseline tech-
niques at predicting the perceived mood, we carried
out further comparative performance evaluation with
ACT to assess the optimality of the technique. In
particular, we were interested to find whether it is
beneficial to implement ACT with dimension reduc-
tion in two stages, involving low-rank approximation
with SVD and mood term configuration with MDS.
For this evaluation we analyzed the performance of
two models: a) SVD-only applying Procrustes directly
on the SVD mood term configuration ui = Uk

i S
k

(k = 3) without the MDS stage; and b) MDS-only
applying MDS on the cosine distances between mood
terms computed from the raw TF-IDF matrix instead
of the low-rank representation. In must be noted,
however, that the latter model effectively corresponds
to the original ACT with k = |terms| but is computa-
tionally heavier than the original ACT when the TF-
IDF matrix is large.

The results presented in Table 3 show that both
ACT implementations yielded performance mostly
comparable to that of the original ACT. The original
ACT generally outperformed both alternative imple-
mentations. This difference was statistically significant
in seven moods for SVD-only and in four moods
for MDS-only. SVD-only outperformed the original
ACT for Dark, whereas MDS-only yielded the highest
performance for Arousal and Atmospheric. However,
the performance differences for MDS-only were not
statistically significant. The clearest difference was
between ACT and SVD-only for Angry, where SVD-
only failed to produce positive correlation.

The results suggest that mood prediction perfor-
mance of ACT is significantly boosted by utilizing
both SVD and MDS.

7.4 The Effect of Tag Sparsity on ACT Perfor-
mance
As noted in the introduction, social tag data is sparse,
meaning that a typical document is associated to
only a subset of all relevant tags. In the mood data
fetched from Last.fm 493,539 tracks are associated to
at least one mood term, whereas only 38,450 tracks
are associated to at least 8 terms, which is approxi-
mately the average within the test set. If we consider
only the level of data sparsity, we can assume that
the performance presented above extends to approxi-
mately 38,000 tracks. The question is, how high could
prediction performance be expected for the larger set
of almost 500,000 tracks?

To study this question, we carried out systematic
performance assessment with ACT as a factor of the
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Fig. 8. The relationship between the number of tags
for each track and the ACT performance (k = 32) for
(a) Valence and (b) Arousal.

number of mood terms associated to the test tracks.
Starting with the full test set, we iteratively removed
one term-track association at a time until all tracks
were associated to only one term. The association to
be removed was sampled in a weighted random man-
ner at each iteration, weighting tracks directly propor-
tional to the number of associated terms, and terms
with lower raw within-track counts. We recorded
ACT performance at each iteration, and calculated
the mean performance across ten separate runs. The
process can be seen as imitating user tagging, where a
novel track in a system is most likely first applied with
clearly descriptive tags. The results of the analysis are
summarized in Table 4, showing the median perfor-
mance across k obtained with 1, 2, 4, 6 and 8 terms
associated to each track in average.

The results suggest that tag sparsity and prediction
performance are in a strong linear positive relation-
ship, supporting the assumption that tag sparsity
primes the ACT prediction performance. This rela-
tionship held also at each of the ten separate runs
(see Fig. 8). Depending on the mood, performance
achieved with only one tag in each track was ap-
proximately rs = .433 and varied between rs = .352
(Sentimental) and rs = .496 (Tension). Difference
between the performances obtained with the full test
set to that with only one term for each track was on
average Δrs = .132, .086 ≤ Δrs ≤ .151, which is not
a drastic drop considering that the prediction based
on one term alone deals with a lot less track-level
information.

These results suggest that ACT prediction is robust
against the low number of track-level mood tags.
Based on the results, we estimate that the correlations
of rs = .433 between the perceived mood and ACT
mood predictions extend to the large set of almost
500,000 tracks extracted from Last.fm. This gives pos-
itive implications for utilizing sparse but abundant
social tags to manage and retrieve music.
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TABLE 4
Median performances (rs) across k obtained with ACT when the specified numbers of mood terms in average

were associated to each track in the test set. # Tracks refers to the number of the fetched Last.fm tracks with at
least # Terms.

# Terms / Track 1 2 3 4 5 6 7 8 8.71 (Full)
# Tracks 493,539 259,593 164,095 114,582 84,206 64,018 49,393 38,450
Valence .445 .474 .498 .521 .535 .548 .558 .568 .576
Arousal .492 .530 .560 .578 .600 .615 .627 .639 .643
Tension .496 .535 .559 .576 .590 .598 .607 .617 .622
Atmospheric .375 .419 .445 .462 .477 .493 .509 .519 .525
Happy .418 .454 .479 .497 .513 .525 .535 .543 .552
Dark .413 .447 .471 .495 .512 .527 .539 .545 .552
Sad .368 .387 .410 .429 .451 .471 .482 .491 .496
Angry .490 .511 .525 .540 .546 .554 .562 .570 .576
Sensual .475 .510 .535 .550 .567 .578 .586 .595 .603
Sentimental .352 .382 .410 .428 .450 .463 .477 .489 .498

8 CONCLUSIONS

This paper marks the first systematic assessment of
the potential of social tags at capturing mood in-
formation in music. We used large-scale analysis of
social tags coupled with existing emotion models to
construct robust music mood prediction.

We proposed a novel technique called Affective
Circumplex Transformation to represent mood terms
and tracks in a space of Valence, Arousal and Tension.
Use of the dimensional emotion model to represent
moods was supported by our analysis of the struc-
ture of the tag data. ACT outperformed the baseline
techniques at predicting listener ratings of moods in
a separate test set of tracks spanning multiple genres.
Furthermore, the results showed that mood prediction
with ACT is robust against the low number of track-
level mood tags, and suggested that moderate to
good fit with the dimensional emotion model can be
achieved in extremely large data sets.

The present study facilitates information retrieval
according to mood, assists in building large-scale
mood data sets for music research, gives new ways
to assess the validity of emotion models on large
data relevant to current music listening habits, and
makes large data available for training models that
automatically annotate music based on audio.

A limitation of the present study is the possible
discrepancy between track-level and clip-level moods,
which may have reduced the prediction rates pre-
sented. This is because tags associated to full tracks
may not adequately describe the representative clip
rated in the listening experiment. Moreover, further
research is needed to assess the mood-related associ-
ations of music genres and genre-related implications
to mood modeling.

The implications of the present study also extend to
mood mining in other online content, as it was shown
that domain knowledge of moods is highly beneficial
to semantic computing. Moreover, the techniques de-
veloped here can be applied to social tags as well as
to other types of textual data.
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ABSTRACT

Social media services such as Last.fm provide crowd-

sourced mood tags which are a rich but often noisy source

of information. In contrast, editorial annotations from pro-

duction music libraries are meant to be incisive in nature. We

compare the efficiency of these two data sources in captur-

ing semantic information on mood expressed by music. First,

a semantic computing technique devised for mood-related

tags in large datasets is applied to Last.fm and I Like Music

(ILM) corpora separately (250,000 tracks each). The result-

ing semantic estimates are then correlated with listener ratings

of arousal, valence and tension. High correlations (Spear-

man’s rho) are found between the track positions in the di-

mensional mood spaces and listener ratings using both data

sources (0.60 < rs < 0.70). In addition, the use of curated

editorial data provides a statistically significant improvement

compared to crowd-sourced data for predicting moods per-

ceived in music.

Index Terms— Semantic computing, dimensional emo-

tion model, affective circumplex transformation, music

moods.

1. INTRODUCTION

Empirical evidence have shown that music has the ability to

express emotion or mood (perceived emotions) and to evoke

emotion in listeners (felt emotions) [1]. This is reflected in the

prevalence of mood-related tags, i.e. free-form labels applied

to tracks, albums, artists, etc. in popular online music tagging

services such as Last.fm1, and in the importance of editorial

mood-related metadata in production music catalogues.

The collection and management of multimedia document

tags is a widely-used practice in online services and content

providers with large population of users. Typically, very large

This work was supported by the Academy of Finland (project numbers

7118616 and 125710) and partly funded by the TSB project 12033-76187

“Making Musical Mood Metadata” (TS/J002283/1).
1http://www.last.fm

corpora of data describing semantic information on multi-

media documents can be obtained straightforwardly from the

end-users. Music related tags may contain information of any

kind including genre, locale, mood, opinion and instrumenta-

tion. The importance of mood tags was highlighted in several

studies including [2], claiming that mood tags account for 5%

of the most commonly used tags, and [3], which reported that

15% of the song queries on Last.fm are made using mood

tags. Mood-related metadata are also considered important

for searching and finding suitable tracks from production mu-

sic catalogues, especially for specific purposes in creative me-

dia production involving music, such as movie making. In

order to build models and applications2 to classify tracks ac-

cording to moods, there is a need to develop robust semantic

representations of mood tags, in line with judgements from

human listeners.

We wish to compare the reliability of semantic tags and

mood representations based on tags obtained from two dif-

ferent sources of data: (i) crowd-sourced tags available from

Last.fm, and (ii) curated editorial annotations used in produc-

tion music catalogues. Moreover, this study seeks to assess

how wide is the gap between the semantic representations

of mood from these two data sources by applying seman-

tic models across the sources. We assess the reliability of

semantic representations using listener ratings collected for

each source. For production music we use a unique source of

curated editorial tags extracted from I Like Music’s3 (ILM)

collection, aggregated from 29 individual production music

catalogues.

In order to represent semantically meaningful information

in a low-rank space, tag data can be analysed using Latent

Semantic Analysis (LSA) [4]. The technique reduces noise

resulting from spelling variations, the frequent use of syn-

onyms, the polysemy of words, and largely subjective annota-

tions occurring in crowd-sourced tag data. This is achieved by

2See e.g. Gracenote Habu, https://www.gracenote.com/
case_studies/habu, or Spotify Moodagent apps http://www.
moodagent.com/spotify.

3http://www.ilikemusic.com/



learning the latent structure of the semantic space in an unsu-

pervised manner, in other words it learns context-specific re-

lationships between tags from domain-specific data. The pro-

cess of LSA involves Singular Value Decomposition (SVD)

to find a low-rank approximation of a term-document matrix,

leading to the above-mentioned semantic space with reduced

dimensionality and data sparsity.

Past research in Music Information Retrieval (MIR) has

successfully established relationships between the semantic

spaces of crowd-sourced tags based on LSA and expert-based

taxonomies for moods [5] and genres [6]. Moreover, [7] re-

cently examined the reliability of mood-related tag data ob-

tained from Last.fm by comparing semantics emerging from

track-level tags to listener ratings on the corresponding mood

scales. The authors proposed the Affective Circumplex Trans-

formation (ACT) method based on LSA and mood models in

the field of affective sciences to explicitly estimate the mood

expressed by music tracks. The results showed medium high

correlations (rs ≈ 0.60) between the estimates and ratings for

valence, arousal, and tension. No similar study has been con-

ducted yet using music mood tags curated by music librarians

and professional music experts.

The remainder of this article is organised as follows: In

Section 2, we present the system devised to uncover seman-

tic music mood models from metadata. In Section 3, we de-

scribe the cross-evaluation framework used to assess the se-

mantic music mood models obtained using the Last.fm and

ILM datasets. The results of the evaluation process are pre-

sented and discussed in Section 4. Section 5 summarises the

findings and proposes future developments of this work.

2. SEMANTIC ANALYSIS

The following procedures are applied separately for Last.fm

tags and ILM annotations. A detailed description of Last.fm

data and analysis is given in [7].

2.1. Vector Space Modelling

First, mood and genre vocabularies were collected by aggre-

gating and lemmatising words listed in several research pa-

pers in affective sciences, music psychology and MIR, as well

as in the Allmusic.com web service. The genre vocabulary

was used to select tracks for the listening test detailed in Sec-

tion 3.2 to ensure a well-balanced representation of genres.

Synonyms and inflected forms of the vocabulary terms were

identified and aggregated, or added manually, such as (happy,

happiness) and (rhythm and blues, r’n’b, R&B). The result-

ing vocabularies consist of 560 unique mood words and 865
distinct genre names.

Last.fm [7] and ILM mood and genre vocabulary terms

were identified from tags using a bag-of-words approach sim-

ilar to that used in [8]. Vocabulary terms were then applied

to associated tracks accordingly. To avoid obtaining overly

Table 1. Statistics of the mood term sets.

# Tracks # Terms # Applied terms / track

LAST.FM 259,593 357 4.44

ILM 226,344 288 4.81

sparse and uncertain information, we excluded tracks with

less than two mood (and genre) terms, and terms applied to

less than 100 tracks. Finally, both datasets were normalised

by computing term frequency-inverse document frequency

(TF-IDF) weights: n̂w,t = (nw,t + 1) log( R
fw

), where nw,t

is the original frequency weight related to term w and track t,
R is the total number of tracks, and f is the number of tracks

the term w was applied to. Statistics describing the mood data

associated with the Last.fm and ILM datasets are summarised

in Table 1.

2.2. Singular Value Decomposition

Low-rank approximations of the resulting mood (and genre)

TF-IDF matrices was then computed by Singular Value De-

composition (SVD). SVD decomposes a sparse matrix N into

orthogonal matrices U and V , and diagonal matrix S, such

that N = USV T . S contains singular values in decreasing

order. A rank k approximation of N is then computed by

N̄k = UkSk(V k)T , where each row vector Uk
i represents the

term wi with k relative weights for each dimension. Simi-

larly, V k
j represents track tj as k relative weights. Based on

the rank k approximation, dissimilarity between terms wi and

wî can be computed using the cosine distance between the

Uk
i S

k and Uk
î
Sk vectors.

2.3. Affective Circumplex Transformation

We use the Affective Circumplex Transformation (ACT)

proposed in [7] to infer explicit representation of valence,

arousal, and tension for the annotated tracks. The rationale

behind ACT is based on research in psychology [9, 10, 11]

which showed that the variance between various mood states

could be modelled using only a few underlying affective di-

mensions.

To represent mood terms in a low-dimensional space,

non-metric Multidimensional Scaling (MDS) [12] is applied

on the term dissimilarities obtained by rank k approxima-

tion of mood TF-IDF obtained by SVD. Three-dimensional

mood spaces were obtained, yielding similar stress values

(Kruskal’s stress 1, denoted φk) for the Last.fm (φ4 =
0.02, φ256 = 0.29) and ILM (φ4 = 0.02, φ256 = 0.25)

datasets.

Next, the resulting MDS mood term space is made to fit

the space of arousal and valence (AV), using AV values of

101 mood terms given in [9, p. 1167] and [10, p. 54]. To ob-



tain explicit representation of tension, the model by [13] can

be projected on the space diagonally against negative valence

and positive arousal. First, mood term co-occurrences are

found between the MDS and AV-spaces, yielding 47 and 37
matches for Last.fm and ILM, respectively. Then, the MDS

term space is transformed to match the AV space using clas-

sical Procrustes analysis [14] with sum of squared errors used

as goodness-of-fit. The method retains the relative distances

between objects in the original MDS configuration, since it

allows only translation, reflection, orthogonal rotation, and

isotropic scaling. Given AV values xî = (xî1, xî2), and MDS

configuration yî = (yî1, yî2, yî3), where î denotes the mood

terms matched between MDS and AV, the Procrustes transfor-

mation gives x̂î = ByîT +C, where B is an isotropic scaling

component, T is an orthogonal rotation and reflection com-

ponent, and C is a translation component. B, T , and C min-

imise the goodness-of-fit measure X2: X2 = Σî(xî − x̂î)
2.

To this end, AV values x̂î are zero-padded into three dimen-

sions. Configuration x̂i composed of all mood terms is then

obtained by using the transformation x̂i = BxiT + C.

Fig. 1 shows AV values of the resulting mood term config-

urations (k = 16) for both Last.fm tags and ILM terms. The

frequencies of the terms shown span from 110 tracks (“vin-

dictive”) to 79,524 tracks (“chill”) for Last.fm, and 346 tracks

(“narrative”) to 39,892 tracks (“uplifting”) for ILM. It can be

seen that ILM terms have more positive valence in general,

which may reflect the different music genres covered by these

corpora. Moreover, the Last-fm configuration shows certain

unexpected term positions. For example, positive valence of

“guilty” may be explained by a frequent term combination

“guilty pleasure”, which yields low distance between these

terms.

Tracks are projected onto the resulting mood space based

on the term positions and sparse TF-IDF term vectors of

tracks. Given a configuration of terms x̂i, i ∈ (1, ..., n),
where n is the number of terms, track positions are com-

puted by taking the euclidean mean of the term positions,

weighted by the sparse TF-IDF vector q of the track: t̂ =
(Σiqix̂i)/(Σiqi). This way, any track associated with one or

more mood terms can be projected.

3. EVALUATION FRAMEWORK

3.1. Cross-evaluation Protocol

The system is evaluated using four methods outlined in Fig.

2. We use ACTL and ACTI hereafter to denote the seman-

tic models obtained by applying ACT to Last.fm and ILM

tags, respectively. Our four methods can be summarised as

follows: (1) Using ACTL for predicting mood in the Last.fm

test set as in [7]; (2) Using ACTI for predicting moods in the

Last.fm test set; (3) Using ACTL for predicting moods in the

ILM production music set; and (4) Using ACTI for predicting

mood in the ILM production music test set.
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Fig. 1. ACT with rank k = 16 based on Last.fm tags (a)

and ILM production music tags (b). Only the most frequently

applied tags are shown for each part of the AV-space. Tag

frequencies are reflected in the bubble sizes.

Mood ratings obtained from two listening tests, one using

600 tracks from Last.fm (see [7] for details), and one using

a set of ILM tracks (see Section 3.2) were used as ground-
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Fig. 2. Cross-evaluation framework for semantic musical

mood models using two different sources of metadata and

tracks.

truth data to evaluate the accuracy with which the system de-

scribed in Section 2 predicts perceived mood in music. We

apply ACT on the tag data, project the tracks used in the lis-

tening test onto the AV-space, and compute non-parametric

Spearman’s rho coefficients of correlation between the track

positions and the ratings. Track positions along the valence

and arousal axes are directly correlated with the ratings for

the corresponding scales, and the model estimates for tension

are obtained by projecting tags along the direction proposed

by Thayer [13].

The evaluation of the ACT performance across annota-

tion types (methods 2 and 3 in Fig. 2) is achieved following

three principles. First, corresponding mood terms in the two

sets are identified and only matching terms are used in further

computation. A total of 251 co-occurring terms were found

in both sets, which reduces the Last.fm data (357 terms) more

than the ILM data (288 terms). Second, TF-IDF weighting
of the rated tracks in one test set is computed based on the

tag frequencies in the other test set. Third, mood term posi-

tions based on the ACT of the other set are used to project the

tracks.

3.2. Listening Test with ILM Tracks

3.2.1. Track Corpus

A corpus of 205 production music tracks was sampled from

the ILM dataset. The sampling was made in a semi-random

fashion based on several criteria to ensure that the resulting

set well covers the MDS mood space, as well as the main

genres prevalent in the analysed production music data. To

this end, k-means clustering was applied to group tracks ac-

cording to genres based on an MDS genre representation,

and tracks were then sampled from these clusters in a strat-

ified manner. Our analyses suggested that six distinct genre

clusters were enough to represent a large part of the ILM

dataset. We present hereafter the three most prevalent genre

tags within each cluster, the most prevalent in italic, and the

other two within brackets: jazz (swing, lounge), dance (pop,

house), rock (pop, alternative), electronic (urban, ambient),

folk (country, pop), and orchestral (classical, choral).

3.2.2. Procedure

A procedure similar to that proposed in [7] (Last.fm cor-

pus) was followed with the ILM corpus. An online an-

notation interface was used to ask participants to anno-

tate 30 second audio excerpts of tracks from the corpus in

terms of the perceived moods in music. Annotations for

six mood scales were done using nine-step bipolar Likert

scales: calm/energetic (arousal), negative/positive (valence),

relaxed/tense (tension), submissive/dominant (dominance),

cold/romantic (romance), and serious/funny (humour).

4. RESULTS AND DISCUSSION

4.1. Listeners’ Ratings

A total of 46 participants (mean age 32.3 years, SD = 9.0

years, 30 males) from 20 countries (mostly Europeans, 13

participants from the United Kingdom) took part in the ex-

periment. Musical expertise of the participants spanned from

listeners (N=14) to musicians (N=20), and trained profession-

als (N=20). For the sake of rating consistency between partic-

ipants, we selected participants who had rated more than 20%

of the tracks for further analyses. This resulted in 8.9 rat-

ings per track on average (SD = 0.90 ratings). Cronbach’s α,

a widely used measure representing the inter-subject agree-

ment, was computed for each mood scale to assess the re-

liability of the obtained data. This yielded acceptable val-

ues (α ≥ 0.70 [15]) for valence, arousal, and tension, and

slightly lower values for the other scales (α > 0.64). In the

remainder of this article, we focus on the valence, arousal,
and tension mood dimensions and characterise the mood ex-

pressed by each track with the mean values computed across

participants.

Based on the ratings, no correlation between arousal and

valence was found (r = 0.06, p = 0.41), which supports the

two dimensional model proposed by Russell [9]. Tension is

positively correlated with arousal (r = 0.57) and negatively

correlated with valence (r = −0.67). In fact, almost all vari-

ance in tension (R2 = 0.81) can be explained by a linear

combination of arousal and valence, which in turn supports

Thayer’s [13] projection of tension diagonally against posi-

tive arousal and negative valence. These correlations were

in line with those found with the Last.fm ratings. The rat-

ings of tension showed high positive correlation with domi-
nance (r = 0.85) and high negative correlation with romance
(r = −0.85), whereas valence showed high correlation with

humour (r = 0.81).
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4.2. Fit between Mood Model Projections and Ratings

The system evaluation was performed using different values

of the rank parameter k for the LSA technique employed prior

to the ACT. The results with Last.fm test set (methods 1 and

2) are shown in Fig. 3, demonstrating that the correlations

obtained with ACTL (0.52 < rs < 0.61 for valence, 0.62 <
rs < 0.68 for arousal, and 0.58 < rs < 0.64 for tension)

are generally lower than the correlations obtained with ACTI

(0.60 < rs < 0.63 for valence, 0.65 < rs < 0.68 for arousal,

and 0.63 < rs < 0.66 for tension). The only exception is the

correlation obtained with the arousal dimension for k = 128.

A paired sample Student’s t-test was applied to evaluate

the difference in correlations obtained with ACTL and ACTI

across k. The test revealed a highly significant difference

between ACTL and ACTI for valence (t(6) = −5.03, p =
0.00237) and tension (t(6) = −4.75, p = 0.00315), and

a significant difference (t(6) = −3.15, p = 0.0197) for

arousal, all in favour of ACTI. These results suggest that the

semantic model derived from curated editorial mood annota-

tions of production music is better in predicting moods than

the semantic model derived from crowd-sourced data.

The results with the ILM test set (methods 3 and 4) are

shown in Fig. 4. Applying ACTI gives the highest perfor-

mance of all four methods (0.61 < rs < 0.65 for valence,

0.67 < rs < 0.71 for arousal, and 0.69 < rs < 0.71 for

tension). Moreover, ACTI again outperforms applying ACTL

(0.57 < rs < 0.63 for valence, 0.53 < r < 0.60 for arousal,

and 0.61 < rs < 0.66 for tension). The difference between

ACTL and ACTI and is highly significant (valence: t(6) =
−5.98, p = 0.00098; arousal: t(6) = −10.08, p = 0.00006;

tension: t(6) = −13.53, p = 0.00001) for all mood scales

using the ILM test set.

Applying ACTL on the ILM test set rather than the



Last.fm test set doesn’t significantly affect the performance,

except for the arousal dimension, for which the drop in the

correlation coefficient (from rs ≈ 0.65 to rs ≈ 0.57) is highly

significant (t(6) = −7.28, p = 0.00034). This shows that the

semantic models derived from crowd-sourced annotations of

commercial music can be used in a reliable manner to pre-

dict the moods expressed by production music tracks. In gen-

eral, the results show that semantic models of moods based on

ACT provide fairly robust generalizability across annotation

types and music corpora.

5. CONCLUSIONS

In this study, we assess whether semantic mood models de-

rived from the Last.fm and I Like Music (ILM) datasets can

be used to predict mood expressed by music tracks (i) from

the same corpora, and (ii) from different corpora. In sum-

mary, the results indicate the following conclusions:

• Data-driven semantic mood models are efficient to pre-

dict perceived mood in both data sets (Last.fm and

ILM).

• The use of ILM editorial tags provide a statistically sig-

nificant improvement compared to crowd-sourced data

for the semantic modelling of mood expressed by mu-

sic.

• Semantic model of moods can be built based on one

corpus and efficiently applied to another, regardless of

the difference in music styles and mood annotations.

• We claim that the overall quality of annotations is the

most important factor determining the performance of

the obtained models.

The results show promising ways to capitalise on large

datasets of annotated music corpora to improve our under-

standing of how mood-related semantics can be reliably ex-

tracted from both crowd-sourced tags and editorial annota-

tions. Future work includes adding other relevant semantic

content (such as genre) and incorporating audio descriptors

to tackle the challenge of predicting perceived mood in music

in a robust fashion.
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[6] M. Sordo, Ò. Celma, M. Blech, and E. Guaus, “The

quest for musical genres: Do the experts and the wis-

dom of crowds agree?,” in Proceedings of 9th Interna-
tional Conference on Music Information Retrieval (IS-
MIR), 2008.

[7] P. Saari and T. Eerola, “Semantic computing of moods

based on tags in social media of music,” IEEE Transac-
tions on Knowledge and Data Engineering, manuscript

submitted for publication available at http://arxiv.org/,

2013.

[8] M. Levy and M. Sandler, “Learning latent semantic

models for music from social tags,” Journal of New Mu-
sic Research, vol. 37, no. 2, pp. 137–150, 2008.

[9] J. A. Russell, “A circumplex model of affect,” Journal
of Personality and Social Psychology, vol. 39, no. 6, pp.

1161–1178, 1980.

[10] K. R. Scherer, Emotion as a multicomponent process:
A model and some cross-cultural data, pp. 37–63, CA:

Sage, Beverly Hills, 1984.

[11] P. N. Juslin and J. A. Sloboda, Handbook of Music
and Emotion, chapter Introduction: aims, organization,

and terminology, pp. 3–14, Oxford University Press,

Boston, MA, 2010.

[12] J.B. Kruskal, “Multidimensional scaling by optimizing

goodness of fit to a nonmetric hypothesis,” Psychome-
trika, vol. 29, pp. 1–27, 1964.

[13] R. E. Thayer, The Biopsychology of Mood and Arousal.,
Oxford University Press, New York, USA, 1989.

[14] J. C. Gower and G. B. Dijksterhuis, Procrustes prob-
lems, vol. 3, Oxford University Press Oxford, 2004.

[15] J. Nunnally, Psychometric theory, New York: McGraw-

Hill, 1978.



IV

USING SEMANTIC LAYER PROJECTION FOR ENHANCING
MUSIC MOOD PREDICTION WITH AUDIO FEATURES

by

Pasi Saari, Tuomas Eerola, György Fazekas & Mark Sandler 2013

In Proceedings of the Sound and Music Computing Conference 2013 (SMC
2013), 722-728



USING SEMANTIC LAYER PROJECTION FOR ENHANCING MUSIC
MOOD PREDICTION WITH AUDIO FEATURES

Pasi Saari and Tuomas Eerola
Finnish Centre of Excellence in Interdisciplinary Music Research

University of Jyväskylä, Finland
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ABSTRACT

We propose a novel technique called Semantic Layer Pro-

jection (SLP) for predicting moods expressed by music

based on audio features. In SLP, the predictive models

are formed by a two-stage mapping from audio features

to listener ratings of mood via a semantic mood layer. SLP

differs from conventional techniques that produce a direct

mapping from audio features to mood ratings. In this work,

large social tag data from the Last.fm music service was

analysed to produce a semantic layer that represents mood-

related information in a low number of dimensions. The

method is compared to baseline techniques at predicting

the expressed Valence and Arousal in 600 popular mu-

sic tracks. SLP clearly outperformed the baseline tech-

niques at predicting Valence (R2 = 0.334 vs. 0.245),

and produced roughly equivalent performance in predict-

ing Arousal (R2 = 0.782 vs. 0.770). The difficulty of

modelling Valence was highlighted by generally lower per-

formance compared to Arousal. The improved prediction

of Valence, and the increasingly abundant sources of social

tags related to digital music make SLP a highly promising

technique for future developments in modelling mood in

music.

1. INTRODUCTION

The modern age of digital music consumption has brought

new challenges in organising and searching rapidly expand-

ing music collections. The popular appeal of music is often

attributed to its striking ability to elicit or convey emotion.

Therefore, managing large music collections in terms of

mood has significant advantages that complement conven-

tional genre-based organisation.

Social music services such as Last.fm 1 play an important

role in connecting digital music to crowd-sourced seman-

tic information. A prime advantage of using Last.fm data

is in the large number of users worldwide applying seman-

tic tags, i.e., free-form labels, to elements of the music do-

main, e.g. tracks, artists and albums. Tags are used in order

to communicate users’ music listening preferences that are

also used for improving the service. The data is available to

1 Last.fm: http://www.last.fm/

Copyright: c©2013 Pasi Saari et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

researchers through a dedicated API, which makes it pos-

sible to apply semantic computing to tags related to mil-

lions of tracks. Semantic computation of Last.fm tags has

been found effective in characterising music information

related to genre, mood, and instrumentation [1]. Parallel to

analysing crowd-sourced tags, a tag set dedicated to music

research purposes has also been collected in [2]. The im-

portance of mood tags has been highlighted in several stud-

ies, including [3], claiming that mood tags account for 5%

of the most commonly used tags. Applying semantic com-

putation to tags can therefore yield effective mood-related

semantic models for music.

The prominence of mood in music is reflected by the

large number of studies modelling expressed or induced

emotion. To this end, two prevalent techniques emerged:

i) the dimensional model of Valence, Arousal and Tension;

and ii) the categorical model of basic emotions such as hap-

piness, sadness and tenderness. On one hand, these models

have been found mutually inclusive to a large degree [4].

On the other hand, more general models of emotion have

also been proposed, and refined using a taxonomy specifi-

cally designed for musically induced emotion [5].

These types of representations have been widely used in

computational systems for predicting mood from audio.

Feature extraction methods have been developed, for in-

stance, in [6] and [7], providing a good basis for mod-

elling and predicting perceived moods, genres and other

characteristics of musical audio. The typical approach in

most previous studies involves the use of computational al-

gorithms, such as supervised machine learning, to predict

perceived moods directly from audio features. For a more

detailed overview of the advances of mood modelling and

recognition, see e.g. [8].

Achieving high efficiency of these models, however, re-

lies heavily on good quality ground-truth data. Due to the

expense of human annotation, ground-truth is laborious to

collect, and therefore typical data sets are limited to a few

hundred tracks. This leads to challenges in mood predic-

tion emerging from the high dimensionality of audio fea-

ture data and from the need for complex model parameter

optimisation, often resulting in the lack of generalizability

of the predictions to novel tracks [9]. One way of overcom-

ing these challenges and increasing the efficiency of mood

prediction is to utilise audio content related to a large num-

ber of tracks and associated crowd-sourced semantic tags.

In this work, we use multivariate techniques in a novel

way to predict listener ratings of mood in 600 popular mu-



sic tracks, using an intermediate semantic layer created

from tag data related to a substantially large collection of

tracks. This demonstrates how a large collection of tracks

and associated mood tags can be used to improve predic-

tion quality. The new technique involves mapping audio

features (audio level) to a semantic mood space (seman-

tic layer) first, and then mapping the semantic mood space

to listener ratings (perceptual level). This differs from con-

ventional methods that map audio directly to the perceptual

level. Instead, we use direct mapping as baseline to assess

the efficiency of the proposed technique.

2. RELATED WORK

This section summarises past research on connecting au-

dio, as well as semantic and perceptual levels to represent

music. Figure 1 illustrates how previous studies relate to

the approach presented here.

2.1 Mapping from Audio Features to Semantic Layer

The challenge of auto-tagging music tracks can be con-

sidered analogous to our task. Gaussian Mixture Mod-

elling (GMM) was used in [10], whereas [11] employed

Support Vector Machines (SVM) for this purpose. Bertin-

Mahieux et al. [12] proposed a boosting-based technique.

This provided higher precision (0.312) and overall F-score

(0.205) with somewhat lower recall (0.153) compared to

hierarchical GMMs proposed in [10], when a set of gen-

eral tag words were considered. In the context of mood

tags, the authors reported 0.449, 0.176, 0.253 precision,

recall and F-score, respectively, noting that, due to the spe-

cific experimental conditions, the results are bounded at a

value lower than one. Miotto and Lanckriet [13] found that

using semantic modelling of music tags improves auto-

tagging compared to the conventional approach of treating

each tag individually without any tag similarity informa-

tion. The proposed Dirichlet mixture model (DMM) cap-

tured the broader context of tags and provided an improved

peak precision (0.475) and F-score (0.285) compared to

previous results using the same data set, when combining

DMM with different machine learning techniques.

2.2 Mapping from Audio Features to Perceived Mood

Yang et al. [14] modelled moods represented in the Arousal-

Valence (AV) plane using Support Vector Regression (SVR)

with LIBSVM implementation [15] trained on audio fea-

tures. Reported performance was lower for Valence (R2 =
0.281) than for Arousal (R2 = 0.583). Eerola et al. [16]

compared various linear regression models at predicting

multidimensional emotion ratings with acoustical features.

A set of film soundtrack excerpts collected in [4] were

used in this experiment. The best models based on Partial

Least Squares Regression (PLS) showed high performance

at predicting listener ratings of Valence, Arousal, and Ten-

sion (R2 = 0.72, 0.85, 0.79). Especially for Valence, the

performance was strikingly higher than in [14]. The same

soundtrack data was utilised in classification of music to

four basic emotion categories in [9], showing the maxi-

mum accuracy of 56.5%. Audio features related to tonality
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Figure 1. The difference of the present and past studies

in mapping between audio features, semantic layer, and

perceptual level. Selected past research is cited for each

sub-task.

(average majorness of the mode and key clarity), as well as

to the average slope of the onset attacks were found to be

the most effective predictors of the perceived mood. SVM

has been particularly popular in the annual MIREX mood

classification challenge 2 representing the state-of-the-art

in the field. Moreover, SVM together with ReliefF feature

selection produced competitive results [17].

2.3 Mapping from Semantic Layer to Perceived Mood

The studies of Laurier et al. [18] and Levy et al. [19] com-

pared semantic models of mood based on social tags to

emotion models proposed by research in affective sciences,

as well as expert-generated mood categories used in the

MIREX challenge. The accuracy of tag-based semantic

models at predicting listener ratings of musical mood was

assessed in [20], proposing a technique called Affective

Circumplex Transformation (ACT) for the task, based on

previous research in affective sciences [21, 22].

ACT was used to predict perceived mood in 600 popular

music tracks. The results showed promising performance

(R ≈ 0.60) for the ratings related to the dimensional emo-

tion model as well as separate mood terms. Similar analy-

sis across separate sources of curated editorial annotations

for production music, and crowd-sourced Last.fm tags for

commercial music, was performed in [23]. The results sug-

gested that semantic models of mood based on tags can be

used interchangeably to predict perceived mood across dif-

ferent annotation types and track corpora.

To apply the approach taken in [20] and [23] to new track

corpora, semantic annotations need to be available for the

corresponding tracks. In order to predict mood in unanno-

tated track corpora, one must rely on other type of infor-

mation, such as audio features. In the present study, we

show how semantic tag data that was found to be promis-

ing and relevant in previous work can be used to enhance

audio-based mood prediction.

2 http://www.music-ir.org/mirex/wiki/MIREX_HOME



# Tracks # Terms # Terms / track
Mood set 259,593 357 4.44
SET10K 9,662 357 5.53

Table 1. Statistics of the mood term sets.

3. METHODOLOGY

3.1 Semantic Computing of Mood in Music

The following procedures were applied to uncover a se-

mantic space of mood in music. More detailed account on

the analysis and data collection is given in [20].

3.1.1 Vector-Space Modelling

First, a mood vocabulary was collected by aggregating and

lemmatising mood term lists from several research papers

in affective sciences, music psychology and Music Infor-

mation Retrieval (MIR), and term lists in the Allmusic.com

web service (see [20] for details). Synonyms and inflected

forms of the vocabulary terms were identified and aggre-

gated or added manually (e.g., happy ≈ happiness), result-

ing in 568 unique terms.

Semantic computation was applied to audio tracks and

mood tags collected in [20]. Mood vocabulary terms were

identified in tags using a bag-of-words approach similar

to [1], and terms were applied to associated tracks accord-

ingly. We excluded tracks with less than 2 mood annota-

tions, as well as terms associated to less than 100 tracks,

to avoid working with overly sparse information. Table 1

shows the resulting data (mood set) (SET10K is described

in Section 3.2). Finally, the mood data set was normalised

by computing Term Frequency - Inverse Document Fre-

quency (TF-IDF) weights: n̂i,j = (ni,j+1) log(Rfi ), where

ni,j is the original frequency weight related to term wi and

track tj , R is the total number of tracks, and fj is the num-

ber of tracks term wi is associated to.

3.1.2 Latent Semantic Modelling

A low-rank approximation of the TF-IDF matrix was com-

puted by Singular Value Decomposition (SVD) and Mul-

tidimensional Scaling (MDS). SVD decomposes a sparse

matrix N so that N = USV T , where matrices U and V
are orthonormal and S is the diagonal matrix containing

the singular values of N . Rank k approximation of N is

computed by Nk = UkSk(V k)T , where the i:th row vec-

tor Uk
i represents a term wi as a linear combination of k

dimensions. Similarly, V k
j represents track tj in k dimen-

sions. Based on a rank k approximation, dissimilarity be-

tween terms wi and wî is calculated by using the cosine

distance between Uk
i S

k and Uk
î
Sk.

To represent mood terms explicitly in a low-dimensional

space, non-metric MDS [24] with Kruskal’s stress-1 crite-

rion was applied on the term dissimilarities, obtained by

the rank k approximation of mood TF-IDF using SVD.

Next, we used the Affective Circumplex Transformation

(ACT) proposed in [20] to conform the MDS configuration

to the space of Arousal and Valence (AV), using AV values

of 101 mood terms given in [21, p. 1167] and [22, p. 54].
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Figure 2. ACT with rank k = 16. Only the most fre-

quently applied tags are shown for each part of the AV-

space. Tag frequencies are reflected by the size of circles.

This technique is used here to (i) increase the interpretabil-

ity of the MDS configuration; and (i) allow us to directly

predict mood from the semantic layer. The first two dimen-

sions of the resulting space represent Valence and Arousal

as shown in Fig. 2 (with k = 16). The size of the circles

reflects the frequencies of tags in the mood set, ranging

from 110 tracks (“vindictive”) to 79,524 tracks (“chill”).

Finally, to represent a track in the MDS term space, we

applied projection based on the positions of the associated

terms. Given an MDS term configuration yi = (yi1, yi2, yi3),
i ∈ (1, ..., |w|), position of a track represented by a sparse

term vector q is computed by the center-of-mass:

t̂ =
Σiqiyi
Σiqi

. (1)

3.2 Data set Description

Two data sets were used in our analysis: a 9,662 track

subset of the mood set (SET10K), and a set of 600 tracks

(SET600) collected in [20]. The audio tracks in both sets

are non-overlapping.

SET10K was sampled from the mood set in a balanced

manner by optimising mood variance in terms of track pro-

jections in the semantic space and including only unique

artists. We use this set in successive analysis for mapping

audio features to the semantic layer of mood. Audio con-

tent of the SET10K consists of 15-30s preview clips ob-

tained from Last.fm. The clips are typically samples of full

tracks in 128kB/s mp3 format starting from 30s-60s into

the audio. Arguably, these samples contain relevant mate-

rial that, up to a certain limit, characterise the full tracks.

SET600 was annotated in a listening test [20], where 59

participants rated 15s excerpts of 600 popular music tracks

from Last.fm in terms of perceived mood expressed by

music. Moods were rated in nine point Likert-scales for



Valence (“negative” / “positive”), Arousal (“calm” / “ener-

getic”), Tension (“relaxed” / “tense”), Atmospheric, Happy,

Dark, Sad, Angry, Sensual and Sentimental. The excerpts

were sampled from full tracks corresponding to positions

in the Last.fm previews. SET600 consists of 15s clips us-

ing 320kB/s mp3 format.

3.3 Audio Feature Extraction

Audio features describing dynamics, rhythm, pitch, har-

mony, timbre and structure were extracted from SET10K

and SET600 using the MIRtoolbox [6]. Statistical means

and standard deviations over features extracted from vari-

ous short 50% overlapping time frames were computed to

obtain song-level descriptors. The resulting set of 128 fea-

tures is presented in Table 2. For the features describing

rhythmic repetition (127-128) and zero crossing rate (43-

44), we used long frame length of 2s, whereas for chromagram-

based features such as the repetition of register (125-126),

key clarity (19-20), centroid (17-18), mode (21-22), HCDF

(23-24), and roughness (25-26) we used a frame length of

100ms. For other features the frame length was 46.4ms ex-

cept for low-energy ratio (3), which was extracted directly

from the full extent of the signal.

Features from SET10K were normalised using the z-score

transform. All feature values more than 5 standard devi-

ations from zero were considered outliers and truncated

to the extremes [−5, 5] (0.1% and 1.3% of the values in

SET10K and SET600 respectively). SET600 was then nor-

malised according to the means and standard deviations of

SET10K. In particular, we discovered a slight discrepancy

in mean RMS energy (1) between SET10K and SET600.

The energy was generally higher in SET600, perhaps due

to the use of different MP3 encoders. However, this was

ignored in our study for simplicity.

3.4 Regression Techniques and Model Evaluation

3.4.1 Semantic Layer Projection

We propose a novel technique for mood prediction in mu-

sic termed Semantic Layer Projection (SLP). The technique

involves mapping audio features to perceived mood in two

stages using the semantic mood level as a middle layer, in-

stead of the conventional way of mapping audio features

directly to the perceived mood. SLP may be implemented

with several potential mapping techniques. We choose to

use PLS for the first mapping, due to its higher perfor-

mance demonstrated in previous research, and linear re-

gression for the second.

First, we apply PLS to the SET10K to produce a mapping

from audio features to the 10-dimensional semantic mood

representation obtained using ACT. We compare two vari-

ants of the semantic mood layer: (SLP10D) track projec-

tions in all 10 dimensions of the mood space, and (SLP1D)

track projections in separate dimensions corresponding to

Valence (1st dim.), and Arousal (2nd dim.). To map from

audio features to the semantic layer, we apply PLS to each

dimension separately. Then, we project the audio features

of SET600 to the semantic layer using the obtained map-

pings. Finally, we apply linear regression between the 10-

Table 2. Extracted feature set. Feature statistics (m =

mean, d = standard deviation) are computed across sam-

ple frames.
Category No. Feature Stat.
Dynamics 1-2 RMS energy m, d

3 Low-energy ratio –
4-5 Attack time m, d
6-7 Attack slope m

Rhythm 8-9 Fluctuation (pos., mag.) m
10 Event density m
11-12 Pulse clarity m, d
13-14 Tempo m, d

Pitch 15-16 Pitch m, d
17-18 Chromagram (unwr.) centr. m, d

Harmony 19-20 Key clarity m, d
21-22 Key mode (majorness) m, d
23-24 HCDF m, d
25-26 Roughness m, d

Timbre 27-28 Brightness (cutoff 110 Hz) m, d
29-30 Centroid m, d
31-32 Flatness (< 5000 Hz) m, d
33-34 Irregularity m, d
35-36 Skewness (< 5000 Hz) m, d
37-38 Spectr. entropy (<5000 Hz) m, d
39-40 Spectr. flux m, d
41-42 Spread m, d
43-44 Zerocross m, d

MFCC 45-46 1st MFCC m, d
...

...
...

...
69-70 13th MFCC m, d
71-96 1st -13th Δ MFCC m, d
97-122 1st-13th Δ(Δ) MFCC m, d

Structure 123-124 Repetition (spectrum) m, d
125-126 Repetition (register) m, d
127-128 Repetition (rhythm) m, d

dimensional (SLP10D) and 1-dimensional (SLP1D) layer

representations and the listener ratings.

We optimise the number of components used in the PLS

mappings using 50× 2-fold cross-validation. In each fold,

we divide SET10K into training and test sets, and estimate

how well the PLS mapping based on train set fits the test

set. To decide on the number of components, we apply (50,

100)-fold cross-indexing proposed in [9]. Cross-indexing

is a technique developed to tackle model over-fitting in

choosing the optimal model parameterisation from several

candidates. Finally, we use the selected number of compo-

nents to form a model based on the whole SET10K.

3.4.2 Baseline Techniques

In this study, two baseline techniques – PLS and Support

Vector Regression (SVR) – were compared with SLP. These

techniques were chosen since they represent regression meth-

ods that were already found efficient in previous MIR stud-

ies. Baseline techniques were applied in the usual way,

mapping audio features of SET600 directly to the ratings

of perceived mood.

We use PLS in a conventional way with 2 components as

in [16]. In SVR, we use the Radial Basis Function (RBF)

kernel and apply grid search to optimise the cost (C = 2l,
l ∈ [−3, ..., 3]) and gamma (γ = 2l, l ∈ [−13, ..., 8])
model parameters. Moreover, we optimise the set of au-

dio features used in SVR by feature subset selection. To



this end, we apply the ReliefF [25] feature selection algo-

rithm adapted for regression problems. ReliefF produces

relevance weights τ ∈ [−1, 1] for the individual features

by taking into account their prediction potential and re-

dundancy. To choose a subset of the features, we use a

relevance weight threshold τ0 = 0 and include all features

with τ > τ0.

3.4.3 Cross-Validation Procedure

For validating the performance of the techniques, we use

50×2-fold cross-validation corresponding to 2-fold cross-

validation run 50 times, and report the mean and stan-

dard deviation over the 100 performance estimates for each

technique. All model optimisation and feature selection is

based solely on the training set at each run.

4. RESULTS AND DISCUSSION

In SLP10D and SLP1D we use the rank k = 16 for SVD

computation. This choice of k was found effective in [20],

while other values had no consistent effect on the perfor-

mance and did not improve the results.

Fig. 3 shows the performance of each technique at pre-

dicting the ratings for Valence and Arousal. For Valence, it

is evident that SLP outperformed the baseline techniques.

SLP10D gave the highest performance (R2 = 0.334 ±
0.035), outperforming SLP1D (R2 = 0.252±0.032). SLP10D

performed at significantly higher level (t(99) = 17.994, p =
5.63 × 10−33) 3 than SVR (R2 = 0.245 ± 0.048), while

the difference between SLP1D and SVR was not signifi-

cant. Conventional PLS was the least efficient with a per-

formance of R2 = 0.152± 0.045.

Cross-indexing to optimise the number of PLS compo-

nents in mapping from audio features to the semantic space

yielded 7 components for SLP10D and 13 components for

SLP1D. The number of components for SLP10D is the

average across 10 dimensions, while the latter relates to

the first dimension of SLP10D. The regression model used

in the second-stage mapping of SLP10D relied heavily on

the first semantic dimension related to Valence: the first

dimension showed an average significance of p ≈ 10−4

across cv-folds. SLP10D model therefore bears a strong

similarity to the SLP1D. ReliefF feature selection to op-

timise the set of audio features used in SVR yielded on

average 43 features (SD = 11).

In general, the fact that SLP1D outperformed SVR shows

the efficiency of SLP. In SLP1D tracks are explicitly pro-

jected to Valence already in the first-stage mapping from

the audio features to the semantic layer. Therefore min-

imal learning is required within SET600 for the second-

stage mapping to perceived mood. This contrasts to the

extensive adaptation to SET600 in SVR, which involves

feature selection, cost and gamma optimisation, as well as

support vector optimisation.

The overall performance for predicting Valence was at

a significantly lower level than the performance of R2 =
0.72 reported in [16]. Most notably, the PLS technique that

was successful in [16] did not give convincing performance

3 Pairwise Student’s t-test across cv-folds.

here. Since the set of audio features used in these studies

is similar, the difference in performance is possibly due to

the variety of genres covered by SET600. This is in con-

trast with the previous study using only film soundtracks.

Film music is composed to mediate powerful emotional

cues [4], which may provide higher variance in feature val-

ues so that better representations can be learnt. However,

the performance in the present study is in line with other

past research such as [14] (R2 = 0.281).

All techniques gave notably higher performance for Arousal

than for Valence. In this case, SLP10D again yielded the

highest values (R2 = 0.782 ± 0.020), but outperformed

SVR (R2 = 0.770 ± 0.028) only marginally. PLS gave

the third highest performance (R2 = 0.751 ± 0.027) out-

performing SLP1D (R2 = 0.745 ± 0.019). For Arousal,

SLP1D used five PLS components, while the performance

of SVR was obtained with 37 features on average (SD =
9). Again, the second-stage regression model in SLP10D

relied mainly on the 2nd dimension (p ≈ 2 × 10−9) re-

lated to the Arousal dimension used in SLP1D. Despite

more complex training within SET600, SLP10D gave only

slight, although highly significant (t(99) = 5.437, p =
5.4× 10−7) performance gain over SVR. In fact, all tech-

niques performed better than R2 = 0.7, which corrobo-

rates past findings that audio features provide a robust basis

for modelling perceived Arousal in music.

Similar patterns in the general performance levels between

techniques were found in modelling ratings in the other

seven scales related to individual mood terms. In gen-

eral, moods that are characterised by high or low arousal,

such as Angry and Atmospheric, performed at similar, yet

slightly lower level than Arousal, whereas moods such as

Happy and Sad – characterised by positive and negative

valence – produced performance similar to Valence.

Since SLP10D produced clearly the highest performance

for Valence, while outperformed SVR by a more modest

margin for Arousal, it is worth to compare the potential of

these techniques in future approaches to mood prediction.

SVR represents a sophisticated state-of-the-art technique

that is efficient in learning characteristics of the training

data relevant to the target mood, but requires complex op-

timisation of multitude of model parameters. Robust learn-

ing of SVR, and any method that could be used as baseline

is solely dependent on high quality training data, which is

typically laborious to collect. This also means that gener-

alizability of these models to unknown music tracks, and

possibly to new music genres, can not be guaranteed, as

found in [26]. On the other hand, the efficiency of SLP is

primarily based the first-stage mapping from audio to the

semantic layer, and require only minimal adaptation to test

data. This is suggested by the promising results of SLP1D

that produced explicit mood estimates already at the first-

stage.

Semantic data required to built the semantic layer can be

collected from online services by crowd-sourcing. Some

services already make available data related to millions of

tracks. Therefore, the cost of collecting training data for

SLP is related mostly to obtaining the audio representa-

tion of the training set. Larger data for the semantic layer
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Figure 3. Performance (R2 ± sd) for each technique in predicting the perceived mood.

enables more delicate learning and would presumably in-

crease the model performance. We therefore claim that the

potential of SLP in future mood prediction approaches is

higher than that of SVR. Note, however, that as SLP in gen-

eral can be implemented with any prediction model, SVR

can in fact be implemented in the future as the mapping

technique within SLP.

Finally, we seek to gain understanding of what audio fea-

tures are the most useful for modelling Valence and Arousal.

We apply SLP10D using each audio feature category de-

scribed in Table 2 separately. Table. 3 shows the results.

Eight harmony-related features including Mode and Key

clarity were found to be the most useful in predicting Va-

lence (R2 = 0.186), and in fact, the model using only

these 8 features would have outperformed PLS using all

features. Features describing timbre, structure, and MFCC

showed modest potential for predicting Valence (R2 >
.10), whereas rhythm features were largely redundant in

this particular task. Prediction of Arousal was on the other

hand highly efficient with most feature categories. Tim-

bre (R2 = 0.687) and MFCC (R2 = 0.649) features per-

formed the best. Prediction with harmony-related features

was also competitive (R2 = 0.653), while even the four

pitch-related features could predict Arousal at moderate

level (R2 = 0.471).

In general, these results support previous findings that

harmony-related features are useful in mood prediction [9],

and that timbre-related features are more useful for predict-

ing Arousal. The results also highlight the need to either

optimise existing harmony-related features, or to uncover

and investigate a wider variety of audio descriptors for Va-

lence prediction.

5. CONCLUSIONS

In this study we developed a novel approach to predict

the perceived mood in music called Semantic Layer Pro-

jection (SLP). By introducing a two-stage mapping from

Table 3. Performance (R2 ± sd) of SLP10D using differ-

ent audio feature categories. Number of features in each

category are presented in brackets.
Valence Arousal

Dynamics (7) 0.092± 0.031 0.536± 0.034
Rhythm (7) 0.056± 0.044 0.583± 0.028
Pitch (4) 0.074± 0.034 0.471± 0.031
Harmony (8) 0.186 ± 0.035 0.653± 0.030
Timbre (18) 0.141± 0.037 0.687 ± 0.027
MFCC (78) 0.123± 0.030 0.649± 0.026
Structure (6) 0.127± 0.043 0.547± 0.025

audio features to semantic layer and finally to mood rat-

ings, SLP provides a way to exploit semantic information

about mood learnt from large music collections. It also

facilitates building predictive models for disparate music

collections. The proposed technique outperformed SVR, a

sophisticated predictive model on the Valence dimension,

and produced prediction performance roughly at the same

level on the Arousal dimension.

The results highlight the difficulty of modelling the Va-

lence dimension in music. However, SLP provides clear

advantage compared to baseline techniques specifically in

this task, which signifies its high potential that can be de-

veloped further in more general audio and semantics-based

mood recognition models.

Future direction of the present study includes using more

efficient collection of tracks to represent the semantic layer,

and improving the prediction of Valence via an extension

of the audio feature set. Moreover, a version of the pro-

posed technique that takes musical genre into account –

possibly by introducing a genre layer – will be developed

to further generalise our model to many different types of

music collections.
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ABSTRACT

Semantic Layer Projection (SLP) is a method for auto-

matically annotating music tracks according to expressed

mood based on audio. We evaluate this method by com-

paring it to a system that infers the mood of a given track

using associated tags only. SLP differs from conventional

auto-tagging algorithms in that it maps audio features to

a low-dimensional semantic layer congruent with the cir-

cumplex model of emotion, rather than training a model

for each tag separately. We build the semantic layer us-

ing two large-scale data sets – crowd-sourced tags from

Last.fm, and editorial annotations from the I Like Music

(ILM) production music corpus – and use subsets of these

corpora to train SLP for mapping audio features to the se-

mantic layer. The performance of the system is assessed

in predicting mood ratings on continuous scales in the two

data sets mentioned above. The results show that audio is

in general more efficient in predicting perceived mood than

tags. Furthermore, we analytically demonstrate the benefit

of using a combination of semantic tags and audio features

in automatic mood annotation.

1. INTRODUCTION

Our daily experiences with music, together with strongly

corroborated research evidence [1], suggest that music has

a remarkable ability to induce as well as to express emo-

tions or moods. For this reason, the mood associated with

a musical piece is often a key aspect in music listening.

This provides clear motivations for creating Music Infor-

mation Retrieval (MIR) systems to organize, navigate or

access music collections based on mood. These systems

typically rely on mood models and appropriately selected

machine learning techniques [2,3]. Among several models

proposed for emotions, the Circumplex model [4, 5] con-

necting mood terms to underlying emotion dimensions of

valence (positive / negative) and arousal (active / passive)

is one of the most popular [6]. On the other hand, Thay-

ers variant [7] of this model suggests dimensions of ten-

sion and energy diagonal to arousal and valence. However,
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training machine learning models that automatically asso-

ciate musical pieces with moods require high quality hu-

man mood annotations that are laborious to create, hence

typically limited in amount.

Mood-related tags, i.e., free-form labels applied to art-

ists, albums, tracks, etc., are abundantly available from

popular online services such as Last.fm 1 , while editorial

track-level mood tags are vital in large production music

catalogues. However, due to issues related to noise and

ambiguity in semantic relations between tags, uncovering

reliable mood representations from tag data requires typ-

ically filtering and semantic analysis [8, 9]. Previous re-

search showed that semantically processed information us-

ing track-level Last.fm tags is congruent with listener rat-

ings of valence, arousal, tension and various mood terms

[10]. In a test set of 600 popular music tracks, moderate to

high (.47 < r < .65) correlation was found using the Af-

fective Circumplex Transformation (ACT) technique, that

is based on Latent Semantic Analysis (LSA) and the cir-

cumplex model of emotions. These results outperformed

several conventional semantic analysis techniques, and no-

tably, raw tag frequency scores (.16 < r < .47). The ro-

bustness of ACT was also demonstrated in [11], by apply-

ing the technique to editorial tags from a production music

library of about 250,000 tracks.

In a wider context, modelling mood, and thus estimat-

ing mood tags may be seen as a specific form of auto-

tagging, which is a popular research topic in MIR. A sys-

tem is typically trained using audio features extracted from

a collection of tracks and their associated tags. Then, the

trained model is utilised to label new untagged tracks auto-

matically given their features. Typical auto-tagging studies

have trained models independently for each tag [12–14],

omitting semantic associations between tags, while results

in [15] and [16] showed that post-processing auto-tags ac-

cording to their semantic similarity increases the perfor-

mance. These techniques have produced promising results

for mood tags, possibly due to the use of cleanly-labeled

tag data collected for research purposes. As shown in [10],

a considerable semantic gap exists between raw crowd-

sourced mood tags and verified listener ratings. However,

semantic computing provides a promising direction, not

yet exploited to the full extent in auto-tagging, for captur-

ing reliable information from large tag collections.

Previous studies in auto-tagging have compared predict-

1 http://www.last.fm



ed tags with human-labeled tags as a way to assess per-

formance. By considering listener ratings as ground-truth

rather than tags, in this paper we analytically compare auto-

tags to actual tags as predictors. The two representations

relate to two distinct assumptions in tag estimation: ei-

ther human-labeled tags or audio is available for each new

track. Our aim is to challenge these assumptions by high-

lighting the benefit of semantic computing in the context

of music mood auto-tagging. Semantic Layer Projection

(SLP) proposed in [17] provides a robust method for pro-

jecting the audio feature space to multi-dimensional se-

mantic layer based on ACT. SLP followed by linear regres-

sion with the projected feature components outperformed

state-of-the-art regression models in predicting listener rat-

ings of valence in 600 tracks from Last.fm. In this paper we

evaluate the benefits of SLP in auto-tagging using two cor-

pora: tracks and crowd-sourced mood tags from Last.fm

tags as well as tracks and curated editorial mood tags ob-

tained from the I Like Music (ILM) production music cata-

logue. We predict listener ratings of moods in separate test

sets extracted from these corpora.

The rest of the paper is organised as follows: Section 2

describes the tag data and the ACT technique for building

the semantic space of moods based on the tags, the set of

audio features, and the SLP technique for predicting mood

in new tracks based on ACT and the features. Section 3

gives a detailed account of the experimental setup, the data

sets used for SLP evaluation, baseline techniques, and the

method for comparing mood prediction based on tag or au-

dio information of new tracks. Section 4 shows the results

of the experiments and conclusions are drawn in Section 5.

2. METHODOLOGY

2.1 Affective Circumplex Transformation

We used two sources of tracks and tags in the analysis:

259,593 tracks from Last.fm and 226,344 tracks from I

Like Music (ILM) production music catalogue, associated

with 357 and 288 mood terms, respectively. To create these

data sets, tags associated to track sets from the two sources

were first lemmatized and identified from a vocabulary of

560 mood terms, aggregated from mood words obtained

from selected research papers in affective sciences, music

psychology and MIR, as well as from the Allmusic.com

web service. In both data sets, tracks with only one tag,

and tags associated with less than 100 tracks were then ex-

cluded. Finally, the tag data was normalised using term

frequency-inverse document frequency (TF-IDF) weights.

A detailed account of the data sets and the above process

is given in [10, 11].

The following process was applied to Last.fm and ILM

sets separately. To uncover semantic similarity between

individual mood terms, a low-rank approximation of the

TF-IDF matrix was computed using Singular Value De-

composition (SVD) and Multidimensional Scaling (MDS)

as in [10]. SVD decomposes a sparse TF-IDF matrix N
into orthogonal matrices U and V , and a diagonal ma-

trix S with singular values in decreasing order, such that

N = USV T . A rank k approximation of N is then com-

puted by N̄k = UkSk(V k)T , where each row vector Uk
i

represents the terms wi with k relative weights for each

dimension. Similarly, V k
j represents track tj as k relative

weights. Based on the rank k approximation, dissimilarity

between terms wi and wî can be computed using the cosine

distance between the Uk
i S

k and Uk
î
Sk vectors. To repre-

sent mood terms explicitly in a low-dimensional space that

resembles the arousal-valence space, MDS was applied on

the term distances to obtain a three-dimensional configu-

ration. The choice of using three dimensions instead of

two is motivated by the debate around whether two dimen-

sions is enough to capture relevant variance in moods. Past

research have proposed various candidates for the third di-

mension, such as dominance, potency, or movement.

Next we applied the Affective Circumplex Transforma-

tion (ACT) to conform the MDS configuration to the space

of arousal and valence (AV), using AV values of 101 mood

terms given in [4, p. 1167] and [5, p. 54]. This technique

takes advantage of the Procrustes transformation [18] in-

volving translation, reflection, orthogonal rotation, and iso-

tropic scaling using sum of squared errors as goodness-

of-fit. The motivation for this is to i) increase the inter-

pretability of the MDS configuration, and ii) enable di-

rect prediction of arousal and valence from the semantic

space. The technique yields a mood term configuration

xi = (x1,i, x2,i, x3,i), i = 1, ..., nterms. A subset of

Last.fm and ILM mood term configurations are visualised

in Fig. 1 (with k = 16). The frequencies of the terms

across tracks (co-occurence counts) range from 110 (“vin-

dictive”) to 79,524 (“chill”) for Last.fm, and 346 (“narra-

tive”) to 39,892 (“uplifting”) for ILM. Each track j was

projected onto the resulting space by taking the Euclidean

mean of the term positions, weighted by the sparse TF-IDF

vector qj of the track:

tj = (Σiqj,ixi)/(Σiqj,i). (1)

Finally, explicit mood-term-specific weights for the track

with position tj were computed using:

Pj,i = (xi/|xi|) · tj , (2)

whereas arousal and valence for a track was estimated di-

rectly by using the positions along corresponding dimen-

sions. Tension was obtained by projecting tracks along the

direction (-1,1,0) as suggested in [7] (see Fig. 1). The anal-

ysis in [10] showed that the value of the rank parameter

k in SVD computation has minor effect on ACT perfor-

mance. Therefore we chose to use a heuristically selected

value k = 16 in our analysis.

2.2 Audio Feature Extraction

Audio features describing dynamics (RMS energy, Low-

energy ratio, Attack time, Attack slope), rhythm (Fluctu-

ation pos. & mag., Event density, Pulse clarity, Tempo),

pitch (avg. pitch, Chromagram unwrapped centroid), har-

mony (Key clarity, Mode [majorness], Harmonic change,

Roughness), timbre (Brightness, Irregularity, Zerocross-

ings, Spectral Centroid, Flatness, Skewness, Entropy, Flux
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Figure 1. Two first dimensions (valence–arousal) of the

three-dimensional mood term configurations obtained with

ACT (k = 16) for (a) Last.fm and (b) ILM.

and Spread), and structure (Spectral, Rhythmic and Regis-

tral repetition) as well as 13 MFCCs, Δ MFCCs, and Δ(Δ)

MFCCs were extracted from the data sets presented in Ta-

ble 1 using the MIRtoolbox [19]. To characterise tracks

using audio features, statistical means and standard devia-

tions were computed for each feature extracted over short

50% overlapping time frames, yielding a 128 element fea-

ture vector for each track. For the features describing the

rhythmic repetition and zero crossing rate, we used longer

frame lengths of 2s, whereas for chromagram-based fea-

tures such as the repetition of register, key clarity, centroid,

mode, harmonic change, and roughness we used a frame

length of 100ms. For other features the frame length was

46.4ms, except for low-energy ratio which is a track-level

feature by definition.

Mood

P

Semantic 
layer
t

Audio 
features
f

A Eq. (2)

j
^

j
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^

Figure 2. Mapping process in SLP for a novel track repre-

sented by audio features f̂j .

Last.fm ILM
SET10K SET600 SET5K SET205

# Tracks 9,662 600 4,692 205
# Terms 357 357 288 288
Term density (%) 1.59 2.43 1.86 2.38

Table 1. Statistics of the mood term sets.

2.3 Semantic Layer Projection

Semantic Layer Projection (SLP), originally proposed in

[17], is a technique for the automatic annotation of audio

tracks with mood using audio features. SLP is trained on

a large collection of audio features and associated tag in-

formation. The difference between SLP and conventional

auto-tagging is that audio features are not directly mapped

to individual tags, but to three-dimensional semantic rep-

resentation of the mood space obtained by ACT. The map-

ping is determined by a training stage using the Partial

Least Squares (PLS) method. PLS has been found efficient

at handling high dimensional and collinear input variables,

and it is shown to be robust when using a large number of

observations [20].

Given a set F of m audio features related to n tracks

Fn×m = (f1, f2, ..., fn), and a semantic layer represen-

tation Tn×3 = (t1, t2..., tn) for the corresponding tracks

(see Eq. 1), the mapping matrix A between F and T is

determined using PLS so that T ≈ AF . We optimize the

number of components in PLS by applying (50, 100)-fold

cross-indexing [21]. Cross-indexing tackles problems of

model overfitting when choosing the optimal parameteri-

sation from several candidates.

The explicit mood of a previously unseen track repre-

sented by audio features f̂j are estimated by first t̂j = Af̂j ,

and then by P̂j,i = (xi/|xi|) · t̂j as in Eq. 2. This process

is summarised in Fig. 2.

3. EXPERIMENTAL SETUP

3.1 Data Sets

For both data sources, Last.fm and ILM, the semantic mod-

els are built from the full set of tracks (250,000 approx.),

whereas mappings between audio features and the seman-

tic space in SLP are trained on subsets of these large cor-

pora, namely SET10K and SET5K. The performance of

the model is evaluated using listener ratings of perceived

moods in separate test sets: SET600 and SET205. Statisti-

cal measures of these data sets in terms of semantic mood

content are summarised in Table 1.

SET10K consists of 9,662 tracks and was also used in

[17]. The set was sampled from the Last.fm corpus in a

balanced manner by i) optimising mood variance in terms



of track projections in the ACT space, ii) favouring tracks

with many listeners according to Last.fm, and iii) includ-

ing only unique artists. The audio content of SET10K con-

sists of 15-30s Last.fm preview clips. The clips are typ-

ically samples of full tracks in the 128kB/s mp3 format,

starting from 30s-60s into the beginning. We assume that

these samples are sufficiently representative of the whole

tracks. SET600 collected in [10] consists of 15s excerpts of

600 popular music tracks containing no overlapping artists

with SET10K, and no tracks overlapping with the large

Last.fm corpus. The set was fetched from Last.fm in a sim-

ilar balanced manner as SET10K, with additional balanc-

ing across multiple popular music genres (jazz, pop, rock,

electronic, folk and metal), and favouring tracks with many

associated mood tags. SET600 was annotated in a listening

test [10], with 59 participants rating the excerpts in terms

of perceived mood expressed by music. Moods were rated

in nine point bipolar Likert-scales for the mood dimensions

of valence (negative / positive), arousal (calm / energetic),

and tension (relaxed / tense), as well as in unipolar scales

for individual mood terms atmospheric, happy, dark, sad,

angry, sensual, and sentimental.

The 4,692 tracks from SET5K were picked up randomly

from the ILM production music catalogue by i) keeping

tracks with a duration of at least 60s (in order to discard

short instances of the tracks), and ii) discarding instrumen-

tal stems, i.e. individual tracks from multitrack recordings.

Six main genres were represented (jazz, dance, rock, elec-

tronic, folk and orchestral). 30s audio clip versions of the

tracks were produced in the 128kB/s mp3 format. SET205,

described in [11], consists of 205 clips of 30s duration

from SET5K. The tracks were sampled in a similar fash-

ion as for the Last.fm test set, but without taking listener

statistics into account. The set was annotated by 46 partici-

pants in a similar manner as SET600, but for bipolar scales

of valence (negative / positive), arousal (calm / energetic),

tension (relaxed / tense), dominance (submissive / domi-

nant), romance (cold / romantic), and humour (serious /

funny) [11].

Features extracted from SET10K and SET5K were nor-

malised using the z-score transform. All feature values

with more than 5 standard deviations from zero were con-

sidered outliers and truncated to the extremes [−5, 5]. The

features associated with SET600 and SET205 were then

normalised according to the means and standard deviations

of the larger feature sets.

3.2 Modelling Techniques

To show the efficiency of the mappings from audio fea-

tures to the semantic layer, we compare SLP to two base-

line techniques (BL1 and BL2) aiming at predicting mood

ratings of e.g. valence, arousal, and tension in the test cor-

pora. Prediction rates are computed as squared correlation

coefficients (R2) between the estimates and ratings over

the test sets. The difference between the three techniques

lies in how the semantic relationships between mood terms

are exploited in the modelling. BL1 uses mappings be-

tween audio features and individual mood terms directly, in

order to predict mood ratings for the corresponding terms

in the test corpora. This is analogous to the techniques used

in [12–14]. BL2 uses mappings between audio features

and individual mood terms to predict each (term-track) pair

in the test corpora. Test tracks are then projected using Eq.

1 and Eq. 2 based on the inferred tags. This is analogous

to the techniques presented in [15,16]. The SLP technique

has been described in Section 2.3.

In short, BL1 does not use information about mood term

relationships at all, while BL2 exploits the semantic infor-

mation after producing a mapping from audio features to

mood terms. SLP, on the other hand, maps audio features

directly to the semantic layer.

Mappings in BL2 were trained for terms appearing at

least ten times in SET10K and SET5K, amounting to 287

and 201 terms, respectively. Since valence, arousal, or ten-

sion are not explicitly modeled by BL1 (and no tags “va-

lence” or “arousal” exist in either of the tag corpora), we

use terms corresponding to the bipolar labels of the mood

scales in the listening tests for modelling these ratings.

Tags “positive”, “energetic”, and “relaxing” / “relaxed”

were applied more often than tags “negative”, “calm”, and

“tense” in both SET10K and SET5K, so we use the afore-

mentioned tags to model the corresponding mood dimen-

sions. Similarly, for dominance, romance, and humour that

were rated in bipolar scales in SET205, we use tags “pow-

erful”, “romantic”, and “funny”.

Evaluating the role of tags and audio in predicting moods

is achieved by comparing SLP and ACT prediction rates.

While both of these techniques rely on the same seman-

tic representation of moods, for each novel track, SLP uses

only audio features and automatically inferred moods. ACT

however uses actual tags associated with the track. We use

these techniques in conjunction by computing the weighted

mean of these two estimates for each track, and comparing

that to the mood ratings. We vary the weights [w, 1 − w]
(w ∈ [0, 1]) for the techniques so that the case w = 0 corre-

sponds to using ACT, whereas the case w = 1 corresponds

to using SLP.

4. RESULTS AND DISCUSSION

4.1 Evaluation of SLP

Table 2 presents the comparison of SLP with the base-

line methods. In case of Last.fm, prediction rates of SLP

span from moderate (R2 = 0.248 for happy) to consid-

erably high (R2 = 0.710 for arousal). SLP consistently

outperforms both baseline methods, except in one case,

where BL1 gives marginally higher performance for sad

(R2 = 0.313). The differences between the baseline tech-

niques and SLP are however small for the arousal, angry,

and sensual dimensions. We also note that valence and re-

lated moods (happy, sad, and angry) are the most difficult

to predict with all of the models, and in turn, arousal is

the easiest to predict. This is consistent with past studies

in music emotion recognition [22]. Although BL1 suffers

from the lack of explicit tags for valence, arousal, and ten-

sion to infer explicit predictions, results for the seven mood



BL1 BL2 SLP
L

as
t.

fm
Valence 0.045 0.244 0.322
Arousal 0.693 0.662 0.710
Tension 0.198 0.469 0.560
Atmospheric 0.075 0.541 0.581
Happy 0.073 0.183 0.248
Dark 0.264 0.314 0.370
Sad 0.313 0.295 0.310
Angry 0.475 0.465 0.497
Sensual 0.505 0.523 0.546
Sentimental 0.218 0.354 0.390
Mean 0.286 0.405 0.453

IL
M

Valence 0.156 0.330 0.486
Arousal 0.680 0.672 0.718
Tension 0.478 0.501 0.588
Dominance 0.461 0.376 0.352
Romance 0.274 0.301 0.351
Humour 0.209 0.362 0.502
Mean .376 .424 .499

Table 2. Prediction rates (R2) for the Last.fm and ILM test

sets using SLP and two baseline methods (BL1 and BL2).

For each dimension, best scores are reported in bold.

terms show that exploiting semantic associations between

tags is highly beneficial. Moreover, as SLP outperforms

BL2 for all mood dimensions, mapping tags to the seman-

tic layer directly rather than projecting individual auto-tags

to the layer is efficient.

In the case of the ILM data sets, our results show pat-

terns that are highly consistent with those of Last.fm –

in general SLP outperforms the baseline methods, while

BL1 obtains the lowest performance, on average. How-

ever, the performance for valence is considerably higher

(R2 = 0.486) than for the Last.fm data set. A clear ex-

ception to this pattern is the higher performance of BL1

for dominance (R2 = 0.461) compared to the other tech-

niques. Since dominance is not directly captured either by

the tags or the semantic layer dimensions, using other tags

than “powerful” would have changed the modelling. In

fact, tags “airy”, “intimate”, and “soft” yielded the high-

est performance for SLP (R2 > 0.57), the tag “relaxed”

yielded the highest performance for BL1 (R2 = 0.493),

and the tag “airy” yielded the highest performance for BL2

(R2 = 0.543).

Overall, the results show the advantage of mapping au-

dio features directly to a semantic layer to train predictive

models for moods. This solution provides increased per-

formance over methods not exploiting semantic associa-

tions at all, or projecting auto-tags to the semantic layer in

a later stage, after mapping from audio features to mood

tags.

4.2 Tags vs. Audio Features in Mood Prediction

To assess the importance of tags and audio in conjunction,

systematic evaluation of using SLP and ACT separately or

in conjunction using the weights was carried out. Overall,

the results of such comparisons (see Fig. 3 and Table 3)

first suggest that the predictions driven by audio features

alone yield better performance. However, the combina-

tion of audio features and tags lead to a notable increase,

especially for moods that are the most difficult for SLP
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Figure 3. Prediction rate obtained when relying on differ-

ent information in Last.fm and ILM test sets: tags (w = 0),

audio (w = 1), or combination (0 < w < 1).

(valence, happy, and sad). For Last.fm, the mean of the

maximum performance when using audio and tags in con-

junction is higher (R2 = 0.531) compared to the individual

use of tags (R2 = 0.334) and audio (R2 = 0.453). Similar

patterns can be observed with the ILM data, for which au-

dio content-based methods outperform tag-based methods

for all mood scales (0.062 and 0.164 increases in mean R2

when both audio and tags are used in conjunction, com-

pared to audio and tags alone, respectively). As can be

seen on Fig. 3, the optimal weight for the combination

varies to a small degree in both data sets, but lies around

0.70 (mean). In other words, the best prediction of mood is

achieved when the acoustic features are attributed a higher

weight and are supplemented by tag data, both projected

via a semantic space.

However, there are significant exceptions to the conclu-

sions drawn from simply tallying up the prediction rates

across the models and data sets. In the Last.fm data set,

audio features are actually worse than tags in explaining

the ratings of the valence and happy dimensions. This is in

line with a number of previous studies in mood prediction

with audio features, such as [22], and may have to do with

the fact that valence is an elusive concept in music, and

maybe particularly dependent on music genres. Further re-

search that extends the mutual patterns between mood and

genre is required to untangle such specific results.

5. CONCLUSIONS

In this study, we demonstrated that mood prediction is effi-

cient when relying on large-scale music tag data and audio

features, and is boosted by exploiting semantic modelling.

The results suggest that higher prediction rates are achiev-

able using the semantic layer projection (SLP) technique

when compared to baseline techniques related to conven-

tional auto-tagging that do not incorporate semantic mod-

elling into mappings from audio features.

We conclude that building large-scale predictive models

for moods in music can be done more efficiently for certain

mood dimensions by relying on audio features rather than



Tags max(R2) w Audio

L
as

t.
fm

Valence 0.388 0.492 0.57 0.322
Arousal 0.416 0.741 0.80 0.710
Tension 0.392 0.618 0.71 0.560
Atmospheric 0.298 0.607 0.83 0.581
Happy 0.357 0.429 0.53 0.248
Dark 0.328 0.506 0.71 0.370
Sad 0.300 0.393 0.58 0.310
Angry 0.221 0.518 0.84 0.497
Sensual 0.371 0.584 0.73 0.546
Sentimental 0.271 0.422 0.72 0.390
Mean 0.334 0.531 0.70 0.453

IL
M

Valence 0.418 0.571 0.69 0.486
Arousal 0.500 0.764 0.78 0.718
Tension 0.497 0.667 0.69 0.588
Dominance 0.271 0.386 0.73 0.352
Romance 0.261 0.386 0.75 0.351
Humour 0.437 0.590 0.67 0.502
Mean 0.397 0.561 0.72 0.499

Table 3. Prediction rate for the Last.fm and ILM test sets

using tags (ACT), audio (SLP), or a weighted combination.

associated tags. This is supported by the higher overall

performance of audio compared to tags, and by the overall

stable performance of the predictions between the models

in two different data sets, crowd-sourced tags from Last.fm

and a curated production music corpus (ILM). These data

sets consisted of nearly 250,000 tracks each, out of which

different subsets were carefully utilized in model training

and evaluation. The results also imply that mood tags for

novel tracks are not crucial for the automatic annotation of

tracks along most mood dimensions. However, for moods

related to valence, the use of tags yields a considerable in-

crease in the predictive performance when combined with

audio feature-based estimations. In the future we will fac-

tor in music genre to the approach presented here.
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Abstract—This study investigates multiple genre-adaptive techniques for audio-based music mood prediction. A novel technique
ACT+SLPwg is proposed that employs semantic computing based on social tags and audio-based modeling in a genre-adaptive
manner. In the experimental evaluation various techniques are compared at predicting listener ratings of core affects and mood terms
related to a set of 600 popular music tracks spanning multiple genres. The results show that the ACT+SLPwg outperforms other
genre-adaptive alternatives and general models that do not exploit genre information. In particular, improvements in the prediction
rates are obtained for the valence dimension that is typically the most challenging core affect dimension for audio-based prediction.
This study also demonstrates that normative data from affective sciences does not improve on the semantic modeling of the mood
space based on music-specific social tag data. Moreover, the study presents analytical insights into inferring concise music genre
representation based on tag data.

Index Terms—Music information retrieval, mood prediction, social tags, semantic computing, music genre.

�

1 INTRODUCTION

MUSICAL genre and mood are linked together in an in-
triguing manner. People tend to use particular genres

for mood regulation [1], different genres are able to induce
distinct emotional responses [2], and mood and genre terms
are often combined to express musical qualities (e.g. ‘smooth
jazz’ and ‘dark ambient’). In the field of Music Information
Retrieval (MIR), musical genre and mood have received con-
siderable attention [3]. Audio-based methods provide good
performance in predicting genre labels [4], whereas mood
prediction has remained more elusive in general [5]. The
inherent link between genre and mood may provide a way
of improving the audio-based music mood prediction. It has
been shown that genre-specific mood prediction models, i.e.,
models trained on a set of tracks from a particular genre,
give more accurate predictions within the corresponding
genre than across genres [6]. Moreover, genre-specific mood
auto-tagging models trained on tracks drawn from the cor-
responding genre have been shown to perform better than
a general model trained on tracks from all genres [7].

Genre is a useful and popular way of describing musical
content in most everyday contexts (music retailers, radio
channels, libraries) and also forms one of the most impor-
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tant categories of social tags in online services for music
consumption such as Last.fm1, accounting for nearly 70% of
the tags [8]. Genres are also easily identified from extremely
brief excerpts [9] and yet genres are generally difficult to
define in an unambiguous fashion [10] since they are partly
cultural constructs and thus not purely defined by their
musical properties.

Psychological studies have shown that music can be
organized according to expressed or elicited emotions2, and
the ability of music to convey and affect moods is an
important factor explaining why people are attracted by
music [11]. For these reasons, developing reliable and scal-
able automatic mood prediction models has great potential.
Audio-based models are particularly beneficial since they
do not rely on pre-existing existing annotations of novel
tracks. Most audio-based mood prediction approaches have
utilized either categorical models (e.g., happiness, sadness
and anger) [12], [13] or dimensional models of emotion
[14], [15], [16]. A well-known example of the latter is the
affective circumplex model [17], that represents different
moods in the underlying dimensions of valence, reflecting
positive vs. negative emotions, and arousal, relating to the
activity or intensity of emotion. These dimensions, as well
as tension, have been described as core affects [18]. Valence
and arousal have been considered as independent dimen-
sions, whereas tension has been inferred as the product of
negative valence and positive arousal [19]. A number of
studies have employed the dimensional model to audio-
based music mood prediction. Eerola et. al [15] employed
Partial Least Squares (PLS) regression to predict core affects
in a set of film soundtracks clearly expressing distinct basic
emotions, and achieved high performance for all affects

1. http://www.last.fm/home
2. We employ the words emotion and mood interchangeably in the

present paper.
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(R2 = 0.70, 0.77, 0.71 for valence, arousal and tension,
respectively). However, performance levels have changed
drastically when dealing with music drawn from multiple
genres. Sufficiently high performance have still been re-
ported for arousal (R2 = 0.58 [14] and R2 = 0.71 [20]),
but the performance for valence has been far less satisfying
(e.g., R2 = 0.21 [14] and R2 = 0.32 [20]) [21]. This suggests
that further effort is needed to propose models that operate
across genres in a robust manner for both valence and
arousal.

In the previous studies, the relationship between genre
and mood has only been broadly described. For instance,
[22] statistically tested the significance of associations be-
tween genre and mood tags drawn from AllMusic3 web
service. The results indicated that while all genres can be
characterized by certain moods, mood content also varies
within genres to a large degree. Therefore, these two do-
mains can potentially be used in a complementary fashion.
Along these lines, Lin et al. [23] trained audio-based mood
prediction models separately within different genres, and
predicted mood successfully by a genre-weighted combina-
tion of the model outputs.

The present study offers an analytical exploration of
genre-adaptive music mood prediction. Large social tag data
and associated audio tracks are exploited in the analysis,
and the prediction models are evaluated on a separate cor-
pus of tracks from various popular music genres, annotated
according to the core affects and mood terms in a listening
test. The dimensional model of emotion is inferred from
tags using the Affective Circumplex Transformation (ACT)
technique deemed successful in [24], and the Semantic Layer
Projection (SLP) technique proposed in [25] and [20] is
employed to map audio features to the semantic space.
Several techniques that exploit genre information in mood
prediction are compared, and a novel technique is proposed
that adapts both the semantic space of moods and audio-
based models to different genres. Performance gains of the
novel technique is compared to the other genre-adaptive
techniques and a general SLP model that does not exploit
genre information.

The following section discusses how this work relates to
the previous studies in MIR. Section 3 describes the data
covered in the study, while Sections 4 and 5 delineate the
techniques to represent mood and genre of music tracks.
Section 6 details the used audio-based mood and genre
prediction techniques, and Section 7 introduces the genre-
adaptive mood prediction techniques. Finally, Sections 8 and
9 report the results and conclude the paper.

2 RELATED WORK

2.1 Tag- and Audio-based Mood Prediction via Seman-
tic Computing

Social tags are free-form labels collaboratively applied to
content by a online user communities. Due to the free-form
nature, social tagging produces rich source of information
about large sets of content items, but exhibits problems
related to user errors, subjectivity, synonymy, polysemy and
sparsity [26]. Several techniques have been applied to tags

3. http://www.allmusic.com/

to successfully alleviate these problems and to infer useful
semantic information only scarcely represented by raw tag
data. In particular, the Latent Semantic Analysis (LSA) [27]
has been used to infer low-dimensional semantic spaces
from the co-occurrences of tag pairs within content items.
Semantic computing akin to the LSA has been applied to
music tag data in several studies [24], [28], [29], [30]. In
the paper the most relevant to the present study, several
techniques to infer semantic space of musical mood were
compared [24]. The proposed technique called the Affective
Circumplex Transformation (ACT) based on the LSA and
the dimensional model of emotion outperformed typical
semantic analysis techniques and the use of raw tags to
represent music mood. The training data consisted of 357
unique track-level mood tags associated to 260k tracks from
Last.fm, and the techniques were evaluated on listener
ratings of moods in a separate set of 600 tracks from various
popular music genres. Correlations between the track-level
mood estimates and ratings were r = 0.58, 0.64, 0.62 for
the core affects valence, arousal and tension, and between
r = 0.50 < r < 0.60 for seven mood terms. In a follow-
up study, [31] applied ACT models trained in [24] on a
separate set of curated editorial tags associated to 205 pro-
duction music tracks. Vice versa, ACT models were trained
on 250,000 production music tracks and their performance
was estimated on the aforementioned 600 popular music
tracks. High performance rates obtained in this evaluation
across music corpora and annotation types demonstrated
the generalizability of ACT at capturing mood information
from tag data.

In the studies above, the dimensional Valence and
Arousal (VA) space was inferred with the ACT by con-
forming the semantic mood space with reference VA-
configuration of mood terms given in [17], [32]. However,
other reference configurations are equally promising, such
as the affective norms in [33] related to a large set of English
lemmas, or even ad-hoc subsets of these configurations
specifically tuned for music data. We will also examine these
options in this paper.

The Semantic Layer Projection technique (SLP) was pro-
posed in [25] as an extension to ACT to enhance audio-based
music mood prediction. The SLP involves projecting tracks
to moods via a two-stage process. In the first stage, a corpus
of tracks is mapped to the VA-space obtained with the ACT
based on associated tags, and regression models are trained
between audio features and the mood space dimensions.
In the second stage, track positions in the mood space are
projected to infer the core affects and mood term estimates.
In an attempt to predict listener ratings of mood, variants
of SLP trained on Last.fm data outperformed regression
techniques trained directly on the ratings. In a subsequent
study [20] the SLP outperformed baseline models that ex-
cluded the ACT-based projection in the first stage, which
highlighted the robustness of the technique.

2.2 Musical Genre Representation
Genre is the most widely used semantic facet to describe
music, as almost all large music libraries and record shops
categorize music into genres. A common debate between
music enthusiasts is what genre an artist or track repre-
sents. Several studies have highlighted the challenges of
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representing the genre of music, relating in particular to
the optimal resolution of genres [34] and the fuzziness of
genre categories [35]. In studies attempting to identify the
underlying factors of music preferences based on genres,
four [36] and five [37] underlying factors have typically
been singled out. In other studies, 10 [38], 13 [39] 14 [40]
and 16 [41] genres have been employed to characterize the
typical range of music. On the other hand, the fuzziness
of genre categories has been highlighted with artist tags at
Last.fm [35]. For instance, 56% of artists tagged with ‘pop’
were also tagged with ‘rock’, and 87% of ‘alternative’ music
overlaps with ‘rock’. Still these three genres are considered
as separate categories in typical music catalogues, such as
iTunes. The evidence from social tags indicates that a single
genre describing a track is not inclusive enough, but perhaps
a (weighted) combination of several genre labels would
better describe genre information.

2.3 Contextual Information in Music Mood Prediction
The aim of the present study is to exploit genre as context
in music mood prediction. Context is typically associated
with different music-listening situations [2], whereas the
MIR-oriented view relates context to all types of information
about music, not represented by the content, i.e., the audio
[3]. Context therefore includes multimodal information such
as lyrics, album covers, music videos, tags and other online
material. However, in music auto-tagging [42], audio-based
prediction of tags has not automatically been described
as contextual. Instead, contextual techniques have typically
involved two-stage approaches that exploit the relationships
between individual tags [43], [44]. As an example of a
two-stage technique, [43] trained Support Vector Machine
(SVM) models with probabilistic outputs in two stages.
Audio-based SVMs were first trained for each tag. Then,
stacked probabilistic outputs for all tags was used as input
to second-stage SVMs, thus exploiting correlations between
tags. Contextual techniques have systematically outper-
formed non-contextual models, and in particular, stacked
SVMs have yielded state-of-the-art performance4. As the
set of tags in these studies typically includes both genres
and moods, genre has been implicitly been incorporated
into mood tag prediction, but this aspect has not been
investigated further in previous research.

Genre has been given emphasis in only few music
mood prediction analyses in the past. Schuller et al. [41]
compared genre to other sources of information for music
mood classification. In other studies by Lin et. al [7], [23],
a two-stage approach to audio-based mood prediction was
proposed. In [7], several genre-specific mood auto-tagging
models were trained, and for an unknown track, the model
corresponding to the track genre was applied. This approach
was taken further in [23], where instead of inferring the
genre for an unknown track from available metadata, also
genre was predicted from audio. The present study follows
the footsteps of the above studies and finally increases
the genre-adaptivity of mood prediction by allowing the
semantic mood space to adapt to different genres. This is
challenging, since inferring a taxonomy for both mood and
genre is nontrivial. Moreover, the semantic link between

4. http://www.music-ir.org/mirex/wiki/2012:MIREX2012 Results

TABLE 1
Data sets used in the study.

nterms per track (avg.)
ntracks nartists Mood Genre

TRAIN100k 118,874 5,470 3.23 5.38
TRAIN10k 10,199 5,470 3.56 5.52
TEST600 600 600 7.22 8.53

mood and genre makes it difficult to devise a protocol for
combining these semantic facets. The next sections presents
ways to deal with these issues.

3 DATA COLLECTION

In this section we explain how we obtained our data sets
comprising mood- and genre-related social tags and asso-
ciated audio tracks from the I Like Music (ILM) library,
and how we filtered and sampled the tracks and tags to
produce the main training sets TRAIN100k dedicated for
semantic computing and TRAIN10k dedicated for audio-
based modeling. We also introduce the TEST600, a set of
tracks reserved for model evaluation. Table 1 summarizes
the statistics of the data sets.

3.1 Training Data Sets
We used the social tag data collected in [24] using the
Last.fm API as a starting point for further analyses. This
data consists of 1,338,463 tracks and 924,230 unique tags
after lemmatizing the tags and removing non-alphanumeric
characters. Each track-tag association in the data is repre-
sented by normalized count spanning from weak to strong.
Mood- and genre-related tags were identified by string
matching against 560 mood and 865 genre terms gathered
from various sources including the AllMusic.com service
and several studies in affective sciences [24]. For moods,
each tag that included a term as a separate word was asso-
ciated to the corresponding term, whereas genre terms were
matched with the full tags. This approach was chosen since
genre is more prevalent tag category than mood. In the case
when several tags associated to a track matched the same
mood term, the association with the highest normalized
count was retained. The obtained set was further filtered
by sorting mood and genre terms according to the number
of associated tracks and kept the top 100 mood and top
100 genre terms. Tracks associated to both mood and genre
terms, and from artists not appearing in TEST600, were
included in further analysis.

TRAIN10k including audio for 10,199 full tracks was
subsampled from the corpus. We obtained audio for these
tracks using exclusive access to the I Like Music (ILM)
catalogue. Tracks were first paired with the catalogue using
exact string matching between the artist names and song
titles. From the initial corpus, we found 218,000 tracks in
the ILM database that matched one of the Last.fm tracks.
However, this dataset included a large proportion of dupli-
cates. We then applied controlled track sampling to arrive
to the tracks used in subsequent analyses.

Track sampling was done by following several poten-
tially conflicting criteria: First, including tracks with close
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matches between metadata entries (artist name, song title,
album title) in Last.fm and ILM based on Levenshtein string
distance and less than 0.5s difference between reported track
durations. Second, balancing the set according to broad
genre categories following expert classification available
from ILM. Third, limiting the maximum number of songs
sampled from the same artist. Finally, mood-balancing the
tracks within each genre based on track positions in three-
dimensional mood space obtained by ACT model trained
in [24]. The resulting TRAIN10k includes tracks from 5,470
unique artists.

Since subsampling excluded most of semantic informa-
tion included in the original set of tracks, we formed the
larger training set TRAIN100k for semantic computation
purposes. This was done by augmenting TRAIN10k with all
the tracks in the corpus that were performed by any artists
in TRAIN10k. This produced a set of 118,847 tracks.

As seen in Table 1, the average number of terms asso-
ciated to each track is higher for genres than for moods,
even after different string matching criteria between tags
and terms. This obviously reflects the overall higher preva-
lence of genre tags than mood tags in social tag data.
Within TRAIN10k (TRAIN100k, respectively), a median of
162 (1,687) tracks is associated to a mood term, and of 329
(3,869) to a genre term. The most prevalent mood terms are
Chillout (2,569), Party (1,638) and Mellow (1,569), whereas
the least prevalent mood terms are Pleasant (51), Bliss (51)
and Spooky (52). The most prevalent genre terms are Rock
(3,587), Pop (3,091) and Alternative (2,047), whereas the
least prevalent are Root reggae (147), Jazz fusion (150) and
Electropop (153). The relative term prevalences are roughly
the same within TRAIN100k.

For experimental evaluations, 10 training partitions, each
comprising 80% of tracks in TRAIN100k and TRAIN10k,
were randomly subsampled from the training data. Evalu-
ations were carried out by performing the model training
separately on each training partition and applying the mod-
els thus obtained on the full TEST600 set. We will denote
the partitions as T (within TRAIN100k) and T ′ (within
TRAIN10k), T ′ ⊂ T .

3.2 Test Data Set
The TEST600 data set reserved for evaluation is the same
as the one described in [24]. The set consists of Last.fm
tags, listener ratings of mood, and audio for 600 tracks by
unique artists. The tracks represent six main genres: Metal,
Rock, Folk, Jazz, Electronic and Pop. The listener ratings of
the expressed mood, given in nine-step Likert scales, were
averaged from 59 participants. Three core affects (Valence,
Arousal and Tension) and seven mod terms (Atmospheric,
Happy, Dark, Sad, Angry, Sensual and Sentimental) were
evaluated. A more detailed description of TEST600 can be
found in the original publication [24]. Although the listener
ratings were given for 15 second clips, we use the full tracks
in the present study, relying on the claim made in [24] that
the ratings describe the tracks well overall. The ratings and
links to the audio and tag data is publicly available5.

The tag data associated to TEST600 was subjected to the
same process applied to the training corpora, by associating

5. http://hdl.handle.net/1902.1/21618

each track to the 100 mood and 100 genre terms, and
excluding tracks not associated to any mood or genre term.
As a result, 12 tracks were excluded.

3.3 Audio Features
62 audio features related to dynamics, rhythm, harmony
and timbre, were extracted from the full-length tracks of
TRAIN10k and TEST600 using the MIRtoolbox6 [45]. Table
2 summarizes the feature set. The features were aggregated
over time to generate song-level descriptors. Finally, each
song was represented by a 178-dimensional feature vector.

The audio material was first converted to mono and
cut into overlapping analysis frames with feature-specific
lengths and degrees of overlap. A frame length of 50ms with
50% overlap was used for the low-level spectral features,
MFCCs and their 1st (Δ) and 2nd-order (ΔΔ) instantaneous
derivatives, and for features related to dynamics. Audio
onsets were detected from the temporal amplitude curves
extracted from 10-channel filterbank decomposition. Event
Density was calculated by taking the number of onsets in
10s, 50% overlapping frames. Features related to meter were
derived from the onsets using the autocorrelation function
with 3s frames with 90% overlap (33.3% overlap for Tempo).
Furthermore, chromagrams were computed from 750ms,
50% overlapping frames, from which several high-level
features related to tonality, such as Mode (majorness) and
Key Clarity were calculated.

All features with different frame lengths where brought
to the same time granularity by computing the Mean (m)
and Standard deviation (s) over 1s, 50% overlapping tex-
ture windows. However, only the Mean was computed for
Event Density and chromagram-related features, since they
were extracted from longer frames to begin with. This was
also done for the MFCC derivatives, since their Means
already describe temporal change. Finally, 178 song-level
descriptors were computed by taking the Mean (mm and ms)
and Standard deviation (sm and ss) of these features over
song lengths. This process is motivated by the approach
presented in [43]. Typically the song-level representation of
audio features is obtained by taking the Mean and Standard
deviation over the whole song length without first aggre-
gating within the texture windows. The approach taken here
incorporates the temporal dynamics of features at both short
and long time span in more sensitive fashion than the typical
song-level averaging approach.

4 MOOD REPRESENTATION FROM TAG DATA

The ACT technique [24] was applied on the training parti-
tions of TRAIN100k set to enable representing the mood of
the tracks based on associated tags. Initially, associations be-
tween mood terms and tracks are represented in a standard
Vector Space Model (VSM) matrix form.

4.1 ACT Training
As in [24], M is first normalized by computing Term
Frequency-Inverse Document Frequency (TF-IDF) scores,
and then transformed to a three dimensional mood space by

6. MIRtoolbox version 1.5.
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TABLE 2
Audio features, aggregated to ∗: mm, ms, sm and ss; †: mm and sm.

The “Frame” column reports the window lengths and overlaps (�: 50ms
length with 50% overlap).

Category Feature Stats Frame
Dynamics RMS, Zerocrossing rate ∗ �
Onsets Attack (time, slope, leap) ∗ Onset-based

Event density † 10s, 50%
Autocorrelation Pulse clarity, Novelty † 3s, 90%

Tempo † 3s, 33.3%
Chromagram Mode,

HCDF, Key Clarity,
Centroid, Novelty

† 750ms, 50%

Spectrum Novelty, Brightness,
Centroid, Spread, Flux,
Skewness, Entropy,
Flatness, Roughness

∗ �

13 coef. MFCC, Δ, ΔΔ ∗ �

applying the non-metric Multi-Dimensional Scaling (MDS).
Notice, that in [24] dimension reduction was employed
in two stages by applying Singular Value Decomposition
(SVD) prior to MDS, which gave slight performance im-
provement compared to the dimension reduction with MDS
only. The SVD stage is excluded in the present study to
reduce the number of alternative model parameterizations
(e.g., the number of dimensions in SVD). The next stage of
the ACT process conforms the mood space to a reference
configuration of mood terms in a VA-space. Such config-
uration can be extracted for example from Russell’s and
Scherer’s studies [17], [32] similar to the approach presented
in [24]. This is done via Procrustes transformation [46]
which performs a linear mapping from a space to another,
while retaining the relative distances between objects in the
original space. This stage yields a configuration X̃ of all
mood terms in the VA-space.

A track represented by a VSM vector qi of mood term
associations is projected to the VA-space by the following
operations: First qi is normalized to q̂i according to the
learned TF-IDF scores, and q̂i is projected to the VA-space
by computing the centre-of-mass:

q̃ =

∑
i q̂ix̃i∑
i q̂i

. (1)

Consequently, the estimates for Valence and Arousal for
q̃ are inferred directly from the track positions along the
first and second dimensions, whereas the weights related to
mood terms i are computed by

x̃i

|x̃i|L2
· q̃. (2)

Moreover, the estimate for Tension is obtained by projecting
the track positions along the direction (−1, 1, 0) correspond-
ing to negative valence–positive arousal, as suggested by
Thayer [19].

4.2 Alternative Configurations for ACT
Of all 101 mood terms present in Russell’s and Scherer’s
reference configuration [17], [32], 13 terms could be matched
with the 100 mood terms used in the present study. These
terms are plotted onto the VA-space in Fig. 1a. We denote
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Fig. 1. Reference mood term configurations from a) Russell [17] and
Scherer [32] and b) Affective norms [33].

this configuration by Russell. Most of the matched terms
are located in the low Arousal – high Valence quadrant.
Due to this imbalance, we formed a more simple alternative
reference configuration by including only one mood term
for each VA-quadrant: Happy, Calm, Sad and Angry, indi-
cated in boldface in Fig. 1a. This configuration is denoted by
Russell4. These terms were chosen since they are frequently
cited in the past music and emotion research [47] and
their prevalence within TRAIN100k was above the median
(10,459, 3,554, 9,306 and 1,921 for Happy, Calm, Sad and
Angry, respectively).

We also explored how well the norm data from [33]
would perform as a direct alternative to the mood term
positions inferred using the ACT. For this model the MDS
and Procrustes stages in the ACT were skipped. In addition
to Valence and Arousal, the data includes Dominance as the
third dimension. 81 mood terms, summarized in Fig. 1b,
could be matched between the norm data and tags. We will
refer to this model as Norms. 339 tracks had to be excluded
from TRAIN10k when training the model, since those tracks
were not associated to any of the matched mood terms.

5 GENRE REPRESENTATION FROM TAG DATA

In order to exploit genre information as a context in mood
prediction, we sought for a concise genre representation.
Many of the genre terms present in TRAIN100k are sim-
ilar; for instance ‘alternative’ with ‘indie’ and ‘electronic’
with ‘dance’. We therefore applied genre term clustering to
reduce the number of distinct genres.

5.1 Genre Clustering Techniques

Formally, given the genre tags in TRAIN100k expressed as
a VSM matrix G = gi,j , where j ∈ T (tracks in a training
partition of TRAIN100k) and i relates to the i:th genre term,
the rows gi are grouped into clusters C = {C1, C2, ..., CK}
such that Ck

⋂
Cl = ∅ and

⋃K
k=1 Ck = G. The clustering

techniques were used with the following specifications:
K-means: G was first normalized to a unit Euclidean

length by
ĝi,j = gi,j/(

∑
j∈T

gi,j
2)1/2, (3)

after which the algorithm was run using the cosine distance.
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Agglomerative hierarchical clustering: G is first nor-
malized according to the TF-IDF to produce Ĝ. The cosine
distance between ĝi and ĝi′ was then used as the distance
measure, and the agglomeration was done based on the
average link criterion.

Spectral clustering: G was normalized according to
the TF-IDF. The affinity matrix used was the cosine similari-
ties (1 – cosine distance) between ĝi and ĝi′ . Clustering was
then done following the method described in [48], similar to
[23] where the technique was applied to emotion tags.

5.2 Genre Clustering Survey and Evaluation

To assess the quality of the obtained genre clusterings, we
arranged an online genre grouping survey. This also pro-
vided insight into deciding how many genre clusters would
optimally represent the data. The task in the survey was to
organize the 100 genre terms into any number of clusters be-
tween 2-16 considered most appropriate by each participant.
The range for the candidate number of genres was selected
to acknowledge the typical number of genres assessed in
past studies. It was specified in the instructions that the
clusters should share characteristics based on musical, so-
cial, cultural or other factors. The participants were asked
to be objective in their assignments, and the instructions
allowed using external web resources for checking unfamil-
iar genre terms. 19 participants, predominantly engineering
and musicology students knowledgeable of different music
genres, took part in the survey.

No clear optimal number of genre clusters arose from
the survey results. The number of clusters ranged between
6 and 16, with a peaks around 9, 10 and 16 clusters (M =
11.34, SD = 3.17). To question this finding, the conventional
Davies-Bouldin technique [49] was applied on the genre tag
data to infer the optimal number of clusters, but this analysis
did not yield a clear optimum either. This may reflect the
more general difficulty of defining the genre granularity that
would satisfy all purposes.

We computed genre clusterings with the three afore-
mentioned techniques separately on the training parti-
tions of TRAIN100k using K = {2, 4, 6, ..., 16} clusters.
These clusterings were compared to those obtained from
the survey using the Mirkin metric [50], which can be
used to assess the disagreement between two clusterings
C = {C1, C2, ..., CK} and C ′ = {C ′

1, C
′
2, ..., C

′
K′} by:

dM (C,C ′) =
∑
k

n2
k +

∑
k′

n2
k′ − 2

∑
k

∑
k′

n2
kk′ , (4)

where n and nk are the numbers of genre terms in G and
cluster Ck, respectively, and nkk′ is the number of terms in
Ck

⋂
C ′

k′ . This metric can be used to compare clusterings
with different K . For identical clusterings dM = 0 and
dM > 0 otherwise. We computed dM separately between
the tag-based clusterings and the 19 clusterings obtained
from the survey, and averaged it across the participants
and training partitions. The results are shown in Fig. 2.
One can see that all clustering techniques compare similarly
to the survey data, except that the hierarchical clustering
performed poorly with K = 2. In general, K-means outper-
formed the other techniques by a slight margin. Therefore
we will use K-means in further analyses.
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Fig. 2. Mirkin metric of each genre clustering technique averaged over
participants and training partitions.

TABLE 3
Genre clusters obtained using K-means with K = {2, 4, 6, ..., 16}.

K Most prevalent genre term
2 Pop, Rock
4 Soul, Rock, Hard rock, Electronic
6 Hard rock, Singer songwriter, Electronic, Jazz, Rock, Pop
8 Electronic, Rnb, Soul, Instrumental, Pop, Singer songwriter,

Rock, Hard rock
10 Soul, Hip hop, Rock, Electronic, Singer songwriter, Reggae,

Alternative, Jazz, Metal, Lounge
12 Electronic, Downtempo, Country, Soul, Hard rock, Punk, Rnb,

Singer songwriter, Rock, Jazz, Classic rock, Pop
14 Hip hop, Rock, Singer songwriter, Pop, Pop rock, Jazz, Coun-

try, Soul, Metal, New wave, Hard rock, Classic rock, Instru-
mental, Electronic

16 Jazz, Rnb, Instrumental, Reggae, Ambient, Pop rock, Rock
n roll, Experimental, New wave, Classic rock, Pop, Soul,
Electronic, Hard rock, Singer songwriter, Rock

As the survey did not give clear indication of the optimal
number of genre clusters, the subsequent analyses will
primarily be conducted with K = 6. This was the minimum
number obtained in the survey, but the main reason for
the choice was that it corresponds well with TEST600 that
was sampled to contain six genres: Metal, Rock, Folk, Jazz,
Electronic, and Pop.

In order to be thorough about the genre clustering
results, we computed the final clusterings with K =
{2, 4, ..., 16} based on the full TRAIN100k set. Fig. 3 shows
in detail the discrepancy between the clustering with K = 6
and the survey data. We computed for each pair of genre
terms the of number participants that assigned both terms
to the same cluster. Six genre terms most prevalent in the
TRAIN100k are shown for each cluster in the order of
prevalence. The six clusters correspond well with the main
genres in the TEST600 set since each of these terms are in
different clusters. Therefore we label the clusters with these
genres. One can see from the figure that genre terms in
Metal, Folk and Electronic were mostly grouped together also
by participants, whereas terms in Jazz, Rock and Pop were
not as consistently grouped.

Table 3 shows the most prevalent genre tag for the genre
clusters obtained with different K .
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Fig. 3. Discrepancy between the six genre clusters obtained with K-
means, and cluster co-occurrences of genre terms obtained from the
survey.

TABLE 4
The percentage of tracks in the data sets belonging to each of the six

genre clusters.

Genre cluster TRAIN100k TRAIN10k TEST600
Metal 18.2 14.0 27.0
Folk 28.7 34.0 40.3
Electronic 30.3 31.8 46.2
Jazz 33.6 41.3 44.0
Rock 60.1 55.3 80.2
Pop 49.2 57.1 66.2

5.3 Representing the Genre of a Track

The genre of a track j, given its associated genre tags and
a clustering C , is represented by a weighted combination
H = hk,j (k ∈ {1, 2, ...,K}) of the associated genre clusters:

hk,j =

∑
i∈Ck

ĝi,j

nk

[∑
k

∑
i∈Ck

ĝi,j

nk

]−1

, (5)

where ĝi,j is computed with (3) based on the full
TRAIN100k set.

We also consider that a track j belongs to a genre cluster
k, if any of its associated genre tags belong to the corre-
sponding cluster, i.e., if hk,j > 0. This ”hard” assignment
will later be used to sample the training tracks for genre-
adaptive mood prediction models. Note, that following this
definition, a track can belong to more than one genre cluster.
Table 4 shows the percentage of tracks in in the data sets
belonging to each genre cluster. It can be seen that the
clusters are very broad, since 80.2% and 66.2% of TEST600
tracks belong to Rock and Pop, respectively. High prevalence
of tags related to Pop and Rock reflects the fuzziness of these
genres, discussed in [35].

6 AUDIO-BASED PREDICTION OF MOOD AND
GENRE

We use the SLP technique as the main framework for audio-
based music mood prediction. This section gives details on
the general form of the SLP that predicts moods without
exploiting genre information, whereas Section 7 describes
how the SLP is used in genre-adaptive mood prediction.
This section also introduces two baseline methods that are
based on the stacked SVM auto-tagger, and describes our
technique for audio-based genre prediction.

6.1 Mood Prediction with SLP

The SLP involves training a set of regression models to map
audio features to the VA-space dimensions and to predict
moods in music tracks. In [25] and [20] Partial Least-Squares
(PLS) was employed as a regressor for the SLP, whereas
in the present paper we use the LIBSVM implementation
of Support Vector Regression (SVR) [51] to allow for more
direct comparison to the baseline SVM auto-tagger.

The SLP receives as an input the tag data associated
to the training partitions of TRAIN100k and TRAIN10k
and audio features extracted for the training partition of
TRAIN10k. The following stages are then applied:

Audio feature pre-processing: All features are z-
score-transformed to a zero mean and unit standard devi-
ation, and extreme feature values are considered outliers
and truncated to the extremes [−5, 5]. After this, highly
correlated audio features are removed to reduce the SVR
training time. This is done by agglomerative hierarchical
clustering with correlation distance function. Clustering is
done using the complete linkage criterion with a cutoff
correlation distance of 0.1. The first feature of each obtained
cluster in the list presented in Table 2 is kept.

Projecting tracks to VA-space: As in Section 4, mood
term configuration in VA-space is learned, and tracks in T ′

expressed in the VSM form are projected to the VA-space
based on the associated tags.

Regressor training: Mappings from the pre-
processed audio feature set to each VA-space dimension sep-
arately are trained with the SVR. In a preliminary analysis
we tested the SVR with linear and Radial Basis Function
(RBF) kernels, and found that the linear kernel produced
results comparable to the RBF with a shorter training time.
We also found that setting the cost parameter c to 0.001
gave consistently high performance compared to several
candidates c = 10y, y = [−4,−3, ..., 1].

SLP prediction: When applying SLP to a novel track,
first the preprocessing is applied to the associated audio
features, and the track is mapped to the VA-space using
the learned regressors. Finally, the estimates for Valence and
Arousal are represented by the first and second dimension
of the space, whereas the estimates for Tension and mood
terms are obtained by projecting the tracks along the corre-
sponding directions, as described in Section 4.

6.2 Baseline Mood Prediction with SVM Auto-tagger

We employ the two-stage stacked SVMs [43] to compare
the SLP performance to a conventional auto-tagger. Our
implementation of the technique mainly follows that in [43].
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First, the input audio features related to TRAIN10k partition
are pre-processed as described in Section 6.1, and mood tags
are transformed into binary classes. The first-stage SVM
classifiers with linear kernel and probabilistic outputs are
then trained separately for each term, and applied on the
training tracks. Obtained positive class probabilities for all
terms are then served as input for the second-stage SVM
classifiers, that again map the input to the binary classes.
When predicting moods of a novel track, the first- and
second-stage models are applied consecutively, producing
a vector of probability estimates which we finally normalize
to sum to one. Notice, that the stacked SVMs are not capable
of directly producing estimates for the core affects, since
Valence, Arousal and Tension are not explicitly represented
by any of the mood terms.

The binary tag data fed to the SVMs is highly imbal-
anced, as the term prevalence in TRAIN10k varies from
0.5% to 26%. In the past, taking into account the class
imbalance has yielded positive results for SVM-based mu-
sic mood auto-tagging [7]. Therefore we employed cost-
sensitive learning found successful in [52] by setting differ-
ent misclassification error cost for the positive and negative
class for each term. We set a cost value c+i = 1 for the

positive class and a lower cost value c−i =
n+
i

n−
i

for the

negative class, where n+
i and n−

i are the numbers of positive
and negative tracks within the training data for a mood term
i.

To form another baseline technique, we project tracks
to the VA-space based on the probabilistic outputs of the
second-stage SVMs by employing the ACT operations of TF-
IDF-weighting, projection to VA-space (1), and mood weight
estimation (2). This technique, as opposed to the original
stacked SVM, inherently produces estimates for both the
core affects and mood terms.

We refer to these two baseline techniques as SVM-orig
and SVM-ACT. Similar baseline techniques were imple-
mented also in [20] using PLS regression to predict the
normalized tag counts, but using instead the stacked SVMs
is more efficient, as the results will show.

6.3 Genre Prediction with SVM Auto-tagger
For audio-based genre prediction we train stacked SVMs
on genre tags similar to SVM-orig. Given the audio features
of a novel track, we first predict the vector of genre term
probabilities, and then map the vector with (5) to genre
clusters obtained by K-means.

7 GENRE-ADAPTIVE MOOD PREDICTION TECH-
NIQUES

As the main contribution of the present paper, we compare
several genre-adaptive mood prediction techniques. We use
the SLP as the general framework for all of these techniques,
and assess their efficiency compared to the general form
of the SLP described in Section 6.1. The techniques either
exploit genre by using genre information as input features
to the SLP (SLPg and SLPga models), or train a collection
of mood prediction models within different genres (SLPwg
and ACT+SLPwg models). Moreover, we compare these
techniques when genre information of a novel track is either

derived from tag data or predicted from audio. When used
with audio-based genre-prediction, these models can be
applied to any track irrespective of the availability of tag
data.

In the training phase the techniques receive as input the
training partitions T and T ′, the mood VSM M , genre VSM
G, audio features A, and a clustering of genre terms C =
{C1, C2, ..., CK}. Tag-based genre representation hk,j , j ∈ T
is then computed with (5). In the prediction phase (for tracks
in TEST600), tag-based genre representation is computed
again with (5), whereas audio-based genre representation
is computed as described in Section 6.3.

7.1 Genre-based Prediction (SLPg)

To obtain indication as to how much variance of mood
ratings can be attributed to mood prevalence differences
between genres, we predict the mood of a novel track with
the SLPg, relying on the associated genres. The SLPg differs
from the general SLP in that tracks in regressor training are
represented by genres hk,j = (h1,j , h2,j , ..., hK,j), j ∈ T ′

instead of audio features. All other stages are the same as in
the general SLP.

7.2 Genre- and Audio-based Prediction (SLPga)

SLPga is similar to SLPg, but appends audio-feature
vector to the genre-vector to form the input to the
regressors. Input tracks are therefore represented by
(h1,j , h2,j , ..., hK,j , a1,j , a2,j , ..., anfeatures,j), j ∈ T ′. By ex-
ploiting both audio-to-mood and genre-to-mood associa-
tions in parallel, the SLPga represents a potential alternative
to the techniques introduced next.

7.3 Audio-based Modeling within Genres (SLPwg)

The SLPwg trains regression models from audio to VA-space
separately on tracks belonging to each of the K genres,
and combines the predictions obtained with each genre-
specific model to form the final predictions. The assumption
underlying SLPwg is that different audio features and fea-
ture combinations relate to mood differently within different
genres. Audio feature pre-processing and regressor training
(cf. Section 6.1) are employed separately for each genre,
yielding K genre-specific models. Training set T ′

k for a genre
k is here defined as T ′

k = t′k,j , {j : j ∈ T ′ ∧ hk,j > 0}.
The prediction stage is applied as follows: A novel track

is represented by genres h′
k, either derived from tags or

predicted from audio, and audio features. All genre-specific
models are first applied to map the track to the VA-space
based on audio features, as described in Section 6.1. This
yields genre-specific VA-space positions q̃′k. The final pre-
dictions are then obtained by weighting the genre-specific
estimates proportionately to h′

k:

1∑
k h

′
k

∑
k

h′
k

x̃i

|x̃i|L2
· q̃′k. (6)

Combining genre-specific audio-based mood models this
way bears analogy to the emotion classification model pro-
posed in [23].
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7.4 Semantic and Audio-based Modeling within Genres
(ACT+SLPwg)
ACT+SLPwg combines genre-adaptive semantic computing
of moods with genre-adaptive regressor training. The un-
derlying assumption is that both the semantic relationships
between mood terms, and audio-to-mood associations vary
between genres. ACT+SLPwg is similar to SLPwg, except
that the VA-space is formed with the ACT separately for
each genre, i.e., on sets Tk within TRAIN100k, Tk = tk,j , {j :
j ∈ T ∧ hk,j > 0}. This produces K genre-specific VA-
spaces x̃k

i . Regressor training stage is employed separately
for each genre, producing mappings from audio to the cor-
responding genre-specific VA-spaces. The final predictions
are obtained by

1∑
k h

′
k

∑
k

h′
k

x̃k
i

|x̃k
i |L2

· q̃′k. (7)

Genre-adaptive semantic computing combined with audio-
based prediction of moods has not been examined in the
past.

8 RESULTS AND DISCUSSION

The squared correlation coefficient (multiplied by the sign
of the correlation) between the predictions and the listener
ratings of mood is used as the evaluation metric. This corre-
sponds to the coefficient of determination statistic (R2). Each
technique is trained on each of the 10 training partitions
of TRAIN100k, and correspondingly TRAIN10k, and tested
on TEST600. Median and median absolute deviation (MAD)
across the partitions are reported.

8.1 Mood Prediction without Genre Information
First, we compare the performance of ACT using different
mood term configurations. The most succesful configura-
tion is then chosen for subsequent audio-based prediction
analysis using SLP and the stacked SVMs.

8.1.1 Tag-based Prediction with Mood Term Configurations
The results for ACT obtained with Russell, Russell4 and
Norms configurations are shown in Table 5. In general, core
affects were more easy to predict than mood terms, and the
performance for Valence was lower than for Arousal. These
findings are in line with those from past work evaluating
ACT with TEST600 data [20], [24]. Russell4 gave the highest
performance for seven out of ten scales, and was clearly
more efficient than Russell for Dark and Sad. These mood
terms were also among the most difficult to predict. On
the other hand, Russell was more successful at predicting
Valence, Tension and Atmospheric. Norms yielded dramat-
ically lower performance than the other configurations.
This arguably supports exploiting music domain-specific
tag data in forming the semantic mood space rather than
using a mood space that describes affective connotations
of mood words in general. Moreover, this indicates that
the inclusion of Dominance as the explicit third dimen-
sion in the mood space does not provide evident benefits.
When examining the average performance across mood
scales, Russell4 (R2 = 0.387) outperformed Russell slightly
(R2 = 0.371). This suggests that ACT is not overly sensitive

TABLE 5
Prediction results for ACT with Russell and Russel4 reference

configurations and Norms.

Russell Russell4 Norms
Core Valence 0.425 0.013 0.413 0.015 0.270 0.000

affects Arousal 0.477 0.004 0.486 0.003 0.269 0.000

Tension 0.382 0.015 0.378 0.014 0.219 0.001

Mood Atmospheric 0.424 0.039 0.395 0.026 0.157 0.000

terms Happy 0.384 0.016 0.386 0.011 0.300 0.000

Dark 0.274 0.087 0.348 0.035 0.038 0.000

Sad 0.201 0.015 0.276 0.013 0.166 0.000

Angry 0.522 0.013 0.531 0.017 0.214 0.000

Sensual 0.403 0.006 0.416 0.007 0.002 0.000

Sentimental 0.220 0.020 0.238 0.023 0.061 0.000

Average 0.371 0.387 0.170
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Fig. 4. Mood tag positions (the mean across training partitions) obtained
with ACT using Russell4 as the reference configuration.

to changes in the mood reference configuration, and that
a simple reference configuration provides a strong enough
reference to reliably represent mood terms in the VA-space.
Therefore, Russell4 is chosen for the subsequent audio-based
analyses.

The AV-space obtained with the ACT using Russell4 is
shown in Fig. 4. The mood positions in the figure are com-
puted as the average of those obtained for each training par-
tition. The underlying dimensions of Valence and Arousal
are easily distinguishable, and the obtained positions for
the four reference terms correspond fairly well with the
original positions. However, it is notable that Sad is close to
neutral along the Valence dimension. This finding is in line
with [53], where sadness was not found to indicate negative
Valence in the context of music.

8.1.2 Audio-based Prediction
Table 6 shows the performance obtained with SLP (using
Russell4) and the stacked SVMs. It is notable that SLP
provided dramatically higher performance than ACT for all
mood scales except Valence, Happy and Dark. The clearest
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TABLE 6
Prediction results for SLP and SVM baseline techniques.

SLP SVM-orig SVM-ACT
Core Valence 0.359 0.019 – 0.369 0.020

affects Arousal 0.728 0.004 – 0.714 0.005

Tension 0.485 0.019 – 0.483 0.022

Mood Atmospheric 0.696 0.014 0.069 0.004 0.684 0.020

terms Happy 0.312 0.030 0.205 0.003 0.314 0.031

Dark 0.235 0.023 0.311 0.004 0.248 0.020

Sad 0.303 0.011 0.316 0.007 0.323 0.007

Angry 0.589 0.016 0.622 0.008 0.618 0.017

Sensual 0.544 0.004 0.252 0.026 0.535 0.010

Sentimental 0.300 0.024 0.436 0.016 0.304 0.030

Average 0.455 0.316 0.459

difference between SLP and ACT was obtained for Arousal
(R2 = 0.728 vs. 0.477). This rather surprising result, congru-
ent with that reported in [20], may be explained by the spar-
sity and inherent unreliability of tag data. The ACT maps
tracks to the mood space based on only few tags, which
may cause local inconsistencies. By contrast, mapping audio
features to the mood dimensions using the SLP may tap into
more global patterns and provide a way to ”smooth out”
these inconsistencies. The mean SLP performance across
mood scales was similar to that reported in [20] using a
larger training set (R2 = 0.455 vs. 0.453). However, the
prediction performance for Valence was clearly higher in
the present study, R2 = 0.359 compared to R2 = 0.322,
while the performance for Arousal was approximately the
same: R2 = 0.728 vs. R2 = 0.710.

The SVM-orig auto-tagger performed inconsistently. The
low performance for Atmospheric, Happy and Sensual sug-
gests that the way these tags are applied in Last.fm is not
well-explained in terms of musical characteristics, and that
these terms may be better modeled by musical character-
istics associated to more general patterns in the tag data
evident in the low-dimensional mood space. The results of
the SVM-ACT, obtained using Russell4, increased the overall
performance of the SVM-orig and provided performance
comparable to SLP. This shows that mapping audio to
the semantic mood space provides similar results when
carried out after training tag-specific classification models or
before training dimension-specific regression models. How-
ever, the regression approach is much less computationally
intensive, as it requires training only one model for each
dimension. Therefore, we consider SLP the most promising
technique as the basis for further genre-adaptive analyses.

8.2 Genre-adaptive Techniques

To evaluate the genre-adaptive techniques the performance
obtained using the ACT+SLPwg is compared to those of the
other techniques exploiting genre information and to the
general SLP baseline. First, prediction rates are reported
for the audio-based genre prediction using the SVM auto-
tagger.

8.2.1 Audio-based Genre Prediction

The performance of the audio-based genre prediction was
assessed by comparing the predictions to the tag data.

TABLE 7
Genre prediction performance in terms of median and MAD across

training partitions.

Precision Recall AP AROC
Metal 0.776 0.010 0.569 0.003 0.826 0.004 0.841 0.002

Folk 0.642 0.010 0.531 0.015 0.734 0.006 0.755 0.003

Electronic 0.800 0.010 0.515 0.009 0.852 0.005 0.769 0.002

Jazz 0.698 0.013 0.577 0.004 0.795 0.006 0.766 0.003

Rock 0.918 0.004 0.524 0.003 0.939 0.001 0.731 0.001

Pop 0.850 0.004 0.629 0.011 0.888 0.004 0.781 0.003

Although the reliability of social genre tags can be ques-
tioned, subsidiary role of the audio-based genre prediction
in the present paper renders this evaluation adequate. Table
7 shows the performance for each genre cluster in terms
of standard evaluation metrics Precision, Recall, Average
Precision (AP) and the area under the ROC curve (AROC).
For each track the SVM auto-tagger produces probability
estimates related to the association strength of each genre
cluster. To compute Precision, Recall and AP, we consider
for each track three genres with the highest probability as
positive. AROC, on the other hand, is computed based on
the raw probabilities7.

The results show that genre prediction from audio is
sufficient (cf. [42]), as seen for example from the high AROC
for all genres. For the genre-adaptive mood models AROC
is arguably the most relevant evaluation metric for genre
prediction, since we rely on the raw probability estimates
rather than the binary representations.

8.2.2 Mood Prediction Results

Results for genre-adaptive techniques are presented in Table
8. To assess the statistical significance of the performance
differences, Wilcoxon rank sum tests across the training
partitions were carried out between ACT+SLPwg and the
other genre adaptive techniques (p < .05 denoted by ∗), and
between ACT+SLPwg and the general SLP (p < .05 denoted
by †). Genre-adaptive techniques relying on tag- and audio-
based genres were evaluated separately this way.

For the core affects, ACT+SLPwg was the most suc-
cessful technique with both tag- and audio-based genres.
The clearest performance improvement was achieved for
Valence, that was the most challenging core affect for
SLP. Using tag-based genre information alone as predictors
of Valence SLPg already outperformed the SLP slightly.
ACT+SLPwg yielded R2 = 0.457 with tag-based genres
and R2 = 0.431 with audio-based genres. Both of these
results were higher by a large and statistically significant
margin than that of the SLP. The performance difference was
statistically significant also between ACT+SLPwg and the
other genre-adaptive techniques, except using SLPga with
tag-based genres. For Arousal and Tension, ACT+SLPwg
with audio-based genres yielded the highest performance
of R2 = 0.741, 0.520, respectively.

The results for mood terms follow the same patterns as
for core affects. The ACT+SLPwg with audio-based genres
gave the overall highest performance, as it outperformed

7. See [42] for detailed explanation of these metrics
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TABLE 8
Performance of the genre-adaptive techniques with genres inferred from tags and audio. Performance improvements over the SLP are marked in

boldface.

Tag-based genres Audio-based genres
SLPg SLPga SLPwg ACT+SLPwg SLPg SLPga SLPwg ACT+SLPwg

Core Valence 0.372 0.003† 0.453 0.008 ∗ 0.434 0.017†∗ 0.457 0.004 ∗ 0.346 0.003† 0.400 0.020†∗ 0.397 0.018†∗ 0.431 0.004 ∗

affects Arousal 0.146 0.004†∗ 0.702 0.004†∗ 0.722 0.006 0.732 0.003 0.234 0.004†∗ 0.731 0.005 0.725 0.006† 0.741 0.005 ∗

Tension 0.278 0.007†∗ 0.463 0.012†∗ 0.505 0.017 0.518 0.004 ∗ 0.349 0.009†∗ 0.494 0.018† 0.497 0.017† 0.520 0.005 ∗

Mood Atmospheric 0.205 0.016†∗ 0.662 0.025 ∗ 0.689 0.013† 0.631 0.035 ∗ 0.294 0.013†∗ 0.704 0.021 0.699 0.014 0.689 0.024

terms Happy 0.221 0.003†∗ 0.398 0.020 ∗ 0.367 0.032 ∗ 0.389 0.006 ∗ 0.175 0.002†∗ 0.332 0.034† 0.331 0.031† 0.369 0.012 ∗

Dark 0.379 0.011†∗ 0.378 0.025†∗ 0.300 0.025 ∗ 0.268 0.041 0.326 0.016†∗ 0.271 0.019 0.275 0.021 0.270 0.037

Sad -0.000 0.000†∗ 0.271 0.023†∗ 0.288 0.012† 0.330 0.005 ∗ 0.009 0.002†∗ 0.296 0.009† 0.291 0.011† 0.338 0.006 ∗

Angry 0.501 0.004†∗ 0.647 0.009 ∗ 0.643 0.016 ∗ 0.643 0.006 ∗ 0.571 0.008†∗ 0.630 0.019 ∗ 0.629 0.017 ∗ 0.639 0.004 ∗

Sensual 0.341 0.015†∗ 0.532 0.026 0.546 0.009† 0.517 0.045 0.379 0.008†∗ 0.546 0.009 0.545 0.011 0.546 0.021

Sentimental 0.058 0.003†∗ 0.246 0.021†∗ 0.282 0.027 0.338 0.017 0.096 0.003†∗ 0.296 0.028† 0.289 0.026† 0.377 0.017 ∗

Avg. 0.250 0.475 0.478 0.482 0.278 0.470 0.468 0.492
†p < .05 for performance difference between the ACT+SLPwg.
∗p < .05 for performance difference between the SLP.

SLP for all moods except Atmospheric, and provided sta-
tistically significant performance improvement over SLP for
Happy, Sad, Angry and Sentimental. It also outperformed
the SLPwg for all moods except Atmospheric and Dark.
Interestingly, SLPg was the most successful technique for
Dark. Tag-based SLPga performed well for Happy, Dark and
Angry, whereas audio-based SLPga provided more consis-
tently high performance. Tag-based SLPg outperformed all
other techniques for Dark, which shows that Dark correlates
highly with genre information. This holds also for Angry,
except that using audio features in conjunction with genre
provides improvement over SLPg.

In summary, the ACT+SLPwg yielded the highest aver-
age performance across moods with both tag-based genres
(R2 = 0.482) and audio-based genres (R2 = 0.492). These
figures are considerably higher than those of the general
SLP that does not exploit genre information (R2 = 0.455).
Notably, the ACT+SLPwg with audio-based genres gave
statistically significant improvements over the SLP for seven
out of ten mood scales, and importantly for all core af-
fects. This technique also outperformed the SLPwg for eight
scales. Since the SLPwg was itself more successful than SLP
for most of the scales, this suggests that genre-adaptive
mood prediction gives significant advantages over the gen-
eral model, and that modeling the semantic mood space
separately within genres is the most beneficial approach.
Audio-based genre inference for mood prediction yielded
performance comparable to tag-based genres. This indicates
that relying solely on audio in making predictions for novel
tracks is a potential approach when associated semantic data
is not available.

To further assess the benefit of genre-adaptivity, the
ACT+SLPwg was applied to the test tracks by first randomly
rearranging the tag- and audio-based genre weights. If
the performance thus obtained would not be affected, the
high performance of ACT+SLPwg could be attributed to the
benefit of ensemble modeling [54] and less to the genre-
adaptivity. The analysis showed that this is not the case,
as the genre randomization degraded the prediction perfor-
mance consistently. The average performance across mood
scales dropped to R2 = 0.424, 0.400 using tag- and audio-
based genres, respectively, and the performance difference

was statistically significant at p < 0.05 for seven scales (tag-
based genres) and for all scales (audio-based genres).

8.2.3 Comparison of ACT+SLPwg and Genre-specific
Models
If the aim of an automatic music annotation is to provide
mood information to a music collection drawn specifically
from one genre, one could ask whether a genre-specific
model corresponding to that particular genre would be
more appropriate than the ACT+SLPwg. Here we test such
hypothesis by comparing the prediction performance for
core affects separately for subsets of TEST600 belonging
to the six genre clusters. TEST600 tracks are assigned to
the genre clusters based on the tag data. Notice, that the
six subsets of tracks are partly overlapping, as indicated in
Table 4. For each of the subsets, Table 9 shows the results
obtained with SLP, the genre-specific ACT+SLPwg model
corresponding to the subset genre, and the ACT+SLPwg
with audio-based genre information.

The ACT+SLPwg yielded consistently higher perfor-
mance than genre-specific model and SLP, with only few
exceptions: Valence/Electronic, Arousal/Metal and Ten-
sion/Electronic. Genre-specific models alone were more
successful at predicting Valence than the general model.
This is further evidence that genre-specific aspects need
to be taken into account when modeling Valence. The re-
sults for Arousal showed an opposite pattern. These results
corroborate the findings of [6], where audio-based genre-
specific models of Arousal generalized better across genres
than those of Valence.

In overall, the genre-adaptive technique is clearly more
successful at predicting mood than the genre-specific mod-
els alone. Since genre-specific models rely on training data
from one genre, the models may suffer from low variance
in mood content, and therefore might not tap into more
general relationships between audio features and mood,
only attainable from collections of tracks spanning multiple
genres.

8.2.4 The Impact of the Number of Genres
To explore the role of the number of genre clusters on
the performance of the ACT+SLPwg with audio-based gen-
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TABLE 9
Prediction performance of the SLP, genre-specific model and the

ACT+SLPwg separately for tracks from different genres.

SLP Genre- ACT
specific +SLPwg

Valence Metal 0.387 0.020 0.407 0.011 0.421∗0.008

Folk 0.199 0.019 0.127 0.037 0.267∗0.006

Electronic 0.239 0.022 0.339∗0.009 0.316∗0.014

Jazz 0.267 0.024 0.305 0.021 0.360∗0.012

Rock 0.311 0.019 0.351∗0.003 0.378∗0.004

Pop 0.225 0.020 0.299∗0.009 0.306∗0.006

Arousal Metal 0.720 0.006 0.584 0.011 0.713 0.008

Folk 0.703 0.006 0.674 0.006 0.715∗0.003

Electronic 0.735 0.004 0.727 0.003 0.748∗0.003

Jazz 0.671 0.009 0.642 0.008 0.686 0.008

Rock 0.723 0.005 0.707 0.006 0.733∗0.006

Pop 0.713 0.004 0.716 0.002 0.723∗0.004

Tension Metal 0.541 0.014 0.499 0.022 0.571 0.004

Folk 0.379 0.022 0.321 0.030 0.415∗0.007

Electronic 0.372 0.019 0.424∗0.030 0.415∗0.007

Jazz 0.358 0.020 0.336 0.011 0.399∗0.007

Rock 0.473 0.018 0.469 0.005 0.505∗0.004

Pop 0.426 0.025 0.443 0.009 0.465∗0.010
∗p < .05 for improvement over SLP.

SLP 2 4 6 8 10 12 14 16

0.35
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Fig. 5. The Median ± MAD performance of the genre-adaptive tech-
nique (ACT+SLPwg) with different numbers of genre clusters (K =
{2, 4, ..., 16}). SLP is shown for comparison.

res, analysis was carried out with 2-16 genre clusters (cf.
Table 3). The results, shown in Fig. 5, demonstrate that
the ACT+SLPwg performance is not overly sensitive to the
number of genres, and that the performance remains at a
higher level than SLP with all genre clusterings. The optimal
performance was found for all core affects at K = 6,
which can probably be attributed to the fact that TEST600
is balanced according to the corresponding genres.

9 CONCLUSION

The present study has examined how genre information can
optimally be incorporated into music mood prediction. As
the general baseline model, SLP performed favorably when
compared to a state-of-the-art auto-tagging technique, and
comparison to genre-adaptive models showed that taking

into account the genre information in mood prediction
yields consistent improvements. The best performing novel
genre-adaptive technique, the ACT+SLPwg, models both the
semantic mood space and the audio-based models within
different genres separately. Moreover, audio-based genre
inference for a novel track performs favorably compared
to tag-based inference, which has positive implications for
applying the models to large unannotated datasets.

The study also offered survey results and analytical
insights into inferring concise music genre representations
based on large set of genre tags. Moreover, the study demon-
strated that semantic modeling of mood space based on
music-specific social tag data is not surpassed by a norma-
tive data obtained from a controlled laboratory survey.

Context-adaptive semantic modeling combined with
content-based prediction could be transferred to other do-
mains where context-adaptivity could be beneficial, such
as object recognition from images, video auto-tagging or
multimedia retrieval.
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