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An analytical–numerical study of dynamic
stability of an axially moving elastic web∗

Nikolay Banichuk Alexander Barsuk Pekka Neittaanmäki
Juha Jeronen Tero Tuovinen

Abstract

This paper is devoted to a dynamic stability analysis of an axially moving
elastic web, modelled as a panel (a plate undergoing cylindrical deformation).
The results are directly applicable also to the travelling beam. In accordance
with the dynamic approach of stability analysis, the problem of harmonic vi-
brations is investigated via the study of the dependences of the system’s nat-
ural frequencies on the problem parameters. Analytical implicit expressions
for the solution curves, with respect to problem parameters, are derived for
ranges of the parameter space where the natural frequencies are real-valued,
corresponding to stable vibrations. Both axially tensioned and non-tensioned
travelling panels are considered. The special cases of the non-tensioned trav-
elling panel, and the tensioned stationary (non-travelling) panel are also dis-
cussed, and special-case solutions given. Numerical evaluation of the obtained
general analytical results is discussed. Numerical examples are given for panels
subjected to two different tension levels, and for the non-tensioned panel. The
results allow the development of very efficient, lightweight solvers for deter-
mining the natural frequencies of travelling panels and beams. The results can
also be used to help locate the bifurcation points of the solution curves, corre-
sponding to points where mechanical stability is lost.

1 Introduction

The study of the dynamic behaviour of axially moving elastic systems has attracted
the attention of researchers for a long time, beginning with Skutch [1897]. Stud-
ies written in the English language began to appear half a century later, starting
with those by Sack [1954], Archibald and Emslie [1958], Miranker [1960]. Other
classic studies of moving elastic systems include those by Mote [1968a,b], Thurman
and Mote [1969], Mote [1972], Simpson [1973], Mote [1975], Mujumdar and Douglas

∗This research was supported by RFBR (grant 14-08-00016-a), RAS Program 12, Program of Sup-
port of Leading Scientific Schools (grant 2954.2014.1), and the Finnish Cultural Foundation.
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[1976], Pramila [1986, 1987], Wickert and Mote [1989]. Recent studies include Parker
[1998, 1999], Kong and Parker [2004], Wang et al. [2005] and Banichuk et al. [2014b].

Of particular interest for this class of problems is the analysis of stability. A com-
mon method of investigating the stability of elastic systems is the dynamic method
due to Bolotin [1963]. In accordance with this method, we solve the problem of har-
monic vibrations of the investigated system, followed by analysis of the dependence
of the behaviour of the natural frequencies as a function of the system parameters.

In the dynamic method, the appearance of complex-valued frequencies is inter-
preted as a loss of stability in a dynamic form (also known as flutter), corresponding
to the loss of Lyapunov stability. A convergence of the frequencies to zero corre-
sponds to a loss of stability in a static form (divergence), and meets the criteria of
Euler buckling.

In this paper, we will derive analytical implicit expressions for the solution curves,
with respect to problem parameters, for ranges of the parameter space where the
natural frequencies are real-valued, corresponding to stable vibrations. Both axially
tensioned and non-tensioned travelling panels will be considered. The special cases
of the non-tensioned travelling panel, and the tensioned stationary (non-travelling)
panel will also be discussed, and special-case solutions given.

In the following sections, we will first set up the problem, after which we will
discuss the solution strategy. Then the analytical part of the problem will be solved,
and special cases and numerical considerations discussed. Finally, numerical exam-
ples will be given.

The results allow the development of very efficient, lightweight solvers for de-
termining the natural frequencies of travelling panels and beams. However, more
importantly from a fundamental research perspective, when combined with bifur-
cation theory, the obtained analytical formulas can also be used to help locate the
bifurcation points of the solution curves in the travelling panel (beam) model, cor-
responding to points where mechanical stability is lost. By a variational argument,
it is easily shown that at bifurcation points, the tangent of the local branch of the
solution curve in the (V0, ω) plane becomes vertical (Banichuk et al., 2014a). The
obtained analytical formulas can be used as tools to help find such points.

2 Basic relations

Consider an axially travelling rectangular plate undergoing cylindrical deformation,
as shown in Figure 1. The equation of small transverse vibrations is

m
∂2w

∂t2
+ 2mV0

∂2w

∂x∂t
+ (mV 2

0 − T0)
∂2w

∂x2
+D

∂4w

∂x4
= 0 , 0 < x < ` , (1)

where m = ρS is the mass of the panel per unit area, ρ is the density of the material,
S the area of the cross section, and V0 is a constant axial transport velocity. The
axial tension T0 has the dimension of force per unit length; for a panel, it can be
expressed as T0 = hσx, where h is the thickness of the panel and σx is the axial stress.
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(a) (b)

Figure 1: Axially travelling panel, i.e. plate undergoing cylindrical deformation.
The pairs of rollers denote simple supports, and the finite thickness depicts the pres-
ence of bending resistance. (a): Problem setup. (b): Projection to the xz plane.

The quantity D is the bending rigidity (also known as flexural rigidity or cylindrical
rigidity), and for an isotropic elastic material it follows the relation (Timoshenko
and Woinowsky-Krieger, 1959)

D =
Eh3

12(1− ν2)
, (2)

where E is the Young’s modulus of the material and ν its Poisson ratio. The sym-
bol ` denotes the length of the free span between mechanical supports. The trans-
verse (out-of-plane) displacement of the panel, as it appears in laboratory coordi-
nates (also known as an Eulerian or spatial formulation) is described by the function
w ≡ w(x, t).

Equation (1) is of the fourth order in x, so four boundary conditions are needed
in total. In what follows, the simply supported (also known as pinned or hinged)
boundary conditions of the Kirchhoff plate (or Euler–Bernoulli beam) are used, i.e.

w(0, t) = w(`, t) = 0 , (3)

D
∂2w

∂x2
(0, t) = D

∂2w

∂x2
(`, t) = 0 . (4)

The boundary conditions (3)–(4) arise by requiring that the transverse displace-
ments and the bending moments at the boundary points x = 0 and x = ` are zero.

Harmonic vibrations of the moving panel are represented as

w(x, t) = eiωtu(x) , (5)

where u(x) is the amplitude function and ω is the frequency of vibration. It will be
convenient to work in dimensionless variables. Let us define

x = `x̃ ,
ρSω2`4

D
= ω̃2 ,

ρS`2

D
V 2
0 = Ṽ 2

0 ,

ρS`2

D
C2 = C̃2 , C =

√
T

ρS
.

(6)

3



Note that from the chain rule, ∂(·)/∂x → (1/`)∂(·)/∂x̃. In the following, the tilde
will be omitted.

We formulate the boundary-value problem for the amplitude function u(x) as

d4u

dx4
+ (V 2

0 − C2)
d2u

dx2
+ 2iωV0

du

dx
− ω2u = 0 , 0 < x < 1 , (7)

u(0) = u(1) = 0 ,

(
d2u

dx2

)
x=0

=

(
d2u

dx2

)
x=1

= 0 . (8)

3 Solution strategy

The amplitude function is found as a fundamental solution,

u(x) = eiγx , 0 < x < 1 , (9)

of the ordinary differential equation (7) with boundary conditions (8). Here γ is the
wave number. Consequently, the displacement function will be described by the
expression

w = w(x, t) = eiωtu(x) = ei(ωt+γx) , 0 < x < 1 . (10)

Substituting expression (9) into (7), we obtain the characteristic equation

ϕ ≡ γ4 − (V 2
0 − C2)γ2 − 2ωV0γ − ω2 = 0 , (11)

where we have defined the polynomial ϕ ≡ ϕ(γ).
Let γ1, γ2, γ3 and γ4 be the roots of the characteristic equation (11). Then we can

represent the solution of equation (7) as

u(x) =
4∑

k=1

Ak exp(iγk(x−
1

2
)) , (12)

where Ak (k = 1, 2, 3, 4) are arbitrary constants, which can be determined with the
help of the boundary conditions (8).

Observe that strictly speaking, the solution (12) only works without modification
if all the roots of the polynomial (11) are distinct. As is known from the theory of
ordinary differential equations, for example in the case of double roots, the solution
will have terms eiγkx and xeiγkx, where γk is the double root. However, in practice,
for the present class of systems describing one-dimensional axially travelling elastic
materials, this is not a problem, because the roots will almost always be distinct.

In terms of the roots γ1, γ2, γ3 and γ4, we can write the characteristic equation (11)
in the following form (by the fundamental theorem of algebra):

ϕ = (γ − γ1)(γ − γ2)(γ − γ3)(γ − γ4)
= γ4 − (γ1 + γ2 + γ3 + γ4)γ

3 + [γ1γ2 + γ3γ4 + (γ1 + γ2)(γ3 + γ4)] γ
2

− [(γ1 + γ2)γ3γ4 + (γ3 + γ4)γ1γ2] γ + γ1γ2γ3γ4 = 0 . (13)
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If we compare the expressions (11) and (13) for ϕ, and equate the coefficients for like
powers of γ, we obtain a system of four algebraic equations

γ1 + γ2 + γ3 + γ4 = 0 , (14)
γ1γ2 + γ3γ4 + (γ1 + γ2)(γ3 + γ4) = −(V 2

0 − C2) , (15)
(γ1 + γ2)γ3γ4 + (γ3 + γ4)γ1γ2 = 2ωV0 , (16)

γ1γ2γ3γ4 = −ω2 . (17)

Let us now concentrate on the case where ω is real-valued. It is a general property of
the characteristic equation (11), which in this case has real-valued coefficients, that
if there exists a complex root of the equation (11), then there exists also a complex
conjugate root. In accordance with this observation, it is convenient to introduce
new variables s1, σ1, s2 and σ2 using the relations

s1 = γ1 + γ2 , σ1 = γ1γ2 , s2 = γ3 + γ4 , σ2 = γ3γ4 , (18)

and then choose γ2 and γ4 to be the complex conjugate values with respect to γ1 and
γ3, respectively, i.e. γ2 = γ∗1 and γ4 = γ∗3 . Then it follows that the new variables s1,
σ1, s2 and σ2 are always real.

Such a choice is always possible, because the left-hand side of (15) contains all
two-element products from the set {γ1, γ2, γ3, γ4}, and the left-hand side of (16) con-
tains all three-element products. Hence, the particular arrangement of factors used
in (15) and (16) is arbitrary. Choosing which of the γk represents which root of the
characteristic equation is equivalent with first taking some fixed ordering of the
roots as given, then rewriting the factorizations in the manner appropriate for that
ordering, and finally renumbering the γk (and possibly reordering terms) so that the
particular form (14)–(17) is obtained.

The roots γ1, γ2, γ3 and γ4 are expressed in terms of the new variables as

γ1,2 =
1

2
(s1 ± a1) , a1 =

√
s21 − 4σ1 , (19)

γ3,4 =
1

2
(s2 ± a2) , a2 =

√
s22 − 4σ2 . (20)

Note that (19)–(20) give us a condition for the roots to be distinct: it must hold that
a1 6= 0 and a2 6= 0.

Using the new variables, equation (13) transforms into the form

ϕ = γ4 − (s1 + s2)γ
3 + (σ1 + σ2 + s1s2)γ

2 − (σ1s2 + σ2s1)γ + σ1σ2 = 0 . (21)

From (14) and (18) it follows that s1 + s2 = 0, and consequently we may eliminate
one variable by defining

s ≡ s1 = −s2 . (22)

The relations (14)–(17) are transformed into

σ1 + σ2 − s2 = −(V 2
0 − C2) , (23)

(σ2 − σ1)s = 2ωV0 , (24)
σ1σ2 = −ω2 . (25)
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Note that equations (23)–(25) are always valid, regardless of whether the roots of the
characteristic equation are distinct, because they follow directly from the character-
istic equation.

The solution (12) for the amplitude function u(x) contains arbitrary constants
Ak (k = 1, 2, 3, 4), which are determined with the help of the boundary conditions
(8). Using (12) and (8), we obtain the following system of linear algebraic equations
written in matrix form:

RA = 0 , (26)

where

R =


ψ−
1 ψ−

2 ψ−
3 ψ−

4

−γ1ψ−
1 −γ2ψ−

2 −γ3ψ−
3 −γ4ψ−

4

ψ+
1 ψ+

2 ψ+
3 ψ+

4

−γ1ψ+
1 −γ2ψ+

2 −γ3ψ+
3 −γ4ψ+

4

 , A =


A1

A2

A3

A4

 , (27)

and
ψ+
k = exp(i

γk
2

) , ψ−
k = exp(−iγk

2
) , k = 1, 2, 3, 4 . (28)

The terms involving ψ−
k follow from boundary conditions at x = 0, while the ψ+

k

terms come from boundary conditions at x = 1.
As is well known, a nontrivial solutionA 6≡ 0 of the homogeneous linear equation

system (26) exists if and only if the determinant is equal to zero, i.e.

∆ = detR = 0 . (29)

Using (19)–(20) and (26)–(28), and performing the necessary transformations, it fol-
lows that the solvability condition (29) for the spectral problem (7)–(8) can be repre-
sented as

∆(ω, V0) = a1a2s
2
(

cos s− cos
a1
2

cos
a2
2

)
+ (30)(

s4 − 2(σ1 + σ2)s
2 − 2(σ1 − σ2)2

)
sin

a1
2

sin
a2
2

= 0 ,

a1,2 =
√
s2 − 4σ1,2 .

The quantities σ1 and σ2, and s ≡ s1 are given by (18). The dependence of ∆ on the
frequency ω is implicit, via s = s(ω, V0), σ1 = σ1(ω, V0) and σ2 = σ2(ω, V0).

One must be aware that equation (30) depends on the particular form of the solu-
tion (12), and thus requires that the roots of the characteristic equation are distinct.
If, for some points (ω, V0), it occurs that (one or both of) a1 = 0 or a2 = 0, then at
those points equation (30) cannot be used.

Equation (30) represents a constraint for triples (σ1, σ2, s) that give rise to nontriv-
ial solutions of (26). It implicitly eliminates one of σ1, σ2 or s. Considered together
with the equation system (23)–(25), the remaining unknowns are, in principle, ω and
any two of σ1, σ2 and s. The axial velocity V0 is considered a prescribed problem pa-
rameter. To obtain the frequency spectrum as a function of V0, the velocity can be
varied quasistatically in the standard manner. Thus, considering the task of deter-
mining the wave number parameters γk (k = 1, 2, 3, 4) and the corresponding free
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vibration frequency ω, we have three equations remaining, with three remaining
unknowns. The consideration of the boundary conditions, in the form of (26)–(28),
has closed the algebraic system, as is indeed expected.

Observe also that due to the periodic nature of (28) with respect to the real part
of γk, the frequency ω is not unique; there will be a countably infinite spectrum of
frequencies ωj (j = 1, 2, 3, . . . ), each with its own set of wave numbers γk. This is
also as expected for the considered class of systems.

Consider next assembling the amplitude function u(x) using (12), after a fre-
quency ω and its corresponding σ1, σ2 and s (and hence all four γk) are known.
When the solvability condition (30) is fulfilled, the matrix R is singular. Thus, in
order to actually determine the values of the Ak from (26), we must eliminate some
of the Ak algebraically, until the remaining matrix has full rank (and hence the lin-
ear equation system yields a unique solution). To do this, we declare e.g. A1 a free
constant (which is in principle known because any arbitrary value can be assigned
to it), and move all terms involving it to the right-hand side.

Typically, one of the Ak will be eliminated, and the solution for u(x) will have
one free constant as a global multiplier. To obtain a solution using numerical meth-
ods, we may assign e.g. A1 = 1 during the solution process (making numerical
elimination possible), and perform the final arbitrary normalization later.

4 Solution of the amplitude equation

In what follows we will consider (23)–(25) as a system of nonlinear equations for
the real variables σ1, σ2, s. Suppose that σ1(ω, V0), σ2(ω, V0) and s(ω, V0) are two-
parameter solutions of the considered system, corresponding to a given value of C.
If we substitute the corresponding expressions into (30), we will obtain the implicit
equation

∆(ω, V0) = 0 (31)

for determination of the frequencies ω of the moving panel, as a function of the
panel axial velocity V0. Note that as pointed out above, equation (31) determines a
set of solutions ωj(V0). Also, keep in mind that our solution is valid for the range of
velocities at which the frequency ωj is real-valued.

Let us concentrate on the case where s 6= 0. From equations (23)–(24), in this case
we have

σ1 =
1

2

[
s2 − (V 2

0 − C2)
]
− ωV0

s
.

σ2 =
1

2

[
s2 − (V 2

0 − C2)
]

+ ω
V0
s
.

(32)

These equations follow directly from the characteristic equation, under only the as-
sumption that ω is real-valued. Thus, they are valid whenever s 6= 0 and ω ∈ R; the
roots of the characteristic equation need not be distinct.

After substituting (32) into (25) and multiplying the equation by 4s2, we find the
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relation connecting (ω, V0, s):

s2
[
s2 − (V 2

0 − C2)
]2

= 4ω2(V 2
0 − s2) . (33)

The same comment as for (32) applies.
Because in our solution range, ω is real-valued, from (33) we also find the follow-

ing constraint for s:
0 < s2 ≤ V 2

0 . (34)

Equality at the lower limit is not possible in our present solution, because (33) was
derived from equations (32), which are valid if s 6= 0. Equality at the upper limit
holds in the special case C = 0; then we have s = V0. This allows us to simplify (30)
somewhat; this case will be handled later.

Recalling that C is a known problem parameter, and keeping ω free for now,
relation (33) allows us to eliminate one of V0 or s. Eliminating s = s(ω, V0) allows us
to write the expression ∆(ω, V0), originally given in terms of s as equation (30), in
terms of ω and V0. However, it should be noted that (33) is a cubic polynomial with
respect to the variable s2; hence its explicit solution is unwieldy to write out, and it
is much more convenient in practice to employ a numerical root finder.

As a side remark, observe that the other possibility is to eliminate V0 = V0(ω, s).
The polynomial is only quadratic in V 2

0 , allowing a short explicit solution (valid
where s 6= 0 and ω real-valued):

V 2
0 = s2 + C2 + 2

(ω
s

)2
± 2

√(ω
s

)2(
C2 +

(ω
s

)2)
. (35)

In practice, the solution with the minus sign for the square root term is the physically
relevant one. This would allow us, if we wished, to explicitly find the value of (30)
at any point in the (s, ω) plane (with the help of (35), (32) and (30), in that order).
However, the physical interpretation of solution curves in the (s, ω) plane is more
difficult than for solution curves in the (V0, ω) plane; thus we will prefer to eliminate
s.

Let us return to the task of eliminating s = s(ω, V0). We introduce a new positive
variable

τ = s2 . (36)

Using (36), equation (33) becomes a cubic polynomial equation in τ :

τ 3 − 2(V 2
0 − C2)τ 2 +

[
(V 2

0 − C2)2 + 4ω2
]
τ − 4ω2V 2

0 = 0 . (37)

This equation is valid whenever τ 6= 0 (i.e. s 6= 0) and ω ∈ R.
Observe that a positive solution τ > 0 of (37) exists for any nonnegative values of

ω2 and V 2
0 . The constant term of the polynomial depends only on the squares ω2, V 2

0 ,
and its sign is negative. Hence at τ = 0, the left-hand side of (37) will be ≤ 0, with
equality only if ω = V0 = 0. The sign of the cubic term (which dominates for large
|τ |), on the other hand, is positive. The polynomial is continuous as a function of τ .
Thus, as τ increases, the polynomial on the left-hand side will inevitably eventually
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cross zero at least once. Therefore, because τ = s2, at least one positive solution of
(33) always exists in terms of s2. Thus (37) determines the dependence s = s(ω, V0)
(we pick the smallest positive solution for s2).

For any point in the (ω, V0) plane, we first determine s from (37). (If C = 0, and
one wishes to use the general solution procedure, it is possible to use the fact about
this special case that s = V0, skipping this step.) Then we use (32) to obtain σ1(ω, V0)
and σ2(ω, V0), and finally, determine the value of ∆(ω, V0) via (30). This allows us to
look for solutions of (31) in the (ω, V0) plane.

5 Special cases

Above, we have treated the general case having s 6= 0, for any value for V0, and with
C nonzero. The solution given above is also applicable if C = 0 (no axial tension or
compression), but in this special case it is possible to simplify the formulas, which
we will do next.

We observed that if C = 0, then in (34) we have equality at the upper limit, i.e.
it holds that s = V0. This allows us to provide the following special-case result.
Inserting C = 0 and s = V0 into (32), we immediately obtain

σ1 = −ω
σ2 = +ω

}
, if C = 0 . (38)

Equations (32) were derived under the assumption s 6= 0, i.e. in this special case, it
would seem we must have V0 6= 0 in order for (38) to be applicable. However, we
may alternatively insert C = 0 and s = V0 directly into (23)–(25), which are always
valid. We obtain

σ1 + σ2 = 0

(σ2 − σ1)V0 = 2ωV0

σ1σ2 = −ω2

 , if C = 0 . (39)

If V0 6= 0 (i.e. s 6= 0), we may proceed to derive the relations (32) as before, and
obtain (38). If V0 = 0, the second equation of (39) vanishes identically, and it is easily
seen that (38) is a solution satisfying the remaining two equations. Thus we may
omit the requirement on V0.

Substituting (38) into (30) produces first

a1 =
√
V 2
0 + 4ω ,

a2 =
√
V 2
0 − 4ω ,

(40)
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and then, for ∆(ω, V0) (after multiplication of both sides by 2/a1a2),

∆(ω, V0) = 2V 2
0

(
cosV0 − cos

√
V 2
0 +4ω

2
cos

√
V 2
0 −4ω

2

)
+ (41)

(
V 4
0 − 8ω2

) sin

√
V 2
0 +4ω

2√
V 2
0 +4ω

2

sin

√
V 2
0 −4ω

2√
V 2
0 −4ω

2

= 0 .

Equation (41) explicitly shows how ∆ depends on ω and V0 in the special case C = 0.
As for its range of applicability, (41) requires a1 6= 0 and a2 6= 0 as before; refer to (40).
This is because equation (41) follows from (30), which already has this requirement.
Especially, looking at the expression of a2, we expect equation (30) not to be valid
on the curve ω = 1

4
V 2
0 ; this will be observed in the numerical results below.

Consider now another special case, where V0 = 0, ω 6= 0 and C free, that corre-
sponds to harmonic vibrations of a stationary (as opposed to axially moving) panel,
subjected to extension or compression with load C (which may be zero or nonzero).

In this case, the nonlinear algebraic equation system (23)–(25) takes the form

σ1 + σ2 = s2 + C2 ,

(σ2 − σ1)s = 0 ,

σ1σ2 = −ω2 .

(42)

Starting from the second equation of the system (42) and then proceeding to the
other two equations, we obtain two distinct possibilities, namely either

s = 0 , σ1 + σ2 = C2 , σ1σ2 = −ω2 (43)

or
σ1 = σ2 ≡ σ , σ2 = −ω2 , s2 = 2σ − C2 . (44)

If C 6= 0, the second possibility (44) is not applicable, because ω, σ1, σ2 and s are
real-valued, and hence σ2 = −ω2 has no solution except σ = ω = 0. This, in turn,
leads to s2 = −C2, which has no real-valued solution for C 6= 0.

If C = 0, then σ = ω = s = 0 is a solution of (44). But this leads to a1 =
a2 = 0, in which case equation (30) is not applicable, and for a full analysis, a new
solvability condition must be derived. However, this case is not very interesting,
since it implies γk = 0 for all k = 1, 2, 3, 4; recall (19)–(20) and (22). This case will be
omitted for brevity.

Thus we see that in general, we must pick the first possibility (43). The stationary
problem, V0 = 0, is seen to lead to the special case s = 0, which was not yet solved.
Observe that equations (43) are valid regardless of whether C 6= 0 or C = 0.

From the last two equations of the system (43), for s = 0 we have

σ1 =
1

2

[
C2 −

√
C4 + 4ω2

]
< 0 ,

σ2 =
1

2

[
C2 +

√
C4 + 4ω2

]
> 0 .

(45)
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Observe that
a1,2 =

√
s2 − σ1,2 =

√
−σ1,2 6= 0 ,

and hence the solvability condition (30) is valid also in this case. From (30), we
obtain after inserting s = 0 that

∆(ω, V0=0) = −2
(

(σ1 − σ2)2 sin
a1
2

sin
a2
2

)
= 0 , (46)

a1,2 =
√
−4σ1,2 .

This can be simplified as

a1 = 2
√
−σ1 , a2 = 2i

√
σ2 ,

sin
a1
2

= sin
√
−σ1 , sin

a2
2

= i sinh
√
σ2 .

(47)

Summarizing, equations (45)–(47) give the solution for the special case V0 = 0, ω 6= 0
and C free.

It was seen that from the case V0 = 0, ω 6= 0, it follows that s = 0, but this is a
one-way implication. One more special case is thus possible, namely s = 0, V0 6= 0
and C free. From equations (23)–(25), we see that this case leads to

σ1 + σ2 = −(V 2
0 − C2) ,

0 = 2ωV0 ,

σ1σ2 = −ω2 .

Because now V0 6= 0, from the second equation we obtain ω = 0. That is, for s = 0,
V0 6= 0, only the zero frequency is possible. We are left with the system

σ1 + σ2 = −(V 2
0 − C2) ,

σ1σ2 = 0 .
(48)

The solution of (48) is
σ1 = C2 − V 2

0 ,

σ2 = 0 .
(49)

Now
a1,2 =

√
s2 − σ1,2 =

√
−σ1,2 ,

whence a2 = 0, and we see that equation (30) cannot be used. Two of the roots of the
characteristic equation have coalesced; recall equations (19)–(20). A full analysis re-
quires modifying (12) and deriving a new solvability condition. Because in practice
almost always s 6= 0, this case is omitted for brevity.
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6 Numerical solution of the auxiliary polynomial prob-
lem

Noting that equation (30) is implicit, it will be necessary to be able to quickly eval-
uate it at a large set of points in the (ω, V0) plane in order to numerically find the
zeroes of ∆(ω, V0). This, in turn, requires finding the roots of the cubic polynomial
(37) at each point where ∆(ω, V0) is being evaluated.

When programming in a high-level language, the approach providing fastest
performance, due to readily allowing vectorization of the cubic polynomial solver,
is to use an explicit analytical solution algorithm, such as the one documented in
Press and Vetterling [1992, p. 179]. In the following, we briefly review this for the
sake of completeness, and give some recommendations on how to produce a fast
and reliable solver for the cubic polynomial subproblem of the panel problem un-
der consideration.

Consider the general cubic polynomial

ax3 + bx2 + cx+ d = 0 , (50)

where a 6= 0, and a, b, c, d ∈ R. Let uk, where k = 1, 2, 3, be the cubic roots of unity:

u1 = 1 , u2 =
1

2

(
−1 +

√
3i
)
, u3 =

1

2

(
−1−

√
3i
)
. (51)

Define the quantities

∆0 = b2 − 3ac , (52)
∆1 = 2b3 − 9abc+ 27a2d , (53)

and
δ = ∆2

1 − 4∆3
0 . (54)

It is easy to verify that δ = −27a2∆̂, where ∆̂ denotes the discriminant of the cubic
polynomial

∆̂ = 18abcd− 4b3d− 4ac3 − 27a2d2 , (55)

which determines how the roots behave. Let

Ĉ =

(
1

2

[
∆1 +

√
δ
])1/3

. (56)

With the help of these auxiliary quantities, in the general case the roots of the cubic
polynomial (50) are given by

xk = − 1

3a

(
b+ ukĈ +

∆0

ukĈ

)
, k = 1, 2, 3 . (57)

The solution splits into four different cases depending on whether ∆0 and ∆̂ (and
thus δ) are zero or nonzero:
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1. If δ 6= 0, ∆0 6= 0: the general case is applicable. It is valid to take any branch
of the square and cube roots in (56), as long as the same branches are taken for
every k. Choosing different branches only permutes the roots x1,2,3.

2. If δ 6= 0, ∆0 = 0: the general case is applicable. The branch of the square root
in (56) must be chosen such that Ĉ 6= 0. Observe that in this case, δ = ∆2

1 and
hence

√
δ = ±∆1.

3. If δ = 0, ∆0 6= 0: there is a double root. The general case is applicable, but the
roots also have the alternative representation

x1 = x2 =
9ad− bc

2∆0

, x3 =
4abc− 9a2d− b3

a∆0

.

4. If δ = 0, ∆0 = 0: there is a triple root

xk = − b

3a
, k = 1, 2, 3 . (58)

Here the general case is not applicable, because Ĉ = 0.

Considering code vectorization, cases 1–3 can be combined into one code path by
modifying (56) to

Ĉ =

(
1

2

[
∆1 + sgn(∆1) ·

√
δ
])1/3

, (59)

where sgn(·) is the sign function. Thus, we only need a separate code path for case
4.

The choice of code path for each problem instance is performed efficiently using
static branch resolution. We first compute Ĉ in a vectorized manner for all problem
instances using (59). We then set a small tolerance ε (e.g. 10−8), and check for which
problem instances it holds that

ĈĈ > ε . (60)

Problem instances satisfying the check (60) take the general-case code path, while
those not satisfying it take the code path for the triple-root special case. In the high-
level language, for each value of k = 1, 2, 3, only one vectorized computation is
needed in each code path, evaluating either (57) or (58), respectively.

When using floating point arithmetic, the explicit solution (57) is not as accurate
as the companion matrix method, but almost always the accuracy is sufficient. It
is nevertheless good to explicitly zero out very small imaginary parts from the re-
turned xk before detecting which of the solutions is the real-valued one for each
problem instance. In our computations, the tolerance for zeroing out imaginary
parts was set to 10−10. The detection of the real-valued solution can then be per-
formed in a vectorized manner.
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It should be noted that even in double precision, the explicit solution may fail due
to floating point error, if the magnitudes of the coefficients in the polynomial are too
disparate. In the panel problem, the coefficients indeed have a large dynamic range.
For example, if the load parameter C = 10, then in the rectangular area of the (ω, V0)
plane with 10−2 ≤ ω ≤ 160 and 10−2 ≤ V0 ≤ 15, the largest difference in scales of the
polynomial coefficients was found to be approximately 108, with the highest-degree
coefficient always being a = 1, and the constant term d obtaining values between
10−8 and 108 in different parts of the area tested. When the explicit solution fails,
the computed roots can be very far off from the true solution, and for this particular
problem, even the sign may be wrong. Although we analytically know that there
is always a positive root, in the worst case the numerical solution may come up as
negative.

It was considered beyond the scope of this study to determine whether the float-
ing point instability of the explicit solution occurs due to rounding errors or can-
cellation. Regardless of the cause, there is an easy way to work around the issue.
Across the whole plotting range, typically only a very small number of the problem
instances exhibit this accuracy issue.

Thus, it is possible to check the residual of the computed solutions against a pre-
scribed small tolerance, and re-compute only the affected solutions using a stable,
accurate, but slow (not vectorized) solver, such as a companion matrix based solver.
For the residual check, it is best to use the squared residual via the complex norm,
because in general the residual is complex-valued. We summed the squared resid-
uals for each k in the same problem instance, and set the tolerance for this sum to
10−8.

This hybrid approach results overall in a fast and reliable solver, requiring only
a minimal amount of additional programming. In the same example as above, dis-
cretizing the rectangular area into 801 × 801 = 641 601 points, only less than 1 500
(i.e. less than 0.3% of the total) of the solutions were detected to require more ac-
curate computation. As an illustrative example, on a normal laptop computer the
vectorized hybrid solver for the cubic subproblem performed 60x faster than a sim-
ple serial solution (using the accurate solver) of the 641 601 problems.

7 Numerical considerations

Let us now consider the full panel problem in the general case. The equations to
be solved to obtain a numerical solution are (30), (32) (two equations) and (33). In
the numerical examples to follow, we will present the behaviour of the first four
frequencies ω, as a function of the panel axial velocity V0, at some fixed values of the
tension parameter C.

To find the solutions, there are several approaches. First, one must be aware that
in general, (30) is complex-valued. Although each quantity under the square roots
in (30) is real-valued, there is no guarantee that these quantities are non-negative.
Indeed, complex values appeared already in the special case s = 0, in equations (47).
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At closer observation of (30), it is seen that at any point (ω, V0), either Re ∆(ω, V0) =
0 or Im ∆(ω, V0) = 0. Because the quantities under the square roots are always real-
valued, the square roots are always either purely real or purely imaginary. In prac-
tice, it was determined numerically that a1 is always real, and a2 obtains both real
and imaginary values. Looking at each term of (30), the outcome is that ∆(ω, V0) it-
self is always either purely real or purely imaginary. Along the curve where a2 = 0,
spurious solutions will appear, where both the real and imaginary parts are zero.
Solutions along this curve are not valid, because along that curve two of the roots of
the characteristic equation coincide, and thus (30) is not applicable there.

In order for a point (ω, V0) to be a solution of (30), both the real and imaginary
parts of ∆(ω, V0) must be zero at that point. Thus, it is convenient to shift our atten-
tion to the squared complex norm

‖∆‖2 = ∆∆ = (Re ∆)2 + (Im ∆)2 , (61)

which is zero at only such points.
However, as actually computing some values of (61) quickly shows, the values

of ‖∆‖2 are often very large. For example, in the case C = 10 with the plotting
range set as 10−2 ≤ ω ≤ 160 and 10−2 ≤ V0 ≤ 15 (the same rectangular area as
in the above discussion of the cubic solver), this expression obtains values up to
1023 (approximately). This range typically increases when the load parameter C is
increased.

Thus, for the purposes of visualization of the values of ‖∆‖2 and numerical root-
finding, it is more convenient to look at e.g.

g(ω, V0) ≡ log(1 + ‖∆‖2) , (62)

which reduces the output range to 0 ≤ g < 52 in the same example case. This also
makes the gradients of the expression steeper near the solutions. Plots of (62) for
C = 0, C = 5 and C = 10 are shown in Figures 2–4.

At any point (ω, V0), it is computationally very light to evaluate the sequence (37),
(32), (30), (61), (62), in that order. Assuming that the complex-valued trigonometric
operations in (30) can be performed at least partway in hardware, the computation-
ally heaviest part is the numerical solution of the cubic polynomial (37).

Overall, we can make a rough estimate that with performance-optimized code,
one evaluation cycle from given values of (ω, V0) to the value of (62) should not
take more than a few hundred floating point operations per problem instance. The
qualitative conclusion is that the function (62) is computationally rather cheap; it is
possible to use numerical methods that require a large number of evaluations of the
function, and still obtain answers reasonably fast.

One solution approach is to find the minima of (62) by numerical optimization.
For any norm, ‖·‖ ≥ 0 for any value of the argument, and thus some of the minima
can be expected to lie at the zeroes. After the minima are found, their values are
easy to check against a small prescribed tolerance. Points at which the value is
smaller than the tolerance are then declared to be solutions, and any other minima
are discarded.
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(a) (b)

Figure 2: Example with C = 0. The natural frequency curves are the zero level
sets of the plotted expressions, with the exception of the seam between the real and
imaginary regions (refer to subfigure (b)), where equation (30) is not valid. With
C = 0, this seam follows the curve ω = 1

4
V 2
0 ; see discussion following equation

(41). (a): Expression g(ω, V0) = log(1 + ‖∆‖2). (b): Expressions log(1 + [Re ∆]2) and
log(1 + [Im ∆]2).

(a) (b)

Figure 3: Example withC = 5. The natural frequency curves are the zero level sets of
the plotted expressions, with the exception of the seam between the real and imagi-
nary regions (refer to subfigure (b)), where equation (30) is not valid. (a): Expression
g(ω, V0) = log(1 + ‖∆‖2). (b): Expressions log(1 + [Re ∆]2) and log(1 + [Im ∆]2).
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(a) (b)

Figure 4: Example with C = 10. The natural frequency curves are the zero level
sets of the plotted expressions, with the exception of the seam between the real and
imaginary regions (refer to subfigure (b)), where equation (30) is not valid. (a): Ex-
pression g(ω, V0) = log(1+‖∆‖2). (b): Expressions log(1+[Re ∆]2) and log(1+[Im ∆]2).
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Figure 5: Zero-level set of (30) with C = 0, showing the four lowest natural fre-
quencies ω as a function of panel velocity V0. Produced using the contour plotter of
Mathematica, directly searching for the zero level set of the complex-valued expres-
sion (41). Note good quality in most part of the plotting area, and accuracy problems
near the V0 axis especially in the lowest mode.

17



0 2 4 6 8 10 12 14
V0

0

20

40

60

80

100

120

140

160

ω

Figure 6: Four lowest natural frequencies ω as a function of panel velocity V0. Ten-
sion load parameter C = 0.

The optimization process can be simplified into one input dimension, keeping V0
fixed, or alternatively, keeping ω fixed. Another variant is to estimate the local tan-
gent of the solution curve, and optimize parametrically in the direction orthogonal
to it. The reduction to one dimension makes the optimization problem much eas-
ier numerically, and also saves computational resources. However, a simple local
optimizer alone is not sufficient for this problem, because several branches of the
solution (zeroes of the complex norm) may reside in the plotting range, and all of
them must be found.

Another approach to visualize the solution is to draw the zero level set of (30)
using a contour plotter, but this requires very high accuracy and thus cannot be
generally recommended. See Figure 5 for an example in the case C = 0, using the
special case formula (41).

The final results for C = 0, C = 5 and C = 10 are shown in Figures 6–8, re-
spectively. To produce these figures, we have first plotted (62) on a cartesian grid
of 801× 801 points (as shown in Figures 2a–4a), and visually determined the points
where the solution curves cross the V0 and ω axes. Then, using these points as start-
ing values, we have numerically tracked the solutions. For the purposes of tracking,
the plot area shown in the figures was scaled to have square aspect ratio, and the
tracking step size was set to 0.25% of plot area width.

Each solution point was obtained by local minimization of (62) along a bounded
line segment orthogonal to the local tangent of the curve. The bounds for the op-
timization were chosen as ±5 ∆x, where ∆x is the tracking step size. Because the
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Figure 7: Four lowest natural frequencies ω as a function of panel velocity V0. Ten-
sion load parameter C = 5.
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Figure 8: Four lowest natural frequencies ω as a function of panel velocity V0. Ten-
sion load parameter C = 10.
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Solution curve

Optimizer search line

Step m

Step m+1

New point found by optimizer

Previously known points

Figure 9: Solution curve tracking strategy.

starting values are well-chosen and the curves are continuous, it is known before-
hand that the local minimum found at each step will lie at a zero of (62), and no
tolerance check is needed. See Figure 9 for the idea.

The tangent of the curve was initially taken to be orthogonal to the axis, and at
all further steps, the tangent direction was approximated as the difference vector
between the latest two known solution points. Technically, this gives the first-order
backward difference of the tangent at the last known solution point, but in practice
this was found to be accurate enough for setting the search range for the optimizer.
For each solution curve, the tracking proceeds independently from each axis, and
stops at the seam where ∆(ω, V0) switches from real to imaginary or vice versa. This
produces two independent solution curve segments for each solution curve.

When approaching the seam, the tracking process often catches a point or two
on the spurious solution curve. These points were filtered out in a separate post-
processing step, utilizing the fact that the solution curves are at least C1 continu-
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ous. In practice, this was implemented as a difference-based local tangent check.
Each vector of points (solution curve segment) produced by the tracking phase was
checked such that if the angle between the direction vectors determined by two suc-
cessive point pairs (pm, pm−1) and (pm+1, pm) is more than 5 degrees, the points from
m + 1 onward (inclusive) are discarded and the postprocessing for that curve seg-
ment ends. After both segments belonging to the same solution curve have been
postprocessed, the segments are joined and plotted. The solutions behave smoothly
enough near the seam that linear interpolation (which the plotter performs) between
the last non-discarded points is accurate enough to produce a smooth-looking visu-
alization (refer to Figures 6–8 for examples).

8 Conclusion

Analytical studies of the dynamic behaviour of moving elastic systems are very im-
portant from both theoretical and practical points of view, and have attracted the
attention of many researchers working in the domain of theoretical and applied me-
chanics. Of particular interest has been the problem of elastic stability of a moving
band and the application of dynamic analysis.

In the present study, in accordance with the dynamic approach of stability analy-
sis, the problem of harmonic vibrations was investigated via the study of the depen-
dences of the system’s natural frequencies on the problem parameters. Analytical
implicit expressions for the solution curves, with respect to problem parameters,
were derived for ranges of the parameter space where the natural frequencies are
real-valued, corresponding to stable vibrations. Both axially tensioned and non-
tensioned travelling panels were considered.

The special cases of the non-tensioned travelling panel, and the tensioned sta-
tionary (non-travelling) panel are also discussed, and special-case solutions given.
Numerical evaluation of the obtained general analytical results was discussed, and
numerical examples were given for panels subjected to two different tension levels,
and for the non-tensioned panel.

The performed analytical studies show in an explicit form the nature of the me-
chanical instability for the travelling panel (and beam) model. The results allow
the development of very efficient, lightweight solvers for determining the natural
frequencies of travelling panels and beams.

However, more importantly from the viewpoint of fundamental studies of axially
moving materials, the results can be used to help locate the bifurcation points of the
solution curves, corresponding to points where mechanical stability is lost. By a
variational argument, it is easily shown that at the bifurcation points, the tangent of
the local branch of the solution curve in the (V0, ω) plane becomes vertical (Banichuk
et al., 2014a); the obtained analytical formulas can be used to help find such points.
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