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1 Introduction

This paper surveys recent results on the integral geometry problem of recovering a tensor

field from its integrals along geodesics. The most basic example of the kinds of transforms

studied in this paper is the X-ray (or Radon) transform in the plane, which encodes the integrals

of a function f in R2 over straight lines:

Rf(s, ω) =

∫ ∞
−∞

f(sω + tω⊥) dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the rotation of ω by 90 degrees counterclockwise. The properties of this transform

are classical and well studied [20]. The X-ray transform forms the basis for many imaging

methods such as CT and PET in medical imaging.

A number of imaging methods involve generalizations of this transform. In seismic and

ultrasound imaging one encounters ray transforms where the measurements are given by in-

tegrals over more general families of curves, often modeled as the geodesics of a Riemannian

metric. Moreover, integrals of vector fields or other tensor fields instead of just integrals of

functions over geodesics may arise, and these transforms are also useful in rigidity questions

in differential geometry. We will give more specific examples after having defined the relevant

transforms precisely.

The geodesic ray transform acts on tensor fields on a compact, oriented Riemannian manifold

(M, g) with boundary of dimension dim (M) = n ≥ 2. We denote by 〈 · , · 〉 the g-inner product
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2 G.P. Paternain and M. Salo and G. Uhlmann

of tangent vectors or other tensors, and by | · | the g-norm. Let ν denote the unit outer normal

to ∂M. We denote by SM →M the unit-sphere bundle over M :

SM =
⋃
x∈M

Sx, Sx = {v ∈ TxM : |v|g = 1}.

The set SM is a (2n− 1)-dimensional compact manifold with boundary, which can be written

as the union ∂(SM) = ∂+(SM) ∪ ∂−(SM),

∂±(SM) = {(x, v) ∈ ∂(SM), ∓〈ν(x), v〉 ≥ 0 }.

The standard volume forms on SM and ∂(SM) that we will use are defined by

dΣ2n−1 = dV n ∧ dSx
dΣ2n−2 = dV n−1 ∧ dSx

where dV n (resp. dV n−1) is the volume form of M (resp. ∂M ), and dSx =
√

det g(x)dEx where

dEx is the Euclidean volume form of Sx in TxM . For (x, v) ∈ ∂(SM), let µ(x, v) = |〈ν(x), v〉|
and let L2

µ(∂+(SM)) be the space of functions on ∂+(SM) with inner product

(u, v)L2
µ(∂+(SM)) =

∫
∂+(SM)

uvµ dΣ2n−2.

Without loss of generality, we may assume that (M, g) is embedded in (N, g) where N is

a compact n-dimensional manifold without boundary. Let ϕt be the geodesic flow on N and

X = d
dtϕt|t=0 be the geodesic vector field. If (x, v) ∈ SM , let γ(t, x, v) be the unit speed

N -geodesic starting from x in the direction of v. Then

ϕt(x, v) = (γ(t, x, v), γ̇(t, x, v)).

Define the travel time τ : SM → [0,∞] by

τ(x, v) = inf{t > 0 : γ(t, x, v) ∈ N\M}.

We say that (M, g) is non-trapping if τ(x, v) <∞ for all (x, v) ∈ SM .

Definition 1.1 The geodesic ray transform of a function f ∈ C∞(SM) is the function

If(x, v) =

τ(x,v)∫
0

f(ϕt(x, v)) dt, (x, v) ∈ ∂+(SM).

Note that if the manifold (M, g) is non-trapping and has strictly convex boundary, then

I : C∞(SM) → C(∂+(SM)), and Santaló’s formula [10] implies that I is also a bounded map

L2(SM)→ L2
µ(∂+(SM)). The general problem in tensor tomography is to determine properties

of a function f from its integrals over geodesics as encoded by the transform If .

Question 1.1 Given f ∈ C∞(SM), what properties of f may be determined from the

knowledge of If?
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Clearly a general function f on SM is not determined by its geodesic ray transform alone,

since f depends on more variables than If . In applications one often encounters the transform

I acting on special functions on SM that arise from symmetric tensor fields, and we will now

consider this case.

Let f = fi1···imdx
i1 ⊗· · ·⊗dxim be a smooth symmetric m-tensor field on M . Such a tensor

field induces a smooth function fm(x, v) on SM by

fm(x, v) = fi1...im (x) vi1 ...vim .

The operator Im, defined by

Imf = Ifm,

is called the geodesic ray transform of the symmetric tensor field f . If the manifold (M, g) is

non-trapping and the boundary ∂M is strictly convex, then

Im : C∞(M,Sm(M))→ C(∂+(SM)),

where Sm(M) denotes the bundle of symmetric m-tensor fields over (M, g). We will frequently

identify the tensor field f on M with the function fm on SM (see [32] for more details).

It is known that any symmetric smooth enough tensor field f may be decomposed in a

potential and solenoidal part [42]:

f = fs + dp, δfs = 0, p|∂M = 0,

where p is a smooth symmetric (m − 1)-tensor field on M , the inner derivative d = σ∇ is the

symmetric part of the covariant derivative ∇, and δ is the divergence (the adjoint of −d in the

natural L2 inner product). If f is a 1-tensor, identified with a vector field W , this generalizes

the usual Helmholtz decomposition of a vector field,

W = W s + grad(p), div(W s) = 0, p|∂M = 0.

It is easy to see, using the fact that p vanishes on ∂M , that the geodesic ray transform of

the potential part dp is zero. We denote by C∞sol(M,Sm(M)) the space of smooth solenoidal

m-symmetric tensor fields. The remark above means that we can only expect to recover the

solenoidal part of a tensor field from its ray transform. This leads to the following definition of

solenoidal injectivity, or s-injectivity for short.

Definition 1.2 The ray transform on symmetric m-tensors, m ≥ 1, is said to be s-injective

if Imf = 0 implies fs = 0 for any f ∈ C∞(M,Sm(M)). In the case of functions on M (m = 0),

I0 is said to be s-injective if I0f = 0 implies f = 0 for any f ∈ C∞(M).

The transforms Im arise in several applications as well as in the boundary rigidity problem.

The latter consists in determining the Riemannian metric of a compact Riemannian manifold

with boundary, modulo isometries fixing the boundary, from the distance function dg|∂M×∂M
between boundary points [26]. The case of I0 when the metric is Euclidean is the standard X-

ray transform that integrates a function along lines. Radon found in 1917 an inversion formula

to determine a function knowing the X-ray transform. Inversion formulas of this type have

been implemented numerically using the filtered backprojection algorithm which is used today

in CT scans.
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Another important transform in medical imaging and other applications is the Doppler

transform which integrates a vector field along lines. This corresponds to the case of I1 for the

case of the Euclidean metric. The motivation is ultrasound Doppler tomography. It is known

that blood flow is irregular and faster around tumor tissue than in normal tissue and Doppler

tomography attempts to reconstruct the blood flow pattern. Mathematically the problem is to

what extent a vector field is determined from its integral along lines.

The case of integration along more general geodesics arises in geophysical imaging in deter-

mining the inner structure of the Earth since the speed of elastic waves generally increases with

depth, thus curving the rays back to the Earth surface. It also arises in ultrasound imaging.

The geodesic ray transform I0, that is, the integration of a function along geodesics, arises as the

linearization of the boundary rigidity problem in a conformal class of metrics. The linearization

of the boundary rigidity problem itself leads to I2, i.e. the integration of tensors of order two

along geodesics. The case of integration of tensors of order 4 along geodesics arises in certain

inverse problems in elasticity [42].

Many of the results in this survey are valid in the case when (M, g) is simple, a notion

that naturally arises in the context of the boundary rigidity problem [26]. We recall that a

Riemannian manifold with boundary is said to be simple if the boundary is strictly convex and

if any two points are connected by a unique geodesic depending smoothly on the endpoints. In

particular, a simple manifold is nontrapping and has no conjugate points.

One of the main results we review in this paper is the s-injectivity of Im for all m for simple

two-dimensional manifolds that was proven recently in [32].

Theorem 1.1 If (M, g) is a simple two-dimensional manifold, then Im is s-injective for

any m ≥ 0.

This result was known earlier for m = 0 [27], m = 1 [3] and m = 2 [46]. A key point in

proving the result for general m is the efficient use of surjectivity properties of I∗0 , the adjoint

of I0. In fact, [32] gave the following more general result.

Theorem 1.2 If (M, g) is a compact non-trapping two dimensional manifold with strictly

convex boundary, and if I0 and I1 are s-injective and I∗0 is surjective, then Im is s-injective for

any m ≥ 0.

To describe in detail the adjoint I∗0 , for any function w on ∂+(SM) we define the function

wψ(x, v) = w(ϕ−τ(x,−v)(x, v)), (x, v) ∈ SM.

Then the solution of the boundary value problem for the transport equation

Xu = 0 in SM, u|∂+(SM) = w

is equal to u = wψ.

Recall that I is a bounded map L2(SM) → L2
µ(∂+(SM)). The adjoint I∗ is bounded

L2
µ(∂+(SM))→ L2(SM), and it is easy to compute explicitly. In the case of I0, for f ∈ C∞(M)
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and w ∈ C∞(∂+(SM)), we have

(I0f, w)L2
µ(∂+(SM)) =

∫
∂+(SM)

∫ τ(x,v)

0

f(ϕt(x, v))wψ(ϕt(x, v))µdtdΣ2n−2

=

∫
SM

fwψdΣ2n−1

=

∫
M

f(x)

(∫
Sx

wψ(x, v) dSx(v)

)
dV n(x).

The second equality used Santaló’s formula [10]. From this computation we conclude that

I∗0w(x) =

∫
Sx

wψ(x, v) dSx(v).

Similarly, the adjoint of Im is the operator I∗m : L2
µ (∂+(SM))→ L2 (M,Sm(M)) which is given

by

(I∗mw)i1...im (x) =

∫
Sx

wψ(x, v)vi1 ...vim dSx(v).

Definition 1.3 We say that I∗0 is surjective if for any f ∈ C∞(M), there is a function

w ∈ C∞(∂+(SM)) with I∗0w = f in M and wψ ∈ C∞(SM).

The surjectivity of I∗0 in the above sense was proved in [39] on simple manifolds of any

dimension. We will show below how this result is used in the uniqueness proof of tensor

tomography in two dimensions.

In this paper, we also review results in higher dimensions. Here is a summary of what is

known about s-injectivity on simple manifolds of dimension n ≥ 2:

• I0 is injective [27].

• I1 is s-injective [3].

• Im is s-injective for all m if n = 2 [32].

• Im is s-injective for all m for manifolds of negative sectional curvature [37], or under

certain other curvature restrictions [9], [36], [42].

• I2 is s-injective for generic simple metrics including real-analytic ones [52].

See [9], [43], [45], [53], [56] for uniqueness results on certain non-simple manifolds. We will

also review results on the stability and range for Im, and moreover we propose several open

problems.

A brief summary of the contents of this paper is as follows. Section 2 contains preliminaries

and notation used in the paper. In Section 3 we review the two proofs of Theorem 1.1 given in

[32]. In Section 4 we explain a natural approach to the proof of the so-called Pestov identities

used in Section 3. This energy estimate approach resembles Carleman estimates. In Section

5 we review a microlocal approach to the study of the geodesic ray transform that gives in

particular stability estimates which are summarized in Section 6. In Section 7 we consider the

scattering relation which is used in the characterization of the range and is of independent

interest. In Section 8 we state the result of [35] on the range of the geodesic ray transform. In

Section 9 we summarize several results for the attenuated ray transform for unitary connections

proved in [33]. In Section 10 we survey the result of [34] on s-injectivity of the ray transform

on 2-tensors on closed Anosov surfaces. Finally in Section 11 we state several open problems.
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2 Facts about the unit circle bundle

This section contains some facts needed for explaining the uniqueness proof for tensor to-

mography on surfaces, and we will restrict our attention to two dimensional manifolds. Let

(M, g) be a compact oriented two dimensional Riemannian manifold with smooth boundary

∂M . As usual SM will denote the unit circle bundle which is a compact 3-manifold with

boundary given by ∂(SM) = {(x, v) ∈ SM : x ∈ ∂M}.
Let X denote the vector field associated with the geodesic flow ϕt. Since M is assumed

oriented there is a circle action on the fibers of SM with infinitesimal generator V called the

vertical vector field. It is possible to complete the pair X,V to a global frame of T (SM)

by considering the vector field X⊥ defined as the commutator X⊥ := [X,V ]. There are two

additional structure equations given by X = [V,X⊥] and [X,X⊥] = −KV where K is the

Gaussian curvature of the surface. Using this frame we can define a Riemannian metric on

SM by declaring {X,X⊥, V } to be an orthonormal basis. This metric coincides with the

Sasaki metric on SM , and the volume form of this metric will be denoted by dΣ3. The fact

that {X,X⊥, V } are orthonormal together with the commutator formulas implies that the Lie

derivative of dΣ3 along the three vector fields vanishes, in other words, the three vector fields

preserve the volume form dΣ3. See [48] for more details on these facts.

It will be useful to have explicit forms of the three vector fields in local coordinates. Since

(M, g) is two dimensional, we can always choose isothermal coordinates (x1, x2) so that the

metric can be written as ds2 = e2λ(dx2
1 + dx2

2) where λ is a smooth real-valued function of

x = (x1, x2). This gives coordinates (x1, x2, θ) on SM where θ is the angle between a unit

vector v and ∂/∂x1. In these coordinates the vertical vector field is just

V =
∂

∂θ
,

and the other vector fields are given by

X = e−λ
(

cos θ
∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ +

∂λ

∂x2
cos θ

)
∂

∂θ

)
,

X⊥ = −e−λ
(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−
(
∂λ

∂x1
cos θ +

∂λ

∂x2
sin θ

)
∂

∂θ

)
.

Given functions u, v : SM → C we consider the L2 inner product and norm

(u, v) =

∫
SM

uv̄ dΣ3, ‖u‖ = (u, u)1/2.

Since X,X⊥, V are volume preserving we have (V u, v) = −(u, V v) for u, v ∈ C∞(SM), and

if additionally u|∂(SM) = 0 or v|∂(SM) = 0 then also (Xu, v) = −(u,Xv) and (X⊥u, v) =

−(u,X⊥v).

The space L2(SM) decomposes orthogonally as a direct sum

L2(SM) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. A function u ∈ L2(SM)

has a Fourier series expansion

u =

∞∑
k=−∞

uk,
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where uk ∈ Hk. Also ‖u‖2 =
∑
‖uk‖2, where ‖u‖2 = (u, u)1/2. The even and odd parts of u

with respect to velocity are given by

u+ :=
∑
k even

uk, u− :=
∑
k odd

uk.

In the (x, θ)-coordinates previously introduced we may write

uk(x, θ) =

(
1

2π

∫ 2π

0

u(x, t)e−ikt dt

)
eikθ = ũk(x)eikθ.

Observe that for k ≥ 0, uk may be identified with a section of the k-th tensor power of the

canonical line bundle; the identification takes uk into ũke
kλ(dz)k where z = x1 + ix2.

The next definition introduces holomorphic and antiholomorphic functions with respect to

the θ variable.

Definition 2.1 A function u : SM → C is said to be holomorphic if uk = 0 for all k < 0.

Similarly, u is said to be antiholomorphic if uk = 0 for all k > 0.

Let Ωk := Hk ∩C∞(SM). As in [19] we introduce the following first order elliptic operators

η+, η− : C∞(SM,Cn)→ C∞(SM,Cn)

given by

η+ := (X + iX⊥)/2, η− := (X − iX⊥)/2.

Clearly X = η++η−. From the structure equations for the frame {X,X⊥, V } one easily derives:

η+ : Ωk → Ωk+1, η− : Ωk → Ωk−1, (η+)∗ = −η−.

We will also employ the fiberwise Hilbert transform H : C∞(SM) → C∞(SM), defined in

terms of Fourier coefficients as

Huk := −i sgn(k)uk.

Here sgn(k) is the sign of k, with the convention sgn(0) = 0. Thus, u is holomorphic iff

(Id− iH)u = u0 and antiholomorphic iff (Id + iH)u = u0.

The following commutator formula for the Hilbert transform and the geodesic vector field,

proved in [39], has been a crucial component for many results reviewed in this paper.

Proposition 2.1 Let (M, g) be a two dimensional Riemannian manifold. For any smooth

function u on SM we have the identity

[H,X]u = X⊥u0 + (X⊥u)0

where

u0(x) =
1

2π

∫
Sx

u(x, v) dSx

is the average value.

Proof It suffices to show that

[Id + iH,X]u = iX⊥u0 + i(X⊥u)0.



8 G.P. Paternain and M. Salo and G. Uhlmann

Since X = η+ + η− we need to compute [Id + iH, η±], so let us find [Id + iH, η+]u, where

u =
∑
k uk. Recall that (Id + iH)u = u0 + 2

∑
k≥1 uk. We find:

(Id + iH)η+u = η+u−1 + 2
∑
k≥0

η+uk,

η+(Id + iH)u = η+u0 + 2
∑
k≥1

η+uk.

Thus

[Id + iH, η+]u = η+u−1 + η+u0.

Similarly we find

[Id + iH, η−]u = −η−u0 − η−u1.

Therefore using that iX⊥ = η+ − η− we obtain

[Id + iH,X]u = iX⊥u0 + i(X⊥u)0

as desired.

3 Tensor tomography on surfaces

The paper [32] gave two proofs for uniqueness in tensor tomography on a simple surface

(M, g). In this section we will give an outline of both proofs. They are based on Pestov

identities, which are energy estimates for operators related to the ray transform, and which will

be discussed in more detail in Section 4. Below we will make use of the concepts introduced in

Sections 1 and 2.

First proof. To explain the idea behind the first proof of s-injectivity, let us first assume

that f is a 0-tensor, that is, f ∈ C∞(M). Assuming that I0f = 0, it is required to show that

f = 0. The first step is a reduction from the integral operator I0 into a PDE question involving

a transport equation. The function

u(x, v) =

∫ τ(x,v)

0

f(ϕt(x, v)) dt, (x, v) ∈ SM

solves the transport equation

Xu = −f in SM, u|∂(SM) = 0.

It is enough to show that u = 0, since then also f = 0.

Isothermal coordinates allow to identify

SM = {(x, θ) ; x ∈ D, θ ∈ [0, 2π)}.

The vertical vector field on SM is V = ∂
∂θ . We want to show that{

Xu = −f
u|∂(SM) = 0

=⇒ u = 0.
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If f is a 0-tensor, f = f(x), then V f = 0. Thus it is enough to show that{
V Xu = 0
u|∂(SM) = 0

=⇒ u = 0.

This calls for a uniqueness result for the operator P = V X. In isothermal coordinates, this

operator has the form

P = e−λ
∂

∂θ

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+ h(x, θ)

∂

∂θ

)
where h(x, θ) is a certain smooth function. It turns out that the operator P is rather exotic

and there do not seem to be general results on uniqueness properties of such operators in the

literature. Here are some facts about the operator P :

• it is a second order operator on 3D manifold SM

• it has multiple characteristics

• P +W has compactly supported solutions for some first order perturbation W

• it enjoys a subelliptic type estimate ‖u‖H1(SM) ≤ C‖Pu‖L2(SM) for u ∈ C∞(SM) with

u|∂(SM) = 0.

However, we can still prove a global uniqueness result for P by using energy estimates. This

involves the Pestov identity in L2(SM) inner product when u|∂(SM) = 0:

‖Pu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u)

where P = A+ iB, A∗ = A, B∗ = B.

We will compute the commutator below, and this gives (see Proposition 4.2)

‖Pu‖2 = ‖XV u‖2 − (KV u, V u) + ‖Xu‖2.

It is known [33] that on simple manifolds

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞(SM), u|∂(SM) = 0.

(Note that in the case of non-positive curvature, i.e. K ≤ 0, one always has ‖XV u‖2 −
(KV u, V u) ≥ 0.) Thus Pu = 0 implies u = 0, showing injectivity of I0.

We now return to tensor tomography. Let Xu = −f in SM , u|∂(SM) = 0 where f is the

function on SM corresponding to a symmetric m-tensor field. It will be convenient to switch

to a slightly different setup and think of u and f (which are functions SM → C) as sections of

the trivial bundle E = SM ×C. The transport equation then becomes an equation for sections

of E,

D0
Xu = −f

where D0
X = d is the flat connection on the trivial bundle E.

One benefit of this (trivial) change of point of view is that from the equation on sections,

one sees that the transport equation has a natural gauge group acting via multiplication by

smooth functions c ∈ C∞(M). This action preserves m-tensors, and leads to gauge equivalent

equations

DA
X(cu) = −cf
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where DA = d + A is a gauge equivalent connection on E and A = −c−1dc is the 1-form

determining the connection.

Now we try to use an energy identity for the connections DA. This Pestov identity with a

connection is proved in the same way as the usual Pestov identity (see Proposition 4.3), and

reads in L2(SM) norms

‖V (X +A)u‖2 = ‖(X +A)V u‖2 − (KV u, V u) + ‖(X +A)u‖2 + (∗FAV u, u).

Here ∗ is Hodge star and

FA = dA+A ∧A

is the curvature of the connection DA = d+ A. We observe that if the curvature ∗FA and the

expression (V u, u) have suitable signs, we gain a positive term in the energy estimate.

This observation does not immediately lead to anything new since curvature is preserved un-

der gauge transformation. Thus, if DA is gauge equivalent to D0, then FA = F0 = 0. However,

we can use a generalized gauge transformation that arranges a sign for FA. This involves gauge

transformations via functions c that may depend on the v variable. Such transformations break

the m-tensor structure of the equation, but turn out to be manageable if the gauge transforms

are holomorphic in a suitable sense.

Recall from Section 2 that a function u ∈ L2(SM) is called holomorphic if uk = 0 for k < 0.

The main point is the following theorem guaranteeing that holomorphic gauge transformations

always exist. This is related to injectivity of the attenuated ray transform on simple surfaces

[41], and in the form below it is proved in [32] and [33]. The proof is based on the surjectivity

of I∗0 .

Theorem 3.1 (Holomorphic gauge transformation) If A is a 1-form on a simple surface,

there is a holomorphic w ∈ C∞(SM) such that X +A = ew ◦X ◦ e−w.

Proof Since M is simply connected, there is a Hodge decomposition Aj dx
j = da+ ?db for

some a, b ∈ C∞(M) (? is the Hodge star operator). In terms of the corresponding functions on

SM we have A = Xa + X⊥b. Replacing w by w − a, it is enough to consider the case where

A = X⊥b.

Let us try a solution of the form w = (Id + iH)ŵ where ŵ ∈ C∞(SM) is even with respect

to v. By Proposition 2.1,

Xw = (Id + iH)Xŵ − i[H,X]ŵ = (Id + iH)Xŵ − iX⊥ŵ0.

Now it is sufficient to find ŵ even with Xŵ = 0 and ŵ0 = −ib. Using the surjectivity of I∗0 [39],

there is some h ∈ C∞(∂+(SM)) with I∗0h = −2πib. But if w′ ∈ C∞(SM) is the function with

Xw′ = 0 in SM and w′|∂+(SM) = h, we have (w′)0 = 1
2π I
∗
0h = −ib. It is enough to take ŵ to

be the even part of w′ with respect to v.

We can now explain the end of the proof of the uniqueness result for tensor tomography on

simple surfaces. Let f =
∑m
k=−m fk be an m-tensor written in terms of its Fourier components,

and let

Xu = −f, u|∂(SM) = 0.

Choose a primitive ϕ of the volume form ωg of (M, g), so that dϕ = ωg. Let s > 0 be large,

let As = −isϕ, and choose a holomorphic w with X + As = esw ◦ X ◦ e−sw. The transport
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equation becomes

(X +As)(e
swu) = −eswf, eswu|∂(SM) = 0.

Here the curvature of As has a sign and one has information on Fourier coefficients of eswf .

The Pestov identity with connection allows to control Fourier coefficients of eswu, eventually

proving s-injectivity of Im.

Heuristically, the proof above involves ”twisting” the trivial bundle E by a holomorphic

gauge transformation to make it positively curved, using the Pestov identity with a large pos-

itive term coming from the connection to absorb error terms, and then undoing the gauge

transformation (this is possible because of holomorphicity) to get uniqueness. This idea of

twisting to impose positivity to prove a vanishing theorem is of course well known in Complex

Geometry and it is the way one proves results like the Kodaira vanishing theorem [17]. Our

setting is more complicated since the relevant PDE is the transport equation which is harder

to handle than the Cauchy-Riemann equation. However this analogy is important and perme-

ates all work; in particular the injectivity results on the attenuated ray transform for unitary

connections, to be discussed later on, are also proved in this fashion.

There is an interesting connection between the Pestov identity with connection As above

and with Carleman estimates. In fact, the Pestov identity with As implies the estimate

s1/2‖u‖
L2
xḢ

1/2
θ

. ‖eswX(e−swu)‖L2
xḢ

1
θ
.

Here we use the norms

‖u‖L2
xḢ

s
θ

=

∑
k 6=0

|k|2s‖uk‖2L2(SM)

1/2

.

Formally this looks very much like a Carleman estimate with exponential weights, but it involves

some slightly exotic spaces and one can see that the positivity comes from Im(w) (not Re(w)

as is usual in Carleman estimates)! We finally remark that such an estimate is sufficient for

• absorbing large attenuation (even for systems, see Section 9)

• absorbing error terms coming from m-tensors.

However, it seems that the estimate may not be enough to

• localize in space

• absorb error terms coming from curvature of M .

Second proof. Next we explain a very short alternative proof to a key step in the injectivity

result.

Suppose that u is a smooth solution of Xu = −f in SM where fk = 0 for k ≤ −m− 1 and

u|∂(SM) = 0. We wish to show that uk = 0 for k ≤ −m. This, together with the analogous

result for positive Fourier coefficients, implies that f = Xh where the Fourier expansion of h

has degree m− 1 and h|∂(SM) = 0, thus proving s-injectivity.

We choose a nonvanishing function h ∈ Ωm. In fact, in isothermal coordinates, we can set

h(x, y, θ) := eimθ.
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Define the 1-form

A := −h−1Xh.

Then hu solves the problem

(X +A)(hu) = −hf in SM, hu|∂(SM) = 0.

Note that hf is a holomorphic function. Next we employ a holomorphic integrating factor, as

above: by Theorem 3.1 there exists a holomorphic w ∈ C∞(SM) with Xw = A. The function

ewhu then satisfies

X(ewhu) = −ewhf in SM, ewhu|∂(SM) = 0.

The right hand side ewhf is holomorphic. It is known that the solution ewhu, which vanishes on

∂(SM) also has to be holomorphic and further (ewhu)0 = 0. This follows from the s-injectivity

of I0 and I1 (see [32], [41]). Looking at Fourier coefficients shows that (hu)k = 0 for k ≤ 0, and

therefore uk = 0 for k ≤ −m as required.

4 Pestov identity

In this section we consider the Pestov identity, which is the basic energy identity that has

been used since the work of Mukhometov [27] in most injectivity proofs of ray transforms in

the absence of real-analyticity or special symmetries. Pestov type identities were also used in

[3] to prove s-injectivity for I1 on simple manifolds and in [37] to prove s-injectivity for any m

in any dimensions if the sectional curvatures are negative. See [9], [36], [42] for further results.

Pestov identities have often appeared in a somewhat ad hoc way, but here we follow [32] which

gives a new point of view making the derivation of these identities more transparent. We will

only consider two dimensional manifolds in this section.

The easiest way to motivate the Pestov identity is to consider the injectivity of the ray

transform on functions. The first step, as discussed in Section ??, is to recast the injectivity

problem as a uniqueness question for the partial differential operator P on SM where

P := V X.

This involves a standard reduction to the transport equation.

Proposition 4.1 Let (M, g) be a compact oriented nontrapping surface with strictly convex

smooth boundary. The following statements are equivalent.

(a) The ray transform I : C∞(M)→ C(∂+(SM)) is injective.

(b) Any smooth solution of Pu = 0 in SM with u|∂(SM) = 0 is identically zero.

Proof Assume that the ray transform is injective, and let u ∈ C∞(SM) solve Pu = 0 in

SM with u|∂(SM) = 0. This implies that Xu = −f in SM for some smooth f only depending

on x, and we have 0 = u|∂+(SM) = If . Since I is injective one has f = 0 and thus Xu = 0,

which implies u = 0 by the boundary condition.

Conversely, assume that the only smooth solution of Pu = 0 in SM which vanishes on

∂(SM) is zero. Let f ∈ C∞(M) be a function with If = 0, and define the function

u(x, v) :=

∫ τ(x,v)

0

f(γ(t, x, v)) dt, (x, v) ∈ SM.



Tensor tomography: progress and challenges 13

This function satisfies the transport equation Xu = −f in SM and u|∂(SM) = 0 since If = 0,

and also u ∈ C∞(SM) (see [33]). Since f only depends on x we have V f = 0, and consequently

Pu = 0 in SM and u|∂(SM) = 0. It follows that u = 0 and also f = −Xu = 0.

We now focus on proving a uniqueness statement for solutions of Pu = 0 in SM . For this

it is convenient to express P in terms of its self-adjoint and skew-adjoint parts in the L2(SM)

inner product as

P = A+ iB, A :=
P + P ∗

2
, B :=

P − P ∗

2i
.

Here the formal adjoint P ∗ of P is given by

P ∗ := XV.

In fact, if u ∈ C∞(SM) with u|∂(SM) = 0, then

‖Pu‖2 = ((A+ iB)u, (A+ iB)u) = ‖Au‖2 + ‖Bu‖2 + i(Bu,Au)− i(Au,Bu) (4.1)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u).

This computation suggests to study the commutator i[A,B]. We note that the argument just

presented is typical in the proof of L2 Carleman estimates [21].

By the definition of A and B it easily follows that i[A,B] = 1
2 [P ∗, P ]. By the commutation

formulas for X, X⊥ and V , this commutator may be expressed as

[P ∗, P ] = XV V X − V XXV = V XV X +X⊥V X − V XV X − V XX⊥
= V [X⊥, X]−X2 = −X2 + V KV.

Consequently

([P ∗, P ]u, u) = ‖Xu‖2 − (KV u, V u).

If the curvature K is nonpositive, then [P ∗, P ] is positive semidefinite. More generally, one can

try to use the other positive terms in (4.1). Note that

‖Au‖2 + ‖Bu‖2 =
1

2
(‖Pu‖2 + ‖P ∗u‖2).

The identity (4.1) may then be expressed as

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u).

(Note that we could have just started from the last identity, but expressing matters via A and B

highlights the similarity to Carleman estimates.) Moving the term ‖Pu‖2 to the other side, we

have proved the version of the Pestov identity which is most suited for our purposes. The main

point in this proof was that the Pestov identity boils down to a standard L2 estimate based

on separating the self-adjoint and skew-adjoint parts of P and on computing one commutator,

[P ∗, P ].

Proposition 4.2 If (M, g) is a compact oriented surface with smooth boundary, then

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = 0

for any u ∈ C∞(SM) with u|∂(SM) = 0.
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It is known [13], [33] that on a simple surface, one has

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞(SM), u|∂(SM) = 0.

Also, if Xu = −f where f = f0 + f1 + f−1 is the sum of a 0-form and 1-form, we have

‖Xu‖2 − ‖V Xu‖2 = ‖f0‖2 ≥ 0.

These two facts together with the Pestov identity give the standard proof of s-injectivity of the

ray transform for 0-forms and 1-forms on simple surfaces. It is easy to see where this proof

breaks down if m ≥ 2: the Fourier expansion f =
∑m
k=−m fk implies

‖Xu‖2 − ‖V Xu‖2 = ‖f0‖2 −
∑

2≤|k|≤m

(k2 − 1)‖fk‖2.

This term may be negative, and the Pestov identity may not give useful information unless

there is some extra positivity like a curvature bound.

Finally, we consider the Pestov identity in the presence of attenuation given by A(x, v) =

Aj(x)vj where Aj dx
j is a purely imaginary 1-form on M . We write A both for the 1-form and

the function on SM . The geometric interpretation is that d+A is a unitary connection on the

trivial bundle M × C, and its curvature is the 2-form

FA := dA+A ∧A.

Then ?FA is a function on M where ? is the Hodge star. We consider the operator

P := V (X +A).

Since Ā = −A, the formal adjoint of P in the L2(SM) inner product is

P ∗ = (X +A)V.

The same argument leading to Proposition 4.2, based on computing the commutator [P ∗, P ],

gives the following Pestov identity proved also in [33, Lemma 6.1].

Proposition 4.3 If (M, g) is a compact oriented surface with smooth boundary and if A is

a purely imaginary 1-form on M , then

‖(X +A)V u‖2 − (KV u, V u) + ‖(X +A)u‖2 − ‖V (X +A)u‖2 + (?FAV u, u) = 0

for any u ∈ C∞(SM) with u|∂(SM) = 0.

Using the Fourier expansion of u, the last term in the identity is given by

∞∑
k=−∞

ik(?FAuk, uk)

This shows that if u is holomorphic and i?FA > 0, or if u is antiholomorphic and i?FA < 0, one

gains an additional positive term in the Pestov identity. This is crucial in absorbing negative

contributions from the term ‖(X+A)u‖2−‖V (X+A)u‖2 when proving s-injectivity on tensor

fields.



Tensor tomography: progress and challenges 15

5 Microlocal approach

A different approach that is useful to prove s-injectivity of Im in some cases and gives

stability estimates as well as reconstruction formulas in some cases was started in [50] and

developed further in [51, 52, 53, 54]. We describe the method in more detail for I0. Let (M, g)

be a simple manifold embedded in a closed manifold (N, g) and let U be a simple neighborhood

of M in N .

Theorem 5.1 I∗0 I0 is an elliptic pseudodifferential operator on U of order -1.

Proof It is easy to see, that

(I∗0 I0f) (x) =

∫
Sx

dSx

τ(x,v)∫
−τ(x,−v)

f (γ (t, x, v)) dt = 2

∫
Sx

dSx

τ(x,v)∫
0

f (γ (t, x, v)) dt. (5.1)

Before we continue we make a remark concerning notation. We have used up to now the

notation γ(t, x, v) for a geodesic. But it is known, that a geodesic depends smoothly on the point

x and vector ξt ∈ Tx(M). Therefore in what follows we will also use sometimes the notation

γ(x, vt) for a geodesic. Since the manifold M is simple any small enough neighborhood U

(in (N, g)) is also simple (an open domain is simple if its closure is simple). For any point

x ∈ U there is an open domain DU
x ⊂ Tx (U) such that exponential map expx : DU

x →
U, expxη = γ(x, η) is a diffeomorphism onto U. Let Dx, x ∈ M be the inverse image of M ,

then expx(Dx) = M and expx|Dx : Dx →M is a diffeomorphism.

Now we change variables in (2), y = γ(x, vt). Then t = dg (x, y) and

(I∗If) (x) =

∫
M

K (x, y) f (y) dy,

where

K (x, y) = 2
det
(
exp−1

x

)′
(x, y)

√
det g (x)

dn−1
g (x, y)

.

Notice, that since

γ(x, η) = x+ η +O(|η|2), (5.2)

it follows, that the Jacobian of the exponential map is 1 at 0, and then det(exp−1
x )′(x, x) =

1/ det (expx)
′
(x, 0) = 1. From (3) we also conclude that

d2 (x, y) = Gij (x, y) (x− y)
i
(x− y)

j
, Gij (x, x) = gij (x) , Gij ∈ C∞ (M ×M) .

Therefore the kernel of I∗0 I0 can be written in the form

K (x, y) =
2 det

(
exp−1

x

)′
(x, y)

√
det g (x)(

Gij (x, y) (x− y)
i
(x− y)

j
)(n−1)/2

.

Thus the kernel K has at the diagonal x = y a singularity of type |x− y|−n+1
. The kernel

K0 (x, y) =
2
√

det g (x)(
gij (x) (x− y)

i
(x− y)

j
)(n−1)/2
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has the same singularity. Clearly, the difference K −K0 has a singularity of type |x− y|−n+2
.

Therefore the principal symbols of both operators coincide. The principal symbol of the integral

operator, corresponding to the kernel K0 coincide with its full symbol and is easily calculated.

As a result

σ (I∗0 I0) (x, ξ) = 2
√

det g (x)

∫
e−i(y,ξ)

(gij (x) yiyj)
(n−1)/2

dy = cn |ξ|−1
.

Let g be a simple metric in M . Extend g near M and let M1 be a simple manifold with

boundary so that M is a compact subset of M1. We will work with f supported in M . We

assume that f is extended as 0 outside M . Choose a smooth function χ supported in M1 such

that χ = 1 near M .

It was shown in [51] that the normal operator Ng = I∗mIm is a pseudodifferential operator

of order -1, for m = 0, 1, 2 which is elliptic acting on solenoidal tensor fields. We have,

Theorem 5.2 Let g be a simple metric in M and let χ be as before. Then one can construct

a pseudodifferential operator aijkl(x,D) of order 1 so that for any symmetric 2-tensor f ∈
L2(M) we have,

χaijkl(x,D)χ(Ngf)kl = fsM1
+Kf, (5.3)

where K : L2(M)→ H1(M1) is bounded. Here fsM1
denotes the solenoidal part of f on M1.

This result was extended to tensor fields of any order in [47].

When g is a real-analytic simple metric it was shown in [52] that I2 is s-injective. The proof

constructs a parametrix as in the previous result with K analytic regularizing, that is Kf is

real-analytic on M1 for f ∈ L2(M). The idea of the proof for I0 is that if I0f = 0, f ∈ L2(M)

then f = −Kf . Since Kf is real-analytic on M1 and supported on M it must be zero. For the

details of the proof for I2 see [52].

6 Stability estimates

It was shown in [51], [47] that for a simple manifold s-injectivity of Im implies stability

estimates. This is based on the fact that Ng = I∗mIm is an elliptic pseudodifferential operator

acting on solenoidal tensor fields. We have the following stability estimate for I0 ([51]):

Theorem 6.1 Let g be a simple metric in M and assume that g is extended smoothly as a

simple metric near the simple manifold M1 ⊃⊃M . Then for any function f ∈ L2(M),

‖f‖L2(M)/C ≤ ‖Ngf‖H1(M1) ≤ C‖f‖L2(M).

Similarly s-injectivity of I1 implies the stability estimate:

Theorem 6.2 Assume that g is simple metric in M and extend g as a simple metric in

M1 ⊃⊃M . Then for any 1-form f = fidx
i in L2(M) we have

‖fs‖L2(M) /C ≤ ‖Ngf‖H1(M1) ≤ C ‖fs‖L2(M) .

A sharp stability estimate for I2, assuming that I2 is known to be s-injective, was proved

in [49]:
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Theorem 6.3 Let g be a simple metric in M and assume that g is extended smoothly as a

simple metric near the simple manifold M1 ⊃⊃ M . Also assume that I2 is s-injective. Then

for any symmetric 2-tensor field f in L2(M),

‖fs‖L2(M)/C ≤ ‖Ngf‖H1(M1) ≤ C‖fs‖L2(M).

In order to describe possible stability estimates for Im, we describe an earlier result for I2.

In order to state the result we first take boundary normal coordinates x1, ..., xn with xn = 0 the

defining function of ∂M . Introduce the space H̃1(M1) with norm equal to the L2 norm outside

a neighborhood of ∂M and near ∂M (but outside M) having the following form in normal local

coordinates:

|f |2
H̃1(M1)

=

∫
M1

(
n−1∑
i=1

|∂if |2 + |xn∂nf |2 + |f |2
)
dx, supp f ⊂ U. (6.1)

Here U is a small neighborhood of a point on ∂M and the norm in H̃1(M1) is defined by using

a partition of unity.

Next we define the norm

‖Ngf‖H̃2(M1) =

n∑
i=1

‖∂iNgf‖H̃1(M1) + ‖Ngf‖H1(M1).

The earlier stability result for I2 is:

Theorem 6.4 Assume that g is simple metric in M and extend g as a simple metric in i

M1 ⊃⊃M .

(a) The following estimate holds for each symmetric 2-tensor f in H1(M):

‖fs‖L2(M) ≤ C‖Ngf‖H̃2(M1) + Cs‖f‖H−s(M1), ∀s > 0.

(b) Ker I2∩SL2(M) is finite dimensional and included in C∞(M). (S stands for solenoidal).

(c) Assume that I2 is s-injective in M , i.e., that Ker Ig ∩ SL2(M) = {0}. Then for any

symmetric 2-tensor f in H1(M) we have

‖fs‖L2(M) ≤ C‖Ngf‖H̃2(M1).

This result was proven in [51] for the case m = 2. Using the results of [47], stability estimates

of this type can be shown to be valid for any m.

7 The scattering relation

To state the results for the range of Im for simple surfaces we need to recall the definition

of the scattering relation which is a subject of interest in its own right.

Suppose we have a Riemannian metric in Euclidean space which is the Euclidean metric out-

side a compact set. The inverse scattering problem for metrics is to determine the Riemannian

metric by measuring the scattering operator (see [18]). A similar obstruction to the boundary

rigidity problem occurs in this case with the diffeomorphism ψ equal to the identity outside a

compact set. It was proven in [18] that from the wave front set of the scattering operator, one
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can determine, under some non-trapping assumptions on the metric, the scattering relation on

the boundary of a large ball. This uses high frequency information of the scattering operator.

In the semiclassical setting Alexandrova has shown for a large class of operators that the scat-

tering operator associated to potential and metric perturbations of the Euclidean Laplacian is

a semiclassical Fourier integral operator quantized by the scattering relation [2]. The scattering

relation maps the point and direction of a geodesic entering the manifold to the point and

direction of exit of the geodesic.

We proceed to define in more detail the scattering relation. To do this, let τ0 = τ |∂(SM)

and note that this function is equal to zero on ∂−(SM) and is smooth on ∂+(SM). Its odd

part with respect to v,

τ0
−(x, v) =

1

2

(
τ0(x, v)− τ0 (x,−v)

)
,

is a smooth function on ∂(SM) (see for instance [10]).

Definition 7.1 Let (M, g) be non-trapping with strictly convex boundary. The scattering

relation α : ∂(SM)→ ∂(SM) is defined by

α(x, v) = (γ(x, v, 2τ0
−(x, v)), γ̇(x, v, 2τ0

−(x, v))).

The scattering relation is a diffeomorphism ∂(SM) → ∂(SM). Notice that α|∂+(SM) :

∂+(SM)→ ∂−(SM), α|∂−SM : ∂−(SM)→ ∂+(SM) are diffeomorphisms as well. The manifold

of inner vectors ∂+(SM) and outer vectors ∂−(SM) intersect at the set of tangent vectors

∂0(SM) = {(x, v) ∈ ∂(SM), 〈ν(x), v〉 = 0 }.

Obviously, α is an involution, α2 = id and ∂0(SM) is the hypersurface of its fixed points,

α(x, v) = (x, v), (x, v) ∈ ∂0(SM).

A natural inverse problem is whether the scattering relation determines the metric g up to

an isometry which is the identity on the boundary. This information takes into account all the

travel times, not just the first arrivals like the boundary distance function.

We remark that in the case that (M, g) is a simple manifold, and we know the metric at the

boundary (and this is determined if dg is known), knowing the scattering relation is equivalent

to knowing the boundary distance function ([26]).

We introduce the operators of even and odd continuation with respect to α:

A±w(x, v) = w(x, v), (x, v) ∈ ∂+SM,

A±w(x, v) = ± (α∗w) (x, v), (x, v) ∈ ∂−(SM).

We will examine next the boundedness properties of A−, A+.

Lemma 7.1 A± : L2
µ(∂+(SM))→ L2

|µ|(∂(SM)) are bounded.

Proof

‖A±w‖2L2
|µ|(∂(SM))

=

∫
∂+(SM)

w2µdΣ2n−2 +

∫
∂−(SM)

(α∗w)2(−µdΣ2n−2)

=

∫
∂+(SM)

w2µdΣ2n−2 +

∫
∂+(SM)

w2α∗(−µdΣ2n−2)
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where α : ∂+(SM)→ ∂−(SM) is a diffeomorphism. Thus it is enough to show that

α∗(−µdΣ2n−2) = µdΣ2n−2

Let w ∈ C∞(∂+(SM)). Then∫
∂+(SM)

wτµ dΣ2n−2 =

∫
∂+(SM)

∫ τ(x,v)

0

wψ(ϕt(x, v))µdtdΣ2n−2 =

∫
SM

wψ dΣ2n−1

Set ũ(x, v) = u(x,−v) for u ∈ C∞(SM), one has∫
SM

wψ dΣ2n−1 =

∫
SM

w̃ψ dΣ2n−1

=

∫
∂−(SM)

∫ τ(y,−η)

0

w̃ψ(ϕt(y,−η))(−µ) dtdΣ2n−2

=

∫
∂−(SM)

∫ τ(y,−η)

0

w(α(y, η))(−µ) dtdΣ2n−2

=

∫
∂+(SM)

wτα∗(−µdΣ2n−2)

Varying w shows that α∗(−µdΣ2n−2) = µdΣ2n−2 on ∂+(SM)\∂0SM .

The adjoint A∗± : L2
|µ|(∂(SM))→ L2

µ(∂+(SM)) satisfies

(A±w, u)L2
|µ|(∂(SM)) =

∫
∂+(SM)

wuµdΣ2n−2 ±
∫
∂−(SM)

(w ◦ α)u(−µdΣ2n−2)

=

∫
∂+(SM)

w(u± u ◦ α)µdΣ2n−2

so A∗±u = (u± u ◦ α)|∂+(SM).

In [39] the following characterization of the space of smooth solutions of the transport

equation was given. Here we define

C∞α (∂+(SM)) = {w ∈ C∞(∂+(SM)) : wψ ∈ C∞(SM)}.

Lemma 7.2

C∞α (∂+(SM)) = {w ∈ C∞(∂+(SM)) : A+w ∈ C∞(∂(SM))}.

Then I∗0w ∈ C∞(M) whenever w ∈ C∞α (∂+(SM)).

We conclude this section by defining certain operators which combine the operators A±

introduced above with the fibrewise Hilbert transform H. These operators will be essential to

determine the range of the ray transform in the next section. Set H±u = Hu± where u+ (resp.

u−) denote the even (resp. odd) part of u ∈ C∞(SM).

We define

P− = A∗−H−A+, P+ = A∗−H+A+. (7.1)

8 Range of the geodesic ray transform

We now give the characterization of the range of I0 and I1 in terms of the scattering relation

only. We have that these are the projections of the operators P−, P+ respectively (defined in

(7.1)). For the details see [38].
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Theorem 8.1 Let (M, g) be simple two dimensional compact Riemannian manifold with

boundary. Then

1. A function u ∈ C∞ (∂+(SM)) belongs to the range of I0 iff u = P−w where w ∈
C∞α (∂+(SM)) .

2. A function u ∈ C∞ (∂+(SM)) belongs to the range of I1 iff u = P+w where w ∈
C∞α (∂+(SM)) .

We now move on to describe the range of the geodesic ray transform for tensors of order

≥ 2. For this we apply the ideas of the second proof of Theorem 1.1 described in Section 3. For

the details see [35].

Let (M, g) be a simple surface. The metric g induces a complex structure on M and let κ be

the canonical line bundle (which we may identify with T ∗M). Recall that Hm (m ∈ Z) is the

set of functions in f ∈ L2(SM,C) such that V f = imf . The set Ωm = Hm∩C∞(SM,C) can be

identified with the set Γ(M,κ⊗m) of smooth sections of m-th tensor power of the canonical line

bundle κ. This identification depends on the metric and is explained in detail in [34, Section 2],

but let us give a brief description of it. Given a section ξ ∈ Γ(M,κ⊗m) we can obtain a function

on Ωm simply by restriction to SM : ξ determines the function SM 3 (x, v) 7→ ξx(v⊗m) and

this gives a 1-1 correspondence.

Since M is a disk, there is ξ ∈ Γ(M,κ) which is nowhere vanishing. Having picked this sec-

tion we may define a function h : SM → S1 by setting h(x, v) = ξx(v)/|ξx(v)|. By construction

h ∈ Ω1. Our description of the range will be based on this choice of h. Define

Aξ,g = A := −h−1Xh.

Observe that since h ∈ Ω1, then h−1 = h̄ ∈ Ω−1. Also Xh = η+h + η−h ∈ Ω2 ⊕ Ω0 which

implies that A ∈ Ω1 ⊕ Ω−1. It follows that A is the restriction to SM of a purely imaginary

1-form on M , hence we have a unitary connection (see Section 9).

First we will describe the range of the geodesic ray transform I restricted to Ωm:

Im := I|Ωm : Ωm → C∞(∂+(SM),C).

Observe that if u solves the transport equation Xu = −f with u|∂−(SM) = 0, then h−mu solves

(X −mA)(h−mu) = −h−mf and h−mu|∂−(SM) = 0. Also note that h−mf ∈ Ω0. Thus

I0
−mA(h−mf) =

(
h−m|∂+(SM)

)
Im(f)

where the left hand side is the attenuated ray transform of the unitary connection −mA. At-

tenuated transforms will be described in more detail in the next section, but the upshot is that

we can prove a theorem similar to Theorem 8.1 but introducing this time a unitary connection

as attenuation. Putting everything together one obtains a description of the range for Im as

follows. Let

Qmw(x, v) :=

{
w(x, v) if (x, v) ∈ ∂+(SM)

(e−m
∫ τ(x,v)
0 A(φt(x,v)) dtw) ◦ α(x, v) if (x, v) ∈ ∂−(SM)

and

Bmg := [em
∫ τ(x,v)
0 A(φt(x,v)) dt(g ◦ α)− g]|∂+(SM).
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In other words:

Qmw(x, v) =

{
w(x, v) if (x, v) ∈ ∂+(SM)
(e−mI1(A)w) ◦ α(x, v) if (x, v) ∈ ∂−(SM)

and

Bmg = [emI1(A)(g ◦ α)− g]|∂+(SM).

We define

Pm,− := BmH−Qm.

Then:

Theorem 8.2 ([35]) Let (M, g) be a simple surface. Then a function u ∈ C∞(∂+(SM),C)

belongs to the range of Im if and only if u =
(
hm|∂+(SM)

)
Pm,−w for w ∈ S∞m (∂+(SM),C),

where this last space denotes the set of all smooth w such that Qmw is smooth.

Suppose now F is a complex-valued symmetric tensor of orderm and we denote its restriction

to SM by f . Recall from [32, Section 2] that there is a 1-1 correspondence between complex-

valued symmetric tensors of order m and functions in SM of the form f =
∑m
k=−m fk where

fk ∈ Ωk and fk = 0 for all k odd (resp. even) if m is even (resp. odd).

Since

I(f) =

m∑
k=−m

Ik(fk)

we deduce directly from Theorem 8.2 the following.

Theorem 8.3 Let (M, g) be a simple surface. If m = 2l is even, a function u ∈ C∞(∂+(SM),C)

belongs to the range of the ray transform acting on complex-valued symmetric m-tensors if and

only if there are w2k ∈ S∞2k(∂+(SM),C) such that

u =

l∑
k=−l

(
h2k|∂+(SM)

)
P2k,−w2k.

Similarly, if m = 2l + 1 is odd, a function u ∈ C∞(∂+(SM),C) belongs to the range of the

ray transform acting on complex-valued symmetric m-tensors if and only if there are w2k+1 ∈
S∞2k+1(∂+(SM),C) such that

u =

l∑
k=−l−1

(
h2k+1|∂+(SM)

)
P2k+1,−w2k+1.

9 Attenuated ray transform for unitary connections

In this section we describe in detail certain injectivity results for the attenuated ray trans-

form of a unitary connection [33]. We saw the appearance of the attenuated ray transform in

the last section when we discussed the range of the (unattenuated) ray transform on tensors

of any order. We also saw how useful was for the tensor tomography problem to introduce a

connection to gain positivity in the Pestov identity. Here we take a closer and more systematic

look. We motivate this section by discussing first another natural inverse problem: determine
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a unitary connection from its scattering relation, that is, parallel transport along geodesics

between boundary points. Our results are for simple surfaces, but the definitions can be given

in the context of non-trapping manifolds (M, g) with strictly convex boundary.

Suppose E → M is a Hermitian vector bundle of rank n over M and ∇ is a unitary

connection on E. Associated with ∇ there is the following additional piece of scattering data:

given (x, v) ∈ ∂+(SM), let P (x, v) = P∇(x, v) : E(x) → E(π ◦ α(x, v)) denote the parallel

transport along the geodesic γ(t, x, v). This map is a linear isometry and the main inverse

problem we wish to discuss here is the following:

Question. Does P determine ∇?

The first observation is that the problem has a natural gauge equivalence. Let ψ be a gauge

transformation, that is, a smooth section of the bundle of automorphisms AutE. The set of all

these sections naturally forms a group (known as the gauge group) which acts on the space of

unitary connections by the rule

(ψ∗∇)s := ψ∇(ψ−1s)

where s is any smooth section of E. If in addition ψ|∂M = Id, then it is a simple exercise to

check that

P∇ = Pψ∗∇.

Thus we can rephrase the question above more precisely as follows:

Question I. Let ∇1 and ∇2 be two unitary connections with P∇1
= P∇2

. Does there exist a

gauge transformation ψ with ψ|∂M = Id and ψ∗∇1 = ∇2?

It is easy to see from the definition that a simple manifold must be diffeomorphic to a ball in

Rn. Therefore any bundle over such M is necessarily trivial and from now on we shall assume

that E = M × Cn.

Question I arises naturally when considering the hyperbolic Dirichlet-to-Neumann map as-

sociated to the Schrödinger equation with a connection. It was shown in [16] that when the

metric is Euclidean, the scattering data for a connection can be determined from the hyper-

bolic Dirichlet-to-Neumann map. A similar result holds true on simple Riemannian manifolds:

a combination of the methods in [16] and [55] shows that the hyperbolic Dirichlet-to-Neumann

map for a connection determines the scattering data P∇.

Elementary background on connections. Consider the trivial bundle M × Cn. For us a

connection A will be a complex n×n matrix whose entries are smooth 1-forms on M . Another

way to think of A is to regard it as a smooth map A : TM → Cn×n which is linear in v ∈ TxM
for each x ∈M .

Very often in physics and geometry one considers unitary or Hermitian connections. This

means that the range of A is restricted to skew-Hermitian matrices. In other words, if we denote

by u(n) the Lie algebra of the unitary group U(n), we have a smooth map A : TM → u(n) which

is linear in the velocities. There is yet another equivalent way to phrase this. The connection

A induces a covariant derivative dA on sections s ∈ C∞(M,Cn) by setting dAs = ds + As.

Then A being Hermitian or unitary is equivalent to requiring compatibility with the standard

Hermitian inner product of Cn in the sense that

d〈s1, s2〉 = 〈dAs1, s2〉+ 〈s1, dAs2〉
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for any pair of functions s1, s2.

Given two unitary connections A and B we shall say that A and B are gauge equivalent if

there exists a smooth map u : M → U(n) such that

B = u−1du+ u−1Au. (9.1)

It is easy to check that this definition coincides with the one given in the previous section if we

set ψ = u−1.

The curvature of the connection is the 2-form FA with values in u(n) given by

FA := dA+A ∧A.

If A and B are related by (9.1) then:

FB = u−1 FA u.

Given a smooth curve γ : [a, b] → M , the parallel transport along γ is obtained by solving the

linear differential equation in Cn: {
ṡ+A(γ(t), γ̇(t))s = 0,
s(a) = w ∈ Cn. (9.2)

The isometry PA(γ) : Cn → Cn is defined as PA(γ)(w) := s(b). We may also consider the

fundamental unitary matrix solution U : [a, b]→ U(n) of (9.2). It solves{
U̇ +A(γ(t), γ̇(t))U = 0,
U(a) = Id.

(9.3)

Clearly PA(γ)(w) = U(b)w.

The transport equation and the attenuated ray transform. Consider now the case of a

compact simple Riemannian manifold. We would like to pack the information provided by (9.3)

along every geodesic into one PDE in SM . For this we consider the vector field X associated

with the geodesic flow φt and we look at the unique solution UA : SM → U(n) of{
X(UA) +A(x, v)UA = 0, (x, v) ∈ SM
UA|∂+(SM) = Id.

(9.4)

The scattering data of the connection A is now the map CA : ∂−(SM) → U(n) defined as

CA := UA|∂−(SM).

We can now rephrase Question I as follows:

Question I. Let A and B be two unitary connections with CA = CB . Does there exist a

smooth map U : M → U(n) with U |∂M = Id and B = U−1dU + U−1AU?

Suppose CA = CB and define U := UA(UB)−1 : SM → U(n). One easily checks that U

satisfies: {
XU +AU − UB = 0,
U |∂(SM) = Id.

If we show that U is in fact smooth and it only depends on the base point x ∈ M we would

have an answer to Question I , since the equation above reduces to dU + AU − UB = 0 and
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U |∂M = Id which is exactly gauge equivalence. Showing that U only depends on x is not an

easy task and it often is the crux of the matter in these type of problems. To tackle this issue

we will rephrase the problem in terms of an attenuated ray transform.

Consider W := U − Id : SM → Cn×n, where as before Cn×n stands for the set of all n× n
complex matrices. Clearly W satisfies

XW +AW −WB = B −A, (9.5)

W |∂(SM) = 0. (9.6)

We introduce a new connection Â on the trivial bundle M×Cn×n as follows: given a matrix

R ∈ Cn×n we define Â(R) := AR−RB. One easily checks that Â is Hermitian if A and B are.

Then equations (9.5) and (9.6) are of the form:{
Xu+Au = −f,
u|∂(SM) = 0.

where A is a unitary connection, f : SM → CN is a smooth function linear in the velocities,

u : SM → CN is a function that we would like to prove smooth and only dependent on x ∈M
and N = n× n. As we will see shortly this amounts to understanding which functions f linear

in the velocities are in the kernel of the attenuated ray transform of the connection A.

First recall that in the scalar case, the attenuated ray transform Iaf of a function f ∈
C∞(SM,C) with attenuation coefficient a ∈ C∞(SM,C) can be defined as the integral

Iaf(x, v) :=

∫ τ(x,v)

0

f(φt(x, v))exp

[∫ t

0

a(φs(x, v)) ds

]
dt, (x, v) ∈ ∂+(SM).

Alternatively, we may set Iaf := u|∂+(SM) where u is the unique solution of the transport

equation

Xu+ au = −f in SM, u|∂−(SM) = 0.

The last definition generalizes without difficulty to the case of connections. Assume that

A is a unitary connection and let f ∈ C∞(SM,Cn) be a vector valued function. Consider the

following transport equation for u : SM → Cn,

Xu+Au = −f in SM, u|∂−(SM) = 0.

On a fixed geodesic the transport equation becomes a linear ODE with zero initial condition,

and therefore this equation has a unique solution denoted by uf .

Definition 9.1 The attenuated ray transform of f ∈ C∞(SM,Cn) is given by

IAf := uf |∂+(SM).

We note that IA acting on sums of 0-forms and 1-forms always has a nontrivial kernel, since

IA(dp+Ap) = 0 for any p ∈ C∞(M,Cn) with p|∂M = 0.

Thus from the ray transform IAf one only expects to recover f up to an element having this

form.
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The transform IA also has an integral representation. Consider the unique matrix solution

UA : SM → U(n) from above. Then it is easy to check that

IAf(x, v) =

∫ τ(x,v)

0

U−1
A (φt(x, v))f(φt(x, v)) dt.

We are now in a position to state the next main question:

Question II. (Kernel of IA) Let (M, g) be a compact simple Riemannian manifold and let

A be a unitary connection. Assume that f : SM → Cn is a smooth function of the form

F (x) + αj(x)vj , where F : M → Cn is a smooth function and α is a Cn-valued 1-form. If

IA(f) = 0, is it true that F = 0 and α = dAp = dp + Ap, where p : M → Cn is a smooth

function with p|∂M = 0?

As explained above a positive answer to Question II gives a positive answer to Question I.

The next recent result provides a full answer to Question II in the two-dimensional case:

Theorem 9.1 [33] Let M be a compact simple surface. Assume that f : SM → Cn is a

smooth function of the form F (x) + αj(x)vj, where F : M → Cn is a smooth function and α

is a Cn-valued 1-form. Let also A : TM → u(n) be a unitary connection. If IA(f) = 0, then

F = 0 and α = dAp, where p : M → Cn is a smooth function with p|∂M = 0.

Let us explicitly state the positive answer to Question I in the case of surfaces:

Theorem 9.2 [33] Assume M is a compact simple surface and let A and B be two unitary

connections. Then CA = CB implies that there exists a smooth U : M → U(n) such that

U |∂M = Id and B = U−1dU + U−1AU .

The proof of Theorem 9.1 is based on the ideas explained in Section 3. One introduces a

suitable additional attenuation (twists with a positive line bundle) which adds positivity to the

Pestov identity with a connection and then gauges the twist away via the key Theorem 3.1.

In the case of Euclidean space with the Euclidean metric the attenuated ray transform is the

basis of the medical imaging technology of SPECT and has been extensively studied, see [15] for

a review. We remark that in connection with injectivity results for ray transforms, there is great

interest in reconstruction procedures and inversion formulas. For the attenuated ray transform

in R2 with Euclidean metric and scalar attenuation function, an explicit inversion formula was

proved by R. Novikov [28]. A related formula also including 1-form attenuations appears in [6],

inversion formulas for matrix attenuations in Euclidean space are given in [14, 29], and the case

of hyperbolic space H2 is considered in [5].

Various versions of Theorem 9.2 have been proved in the literature. Sharafutdinov [44]

proves the theorem assuming that the connections are C1 close to another connection with small

curvature (but in any dimension). In the case of domains in the Euclidean plane the theorem

was proved by Finch and Uhlmann [16] assuming that the connections have small curvature

and by G. Eskin [14] in general. R. Novikov [29] considers the case of connections which

are not compactly supported (but with suitable decay conditions at infinity) and establishes

local uniqueness of the trivial connection and gives examples in which global uniqueness fails

(existence of “ghosts”).

For more on inverse problems for connections we refer to [30].
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10 Anosov manifolds

There are versions of the ideas in the previous sections in the context of closed manifolds.

The first requirement is to have a notion that replaces the concept of simple manifold. It is easy

to motivate this as follows. Simple manifolds have two characteristic properties: they have no

conjugate points and and they are open in the C2-topology of metrics. Recall that a Riemannian

manifold is said to have no conjugate points if any two points in the universal covering are joined

by a unique geodesic. Hence it seems natural to seek an analogue by requiring that the metric

is a C2-interior point among the set of all metric without conjugate points.

Definition 10.1 A closed Riemannian manifold (M, g) is said to be Anosov if g belongs to

the C2-interior of the set of metrics without conjugate points.

It turns out that the name “Anosov” is completely justified: (M, g) is Anosov if and only if

the geodesic flow of g is Anosov in the sense of Dynamical Systems [40]. We will not give here

the definition of an Anosov flow since it will not be explicitly needed and instead we refer the

reader to [22].

From our definition it is clear that negatively curved manifolds are Anosov and that there

are no Anosov metrics on tori since the only metrics without conjugate points on tori must be

flat [7].

The notion of “Im is s-injective” makes sense for closed manifolds as follows:

Definition 10.2 We say that Im is s-injective if given any symmetric m-tensor f such that∫ T

0

fm(γ(t), γ̇(t)) dt = 0

for every unit speed closed geodesic γ : [0, T ] → M , then f is potential, i.e., there exists an

(m− 1)-symmetric tensor h such that f = dh.

The tensor tomography problem for an Anosov manifold consists in proving that Im is s-

injective for any m. There are numerous motivations for this, but perhaps the most notorious

one is that of spectral rigidity which involves I2. In [19] Guillemin and Kazhdan proved that

if (M, g) is an Anosov manifold such that I2 is s-injective then (M, g) is spectrally rigid. This

means that if (gs) is a smooth family of Riemannian metrics on M for s ∈ (−ε, ε) such that

g0 = g and the spectra of −∆gs coincide up to multiplicity,

Spec(−∆gs) = Spec(−∆g0), s ∈ (−ε, ε),

then there exists a family of diffeomorphisms ψs : M →M with ψ0 = Id and

gs = ψ∗sg0.

Let us summarize what is known about the tensor tomography problem on an Anosov

manifold.

• I0 and I1 are s-injective [11];

• I2 is s-injective for surfaces [34] ;

• Im is s-injective for all m for non-positively curved manifolds [8].
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11 Open problems

In this section we mention some open problems related to tensor tomography.

1. In the two dimensional case there is by now, as surveyed in this paper, a rather good

understanding of the injectivity and range of the geodesic ray transform on tensor fields for

simple manifolds. Important questions remaining are inversion formulas or reconstruction

procedures of the solenoidal part of the tensor field from its geodesic ray transform.

Certain inversion formulas were given in [38], [24] for the case of constant curvature and

close to constant curvature.

2. In the case where dim (M) ≥ 3 it is not known whether Im is s-injective for a general

simple manifold. This is known for I0 and I1, but even the case of I2 is unknown at

present.

3. Support type theorems for the geodesic ray transform, where a tensor field is determined

locally from its line integrals in a certain neighborhood, are known for the case of real

analytic simple manifolds for Im, m = 0, 1, 2 [23, 25]. Is it possible to extend these results

to all simple manifolds? This has been done for I0 in three dimensions or higher [56].

4. The study of s-injectivity of the geodesic ray transform for non-simple manifolds is an

important problem for which not much is known. Certain results are given in [9], [43],

[45]. A microlocal analysis of I0 when the exponential map has fold type singularities was

done in [54]. Injectivity, stability and reconstruction were proven for I0 in the case of three

dimensions or higher when the manifold can be foliated by strictly convex hypersurfaces

[56]. This allows for conjugate points. The s-injectivity of I2 was analyzed in [53] for

a class of non-simple manifolds. However, the question if I0 is injective on a compact

non-trapping manifold with strictly convex boundary is open.

5. The attenuated ray transform for an unitary connection on simple surfaces and Anosov

surfaces has been extensively studied in [31, 33, 41]. It would be interesting to extend the

results to the case of a non-unitary connection.

6. For closed Anosov surfaces it is known that Im is s-injective for m = 0, 1, 2 . Is it true for

all m? Also, is I2 s-injective for Anosov manifolds of dimension ≥ 3?

7. Finally, it would be natural to extend all this theory to more general classes of curves. By

this we mean replacing geodesics by other natural set of curves like magnetic geodesics or

geodesics of affine connections with torsion (thermostats). Concerning magnetic geodesics,

the tensor tomography problem in 2D is solved in [1] using the ideas presented here and

the results in [10]. See also [4].
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