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ABSTRACT

Räisänen, Tuomo
Efficient numerical methods for simulating continuous casting processes
Jyväskylä: University of Jyväskylä, 2014, 106 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 210)
ISBN 978-951-39-6013-1 (nid.)
ISBN 978-951-39-6014-8 (PDF)
Finnish summary
Diss.

This study considers modeling, approximating, and simulating of continuous
casting processes. The focus is especially on the numerical efficiency of meth-
ods.

We approach the casting processes using enthalpy based modeling. This
leads to a three-dimensional transient convection dominated two-phase Stefan
problem with the nonlinear boundary condition. Under suitable assumptions the
problem is mathematically well posed. We introduce a three-dimensional model
and show qualitative properties.

Fully discrete Galerkin approximation of the model leads to a large-scale
nonlinear discrete problem for which the convection dominance also causes sta-
bility issues. To overcome these, we apply the method of characteristics and the
upwinding technique. Furthermore, we are able to apply so-called nonlinear
Chernoff formula to these approximations and, as a result, the discrete approx-
imated model can be solved using only linear algebraic equations at each time
step.

All together, we consider four different approximations. We show their con-
vergence and describe the implementation using matrix formulations. By solving
a numerical example, we compare approximations in terms of the rate of conver-
gence and solution time.

Finally, we study how the presented approximations perform on an indus-
trial scale. For this purpose, we use an artificial machine producing stainless steel
to get an example of a detailed model and realistic computational challenges. We
discuss the changes in the solution algorithms compared to the model problem
and introduce an efficient solution algorithm. We validate our software, compare
our approximations, and make conclusions about the numerical efficiency.

Keywords: continuous casting, two-phase Stefan problem, nonlinear Chernoff
formula, upwinding, method of characteristics
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1 INTRODUCTION

1.1 Background

1.1.1 History

The idea of continuous casting was introduced by G.E. Sellars in mid 1880’s but
it took more than hundred years to apply it as an industrial technology in steel
industry. Sellars applied the idea originally to the production of lead tubings.
Continuous casting could not yet be applied to steel owing to too many technical
problems associated with high temperatures and low thermal conductivity.

The first patent for the possibility of solidifying steel using water cooled
mold open at the top and bottom was established by R.M. Daelen in 1887. Dur-
ing the 1900s the process was developed using numerous pilot plants for steel
casting and little by little, it become an industrial standard. Since the 1970s, the
continuous casting processes have been applied increasingly and nowadays 90
percent of steel is produced in continuous casting machines.

Before the continuous casting process was ready for full-scale industrial pro-
duction, steel was cast in a full-length mold having a suitable shape. In the con-
tinuous casting, a continuous slab is formed when the steel is cast through an
open-ended mold. After passing this mold area, steel should have a solid shell
and process can be safely controlled.

During the development of the process, empirical relations like

Shell thickness = K
√

Distance/Casting speed

were found and used. Naturally the value of K had to be defined using costly
plant trials, ending possibly in breakouts. A breakout means that, due to im-
proper cooling of the process, the solidified shell cracks and liquid material flows
to the plant’s floor. On a plant level these trial tests are very costly, even without
a breakout and if it happens, they are even more expensive.

In the 1970s when the continuous casting process was ready to the full-range
industrial production, computers also became affordable and numerical simula-
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FIGURE 1 Curve type continuous casting machine. Image: Kind permission of Out-
okumpu Stainless Oy, Tornio, Finland

tion of the continuous casting process started [52]. At the present time, the pro-
cess is no longer developed by experimental tests only. Several computer-aided
tools are used to control and simulate the process to ensure the products’ quality
and productivity. Breakouts are very rare nowadays due to the proper control of
the system.

1.1.2 Modeling goal

The continuous casting process involves several physical phenomena: turbulent
fluid flow coupled with the heat transfer including phase changes under thermal
stresses. One of the most important considerations during the continuous casting
process is the capability of attaining defect free slabs. Typical defects are different
types of caused by the mechanical tensile strains or improper cooling practices.
Excessive spray cooling or insufficient spray length lead to the surface reheating,
which induces tensile stresses beneath the surface, even up to the solidification
front. On the other hand, too rapid cooling will cause thermal stresses leading to
the cracks as well. Most of these cracks can be predicted if the evolution of the
temperature distribution is known.

During the production, the slab quality depends on the proper combina-
tion of the casting speed and different cooling practices. In offline one can study
different combinations of water cooling and casting speeds, in order to improve
productivity and quality. If one can simulate the processes fast enough, it is possi-
ble to control the process by keeping the cooling rate and temperature of the slab
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in a feasible region in terms of metallurgical criteria even for online purposes.
Typically several simplifications are made in the modeling. The effect of

turbulent flow to the temperature distribution is typically modeled by using an
effective heat transfer coefficient. This leads to an enthalpy based model in which
the temperature can be solved without coupling it to the turbulent flow.

Even the simplified heat transfer model is computationally expensive when
applied to the actual industrial geometries with sufficient accuracy. For this rea-
son, early industrial applications required some simplifications. By neglecting the
heat conductivity to the casting or width directions or both of them one formed
different types of models, still used in simulation [25, 29, 24]. Even with these
simplifications the heat transfer can be approximated with such accuracy that
these models can predict some of the defects.

The development of the simulation tools made it possible to model and re-
solve more and more details of the process.

1.1.3 Challenges and questions in numerical simulation

Currently, commercial finite element-based software, e.g., Fluent or Comsol have
their own packages for simulations fluid flow, thermal stresses, heat transfer etc.
The use of these models is still limited to offline simulation and the transient
simulation of the plain heat transfer in an industrial size machine is very time
consuming in terms of CPU time.

The modeling of the continuous casting processes leads to a large number
of unknowns to be solved. First of all, machine dimensions are big, the length
of the simulation area can be up to 20 meters, the width about one meter, and
the thickness about 20cm. Then with the mesh size of 1cm and assuming some
symmetry one ends up to the order of 106 unknowns in a system of nonlinear
equations, to be solved in a fraction of a second in a real-time simulations.

The description of the proper boundary conditions is essential in the mod-
eling of the industrial continuous casting machines. In the continuous casting
machine, there are tens of supporting rolls. If the heat transfer around a roll con-
tact is modeled as is, each roll has a contact length of 0.5 − 1cm, with a typical
heat transfer coefficient of order 1kw/m2K. On both sides of the rolls there are
radiation areas to which the water cooling cannot reach, or is not aimed to reach.
Length of these are (to the casting direction) typically more than 2 cm. This means
that next to the roll, there is only natural convection and radiation and the value
of the natural convection is about 0.04kw/m2K. In the water cooling area, the
heat transfer coefficient varies typically between 0.3 − 1.2 kw/m2K.

By neglecting some details in the water cooling area, the cooling effect can
be handled by approximating the total heat transfer coefficient as function of the
amount of water in each cooling zone. Then it is possible to decrease the size of
the problem in discrete level and the amount of solution variables depend then on
the accuracy of the solution, but eventually this will lead to a large-scale system
also.

Typical differences in the temperature distributions between detailed and
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zone cooling models are illustrated in Figure 2.
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FIGURE 2 Surface temperature distributions on the midface

Most of the time, the continuous casting process is near a steady state, which
is the typical starting point for the simulation modeling. In the transient simu-
lations, the simplest approach is to use explicit approximations, i.e., obtain the
solution from the previous time level by using simple matrix vector multiplica-
tion. However, in this type of approach there is a stability condition, where the
time step τ is limited with the spatial discretization parameter h. In the case of
steel with the linear heat equation, the condition is such that τ < Ch2, where
C ≈ 10−4. Assuming the simulation scale h ≈ 0.01 meter in the detailed model,
this type of stability condition is obviously very restrictive.

From the point of view of scientific computing, the research questions are:
how can the steady state be approximated efficiently, which are the less restrictive
transient approximations in 3D, and how can they be solved efficiently in terms
of CPU time and accuracy? From the computational science point of view, the
main interest is naturally, how these methods can perform in real-life situations.
Thus, we have to study and discuss at least the following:

1. Mathematical model
2. Qualitative properties of the model
3. Approximations of the model
4. Convergence and stability of the approximations
5. Numerical error estimates
6. Fast solution methods to the approximations
7. Implementation
8. Applications on the industrial scale
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1.1.4 Approach

In the industrial applications, the casting products are typically alloys, which
means in particular that the phase change takes place gradually over a tempera-
ture interval. Then one is tempted to restrict the studies to the efficient numerical
methods for the regular nonlinear heat equation.

We approach the continuous casting processes by taking as a starting point
the classical two-phase Stefan problem with sharp discontinuity on phase bound-
aries.

First, we consider theoretical results by using classical enthalpy formulation
in the absence of convection. Then, we summarize some interesting numerical
solution methods that have been developed by forming fully discrete approx-
imations based on the techniques of showing the existence of a solution. We
introduce a few of them and their basic properties.

After that, we state the problem in the continuous casting context by adding
the casting speed in to the model. There are limited theoretical and numerical
results. We introduce some of these results.

Our aim is to extend the theoretical results to free boundary models of con-
tinuous casting and to develop numerical approximations taking into account the
numerical efficiency in industrial setup.

We introduce four fully discrete approximations to the model. We show the
convergence of these approximations and perform some numerical tests.

As in the industrial applications, usually alloys are concerned, we discuss
how this is related to the numerical efficiency of the given approximations. We
apply all the approximations to alloys in industrial situations. Using efficient
implementation of the approximations, we are able to solve continuous casting
processes up to 106 unknowns in real time on a laptop. As a result we conclude
that, starting from the free boundary formulation, very efficient numerical meth-
ods with the practical accuracy can be formed.

In what follows, we introduce the classical enthalpy formulation of the phase
transition. We show how this can be formed from the classical two-phase Stefan
problem. This will lead to the theory of free boundary problems which can be ap-
plied to modeling industrial processes. We discuss enthalpy based formulations
and their numerical approximations first in the classical model problem and then
in the continuous casting context in the degenerate and nondegenerate forms.
After that, we give a detailed outline of the thesis.

1.2 Enthalpy based modeling of phase changes

Mathematical models for phase change phenomena originated in the 19th cen-
tury. Starting from the works of Lamé, Clayperon, and Stefan, the energy conser-
vation model for freezing of the water was developed and named after Stefan.

We start by describing the classical two-phase Stefan problem that consists
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of the heat equation for the solid and liquid phases, which are combined with
energy considerations on the phase boundary. The conservation of energy state
that

ρ
DE(ϑ)

Dt
= −∇ · q,

where E is total energy, D
Dt = ∂t + b · ∇ material derivative, q represents the

heat flux, ϑ is the temperature, and b = (0, 0, b(t)) describes the movement of
the domain (i.e., casting speed in this work). Let ρ denote constant density and c
specific heat capacity of the material. According the Fourier law, q = −k(ϑ)∇ϑ,
where k is thermal conductivity. Within a single phase, we can write the internal
energy E(ϑ) = ρc(ϑ) and this leads to the heat equation

ρc(ϑ)(∂t + b · ∇)ϑ = ∇ · (k(ϑ)∇ϑ).

Consider now the situation when the domain contains both liquid and solid
material. We normalize the temperature so that the phase change happens at
constant temperature ϑ = 0. In space-time domain, we denote Q = Ω × [0, T] =
Qs ∪ S ∪ Ql, where S is the liquid solid interface. The material properties change
in a discontinuous manner on the surface S, let [e]+− denote the discontinuity of
the quantity e across S, i.e.,

[e]+− = lim
x+→φ

e(x)− lim
x−→φ

e(x).

From the conservation of the energy, it follows that on the interface

[E]+−(w − b) · n = [∇k(ϑ)]+− · n on S,

where w denotes the velocity of the interface S. The amount of energy released
in the phase change [E]+− = ρL, where L is called the latent heat. So

ρL(w − b) · n = [∇k(ϑ)]+− · n. (1)

The resulting equation is{
ρc(ϑ)(∂t + b · ∇)ϑ = ∇ · (k(ϑ)∇ϑ) in Qs ∪ Ql,
ρL(w − b) · n = [∇k(ϑ)]+− · n on S,

(2)

which is the classical formulation of the two-phase Stefan problem.
In the theoretical studies, (2) is typically simplified by using Kirchhoff trans-

formation, which is

θ := K(ϑ) =
∫ ϑ

0
k(s)ds,

and defining

η(θ) = ρ
∫ θ

0

c(K−1(s))
k(K−1(s))

ds, ∀θ ∈ R,
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then (2) becomes {
(∂t + b · ∇)η(θ) = Δθ in Qs ∪ Ql,
ρL(w − b) · n = [∇θ]+− · n on S,

(3)

such that θ = 0 on S.
The existence of the solution for (3) is in general an open problem. It is

not known if the level surfaces S always remain surfaces or may degenerate in
regions (called as mushy regions) where the classical formulation looses its sense.

The development of mathematics in the 20th century made it possible the
classical models for the phase change to be handled with more general assump-
tions and the so-called weak formulation of the two-phase Stefan problem was
developed. We introduce now the distributional formulation of (3). We multiply
(2) by ψ ∈ D(Q) = C∞

0 (Q) (space of smooth functions with compact support),
integrating over Q and using partial integration we have

∫
Qs∪Ql

Δθψ = −
∫

Q
∇θ · ∇ψ +

∫
S
[∇θ]+− · nψ, (4)

and since η(θ) is continuous across S we get
∫

Qs∪Ql

(∂t + b · ∇)ηψ = −
∫

Q
η(∂t + b · ∇)ψ.

Introducing the characteristic function to liquid phase, i.e., χl = 1 in Ql and
χl = 0 in Q\Ql, we get by using the divergence theorem

∫
Q

ρL(∂t + b · ∇)χlψ = −ρL
∫

Ql

χl(∂tψ + b · ∇ψ) =

ρL
∫

S
ψ(w − b) · n =

∫
S
[∇θ]+− · nψ.

By defining

e(θ) = η(ϑ) + ρLχl(θ),

and combining this with (1) and (4) we arrive at the single equation

∫
Q
(−e(θ)(∂t + b · ∇)ψ +∇θ · ∇ψ) = 0, (5)

valid for all ψ ∈ D(Q). Thus (5) defines a linear functional acting on D(Q), so
called distribution and we can write this formally as

(∂t + b · ∇)e(θ)− Δθ = 0 in D′(Q). (6)

Now all the references to the interface φ0 have disappeared. Thus (5) is more
general than the corresponding pointwise equation (2). In particular, it includes
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the possibility of the degeneration of the level set θ = 0 into a region without any
requirement of smoothness except measurability.

In the distributional formulation, one can not add initial or boundary condi-
tions to (6). This can be done by introducing the enthalpy formulation. Consider
the maximal monotone graph H associated with the Heavyside function

H(θ) =

⎧⎪⎨
⎪⎩

0 θ < 0,
[0, 1] θ = 0,
1 θ > 0.

For a given temperature θ, we define enthalpy u by the pointwise inclusion

u ∈ Υ(θ) = η(θ) + ρLH(θ). (7)

Denote by Σ = ∂Ω×]0, T[ the boundary of Q and assume, for simplicity, the
Dirichlet boundary condition for the temperature

θ = d(x, t) on , Σ, (8)

and an initial condition for the enthalpy

u = u(0) on Ω at t = 0. (9)

If ψ denotes a smooth test function such that ψ(T) = 0 and ψ = 0 on Σ, we
obtain from (6) and integration by parts the variational condition

∫
Q
(−u(∂t + b · ∇)ψ +∇θ · ∇ψ) =

∫
Ω

u(0)ψ(0), (10)

which is valid under suitable regularity conditions on u(0), d, and Ω.
The problem of finding a weak solution to (10) consists of finding a pair

{u, θ}, such that conditions (7), (8), and (9) hold.
Remark. The equation (10) can also be presented in terms of the enthalpy

by defining β = Υ−1. Then in the weak sense

(∂t + b · ∇) u = Δβ(u). (11)

As ∂β
∂u = 0, for u ∈ [0, L], this is a degenerate nonlinear heat equation.

1.3 Well posedness of the enthalpy formulations

Theoretical studies of the enthalpy formulation use a wide range of different tech-
niques (see, e.g., [48, 58, 44, 54]). Our approach is practical; we just describe the
techniques that are needed in this work. We state the enthalpy formulation first
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without convection (b=0), as this has been the starting point for the theoretical
studies.

Assume that boundary of Ω is split as ∂Ω = Γd ∪ Γn and

θ = d(x, t) on Γd×]0, T[=: Σd,

− ∂θ

∂n
= g(θ), on Γn×]0, T[=: Σn.

Let V(d) ∈ {ψ ∈ H1(Ω)|ψΓd = d}. The basic problem in the weak form can be
stated as follows:

PROBLEM (Pg): Find {u, θ} , u ∈ Υ(θ) such that

u ∈ L2(0, T; L2(Ω)), θ ∈ L2(0, T; V(d)),

and for all ψ ∈ V := L2(0, T; V(0))∩ H1(0, T; L2(Ω))∩ L∞(Q), with ψ(T) = 0 the
following equation holds∫

Q
(−u∂tψ +∇θ · ∇ψ) +

∫
Σn

g(θ)ψ =
∫

Ω
u(0)ψ(0).

In the optimal case the theoretical studies will lead to the existence of unique
solutions that depends continuously on the data.

Starting from the works of Kamenomostskaya [19] and Oleinik [41], the the-
ory of the gualitative properties of problem (Pg) has been developed by several
authors, e.g., Ladyzenskaya [20], Friedman [17], Lions, [23], Damlamian, [9] , re-
sulting to that when g is linear, the mixed boundary value problem is well posed.
Generalizations to nonlinear boundary conditions have been treated by Pawlow
and Niezgodka, [33], Visintin [56], Cannon and DiBenetto [4], and as a result of
these studies (Pg) was found completely well posed under suitable regularity
assumptions of the domain, data and, g.

1.3.1 Existence

The general strategy for proving the existence of a solution to (Pg) is to construct
a family of approximating problems (Pa) with a unique solution. Then it is shown
that these approximations have a limit and that the limit solves the original prob-
lem (Pg).

If the approximations are numerically implementable fully discrete prob-
lems, the convergence of the numerical method can be shown simultaneously
with the existence proof.

Let xa denote a solution to the approximation (Pa) of (Pg) and a some pa-
rameter(s). The basic procedure is the following:

– Approximate problem (Pg) with (Pa) to which exists a unique solution xa

– Estimate solution xa a priori in a suitable norm ‖xa‖ ≤ C, independent of a
– Show that the limit xa, a → 0, say x∗ exists
– Show that x∗ solves (Pg)
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We state few approximations from which we can construct various fully discrete
approximations to be discussed in this work. We discuss a priori estimates and
the limit process when we introduce our fully discrete approximations.

There are numerous ways to construct (Pa), for example

– Approximate problem (Pg) by smoothing i.e. (Pε)

– Approximate (Pg) by relaxation (Pδ,μ)

– Approximate (Pg) by time discretisation (Pτ)

– Approximate (Pg) with (Pε,τ)

– Approximate (Pg) by spatial discretisation of smoothed problem (Pε,h)

– Form fully discrete approximation for (Pg) in space time (Ph,τ)

– Form fully discrete approximation for (Pg) of the form (Pε,h,τ)

– Approximate (Pg) by (Pδ,τ)

– Form fully discrete approximation for (Pg) of the form (Pδ,τ,h)

Approximations (Pa) are by no means unique, for example one can form time
discrete approximation in various ways. Typically in the literature (see, e.g., [58]),
approximations are not distinguished from each others. In the nondegenerate
case, a standard approach is to define so-called Galerkin approximation, which
is of type (Ph), but this will not work directly and this is why one typically starts
from the smoothing approach.

A smoothing approximation Pε. The regularization of the enthalpy by defin-
ing continuous enthalpy as Υε (or temperature as βε(u)) is a typical approach
when working all the time on a continuous level. This can be done, for example,
as

βε(s) :=

{
β(s), if s < 0 or s > sε,
εs if 0 ≤ s ≤ sε,

where sε = 1 + Cε is such that β(sε) = εsε.
Then from the theory of mildly nonlinear partial differential equations the

existence of a unique the solution is typically obtained [44], [58].
A relaxation approximation Pδ,μ. Another approach that leads to the solu-

tion of a linear equation heat equation is the phase relaxation technique [57]. The
basic idea is to add a delay to the phase change with the so-called phase variable.
In this method, Υ is split as follows:

Υ = μI + H̃,

where I is the identity, H̃ is still a maximal monotone graph, and 0 < μ ≤ 1
Lβ

(Lβ is
the Lipschitz constant of β). Denoting χ := u − δθ as phase variable, the classical
constitutive relation reads

χ ∈ H̃(θ) or θ ∈ Λ(χ) := H̃−1(χ).

As a substitute for the stationary relation Visintin introduced
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δχδ
t + Λ(χδ) 
 θδ, (12)

where δ > 0 is a small relaxation parameter. Therefore, (74) incorporates a time
delay in the constitutive relation. The original partial differential equation is now
replaced by {

μθδ
t + χδ

t − Δθδ = 0,
δχδ

t + Λ(χδ) 
 θδ

Visintin [57], showed that this equation converges to the solution of (Pg), Γn = ∅
as δ → 0.

A time discretisation approximation Pτ. This type of approximations comes
from the theory of nonlinear semigroups of contractions [3]. This theory leads
also to existence, uniqueness, and global regularity results but also suggests some
time-discrete algorithms that will be useful when the numerical approximations
are discussed. The following approximation is known as the Crandall-Liggett
formula [8]. {

u0 = u0,
un −τΔβ(un) = un−1.

This scheme corresponds to simple backward differences in time, when u is con-
tinuous.

An interesting alternatives for simulation purposes comes from the nonlin-
ear Chernoff formula [2], which in simplest form can be presented as⎧⎪⎪⎨

⎪⎪⎩
u0 = u0,
θn − τ

μ Δθn = β(un−1),

un = un−1 − μ[θn − β(un−1)],

(13)

where μ ≤ 1
Lβ

. In [2] it was shown that this approximation converges to the
solution of the problem form (Pg), Γn = ∅ as τ → 0. The reason why the Chernoff
formula is interesting for numerical purposes is that (13) is linear.

Method of approximations of type Pε,h. The most popular way to con-
struct this type of approximation is the semi-discrete Galerkin method. The semi-
discrete Galerkin finite formulation consists of subdividing the domain Ω into el-
ements and constructing a finite-dimensional subspace Vp

h ⊂ V. Here Vp
h consists

of piecewise p-degree polynomial functions spanned by a set of basis functions
ψi, i=1,. . . , Mh. For instance, p = 1, for piecewise linear finite elements. As the
regularity of the problem is low, we will use piecewise linear approximation in
the discrete space denoted by Vh. The Galerkin method consists of finding

uε
h(x, t) =

Mh

∑
i=1

uε
i (t)ψi(x),

and

θε
h(x, t) =

Mh

∑
i=1

βε(uε
i (t))ψi(x).
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Then choosing piecewise linear test functions in Vh(0) one arrives at the
following approximation to the weak form of (Pg).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mh

∑
i=1

uε
i (0)

∫
Ω

ψiψj =
∫

Ω
uε(0)ψj, j = 1, . . . , Mh,

Mh

∑
i=1

∂uε
i (t)
∂t

∫
Ω

ψiψj + θε
i (t)

∫
Ω
∇ψi · ∇ψj = 0, j = 1, . . . , Mh.

By defining suitable projection Phuε(0) = uε
h(0) for the initial value and

identifying the piecewise linear functions of Vh with the vectors of RMh contain-
ing their nodal values U(t) = (uε

1(t), . . . , uε
Mh

(t))T ∈ RMh and Θ(t) := βε(uε
1(t)

, . . . , uε
Mh

) ∈ RMh we get

⎧⎪⎨
⎪⎩

MU(0) = Muh(0) at t = 0,

M
∂U(t)

∂t
+ AΘ(t) = 0.

Components of the stiffness matrix A ∈ RMh×Mh are computed as
∫

Ω
∇ui∇ψj = aij,

and the for the mass matrix M ∈ RMh×Mh

∫
Ω

ψiψj = mij.

1.3.2 Uniqueness and continuous dependence

The proof of uniqueness is typically indirect and consists of showing that with
the same data the integral of the difference of two possible different solutions is
then zero.

Let u, û be two different solutions to the Pg and assume that Γn = ∅. After
integrating, it holds that

∫
Q
(u − û)(

∂ψ

∂t
+ αΔψ) = 0, ψ ∈ V, (14)

where ψ ∈ V is such that Δψ ∈ L2(Q) and ∂ψ
∂n ∈ L(Σ). Then we denote

α =

⎧⎨
⎩

θ − θ̂

u − û
u �= û,

0 u = û,
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for u ∈ Υ(θ). Approximating α by a sequence of smooth functions αn, we define
ψn to be the solution

∫
Q
(

∂ψn

∂t
+ αnΔψn) = f . (15)

where f ∈ D(Q). Replacing ψ with ψn in (14) then

I =
∫

Q
(u − û) f =

∫
Q
(u − û)(αn − α)Δψn. (16)

Estimates on the solution of (15) will then imply that |I| → 0 as n → ∞, [15].
The continuous dependence in this type of technique is shown by develop-

ing previous ideas. By taking two different sets of data, (16) can be bounded by
this difference under some suitable assumptions of the data and the boundary
conditions. For a problem (Pg), Γn = ∅ this means

∫
Q
|u − û| ≤ C

{∫
Ω
|u(0)− û(0)|+

∫
Q
|d − d̂|

}
,

where constant C is independent of T.
Another way of the showing the uniqueness and continuous dependence

of L1 type is to use following technique [58]. One first shows the qualitative
properties for the smoothed problem, i.e,

〈∂tuε, ψ〉+ 〈∇θε,∇ψ〉 = 0, ∀ψ ∈ V(0),

and then using the regularity of the solution and passing to the limit,
∫

Ω
|u(t)− û(t)| ≤

∫
Ω
|u(0)− û(0)|.

1.4 Numerical approximations of the enthalpy based models

By numerical approximation, we mean in this section a fully discrete problem.
Numerical approximations to the free boundary problems were introduced the
in 1950s [13]. The enthalpy formulation was first used by Rose [46] using explicit
approximation and assuming that the problem is well posed.

The techniques of showing the convergence of the numerical approxima-
tions are essentially based on the existence procedure of section 1.3.1. Solomon
[51] and D. R. Atthey [1] applied explicit approximations. Smoothed implicit ap-
proximations were introduced by Meyer [30]. The finite element method for a
approximation of a problem type (Pε,τ,h) for (Pg) , when Γn = ∅ was introduced
by Ciavaldini [7]. Then without regularization, approximations of type (Pτ,h)
were introduced by White [60] and Elliot [14].
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The numerical approximations based on the theory on nonlinear semigroups
of contractions were introduced by Rogers, Brezis, and Berger [2] and, e.g., [53,
55, 40].

In the 1990s, the development of the enthalpy based numerical approxima-
tions lead also to the adaptive methods. These methods have been studied in,
e.g., [38, 34]. We restrict our studies to the fixed grid settings.

We describe some of these approximations assuming that Γn = ∅. Let
Un, Θn be piecewise linear approximations of uh,t(x, t), θh,t(x, t) respectively at
t = nτ, n = 1, . . . N.

Numerical approximations of type Pε,h,τ. These result in the mildly non-
linear equations of type

MUn + τAβε(Un) = MUn−1

or

MΥε(Θn) + τAΘn = MΥε(Θn−1).

Both of these equations can be solved using the theory of M-functions, resulting
in the nonlinear Gauss Seidel method [42].

Numerical approximations of type Ph,τ. The following approximation was
introduced by White [61],

MUn + τAβ(Un) = Un−1,

and the convergence of the Gauss Seidel method follows by using the properties
of the matrices A and M. The formulation

MΥ(Θn) + τAΘn = MΥ(Θn−1),

is not possible, as Υ is now a graph. It can be replaced as

MUn + AΘn = MUn−1,

but as Un is not continuous, the theory of M-functions fails. Elliot [14] has intro-
duced a converging algorithm for this type of formulation.

It is straightforward to form a fully discrete approximation for the Chernoff
formula {

MΘn + τ
μ AΘn = Mβ(Un−1),

Un = Un−1 + μ[Θn − β(Un−1)].

The existence of a unique solution is then obtained from the theory of linear alge-
braic equations.

Similarly to the phase relaxation, the algebraic problem is of the form

{
μMΘn + Mχn + τAΘn = MΘn−1 + Mχn−1,
δχn + τΛ(χn) = δχn−1 + τΘn−1.
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We have not considered the boundary conditions in the approximations,
but at least linear boundary conditions can be applied straightforwardly to the
approximations. We discuss in detail how the boundary conditions can be added
to the approximations later.

Numerical error estimates. In the case of linear boundary conditions, the
error estimates depend on the shape and dimension of the domain, the regular-
ity of the initial data, and the numerical integration method used. Error estimates
were studied in [18, 36, 35], when the problem is of the type Pε,τ,h. Roughly speak-
ing the basic rate of convergence in L2(Q) norm is O(h

1
2 ) when relation τ ∼ h ∼ ε

is used. If the approximation is of type Pτ,h the same rate of convergence to the
temperature has been shown. As u is discontinuous, error estimates to the en-
thalpy are limited to the H1(0, T; H−1(Ω)) norm. Error estimates are discussed
in e.g. [55, 31, 7, 28, 16, 36].

In the case of nonlinear boundary conditions, Nochetto [37] obtained error
estimates in L2 norm, when the solution is in the class of nondecreasing in time,
which is not the case in the continuous casting processes. Thus we are limited to
the methods to which we can show the convergence and the wide literature of
the numerical analysis of the error estimates to the two-phase Stefan problem is
not applicable to (Pg) in general level.

1.5 Numerical efficiency of the enthalpy formulations

Numerical efficiency depends on the proper combination of the available solution
algorithm to the algebraic problem and accuracy of the approximation.

Within a given approximation, one may also consider different formula-
tions, then one may prefer the method that is computationally more efficient.
For example, which formulation is computationally more efficient

MUn + τAβε(Un) = MUn−1,

or

MΥε(Θn) + τAΘn = MUn−1 ?

Clearly, taking Θn as solution variable is more efficient, as the diffusion part is
linear. In every iteration, one has to compute the value of the nonlinear function.
If this evaluation is made to the diffusion part in 3D using the finite difference
method, it has to be evaluated seven times in each iteration. If the nonlinearity is
on the diagonal, it has to be computed only once in Gauss Seidel iterations.

As far as the iterative methods are concerned, however, the most efficient
solution method to the approximations of type (Ph,τ) is one defined by Elliot
[14], as it allows to use over relaxation to accelerate the convergence. An Im-
portant feature in the iterative methods is the use of incomplete iteration [11].
This means that the stability of the solution can be preserved using some prac-
tical stopping criteria, and this is used especially in industrial applications. The
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choice of stopping criteria is then made by comparing the results with different
stopping criteria [26].

In the case of linear algebraic equations, there are two main approaches,
iterative and direct solvers. The choice of the method depends radically on the
number of the iterations needed in the iterative process, and this depends on the
nature of the problem. In the diagonally dominant transient case, the iterative
solvers can be very efficient. Thus, finding the most efficient solution method is
a case-by-case study.

1.6 Applications to the continuous casting processes

The applicability of the model (Pg) to the continuous casting processes is rather
limited. An important application for the problem (Pg) is to approximate the sit-
uation when the process is in a steady state. As the convection highly dominates
the system, one can form a model approximating a steady state situation by ne-
glecting the heat conductivity to the casting direction. This kind of simplification
was used in the first simulations.

Simulation of the transient continuous casting processes consists of solving
the following problem

PROBLEM (Pb): Find {u, θ}, u ∈ Υ(θ) such that

u ∈ L2(0, T; L2(Ω)), θ ∈ L2(0, T; V(d)),

and for all ψ ∈ V following equation holds

−
∫

Q
u(∂tψ + b · ∇ψ) +

∫
Σn

uψb · n +
∫

Q
∇θ · ∇ψ +

∫
Σn

g(θ)ψ =
∫

Ω
u(0)ψ(0).

Qualitative properties. In the continuous casting processes where (b �= 0),
the Stefan problem is a nontrivial variant of the model problem. Compared to the
huge amount of available results in the case in which b = 0, only a few studies
can be traced.

Theoretical studies of the model coming from the (Pb) were studied by Ro-
griques and Yi [45], where the existence and uniqueness were proven. They con-
sidered a general monotone nonlinear nondecreasing boundary condition to take
into account the cooling using the Dirichlet boundary condition both on inflow
and outflow boundaries. Stefan problem with enthalpy dependent convection
was studied in [62], where the existence of the solution was shown with the fol-
lowing boundary condition

b · nu − ∂θ

∂n
= g(θ).

By assuming the Dirichlet boundary condition they showed also uniqueness and
error estimates between regularized and continuous problems.
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Another type of approach introduced by Rulla [49] considered prescribed
convection with the nonlinear boundary condition, however under various im-
practical limitations concerning boundary conditions [44].

Numerical approximations. Numerical approximations to the (Pb) are given
by Chen et al. [6], where the following semi-implicit approximation was consid-
ered with the regularized enthalpy{

u0 = u0,
un −τΔθn = un−1 − τbn−1 · ∇un−1, 1 ≤ n ≤ N.

The fully discrete problem also includes the implicit nonlinear boundary condi-
tion and the solution was obtained with the nonlinear Gauss Seidel method.

Let us discuss the stability condition of this type of approximation. For
simplicity, assume the linear case. Then, an FE-approximation looks like

(I + τK)Θn = (τcC + I)Θn−1,

with material parameter c, which also includes the velocity constant b. Here K

stands for the square matrix M−1A, C = M−1Ĉ denotes the approximation of
the convection term, and I is the identity matrix. In order to calculate the sta-
bility condition (the condition number of the iteration matrix must be less than
one), we have the following estimates for the eigenvalues, with the discretization
parameter h

K = o(
1
h2 ), C = o(

1
h
).

The stability condition of the numerical solution is now

1 +
cτ

h
< 1 +

τ

h2 ,

which is true if
h <

1
c

.

The casting speed b is typically of order 10−1. The volumetric specific heat is
typically of order 104. Thus the discretization with respect to the space variable
is restricted in the class of h < 10−3. This would lead to order of 109 degrees of
freedom in practical approximations.

Another type of approximation was introduced in [5], where the charac-
teristic method and the phase relaxation formula were combined. In the phase
relaxation with the prescribed convection, the approximation is{

μθδ
t + χδ

t + b · ∇(μθδ
t + χδ

t )− Δθδ = 0,
δχδ

t + Λ(χδ) 
 θδ.

Now by using the method of characteristics one arrives at the coupled system
with the linear diffusion part, namely{

μ∂̄θn + ∂̄χn − Δθn = 0
δ∂̄χn + Λ(χn) = θn ,
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where ∂̄ denotes the characteristics approximation. Compared to the case in
which b = 0, this algorithm requires a Picard type of iteration, as in the update
formula the temperature is implicit. The reported number of the iterations were
3 − 5 in a one-dimensional case with the Dirichlet boundary condition when the
iteration was stopped when the L∞ difference between iterations was less that
0.001, with the time step 0.05.

The characteristic Galerkin method with adaptive error control in 2D was
introduced by Chen, Nochetto, and Schmidt [34], and it can be presented as{

u0 = ū(0),
un −τΔθn = ūn−1, 1 ≤ n ≤ N,

where ūn denotes the characteristic approximation. They used the linearized
boundary condition in order to get posteriori error estimates.

Domain decomposition methods for continuous casting problems using both
the characteristic method and upwinding approximation for the convection term
in 2D were studied in [21].

1.7 Industrial applications

The basic model problem assumes that the solidification is isothermal and the
free boundary is expected to have a smooth shape, which is typical for pure ma-
terials. The major difference between the continuous model problem and in the
industrial applications is that most of the time we are dealing with the alloys. In
the alloys there are several chemical elements in the material, each having differ-
ent melting points. As a result, in the phase change, the latent heat is released
in a certain temperature range rather than at a single temperature. The phase
change region has a crystalline structure consisting of equi-axed grains and the
solid/liquid interface has a complex shape that is not necessarily smooth or con-
tinuous. The enthalpy formulation is still the most useful approach, since it can
be presented as

u = Υ(θ) = η(θ) + ρLHr(θ),

where Hr represents the phase fraction. Thus in various applications one might
use the theory of mildly nonlinear partial differential equations.

In the case of copper casting, sometimes it is preferred to have as pure cop-
per as possible leading to 99.95% content of the pure copper, which can be viewed
as Stefan problem.

If the enthalpy is continuous in the alloys, it makes it possible to apply
the theory of more regular problems to the continuous casting processes. This
non degeneracy property combines with the weak formulation. This explains the
popularity of the enthalpy based formulations as the simple weak formulation of
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FIGURE 3 Enthalpy in pure materials (a) and in alloys (b)

nondegnerate problems allows to track the solid liquid interfaces as level sets of
the temperature.

It is possible to use upwinding or characteristic approximation [12] to the
convection term. When the convection is not needed in the model, one may use
standard approaches based on the finite element or finite difference approxima-
tions.

The fully discrete approximations we have presented can now be consid-
ered with fixed ε. The usage of Kirchhoff transformation θ or enthalpy u as a
solution variable in the algebraic system is not a common practice. Typically in
the industrial applications, the approximations are stated as a function of tem-
perature ϑ, which is not most efficient way computationally.

One would naturally hope that numerical analysis would be widely avail-
able in this case. However, this is not true for what comes to the error estimates
at a general level. When both the convection term and the nonlinear boundary
conditions are present in the equation, there are no error estimates. In the case
of b = 0, Zlamal [63] showed linear rate of convergence for the temperature in
L∞ norm, for monotone nonlinear boundary condition. For a non degenerate
problem, semi-discrete Chernoff approximation was shown to have linear rate of
convergence in the case of Γn = ∅, b = 0 in [27].

As discussed, typically in industrial applications some simplifications are
made. By assuming a sufficiently fast casting speed, in the steady state situation
the model equation

∂u
∂t

+ b
∂u
∂z

=
∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 (17)

can be simplified. Since (17) is highly convection dominated, one can neglect
the heat conduction to the casting direction by setting ∂2θ

∂z2 = 0 and develop a 2D
simulation model for the steady state situation, ∂u

∂t = 0 . The review of these kinds
of methods can be found in [59]. Other way is to set ∂2θ

∂y2 = 0 in (17), and in this
case transient simulations can also be performed [25].

Applications in 3D have also been considered in [10], where method of char-
acteristic method were applied and the temperature ϑ was used as the solution
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variable in the nonlinear algebraic system.
The solution techniques are essentially based on the use of the nonlinear

Gauss Seidel method in the algebraic system, and results of applying the Cher-
noff type of formula to the industrial applications have not been reported. The
reason for this is probably that, in the case of continuous enthalpy the problem
can be stated as a regular problem and the theory and algorithms coming from
the of nonlinear semigroups of contractions are not needed. The treatment of
the implicit boundary condition typically uses Newton Raphson iteration on the
boundary or linearization.

1.8 Outline

First we introduce the basic continuous casting process and how the boundary
conditions are formulated for the continuous model. Then, we discuss the qual-
itative properties of the model both nondegenerate and degenerate cases. We
define four different types of fully discrete approximations to the continuous
model with the variable casting speed. In order to avoid stability issues related
to the convection dominated problem, we have two basic strategies: Characteris-
tic method and use of upwinding approximations. We are also able to combine
Chernoff type formulas with these approximations. We present here the ideas on
time level n, n = 1, . . . , N.

First approximation. This approximation is based on the method of char-
acteristics, which is standard for the smoothed problem (alloys). At the semi-
discrete level, this can be expressed as⎧⎪⎨

⎪⎩
u0 = u(0),
ūn−1 = un−1(x − τbn−1, tn−1),
un − τΔθn = ūn−1.

We are able to prove the convergence without regularization (in free boundary
form). Our technique, however, requires assumption bτ ≤ h in the free boundary
form. The boundary condition will be taken into account in an implicit manner.

Second approximation. The second approximation uses upwinding ap-
proximation for the convection term and can be expressed as{

u0 = u(0),
un + τb · ∇un − τΔβ(un) = un−1.

We are able to show the convergence without any stability restrictions.
Third approximation. This can be viewed as a combination of the nonlinear

Chernoff formula with the method of characteristics. Discrete in time approxima-
tion reads as follows, taking into account the algebraic correction formula with
the method of characteristic

un = ūn−1 + μ[θn − β(ūn−1)],
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we get the following approximation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 = u(0),
ūn−1 = un−1(x − τbn−1, tn−1),
θn − τ

μ Δθn = β(ūn−1),

un = ūn−1 + μ[θn − β(ūn−1)].

We assume that the boundary condition is taken into account in an explicit man-
ner. In this way we have a wider range of available efficient numerical solution
methods. The assumption bτ ≤ h is required for the convergence in the free
boundary form.

Fourth approximation. We are also able to combine upwinding approxi-
mation and the Chernoff formula. Taking into account the algebraic correction
formula

un = un−1 + μ[θn − β(Un−1)],

we have also that in the weak sense

b · ∇un = b · ∇(un−1 + μ[θn − β(un−1)]).

This suggests the following approximation⎧⎪⎪⎨
⎪⎪⎩

u0 = u(0),
θn +τb · ∇θn − τ

μ Δθn = β(un−1) + τb · ∇[β(un−1)− 1
μ un−1],

un = un−1 + μ[θn − β(un−1)].

Using stability assumption bτ < Ch, we show the convergence of the method.
Implementation. Compared to the commercial software we are able to use

some obvious benefits. As we have a simple parallelepiped domain, the use of
finite difference method, leading to low memory storage, is the natural approach.
Taking the benefit of this shape we can use various kinds of efficient numerical
solution methods and we discuss some of these.

We describe the implementation using matrix formulations. We give nu-
merical examples using the linear boundary condition and compare the numeri-
cal efficiency of the approximations in an academic test case.

Industrial applications. We use actual material data [32], and show how
they can be applied to the given approximations. We determined that in the case
of alloys, the iterative method of the form{

θ0 = β(u(0)),
Υ(θn) + τb · ∇Υ(θn)− τΔΘn = Υ(θn−1),

is computationally more efficient compared to the defined free boundary solution
algorithm with the upwinding approximation.

We validate the implementations against existing industrial 2D software
that can compute the steady state.
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After that we are in a position to start comparing given approximations in
transient situations. We start with a simple zone cooling model and then move to
the detailed model.

Finally, we make some conclusions about the numerical efficiency of the
given approximations in the industrial-scale problems.



2 MATHEMATICAL MODEL

In this chapter, we first describe a typical continuous casting machine and discuss
how it can be linked to its environment through the boundary conditions. Various
types of boundary conditions are used in industrial applications, and we discuss
some of them. As a result we describe a general nonlinear boundary condition
that it is locally monotone and Lipschitz continuous with respect to temperature.
Then we introduce the corresponding model and study its qualitative properties.
We use the isothermal formulation for the phase change (i.e., discontinuous tem-
perature enthalpy relation), in order to work on as general level as possible.

2.1 Continuous casting machine

Continuous casting is a process where molten steel is solidified into a slab to be
subsequently rolled in the finishing mills. Liquid steel flows out of the ladle into
the tundish and then into a water-cooled copper mold. Solidification begins in
the mold and continues due to the water cooling on the surface until the slab is
fully solidified and can be cut. The slab is bent during the solidification to reduce
the height of the machine and the hydraulic pressure to the molten steel.

To start a cast, the mold bottom is sealed by a steel dummy bar, which is held
in place hydraulically by the Straightener Withdrawal Units. This bar prevents
liquid material from flowing out of the mold. The steel poured into the mold is
partially solidified, producing a metal strand with a solid outer shell and a liquid
core. In this primary cooling area, once the steel shell has a sufficient thickness,
about 10 to 20 mm, the Straightener Withdrawal Units are started, and proceed to
withdraw the partially solidified strand out of the mold along with the dummy
bar. Liquid metal continues to pour into the mold to replenish the withdrawn
steel at an equal rate. The withdrawal rate depends on the cross-section, grade
and quality of steel being produced, and may vary typically between 0.3 and 2
meters per minute. The casting time is typically 1.0 − 1.5 hours per heat to avoid
excessive ladle heat losses. The new heat is then started by changing the ladle.
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Upon exiting the mold, the strand enters a roller containment section and
secondary cooling chamber, in which the solidifying strand is sprayed with wa-
ter or a combination of water and air (referred to as Air-Mist) to promote solid-
ification. This area preserves the integrity of the cast shape and product quality.
Larger cross-sections require extended roller containment. Once the strand is
fully solidified and has passed through the Straightener Withdrawal Units, the
dummy bar is disconnected, removed, and stored. Following the straightener,
the strand is cut into individual pieces of cast products: slabs, blooms, billets,
rounds, or beam blanks, depending on the machine design.

Billets have cast section sizes up to about 20 square centimeters. Bloom sec-
tions sizes typically range from approximately 20 centimeters square to about 50
centimeters. Round castings include diameters of approximately 10 to 50 cen-
timeters. Slab castings range in thickness from 5 to 40 centimeters, and up to 200
centimeters wide. The width-to-thickness ratio, referred to as the, "aspect ratio",
is used to determine the dividing line between blooms and slabs. An aspect ratio
of 2.5:1 or greater constitutes an as-cast product referred to as a slab. We will use
the general term slab hereafter, to denote the cast product.

To summarize, the casting process is compromised of the following sections:

1. A tundish, located above the mold to feed liquid steel to the mold at a reg-
ulated rate.

2. A primary cooling zone or water-cooled copper mold through which the
steel is fed from the tundish, to generate a solidified outer shell sufficiently
strong enough to maintain the strand shape as it passes into the secondary
cooling zone.

3. A secondary cooling zone in association with a containment section posi-
tioned below the mold, through which the still mostly-liquid strand passes
and is sprayed with water or water and air to further solidify the strand.

4. Unbending and Straightening section.
5. A severing unit (cutting torch or mechanical shears) to cut the solidified

strand into pieces for removal and further processing.

As our goal is to approximate the temperature distribution of the slab, we will
need to model the primary cooling region (mold), secondary cooling region (wa-
ter cooling and roll contact), and the simulation area should extend to the region
where the slab is fully solidified, typically 15 − 20 meters. Next, we introduce
these regions in more detail.

Mold. The main function of the mold is to establish a solid shell sufficiently
strong to contain its liquid core upon entry into the secondary spray cooling zone.
Key product properties are shape, shell thickness, uniform shell temperature dis-
tribution, defect-free internal and surface quality with minimal porosity, and few
non-metallic inclusions.

The mold is basically an open-ended box structure, containing a water-
cooled inner lining fabricated from a high purity copper alloy. Mold water trans-
fers heat from the solidifying shell. The working surface of the copper face is
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often plated with chromium or nickel to provide a harder working surface, and
to avoid copper pickup on the surface of the cast strand, which can facilitate sur-
face cracks on the product.

Mold heat transfer is both critical and complex. Mathematical and com-
puter modeling are typically utilized in developing a better understanding of
mold thermal conditions, and to aid in proper design and operating practices.
Heat transfer is generally considered a series of thermal resistances as follows:

1. Heat transfer through the solidifying shell. This is taken into account in the
enthalpy formulation itself in which the phase change is taking into account.

2. Heat transfer from the steel shell surface to the copper mold outer surface.
One may use several types of boundary conditions for this purpose. To
simulate the temperature distribution of the slab, it suffices that the total
heat flux can be measured.

3. Heat transfer through the copper mold. One may define a coupled model
for this purpose, e.g., [43], but typically the main focus is on the secondary
cooling region in which the cast can be controlled via water sprays.

4. Heat transfer from the copper mold inner surface to the mold cooling water.
The total cooling energy can be measured from the difference of the ingo-
ing and outcoming water. This information is sufficient to approximate the
temperature distribution of the slab.

Secondary Cooling. Typically, the secondary cooling system is comprised of a
series of zones, each responsible for a segment of controlled cooling of the solidi-
fying strand as it progresses through the machine. The sprayed medium is either
water or a combination of air and water.
Roll Contact. Depends on the type of roll and contact area. Rolls can be internal
cooled or not, and a different value of the heat transfer coefficient has to be used
depending on the roll type.
Radiation. Dominates heat transfer whenever seondary cooling or roll contacts
are not active until sufficiently low temperature is achieved, and then natural
convection (air convection) dominates. This means that the boundary condition
in these area is combination of the linear part (natural convection) added with the
Stefan Boltzmann radiation term.

2.2 Boundary conditions

In the industrial simulations one can find numerous ways of modeling both mold
and secondary cooling. There is no mutual agreement on which type of bound-
ary conditions are the best. The heat transfer coefficient on the boundary plays a
major role and is typically calibrated to measurements with the used steel grade
in the actual machine to be modeled. Our task is not to compare the different
types of boundary conditions rather than compare different kind of approxima-
tions with various grid sizes. Nevertheless, the boundary conditions we will use
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have been used to describe the continuous casting machine at the industrial level,
and this suffices for our purposes. We will briefly discuss different types of ap-
proaches.

We first take a look at how the boundary conditions are combined from
some basic cooling sequences on the secondary cooling region. To summarize,
after the mold region the cooling happens repeatedly as a sequence of the water
cooling, radiation, roll contact, radiation, water cooling... More precising, let Ω
denote the slab in R3 with the boundary Γ and Γin denote the part of the boundary
Γ through which the material is spilled to the casting process. The part Γ \ Γin is
further divided into six groups of non overlapping subsets: Γ \ Γin = Γmold ∪
Γcool ∪ Γrad ∪ Γroll ∪ Γout ∪ Γsym. Furthermore let ncool denote the number of the
water contact areas between rolls, nroll, is the number of the rolls, and nrad is the
number of the radiation areas. Thus

Γcool = ∪
ncool

Γi
cool,

Γroll = ∪
nroll

Γi
roll,

Γrad = ∪
nrad

Γi
rad.

The basic cooling sequence in the casting direction after the mold region is then

Γi
cool ∪ Γi

rad ∪ Γi
roll ∪ Γi+1

rad , i = 1, · · · , ncool,

and on the roll support area

Γ2ncool+i
rad ∪ Γncool+i

roll ∪ Γ2ncool+i+1
rad , i = ncool, · · · , nroll,

and on the rest of the slab there is just natural convection and radiation. In the
zone cooling model, these basic sequences are combined. In the FIGURE (??) we
see how the heat transfer coefficient typically behaves in the detailed model.

Mold. Based on the temperature difference of the incoming and outgoing
water in the mold, we can compute the total heat flow from the slab in the mold
region

q = (ϑin − ϑout)ρwcwQw,

where ϑin is the incoming water temperature, ϑout the outgoing water tempera-
ture, density of the water is ρw, and cw its heat capacity. The quantity Qw is the
water flow rate.

However, the spatial distribution of heat flow is not known, at least not
without detailed modeling of the mold. Naturally heat flow from liquid is greater
than in the shell region. Thus the total heat flow is distributed so that it decreases
towards to the mold end and corners. Thus the boundary condition

− ∂θ

∂n
= q(x, t), on Γmold,
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FIGURE 4 Variation of the heat transfer coefficient on the boundary

is one possible choice. Even thought the heat flux can be distributed, the starting
point of the shell formation is hard to track.

Another possibility is to apply temperature-dependent heat transfer coeffi-
cient in such a manner that heat transfer decreases as the strand surface cools. So
the boundary condition could be of the form (recall that K−1(θ) = ϑ)

− ∂θ

∂n
= v(ϑ)(ϑ − ϑm), on Γmold,

where ϑm is the temperature of the mold surface and v is the heat transfer coeffi-
cient. As we know the total heat flow, we then can construct simple heat equation
for approximating the temperature distribution in the mold by defining bound-
ary conditions for the mold domain in such a manner that measured heat flow is
satisfied. This leads to a coupled system of partial differential equation [43].

It has been observed that these different kinds of boundary conditions give
rather different surface temperature profiles in the mold region, but as soon as
the cast is pulled to the secondary cooling area the temperature profiles coincide
if the total fluxes are equal, due the reheating effect of the liquid core [25].

Secondary cooling. On the secondary cooling region Γcool, the influence of
the water cooling, together with the Stefan Boltzmann radiation law will be used,
thus

− ∂θ

∂n
= v̄(ϑ, x, t)(ϑ − ϑex) + σε(ϑ4 − ϑ4

amb), on Γcool, (18)

where v̄ > 0 is the heat transfer coefficient, σ is the emissivity and ε is the Ste-
fan Boltzmann constant. Term ϑamb is given ambient temperature, which is hard
to define in practice and one could also drop the radiation since water cooling
dominates.
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The function v̄ may have various forms, e.g., [24]

v̄ = L(ϑ)(aWc),

where L represents the Leidenfrost effect. It is known that with decreasing surface
temperature a critical value, the Leidenfrost temperature typically about 900◦C
in steel, is reached whereupon the mechanism of heat transfer changes from film
boiling to transition boiling. At higher temperatures the heat transfer coefficient
is relatively insensitive to surface temperature (under conditions of film boiling),
but increases sharply below the Leidenfrost temperature. Above this tempera-
ture, the surface temperature is sufficiently hot to create a steam layer through
which the water droplets do not fully penetrate. As the temperature decreases, a
change in the heat transfer mechanism occurs with boiling on the surface. This
temperature depends on the surface quality, amount of water, and steel grade.

The choice of secondary cooling model effects to the available theoretical re-
sults dramatically. If one uses Leidenfrost effect in the water cooling region, one
looses the most important property that will be frequently used in the theoret-
ical and numerical studies: boundary condition is not necessary monotone non
decreasing as a function of temperature.

As we will introduce some new approximations, we limit our studies to
the models to which we can show the convergence and some qualitative results.
In this way, the validation of the software can be done on both theoretical and
industrial levels so that the results are valid at least in the region where the heat
transfer coefficient is independent of the surface temperature.

It has also been reported from the practical measurements that, for exam-
ple in the case of the continuous casting of steel the heat transfer coefficient is
independent of the surface temperature in the temperature region 900 − 1200◦C,
which is the proper water cooling surface temperature [50].

In this work, we will limit the studies to the boundary condition

− ∂θ

∂n
= v̄(x, t)(ϑ − ϑex) + σε(ϑ4 − ϑ4

amb), on Γcool.

Roll Contact. In the roll contact area there is no radiation. Heat transfer
varies depending on the type of roll, but it is kept independent on temperature,
thus

− ∂θ

∂n
= v(x, t)(ϑ − ϑex) on Γroll.

Natural convection and radiation. After the secondary cooling area, air
convection together with radiation is assumed. The heat flux on the boundary is
described by

− ∂θ

∂n
= v(x, t)(ϑ − ϑex) + σε(ϑ4 − ϑ4

amb) on Γrad.

This air convection is also active in the secondary cooling area where the water
sprays are not needed or cannot reach the surface.
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Outflow. On the outflow boundary, we assume heat balance.

∂θ

∂n
= 0 on Γout.

This means that temperature is insulated toward casting direction at the lower
part of the machine. This is, however, natural if the length of the simulation is
long enough, meaning that the strand is cooled smoothly and the upper surface
is cooling via natural convection and radiation only. Another type of condition is
to used in [25].

Symmetry. Typically cooling is assumed to be symmetric to the width and
thickness direction. So we can exploit symmetries in the geometry of the slab and
set on symmetry axes the condition

∂θ

∂n
= 0 on Γsym.

Now we gather the boundary condition under one function

g(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(K−1(θ)− ϑm) or (q(x, t), x ∈ Γmold,

v̄(K−1(θ)− ϑwat) + σε(K−1(θ)4 − ϑ4
amb), x ∈ Γcool,

v(x, t)(K−1(θ)− ϑex), x ∈ Γroll,

v(x, t)(K−1(θ)− ϑair) + σε(K−1(θ)4 − ϑ4
amb), x ∈ Γrad,

0, x ∈ Γout ∪ Γsym.

Ω

x’

zΓsym

Γin Γout

Γmold ∪ Γcool ∪ Γrad ∪ Γroll

�

�

FIGURE 5 A domain Ω and the boundary notations.

2.3 Uniqueness, comparison, and continuous dependence

In this section, we present a formal model of the continuous casting processes.
In FIGURE (5), we see the domain Ω and the boundary notations (x′ ∈ R2)
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which form assumption (HΩ). Recalling that θ = β(u) and assuming the nor-
malized temperature, we get assumption Hβ. We denote din the casting temper-
ature, which is extended to the whole domain in the assumption (Hd). Assump-
tion (Hg) consists of the monotonicity requirement of the temperature dependent
data and (Hb) states the variable casting speed. We use standard notations for the
function spaces. We make the following assumptions:

(HΩ) Ω = X′×]0, L[, X′ ⊂ R2 is a polyhedral convex domain,
(Hβ) β : R → R, is monotone and Lipschitz continuous,

0 ≤ lβ < β′(s) ≤ Lβ < +∞, for a.e. s ∈ R,

β(0) = 0, β(u(0)) ∈ H1(Ω),
(Hd) ∃ d ∈ H1(Q) ∩ C0(Ω̄) , d = din on Σin and ‖d‖L∞(Q) ≤ M,

d �= 0 a.e. on Σin,

(Hg) − ∂θ

∂n
= g(x, t, θ) on Σn, g(x, t, ·), is local monotone non decreasing a.e

(x, t) ∈ Σn, g ∈ L2(Σn),
(Hb) b(t) ≥ 0, b ∈ L∞(0, T).

Let V(d) = {ψ ∈ H1(Ω)| ψ|Γin
= d}. We investigate the problem:

PROBLEM (P): Under the assumptions (HΩ), (Hβ), (Hd), (Hg), and (Hb), find
{u, θ}, u ∈ Υ(θ) such that

u ∈ L2(0, T; L2(Ω)), and θ ∈ L2(0, T; V(d)),

and for all ψ ∈ V := L2(0, T; V(0)) ∩ H1(0, T; L2(Ω)) ∩ L∞(Q) with ψ(T) = 0 the
following equation holds

−
∫

Q
u(∂tψ + b∂zψ) +

∫
Σout

buψ +
∫

Q
∇θ · ∇ψ +

∫
Σn

g(θ)ψ =
∫

Ω
u(0)ψ(0). (19)

Before studying our problem further, we show how the boundary condi-
tions play a crucial role in the well posedness of problem (P).

Example. Let Ω =]0, 1[ and b = 1 in (19) and β(s) = min{s, max{s − 1, 0}}.
Let us consider the problem

∂u
∂t

+ ux − β(u)xx = 0 in ]0, 1[×[0, T],

β(u) = 0 at x = 0 and x = 1,
u(0) = u0,

where 0 ≤ u0 ≤ 1 in ]0, 1[. Then the problem (20) has a solution u(x, t) = f (x− t),
when f is any extension of u0 to ]− ∞, 1] with 0 ≤ f ≤ 1. Thus clearly it is not
enough to impose β(u) on the boundary to get uniqueness. On the other hand, if
we consider the boundary conditions

u(0, t) = u0(t), u(1, t) = u1(t),
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with 0 ≤ u0, u1 ≤ 1, we observe immediately that the existence of a solution is
not guaranteed.

These counterexamples mean that we have to set the boundary conditions
in terms of temperature, with extra assumption to the Dirichlet data.

In the previous studies, various kind of assumptions are used. The only
common assumption is that d > 0 on Σin, which is not needed in our case. How-
ever, this kind of assumption is natural in the case of continuous casting pro-
cesses. In [45] the casting speed was assumed as a positive constant and the
Dirichlet boundary condition were assumed on Σin with d > 0 and on Σout with
d < 0. However, at the industrial level this kind of boundary condition is imprac-
tical as the temperature on Σout can not be measured. Naturally the casting speed
cannot be assumed constant in the industrial cases.

In [62] the existence of a solution to the (P), with the boundary condition

uψb · n − ∂θ

∂n
= g(θ) on Γn,

was shown.
The uniqueness of the solution was further obtained using assumption Γn =

∅, which is obviously even more restrictive from the practical point of view.
As our model differs from the previous ones, it is appropriate to show the

existence and uniqueness of the solution. The existence of the solution can also
be obtained from the convergence of our numerical approximations under some
additional assumptions.

Typically the qualitative properties of the continuous casting processes have
been shown using techniques introduced by Kamenomostskaya [19]. We proceed
differently applying the L1 techniques from [58].

We show that for fixed ε, (Pε) has a unique solution (this shows the unique-
ness in the alloys). Then we take a limit and prove that this property is preserved
for (P) as well. In both cases, we show that the solution is bounded by initial
data, which results in the uniqueness after simple contradiction argument. Fur-
thermore, these results show the continuous dependence on initial data.

The regularized problem (Pε) is: Find uε = Υε(θε) ∈ H1(0, T; L2(Ω)),θε ∈
L2(0, T; V(d)), such that∫

Q
(∂tuεψ + b∂zuεψ +∇θε · ∇ψ) +

∫
Σn

g(θε)ψ = 0 (20)

for all ψ ∈ V.
Remark. Relation ∂zuε = Υ′

ε(θ
ε)∂zθε justifies the convection term.

Lemma 2.3.1 Assume that assumptions for (P) are satisfied. Let {uε
1, θε

1} and {uε
2, θε

2}
be any solutions to (Pε), associated to the initial values uε

1(0), uε
2(0) (otherwise assume

same data), then

∫
Ω
|uε

1(t)− uε
2(t)| ≤

∫
Ω
|uε

1(0)− uε
2(0)|.
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Proof. Let us set ũ = uε
1 − uε

2 ,θ̃ = θε
1 − θε

2, g̃(θ) = g(θε
1)− g(θε

2) and

H(ξ) :=

⎧⎪⎨
⎪⎩
{0} if ξ < 0,
[0, 1] if ξ = 0,
{1} if ξ > 0,

Hj(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if ξ ≤ 0,
jξ if 0 ≤ ξ ≤ 1

j ,

1 if ξ ≥ 1
j ,

for any j ∈ N.
We use Hj(θ̃) ∈ V as a test function and take the difference between solutions.
Then we have to estimate

∫
Q
(∂tũHj(θ̃) + b∂zũHj(θ̃)) +

∫
Q
∇θ̃ · ∇Hj(θ̃) +

∫
Σn

g̃(θ)Hj(θ̃) = 0 (21)

=: I + I I + I I I + IV.

Now

I I I =
∫

Q
∇θ̃ · ∇Hj(θ̃) =

∫
Q

H′
j(θ̃)|∇θ̃|2 ≥ 0.

Let us now pass to the limit as j → ∞. Note that

H(θ̃)j → φ =

{
0 where θ̃ ≤ 0,
1 where θ̃ > 0,

a.e in Q. From the monotonicity of g it follows that

lim
j→∞

IV =
∫

Σn
g̃(θ)φ =

∫
Σn

g̃(θ)+.

Furthermore, we have H(ũ) = H(θ̃) a.e in Q. Hence φ ∈ H(ũ). After integrating
and using monotonicity of u we get

lim
j→∞

I I =
∫

Q
b∂zũφ = b

∫
Σout

ũ+ − b
∫

Σin

ũ+ ≥ 0.

For the term I we get after integrating in time

lim
j→∞

I =
∫

Ω
ũ+(t)−

∫
Ω

ũ+(0). (22)

Gathering I + I I + I I I + IV as j → ∞ we obtain∫
Ω
(uε

1(t)− uε
2(t))

+ ≤
∫

Ω
(uε

1(0)− uε
2(0))

+. (23)

Now exchanging uε
1 and uε

2 in ũ and adding resulting the inequalities we
conclude (2.3.1).

Remark. We did not use the assumption d �= 0 a.e on Σin. However, it will
be needed to show the following theorem.
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Theorem 2.3.2 Assume that assumptions for (P) are satisfied. Let {u1, θ1} and {u2, θ2}
be any solutions to the (P), then

∫
Ω
|u1(t)− u2(t)| ≤

∫
Ω
|u1(0)− u2(0)|.

Proof. We first show that (P) has a solution. We integrate (20) by parts and take a
limit ε → 0. As uε → u∗ weakly in L2(Q) and θε → θ∗ strongly in L2(Q) we get,
possible extracting subsequences

−
∫

Q
u∗(∂tψ + b∂zψ) +

∫
Σout

bu∗ψ +
∫

Q
∇θ∗ · ∇ψ +

∫
Σn

g(θ∗)ψ =
∫

Ω
u∗(0)ψ(0).

Furthermore, using the monotonicity argument it holds that u∗ ∈ Υ(θ∗), so {u∗, θ∗}
solves (P) [15, 44, 45].
We may repeat the steps I, I I, I I I, and IV in the previous theorem as ε → 0 as
well. The only difference comes from the term I I, where we need extra assump-
tion d �= 0 on Σin in order to get enthalpy uniquely defined on Γin. Thus to any
limits u∗

1 and u∗
2 of subsequences of uε associated to the same data it holds that

∫
Ω
|u∗

2(t)− u∗
1(t)| = 0.

As uε is bounded and any convergent subsequences have the same limit, we con-
clude that the whole sequence converges. The final conclusion follows from the
fact that∫

Ω
|u2(t)− u1(t)| ≤ lim inf

ε→0

∫
Ω
|uε

2(t)− uε
1(t)| ≤

∫
Ω
|u2(0)− u1(0)|.



3 NUMERICAL APPROXIMATIONS

In this chapter we define four fully discrete approximations to problem (P) in
the finite element form. We first describe some notations and frequently used
results that are used to show estimates needed to prove the convergence of each
approximation.

The basic strategy in all proofs is the same, we compute a priori estimates
and limit. Thus in the proofs some of the steps are identical, and they will not
be repeated. We start by showing the convergence of the characteristic approx-
imation in detail and then for other approximations the proofs are modified for
the approximation of convection term, time derivative, and the approximations
to the boundary condition in a priori estimates. In the case of Chernoff type of
approximations the limit process is also different.

3.1 Preliminaries

We first introduce notations used in the finite element approximations. Then we
recall basic estimation tools necessary to show boundedness of the discrete so-
lution in the suitable function spaces. Then we introduce mesh functions, the
notation to the convection term, and the construction of the initial data necessary
to show the convergence and make some additional assumptions.

3.1.1 Notations and basic property of finite element approximation

We first define some notations in order to define the discrete problem. We denote
V = H1(Ω), V(d) = {ψ ∈ V : ψΓin = d}. Let {Eh}h be a family of regular
partitions of Ω into cuboid finite elements. We define the discrete space we shall
work with on each time level:

Vh := {ψ ∈ C0(Ω̄) : ψ|E ∈ P1(E) ∀ E ∈ Eh, },
Vh(d) := {ψ ∈ Vh : ψ = Ihd on Γin},
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where P1(E) indicates the space of trilinear finite elements and Ih is the piecewise
linear interpolant of d. Let Πh be the local Lagrange interpolation operator Πh|E :
C0(Ω) → P1(E) for all E ∈ Eh. We associate with 〈·, ·〉 a discrete inner product in
Vh defined, for any piecewise uniformly continuous functions u and ψ, by

〈u, ψ〉h = ∑
E∈Eh

∫
E

Πh|E(uψ)dx,

(typically called as mass lumping) to which it holds

‖u‖2
L2(Ω) ≤ 〈u, u〉h ≤ C‖u‖2

L2(Ω) ∀u ∈ Vh. (24)

The following error bounds hold [35], [6]

|〈u, ψ〉 − 〈u, ψ〉h| ≤ Ch‖u‖L2(Ω)‖∇ψ‖L2(Ω), ∀u, ψ ∈ Vh, (25)

|〈u, ψ〉 − 〈u, ψ〉Γn,h | ≤ Ch
1
2‖u‖L2(Γn)‖∇ψ‖L2(Ω), ∀u, ψ ∈ Vh, (26)

for some constant C independent of h.
The discrete L2-projection operator Ph for any u ∈ L2(Ω) , where Phu ∈ Vh,

is defined by
〈Phu, ψ〉h = 〈u, ψ〉, ∀ψ ∈ Vh(0). (27)

For discrete time, we denote

τ := T/N, tn =: nτ, In := [tn−1, tn), 1 ≤ n ≤ N,

and

un := u(·, tn), ∂un :=
un − un−1

τ
.

3.1.2 Basic estimation tools

We will frequently use the Cauchy-Schwarz inequality

〈u, ψ〉 ≤ ‖u‖L2(Ω)‖ψ‖L2(Ω) u, ψ ∈ Vh, (28)

relation

2ab ≤ εa2 +
b2

ε
a, b ∈ R ε > 0, (29)

the summation by parts formula

m

∑
i=1

ai[bi − bi−1] = ambm − a0b0 −
m

∑
i=1

bi−1[ai − ai−1], (30)

and elementary relation

2a(a − b) = a2 − b2 + (a − b)2, for a, b ∈ R. (31)
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We also recall a basic tool necessary for estimates. Let λ : R → R be an absolutely
continuous function such that λ(0) = 0 and 0 ≤ λ′ ≤ Λ < ∞ and let Φλ be
convex function defined by

Φλ(s) :=
∫ s

0
λ(z)dz for s ∈ R.

Then Φλ has the properties

1
2Λ

λ2(s) ≤ Φλ(s) ≤ Λ
2

s2 for s ∈ R. (32)

3.1.3 Mesh functions, additional assumptions, and notations

In the convergence proofs, we will use the following notations: Let ψ ∈ F, where

F = {ψ ∈ C2(Q̄) : ψ(x, T) = 0, x ∈ Ω̄, ψ(x, t) = 0, (x, t) ∈ Σin, t ∈ (0, T]}.

We will use the notation ⇀ to denote the weak convergence in Hilbert space
and → to denote the strong convergence. The mesh functions ψh,τ(t) and ψ′

h,τ(t)
are defined by

ψh,τ(t) = Ih (ψ((n − 1)τ)) =: ψn−1, t ∈ In,

ψ′
h,τ(t) := ∂ψn, t ∈ In,

(33)

and have following approximation properties [15]

Ih (ψ(t)) → ψ(t), in V(0), (34)

ψh,τ → ψ, in L2(0, T; V(0)), (35)

ψ′
h,τ → ∂ψ

∂t
, in L2(0, T; H1(Ω)). (36)

Let Mh denote the number of the unknowns in Ωh. For trilinear basis ψi(x), i =
1, . . . , Mh ,we denote uh = uh(xi, t) = ∑Mh

i=1 ui(t)ψi(x).
We identify functions uh, θh ∈ Vh with the vectors Un, Θn ∈ RMh at t = tn,

containing their nodal values. We will also need the following mesh functions for
the approximations, Θn ∈ Vh(d), Un ∈ Vh(Υ(d)) at time level n. We define

θh,τ = Θn(x) and uh,τ = Un(x) ∀t ∈ In.

We require that for the initial data, it holds

Phu(0) ⇀ u(0) in L2(Ω), (37)
θh ⇀ θ(0) in V(0). (38)

The approximation and treatment of the convection term in problem (P) is
essential, showing a priori estimates and convergence. We define for u ∈ L2(Ω),
ψ ∈ V(0)

b(u, ψ) := −
∫

Ω
ub · ∇ψ +

∫
Γout

buψ, (39)
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and we will show how characteristic and upwinding approximations converge
to this term.

We make the following assumptions in the approximations in addition to
the assumptions (HΩ), (Hd), (Hβ), and (Hg):

(HΩh) Triangulation of the domain Ω is acute,

(Hgh) C ≤ θ and g(x, t, θ) > 0 ∀(x, t) ∈ Σn, C ∈ R,

(Hbh
) b(t) = bn ∈ R, t ∈ In, bn ≥ 0.

Remarks. Assumption (Hgh) is natural in the continuous casting context,
since it states that the slab is cooled all the time with a reasonable lower bound
to the temperature. It would be possible to show the convergence without as-
sumptions (HΩh) and (Hgh) [6], but this will lead to the use of discrete Gronwall
inequality in which the stability depends on the final time and the applicability
to simulation of long time periods would be somewhat problematic.

3.2 The characteristic method

In this section, we introduce characteristic approximation of the problem (P). We
now introduce the basic idea of this method. Recall the continuous equation

∂tu + b∂zu = Δθ. (40)

Denote ũ(t) = u(x(t), t), such that dx
dt = b(t)ez, where ez = (0, 0, 1)T, then

dũ(t)
dt

= ∂tu + b∂zu.

The characteristic finite difference method is defined by writing

x̄n−1 = x − τbn−1ez, ūn−1 = u(x̄n−1, tn−1),

for n ≥ 1. Then

dũ
dt

≈ ũn − ũn−1

τ
⇒ ∂un + bn∂zu ≈ un − ūn−1

τ
.

Now (40) can be approximated as

un − ūn−1

τ
= Δθn.

Thus, the discrete problem with the characteristic approximation reads as:
Problem (PC). Find {Un, Θn}N

n=1, Un ∈ Υ(Θn) such that

U0 := Phu(0),
Θn := Πhβ(Un),



46

and for all ψ ∈ Vh(0), we have{
〈Un, ψ〉h + τ〈∇Θn,∇ψ〉+ τ〈g(Θn), ψ〉h,Γn = 〈Ūn−1, ψ〉h,
Ūn−1 = IhUn−1(x̄n−1, tn−1).

(41)

In the a priori estimates and convergence proof, we need a discrete counter-
part leading to the convergence to the convection term b(u, ψ).

For this purpose, we define

bh(Un−1, ψ) := 〈bn−1 · ∇IτUn−1, ψ〉, ∀ψ ∈ Vh(0), (42)

where

bn−1 · ∇IτUn−1 := bn−1 Un−1(x)− Un−1(x̄)
τbn−1 .

Then to the right hand side of (41), it holds that

〈Ūn−1, ψh〉h = 〈Un−1, ψh〉h + τbh(Un−1, ψ), ∀ψh ∈ Vh(0). (43)

As we are working in the free boundary form, it is necessary to use the
discrete version of partial integration (30) in order to get the convergence. We are
not able to do this without extra assumption bτ ≤ h.

The following lemma shows the weak convergence of bh to b and sufficient
property to get a priori estimates for the solution of (PC).

Lemma 3.2.1 Assume that bτ ≤ h. Mapping bh : Vh × Vh(0) → R has the following
properties:

i) bh(uh, ψh,τ) → b(u, ψ), ∀uh ⇀ u in L2(Ω), ψh,τ → ψ in V(0),
ii) |bh(uh, ψh)| ≤ C‖uh‖L2(Ω)‖ψh‖V(0) ∀uh ∈ Vh, ψh ∈ Vh(0).

Proof of i). Let ψ ∈ F . As bτ ≤ h we have

bn−1 Un−1(x)− Un−1(x − τbn−1ez)

τbn−1 = bn−1 Un−1(x)− Un−1(x − hez)

h
. (44)

Thus using (30) we get∣∣∣∣ lim
h,τ→0

bh(Un−1, ψh,τ)− b(u, ψ) + bh(u, ψ)− bh(u, ψ)

∣∣∣∣ =∣∣∣∣ lim
h,τ→0

[−〈Un−1, bn−1 · ∇Iτψh,τ〉h]+

bn−1〈Un−1, ψh,τ〉h,Γout − bh(u, ψ) + bh(u, ψ)− b(u, ψ)]
∣∣∣ ≤

| lim
h,τ→0

[−〈Un−1, bn−1 · ∇Iτ(ψh,τ − ψ)〉h]|+ | lim
h,τ→0

[〈Un−1 − u, bn−1 · ∇Iτψ〉h]|+
| lim
h,τ→0

[bn−1〈Un−1, ψh,τ − ψ〉h,Γout ]|+ | lim
h,τ→0

[bn−1〈Un−1 − u, ψ〉Γh,out ]|+
| lim
h,τ→0

[bh(u, ψ)− b(u, ψ)]| := I + I I + I I I + IV + V.



47

We estimate each term separately. From the definition of the derivative and (35),
it holds that

| lim
h,τ→0

I| =|lim
h→0

[−〈uh, b · ∇Iτ(ψh − ψ)〉h]| ≤ C|lim
h→0

[−〈uh, b · ∇Iτ(ψh − ψ)〉]| → 0.

As uh ⇀ u ∈ L2(Ω), we get

| lim
h,τ→0

I I| =|lim
h→0

〈uh − u, b · ∇Iτψ〉h| ≤ lim
h→0

C|〈uh − u, b · ∇Iτψ〉| → 0.

Using (28) and from the fact that ‖ψh,τ‖L2(Γn) ≤ ‖ψh,τ‖H1(Ω), we obtain

| lim
h,τ→0

I I I| =|lim
h→0

b〈uh, ψh,τ − ψ〉h,Γout | ≤ lim
h→0

C‖uh‖L2(Γout)‖ψh,τ − ψ‖H1(Ω) → 0

and by weak convergence of uh it follows that

| lim
h,τ→0

IV| =|lim
h→0

b〈uh − u, ψ〉Γh,out | ≤ lim
h→0

C|b〈uh − u, ψ〉Γout | → 0.

To the last term, we apply numerical integration estimate (26), the fact that
〈uh,∇Iτψh,τ〉h − 〈uh,∇Iτψh,τ〉 = 0 and convergence properties of uh and (35) to
obtain

| lim
h,τ→0

[bh(u, ψ)− b(u, ψ)]| ≤ lim
h→0

[Ch
1
2‖u‖L2(Γout)‖∇ψ‖L2(Ω)+

|b(uh − u,∇Iτψh,τ)|+ |b(u,∇Iτ(ψh,τ − ψ)|] → 0.

Now i) holds, first for all ψ ∈ F and then by density for all ψ ∈ V(0).
Proof of ii). Let ψh ∈ Vh(0), then

|bh(Un−1, ψh)| ≤ C|〈∇Un−1, ψh〉| ≤ C‖Un−1‖L2(Ω)‖∇ψh‖L2(Ω) + C ≤
C‖Un−1‖L2(Ω)‖ψh‖V(0),

thus ii) holds.
Remark. In the case of alloys we have no restriction bτ ≤ h. This is because the
problem can be stated as (Pε) and the approximation

bh(Un−1, ψ) = 〈bn−1 · ∇IτUn−1, ψ〉 ⇀ 〈b · ∇uε, ψ〉, ∀ψ ∈ V(0), (45)

for any fixed ε > 0.

Theorem 3.2.2 Let {Un, Θn} be the solutions of (PC) then under the assumptions
(HΩ), (HΩh), (Hβ) (Hd), (Hg), (Hgh), and bτ ≤ h.

a) max
1≤n≤N

‖Un‖L∞(Ω) + max
1≤n≤N

‖Θn‖L∞(Ω) ≤ C,

b)
N

∑
n=1

τ‖∇Θn‖2
L2(Ω) ≤ C,

c)
N

∑
n=1

τ‖∂Θn‖2
L2(Ω) ≤ C.
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Proof of a). We argue by induction. Assume that ‖Un−1‖L∞(Ω) ≤ C. Then it
follows that also Ūn−1 is bounded. Since the mesh is of acute type, the discrete
maximum principle holds, so together with the assumption (Hgh)

〈∇Θn,∇ψj〉+ τ〈g(Θn), ψj〉h,Γn ≥ 0

at the node j, where Θn attains its maximum and thus

〈Un, ψj〉h ≤ 〈Ūn−1, ψj〉h.

The lower bound is given by assumption (Hgh) as Un = Υ(Θn) node wise. Note
that the estimate a) (with the different constants) holds for Θn.
Proof of b). Let Θn − dn

h be a test function in (41) and sum it over n from 1 to m,
m ≤ N. Then the assertion follows by estimating each term separately. After
using (43) and rearranging, we have to estimate

(Iθ + Id) + (I Iθ + I Id) + (I I Iθ + I I Id) + (IVθ + IVd) :=
m

∑
n=1

[〈Un − Ui−1, Θn − dn
h〉h + τbh(Un−1, Θn − dn

h) +

τ〈∇Θn,∇[Θn − dn
h ]〉+ τ〈g(Θn), Θn − dn

h〉h,Γn ] = 0.

The idea is to use frequently L∞ estimate and some positive terms will be ne-
glected. From the term I I Iθ we get the desired norm and then by using Cauchy-
Schwarz inequality (28) for the terms I Iθ and IVθ, some terms will be absorbed
to the desired norm. The rest of the terms will be shown to be either bounded or
positive, which leads to the estimate b).

Since Θn = β(Un) node wise, the convexity of Φβ together with (32) Iθ leads
to

∑m
n=1(U

n
j − Un−1

j )Θn
j ≥ ∑m

n=1(Φβ(Un
j )− Φβ(Un−1

j )

≥ Φβ(Um
j )− Φβ(U0) ≥ 1

2Lβ
(Θm)2 − Lβ

2 (U0
j )

2.

Then using (24), (28), and a)

Iθ =
m

∑
n=1

〈Un − Un−1, Θn〉h ≥ C‖Θm‖2
L2(Ω) − C ≥ −C.

For Id by (30), (29), and a) we have

|Id| =|
m

∑
n=1

τ〈∂Un, dn
h〉h| = |‖Um‖L2(Ω)‖dm

h ‖L2(Ω) − ‖U0‖L2(Ω)‖d0
h‖L2(Ω)+

m

∑
n=1

τ‖∂dn
h‖L2(Ω)‖Un−1‖L2(Ω)| ≤ C + C′ m

∑
n=1

τ‖Un−1‖2
L2(Ω) ≤ C.
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For the convection term, it holds by using (3.3.1) ii), (28), and (29) that

|I Iθ| =|
m

∑
n=1

τbh(Un−1, Θn)| ≤ C
m

∑
n=1

τ‖Un−1‖L2(Ω)‖∇Θn‖L2(Ω)

≤ C
m

∑
n=1

τ[
1
2ε
‖Un−1‖2

L2(Ω) +
ε

2
‖∇Θn‖2

L2(Ω)]

≤ C +
m

∑
n=1

τε

2
‖∇Θn‖2

L2(Ω), (46)

and similarly

|I Id| =|
m

∑
n=1

τbh(Un−1, dn
h)| ≤ C

m

∑
n=1

τ‖Un−1‖L2(Ω)‖∇dn
h‖L2(Ω)

≤ C
m

∑
n=1

τ[
1
2
‖Un−1‖2

L2(Ω) +
1
2
‖∇dn

h‖2
L2(Ω)] ≤ C.

From the diffusion term, we get the desired norm b) as

I I Iθ =
m

∑
n=1

τ〈∇Θn,∇Θn〉 =
m

∑
n=1

τ‖∇Θn‖2
L2(Ω),

and the Dirichlet data is estimated by (Hd), (28), and (29) as follows

I I Id =
m

∑
n=1

τ〈∇Θn,∇dn
h〉 ≤

m

∑
n=1

τ[
ε

2
‖∇Θn‖2

L2(Ω) +
1
2ε
‖∇dn

h‖2
L2(Ω)]

≤ C +
ε

2

m

∑
n=1

τ‖∇Θn‖2
L2(Ω). (47)

For the boundary term, by using a), (Hd), and (Hgh) it holds that

|IVθ + IVd| = |
m

∑
n=1

τ〈g(Θn), Θn − dn〉h,Γn | ≤ C.

Thus, choosing ε small enough in (46) and (47), these terms can be absorbed
to I I Iθ and so b) holds.

Proof of c). We use ψ = τ(∂(Θn − dn
h)) as a test function. After rearranging

them, we have to estimate

(Iθ + Id) + (I Iθ + I Id) + (I I Iθ + I I Id) + (IVθ + IVd) :=
m

∑
n=1

[τ〈∂Un, ∂Θn − ∂dn
h〉h − τbh(Un−1, ∂Θn − ∂dn

h)

+τ〈∇Θn, ∂∇[Θn − dn
h ]〉+ τ〈g(Θn), ∂Θn − ∂dn

h〉Γn ] = 0.

As we only need an estimate for the time derivative, we will finally drop the
positive terms from the estimate. The desired lefthand side of the estimate comes
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from the term Iθ, then by using estimate for the term I I Iθ to absorb some parts of
I Iθ and IVθ and using a) and b) the assertion follows.

From the monotonicity of Θn, it follows that

Iθ =
m

∑
n=1

τ〈∂Un, ∂Θn〉 ≥ C
m

∑
n=1

τ‖∂Θn‖2
L2(Ω).

Then the Dirichlet data are handled by using (Hd), (28), and (29),

|Id| =
m

∑
n=1

τ|〈∂Un, ∂dn
h〉| ≤

m

∑
n=1

ε

2
τ‖∂Θn‖2

L2(Ω) +
m

∑
n=1

1
2ε
‖dn

h − dn−1
h ‖2

L2(Ω)

≤ ε

2

m

∑
n=1

τ‖∂Θn‖2
L2(Ω) + C. (48)

We make use of b), (Hd), (3.3.1), and (29) to obtain

|I Iθ| ≤ 1
2

m

∑
n=1

[τ

ε
‖Un−1‖2

L2(Ω) + ε‖∇[Θn − Θn−1]‖2
L2(Ω)

]

≤ C +
ε

2

m

∑
n=1

‖∇[Θn − Θn−1]‖2
L2(Ω), (49)

and

|I Id| ≤
m

∑
n=1

τ
1
2
‖Un−1‖2

L2(Ω) +
1
2

m

∑
n=1

τ‖∇[dn
h − dn−1

h ]‖2
L2(Ω) ≤ C.

For the diffusion part, we use (31) to conclude that

2I I Iθ =
m

∑
n=1

τ〈∇Θn, ∂∇Θn〉 = ‖∇Θm‖2
L2(Ω) − ‖∇Θ0‖2

L2(Ω)

+
m

∑
n=1

‖∇[Θn − Θn−1]‖2
L2(Ω) ≥ ‖∇Θm‖2

L2(Ω) +
m

∑
n=1

‖∇[Θn − Θn−1]‖2
L2(Ω) − C.

Using (29) with ε = 1 we get

2I I Id = 2
m

∑
n=1

τ〈∇Θn, ∂∇dn
h〉 =

m

∑
n=1

τ‖∇Θn‖2
L2(Ω)

+
m

∑
n=1

‖∇[dn − dn−1]‖2
L2(Ω) ≤ C.

For the boundary term, we define G(Θn) =
∫ T

0 g(s)ds, now

G(Θn)− G(Θn−1) = g(Θ̂)(Θn − Θn−1),

where Θ̂ = Θn + τn(Θn−1 − Θn). Thus

g(Θn)− g(Θ̂) = g′(ξ)τn(Θn − Θn−1),
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and taking into account the monotonicity of g and mass lumping, we get

IVθ =
m

∑
n=1

〈g(Θn), Θn − Θn−1〉h,Γn

=
m

∑
n=1

[〈G(Θn)− G(Θn−1), 1〉h,Γn + 〈g(Θn)− g(Θ̂), Θn − Θn−1〉h,Γn ]

≥ 〈G(Θm), 1〉h,Γn − C.

For the Dirichlet data by a) and (Hd)

|IVd| = |
m

∑
n=1

τ〈g(Θn), ∂dn
h〉h,Γn | ≤ C.

Now choosing ε small enough, terms involving ε in (48), (49), and (50) can be
absorbed to the lefthand side, terms with Θn in I I Iθ remain positive and thus can
be neglected, so c) holds.

The stability results show that in the problem (PC)

θh,τ is bounded in L2(0, T; V(0)) ∩ H
1
2 (0, T; L2(Ω)),

uh,τ is bounded in L2(0, T; L2(Ω)).
(50)

Theorem 3.2.3 Of the sequences θh,τ, uh,τ in the problem (PC) we can extract subse-
quences still denoted by the same symbol such that

θh,τ → θ in L2(0, T; L2(Ω)),
uh,τ ⇀ u in L2(0, T; L2(Ω)).

Moreover, {u, θ} solves the problem (P).

Proof. As θh,τ ∈ L2(0, T; V(0)) ∩ H
1
2 (0, T; L2(Ω)) we have strong convergence for

θh,τ ∈ L2(Q). Moreover, this holds also on the boundary [6].
We show now that possible extracting subsequences in (PC) these limits solve
(P). We write (19) as

0 = −
∫

Ω
u(0)ψ(0)−

∫
Q

u
∂ψ

∂t
+

[
−
∫

Q
b · ∇ψ +

∫
Σout

b · nuψ

]
+
∫

Q
∇θ · ∇ψ

+
∫

Σn
g∗ψ := I I + I I I + IV + V + VI.

We integrate (41) with respect to time using ψn−1 as the test function. A direct
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calculation shows that

0 =
N

∑
n=1

τ
(
〈∂Un, ψn−1〉h + bh(Un−1, ψn−1) + 〈∇Θn,∇ψn−1〉+ 〈g(Θn), ψn−1〉h,Γn

)

=〈UN, ψN−1〉h − 〈U0, ψ0〉h −
N

∑
n=2

τ〈Un, ∂ψn〉+
N

∑
n=1

(bh(Un−1, ψn−1)+

〈∇Θn,∇ψn−1〉+ 〈g(Θn), ψn−1〉h,Γn)

=〈uh,τ(T), ψh,τ(T − τ)〉h − 〈Phu(0), ψh,τ(0)〉 −
∫ T

τ
〈uh,τ, ψ′

h,τ(t − τ)〉h

+
∫ T

τ
bh(uh,τ(t − τ), ψh,τ) +

∫ T

0
〈∇θh,τ(t),∇ψh,τ(t)〉+

∫ T

0
〈g(θh,τ(t)), ψh,τ〉h,Γn

:= Ih,τ + I Ih,τ + I I Ih,τ + IVh,τ + Vh,τ + VIh,τ.

For the term Ih,τ, it holds by (25) and (35)

lim
h,τ→0

Ih,τ = lim
h,τ→0

[
|〈uh,τ(T), ψh,τ(T − τ)〉h + 〈uh,τ(T), ψh,τ(T − τ)〉−

〈uh,τ(T), ψh,τ(T − τ)〉|
]
≤ lim

h,τ→0

[
|〈uh,τ(T), ψh,τ(T − τ)〉h−

〈uh,τ(T), ψh,τ(T − τ)〉|+ |〈uh,τ(T), ψh,τ(T − τ)〉|
]

≤ lim
h,τ→0

[
Ch‖uh,τ‖L2(Ω)‖∇ψh,τ‖L2(Ω) + 〈uh,τ(T), ψh,τ(T − τ)〉

]
→ 0.

Now | lim
h,τ→0

I Ih,τ − I I| → 0, as by (25) and (27) we get

∣∣∣∣ lim
h,τ→0

I Ih,τ − 〈u(0), ψ(0)〉
∣∣∣∣ ≤ lim

h,τ→0

[
Ch‖Puh(0)‖L2(Ω)‖∇ψh,τ‖L2(Ω)+

|〈Phu(0)− u(0), ψh,τ(0)〉|+ |〈u(0), ψh,τ(0)− ψ(0)〉|
]
→ 0.

Furthermore, | lim
h,τ→0

I I Ih,τ − I I I| → 0 as

| lim
h,τ→0

I I Ih,τ −
∫ T

0
〈u,

∂ψ

∂t
〉| ≤ lim

h,τ→0

[
Ch‖uh,τ‖L2(Ω)‖∇ψ′

h,τ‖L2(Ω)+

|
∫ T

τ
〈uh,τ − u(t), ψ′

h,τ(t − τ)〉|+ |
∫ T

τ
〈uh,τ, ψ′

h,τ(t − τ)− ∂ψ

∂t
〉|
]
→ 0.

The term IV converges by Lemma (3.2.1). By using convergence property (35),
we get

| lim
h,τ→0

Vh,τ −
∫

Q
∇θ · ∇ψ| = lim

h,τ→0

[∫ T

0
〈∇θh,τ,∇ψh,τ〉 −

∫ T

0
〈∇θ,∇ψ〉

]
≤

lim
h,τ→0

[
|
∫ T

0
〈∇(θh,τ − θ),∇ψh,τ〉|+ |

∫ T

0
〈∇θh,τ,∇(ψh,τ − ψ)〉|

]
→ 0
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On the boundary, it holds that |lim
h,τ

VIh,τ − VI| → 0, as by (26)

| lim
h,τ→0

VIh,τ −
∫ T

0
〈g∗, ψ〉Γn | ≤ lim

h,τ→0

[
Ch

1
2‖g(θh,τ)‖L2(Γn)‖∇ψh,τ‖L2(Ω)

+
∫ T

0
〈g(θh,τ)− g∗), ψh,τ〉Γn +

∫ T

0
〈g∗, ψ − ψh,τ〉Γn

]
→ 0.

Now we have shown that to the limits u, θ, and g∗ it holds

−
∫

Q
u
(

∂ψ

∂t
+ b · ∇ψ

)
+
∫

Σout
b · nuψ +

∫
Q
∇θ · ∇ψ

+
∫

Σn
g∗ψ =

∫
Ω

u(0)ψ(0), (51)

for all ψ ∈ F. By the density argument together with (35), we find that (51) also
holds for all ψ ∈ L2(0, T; V(0)) ∩ H1(0, T; L2(Ω)), with ψ(x, T) = 0.

In order to prove u ∈ Υ(θ), we use the relation u ∈ Υ(θ) ⇐⇒ θ = β(u).
Thus it suffices to prove θ = β(u).

We use the monotonicity argument. Recall that Θn
i = Πhβ(Un

i ), thus

N

∑
n=1

τ〈Θn − Πhβ(ψh,τ), Un−1 − ψh,τ〉h ≥ 0.

As θh,τ converges strongly in L2(0, T; L2(Ω)), we have

∫ T

0
〈θ − β(ψ), u − ψ〉 ≥ 0,

which implies that θ = β(u) (see [15]). The same argument can be used for
the nonlinear boundary term to show that g(θ) = g∗. Thus {u, θ} solves (P).
Since the solution of (P) is unique, the convergence holds for the whole sequence
{uh,τ, θh,τ}.

3.3 Upwinding

In this section, we use for the convection term the upwinding technique, which
can be formulated introducing artificial diffusion in the streamline direction: The
approximation to the convection term on the basis ψh is defined by

bh(uh, ψh) = 〈b · ∇uh, ψh〉h +
h
2
‖b‖−1〈b·∇uh, b·∇ψh〉.

Lemma 3.3.1 Mapping bh : Vh × Vh(0) → R has the following properties:

i) bh(uh, ψh) → b(u, ψ), ∀uh ⇀ u in L2(Ω), ψh → ψ in V,
ii) |bh(uh, ψh)| ≤ C‖uh‖L2(Ω)‖ψh‖V(0) ∀uh ∈ Vh, ψh ∈ Vh(0).

(52)
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Proof. By integrating bh(uh, ψh,τ), we get

bh(uh, ψh,τ) =
∫

Ω
b · ∇uhψh,τ +

h
2
‖b‖−1

∫
Ω

b·∇uhb·∇ψh,τ =

−
∫

Ω
uhb · ∇ψh,τ +

∫
∂Ω

b · nuhψh,τ +
h
2
‖b‖−1

∫
Ω

b·∇uhb·∇ψh. (53)

Let ψ ∈ F; then by using the Greens formula and inverse inequality ‖∇uh‖L2(Ω) ≤
1
h C‖uh‖L2(Ω) we obtain

h
2
‖b‖−1

∫
Ω

b·∇uhb·∇ψh,τ =

h
2
[‖b‖−1

∫
Ω

b·∇uhb·∇ψ + ‖b‖−1
∫

Ω
b·∇uhb·∇(ψh,τ − ψ)]

≤ h
2

C1‖uh‖L2(Ω)‖ψ‖H2(Ω) + C2‖uh‖L2(Ω)‖ψh,τ − ψ‖H1(Ω).

Letting h → 0 in (53) and using the convergence properties (35), we conclude

lim
h→0

bh(uh, ψh,τ) = −
∫

Ω
ub · ∇ψ +

∫
Γout

buψ ∀ψ ∈ C2(Ω̄), ψ(x) = 0 on x ∈ Γin.

By density this remains true for ψ ∈ V(0), thus ii) holds.
We now state the following approximation of the (P).

Problem (PU). Find {Un, Θn}N
n=1 such that Un ∈ Υ(Θn)

U0 := Phu0,
Θn := Πhβ(Un),

and for all ψ ∈ Vh(0), it holds that

〈Un, ψ〉h + τbh(Un, ψ) + τ〈∇Θn,∇ψ〉+ τ〈g(Θn), ψ〉h,Γn = 〈Un−1, ψ〉h. (54)

Theorem 3.3.2 Let {Un, Θn} be the solutions of (PU); then under the assumptions
(HΩ), (HΩh), (Hβ) (Hd), (Hg), and (Hgh) .

a) max
1≤n≤N

‖Un‖L∞(Ω) + max
1≤n≤N

‖Θn‖L∞(Ω) ≤ C,

b)
N

∑
n=1

τ‖∇Θn‖L2(Ω) ≤ C,

c)
N

∑
n=1

τ‖∂Θn‖2
L2(Ω) ≤ C.

Proof of a). We argue by induction. Assume that ‖Un−1‖L∞(Ω) ≤ C. From the
monotonicity of β, we obtain that Θn and Un have the maximum at the same
node, say j. Thus by assumptions (HΩh) and (Hgh), we have

〈∇θn,∇ψj〉+ bh(Un, ψj) + 〈g(Θn), ψj〉h,Γn ≥ 0,
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and thus
〈Un, ψj〉h ≤ 〈Un−1, ψj〉h.

The lower bound is again obtained by (Hgh) and the bounds hold also for Θn.
Proof of b). We make use of a) in order to obtain the bounds for the functions

Un and Θn. Let ψ = Θn − dn
h be a test function in (54) and sum it over n from 1

to m, m ≤ N. Then the assertion follows by estimating each term separately. We
have to estimate

(Iθ + Id) + (I Iθ + I Id) + (I I Iθ + I I Id) + (IVθ + IVd) :=
m

∑
n=1

[〈Un − Un−1, Θn − dn
h〉h + τbh(Un, Θn − dn

h) +

τ〈∇Θn,∇[Θn − dn
h ]〉+ τ〈g(Θn), Θn − dn

h〉h,Γn ] = 0.

Thus the proof can be carried out as in (3.2.2), except for the convection term,
which is now implicit; however, the same arguments still hold. Thus b) holds.

Proof of c). We can use the same test function as in (3.2.2) with the obvious
changes to the convection term; thus (3.3.2) holds.

Theorem 3.3.3 Of the sequences θh,τ, uh,τ in the problem (PU), we can extract subse-
quences still denoted by the same symbol such that

θh,τ → θ in L2(0, T; L2(Ω)),
uh,τ ⇀ u in L2(0, T; L2(Ω)).

Moreover, {u, θ} solves the problem (P).

Proof. Direct consequence of (3.2.3).

3.4 Combining the characteristic method and Chernoff formulas

We can also combine the characteristic method with nonlinear Chernoff formula.
We introduce the following approximation:
PROBLEM (PCo): Find {Un, Θn}N

n=1, Un ∈ Υ(Θn), such that

U0 := Phu0, (55)
Θn := Πhβ(Un), (56)

and for all ψ ∈ Vh(0), it holds that

〈A(Θn), ψ〉 = 〈F(Un−1, Θn−1), ψ〉,
Un = Ūn−1 + μ[Θn − β(Ūn−1)],

(57)

where

〈A(Θn), ψ〉 := 〈Θn, ψ〉h +
τ

μ
〈∇Θn,∇ψ〉,

〈F(Un−1, Θn−1), ψ〉 := 〈β(Ūn−1), ψ〉h − τ〈g(Θn−1), ψ〉h,Γn
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for all ψ ∈ Vh, 0 < μ ≤ L−1
β .

A priori estimates for this problem can be derived by combining the tech-
niques of the previous chapters. Namely, in the estimates one can first write the
Chernoff formula back to the equation, which leads to the characteristic formula-
tion.

Theorem 3.4.1 Let {Un, Θn} be the solutions of (PCo), then under the assumptions
(HΩ), (HΩh), (Hβ), (Hd), (Hg) , (Hgh), and bτ ≤ h.

a) max
1≤n≤N

‖Un‖L∞(Ω) + max
1≤n≤N

‖Θn‖L∞(Ω) ≤ C,

b)
N

∑
n=1

‖Un − Un−1‖2
L2(Ω) +

N

∑
n=1

τ‖∇Θn‖2
L2(Ω) ≤ C,

c)
N

∑
n=1

‖Θn − Θn−1‖2
L2(Ω) ≤ C.

Proof. We proceed as follows. Assumptions (HΩh) and (Hgh) provide L∞(Q) es-
timates. Then we need to show b) in order to get the desired L2(0, T; H1(Ω))
estimate for the temperature. The first norm of b) can be viewed as discrete
H

1
2 (0, T : L2(Ω)) norm and it is needed to show same estimate for the tempera-

ture.
Proof of a). Let ‖U0‖L∞(Ω) = C. We argue by induction. So assume that ‖Un−1‖L∞(Ω)

≤ C. We rewrite the equation to the form

〈Θn, ψ〉h +
τ

μ
〈∇Θn,∇ψ〉 = 〈β(Ūn−1), ψ〉 − τ〈g(Θn−1), ψ〉h,Γn.

From the maximum principle, it follows that at maximum point j, the diffusion
term is positive and so due to (Hgh),

〈Θn, ψj〉h ≤ 〈β(Ūn−1), ψj〉h.

Thus we have the upper bound for Θn. Then from the update formula we have

〈Un, ψj〉h = 〈Un−1 + μ[Θn − β(Ūn−1)], ψj〉h ≤ 〈C, ψj〉h.

So we have upper bound for Un as well. Again, assumption (Hgh) provides the
lower bound.

Proof of b). We use ψ = τ(Θn − dn
h) as a test function and sum (57) over n

from 1 to m ≤ N. After reordering, we have to estimate

(Iθ + Id) + (I Iθ + I IθΓ ) + (I Id + I IdΓ ) + (I I Iθ + I I Id) + (IVθ + IVd) :=
m

∑
n=1

[〈Un − Un−1, Θn − dn
h〉h + τbh(Un−1, Θn − dn

h)

+τ〈∇Θn,∇[Θn − dn
h ]〉+ τ〈g(Θn−1), Θn − dn

h〉h,Γn ] = 0. (58)

Thus, by using same test functions as in (3.2.2), we notice that the differ-
ence of showing (3.4.1) b) comes from the time derivative, as we do not have
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Θn = β(Un) node wise and from the explicit boundary condition. As we have
the L∞(Q) estimate, the boundary term is bounded, so it remains to show Iθ and
Id. Term Id can also be handled as in (3.2.2). Thus we have to show that the
time derivative remains bounded, and this can be done as in [39]. We define
α(s) = s − μβ(s). From the nonlinear Chernoff formula, it follows that

Θn =
1
μ
[Un − Un−1] + β(Un−1)

=
1
2

β(Un)− 1
2μ

α(Un−1) +
1

2μ
Un +

1
2μ

[α(Un)− α(Un−1)].

Hence we can split (Iθ) = (Iθ)1 + (Iθ)2 + (Iθ)3 + (Iθ)4. Using the convexity of Φβ

and (32) we have

2(Iθ)1 =
∫

Ω

m

∑
n=1

[Φβ(Un)− Φβ(Un−1)] =
∫

Ω
[Φβ(Um)− Φβh(U

0)]

≥ 1
2Lβ

‖β(Um)‖2
L2(Ω) −

Lβ

2
‖U0‖2

L2(Ω),

and similarly

2(Iθ)2 ≥ 1
μ

∫
Ω

m

∑
n=1

[Φα(Un−1)− Φα(Un)] =
1
μ

∫
Ω
[Φα(U0)− Φα(Um)]

≥ 1
2μ

‖α(U0)‖2
L2(Ω) −

1
2μ

‖Um‖2
L2(Ω).

Then we get the desired norm by (31)

(Iθ)3 =
1

4μ

[
‖Um‖2

L2(Ω) − ‖U0‖2
L2(Ω) +

m

∑
n=1

‖Un − Un−1‖2
L2(Ω)

]
.

Term I(θ)4 is now positive, since α is monotone. Combining terms and using (32),
we can conclude

m

∑
n=1

〈Un − Un−1, Θn〉h ≥ −C +
1

4μ

m

∑
n=1

‖Un − Un−1‖2
L2(Ω),

Thus b) holds.
Proof of c). Note that Θn = Un − α(Un−1). As the relaxation parameter is

chosen such that 0 < μ ≤ L−1
β , we have 0 ≤ α′(s) ≤ 1 a.e. s ∈ R, then direct

calculation shows that
N

∑
n=2

‖Θn − Θn−1‖2
L2(Ω) =

N

∑
n=2

[‖Un − Un−1 − (α(Un−1) + α(Un−2))]‖2
L2(Ω)

≤ C + ∑ ‖Un−1 − Un−2‖2
L2
(Ω)

≤ C,

and thus c) holds.
We have now shown the desired regularity in order to get a limit. It remains

to show that this limit solves, the original problem.
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Theorem 3.4.2 Of the sequences θh,τ, uh,τ in the problem (PCo), we can extract subse-
quences still denoted by the same symbol such that

θh,τ → θ in L2(0, T; L2(Ω)),
uh,τ ⇀ u in L2(0, T; L2(Ω)).

Moreover, {u, θ} solves the problem (P).

We show now that θ = β(u) a.e. in Q. As βh(uh,τ) is bounded in L2(0, T; L2(Ω)),
we can find a sub sequence that converges weakly to some β∗ ∈ L2(0, T; L2(Ω)).
We use ψn−1 as the test function, integrate the nonlinear Chernoff formula, and
sum over time steps

N

∑
n=1

τ
∫

Ω

1
μ
(Un − Ūn−1)ψn−1 =

N

∑
n=1

τ
∫

Ω
(Θn − β(Ūn−1))ψn−1. (59)

The lefthand side of the equation is approximated with the Cauchy-Schwartz in-
equality

N

∑
n=1

τ
∫

Ω

1
μ
(Un − Ūn−1)ψn−1 ≤ τ

1
2 (

N

∑
n=1

‖Un − Ūn−1‖2
L2(Ω))

1
2 (

N

∑
n=1

τ‖ψn−1‖2
L2(Ω))

1
2

≤ Cτ
1
2‖ψh,τ‖L2(Q), ∀ψh,τ ∈ L2(Q).

This implies that θh,τ − β(ūh,τ) ⇀ 0 in L2(0, T; L2(Ω)). Hence β∗ = θ.
It remains to show that β∗ = β(u). Note that

‖β(ūh,τ)− β∗‖L2(Q) ≤ ‖β(ūh,τ)− θh,τ‖L2(Q) + ‖θh,τ − β∗‖L2(Q).

As θh,τ converges strongly in L2(0, T; L2(Ω)) and

‖β(ūh,τ)− θh,τ‖L2(Q) ≤ Cτ
m

∑
n=1

‖Un − Un−1‖L2(Ω) ≤ Cτ,

we have strong convergence for β(ūh,τ) in L2(Q). We can now use the mono-
tonicity of β,

N

∑
n=1

τ〈β(Ūn−1)− β(ψn−1), Ūn−1 − ψn−1〉h ≥ 0,

letting τ, h → 0 we have

∫ T

0
〈β(u)− β(ψ), u − ψ〉 ≥ 0,

which implies that β∗ = β(u) (see [15]). Thus {θ, u} solves (P). As the solution
of (P) is unique, the convergence holds for the whole sequence {θh,τ, uh,τ}.

Remark. The same argument as in the problem (PC) shows that there is no
restriction τb ≤ h in the alloys.
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3.5 Combining upwinding and Chernoff formulas

The approximation is defined by:
PROBLEM (PCh): Find {Un, Θn}N

n=1, Un ∈ Υ(Θn), such that for given

U0 = Phu0,

Θ0 = β(U0),

it holds that

〈A(Θn), ψ〉 = 〈F(Un−1, Θn−1), ψ〉,
Un = Un−1 + μ[Θn − β(Un−1)],

(60)

where

〈A(Θn), ψ〉 := 〈Θn, ψ〉h + τbh(Θn, ψ) +
τ

μ
〈∇Θn,∇ψ〉,

〈F(Un−1, Θn−1), ψ〉 := 〈β(Un−1), ψ〉h + τbh(β(Un−1)− 1
μUn−1, ψ)

− τ〈g(Θn−1), ψ〉h,Γn,

for all ψ ∈ Vh(0), 0 < μ ≤ L−1
β .

Remark. We have used the relation

〈b · ∇Un, ψ〉 = 〈b · ∇
(

Un−1 + μ[Θn − β(Un−1)]
)

, ψ〉,
in the definition of (PCh), as this allows us to eliminate the implicit enthalpy
dependent convection term from the lefthand side of the equation (60).

Theorem 3.5.1 Let {Un, Θn} be the solutions of (PCo); then under the assumptions
(HΩ), (HΩh), (Hβ) (Hd), (Hg) and (Hgh), and bτ < Ch.

a) max
1≤n≤N

‖Un‖L∞(Ω) + max
1≤n≤N

‖Θn‖L∞(Ω) ≤ C,

b)
N

∑
n=1

‖Un − Un−1‖2
L2(Ω) +

N

∑
n=1

τ‖∇Θn‖2
L2(Ω) ≤ C,

c)
N

∑
n=1

‖Θn − Θn−1‖2
L2(Ω) ≤ C.

Proof of a). Again we make use of the maximum principle and argue by induction.
Thus we have at node j using assumptions (HΩh) and (Hgh)

〈Θn, ψj〉 ≤ 〈β(Un−1), ψj〉h + τbh(β(Un−1)− 1
μ

Un−1, ψj).

By extra assumption τb < Ch, we get

〈Θn, ψj〉 ≤ C〈β(Un−1), ψj〉h.

The rest of the arguments of showing (3.5.1) can be obtained from (3.3.2).
Thus the same regularity as in the problem (PU) holds and the limit is obvious.
On the other hand, the original problem is also solved simply by replacing β(Ūn)
with β(Un) in the proof (3.4.2). Thus we have shown the following theorem.
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Theorem 3.5.2 Of the sequences θh,τ, uh,τ in the problem (PCh), we can extract subse-
quences still denoted by the same symbol such that

θh,τ → θ in L2(0, T; L2(Ω)),
uh,τ ⇀ u in L2(0, T; L2(Ω)).

Moreover, {u, θ} solves the problem (P).



4 IMPLEMENTATION

In this chapter, we define the approximations in the matrix form using elimina-
tion of the Dirichlet nodes. We form the global matrices using tensor products.
Then we present the basic algorithms and describe how the nonlinear algebraic
system can be solved using the linear boundary condition. Finally, we give nu-
merical examples and discuss numerical efficiency of the approximations with
the used solvers.

We separate the Dirichlet nodes and denote by Dir the set of indexes asso-
ciated with the Dirichlet boundary and by Ind, the set of indexes associated with
the other nodes of the mesh. Then

θh = ∑
i∈Ind

θiψi + ∑
i∈Dir

diψi, (61)

where ψi denotes the trilinear basis.

4.1 Tensor product matrices

We show now, how the global matrices can be computed via tensor products.

Definition 4.1.1 Let A be n1 × n1 matrix with components aij and let B be n2 × n2
matrix. The n1n2 × n1n2 matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B . . . a1n1B

a21B a22B
...

... . . . ...
an11B an12B . . . an1n1B

⎞
⎟⎟⎟⎠ ∈ Rn1n2×n1n2

is called tensor product of the matrices A and B.

Let us consider rectangular slab Ω = (a1, b1)× (a2, b2)× (a3, b3). We construct a
rectangular mesh to Ω, denoted by Ωh using mesh points

(x1
i , x2

j , x3
k), i = 1, . . . , n1, j = 1, . . . , n2, k = 0, . . . n3,



62

where in the x1 and x2 direction, we have

al = xl
1 < xl

2 < · · · < xl
nl
= bl, l = 1, 2,

and in the casting direction we have

a3 = x3
0 < x3

1 < · · · < x3
n3

= b3, h3
i = x3

i − x3
i−1, i = 1, . . . , n3.

In what follows, we denote

hl
i = xl

i − xl
i−1, i = 2, . . . , nl.

Then the standard central finite difference stiffness matrices Al and mass matrices
Ml, taking into account the boundary conditions of (P) and the elimination of the
Dirichlet boundary nodes, are

Al =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
hl

1
− 1

hl
2

0

− 1
hl

2

hl
1+hl

2
hl

1hl
2

. . . . . . . . .
hl

nl−1+hl
nl−1

hl
nl−1hl

nl
− 1

hl
nl

0 − 1
hl

nl

1
hl

nl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rnl×nl ,

and

Ml = diag(
hl

1
2

,
hl

1 + hl
2

2
, . . . ,

hl
nl−1

+ hl
nl

2
,

hl
nl

2
) ∈ Rnl×nl , l = 1, 2.

Furthermore,

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h3
1+h3

2
h3

1h3
2

− 1
hl

2
0

− 1
hl

2

h3
2+h3

3
h3

2h3
3

. . . . . . . . .
h3

n3−1+hl
n3

h3
n3−1h3

n3
− 1

h3
n3

0 − 1
h3

n3

1
h3

n3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn3×n3 ,

and for the mass matrix, by using mass lumping

M3 = diag(
h3

1 + h3
2

2
, . . . ,

h3
n3−1 + h3

n3

2
,

hl
n3

2
) ∈ Rn3×n3 .

Let Nd := n1n2n3. Then Ind has Nd nodes. The global stiffness matrix A ∈
RNd×Nd can be presented as

A = ∑
i∈Ind

〈∇ψi,∇ψj〉 = A1 ⊗ M2 ⊗ M3 + M1 ⊗ A2 ⊗ M3 +

M1 ⊗ M2 ⊗ A3, j ∈ Ind.
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In a similar manner, the global mass matrix has the presentation

M = ∑
i∈Ind

〈ψi, ψj〉h = M1 ⊗ M2 ⊗ M3 ∈ RNd×Nd , j ∈ Ind. (62)

For the convection term, we define

C̄ = I1 ⊗ I2 ⊗ C3 ∈ RNd×Nd , j = 1, . . . , Nd, (63)

where C3 is calculated with the upwinding formula

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
h3

1
0 0

− 1
h3

2

1
h3

2
. . . . . . . . .

0
0 − 1

h3
n3

1
h3

n3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn3×n3 ,

I1 ∈ Rn1×n1 and I2 ∈ Rn2×n2 are identity matrices; then

C = ∑
i∈Ind

[〈ez · ∇ψi, ψj〉+
h3

i
2
〈ez · ∇ψi, ez · ∇ψj〉] = MC̄, j ∈ Ind.

The boundary blocks are computed as

B1 = M1 ⊗ M3, j = 1, . . . , n1n3,
B2 = M2 ⊗ M3, j = 1, . . . , n2n3,

and the sum of their zero extension to RNd×Nd is then B such that

B = ∑
i∈Ind

〈ψi, ψj〉Γn,h , j ∈ Ind.

Let AΓ = diag( 1
h3

1
, 0, . . . , 0) ∈ Rn3×n3 and CΓ = diag( h3

1+h3
2

2h3
1

, 0, . . . , 0) ∈ Rn3×n3 .

Then
AΓin = ∑

i∈Dir
〈∇ψi,∇ψj〉 = M1 ⊗ M2 ⊗ AΓ ∈ RNd×Nd , j ∈ Ind,

and

CΓin = ∑
i∈Dir

[〈ez · ∇ψi, ψj〉+
h3

i
2
〈ez · ∇ψi, ez · ∇ψj〉]

= M1 ⊗ M2 ⊗ CΓ ∈ RNd×Nd , j ∈ Ind.

Furthermore, let u = (u1, . . . , uNd)
T, θ = (θ1, . . . , θNd) and Υ(θ) = (Υ(θ1), . . . ,

Υ(θNd)) denote the nodal values of the U, Θ, and Υ(Θ) at the points xm :=
(x1

i , x2
j , x3

k), i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . n3, m = 1, . . . Nd.
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The Dirichlet boundary value of the diffusion term is eliminated as AΓinΥ(d),
where Υ(d)T ∈ RNd such that

Υ(dm) =

{
Υ(d(x1

i , x2
j , 0)) for i = 1, . . . , n1, j = 1, . . . , n2,

0 for all (x1
i , x2

j , x3
k), when k > 1,

and the convection part of the Dirichlet value is eliminated by CΓinΥ(d).
On the boundary we set Γn,h = Γmold,h ∪ Γroll,h ∪ Γrad,h ∪ Γcool,h and by

g(θ)T ∈ RNd , we denote the boundary values such that

g(θm) =

{
g(θm) if xm ∈ Γn,h,
0 if xm /∈ Γn,h.

In the implementation, we make use of sparsity and the symmetry of the matri-
ces. Thus the total storage requirement is proportional to 4Nd for the stiffness
matrix A. The mass matrix M is diagonal, and the convection matrix C is stored
in two vectors.

Remark. As on the corner, the normal vector is not well defined in a classical
sense, it is sometimes practical to separate the boundary mass matrices on each
sides, rather than forming the global matrix. Then on the corner nodes, normal
derivatives can be given for the both directions and our matrices can be consid-
ered as finite difference approximations. For notational convenience, we give the
matrix formulations using global boundary mass matrix B.

4.2 Matrix formulations and numerical solution methods of the ap-
proximations

Now we present our approximations, using the matrix notations defined in the
previous section. In the nonlinear approximations (PU) and (PC) where the al-
gebraic system must be solved iteratively, the choice of the actual solution algo-
rithm depends on the form of the material data and the boundary condition. In
the classical two-phase Stefan problem, one typically has constant material data
in both phases, and we use this assumption in the solution algorithm of (PC) and
(PCo). In this way, analytical solutions can be constructed and implemented to
the model problem. In this type of situation, it is convenient to use the algorithm
presented in [15] in the (PC). In the problem (PU), we have to use enthalpy as
the solution variable.

When the resulting algebraic system is linear, the choice of solution meth-
ods is wider. One could use, e.g., conjugate gradient type, lower upper (LU)
decomposition, or multigrid methods. Our choice is the partial solution variant
of cyclic reduction by Rossi and Toivanen [47], and we refer to its implementa-
tion as (DC3D). They have also developed a version of this software, which can
handle a convection term to the casting direction (DCC3D).
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We now describe matrix forms of the approximations, including the alge-
braic system solved in each time step.

We set M̂ = 1
τ M.

Algorithm 4.2.1 Matrix formulation for PC

Set u0 = Phu0.
For n = 1, · · · , N

Set ūn−1 = (un−1(x̄1), . . . , un−1(x̄Nd))

Solve θn, un from the equation

M̂un + Aθn + Bg(θn) = M̂ūn−1 − AΓ indn := f

End

Assuming that the enthalpy is given by

Υ(θ) =

⎧⎪⎨
⎪⎩

d1θ, θ < 0,
[0, L], θ = 0,
d2θ + L, θ > 0,

(64)

and that the boundary condition is given as a flux, one can solve the problem
(PC) as follows. Let θn,0

i = θn−1
i . At each node i at time level n, we first perform

a Gauss Seidel iteration k = 1, 2, . . . , by solving the inclusion

zk
i := fi − ∑

j<i
aijθ

n,k+1
j − ∑

j>i
aijθ

n,k
j ∈ aiiwk+1

i + m̂iiΥ(wk+1
i )

for wk+1
i ,

wk+1
i =

⎧⎪⎨
⎪⎩

(zk
i − m̂iiL)/(aii + d2m̂ii), zk

i > m̂iiL,
0, zk

i ∈ [0, m̂iiL],
zk

i /(aii + d1m̂ii), zk
i < 0.

If we use Gauss Seidel, we set

θn,k+1
i = wk+1

i .

In the case we want to apply SOR with a relaxation parameter with a relaxation
parameter ω ∈]0, 2[, we test if

θn,k
i {θn,k

i + ω(wk+1
i − θn,k

i )} > 0 (65)

and set

θn,k+1
i = θn,k

i + ω(wk+1
i − θn,k

i ),
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otherwise only the Gauss Seidel step is taken. In (65) it is tested whether the phase
is changing. If the phase does not change, overrelaxation can be used. This test is
necessary since the overrelaxation would change the phase, leading to a solution
in which the false material parameters are used, and this can cause difficulties
with convergence.

When the convergence criteria for θ is reached, the enthalpy is updated as
follows

un
i =

⎧⎪⎪⎨
⎪⎪⎩

d1θn
i , θn

i < 0,
[ fi − ∑j<i aijθ

n
j − ∑j>i aijθ

n
j − aiiθ

n
i )]/m̂ii, θn

i = 0,

d2θn
i + L, θn

i > 0.

(66)

The matrix form of (PU) is as follows :

Algorithm 4.2.2 Matrix form of PU

Set u0 = Phu0

For n = 1, · · · , N
Solve unfrom the equation

M̂un + bnCun + Aβ(un) + Bg(β(un)) = M̂un−1 − AΓindn − bnCΓinΥ(dn)

End

The solution to the matrix form (PU) is guaranteed noting that

G(u) := M̂u + bnCu + Aβ(u) + Bg(β(u)) (67)

defines the M-function, i.e., G is continuous diagonally isotone and offdiagonally
antitone. The solution can be obtained using the nonlinear Gauss Seidel method
[42], with under relaxation parameter ω ∈]0, 1].

The matrix form of (PCo) is as follows:

Algorithm 4.2.3 Matrix form for PCo

For given initial data Θ0 = K(Phϑ0)

For n = 1, · · · , N
Solve θn from the equation

M̂θn +
1
μ

Aθn = fn−1, where

fn−1 = M̂β(ūn−1)− Bg(θn−1)− AΓindn and set

un = ūn−1 + μ[θn − β(ūn−1)]

End

As mentioned, we use DCC3D as the solver for the algebraic problem.
The matrix form of (PCh) is as follows:
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Algorithm 4.2.4 Matrix form for (PCh)

For given initial data Θ0 = K(Phϑ0)

Set u0 = Υ(θ0)

For n = 1, · · · , N
Solve θn from the equation

M̂θn + bnCθn +
1
μ

Aθn = fn−1, where

fn−1 = M̂β(un−1) + bnC[β(un−1) +
1
μ
(un−1)]− Bg(θn−1)

− AΓinΘn
in − bnCΓin(d

n)

Set un = un−1 + μ[θn − β(un−1)]

End

Remark. On the boundary, depending on the actual type of boundary condition,
one can easily develop some variations without effecting the convergence of the
presented methods. One could also use explicit boundary conditions in the non-
linear methods. In the linear approximation, the implicit boundary term could
also be defined. In particular, when the boundary term can be split to the linear
and nonlinear parts, one could use mixed type of formulation (which will be the
case in industrial applications). Since the boundary conditions will be defined
via temperature in practical situations, the boundary conditions will, however,
remain nonlinear in practice.

4.3 Numerical examples

In this section, we test our implementation. All numerical examples with the
model problems and in the industrial applications will be computed on Lenovo
T400 laptop, with Intel(R) Core(TM) Duo CPU T9800 @ 2.93 GHz, with 2.99 GB of
RAM using Visual Fortran compiler and Windows XP operating system. We per-
form our computations using a single processor. In the implementations, various
kinds of parallel algorithms can be used. For example, the direct solvers (DC3D)
and (DCC3D) have almost optimal parallel scalability. As we have introduced
some new approximations, a natural starting point for the research is to compare
numerical efficiency in a single processor and then based on these results, one can
conclude which type of parallel numerical solution algorithms can be considered.

We define a numerical example by using a linear boundary condition. We
use the boundary condition of type

− ∂θ

∂n
= f on Σn, (68)

where f is computed from the analytical solution. This way there is no difference
between the approximations of the boundary condition and differences are re-
lated to the approximation of the convection term and to the use of the nonlinear
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Chernoff formula. Let Ω =]0, 1
2 [×]0, 1

2 [×]0, 1
2 [ and T = 1

4 . Let the free boundary
be φ(x, y, z) = −x − y − z + 4t + 0.1 = 0.

We choose

β(u) =

⎧⎪⎨
⎪⎩

u, u < 0,
0, u ∈ [0, L],
u − L, u > L.

In terms of our approximation, we now have

Υ(θ) =

⎧⎪⎨
⎪⎩

θ, θ < 0,
[0, L], θ = 0,
θ + L, θ > 0.

We define the exact enthalpy by

u =

{
a1(exp(φ)− 1), φ < 0,
a2(exp(φ)− 1) + L, φ > 0.

We choose a1 = 1, a2 = 2 and L = 1.
We investigate now the actual order of convergence for θ. We set

Eh
θ := 102 ·

{
∑N

n=1 τ(Θn − Phθn)TM(Θn − Phθn)

∑N
n=1 τPhθnTMPhθn

} 1
2

.

We also compute the rate of convergence. Assuming the relation Eh
θ = Chpθ , it

follows that

pθ =
log(Eh1

θ /Eh2
θ )

log(h1/h2)
.

In the following examples, Dirichlet data are imposed when z = 0. In order
to fulfill the uniqueness condition, we assume that the enthalpy can be measured
also on Σin and initially such that u = 0, if θ = 0.

In Table 1, we see the obvious benefit of the overrelaxation.

TABLE 1 Effect of overrelaxation h = τ = 1
64 (PC)

ω 1.0 1.8 1.85 1.86 1.87
Iterations 1995 269 193 177 193

With the SOR method, the number of iterations will, however, increase in
terms of the size of the algebraic system. This is illustrated in Table 2.

In the problem (PU) one can consider the underrelaxation, with ω ∈]0, 1].
However, this will not decrease the number of the iterations. This is illustrated in
Table 3.

When the optimal overrelaxation parameter is found, we can check the av-
erage CPU times, which are reported to the largest problem in Table 4. We can
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TABLE 2 Maximum number of iterations in (PC), with optimal ω

1
h = 1

τ 4 8 16 32 64
Iterations 22 41 69 106 177

ω 1.44 1.62 1.74 1.81 1.86

TABLE 3 Maximum number of iterations in (PU), with underrelaxation, 1
h = 1

τ = 16

Iterations 557 670 809 985 1215
ω 1. 0.9 0.8 0.7 0.6

can see that for a single time step, the direct solver is faster than the iterative one.
This means that, for example, for a linear problem they are the preferred choice
over to the SOR. We observe that the Gauss Seidel solver in (PU) is clearly the
slowest solution algorithm. As the accuracy of the Stefan problem depends on
the choice of approximation method, the total efficiency requires more studies.

TABLE 4 Average CPU times in seconds

1
h = 1

τ (PC) (PU) (PCo) (PCh)
64 3.26 75.7 0.17 0.20

In Table 5, we can see the errors in terms of temperature norms, and the
rate of convergence for each approximation. For the standard linear problems,
the characteristic approximation has a better rate of convergence in spatial dis-
cretisation O(h2) compared to the upwinding O(h). The better approximation
property seems to remain also in the free boundary problem.

We can see that in practice the nonlinear methods seem to have a better rate
of convergence. When the same problem is solved, (PC) and (PU) give more
accurate results.

The simplest way to improve the accuracy of the linear approximations is to
solve the problem with smaller time steps. The effect of the convergence in this
case is illustrated in Table 6, when h = 1

64 .
Thus one can achieve the same accuracy as the nonlinear methods using a

Chernoff type of approximation as well by decreasing the time step in the com-
puted example.

Numerical efficiency of the approximations. We assume that in the actual
computations, sufficient size of the problem is h = 1

64 and make our efficiency
considerations based on this. In the case without convection for the linear bound-
ary condition, it has been shown that the rate of convergence for the temperature
is O(h

1
2 ), and this rate was obtained with all of the methods. Clearly (PC) is the

most accurate in this example, when the same size of problem is solved. In order
to find the most computationally efficient method, we first have to solve the (PC)
and (PCo) with the same accuracy. This can be done by decreasing the time step.
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TABLE 5 Eh
θ and rate of convergence in the Stefan problem

1
h = 1

τ (PC) (PU) pC
θ pU

θ (PCo) (PCh) pCo
θ pCh

θ

4 6.19 10.44 22.19 31.51
8 2.93 5.82 1.08 0.84 15.32 19.71 0.58 0.68

16 1.42 3.10 1.04 0.91 9.75 12.19 0.65 0.69
32 0.80 1.56 0.83 0.99 6.40 7.82 0.61 0.64
64 0.46 0.80 0.80 0.96 4.27 5.13 0.58 0.61

TABLE 6 Effect of time step for (PCo) , 1
h = 64

1
τ 64 128 256 512 1024 2048 4096 8192

Eh
θ 4.27 2.93 2.03 1.42 1.01 0.72 0.53 0.40

CPU 15.0 30.1 59.89 120.12 241.23 495.15 1052.17 2122.6

It took 209 seconds of CPU time to solve problem (PC) in the largest prob-
lem, and for (PCo) it was 15 seconds using relation h = τ. As the solution time
with respect to the time step increases linearly in (PCo), it can be considered ef-
ficient if the same accuracy is reached using τ ≈ 1

800 . However, from Table 6,
we observe that in this case (PCo) is still less accurate. Eventually, length of the
required time step in the problems (PCo) and (PCh) cancel the benefit of fast so-
lution methods for to the linear algebraic equation. Thus (PC) can be considered
the most efficient technique in this example.

Remark. It would be possible to use monotone multigrid method in the
problems (PC) and (PCo) and then the efficiency considerations might be differ-
ent.

4.4 Conclusions

We introduced four approximations for the free boundary problem arising from
the continuous casting processes and showed their convergence. We gave a nu-
merical example and compared the numerical efficiency. The conclusions about
the efficiency are restricted to the actual problem size, material data, type of
boundary condition, approximations, and used numerical solution algorithms.

Characteristic methods. In order to prove convergence, we required τb ≤ h.
Compared to the nondegenerate case, this is stronger assumption and can be too
restrictive in some cases. However, in the computed examples this was satisfied,
and we found out that in this case (PC) is computationally the most efficient
method in the largest computed problem. For a single time step, (PCo) was found
almost 20 times faster, but the Chernoff formula required relation τ2 ≈ h. In the
larger problems the asymptotic computational work will eventually make the
direct solvers more efficient, but we have not considered multigrid methods, in
which the number of the iterations will not depend on the problem size.
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Upwinding approximations. We have no stability restriction in (PU). But
as we cannot use overrelaxation we found out that it is more than 20 times slower
in the largest problem compared to (PC). The number of iterations is more than
ten times greater compared to the overrelaxation. In (PU) one also has to evaluate
the value of β(u) in the diffusion part, which causes extra computational work.
On the other hand the phase test is avoided. In practice we found out the the
underrelaxation will not decrease the number of the iterations and as a result,
the solver in (PU) is about 400 times slower for a single time step compared to
(DCC3D) in the largest problem.

The problem (PCh) requires stability condition τb ≤ Ch and a similar con-
clusion for the numerical efficiency holds as for (PCo) for a single time step.

In the computed example, we found that (PC) is the most numerically ef-
ficient way to approximate the problem. The approximations (PCo) and (PCh)
can be considered more efficient that (PU).



5 APPLICABILITY FOR INDUSTRIAL DATA

In this chapter, we discuss the continuous casting processes in industrial settings.
In the computed examples and thereby in the solution algorithms, the material
parameters were assumed as constant in each phase. The temperature depen-
dence is, however, more general in practice. As an industrial application, we con-
sider steel casting. As steel is an alloy, this also effects the numerical efficiency
considerations.

We take actual industrial data provided by IDS software [32] and transform
it to a suitable form for our approximations. The material properties will require
changes to the iterative solvers in (PC) and (PU). We make use of the fact that
in the alloys enthalpy is continuous, and this suggests the use of Kirchhoff trans-
formation θ as a solution variable in the upwinding approximation as well. The
nonlinear boundary condition is added to the solution algorithm. We introduce
a modification of the nonlinear Gauss Seidel method for this purpose to the non-
linear iterative solvers.

We present an algorithm that is used to solve nonlinear algebraic system
at each time level. We introduce this for the problem (PU), but it can be easily
modified for (PC) as well.

We will implement the modifications and validate of our implementation by
using an existing model called Tempsimu [24], which can compute steady states
with prescribed convection in 2D. The detailed model i.e., model including sup-
porting rolls, water cooling etc. is used for this purpose and results are compared
to the problem (PU), which is the most natural choice, as the approximations are
expected to give very similar results. We also make use of the fact that the steady
state can be computed directly using upwinding approximation.

After that we start to compare our approximations to each other in the tran-
sient situations. For the sake of simplicity, we will use the zone cooling type of
modeling of the machine as the first example. Then we return back to the detailed
model and perform some transient simulations.

Finally, we will be in a position to make some conclusions about the numer-
ical efficiency of the presented approximations in the actual industrial processes.
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5.1 Formulation of the material data

From metallurgical sources (like IDS software) we get the material properties as a
tabulated function of temperature. Let Nl denote the number of the temperature
points ϑl for which the values of the thermal conductivity k(ϑl) and the enthalpy
e(ϑl) are provided. We interpolate these values with a piecewise linear function
to obtain

e(ϑ) =
e(ϑl)− e(ϑl−1)

ϑl − ϑl−1 (ϑ − ϑl−1) + e(ϑl−1), ϑ ∈ [ϑl−1, ϑl[.

From the temperature dependent data of k, we compute the Kirchhoff transfor-
mation as

Θl := K(ϑl) =
∫ ϑl

0
k(s)ds ≈

l

∑
i=2

1
2
(k(ϑl) + k(ϑl−1))(ϑl − ϑl−1) + K(ϑl−1),

for each l = 2, · · · , Nl and K(ϑ1) = 1
2 k(ϑ1)ϑ1. The value of Kirchhoff transforma-

tion is then computed as

θ = K(ϑ) =
Θl − Θl−1

(ϑl − ϑl−1)
(ϑ − ϑl−1) + Θl−1, ϑ ∈ [ϑl−1, ϑl[,

and the value of the enthalpy as a function of Kirchhoff transformation is

u = Υ(θ) =
e(ϑl)− e(ϑl−1)

Θl − Θl−1

[
θ − Θl−1

]
+ e(ϑl−1), θ ∈ [Θl−1, Θl[,

where l = 2, . . . , Nl. In the linear approximations we also need the value of β(u),
which is

β(u) =
θl − θl−1

Υ(θl)− Υ(θl−1)

[
u − Υ(θl−1)

]
+ θl−1, u ∈ [Υ(θl−1), Υ(θl)].

In the approximations (PCh) and (PCo), one has to calculate the relaxation
parameter μ also, which is

μ = max

(
Υ(θl)− Υ(θl−1)

θl − θl−1

)
, l = 2, . . . , Nl. (69)

We denote by Kl
s the slope of the Kirchhoff transformation on the tempera-

ture interval [ϑl−1, ϑl[ and Kl
c is the corresponding constant. That is

Kl
s =

K(ϑl)− K(ϑl−1)

(ϑl − ϑl−1)
,

Kl
c = −Kl

sϑ
l−1 + K(ϑl−1)
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and similarly for the enthalpy

Υl
s =

Υ(θl)− Υ(θl−1)

θl − θl−1 ,

Υl
c = −Υl

sθ
l−1 + Υ(θl−1).

Now the temperatures can be calculated as

ϑi =
1

Kl
s
(θi − Θl−1) + ϑl−1, θi ∈ [Θl−1, Θl],

for each node i = 1, . . . , Nd.
In the computations, we will use typical stainless steel data with the kind

permission of Outokumpu Tornio Stainless Steel factory. The details of the data
are presented in Appendix 1. In Figure 6, we see the temperature dependence of
the enthalpy and the heat conductivity.

0
1
2
3
4
5
6
7
8
9

10

400 800 1200 1600
0.01
0.02
0.03
0.04
0.05

10
−6

Υ
(ϑ
)

K
J/

K
gK

k (
ϑ
)

K
W

/m
K

Temperature

FIGURE 6 Material data

This material starts to solidify at ϑ = 1461.74◦C and is completely solid at
ϑ = 1417.21◦C.

5.1.1 Gauss Seidel-type solution algorithms

In the linear approximations (PCo) and (PCh), it is straightforward to apply the
material data to the given algorithms; however, in the nonlinear Gauss Seidel-
type of methods the solution algorithm has to be modified. The algorithm also
depends on the approximation of the boundary condition. One can add the part
of the boundary condition (water cooling, natural convection, and roll contact) as
an implicit term in the solution algorithm. This causes the inverse of the Kirchhoff
variable to be computed at each boundary node, making the algorithm nonlinear
in all the cases, but the Gauss Seidel step can be solved directly.

If one prefers the fully implicit approximation of the boundary term, the
solution of the each Gauss Seidel step cannot be computed directly. Instead of
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solving the GS step exactly, one typically uses the Newton-Raphson step on the
boundary [22, 26, 43]. However, as the data is only piecewise linear, the conver-
gence of the Newton Raphson is not guaranteed.

In this work, we use the following approach. Let θ1
i be the solution to the

first Gauss Seidel at iteration, with the initial guess θ0
i at node i, as the algorithm

comes for the first time to the node, where bii �= 0 and the boundary condition
are of type g(θi) = v(K−1(θi)− ϑex) + σε(K−1(θi)

4 − ϑ4
ex). Then one has to solve

θ1
i from the equation

a11θ1
i + (m̂ii + bcii)Υ(θ1

i ) + biig(θ1
i ) = fi,

to which we use the following approximation

aii(θ̃
1
i ) + (m̂ii + bcii)(Υ(θ̃1

i )) = fi − biig(θ0
1).

By taking the difference between approximated and accurate solutions we
get

|aii(θ̃
1
i − θ1

i ) + (m̂ii + bcii)(Υ(θ̃1
i )− Υ(θ1

i ))| = bii|(g(θ1
i )− g(θ0

i ))|.
Typically the value of the heat transfer coefficient is v ≤ 2 kw/Km2. The ef-

fect of the radiation term in this type of situation can be estimated as σε(K−1(θ)4 −
ϑ4

ex) < 10−2v(K−1(θ)− ϑex). Now we can roughly estimate the error between so-
lutions from the data. As the slope of the secant of g < 5 · 10−2, we have

|aii(θ̃
1
i − θ1

i ) + (m̂ii + bcii)(Υ(θ̃1
i )− Υ(θ1

i ))| < 10−1h2|θ1
i − θ0

i |.
As Υ dominates the system and slope of the secant of Υ > 105, we can

estimate with τ = 1, b ≈ 10−1, m̂ii = h3, cii = h2

|aii(θ̃
1
i − θ1

i ) + (m̂ii + bcii)(Υ(θ̃1
i )− Υ(θ1

i ))| > h|θ̃1
i − θ1

i |.
Assuming h ≈ 10−2, this type of approximation can be viewed as a numerical
solution to the Gauss Seidel step with the following level of accuracy

|θ̃1
i − θ1

i | < 10−3|θ1
i − θ0

i |.
Remark. The use of this modification depends on the mesh size and data.

We observed that this type of modification converges to the solution in the nu-
merical examples we are going to study.

In each time step, the following algorithm is used to solve the nonlinear
algebraic equations in the approximation (PU).

Algorithm 5.1.1 Nonlinear Gauss-Seidel method

1. Initialization
Assign θn,0 = θn−1.
f = M̂Υ(θn−1)− AΓindn − CΓinΥ(dn)

2. Iterations, for k = 1, . . . , N, i = 1, . . . , Nd
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fs = fi − ∑j<i

(
aijΘ

n,k
j + bncijΥ(θ

n,k
j )
)

- ∑i<j

(
aijθ

n,k−1
j + bncijΥ(θ

n,k−1
j )

)
−biig(θ

n,k−1
i )

Find l such that
fs ∈ [ f l, f l+1], where f l = aiiΘl + (m̂ii + bncii)Υ(Θl)

Set

θn,k
i =

fs − (m̂ii + bncii)Υl
c

aii + (m̂ii + bncii)Υl
s

3. Test the convergence:
If ‖Θn,k+1 − Θn,k‖ > ε goto 2

It is straightforward to modify this algorithm to be suitable for the problem (PC)
as well. In the problem (PU), one can compute the steady state directly by setting
M = 0.

5.2 Validation of the software

In this section, we show how the detailed model can be formed and validate
our implementation in comparison to existing software. We use 2D model as a
reference. We take boundary conditions as given and compare the results. This
sample case comes with the setup package of the Tempsimu [24] software, which
computes the steady state with the 2D model. The purpose of these sample data
is to illustrate how the detailed model is done and how this 2D model and our
approximations (PU) compare to each other. The model itself does not describe
any real machine. This sample case, however, has all the features of the actual
continuous casting machine.

We now describe the model that is used to approximate the steady state.
Since the problem is convection dominated in the steady state model

b · ∇u =
∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 ,

heat conductivity into the casting direction can be neglected (supposing that cast-
ing speed is high enough), thus one has

b
∂u
∂z

≈ ∂2θ

∂x2 +
∂2θ

∂y2 .

Now by semidiscretizing the previous with respect to z we arrive at the initial
value problem. ⎧⎪⎨

⎪⎩
u0 = u(0)

b
uk − uk−1

h3
k

=
∂2θk
∂x2 +

∂2θk
∂y2 , k = 1, . . . , n3,

(70)
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where h3 denotes the length of the approximation in the casting direction. This
type of approach can be considered an implicit Euler approximation where h3

defines a time step. In the 2D implementation triangular finite elements with
mass lumping are used in the spatial approximation and the symmetry of the
cooling is assumed, thus one fourth of the actual machine size is computed. The
boundary conditions we use are

g(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(x, t), x ∈ Γmold,

v(x, t)(K−1(θ)− ϑwat) + σε(K−1(θ)4 − ϑ4
amb), x ∈ Γcool,

v(x, t)(K−1(θ)− ϑex), x ∈ Γroll,

v(x, t)(K−1(θ)− ϑair) + σε(K−1(θ)4 − ϑ4
amb), x ∈ Γrad,

0, x ∈ Γout ∪ Γsym.

We perform computations using Kelvins as the temperature unit; thus the
input data are also given in Kelvins. We present our results in degrees Celsius.

The description of the machine and the process details are as follows:

– Casting speed: 0.7 m/min
– Casting temperature: 1756.89 K
– Mold cooling: 700 kW/m2

– ϑtwat = ϑamb = ϑex = 305.15K
– Slab dimension: 0.28 × 0.28 m
– Mold length: 0.6 m
– Four secondary cooling zones. The lengths are 0.45, 0.65, 1.5, and 3 m.
– Water flow rates for the zones are: 0.35, 0.25, 0.25, and 0.10 liter/sec.
– There are 41 rolls in the x-side and 41 in the y-side. The first two rolls from

the mold are solid rolls (no cooling), and the others are internally cooled.
The roll diameters vary from 0.1 mm to 0.15 m.

– The locations (m) of the rolls are (from the mold end):

0.1/0.25/0.45/0.65/0.85/1.1/1.4/1.7/2.0/2.3/2.6/2.9/3.2/3.5/3.8/
4.1/4.4/4.7/5.0/5.3/5.6/5.9/6.2/6.5/6.8/7.1/7.4/7.7/8.0/8.3/8.6/
8.9/9.2/9.5/9.8/10.1/10.4/10.7/11.0/11.3/11.6/

There are two type of nozzles used in this case: air-mist nozzles and
water-only nozzles. In the modeling, the difference between these nozzles
come from the different heat transfer coefficients. The formula used to com-
pute the effect of water cooling is

v = aWc. (71)

In the air-mist nozzles, the values a = 0.336, c = 0.724 are used and in the
water-only spray a = 0.25, c = 0.64. Typically in the cooling zone the water
flow goes through several nozzles. In this case as follows:
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– There are 21 spray nozzles in the x-size and 21 in the y-size, respectively

– Zone 1: three air-mist nozzles:

– 1. nozzle: 40 % of the total zone water through this nozzle
– 2. nozzle: 30 % of the total zone water through this nozzle
– 3. nozzle: 30 % of the total zone water through this nozzle

– Zone 2: three air-mist nozzles

– The nozzles are similar: 1/3 of the total zone water through each
nozzle.

– Zone 3: five air-mist nozzles:

– The nozzles are similar: 1/5 of the total zone water through each
nozzle.

– Zone 4: ten water-only spray nozzles:

– The nozzles are similar: 1/10 of the total zone water through each
nozzle.

– The location (m) of the nozzles are (from the mould end):

0.03/0.175/0.35/0.55/0.75/0.97/1.25/1.55/1.85/2.15/2.45/2.75/
3.05/3.35/3.65/3.95/4.25/4.55/4.85/5.15/5.45

The computed heat transfer coefficients given by Tempsimu vary between 0.3 −
1.13 kw/m2K on the boundary, so that the highest value is obtained at the begin-
ning of the secondary cooling. On the corner nodes, only the natural convection
and the radiation are assumed. The value of the emissivity is ε = 0.9.

The size of the computed problem was 29× 29× 1534 = 1290094 degrees of
freedom. This means that in 2D one has to solve 29× 29 degrees of freedom in the
algebraic equation at each time step, and this is why the early models preferred
this type of approach. We do not compare the numerical efficiency between 2D
and 3D models. This is because we use the data as given in our computations and
Tempsimu software compute the model of the machine (boundary conditions) as
the cast proceeds and we cannot separate the computational cost between them.
The basic observation is that 2D model performs simulation faster than the 3D
models to the steady state.

In the transient situations, this type of 2D model is rather challenging. As
the casting speed varies, the approximations between the real-time steps are prob-
lematic. Also in the case of low casting speed, conductivity to the casting direc-
tion affects to the solution of (70).

We compare only the temperature distributions between 2D and 3D approx-
imations in the steady state situation.

Since the Tempsimu saves the boundary conditions to a file, the simulation
can be performed in 3D independently with exactly the same data. In the problem
(PU) one can solve the steady state directly, setting the time derivative as zero. As
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a result, we found out that the solution in 3D could be obtained in 743 iterations
with the stopping criteria

‖θk
i − θk−1

i ‖L∞ < 10−6‖θ‖L∞ ,

in this sample case. The CPU time used in the solution was about 50 seconds. In
Figure 7, we can see the temperature distribution in the casting direction.
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FIGURE 7 Surface temperature profiles
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FIGURE 8 Surface temperatures in the mold region

We take a closer look to illustrate the difference between 2D and 3D models.
In Figure 8, we see that in the liquid region, the 3D model gives higher temper-
atures, which is natural due to the conductivity in the casting direction. In the
solid region, temperatures start to converge and at the end of the cast surface
temperatures differs only few degrees Celsius. The metallurgical length obtained
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in the 2D model was 12.14 meters and in the 3D model 12.22 meters; by metallur-
gical length we mean the length of the pole, where the material is fully or partly
liquid, measured from the core.

The basic observation is that the 2D model reacts more rapidly to the changes
in cooling. In the water cooling area, the 2D model cools faster. On the other hand
when the natural convection is reached the increase of the temperature is bigger
than in the 3D model; this is illustrated in Figure 9. At the end of the cast differ-
ence between surface temperatures was about 5◦C on the midface and corner, and
20◦C in the core such that the 3D model gave hotter temperatures, namely 850◦C
on the surface and 1248◦C in the core. In conclusion, the differences between the
methods are small and behave as expected.

950

1050

0.6 0.7 0.8 0.9 1 1.1 1.2

◦C

Location

2D
3D

FIGURE 9 Surface temperatures on the midface

5.3 Transient zone cooling model

We define a small slab to which we can easily make some asymptotic studies. We
start by comparing the steady states. From these studies we select a case to which
we perform transient simulations.

5.3.1 Steady state simulations

We start by comparing our approximations to each other. For the linear approxi-
mations, we have shown that the phase change phenomena can be approximated
by the diffusion equation with a constant coefficient, where the algebraic correc-
tion formula reflects the actual material parameters. The relaxation parameter
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TABLE 7 Steady state 3x3x80, τ = 1.s

PC PU PCo PCh
Zone1 1352.6 1352.5 1355.6 1352.5
Zone2 908.3 908.3 908.4 908.3
Zone3 839.9 839.9 839.9 839.9
Zone4 888.2 882.8 883.3 882.8
Ml 3.22 3.22 3.22 3.20

computed with the formula (69) with the material data presented in Appendix A
is

μ ≈ 1.6 · 105. (72)

A priori we cannot analyze in details what is expected to happen between
the approximations. Therefore, we conduct numerical tests, as due to the size
of the actual casting machines, it is hard to study the asymptotic behavior of the
solutions. For this purpose, we introduce a "slab" with the dimensions of 0.12m
x 0.12m x 4m. We set the casting temperature as 1471◦C and speed 1 m/min in
the steady state situation. We have four zones: Zone1 represents the mold, Zone2
and Zone3 are water cooling zones, and on Zone4 there is only radiation and air
convection. The length of the each zone is 1m. In Tables 7, 8, 9, and 10, we see
the steady state temperature at the control point, which is located at the midface
in the center of each zone.

As before, we give the boundary data in Kelvins and present the results in
terms of Celsius.

g(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ − 575.15, x ∈ ΓZone1,

0.8(ϑ − 305.15) + 0.9ε(ϑ4 − (305.15)4), x ∈ ΓZone2,

0.4(ϑ − 305.15) + 0.9ε(ϑ4 − (305.15)4), x ∈ ΓZone3,

0.04(ϑ − 305.15) + 0.9ε(ϑ4 − (305.15)4), x ∈ ΓZone4,

0, x ∈ Γout ∪ Γsym.

We investigate the behavior of the solution with the different grid sizes n1×
n2 × n3. As a stopping criteria, we use

‖θk
i − θk−1

i ‖L∞ < 10−6‖θ‖L∞ . (73)

We observe that almost the same steady state was obtained with the same
grid size with all the methods. When the grid step is 1cm (Table 8), sufficient
accuracy on a macroscopic level is achieved with all the approximations.

5.3.2 Transient simulations.

As we have seen in the steady state situation, all the approximated temperatures
were close each others with the same grid size. In addition, the grid step 1cm,
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TABLE 8 Steady state 6x6x400, τ = 0.5s

PC PU PCo PCh
Zone1 1170.4 1170.4 1169.5 1170.4
Zone2 900.5 900.5 900.1 900.5
Zone3 865.0 865.0 865.0 865.0
Zone4 920.4 920.4 920.6 920.4
Ml 3.41 3.41 3.41 3.41

TABLE 9 Steady state 12x12x800, τ = 0.25s

PC PU PCo PCh
Zone1 1180.5 1180.5 1179.7 1179.7
Zone2 901.5 901.5 901.6 901.6
Zone3 867.7 867.7 867.8 867.8
Zone4 924.0 924.0 924.2 924.2
Ml 3.42 3.42 3.42 3.42

TABLE 10 Steady state 24x24x1600, τ = 0.125s

PC PU PCo PCh
Zone1 1181.6 1181.6 1181.5 1181.6
Zone2 901.5 901.5 901.5 901.5
Zone3 868.0 868.0 868.1 868.0
Zone4 924.4 924.4 924.5 924.4
Ml 3.42 3.42 3.42 3.42
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τ = 0.5s gave reasonable accuracy, and we choose these parameters and conduct
some transient simulations. We now study the transient situation as follows. We
choose (PC) as a reference and compute the difference between the methods at
control points. We set

e1 = ϑ
(PC)
i − ϑ

(PU)
i ,

e2 = ϑ
(PC)
i − ϑ

(PCh)
i ,

e3 = ϑ
(PC)
i − ϑ

(PCo)
i .

In order to compare the methods, we choose the examples so that tempera-
tures vary more rapidly with respect to time than in the actual machine in order
see the difference between the methods.

We first discuss what is expected to happen in the transient case. In order to
understand the physical nature of the Chernoff type of approximations one has
to take a look back at the method called phase relaxation, which was introduced
by Visintin [57]. The basic idea is to add a delay to the phase change with the
so-called phase variable. In this method, Υ is split as

Υ = μI + H̃,

where I is the identity, H̃ is still a maximal monotone graph, and 0 < μ. Denoting
χ := u − μθ as phase variable, the classical constitutive relation reads

χ ∈ H̃(θ) or θ ∈ Λ(χ) := H̃−1(χ).

As a substitute for the stationary relation, Visintin introduced

δχδ
t + Λ(χδ) 
 θδ, (74)

where δ > 0 is a small relaxation parameter. Therefore, (74) incorporates a time
delay in the constitutive relation. The original partial differential equation was
replaced by {

μθδ
t + χδ

t − Δθδ = 0,
δχδ

t + Λ(χδ) 
 θδ.

The connection between phase relaxation and the nonlinear Chernoff for-
mula is the following. Relaxed time discrete problem can be presented as{

μ∂θn + ∂χn − Δθn = 0,
δ∂χn + Λ(χn) 
 Θn−1.

(75)

Set now τ = μδ. Then the inclusion in (75) becomes

χn + μΛ(χn) 
 μΘn−1 + χn−1 =: un−1,

or equivalently

χn = (I + μΛ)−1un−1 = (I − μβ)un−1 = un−1 − μβ(un−1),
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since

un = (I + μΛ)(un − μβ(un)) = (1 + μΛ)(χn) = χn + μθn.

As a consequence, we obtain

un = μΘn + χn = un−1 + μ[Θn − β(un−1)],

which is the algebraic correction in the nonlinear Chernoff formula. Thus the
Chernoff formulas are expected to have some delay in the equilibrium condition.
The amount of delay for a fixed time step, say τ = 1s, can be computed using
relation τ = μδ, i.e.,

δ =
τ

μ
≈ 6 · 10−6.

This means that the delay itself is not supposed to have an effect on the results.
We simulate the start of casting in such a manner, that we first assume the

mold with liquid and set b = 0 for one minute and activate the mold cooling.
During this time the solid shell is formed and the casting can be started. The ini-
tial temperature of the whole slab is ϑ = 1471◦C. The casting speed is linearly
increased in one minute’s time from zero to 1 m/min. We take a point z = 0.5
m on the midface surface as a control point and in Figure 10 we see the behav-
ior of the methods, when the solidifying shell is formed on the mold before the
casting starts. The maximum temperature difference during the first minute at
the control point was about 10◦C, and it occurs as the shell starts to grow. When
the cast is started the difference on the control point is about 2◦C. Naturally, the
upwinding approximations give the same result as there is no convection during
the first minute.

We activate the boundary conditions as the castinng proceeds such that
cooling is activated 1m before the cast will reach the corresponding boundary
point. In this way we can make observations in various transients situations,
namely variable casting speed, cooling, and reheating. As the cast starts very
slow and as the cooling is activated at z = 0.5m all the time the temperatures
decrease until the cast passes the control point. Then due to the full casting speed
we have reheating to the steady state.

The obtained temperature profile and differences are illustrated in Figure
11. The basic observation is that the major difference in the solutions come from
the approximation of the convection term and the differences between linear and
non linear methods are small. The temperatures settle to the same value in a
30 seconds time such that characteristic method achieves a steady state sooner.
This type of reheating is rather radical if the actual machines is considered and in
practice, differences between the approximations are smaller.

Then we turn our attention to the second zone. The cast passes the control
point after 180 seconds. Figure 12 illustrate the differences between approxima-
tions.
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FIGURE 12 Development to the steady state (PC) and temperature differences at z=1.5

We take a closer look at major differences in temperatures. We plot both
upwinding and characteristic approximation to the same picture. In Figure 13,
we see that the upwinding approximation starts to reheat sooner and settle to the
steady state later.

In the other zones, the same kind of behavior was observed. As a conclu-
sion, the presented approximations are suitable for further studies.

5.4 Detailed model

We finish by performing experiments using a detailed model. We consider the
same case as in the validation example. We do not consider asymptotic studies,
as they would require more detailed presentation of the Tempsimu. We compute
the steady state and present some simple transient situations. As we are working
with a large-scale problem the CPU times are of interest.

Steady state considerations. We use the same stopping criteria (73) as in
the zone cooling model. We take casting temperature as the initial value, and
compute to the steady state.

As we are starting far from the solution, we assume that the number of the
iterations in the transient situations stays below the maximum number of the
iterations towards steady state.

As we have more than 106 degrees of freedom in the algebraic system, work-
ing in real time is a natural concern. By real-time solution we mean that the CPU
times in each time step should less than τ. As it comes to CPU times (DCC3D),
take ≈ 0.53 seconds at each time step and (DC3D) ≈ 0.45 seconds.
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In the nonlinear iterative solvers, the solution time depends on the size of
the time step. Roughly speaking, in the direct solvers we can have τ = 1 still
working in real time. In the (PC) and (PU) with this time step solvers take typi-
cally less than 15 iterations and as a result, average CPU times are 0.7 seconds in
(PU) and 0.6 seconds in (PC).

As the number of iterations is small in the problems (PC) and (PU), this
suggests the use of an iterative solver in the Chernoff type of approximations as
well. We implemented the basic linear Gauss-Seidel method with overrelaxation
for this purpose. We observed that about the same number of iterations is needed
as in (PC) and (PU). By using overrelaxation parameter we can decrease the
number of the iterations by one with mild overrelaxation when τ = 1. With the
smaller time steps we do not observed any improvement in the solution speed
with the overrelaxation and we report our CPUs without it.

We refer to the linear Gauss-Seidel solver in (PCo) as (GS) and (GSU) in
problem (PCh). We report CPU times in a single iteration. As in nonlinear prob-
lems these depend also on the number of the operations required to find the tem-
perature interval; we report the average time when the maximum number of the
iterations is obtained with τ = 0.5s. The variation between CPU times in a single
step in the nonlinear solvers is typically about 20%. With (GS) and (GSU) the
solution time is directly related to the number of iterations.

In Table 11, we see the solution time in a single iteration.

TABLE 11 CPU times in a single iteration, τ = 0.5 s

τ (PC) (PU) (GS) (GSU)

CPU 0.0390 0.0560 0.0241 0.0312
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The number of the iterations required for the solution in the iterative meth-
ods depends on τ via stopping criteria, which is illustrated in Table 12.

TABLE 12 Maximum number of iterations, with the different time steps

τ 1/8 1/4 1/2 1
(PC) 8 8 10 13
(PU) 7 8 10 13
(GS) 7 9 11 15
(GSU) 7 8 10 13

The CPU time in (GS) is ≈ 0.25 seconds, with τ = 0.5 s, which is almost
twice as fast as in (DC3D). This means that iterative solvers are preferred in all
the approximations in this case.

When τ = 0.5 the solutions are close to each other, which is illustrated in
Table 13. In this case, the number of iterations decreased in the (PC) and (PU)
such that they can work in real time as well as CPU time in about half a second.

Both upwinding approximations give exactly the same temperatures in the
steady state. Between (PC) and (PCo), we observe only a slight difference. As
there is no artificial diffusion in the characteristic approximation, the metallurgi-
cal length can be longer compared to the upwinding approximation. From Table
13 we see that this happens in the computed example.

Transient simulations. We perform some transient tests. We observed that
the differences between approximations in the zone cooling model were related
to the approximations of the convection term rather than other differences in the
approximations. Thus we define

e1 = ϑ
(PC)
i − ϑ

(PU)
i ,

e2 = ϑ
(PU)
i − ϑ

(PCh)
i ,

e3 = ϑ
(PC)
i − ϑ

(PCo)
i ,

and plot these differences at some control points together with the characteristic
approximation.

We choose the control points from the mold and first secondary cooling re-
gion. We simulate start of the casting by activating cooling after the cast passes

TABLE 13 Steady state temperatures on the midface, τ = 0.5

(PC) (PU) (PCo) (PCh)
z = 0.3 1059.12 1059.12 1058.92 1059.12
z = 0.65 960.78 960.78 960.47 960.78
z = 10 913.31 910.92 913.35 910.92
z = 14.6 847.86 846.05 847.92 846.05
Ml 12.28 12.22 12.29 12.22
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the corresponding boundary node. We take initial temperature to be 1000◦C. In
the computed examples the data are kept constant unless otherwise mentioned.

Cases 1 and 2. We check how the temperature profile and different approx-
imations settle to the steady state at z = 0.3 in the mold region and at z = 0.65 in
the water cooling region. We start by increasing the casting speed linearly to the
value 0.7 m/s during the first minute.

Case 3. We increase the water cooling by 20% at t = 180 and compute then
the steady state.

Case 4. We increase the casting speed to 0.8m/s in two minutes linearly
from the steady state.

Case 5. We first compute with the casting speed 0.8m/s to the steady state
and then in two minutes time drop the speed to the value 0.7 m/s linearly.

Cases 6 and 7. After 3 minutes, we start to increase the casting speed as
in Case 4 and increase the water cooling as in Case 3. Then the steady state is
obtained at control point, at t = 360. After this we set back original water cooling
and decrease the casting speed as in Case 5.
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FIGURE 14 Case 1

Results from Cases 1 and 2. We observe reheating before the cooling is ac-
tivated. This is because the liquid core, i.e., the still rather thin solid shell and the
cooling is activated after the cast has already passed the corresponding bound-
ary node. Then due to the slow casting speed and full mold cooling, temperatures
decrease. When the steady state casting speed is reached, the temperatures con-
verge.

Again we found out that the major differences are related to the approxima-
tion of the convection term. The difference between the Chernoff type of approx-
imations and nonlinear ones are a few degrees Celsius, and this happens when
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the cooling is activated. Naturally these types of shocks in the cooling are unre-
alistic and are related to the simulation practices in the start. These shocks can be
avoided; however, in this way we can see clear differences between approxima-
tions. To avoid unrealistic reheating in the start one could consider, e.g., smaller
initial temperature of the slab or activate the cooling before the cast passes the
boundary node.

Results from Case 3. We study how the change in water cooling influences
the solutions. For this purpose, we simply modify the heat transfer coefficient in
the water cooling region. For example, by increasing the amount of water cooling
by 20% the new heat transfer coefficient can be computed as

vnew = vref
a(1.2wref)

c

a(wref)c .

In this sample case, this increases the heat transfer coefficient by 14%. This change
in water cooling is activated at t = 180s. In the secondary cooling area, the differ-
ences are expected come also from the type of boundary condition, because there
is a delay in cooling in relaxation methods. In the used time step, we noticed that
this has very little impact on the results. The differences between approximations
are small; between (PU) and (PCh) less than 0.1◦C and between (PC) and (PCo)
less than 1◦C. Again the maximum difference between approximations is related
to the approximation of the convection term. Even though we suddenly increased
the cooling by 20%, the error between nonlinear approximations with the implicit
boundary condition compared to the explicit boundary condition with the non-
linear Chernoff formula is less that 1◦C. The results are illustrated in Figure 16.

Results of Cases 4 and 5. As the convection dominates, we perform tran-
sient simulations by changing the casting speed from the steady state. From the
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steady state, during two minute’s time we decrease the casting speed linearly to
the value 0.8 m/min and then compute to a steady state. During this time, the
temperatures at the control point z = 0.65 increase from 960 to 990◦C (Figure 17).
This type of change in the casting speed during the continuous casting processes
can be considered sufficient for realistic simulation purposes. The difference be-
tween approximations with the variable casting speed from the steady state situa-
tion is only related to the approximation of the convection term and the Chernoff
formula, and we observed that the difference between temperatures is less than
0.2◦C. In Figure 18, we see that when the casting speed is similarly slowed down
from the steady state, the same differences between approximations remain.

Results from Cases 6 and 7. Again we observe that the maximum differ-
ences are related to the approximation of the convection term, despite the fact
that the water cooling changes suddenly. Overall the differences between meth-
ods are small: about one degree Celsius difference when the cooling is activated
and temperatures converge in a few seconds.

Remark. We have not considered multigrid methods in this work, but we
can discuss this choice based on our observations. We found out that Gauss-
Seidel type of solution algorithms are fastest when the industrial kind of data is
used, which corresponds to the pre and post smoothing steps in the multigrid, so
we get the upper bound for a number of these steps.
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5.5 Conclusions

We have now tested four different approximations with realistic industrial data.
We determined that, in principle, all the approximations can be used in the in-
dustrial scale in real time with to 106 unknowns with a standard laptop. The
difference between relaxation methods and nonlinear ones are small and the ma-
jor differences are related to the approximation of the convection term.

The use of the explicit boundary condition together with the Chernoff ap-
proximations do not influence to the results vs. implicit nonlinear approxima-
tions with the time steps we are able to use. The iterative solvers were found
to be faster in the industrial case compared to the direct solver in the Chernoff
approximations. However, we cannot generalize this observation to larger prob-
lems, as the number of iterations will increase with the iterative solver as the
mesh size is decreased.

By using the Kirchhoff transformation as the solution variable, we were able
to implement very efficient iterative solution algorithms with the implicit bound-
ary condition. The efficiency of the method is based on two factors. First, we have
linear diffusion part in the nonlinear approximations, which decreases the work
in each iteration. Secondly, we have a diagonally dominant system and thus the
number of iterations is small.

We gather our observations:

Problem (PC). In the computed examples characteristic method gave a little
higher temperatures than (PU) in the steady state, which is natural due to the
artificial diffusion related to the upwinding approximation. As we have only
one nonlinear term in each Gauss Seidel step, we reduce CPU times compared to
(PU).

Problem (PU). The most important feature of (PU) is that one can directly
compute the steady state, which has been a starting point of the simulations on
the industrial scale.

Problem (PCo). We observed that the temperature differences between
the nonlinear and linear characteristic approximations are small. The benefit of
this type of approximation is the possibility to use any linear algebraic solution
method, which decreases the solution speed. As the accuracy remains almost
the same, we conclude that (PCo) is the most efficient numerical method for the
continuous casting problem in the computed examples.

Problem (PCh). In practice this approximation gave the same result as
(PU); however, the stability resctriction τb < Ch exists and the constant C may
depend on the data. The benefit of the possibility to use a linear algebraic solver
is obvious in the computed example.
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5.6 Further developments

Naturally all of the methods require far more testing on the industrial scale, but
these preliminary tests give a good starting point. But there are more consider-
ations that may improve to the numerical efficiency of the approximations and
simulation practices.

Boundary condition. We have noticed that Chernoff approximations with
the explicit boundary condition are very close to the fully implicit nonlinear ap-
proximation. This suggest that the explicit boundary condition can be used in the
nonlinear approximations as well, improving the efficiency. As in the nonlinear
methods, we have linear diffusion due to the Kirchhoff transformation and thus
the differences in the CPU times reduce then to the nonlinear evaluation of the
enthalpy on each Gauss-Seidel step. One could also consider approximating the
boundary condition in such a way that the water cooling is kept implicit and ra-
diation term explicit. This way the standard Gauss-Seidel method could be used
without any approximation in each Gauss-Seidel step.

The detailed modeling of the machine causes the heat transfer coefficient to
vary in a discontinuous manner. This suggests the use of bilinear finite elements
on the boundary, which can be a improvement in practice. In the roll contact and
especially at the corners, due to the discontinuities in the detailed model, one
may obtain quite different approximations to the thermal stresses. In our approx-
imations, this can be done as follows. The bilinear boundary mass matrices on
the boundary can be computed as tensor products of the following mass matrices

Ml =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hl
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hl
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6 0
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M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h3
1

3
hl

3
6 0

h3
2

6
h3

1+h3
2

3
. . . . . . . . .

h3
nl−1

+hnl
3

3
h3

nl
6

0
h3

nl
6

h3
nl
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn3×n3 .

The resulting matrices can be compared to the nine-point stencil acting on
the boundary by "averaging" the heat transfer coefficient, and thus smoother tem-
perature profiles are expected.

If the explicit boundary condition can be used as well, as it seems to be
the case, this would not cause a considerable increase in the CPU times. If the
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implicit boundary condition is used, then on the boundary nodes we would have
a nine-point stencil and this will have an impact on the solution time.

Parallel computing. As we have performed the computations in a single
processor and the approximations are close to each others, parallel computing
may also effect to the efficiency of the approximations. As the linear algebraic
solvers can be used as well, which are regularly developed by experts, this means
that these results can be directly applied.

Inverse approach. Another aspect is the calibration of the approximations
to the industrial measurements. As we have fast solution methods, one could
consider inverse problems for this purpose. As the effect of water cooling is typ-
ically fitted empirically, by using the presented approximations, this process can
be automated by minimizing the difference between the solution of the approx-
imations and the measurements, making the simulations more cost efficient and
accurate.



6 FINAL CONCLUSIONS

We studied the continuous casting processes first on the continuous level using
the free boundary formulation. We found out that existing models are too restric-
tive, as they require either unrealistic measurements of the temperature on the
boundary, fixed casting speed, or linear boundary conditions.

We replaced extra requirements of the temperature measurements by mod-
eling the heat flux on the outflow by the homogenous Neumann boundary condi-
tion. Furthermore, we stated the problem with the variable casting speed, using
the nonlinear monotone nondecreasing boundary condition to describe a contin-
uous casting process. We showed existence, uniqueness and continuous depen-
dence on initial data to this problem.

We introduced four different fully discrete approximations to the model in
the free boundary form. For physical data, fully discrete problems will eventually
lead to the convection dominated problem. In order to avoid stability issues, we
used upwinding and the characteristic method.

We first described the Galerkin approximations to the both of these. Fur-
thermore, we were able to apply the nonlinear Chernoff formula to these ap-
proximations. Thus, we can approximate the problem by solving linear algebraic
equations at each time step. We showed the convergence of each method and
performed some numerical examples. In the characteristic approximations, how-
ever, we required assumption τb ≤ h in order to get the convergence in the free
boundary form. With the upwinding approximations, using the Chernoff for-
mula we required τb < Ch.

In an academic problem, the nonlinear characteristic approximation was
computationally the most efficient approximation. This is because the Chernoff
approximations required a smaller time step in order to have the same accuracy
compared to the nonlinear methods. On the other hand, we observed that a linear
algebraic solver can have superior performance in a single time step.

Then we described how the approximations can be applied on the industrial
scale. As we can use the Kirchhoff transformation as the solution variable in
the alloys, we have linear diffusion in the nonlinear approximations, resulting in
the efficient numerical solution algorithm. Unlike in the academic problem we
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noticed that we do not have to decrease the time step in order to get the same
level of accuracy in the steady state.

In the transient simulations, we noticed that the CPU times in the presented
nonlinear solvers are close to the direct methods used in the linear algebraic
solvers. This suggested the use of iterative methods in the Chernoff type of ap-
proximations as well. It turned out that the linear Gauss-Seidel solver can be
faster, depending on the size of the time step.

With τ = 0.5s, the linear Gauss-Seidel methods were faster than the used
direct solvers in the computed industrial example. This is why we chose iterative
solvers in all the approximations and conducted some transient studies.

The simulation results show that Chernoff approximation with the charac-
teristic method is the fastest method to approximate the continuous casting pro-
cesses and the main differences are related the approximation of the convection
term. In the practical transient situations, the differences between approxima-
tions were small, so the efficiency considerations could be made based on the
CPU time.

We can conclude, due to the artificial diffusion related to the upwinding and
based on CPU times, that the use of the method of characteristic is the most effi-
cient numerical method for simulation continuous casting processes in the com-
puted examples. On a general level we can not pick up clear winner from our
approximations based on these few tests.

However, we have shown that at the present time it is possible to simu-
late the continuous casting processes in real time at the industrial scale up to 106

degrees of freedom using a standard laptop.



YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja, suomenkieliseltä nimeltään Tehokkaita numeerisia menetelmiä
jatkuvavaluprossessien simulointiin, käsittelee valunauhan lämpötilojen mate-
maattisia malleja sekä niiden approksimaatioita ja tehokasta tietokonetoteutus-
ta.

Tällaisia malleja käytetään teollisuudessa simuloimaan tuotteen laatua, en-
nustamaan uusien materiaalien käyttäytymistä valussa ja jopa reaaliaikaisessa
prosessin säädössä.

Tehtävän laskennallisesta vaativuudesta ja käytettävissä olleesta laskenta-
kapasiteetista johtuen on perinteisesti käytetty yksinkertaistettuja, kaksi- ja yk-
siulotteisia malleja. Näin on jo 1970-luvulta alkaen voitu soveltaa mallinnusta
valun laatuun ja prosessin kontrolloimiseen liittyvissä ongelmissa. Riippuen yk-
sinkertaistuksesta, näitä malleja on voitu käyttää joko ajasta riippumattomaan
tilanteeseen, eli mallilla on simuloitu valua tasapainotilassa tai dynaamiseen si-
mulointiin, jolloin ei kuitenkaan voida arvioida lämpötilajakaumaa leveyssuun-
nassa, ja osa valuvirheistä jää ennustamatta.

Tutkimuksen lähtökohtana on klassinen entalpiaformulointi, joka on käyte-
tyin menetelmä mallinnettaessa sulan ja kiinteän aineen vuorovaikutusta. Työs-
sä valunauhalle esitetään kolmiulotteinen matemaattinen malli. Tehtävälle osoi-
tettiin laadulliset ominaisuudet, jotka takaavat mallin matemaattisen mielekkyy-
den.

Työssä esiteltiin neljä eri menetelmää approksimoida valun lämpötiloja mal-
lintavaa osittaisdifferentiaaliyhtälöä. Ensin esitellään ns. karakteristinen mene-
telmä ja ylävirta-approksimaatio. Kaksi muuta tapaa approksimoida valuun liit-
tyvää epälineaarista osittaisdifferentiaaliyhtälöä ovat kokonaan uusia. Näiden
avulla simulointi voidaan suorittaa ratkaisemalla epälineaarisen yhtälöryhmän
sijasta lineaarinen yhtälöryhmä mikä pienentää tehtävän laskennallista vaativuut-
ta. Toinen esitetyistä menetelmistä käyttää ylävirta- ja toinen karakteristista ap-
proksimaatiota.

Approksimaatioille osoitetaan konvergenssi käyttämällä entalpian mallina
klassista Stefanin kaksifaasiongelmaa. Implementointi testattiin numeeristen esi-
merkkien avulla.

Esitettyjä menetelmiä testattiin teollisen mittakaavan ongelmissa käyttäen
materiaalina ruostumatonta terästä. Valukoneen mallina käytetään teollisuudes-
sa käytettävän ohjelmiston asennuspaketin mukana tulevaa esimerkkikonetta si-
ten, että tehtävän laskennallinen vaativuus on realistinen.

Kaikki esitetyt menetelmät ovat soveltuvia valun simulointiin, mutta niiden
tarkkuus ja laskennallinen vaativuus vaihtelevat simuloitavan tilanteen mukaan.

Periaatteessa ylävirta-approksimaatio aiheuttaa ylimääräistä diffuusiota va-
lun suuntaan. Tämä aiheuttaa sen, että ylävirta-approksimaation antama sulakar-
tio voi olla lyhyempi kuin karakteristisen menetelmän vastaava ns. steady state
tilanteessa, niin kuin teollisen mittakaavan esimerkissä kävikin.

Parhaan menetelmän valinta laskettujen muutamien esimerkkien nojalla ei
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ole yksiselitteisesti mahdollista, mutta yksi asia voidaan todeta: käyttämällä te-
hokkaita numeerisia ratkaisumenetelmiä, kolmiulotteinen reaaliaikainen jatku-
vavalun simulointi on mahdollista nykyään tavallisessa PC:ssä.
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APPENDIX 1 MATERIAL DATA

ϑ ◦C u × 10−6 θ

25 0.877546 0.42
50 0.963862 0.84375

100 1.129301 1.71125
150 1.301933 2.60375
200 1.481758 3.52375
250 1.661583 4.47125
300 1.841408 5.44625
350 2.028426 6.45125
400 2.222637 7.48375
450 2.416848 8.54375
500 2.618252 9.63375
550 2.819656 10.75375
600 3.035446 11.90125
650 3.244043 13.07625
700 3.459833 14.28125
750 3.66843 15.51625
800 3.88422 16.78125

833.21 4.035273 17.638068
893.21 4.301414 19.222068
953.21 4.567555 20.851068
1013.21 4.848082 22.522068
1073.21 5.128609 24.238068
1133.21 5.416329 25.999068
1193.21 5.718435 27.805068
1253.21 6.027734 29.659068
1313.21 6.358612 31.561068
1373.21 6.732648 33.508068
1390.21 6.847736 34.068218
1403.21 6.941245 34.499168
1417.21 7.04914 34.965368
1440.16 7.451948 35.7238655
1450.95 7.876335 36.0691455
1461.74 8.645986 36.3917665

1500 8.868969 37.4821765
1520 8.99125 38.0521765
1540 9.106338 38.6221765
1560 9.221426 39.1921765
1580 9.343707 39.7621765
1600 9.465988 40.3321765
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