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Bifurcation Method of Stability Analysis and
Some Applications∗

Nikolay Banichuk Alexander Barsuk Pekka Neittaanmäki
Juha Jeronen Tero Tuovinen

Abstract

In this paper a new approach to the analysis of implicitly given function-
als is developed in the frame of elastic stability theory. The approach gives an
effective procedure to analyse stability behaviour, and to determine the bifur-
cation points. Examples of application of the proposed approach for analysis
of stability are presented, more precisely we consider the stability problem of
an axially moving elastic panel, with no external applied tension, performing
transverse vibrations. The analysis is applicable for many practical cases, for
example, paper making and band saw blades.

1 Introduction

Elastic stability analysis comes with a long tradition. The present form of static sta-
bility analysis was originally developed by Euler [1766], for a differential equation
describing the bending of a beam or column. Dynamic stability analysis for linear
elastic systems, extending Euler’s method, is due to Bolotin [1963]. According to
Mote and Wickert [1991], the stability behaviour of some axially moving materials
is mathematically analogous to the buckling of a compressed column, enabling the
use of these techniques.

In this article, we propose new approach to the analysis of implicitly given func-
tionals is developed in the frame of elastic stability theory and applied the approach
for the the stability problem of an axially moving elastic panel, with no external
applied tension.

In previously (see, e.g., Banichuk et al. [2013b,a, 2011a,b]), we have considered
many approaches for modelling of the moving materials. Conclusions that have
been drawn can be applied, for example, the processing of paper or steel, fabric,
rubber or some other continuous material, and looping systems such as band saws
and timing belts.

∗This research was supported by RFBR (grant 14-08-00016-a), RAS Program 12, Program of Sup-
port of Leading Scientific Schools (grant 2954.2014.1), and the Finnish Cultural Foundation.
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The most often used models for an axially moving web have been travelling flex-
ible strings, membranes, beams, and plates. The research field of moving materials
can be traced back to Skutch [1897]. Among the first English-language papers on
moving materials were Sack [1954] and Miranker [1960]. All these studies consid-
ered axially moving ideal strings. The analytical solution describing the free vibra-
tions of the axially moving ideal string was derived by Swope and Ames [1963].
Dynamics and stability considerations were first reviewed in the article by Mote
[1972].

The effects of axial motion of the web on its frequency spectrum and eigenfunc-
tions were investigated in the classic papers by Archibald and Emslie [1958] and by
Simpson [1973]. It was shown that the natural frequency of each mode decreases
when the transport speed increases, and that the travelling string and beam both
experience divergence instability at a sufficiently high speed. However, in the case
of the string, this result was recently contrasted by Wang et al. [2005], who showed
using Hamiltonian mechanics that the ideal string remains stable at any speed.

The loss of stability was studied with an application of dynamic and static ap-
proaches in the article by Wickert [1992]. It was shown by means of numerical
analysis that in the all cases instability occurs when the frequency is zero and the
critical velocity coincides with the corresponding velocity obtained from static anal-
ysis. Similar results were obtained for travelling plates by Lin [1997].

The dynamical properties of moving plates have been studied by Shen et al.
[1995] and by Shin et al. [2005], and the properties of a moving paper web have
been studied in the two-part article by Kulachenko et al. [2007a,b]. Critical regimes
and other problems of stability analysis have been studied, e.g., by Wang [2003] and
Sygulski [2007]. Moreover, in the articles Marynowski [2002, 2004, 2008] the author
discusses widely dynamical aspects of the axially moving web. In Yang and Chen
[2005] the authors considered transverse vibrations of the axially accelerating vis-
coelastic beam and in Pellicano and Vestroni [2000] dynamic behavior of a simply
supported beam subjected to an axial transport of mass is studied. An extensive
literature reviews related to areas presented in this paper, the reader can found,
for example, in Ghayesh et al. [2013]. Note also some approaches to bifurcation
problems and estimation of critical parameters presented by Nečas et al. [1987] and
Neittaanmäki and Ruotsalainen [1985].

In this paper, we will develop a stability analysis technique based on implicitly
given functions. The technique will reveal the bifurcation points regardless of their
type. Finally, examples of application of the proposed approach will be presented.

2 Bifurcation method of stability analysis

Consider the spectral boundary value problem described by the equation

L(u(x), λ, γ ) =
m∑
k=0

n∑
`=0

λkγ`Lk` (u(x)) = 0 , (1)
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where γ is a real-valued loading parameter, characterizing the interaction of the
structure and external media, λ is a spectral parameter, and Lk` (u(x)) are given dif-
ferential operators applied to the behaviour function u(x), defined in the domain Ω
(x ∈ Ω). Boundary conditions are considered as included in the differential operator
L (u(x)).

Note that the problems of free harmonic vibrations, and the stability of elastic
systems interacting with external fluid (liquid or gas) are reduced to the formulation
(1).

Let the function v(x) be the solution of the spectral problem

L∗ (v(x), λ, γ) = 0 , (2)

which is adjoint to the problem (1). In the case of a self-adjoint problem, v(x) coin-
cides with u(x).

If we multiply equation (1) by v(x) and integrate over the domain, we will have

Φ (λ, J00, . . . , Jmn, γ) =
m∑
k=0

n∑
`=0

λkγ`Jk` = 0 , (3)

where the functionals Jk`, k = 1, 2, . . .m; ` = 1, 2, . . . , n are defined as

Jk` = (v, Lk`u) =

ˆ
Ω

v(x)Lk`u(x) dΩ . (4)

Here and in the following the relation (3) is considered as an implicit expression
for the spectral parameter λ, which is also considered as a functional. The function
Φ (λ, J00, . . . , Jmn, γ) is a polynomial of degree m with respect to λ, and the solutions
of the equation (3) are

λ1 = ϕ1 (J00, . . . , Jmn, γ) , . . . , λm = ϕm (J00, . . . , Jmn, γ) . (5)

The values λ1, . . . , λm take an extremal meaning for the solutions u(x) and v(x) of
the direct and adjoint spectral problems (1), (2); that is,

λk = ϕk (J00, . . . , Jmn, γ) → extr
u,v

. (6)

To show this, suppose that the solutions u(x), v(x) of the problems (1), (2), and the
functionals J00, . . . , Jmn defined in accordance with (4), correspond to a fixed value
of the parameter γ. Suppose also that the variations

u(x)→ u(x) + δu(x) , v(x)→ v(x) + δv(x) (7)

of the solutions of (1) and (2) correspond to the variation

λ→ λ+ δλ (8)
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of the spectral parameter. Consider the expression for the perturbed value Φ̃:

Φ̃ = Φ(λ+ δλ, J00 + δJ00, . . . , Jmn + δJmn, γ)

=
m∑
k=0

n∑
`=0

(λ+ δλ)kγ`(Jk` + δJk`) .
(9)

Using equation (1) for u(x) and adjoint equation (2) for v(x), noting definition (4),
and performing elementary operations, we will have the following perturbation of
the equation (3):

Φ̃ = Φ(λ, J00, . . . , Jmn, γ) +
∂Φ

∂λ
δλ+

m∑
k=0

n∑
`=0

λkγ`δJk`

= Φ(λ, J00, . . . , Jmn, γ) +
∂Φ

∂λ
δλ+ (δv, Lu) + (v, δLu)

= Φ(λ, J00, . . . , Jmn, γ) +
∂Φ

∂λ
δλ+ (δv, Lu) + (L∗v, δu) = 0 .

(10)

The first (unperturbed) term is zero because of (3). The third and fourth terms are
also equal to zero because u(x) and v(x) satisfy, respectively, the equations Lu = 0,
L∗v = 0. Thus, it follows from (10) that

∂Φ

∂λ
δλ = 0 , (11)

and if ∂Φ/∂λ 6= 0, then
δλ = 0 , λ = λ1, . . . , λm . (12)

Hence the extremal property.
Let us study the dependencies of λk, k = 1, 2, . . . ,m, on the parameter γ in more

detail. There is an important peculiarity in equation (3). Let us show that the func-
tionals J00, . . . , Jmn can be considered as constant when the function Φ(λ, J00, . . . , Jmn, γ)
is differentiated with respect to γ. To do this, we write the total derivative

dΦ

dγ
=

dΦ

dλ

dλ

dγ
+
∂Φ

∂γ
+

m∑
k=0

n∑
`=0

∂Φ

∂Jk`

dJk`
dγ

. (13)

The double sum in (13) is evaluated as
m∑
k=0

n∑
`=0

∂Φ

∂Jk`

dJk`
dγ

=
m∑
k=0

n∑
`=0

λkγ`
[(

dv

dγ
, Lk`u

)
+

(
v,Lk`

du

dγ

)]
=

[(
dv

dγ
, Lu

)
+

(
v,Ldu

dγ

)]
=

[(
dv

dγ
, Lu

)
+

(
L∗v,

du

dγ

)]
= 0 ,

(14)
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by taking into account the equalities Lu = 0 and L∗v = 0. Thus the function Φ =
Φ(λ, J00, . . . , Jmn, γ) can be considered as a function of two variables λ and γ, and
denoted as F (λ, γ), i.e.

F (λ, γ) =
m∑
k=0

n∑
`=0

λkγnJk` = 0 . (15)

This equation can be taken for determination of the dependence λ = λ(γ). From the
mathematical point of view, it determines a set of functions λ1(γ), . . . , λm(γ).

In correspondence with the fundamental theorem on implicit functions (see, e.g.,
Rektorys, 1969), a unique solution of (15) exists in a small vicinity of the fixed values
λ = λ̃, γ = γ̃, if ∂F/∂λ 6= 0.

Thus nonuniqueness of the solution of (15), or in other words, bifurcation of
the considered system, can be realized for some values λ = λ∗, γ = γ∗ when the
condition of the theorem on implicit functions is violated. Hence the bifurcation
values λ∗ and γ∗ are found with the help of the equations

F (λ∗, γ∗) = 0 ,
∂F (λ∗, γ∗)

∂λ
= 0 . (16)

Denote by (λ∗1, γ
∗
1), (λ∗2, γ

∗
2), . . . the solutions of the nonlinear system of equations

(16), representing the points on the λ, γ plane, and investigate the behaviour of func-
tions λi = λi(γ) in a small vicinity of the bifurcation points (λ∗k, γ

∗
k). For simplicity,

the subscript indices of the considered functions and points will be omitted.
Let us represent the function F (λ, γ) in a small vicinity of the point (λ∗, γ∗) as a

series expansion,

F (λ, γ) = F (λ∗, γ∗) +
∂F (λ∗, γ∗)

∂λ
[λ− λ∗] +

∂F (λ∗, γ∗)

∂γ
[γ − γ∗]

+
1

2

∂2F (λ∗, γ∗)

∂λ2
[λ− λ∗]2 +

∂2F (λ∗, γ∗)

∂λ∂γ
[λ− λ∗] [γ − γ∗] +

1

2

∂2F (λ∗, γ∗)

∂γ2
[γ − γ∗]2

+ . . .
(17)

Taking into account (16), F (λ∗, γ∗) = 0 and ∂F/∂λ = 0. The latter implies also
∂2F/∂λ∂γ = 0. Considering only the lowest-order nonzero terms, we have

F (λ, γ) =
∂F (λ∗, γ∗)

∂γ
[γ − γ∗] +

1

2

∂2F (λ∗, γ∗)

∂λ2
[λ− λ∗]2 + . . . (18)

Let us now represent the behaviour of the function λ = λ(γ) in the vicinity of the
bifurcation point (λ∗, γ∗) as

λ(γ) = λ∗ + α [γ − γ∗]ε + . . . , (19)

where α and ε are determined with the help of the condition F (λ, γ) = 0. By substi-
tuting (19) into (18), equation (18) is transformed into

F̃ = F̃ (γ − γ∗) ≡ 0 ,
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which must be satisfied identically. Here F̃ (γ−γ∗) is a series expansion with respect
to (γ − γ∗). As a result we have

F (λ, γ) =
∂F (λ∗, γ∗)

∂γ
[γ − γ∗] +

α2

2

∂2F (λ∗, γ∗)

∂λ2
[γ − γ∗]2ε + · · · ≡ 0. (20)

Suppose that
∂F (λ∗, γ∗)

∂γ
6= 0 ,

∂2F (λ∗, γ∗)

∂λ2
6= 0 . (21)

Now there are three cases:

2ε < 1 , 2ε = 1 , 2ε > 1 .

In the case 2ε < 1, the first term in (20) is of a higher order in γ than the second (and
hence can be omitted), and the equality (20) is satisfied if ∂2F (λ∗, γ∗)/∂λ2 = 0. This
contradicts the second inequality in (21). Similarly, the case 2ε > 1 contradicts the
first inequality in (21). As a result of this asymptotic analysis, we find 2ε = 1, and
consequently we must have

α2 = −2

(
∂F (λ∗, γ∗)

∂γ

)(
∂2F (λ∗, γ∗)

∂λ2

)−1

. (22)

Thus α is either real or pure imaginary , and we have (using (19))

λ(γ) = λ∗ + α
√
γ − γ∗ , |γ − γ∗| � 1 , (23)

provided that the inequalities (21) are satisfied.
As is seen from (15) and (23), the value α is expressed in terms of (derivatives

of) the functional F , and does not require the analytical solution of the behavioural
equation in an explicit manner.

3 Applications of bifurcation method

As an example of using the presented bifurcation analysis, let us consider the sta-
bility problem of an axially moving elastic panel, with no external applied tension,
performing transverse vibrations. In the fixed (laboratory, Euler) coordinate system
the equation of small transverse vibrations and the corresponding boundary condi-
tions can be written as

∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2
+
D

ρS

∂4w

∂x4
= 0 ,

w(0, t) = w(`, t) = 0 , D
∂2w(0, t)

∂x2
= D

∂2w(`, t)

∂x2
= 0 ,

(24)

where w = w(x, t) describes the transverse displacement, ρ is the density of the
material, S the cross-sectional area of the panel, t time and x ∈ [0, `].
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In what follows the time-harmonic transverse vibrations of the panel are repre-
sented as

w(x, t) = eiωtu(x) , (25)

and the dimensionless variables

x = `x̃ , ω̃2 =
ρSω2`4

D
, Ṽ0

2
=
ρS`2

D
V 2

0 (26)

will be used. The tilde will be omitted.
We obtain

ω2u− 2iωV0
du

dx
− V 2

0

d2u

dx2
− d4u

dx4
= 0 ,

u(0) = u(1) = 0 ,

(
d2u

dx2

)
x=0

=

(
d2u

dx2

)
x=1

= 0 .
(27)

In (25)–(27) ω is a frequency, u = u(x) is the amplitude function, and i the imaginary
unit.

After multiplication of the equation (27) by the complex conjugate amplitude
function u∗(x) and performing integration, taking into account the boundary condi-
tions (27), we obtain

Φ = aω2 + 2bV0ω + V 2
0 c− d = 0 , (28)

where

a =

ˆ 1

0

uu∗ dx > 0 ,

ib =

ˆ 1

0

u∗
du

dx
dx = −

ˆ 1

0

u
du

dx

∗
dx > 0 , (b real)

c = −
ˆ 1

0

u∗
d2u

dx2
dx =

ˆ 1

0

du

dx

du

dx

∗
dx > 0 ,

d =

ˆ 1

0

u∗
d4u

dx4
dx =

ˆ 1

0

d2u

dx2

d2u

dx2

∗

dx > 0 .

(29)

Using the notation a, b, c, d for the considered functionals, determined by the ex-
pressions (29), it is possible to find the coefficient α in the asymptotic representation
of the function λ(γ). We have (Φ = F )

∂F

∂V0

= 2 (bω + cV0) ,
∂2F

∂ω2
= 2a , (30)

and consequently,

α2 = −2
bω + cV0

a
. (31)

Thus we find the following asymptotic representation for the dependence ω(V0) in
the vicinity of the bifurcation point (ω∗

k, V
∗

0 ):

ω(V0) ≈ ω∗ ±
√
−2

bω∗ + cV ∗
0

a

√
V0 − V ∗

0

= ω∗ ±
√

2
b2 − ac
a2

V ∗
0

√
V0 − V ∗

0 .

(32)
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Note that for the considered problem, the equation Φ(ω, a, b, c, d, V0) can be solved
with respect to the variable ω. As a result, we have

ω1,2(V0) =
−bV0 ±

√
(b2 − ac)V 2

0 + ad

a
. (33)

It is possible now to analyze the dependence ω(V0), determined by expression (33)
in the small vicinity of the bifurcation point (ω∗, V ∗

0 ). Taking into account the repre-
sentations for the bifurcation values of harmonic vibration frequency and velocity
of axial motion,

ω∗ = − b
a
V ∗

0 , (ac− b2)(V ∗
0 )2 = acV 2

0 + ad , (34)

and the asymptotic expression

V 2
0 ≈ (V ∗

0 )2 + 2V ∗
0 [V − V ∗

0 ] ,
∣∣V0 − V 2

0

∣∣� 1 , (35)

we obtain an important asymptotic result

ω1,2 ≈ ω∗ ±
√

2
b2 − ac
a2

V ∗
0

√
V0 − V ∗

0 , |V0 − V ∗
0 | � 1 , (36)

which completely coincides with the asymptotic representation (32).
As a second example of application of the bifurcation method, we consider the

problem of harmonic vibrations of a (stationary) panel compressed by the force γ
(γ > 0). The following relations will be used for the amplitude functions u(x) (x ∈
[0, 1]):

d4u

dx4
+ γ

d2u

dx2
− ω2u = 0,

u(0) = u(1) = 0 ,

(
d2u

dx2

)
x=0

=

(
d2u

dx2

)
x=1

= 0 .
(37)

Let us investigate the asymptotic behaviour of the frequency ω as a function of the
loading parameter γ, i.e. ω = ω(γ), using the discussed perturbation method. To
do this, we multiply the equation (37) by the function u(x), which coincides in the
considered case with u∗(x) (because the problem (37) is self-adjoint), and perform
integration.

As a result, we will find the following expression for Φ as a function of the func-
tionals a, c and d (as defined in (29)). We have

Φ(ω, a, c, d, γ) = −aω2 − γc+ d = 0 . (38)

The functionals a, c and d can be expressed with the help of eigenmodes of vibrations

uk(x) = Bk sin (kπx) .
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We find

ak =

ˆ 1

0

(uk(x))2 dx =
B2

k

2
,

ck =

ˆ 1

0

(
duk
dx

)2

dx =
k2π2

2
B2

k ,

dk =

ˆ 1

0

(
d2uk
dx2

)2

dx =
k4π4

2
B2

k .

(39)

In correspondence with the general formulas (22)–(23), the asymptotic behaviour of
the frequencies in the vicinity of the bifurcation points

ω∗
k = 0 , γ∗k = k2π2 (40)

will be described by the expressions

ωk = ωk(γ) = ±α
√
γ − k2π2 ,

∣∣γ − k2π2
∣∣� 1 , (41)

and the value of the coefficient α will be given by

α2 = −2

(
∂F (ω∗

k, γ
∗
k)

∂γ

)(
∂2F (ω∗

k, γ
∗
k)

∂ω2

)−1

= −k2π2 . (42)

4 Conclusions

In this paper we presented new version of bifurcation analysis, based on introduc-
tion of adjoint spectral problem and implicitly given functionals, and applied to
some stability problem of an axially moving elastic panel with no external applied
tension, performing transverse vibration. Using the bifurcation analysis of the con-
sidered functional we determined effectively asymptotic behaviour in the vicinity
of the bifurcations points.
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haviour of an axially moving plate undergoing small cylindrical de-
formation submerged in axially flowing ideal fluid. Journal of Flu-
ids and Structures, 27(7):986–1005, 2011b. ISSN 0889-9746. URL
http://dx.doi.org/10.1016/j.jfluidstructs.2011.07.004.

9
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P. Neittaanmäki and K. Ruotsalainen. On the numerical solution of the bifurcation
problem for the sine-Gordon equation. Arab Journal of Mathematics, 6(1 and 2),
1985.
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