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Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI–40014 University of Jyväskylä
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Abstract
This report is dedicated to considerations and perspectives for the strategy

of using unmanned aerial vehicles and Cloud Computing in emergency situa-
tions in a Smart City environment. The aim is to provide inspiring insights in
this highly complex problem from a technological and a tactical point of view.
This specific case can be seen as a member of a family of similar problems, and
hence the solutions proposed in this chapter can be used to solve a large set of
related cases. The efficient use of the presented set-up would require to solve
a time-consuming multi-objective optimization problem, which one could - at
least partially - solve using some form of Evolutionary Computing.

Emergency situations, by default, are unpredictable and often involves in-
complete information which might be supplemented over time. The changing
situation creates an unpredictable complexity for the computational problem
and therefore we will need to cope with bursts in the need for computational
power. To overcome this problem we propose to perform the computation us-
ing Cloud Computing. This solution also improves the robustness of the overall
system because it provides fail-over and content replication. In order to inte-
grate and analyze the various measurements performed by the robots we sug-
gest the use of Semantic Web technologies. However, the size of the sensing
data can be grow to enormous sizes and we note that this problem can be con-
sidered as a Big Semantic Data problem. Based on our earlier work, we propose
to tackle this problem using an Evolving Knowledge Ecosystem.

1 Introduction

What is Smart City? From the time of first buildings made by man up to this day, we
have considered buildings as being static and stable structures, which provide local
functionality, like shelter and warmth. They were constructed with a given purpose
which, of course, could change slowly over time. However, the buildings in a city
did themselves not have any direct interactions with - or understanding of - each
other.

The revolution of information technology has changed this set-up dramatically.
Today we can discuss about environments which have a consciousness, i.e., build-
ing and structures with some level of understanding about themselves and others.
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Obviously, this understanding is artificial and based on algorithms developed by
programmers, but will anyway change our conception about the place we life to-
day.

Smart cities can be identified on many levels. The identification can be close to
daily life, like a smart environment, mobility, and living, or more abstract like a
smart economy and governance or even smart people. The practical focus of recent
studies are the growing amount of information and data and how to analyze and
use it. We regard a smart city as a large multilevel construction where the build-
ings, streets, shops, bridges, traffic lights and so on, can discuss, collaborate, make
decisions, and perform actions with or without human intervention. Using conven-
tional technology, like e.g. the Internet, it allows to objects a possibility to share and
gain information from their environment. This knowledge can be harvest by using
multiple sensors, like, for instance, cameras and thermometers. Combining and an-
alyzing this jointly collected information could potentially enrich the sense of the
situation for each individual object and allow more accurate responding. All in all,
this could provide more cost-effective solutions and real-time services for human
kind.

When we also consider moving sensors and actuators, like UAVs, the amount
of collected data and possible actions will increase dramatically. Earlier, discus-
sions were focused on static objects gaining capabilities by having some form of
consciousness. Next, we can think about what the opportunities are when these
objects would gain the ability to move. It is known fact, that static sensors and
cameras suffer from their limited degrees of freedom. Further, special measurement
equipment is, even today, still quite expensive and there is no way to insert them
everywhere where needed. For that reason, in large areas, there is no possibility to
cover the area densely enough for reliable automatic decision making. Therefore,
there is an evident benefit when employing devices which carry the sensors around,
like UAVs.

Worldwide there is a growing interest in the use of mobile robots and differ-
ent types of moving sensors. Popular examples of applications of that type of de-
vices are found not only in homeland security, border protection, and vessel tracking
but also in logistics and crisis management (fires, accidents, floods...). Perhaps the
most versatile type of devices are unmanned aerial vehicles (UAV). These devices,
sometimes called drones, have a high degree of mobility, can carry a wide range of
sensors, and are able to perform a wide range of actions in the environment using
actuators.

In this paper, we discuss aspects of using a fleet of collaborative unmanned aerial
vehicles (UAVs) to complete missions. Especially, we consider a possible strategy at
how these devices can be employed during emergency situations in smart cities and
how Cloud Computing technologies can be used to aid their working. The idea is to
inspire the audience to take actual steps for practical implementation of the propose
automated services.

For illustrative purposes we will use the following scenario:

• There is a big fire in the forests close to a major city. Firemen are fighting the
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fire using helicopters and specialized UAVs. Further, cameras placed on other
UAVs are used to observe the area. The observations of the UAVs are collected
in a server which is hosted in the Cloud.

• At some point it starts to rain heavily and thanks to the water the fire gets
extinguished.

• There is ,however, so much rainfall that the city is threatened by it. However,
based on the readings from sensors placed in the rivers and observations made
by UAVs, the people in the city are warned in time.

In the next Section (Section 2), we will give a broader description of the problem.
Then we describe how the actions needed in emergency situations can be regarded
as an optimization problem in Section 3. In Section 4 we will discuss the potential
of using Cloud Computing as a resource of computational power. Next, in Section 5
we discuss how we use agents, which use a semantic model for reasoning and data
storage, to help the UAVs to perform their tasks. The amount of data collected by
the UAVs is of such volume, arrives at such a velocity and is of such nature that we
can consider it a Big Data problem for which we provipose a solution in Section 6. In
the last Section (Section 7) we will conclude and describe future research directions.

2 Emergency Management in Smart Cities

In this Section, we will focus on one challenging application area, namely, emer-
gency management in smart cities. These situations, which usually evolve in an
unpredictable manner, will require real-time optimization, and the deployment and
coordination of a temporary, adaptive fleet of intelligent UAVs. There is also a need
for a strategy which optimizes the Cloud-driven data collection and the distribution
of data between populations, ground support and control centers.

Past studies have been mainly focused on the cases where there is only one ve-
hicle without any dynamic cooperation (see for instance Gonzalez et al. (2009)). In
some cases cooperation has been implemented using pre-planned routes and tasks.
In a recent paper by Doherty et al. (2013), the authors acknowledge that in order
to increase autonomy in heterogeneous UAV systems, there is a need for automatic
generation, execution and partial verification of mission plans. We would like to
augment this statement by saying that also validation of the plans is needed, i.e., it
is not enough if the plan complies with a given specification, it must also be assured
that the plan meet the needs of all stakeholders.

The robots or drones can use each others’ observations to decide upon their own
actions and hence disable some of their own sensors in order to save energy. Fur-
thermore, a UAV squadron can be seen as a toolbox with several tools, where one
can be used for the collection of information, the other will encrypt everything for
secure communication, one can provide specific information for optimization cal-
culations and yet another one can ensure communication with the Cloud. In our
example scenario we have UAVs which are specifically designed for extinguishing
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fire; this group of UAVs has specific physical properties which make them a perfect
tool for the given task.

UAVs could also be used for preventive observations. Therefore, it is desired that
a UAV can be instructed to limit how disturbing it is. This can be done by lowering
its visibility and noise level, as opposed to the loud and visible activities which are
likely during fast operation. In another situation, there could be a ‘mother ship’ with
reloading capabilities and the ability to fly long distances. The number of options is
enormous and the choice depends on the mission at hand.

The dynamic nature of this problem makes this system most interesting. There
are plenty of possibilities for failure and a human programmer cannot take each
and every aspect into account before the mission, especially because the mission
will evolve over time. Actually, the kind of situations which we are talking about are
very much like the ‘Black Swan’ as described by Taleb (2010), i.e., an event which lies
outside the realm of regular expectations, has a high impact, and is retrospectively
predictable. The predictability of the situation can be disputed, but at least the first
two properties imply that it is not feasible to create static plans to cope with the
situation. In our running example, a static plan could perhaps not have predicted
that the rainfall would be so heavy that it would flood the city.

Missions should not fail if one UAV breaks or gets inhibited, nor if network com-
munication does not complete as assumed. Therefore, we need a hierarchical model
for different kinds of situations. This model depends on the additional information
available during missions. At the low levels, we do not consider collaboration at all,
the idea is that each UAV survives the mission as a ‘lonely wolf’. At higher levels
there will be an increase of the amount of information and collaboration available
and more computational intelligence can be used in the mission control. At the
highest level, the squadron works as a one big creature which limb are connected
using information bonds. During the mission, we have to dynamically move up and
down in this hierarchy and, in the same time, singular UAV have to learn how to
survive and accomplish its mission. Clearly, one of the main questions is how to as-
sign tasks and resources while controlling this complex system. From our example,
one could imagine what happens when a UAV full of water looses the connection
with other UAVs and the central control system. It should most likely take the au-
tonomous decision to drop the water of at the location with most fire which it can
observe and get back to get more water.

Operating multiple UAVs gives the possibility of fusing their combined capa-
bilities, potentially leading to rich insights regarding the environment. However,
combining the data to generate new knowledge and making the UAVs to react ac-
cordingly in a coordinated fashion leads to a high computational overhead. It is
clear that the processing power which can be carried on board of the drone will not
be adequate for making optimal coordinated decisions. Further, events registered
by the UAVs or inferred from analysis of the collected data will lead to bursts of
high near real-time computational need. The UAVs should collect as many data as
needed about the situation which need to be analyzed to infer the actions which
should be taken. Most likely in collaboration with human experts. In our example,
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Figure 1: Abstract architecture of the system

UAVs should collect data from the fire situation using, for instance, infrared cam-
eras. These measurements are then collected and a system should filter out the most
interesting ones for human consideration. It is important to also keep a record of
past observations, as they can, when combined with maps of the area and weather
information, be used to make a prognosis on where the fire will move to. Calculat-
ing these prognoses is too computationally intensive for UAVs, already assuming
that they would have all the other needed data available. It is also clear that these
calculations are only needed in exceptional situation.

We propose that Cloud Computing is the most suitable option to solve the issue
of bursts in processing power needs by providing adaptive computational power
and storage capacity. Usage of Cloud Computing also improves fault and failure
tolerance by providing the possibility to globally replicate large sets of data and
distribute work load. Cloud Computing will, however, have an unacceptably large
latency for certain tasks which will have to be solved on the UAVs themselves. As a
consequence, there is a need for an adaptive hybrid solution with Cloud Computing
and the real-time systems on board (see abstract architecture in Fig. 1). We will
discuss this issue in more detail in Section 4.

3 Why to Optimize ?

The overall goal of the system is to keep itself in an ideal configuration for all mis-
sions it should perform simultaneously, given the evolving operational environ-
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ment. A fleet of many UAVs and other autonomic devices can have numerous states.
Factors which are part of the overall state include the environment, the amount,
type, location and configuration of devices, the state of the mobile network used
for communication, and the computational load and data stored on the devices. All
these factors have an influence on the performance of the system. When the perfor-
mance of the system is at its maximum, for that particular moment, the system has
an ideal configuration. Clearly, the problem of finding an optimal configuration at
each point of time leads to a computation so complex that it becomes unfeasible to
perform, this can be seen easily since it is already impossible to model for instance
a single UAV 100% accurately. The number of influencing factors is of such a mag-
nitude that it is comparable to a situation which requires reasoning using the open
world assumption (see Section 5) and we will have to be satisfied with models and
approximations and hence quasi-optimal solutions for the problem.

The flying routes are one aspect which can be considered for optimization. Dur-
ing an emergency situation the best outcome is, in most cases, the minimum time
needed for reaching the target location. However, we also need to make sure that
the droid does not fly into areas which are dangerous like, for instance in our run-
ning example, a fire. Determining an optimal solution can be reduced to finding a
minimum of a given cost function defined for the mission. However, in practice,
the cost function will be too complex (e.g., not derivable), too expensive and too
dynamic to solve analytically and we will have to consider the problem in a more
pragmatic way. One promising approach is the use of some form of evolutionary
computing since it allows for the function to be considered a black-box, i.e., an ana-
lytical description of the function is not required. Instead, it suffices that we are able
to compute values from the function. Further, the parameters for some of these al-
gorithms can be tuned such that solving a dynamically changing problem becomes
possible. Lastly, most of the algorithms can be highly parallelized as was, for in-
stance, done by Fok et al. (2007).

Another aspect which can be optimized, is the communication environment. The
missions should, if possible, be planned such that the network remains reachable.
Promising work has been performed in the field of Wireless Mesh Networks. This
approach enlarges the coverage of the network and should help the devices to save
power, which is obvious bottleneck of the system. A smart choice in routing paths
and link scheduling algorithms can further lower interference, balance the load, and
enhance the throughput and fairness as was studies by Pathak and Dutta (2011). It
should also be observed that the situation is quite different from traditional wire-
less mesh networks because the nodes work cooperatively. We could, for instance,
instruct one of the robots to move to a certain location where a higher transfer rate
can be obtained, i.e., we can physically move the medium containing the data and
even connect the device to a wired link in case of need. In the case of a fire we
could for instance have one, perhaps physically specialized, droid which places it-
self between the fire zone and the central control station or closest radio mast. This
droid could then relay the communication traffic from the others and hence reduce
the transmission power needed, which also improves the transfer rates. Kopeikin

6



et al. (2013) used agents to simulate a more complicated setting where the choice
and location of UAVs to be used as relays is depending on their utilization rate and
network topology prediction. We select their approach for our setting since keeping
the communication link working is, despite the fact that we plan for a system which
can work without central control, a much desired property.

In the setting we are describing we will have to find optimal routes, commu-
nication, and other factors, which are contradicting objectives. Hence, we have to
consider the case as a multi-objective optimization problem and will need to use ap-
propriate methods for solving it. It also turns out that optimal becomes somewhat
ill-defined since there will be multiple solutions which can be considered optimal,
i.e., there will be a Pareto front of optimal solutions. Using Cloud Computing we
might, as we elaborate further in the next Section, be able to consider all factors for
the optimization of the multiple tasks which the system has simultaneously. On
the practical level, a hybrid optimization environment has to be created. This envi-
ronment should consider many algorithms for solving problems and simulate their
outcomes before deploying the best ones to the UAV. Also the method used for find-
ing out the best algorithm is likely to evolve over time, we develop this idea further
in Section 6.

4 Computing Resources

In this Section we will look at how Cloud Computing can help us in emergency sit-
uations with the help of UAVs and other devices with a degree of mobility. We will
discuss why a dynamic combination of Cloud Computing and the computational
power of the components in the network should be used in an emergency situation,
how the Cloud can help to handle bursts in the need for computation, how inter-
action with human gets facilitated, and discuss a model for data storage which we
elaborate further on in the next sections.

Mell and Grance (2009) defined Cloud Computing as ‘a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal management effort or
service provider interaction.’. Buyya et al. (2009) studied Cloud Computing as an
emerging IT platform and compared it to other technologies like grid and cluster
computing. They identified the differences in resource requirements of scientific,
data analysis and Internet based applications. In emergency cases, the Cloud will
be used from all three perspectives. Scientific computations and data analysis are
needed for the analysis and the verification of models and strategies. Much of the
interaction with the Cloud will happen trough Internet based applications, since
it is the ubiquitous way of interacting with Cloud Services. The most important
reasons why we select Cloud Computing as a solution for our scenario are rapid
scalability (both up and down), high security and privacy, and strong support for
fail-over and content replication. These features are not all at the same time avail-
able in either grid or cluster computing. We expect the services which are located
in Cloud Computing infrastructure to assist the overall system by coordinating and
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(re)configuring the other components.
Research on changing transport situations has some similarities with coping with

disasters: in both scenarios there is an amount of slowly evolving infrastructure,
e.g., the roads and the cities’ shape, faster and repetitive events, e.g., the behavior
of road users and city inhabitants, and unexpected situations with a severe impact,
e.g., traffic accidents and wide scale disasters. Earlier research by Li et al. (2011)
proposes the use of Cloud Computing for solving simulation and decision making
problems for urban transportation systems. In their research the authors indicate
that for performing traffic simulations both great amounts of computing power and
storage capacity are needed. These simulations happen both on-line and many of
them can be ran in parallel. They conclude that Cloud Computing is a reasonable
approach since a supercomputer would imply a risk for insufficient capacity in the
future. A supercomputer would also suffer from a lot of wasted capacity while
in the Cloud Computing setting multiple systems can share the Cloud’s ‘infinite’
capability. In a similar realm we want to tap into this capacity to solve hard problems
in a short time.

A system can use several strategies to support the missions. The basic options
can be found in Trigui et al. (2012) which distinguishes a centralized strategy, a dis-
tributed strategy, and a market-based approach which is a trade-off between these
two.

The centralized strategy, where one central component has control over the whole
system, sounds like a reasonable solution when combining the multiple components
with the help of a central Cloud Computing based solution. This strategy was also
most time efficient in the simulations by Trigui et al. (2012) where a combination of
mobile robots and a Wireless Sensor Network were used to optimize the capturing
of intruders. However, it is noted in the paper that ‘[the simulation] did not take into
consideration the communication delays and we provide insights only on the pure behavior of
the coordination strategies independently from the communication.’ In the scenario which
we consider these delays in communication can have an unacceptably large latency
for certain tasks. For instance, a robot which detects an obstacle using an on-board
camera cannot send the data to a central place and wait for a rerouting. The naviga-
tion decisions should be performed autonomously as, for instance, demonstrated by
Kang and Prasad (2013) for an uncertain environment Other tasks, such as moving
object recognition (Nimmagadda et al. (2010)), can be solved partially on the UAV or
completely on a centralized server, dependent on factors like wireless bandwidth,
image complexity, and the size of the reference image database. In their particular
experiment, it was always more favorable to offload the task partially or completely
to the server, when the image database contained 5000 images or more. The authors
also use a speed-up factor to indicate the computation speed difference between the
centralized system and the UAVs, and note that this factor can be treated infinity in
the case of Cloud Computing.

Another argument against the use of a centralized system is that it becomes a
single-point-of-failure. This last drawback is mitigated by the use of Cloud Comput-
ing since, as discussed by Buyya et al. (2009) , it has a strong support for fail-over
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and content replication as compared to grid or cluster computing which usually
only support restarting failed computations.

In the case of an emergency it is very well possible that the central control sta-
tion becomes unreachable. When in this scenario the centralized strategy is im-
plemented, the robots would become unusable since they are totally dependent on
orders from the central control. The distributed strategy seems to offer a solution;
each robot or agent is making a decision based on information which is available
locally. However, as shown in the experiments by Trigui et al. (2012), the distributed
strategy suffers from an increased mission time. This is as expected since the in-
dividual components will rarely be able to compute a global optimal solution by
only using the locally available information. A clear benefit is, however, that if the
volume of data needed to make the centralized decision becomes huge or the com-
munication is unreliable or slow, the mission time for a distributed system would
actually become lower.

The final strategy considered is the marked-based approach which does not re-
quire all information to be sent to the central control station. Instead, as argued by
Dias et al. (2006), to perform a given task the robots should be chosen based on their
own estimation of resource usage. In other words, the robots make their own esti-
mation of the cost and based on this figure a central decision making entity decides
which robot will perform the job. The measurements in Trigui et al. (2012) show
that in terms of mission time, this strategy performs somewhere in between the cen-
tralized and the distributed strategy. The distance which each robot travels, i.e., the
resource use, is not significantly different from the centralized strategy.

As argued above, both a purely centralized or distributed setting have unde-
sired properties when using multiple UAVs for emergency situations. These fac-
tors are quite specific to the setting. When using a centralized setting, like a purely
Cloud based solution, the system will have a latency which is unacceptable for fly-
ing robots. A purely distributed setting would then again have the drawback that a
global optimum is most likely unattainable. The consequence of these two extremes,
complete autonomy of the UAVs and complete offloading to the Cloud, shows the
need for an adaptive hybrid solution with Cloud Computing and the real-time sys-
tems on board (see abstract architecture in Fig. 1). In other words, we will need
something close to the market-based approach which combines the centralized and
the distributed strategy. This dynamic strategy would continuously evaluate which
of the strategies is most beneficial at a given time-point and would also have to
take the survivability of the system into account. The robots will then in case when
the central control station cannot be reached for a certain amount of time continue to
work autonomously, perhaps with a lower performance. To attain this, the functions
of the Cloud which are essential for the working of the overall system have to be be
replicated in the UAV network. At any point, the Cloud should simulate and try
to predict what would happen in case of different kinds of failures and pro-actively
adapt the algorithms on the UAVs.

It is expected that certain tasks which we would like the Cloud to solve are not
computable within reasonable time, or not at all, due to an inherent complexity of
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the problem at hand. Hence, the Cloud needs to hand certain tasks over to humans
in order to get them solved. Further, interactions with humans are also needed to
assist rescue teams in case of disasters. We expect that a certain subset of the tasks
will be of such nature that they can be solved using a technique similar to Amazon’s
mechanical Turk 1. This crowd-sourcing platform enables its customers to create Hu-
man Intelligence Tasks and decide upon the price which human workers will get paid
upon completion of the task. This kind of tasks can be, for instance, the annotation of
imagery as was studies by Sorokin and Forsyth (2008). The authors concluded that
’the annotation happens quickly, cheaply and with minimum participation of the researchers,
we can allow for multiple runs of annotation to iteratively refine the precise definition of an-
notation protocols. One important concern with the use of crowd-sourcing is that in
case of a disaster related to a conflict between humans, the opposite party might try
to counterfeit the answers to the system. In the case of our illustrative example, we
could use a Human Intelligence Task to check preselected frames, recorded by the
UAVs, to decide whether there are humans visible.

The Cloud and modern web infrastructure is also known for the introduction of
NoSQL databases. This term refers vaguely to several types of databases which do
not support SQL with traditional ACID guarantees. This abbreviation stands for
Atomicity, Consistency, Isolation, and Durability, which means that any transaction
in the database happen completely or not at all, will not violate database rules, hap-
pens without interference from other transactions, and is stored in the database even
in case of failure immediately after the transaction, respectively. (See also Haerder
and Reuter (1983))

Many of these NoSQL databases have been designed to handle specific types of
data or huge amounts of data. We will discuss more about a certain type of graph
data, which we choose to use for storing data, and the handling of huge amounts of
this kind of data in the following sections.

5 Use of Semantic Agents

From an abstract perspective, a Smart City can be seen as a collection of entities with
some kind of identity and relations between them. When we consider this idea, we
can see that we could represent the Smart City as a graph where vertices model enti-
ties and edges are used to describe their relations. This observation suggests that the
Semantic Web, as originally suggested by Berners-Lee et al. (2001), would provide
suitable concepts for describing and reasoning about Smart Cities. The Semantic
Web encompasses the idea that entities and the relations between them in the real
world can be described in a similar way as web documents and links between them.
The entities of interest, in a Smart City, have some kind of functionality, and many
have sensors, actuators or some sort of, perhaps artificial, intelligence. This is to say
that the abilities of the entities vary greatly. Examples of entities do not only include
wireless sensors for temperature and pollution, traffic and street light control sys-

1https://www.mturk.com/
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tems, and pavement heating, but also digital services and the people living in the
city. Also the UAVs are just examples of entities. The integration for these types of
entities was studies before in Terziyan (2008) and each of them was regarded as a
Smart Resource. In the same article the author also suggest that the Semantic Web
does not reach its aims if it can only be used to describe passive, non-functional
entities. Instead, it should be possible to describe the behavior of entities, which
includes communication, coordination, and proactivity, i.e., the ability to predict
the upcoming situation and act accordingly. The suggested approach was also fur-
ther enhanced in Katasonov et al. (2008), which adds semantic agents to the picture.
These agents are a representation of the Smart Resource in an agent environment.
By encapsulating each Smart Resource with an agent, the entities gain the ability
to communicate with each other. When this communication happens in a Semantic
language which allows for dynamics, like, for instance, S-APL formalized in Cochez
(2012), we can reach the goal of describing the behavior of entities.

When looking at disasters in Smart Cities, it appear reasonable, or perhaps even
natural, to use the Semantic Web concepts to describe and exchange information.
The reason is that disasters tend to happen unexpectedly, and when they happen
they have a great local impact. Also the time-scale of disasters varies a lot, the
flow of information is raising over time, while available resources, like batteries,
decrease. This unexpected nature implies that it is hard, if not impossible to give a
framework or fixed set of terms to describe a situation. Further, we are not able to
identify beforehand all entities which would play a role during the development of
events. Therefore, we need a way of describing any entity and a way of reasoning
about them. This flexibility is offered by the Open World assumption, which is
one of the cornerstones of the Semantic Web. This assumption encompasses the
idea that if we do not know something about an entity we cannot assume that it
is not true, i.e., we always assume that our graph of data is incomplete. If we,
from our illustrative scenario, have not received any information about the flood
yet, we can still not make the assumption that everything is fine. It could namely
be that certain UAVs are saving their energy by not communicating immediately.
This view and way of reasoning is opposed to a Closed World assumption, where
the fact that something is not known would immediately imply that it is not true,
i.e., the world exists only of the part which we are able to observe. The closed world
way of reasoning is typically used in relational databases.

The main drawback of using Semantic technologies could be the reduced pro-
cessing speed. Effort related to making semantic data storages better able to cope
with big amount of data can, for instance, be found in Abadi et al. (2007). We, how-
ever, expect that not the storage, but the processing might become the bottleneck in
a concrete implementation, partially caused by a need for alignment and negotia-
tions. This extra processing power could be provided by the Cloud infrastructure at
the cost of latency as described in Section 4.

The use of an Agent System is a natural choice since it reflects the actual envi-
ronment to a great extent. The UAVs can be represented by agents because they are
able to act, to perceive their environment, and to communicate with each other. Fur-
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ther, we are looking into UAVs which can function autonomously and which have
the ability to achieve their goals. These requirements, needed for the UAV to be
classified as an agent, and further research on distribution of intelligence and coor-
dination among agents, have been collected in Ferber (1999). It should be noted that
the same work also handles the concept of organizations and sub-organizations. An
organization groups agents together based on their functions and roles. One of these
organizations can itself be considered as an agent in a bigger organization. Similarly,
when we are combining Cloud Computing into our agent system, the Cloud itself
is regarded as an organization and hence also as an agent inside the whole.

Joining the capabilities of Agents and Cloud Computing has been proposed ear-
lier in the context of Smart Cities, like, for instance, by Ito et al. (2012) who proposed
their combined use for solving questions about smart housing, senior people care
and road congestion management. Further research, related to the use of agents and
Cloud Computing in traffic situations, can be found from Li et al. (2011). Their main
argument in favor of using a multi-agent setting is that mobile agents only require a
runtime environment and can run their computations near the data which increases
performance, reduces latency and communication costs. Moreover, a multi-agent
system is said to perform better as a static agent system when faced with require-
ments of dynamic traffic scenes. The agents are able to travel trough the component
involved and autonomously implement strategies. It is also stated that thanks to the
use of Mobile Agents new strategies can be distributed while the system is running
and hence it is possible to keep up with scientific development. Based on these ideas
we add the requirement for the agents to be mobile to our system. The UAVs will
be mere shells in which the mobile agents reside and which offers them services.

Further research on similar ideas, but focused on transportation, by Wang and
Shen (2011) points out that contemporary Cloud offerings also include infrastruc-
ture beyond general purpose computers. Especially when combined with agents
which share similar behaviors it is possible to harness the power of parallel exe-
cution. The authors proposed and experimented the use of Graphics Processing
Units (GPUs) as a host for traffic signal timing optimization problems. This type of
hardware has also been used earlier for running evolutionary computations as, for
instance, by Fok et al. (2007).

The fact that we allow the UAVs to communicate with each other trough agents
and to the Cloud creates many opportunities. First, the computational power of the
Cloud can be used to calculate better cooperative mission paths compared to what
would be possible with the limited computational power of available on the drones.
Even the combined resources on the UAVs would be dwarfed by the virtually un-
limited power available in the Cloud. However, as discussed before, the result of
doing the computation in the Cloud can be better, but will always involve a certain
latency. And when the connection to the Cloud is lost, the distributed intelligence
of the UAVs, which can be managed by the agents, should be used instead.

Second, the robots could use each others’ observations to decide upon their own
actions and hence disable some of their own sensors in order to save energy. This
also applies to other actions like physically altering the environment and even fly-
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ing. A UAV which is low on energy could forward a task to another UAV, which has
plenty of resources left or there could be a carrier UAV which carries other smaller
UAVs on-board to save the energy needed while flying.

Finally, loosing an individual UAV is not such a problem since the other UAVs
can try to take over the task by migrating the mobile agents. This is facilitated by the
Smart Resource framework because the mobile agents are build as semantic agents
which are able to communicate with each other about their behavior and capabili-
ties.

6 Toward Evolving Knowledge Ecosystems for Big Data
Understanding

We expect the total amount of data which the all sensors in the Smart City collect
jointly to be enormous and varying over time. It is possible to filter the data, but
discarding parts which appear to be needed later could lower the potential perfor-
mance of the system dramatically. The data also needs to be processed in a timely
fashion, because if the system realizes earlier that a reconfiguration is needed it can
save essential resources. Hence, we will need to store and process this voluminous
data at a high velocity. As we argued in the previous Section, we would benefit
from the use of a semantic representation of the data since it allows for an unlimited
extension and the use of the open world assumption. In conclusion, we could say
that we have a Big Semantic Data problem since we have the three aspects which
this type of problems consists of according to Zikopoulos et al. (2012), namely the
need to work with a big volume of varying data with a high velocity.

In previous work (Ermolayev et al. (2013)) we looked at how to solve a Big Se-
mantic Data problem which consisted of handling streams of tokens arriving at high
rate and altogether representing a huge amount of data. That work stayed on a very
abstract level. The scenarios described in this chapter are concrete example of situa-
tions where such a system could be used. In the following subsections we will, based
on the previous work, describe the balance between volume and velocity, how big
data can lead to big knowledge, and how a system inspired by the mechanisms of
natural evolution could provide a solution for managing this knowledge. This type
of system should be implemented and deployed on Cloud infrastructure to provide
scalability. We will also offer suggestions on how the system could work, based on
our illustrative example.

6.1 Volume versus Velocity

Volume, the size of the data, and velocity, the amount of time allowed for its process-
ing are clearly the main factors when talking about our Big Semantic Data problem.
Both of them manifest themselves when a high number of measurements, like for
instance camera recordings, temperature, and humidity, have to be handled within
a reasonable time. When the system extracts information or knowledge from the
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data it does this effectively if no important facts are overlooked, i.e, the analysis is
complete. We say that the utility of the extraction is high, when the results are use-
ful. The effort is a measurement of how much time and resources the system uses to
perform this extraction. The ratio of the utility to its associated effort is interpreted
as the efficiency of the system. To illustrate these ideas, imagine that the system re-
ceives an image of a fire for processing. If the system is able to extract all possible
information from it, including perhaps data not related to the fire, it is effective. In
case these results are useful, we achieved a high utility. When the system is able
to do this fast or with a low amount of resources it has a low effort measure. If all
of these are true, we achieve a high efficiency, i.e., a lot of useful information got
extracted with little effort.

Note that when the effectiveness of the system increases, the computational com-
plexity will increase and hence there is a risk that the efficiency of the system drops.
This does not necessarily happen in case the information found appears to be useful.
Hence, if we would like to make a deeper analysis of the collected data, we would
have a less efficient system. To cover up for this lower efficiency, we would need
a higher computational power, which Cloud Computing can provide. The reason
is that the Cloud infrastructure can reduce the effort (at least the time component,
which is most relevant) to a minimum by using more resources. Obviously, even
when using Cloud Computing the system will be bound by theoretical and practi-
cal limits. Moreover, as mentioned above, the computations which are performed
in the Cloud come with an inherent communication latency.

6.2 Big Knowledge

Since we are trying to extract all relevant information from all sensors which we
have available in the Smart City, we start from a vast amount of data. Also, when
we try to extract all knowledge from the data, we might end up with an unman-
ageable amount of knowledge. From that observation we identified some aspects
which should be taken into account while working with Big Data. We called this
approach 3F+3Co which stands for Focusing, Filtering, and Forgetting + Contextu-
alizing, Compressing and Connecting. It should be noted here that not all terms
are novel in the sense that they have been used in different domains and interpreta-
tions, see, for example, Dean and Caroline (2011) for a slightly different view on 3F.
We gave an occasionally overlapping meaning to each of these terms in the context
of Big Data analysis as follows:

Focusing is mainly concerned with the order in which the data is processed. An
optimal focus will only scan the data which is absolutely needed to come to
an answer for the question which is at hand and will hence lead to a higher
efficiency. This facet will play a very significant role in the emergency system
since the data is arriving continuously and hence the focus will need to go to
the data which is related to the event which is currently going on. For instance,
in our illustrative example, the focus should move from the fire fighting to the
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flood damage prevention as soon as there is an indication that the flood might
cause more damage as the fire.

Filtering is ignoring anything which is, hopefully, not of importance for immediate
analysis. We use hopefully since deciding whether information is relevant or
not can in most cases not be done with a hundred percent certainty. One way
to filter is to only focus on specific features of the data, which also reduces its
variety and complexity. The Smart City emergency system could for instance
ignore information from sensors in the center of the city when there is a fire on
its outskirts.

Forgetting is a further step from filtering where data, or knowledge derived from
it, is completely removed from the system. This trashing can remove poten-
tially valuable information. In the work which we did around Evolutionary
Knowledge Systems (see Section 6.3), we use the technique of “forgetting be-
fore storing ”. This means that there has to be reason before anything is stored
at all in the knowledge base. Using this technique is sensible in case the
amount of information which would need to be stored would be of such size
that even nowadays’ Cloud Computing solutions and data centers would be
overwhelmed, if this is not the case it might be reasonable to keep all the data
stored somewhere, at least for a certain amount of time.

Contextualizing comprises not only the change of sense of statements in different
contexts, but also judgments, assessments, attitudes, and sentiments. There
are various facets which contribute to the context of data. Examples include
the origin of the data, the tools used, and the place in which the result will
be used. Conceptualization happens for instance when one measurement is
given more importance as another one because it was made with a better mea-
surement device.

Compressing stands for both lossy and lossless compression. Where lossy com-
pression is similar to Forgetting which was discussed above. The lossless
compression might be very effective because the high amount of data leads
to a high probability that repetitive or periodical patterns are present.

Connecting can be done if information is added to an already existing body of data.
The whole body is build incrementally. The benefit of linking the data before
processing it further is that data and knowledge mining, knowledge discovery,
pattern recognition, etc can be performed more effectively and efficiently. A
good example of this connecting used for building an index of the world wide
web can be found in Peng and Dabek (2010).

6.3 Evolving Knowledge Ecosystems

The Cloud component of the emergency management system receives a lot of infor-
mation. The content is likely to evolve over time because emergency situations are
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subject to rapid and unpredictable changes. To anticipate these changes the system
should be able to change its inner working. In the chapter Ermolayev et al. (2013)
we proposed an Evolving Knowledge Ecosystem which is able to adapt to external
change.

The core idea behind the Ecosystem is that

The mechanisms of knowledge evolution are very similar to the mech-
anisms of biological evolution. Hence, the methods and mechanisms for
the evolution of knowledge could be spotted from the ones enabling the
evolution of living beings.

Starting from this idea, we derived that we could model the knowledge evolution
inside the system using ideas from natural evolution. One of the core ideas behind
the Evolving Knowledge Ecosystem is that, similar to the idea of natural selection
proposed by Darwin Darwin (1859), knowledge which is more fit for its environ-
ment, has a higher chance to survive as less fit knowledge. The environment here is
formed by the incoming information to the system.

The Knowledge Ecosystem assumes that the information which it is delivered is
in the form of knowledge tokens. These tokens are self-contained fractions of the
data, with a structure which allows integration into what we call knowledge organ-
isms. In order to create these tokens, the streams of data should be transformed.
Natural language text can be converted into knowledge tokens using natural lan-
guage processing (NLP) techniques. The Evolving Knowledge Ecosystem is, how-
ever, not limited to that type of data. Any data stream can, in principle, be converted
to a stream of knowledge tokens. In the case of our UAV scenario, the extraction of
data from measurements might be even much more simple as the NLP example.
Much more complicated is the conversion or analysis of images and video. The re-
search concerning these is, due to its complexity, not as mature as for text analysis.
(See for instance Atmosukarto et al. (2012) for an approach to action recognition.)
There is also effort in integrating capabilities of text and media analysis by Dam-
janovic et al. (2011).

The benefit of using a Knowledge Ecosystem for managing the data is that it
evolves over time and can hence adapt itself to new trends in the data. Also a lot
of meta-data is kept inside the system and using these it is possible to propose ben-
eficial algorithms for future actions. It could, for instance, remember that a certain
area of forest burned down a year ago and realize that the fire does not go there this
time. From these two fact, it could derive a rule about likelihood of spreading of a
fire in a given location.

The Knowledge Ecosystem is also able to provide signals to the outside world.
As a concrete example, it could instruct the UAV fleet to collect more information
about the temperature in a given area. The Knowledge Ecosystem can further be
queried for information and trends.
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7 Conclusions and Future Work

In this chapter we proposed approaches related to several aspects of the use of a
fleet of collaborative UAVs and Cloud Computing in Smart Cities. We started by
describing what a Smart City is and what we would need from this system in emer-
gency situations. These situations have specific characteristics like an unpredictable
development and a need for immediate action. Then, we gave several examples
on how the collaboration between UAVs might be used to improve the overall per-
formance of the system. We looked at this from an optimization perspective and
concluded that in order to keep the system in an optimal state, we have to contin-
uously evaluate a multi-objective function. It was also indicated that this function
is not available in analytic form and we hence proposed the use of some form of
evolutionary computing which would also be very suitable for execution in a Cloud
Computing environment.

Cloud Computing was selected as the main computing resource for the system
since it has virtually unlimited capacity and also allows for fail-over and content
replication, even geographically. Then we stated that it has to remain possible for
the fleet of UAVs to work autonomously from the central command center which is
hosted in the Cloud.

Next, we proposed the use of semantic agents. Agents are a natural choice to
represent the drones, and adding the semantic components allows us to integrate
and make analysis from data with any structure. Further, we noted that instead
of having a single agent for each drone, we use mobile agents which also hae the
possibility to migrate from one drone to the other in case of need.

Then, because the data which is being processed has such a volume, velocity,
and structure, it is not realistic to use standard tools. Hence, we end up with a Big
Semantic Data problem. In order to solve this problem, we proposed the use of an
Evolving Knowledge Ecosystem which allows the integration of information from
different sources in a manner similar to the workings of natural organisms.

The problem areas which were touched in this chapter were described from a
high level perspective. There is still a very broad scope of topics which can be re-
searched from both a theoretical and experimental perspective. Examples include,
but are not limited to, what kind of robots are most useful, which factors influence
the optimality of the system and up to which extend, how the communication be-
tween the robots and the Cloud should be designed, how the decision whether to
perform a computation in the Cloud or on the devices locally should be taken, what
type of agent system should be used, whether the evolving knowledge ecosystem
has a performance high enough to accommodate the needs, and so on.
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