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Abstract: 

 

The objective of this project was to develop a simulation environment with a graphical user interface 
for the study of nosocomial infections. The software allows for the tuning of nearly 40 different 
hospital parameters and for the export of results in spreadsheet form. The individual-based model 
focuses on interactions between health-care workers and patients. Pathogens are spread between 
patients by the workers and the ensuing infections are modeled mathematically. Pathogen mutation to 
antibiotic-resistant strains is possible and the pathogens may outcompete one another. Phage therapy, 
the utilization of bacteriophages in treating infections, is included alongside antibiotics as a treatment 
option. The model indicates that simultaneous use of phage therapy and antibiotics has clear 
advantage to exclusive use: when simultaneous use is allowed the prevalence of susceptible bacteria 
decreases by 29% and that of antibiotic resistant bacteria by 10% on the hospital population level. A 
sensitivity analysis reveals that treatment probability, a parameter describing the likelihood of an 
infection being noticed, is highly influential in determining average duration of stay: 10% treatment 
probability results in average duration of stay of 16 days, whereas 100% certainty results in average 
duration of stay of 7 days. The values in-between follow exponential law. Hand-washing compliance 
is observed to be strongly and reversely correlated with the prevalence of pathogens. However, full 
compliance does not entirely eradicate the bacteria, nor does zero-compliance result in total saturation 
of the population. These limits are due to constant in- and outflux of patients, some incoming patients 
being colonized prior to arrival. Full saturation of the patient population does not occur when the rate 
of transfer is low enough to allow patients to leave the hospital before becoming infected. 
Significance of the results is highly dependent on parameter values, which are often very speculative. 
The model should therefore be primarily used to study dependencies and sensitivities of parameters. 
The work lays foundation for the development of more general vector-mediated simulation engines in 
the future. 
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Tiivistelmä: 

 

Tämän tutkielman tavoitteena oli kehittää graafisen käyttöliittymän omaava monipuolinen 
simulaatioympäristö, jolla voidaan mallintaa bakteerien leviämistä sairaalaympäristössä. Ohjelma 
mahdollistaa noin neljänkymmenen sairaalaparametrin asettamisen ja tulosten purkamisen 
taulukkomuotoon. Kyseisessä yksilöpohjaisessa mallissa keskitytään sairaalatyöntekijöiden ja 
potilaiden välisiin vuorovaikutuksiin. Työntekijät toimivat vektoreina, levittäen bakteeri-infektioita 
potilaiden välillä. Bakteerimallinnus yksittäisen potilaan sisällä on toteutettu matemaattisesti. 
Bakteerit voivat kilpailla keskenään ja muuntua antibiooteille vastustuskykyisiksi; tällöin voidaan 
hyödyntää faagiterapiaa, jossa infektioita hoidetaan bakteriofaageilla. Malli osoittaa, että antibioottien 
ja faagiterapian yhtäaikainen käyttö on huomattavasti tehokkaampaa kuin eriaikainen käyttö: 
yhtäaikaisessa käytössä sensitiivisten bakteereiden kokonaismäärä sairaalassa laski 29% ja 
antibioottiresistenttien bakteereiden määrä 10%. Sensitiivisyysanalyysissa selvisi, että esimerkiksi 
hoitotodennäköisyysparametrilla on suuri, eksponentiaalinen vaikutus keskimääräiseen 
sairaalassaoloaikaan: 10% hoitotodennäköisyys johti 16 päivän keskipituuteen, kun 100% 
todennäköisyys johti 7 päivän mittaiseen keskipituuteen. Työntekijöiden hygieniakäytännöt 
vaikuttavat vahvasti bakteerien kokonaismäärään sairaalassa. Täydet hygienatoimet eivät kuitenkaan 
riitä koko sairaalan bakteerikannan tuhoamiseen, eivätkä olemattomat hygienatoimet johda jokaisen 
potilaan infektioon. Tulosten merkityksellisyys on vahvasti riippuvaista parametrien arvoista, joista 
osa on laajalti spekulatiivisia. Mallia tulisi siis lähinnä käyttää riippuvaisuuksien etsimiseen ja 
herkkyyksien arvioimiseen. Työ tarjoaa pohjan vektorivälitteisten ja yksilöpohjaisten 
simulaatiomallien kehittämiseen tulevaisuudessa. 
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2 Abbreviations 
 

HCW: health care worker 

HGT: horizontal gene transfer 

PT: phage therapy 

RA: antibiotic resistant bacterium 

Rd: growth rate 

RP: phage therapy resistant bacterium 

S: susceptible bacterium
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3 Introduction 
Modeling the spread of infectious diseases has been central to understanding patterns in 

local outbreaks and global pandemics (Siettos and Russo, 2013). Models may also provide 

insight into responding to such diseases via medicinal methods. Real-world human 

experiments involving experimental drugs are often expensive, time-consuming and under 

strong ethical scrutiny. The effects of drugs may also include distinct population-level 

properties, unforeseen by studies done on the individual level (Koopman and Longini, 

1994).  

In this thesis I present a modeling environment for investigating the spread of 

infectious pathogens within a hospital setting. The model is designed as a versatile tool 

with applications ranging from simple single-pathogen dispersal simulations to more 

complex systems encompassing the dynamics of antimicrobial resistance. I begin by 

describing the basics of antimicrobial resistance and then proceed to explore how modeling 

can be utilized in planning suitable counter-practices. 

3.1 Antibiotic resistance and phage therapy 
The development of resistance towards fitness-reducing agents often occurs among 

organisms that thrive in large numbers and have short generation lengths. The evolution of 

resistance has been observed over a range of lineages, including insects (Mallet et al., 

1990), rodents (Ishizuka et al., 2008) and bacteria. The latter represents one of the major 

concerns in modern healthcare (Spellberg et al., 2013). 

3.1.1 Antibiotic resistance 
Antibiotics are compounds that kill or inhibit the growth of microorganisms or, from an 

evolutionary viewpoint, reduce their fitness. Although most commercial antibiotics are 

produced synthetically (Nussbaum et al., 2006), antibiotics have been abundant in nature 

for millions of years (Siettos and Russo, 2013; Spellberg et al., 2013). Not surprisingly, 

resistance towards antibiotics has been prevalent for an equal amount of time. The first 

signs of resistance to commercial antibiotics were discovered even before penicillin was 

widely in use (Koopman and Longini, 1994; Abraham and Chain, 1940). Soil bacteria are 

known to harbor resistance (Riesenfeld et al., 2004) and recently a bacterial strain isolated 
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in a cave for 4 million years was found to be resistant to 14 different “commercial” 

antibiotics (Bhullar et al., 2012).  

The use of antibiotics generates selection gradients, in which resistant mutants are 

favored over the wild types. Selection is most efficient in drug concentrations that settle 

within the “mutant selection window”, whose lower boundary marks the minimum 

inhibitory concentration and upper boundary the mutant prevention concentration (Drlica, 

2003). Resistance may rise due to a random mutation in the bacterial genome or, more 

commonly, due to horizontal gene transfer (HGT) (Bennett, 2008). The workhorses of 

HGT, plasmids, are circular DNA elements that depend upon the cellular machinery of 

their host bacterium to replicate. Plasmids can survive in the extracellular medium as 

passive elements and occasionally become absorbed by bacteria by the process of 

transformation. Many plasmids grant their host antibiotic resistance and also the ability to 

perform inter-bacterial HGT. Such direct transfer of genetic material between bacteria is 

called conjugation. The host’s capability to conjugate vastly improves a plasmid’s chance 

of spreading in the bacterial population (Bennett, 2008). 

Annually, hundreds of thousands of lives are being lost due to the declining strength 

of antibiotics (World Health Organization, 2012). A significant factor in the development 

of antimicrobial resistance is the overuse of antibiotics in medicine. Oftentimes antibiotics 

are prescribed to patients with symptoms stemming from viral infections – conditions 

against which antibiotic treatment is completely futile. It has been estimated that 60% of 

general antibiotic prescriptions are for the treatment of respiratory tract infections – a set of 

conditions that usually arise from viral infections (Lindbaek, 2006). In developing 

countries, antibiotics are usually obtainable without prescription (Hart and Kariuki, 1998). 

Loose medicinal legislation in poor and overpopulated areas may be imperative for people 

with no possibility to consult a doctor. The resulting misuse of antibiotics in turn favors the 

emergence of resistance. For example, the use of the antibiotic ciprofloxacin in developing 

countries has been showing alarming rise in resistant strains since the 1990s (Green and 

Tillotson, 1997; Rahman et al., 2014). 

 In addition to consumption by humans, the farm industry employs antibiotics in the 

treatment of sick farm animals. In many countries antibiotics are also pre-emptively 

administered by integrating them in animals’ diets – a practice already banned in the 

European Union (Clark et al., 2012). Not only does careless agricultural use drive bacterial 
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evolution in the animals, it also releases large amounts of antimicrobials to the 

environment. 

3.1.2 Phage therapy 
Bacteriophages are bacteria-infecting viruses. Even though phage therapy (PT) has been 

the subject of increasing speculation during the last two decades or so, the treatment 

method itself dates back to pre-antibiotic times. The notion of using phages in battle 

against bacteria was hypothesized as soon as phages were first discovered (d' Hérelle, 

1926) and put to practice a few years later (Eaton, 1934). This novel form of therapy drew 

interest from industry and research worldwide until the 1930s and 1940s. At this time, 

antibiotics were discovered. Their ease of use contrasted with difficulties involved in PT 

studies; soon enough antibiotics were embraced as the evident remedy for curing 

infections. Consequently, interest on PT declined. Currently, it subsists as an approved 

treatment method only in Russia and Georgia and as an ‘experimental treatment’ in Poland 

(Levin and Bull, 2004; Pirnay et al., 2010). Phages are also used in the food-industry in the 

United States as preservatives (Sillankorva et al., 2012). The modern interest in PT began 

when the efficacy of antibiotics became questioned due to the alarming rise in nosocomial, 

antibiotic resistant bacterial strains. Pharmaceutical companies have nevertheless shown 

little interest in developing the treatment, as monetary requirements are high with 

moderately minor benefits to be expected (Thiel, 2004). 

Recently, Jalasvuori and colleagues studied the effects of confronting antibiotic 

resistant bacteria with plasmid-dependent phages (Jalasvuori et al., 2011). This specific 

class of phages only infects plasmid-bearing cells. Unlike conventional phages, plasmid-

dependent phages are capable of infecting a wide range of bacterial species, as long as the 

bacteria exhibit a plasmid-borne conjugation apparatus. Since plasmids often associate 

with antibiotic-resistance, this approach might prove useful in direct eradication of 

resistant cells. The study found that phage-dependent cells are highly effective in 

eradicating antibiotic resistance from a bacterial population. Some cells were also observed 

to lose the plasmid and consequently become resistant to phages and susceptible to 

antibiotics. Additionally, a small fraction of cells gained resistance towards phages while 

still retaining antibiotic resistance. Phage-resistance arose through the mutation of the 

conjugation apparatus, thus rendering the cell incapable of conjugation. The emergence of 

these mutants complicates population dynamics and gives rise to further questions. For 
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example, does the small population of phage-resistant bacteria still pose a threat to the 

patient? Is removing the ability to conjugate enough to tip the balance and eradicate the 

pathogen? 

In light of the arising threat of antibiotic-resistance and promising recent discoveries 

in phage therapy, clinical trials following modern standards have become topical. Before 

such trials are initiated, in silico approaches may be used to review the role of phage 

therapy and other pre-emptive measures. The confined safety of computer circuitry allows 

us to test scenarios without having to account for the limitations of the real world. 

3.2 Individual-based models 
Traditionally, modelers have sought to formulate natural phenomena by strict 

mathematical means. The interpretation of mathematical models is relatively 

straightforward and they may provide elegant and general solutions for problems simple 

enough. For example, given that we know the present state of the planets in our solar 

system, we can accurately predict the motions of these heavenly bodies centuries ahead 

using simple and deterministic Newtonian dynamics (Barnes and Chu, 2010). However, if 

one wishes to truly capture the complexity inherent in the natural world, mathematical 

models become cumbersome. An ant colony provides a good example. In the colony, the 

population dynamics emerge from the complex interactions between thousands of social 

creatures and their environment. Each ant is an individual making seemingly independent 

decisions, yet the system, as a whole, is dependent on a dazzling number of interactions 

between these singular entities.  

Complex systems, such as the ant colony, can be simplified using population-wide 

differential equations, but important details may become lost (Barnes and Chu, 2010). In 

theory, there is no limit to what differential equations may describe, but as the complexity 

of the system increases, the complexity of these equations climb exponentially (Bonabeau, 

2002).  

The age of efficient and inexpensive computing power has brought about a new 

approach to modeling complex systems. Although still in the minority, the proportion of 

individual-based models (IBMs) in modeling is on the rise (van Kleef et al., 2013). IBMs 

follow a bottom-up approach, where each individual comprising the heterogeneous 

population is considered an autonomous entity with distinct behavior. This is in contrast to 

mathematical population models, which compress the whole population to aggregate 
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equations, ignoring individual behavior. The simultaneous behavior and interaction of 

several entities give rise to the population and its emergent properties. 

Emergent properties are fundamentally present in the natural world, yet not often 

emphasized by mathematical models (Bonabeau, 2002). Emergence arises as the result of 

the collective behavior of the entities. For example, the process of evolution may be 

considered an emergent property of a population. Imagine a virtual population of 

replicating entities, which are able to pass their attributes (heritability) with minor 

variations (mutation) to the next generation. An entity may have an attribute of speed, 

which affects its success in gathering resources. Those who lack speed may be wiped out 

due to hunger before being able to replicate (selection). Over time, one would expect to see 

increase in the mean speed attribute of the population. Yet nowhere is the increase in mean 

speed over generations scripted in the code. It is the collective result of heritability, 

selection and mutation that the evolutionary trend emerges.  

Another key aspect of IBMs is the presence of stochasticity. Randomness is 

inherently present in the natural world, as revealed by the field of quantum mechanics 

(Pironio et al., 2011). Although randomness on a larger scale cannot be strictly inferred 

from quantum behavior, complex events on the macro-scale are often chaotic enough to be 

considered random (for example, throwing a dice). Randomness may also be present in 

mathematical models. However, in mathematical models the stochastic factor is applied to 

equations describing an aggregate of individuals, whereas in IBMs the variant may be 

precisely positioned to its righteous location: the individual (Bonabeau, 2002). For 

example, the decision-making process of an entity may involve complex calculations based 

on incoming data from different sensors (such as vision, hearing or touch). This data may 

stem from the randomized whereabouts of the individual or maybe an encounter brought 

about by the random movement of another individual.  

 The “accuracy” of IBMs comes with drawbacks; it is significantly harder to extract 

data from these models than from conventional mathematical models. The results obtained 

from IBMs are often numerical solutions: the results only apply to a specified set of 

parameters. This is in contrast to mathematical models, which are sometimes able to 

produce generalized results (Bonten et al., 2001). In a sense, IBMs take the in silico 

approach closer to more traditional methods of investigating the natural world. The 
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methods used to extract and analyze data borne similarity to extracting data from the real 

world, since the desired information is often buried under mountains of unwanted noise.  

Despite their reliance on computational methods, IBMs are always dependent on 

some form of mathematics. This is also the case in the present model, as a sub-layer of the 

simulation describes bacterial dynamics inside a single patient using deterministic logistic 

growth equations. The line between IBMs and mathematical models is nothing short of 

blurry. It has even been suggested that differential equations describing the dynamics of 

the units of a system are together forming an IBM (Bonabeau, 2002). It is also common 

practice to fit both types of models in a single study (eg. Chakra et al., 2014) or to create 

analytical mathematical model based on IBMs (eg. D'Agata et al., 2007). 

3.3 Modeling infections 
In order to know which questions are worth posing and which ones have already been 

answered, it is worth going through some of the previously published hospital models. A 

study from 2012 used a mathematical model to investigate how the usage of antibiotics 

applied on bacterial infections contributed to the rise of an antibiotic resistant strain in a 

hospital setting (Grima et al., 2012). Specifically, the study focused on the treatment of 

Clostridium difficile associated diseases and the consequent rise of vancomycin-resistant 

enterococci. The model was built upon a previous model (D'Agata et al., 2005). Grima and 

colleagues state that since the variability and uncertainty of the parameters is rather high, 

sensitivity analyses became the main subjects of interest. These analyses revealed that the 

rate of antibiotic use, the duration of stay, hand-washing compliance and initial infection 

probability were to be the most sensitive variables in controlling the spread of nosocomial 

infections. 

 A study from 2000 by Lipsitch et al. presents a mathematical model with two 

antibiotics (Lipsitch et al., 2000). Their model allows for resistance to develop against drug 

1, but not drug 2. The model assumes that patients receive antibiotics even if they are not 

colonized with the bacteria of interest, since the drugs may be used to treat a wide range of 

other symptoms. The experiment resulted in the un-intuitive result, that if transmission rate 

of bacteria between patients were high enough to maintain the presence of resistant 

bacteria, reducing the transmission rate would only reduce the prevalence of resistant 

bacteria and have no effect on sensitive bacteria. This is because resistant bacteria depend 

solely on transmission, whereas sensitive bacteria also gain population flow from incoming 
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patients. They also discovered that when a patient is treated with drug 2, they become 

likely to carry bacteria resistant to drug 1. This is surprising, because the level of resistance 

to drug 1 should be correlated with the usage of drug 1 and reversely correlated with drug 

2. This is, however, reflected differently on the population level, as prevalence of 

resistance is reduced in the hospital as a whole due to usage of drug 2. This is a brilliant 

example of how population-level dynamics may possess unforeseen qualities. The study 

also concluded that clearing resistance from the hospital (weeks to months) is much faster 

than observed community-based infection interventions (several years). 

 Agata et al. studied the effects of minimizing treatment duration of patients. The 

IBM behind this study bears most similarity to the model presented in this thesis. To 

generalize the results of the IBM, a deterministic mathematical model was accompanied 

alongside the simulation. The authors concluded that minimizing the average duration a 

patient spends in a hospital has dramatic effects and may serve to fully eliminate the 

resistant pathogen from the hospital (D'Agata et al., 2007). 

 Hotchkiss and colleagues produced a spatial individual-based model of an intensive 

care unit (Hotchkiss et al., 2005). Their model relies on spatial order – that is, patients 

reside in spatially explicit rooms between which health-care workers move. Most infection 

models assume mass-action principles, which assume all agents to reside in a homogenous 

environment and their interactions to be based purely on fixed probability values. The 

model was merely created to present an example of how IBMs may be used to produce 

relevant data in optimizing health-care policies – the study therefore contains no 

quantitative or qualitative results. 
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4 Aims of the Study 
The aim of this thesis was to create a virtual hospital simulation software and utilize it to 

investigate nosocomial infection patterns under various treatment and disinfection 

practices. Emphasis was in extending in vitro studies of plasmid-dependent PT to the 

virtual patient population level. 

4.1 Specific questions 
1. Can the conclusions drawn from the model be comfortably compared with existing 

studies? 

2. What parameters are most sensitive in controlling nosocomial infections? 

3. To what extent may pre-emptive disinfection protocols prevent the spread of 

nosocomial infections? 

4. Should antibiotics and PT be used simultaneously or in succession? 
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5 Materials and Methods 

5.1 The model in detail 
Although mathematical models describing the spread of hospital acquired infections (see 

for example Ong et al., 2008; Haber et al., 2010; Austin et al., 1999b; Lipsitch et al., 2000; 

Webb et al., 2005 and review articles van Kleef et al., 2013; Magal and Ruan, 2014) are 

numerous, none of them encompasses the population and pathogen dynamics necessary for 

the purpose of this study. Thus, the model was built from scratch. The software was 

written in Java programming language (Sun Oracle microsystems) using Eclipse integrated 

development environment. The open source library opencsv was used to export the data 

into a spreadsheet-compatible format. Developing the model from the start made it 

possible to have full control of all of the underlying assumptions in the simulation. Main 

emphasis of the study was to construct a functional modeling software capable of probing 

a wide range of experimental settings. The actual studies performed with the simulator 

explore a number of interesting interactions, but more thorough investigations are left to 

future studies. 

The simulation is based on interactions between patients, health care workers 

(HCWs), bacterial pathogens and antibacterial medicine (Figure 1).  

 
Figure 1. The hospital setting. Pathogens in patients are dynamically modeled, whereas health-care workers 
(HCW) are either carriers (true) or non-carriers (false) of a given strain. S, RA and RP refer to susceptible, 
antibiotic resistant and phage resistant bacteria, respectively. 
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To account for horizontal gene transfer and the emergence of resistant strains, the model 

includes several classes of pathogens. Due to the stochastic nature of events and the 

complexity involved in the interactions between bacteria, phages and their respective 

vectors, a purely mathematical approach was discarded in favor of a stochastic, individual-

based model. The infection dynamics within a patient, however, are modeled using a 

mathematical approach. Most parameters described in the upcoming chapters are 

modifiable in the graphical user interface of the software (figure 2). 

 

 
Figure 2. The graphical user interface of the simulator. 

5.1.1 Patients 
Upon admission to the hospital, each patient is assigned to a room and designated a 

duration of stay (DOS). The DOS determines the preliminary amount of days the patient is 

set to spend in the hospital, given that no infections occur. The average DOS across all 

patients is assumed to follow a normal distribution. The probability of an incoming patient 

being infected with susceptible bacteria is also determined (new patients are assumed not 

to carry resistant strains) – the overall percentage of initially infected patients consequently 

approaches this number. Each patient may theoretically house all three types of pathogens 

and be subject to antibiotics or phage therapy (PT) (figure 3). 
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Figure 3. The attributes of a patient. Each patient may house all three kinds of pathogens. The patients may 
also be subject to antibiotics and/or phage therapy. Assigned duration of stay and room are determined when 
entering the hospital. The unique ID provides detailed logging of the actions of each patient 

5.1.2 Health-care workers 
Alongside patients, health-care workers (HCW) populate the hospital. In real life these 

may include nurses, physicians or any other people making day-to-day contact with 

patients. Although pathogens may be airborne and spread through ventilation, studies on 

the relative contributions of airborne and direct physical transmission show that the effect 

of the former is almost negligible in hospitals (Bauer et al., 1990). The model therefore 

assumes HCWs to act as the sole vectors of pathogen transmission. HCWs are never 

considered infected, since nosocomial bacteria usually target patients with wounds or weak 

immunity (Vincent, 2003). Consequently, the workers are referred to as ‘carriers’. 

The efficiency of HCWs as vectors depends largely on disinfection practices, 

namely hand-washing compliance. Hand-washing compliance has been extensively studied 

and is indeed considered one of the most important practices in preventing the spread of 

nosocomial infections (Bauer et al., 1990). The software allows adjusting the compliance 

of a single HCW as well as a universal hand-washing frequency parameter, to which 

‘compliance’ is measured against. Hand-washing frequency can be set to ‘after contact’, 

‘after leaving a room’, ‘once an hour’, ‘once a day’ or ‘never’. When a hand-washing 

event is triggered, its success is determined by the compliance probability. 

The movement of HCWs are built upon on a mass-action assumption: the spatial 

attributes of room-HCW interactions are random and arbitrary. This means that the room 

an HCW chooses to enter is picked randomly and is not affected by the previous space 

occupied by the HCW or by any other factor. However, the rooms may become 

incubational hot spots, since patients in a single room are more susceptible to an infection 
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arising in that room. This may favor the birth of sudden epidemics, stemming from a 

highly infected room. It is also possible to introduce heterogeneity in the activity of the 

HCWs: night shifts are obviously less crowded than day shifts. The software allows for 

hour-by-hour adjustment of the activity factor (see chapter 5.1.7). 

 
Figure 4. The attributes of a health care worker. Each may act as a carrier of all three types of bacteria. All 
carrier statuses are reset when hand washing occurs. At any given time, the HCW is located in a specific 
room. The activity of an HCW determines the number of room visits in an hour. Activity is a global 
parameter, which acts as stochastic factor in determining room visit probabilities for each HCW. 

5.1.3 Pathogen types and mutation 

The model defines three types of bacteria: Susceptible (S), antibiotic resistant (RA) and PT 

resistant (RP). Mutations allow each type to transform in various directions according to 

Figure 5. Mutation events will be discussed in the following subchapter. 

 
Figure 5. Bacterium types and mutation mechanisms. S = sensitive bacterium, RA = antibiotic resistant 
bacterium, RP = phage therapy resistant bacterium. The plasmid in RA codes for a receptor utilized by 
bacteriophages (visualized on the cell wall). In RP, the receptor is lost but the plasmid remains. 

5.1.4 Within-patient pathogen model 
A fraction of incoming patients are infected with sensitive bacteria (S). Once a bacterium 

is seeded upon a patient, logistic growth is assumed to take place. Logistic growth is a 

description of simple density dependent population dynamics (Tsoularis and Wallace, 

2002). Growth begins slowly, but soon the binary fission of bacteria leads to exponential 

H
ea
lth
	
  ca
re
	
  w
or
ke
r	
  

Carrier	
  status	
   S,	
  RA,	
  RP	
  

ID	
  

Current	
  room	
  

Activity	
  



 20 

growth. This continues as long as resources are plenty. Eventually the rate declines and 

stalls, as the carrying capacity of the environment becomes the limiter, resulting is an S-

shaped curve. In a discrete time step model, this can be described with equation 1. 

 

𝑛 𝑡 + 1 = 𝑛! + 𝑟𝑑  ×  𝑛!    1−
!!
!

  (1) 

 

where nt = bacterium population size at time t, rd = intrinsic growth rate and K = carrying 

capacity. The intrinsic growth rate (rd) determines the direction and velocity of growth. Rd 

is transformed upon the introduction of a competitive bacterial strain or due to the 

introduction of antimicrobials to a patient (Table 1 & 2). 

A patient is subjected to antibiotic treatment when the patient’s bacterium 

concentration marks a given value, termed the treatment threshold. The probability of the 

doctor successfully describing the medicine may be adjusted, allowing for realistic 

heterogeneity in medicine prescription timing. Once antibiotic treatment begins, a 

predefined value is subtracted from the rd of the bacterium (table 1). If this causes rd to go 

negative, the bacterium runs through its logistic growth curve in reverse, eventually 

disappearing altogether. The same principles apply to PT. If the RA strain crosses the 

treatment threshold, PT is initiated and a pre-defined value is subtracted from the RA’s rd. 

 
Table 1. Effects of medicine on different strains. The two treatment methods are shown on the columns and 
the three different strains on the lines. AbAdd and PtAdd are parameters describing the effectiveness of each 
treatment. For example, the effect of antibiotics on the S strain is that the growth rate (rd) of the bacterium is 
reduced by the predefined value of antibiotic effectiveness (AbAdd). The effectiveness values are negative, 
which is why summing is used instead of subtraction. 

 Antibiotics Phage therapy 

S Rd + AbAdd - 

RA - Rd + PtAdd 

RP - - 
Rd = intrinsic growth factor, S = susceptible bacterium, RA = antibiotic resistant bacterium, RP = phage 
therapy resistant bacterium, AbAdd = effectiveness of antibiotics, PtAdd = effectiveness of phage therapy. 

 

When a patient is on antibiotics or PT, selection favors bacteria that withhold resistance 

towards the medicine. All mutations are equally likely all the time – if the mutation 

happens to take place during antibiotic treatment, emergent selection will favor the 
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resistant mutant. The probability of mutation is correlated with the size of the bacterial 

population, the mutation parameter referring to the probability of mutation when the 

bacterial load is at its maximum. For example, if S concentration is 20% of its maximum 

value, then the probability of S mutating to RA (per hour) is 0.20 times [S to RA mutation 

probability]. 

There are multiple ways a patient may be infected with resistant bacteria in the 

model. First, it is worth reminding that this model ultimately studies the effects of plasmid-

borne resistance – that is, the resistance emanating under antibiotic treatment is assumed to 

rise due to the presence of a plasmid. Unlike some chromosome-dependent resistance 

mechanisms, the plasmid cannot be spontaneously created inside the bacterium. Instead, it 

is assumed to have originated from another strain or from the environment via horizontal 

gene transfer. The source is not specified further, but could be due to hospital visitors, the 

rare occurrence of airborne dispersal or infected patients coming from other hospitals. This 

model neglects the origin of the “first” plasmid for the sake of retaining the system in 

bounds of reasonable complexity. 

In addition to the “spontaneous” introduction of a plasmid to an S-infected patient, 

the resistant strain may also spontaneously appear in healthy patients. The odds for this are 

assumed very low (defined by the parameter “RA ground probability” in table 3). Having a 

potential plasmid host already present in a patient raises the probability of fixating a 

plasmid to a patient – therefore patients under S infection develop RA bacteria more often. 

However, the most important factor for the emergence of resistant bacteria is not 

spontaneous infection (although this is necessary to start the epidemic): the spread of 

bacteria from other patients act as the most important force spreading in resistant 

infections. As stated before, bacteria are spread between the patients by HCWs. Also, 

horizontal gene transfer (HGT) between co-existing bacterial types drives the spread of 

plasmids. 

The simulator also allows for a different approach in introducing resistant 

pathogens. Instead of having constant mutation frequencies from S bacteria to RA and from 

RA to RP, the timing of these mutations can be set to a fixed date. This is useful if patient 

and pathogen equilibrium is desired before introducing a new strain to the population. 

Also, rare events such as the appearance of an RP bacterium through a mutation might have 

significant timing differences between replicates (RP might first appear on day 100 and in 
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the second replicate on day 500). If these replicates are averaged, the resulting plots lose 

their characteristic shapes. This fixed introduction of pathogens is termed “seeding” and 

can be turned on and off by the user. Enabling seeding disables the corresponding mutation 

frequencies (S to RA and RA to RP). Back mutations still remain effective. 

When an antibiotic-resistant strain emerges inside a patient, it has the possibility to 

immediately affect the rd of the susceptible bacteria due to competition. The swap-time 

(time it takes for RA to completely replace S) can be further decreased due to HGT. The 

transfer of the plasmid from RA to S may be modeled by increasing the growth rate of RA 

and consequently decreasing that of S. The extent of competition and HGT is definable by 

the user. Antibiotics do not affect resistant bacteria’s rd and thus the antibiotic-resistant 

bacteria simply plateau on the carrying capacity, unless PT is employed. If RA and S 

bacteria are present at the same time under no medicinal control, S may outcompete or 

hinder RA. All pathogen-pathogen interactions are shown in Table 2, where effectors are 

listed in columns and effected strains on rows. For example, the effect of RA bacteria on RP 

is “Rd – UniComp”, meaning that the rd of RP bacteria is reduced by the universal 

competition constant (see Table 3). 

 
Table 2. Pathogen-interaction table. Columns represent effectors and the rows the effected strains. For 
example, in the presence of S, the RA strain has a reduced growth rate (rd) due to higher fitness of S. 
However, RA is able to transform S to RA by conjugation. If antibiotics are present, the rd of S is reduced. 

 S RA RP 

S - Rd - conjugation - 

RA Rd + conjugation 

Rd - SComp 

- - 

RP Rd - SComp Rd - UniComp - 
Rd = intrinsic growth factor, S = susceptible bacterium, RA = antibiotic resistant bacterium, RP = phage 
therapy resistant bacterium, SComp = competition factor of S, UniComp = universal competition factor (here 
referring to RA’s competition factor). 

 

Fitness ranking obeys a rule where basic strains have negative impacts on the strains more 

“developed” on the fitness ladder. The extent or presence of fitness-heterogeneity is 

adjustable. The model allows adjusting the fitness of S relative to RA and RP (SComp), as 

well as RA to RP (UniComp) (for standard values, see table 3). The latter is termed as the 
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universal competition constant to reflect strain-types that might be implemented to the 

model in the future. 

When a patient is infected with RA, antibiotics are of no use. At this point the 

patient may be put on PT. As previously discussed, phages only target the plasmid-bearing 

resistant bacteria, RA. The model does not distinguish the immediate action between 

antibiotics and PT in no other way than in their pathogen-fighting parameter and order of 

usage. The nomenclature of the two types of treatments could be reduced to drug 1 and 

drug 2, as in (Lipsitch et al., 2000). Accurately modeling phage therapy is complicated, 

since phages, similar to bacteria, are replicating entities with complex density dependent 

population dynamics (Payne, 2000). Combining the interactions of these two systems is 

beyond the scope of this study; the model presented here thus greatly simplifies the 

behavior of phages. What makes the current setting interesting, however, is the mutation 

dynamics between different bacterial types as shown in Figure 5. RA is able to revert back 

to S or RA, which could prove to have interesting consequences, depending on the 

medicinal status of the patient. Patient mortality was not modeled, since death rate due to 

nosocomial infections was assumed to be insignificant in a single hospital. This is also the 

approach followed by all the previously mentioned models.  

5.1.5 Modeling pathogen spread between patients 
Pathogens, whether susceptible or resistant, are capable of spreading inside the hospital 

using HCWs as vectors. Each time an HCW comes in contact with a patient, a 

predetermined probability value defines whether the HCW becomes a carrier of the 

bacterium currently residing in the patient. The HCWs remain carriers until the next hand-

washing event. During an HCW’s status as a carrier, each patient coming to contact with 

him is at risk of becoming infected with whatever bacterium the HCW is carrying. If the 

patient is infected with a bacterium of the same type, no transaction is necessary. If a 

patient infected with S becomes infected with RA from an HCW, the inter-bacterial 

competition rules define the outcome (see chapter 7.1.4). 

5.1.6 The day cycle 
The hospital runs under a 24-hour day cycle, each hour comprising a single time-step in 

the model. Figure 6 illustrates the structure of each day.  
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Figure 6. Daily cycle in the hospital. Hourly events take place 24 times a day (only one hourly event is 
shown for convenience). Time runs vertically, from top to bottom. HCW-activity is shown on the left (see 
also Figure 7). 
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‘Hourly events’ are performed once every time step. First, the bacterial load of each patient 

is recalculated. The medicinal and bacterial condition inside each patient are monitored 

and used to calculate the current growth rate of each residing bacterial type. Then, the 

previous bacterial loads and the freshly calculated growth rate are fed into equation 1, 

which outputs the current loads. All putative mutations take place after this. If a mutation 

does occur, the resulting mutant is seeded inside the patient by the amount defined by the 

inoculation parameter. This immediately affects the growth rate of other bacterial strains as 

defined by parameters in Table 2. 

Once a day, each patient is subjected to a treatment event. This function applies 

actions on the patient based on their current infection status, time being infected and time 

spent in the hospital. The doctor can subscribe or terminate antibiotics or PT. The patient 

may also be released from the hospital, given that two conditions are met: (1) the patient 

must be clean of all infections and (2) their DOS must have been met.  

 Another special case of treatment is when a patient has been infected with any 

strain for an especially long period of time. This is usually the case, when a double 

resistant bacterium has taken over and saturated the patient. At this point, no medication is 

useful. The software keeps track of infection lengths and when a threshold-crossing 

infection period is detected, the patient is tagged “non-treated”: all treatment is stopped 

and the immune system of the patient is assumed to clear the patient of all pathogens. This 

is a fair assumption, given that the recovery period is long enough. If no immune system is 

considered, a single RP bacterium would exponentially spread through the hospital and 

eventually saturate the whole patient population. Since no patient is released unless their 

infection status is zero, the hospital would come to a standstill with no in- or outflow of 

patients. Including the “non-treatment” tag imitates realistic practices, since most patients 

will eventually be cured or sent home – in rare cases do all patients spend the rest of their 

lives in the hospital due to a nosocomial infection. This may also reflect other pre-emptive 

measures, such as quarantine, which may be put forth in a real-life hospital. 

 As the hospital releases patients in a steady stream, an input is necessary to keep 

the population in equilibrium. At the beginning of each day, the output is met by exactly 

the same amount of input of patients, maintaining the population size at a constant. 

Standard time for patient input is set to 00:00. 
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5.1.7 Parameters 
All the parameters in the current version of the model are listed in Table 3. 
Table 3. Sources for the base values in parentheses: 1: (D'Agata et al., 2005) , 2: (Sørensen et al., 2001), 3: 
(Webb et al., 2005), 4: (D'Agata et al., 2007), 5: (Doebbeling et al., 1992). 

Parameter Function Type/range Base value 

Days How many days the simulation is run Integer - 

Number of rooms Number of rooms in the hospital Integer 80 (1) 

Room capacity Number of patients in a single room Integer 5 (1) 

Mean DOS + StdDev Mean duration of stay and standard deviation Integer 5 (1) ± 1 

Initial infection 

probability 

The probability that an incoming patient is S infected 0…1 0.07 (4) 

HCW amount Amount of health care workers in the hospital Integer 100 (1) 

Hourly room visit (base) Number of rooms visits/hr assuming activity of 1.0 >= 0 3 

Hand washing compliance Probability that an HCW washes hands 0…1 0.4 (5) 

Hand washing frequency The frequency of hand washing events list After contact 

HCW activity (hourly) Defines actual visits/hr by multiplying the base value 0…1 See Figure 7 

Contact probability Probability of HCW contacting a patient when in a 

room 

0…1 0.207 (1) 

Contamination probability Probability of HCW contamination in contact 0…1 0.4 (1) 

Colonization probability Probability of patient infection in contact 0…1 0.06 (1) 

Max load Maximum bacterial load (K in logistic growth eq.)  Double 1.1x1011 (3) 

Infection threshold Threshold for patient being infectious Double 1011  (1,2) 

Standard rd Default intrinsic growth factor, when no effectors 

(competition or medicine) present 

> 0 0.413 

Antibiotic rd add The effect of antibiotics on S bacteria’s rd < 0 -0.5 (3) 

Phage therapy rd add The effect of PT on RA bacteria’s rd < 0  -0.5 

Inoculant Amount of bacteria upon infection > 0 106 (2) 

Non-treatment tag add Universal rd when patient is tagged non-treated < 0 -0.03 

S comp. factor Superiority of S against other bacteria, when 

antibiotics are not present (i.e tradeoff from resistance) 

<= 0 -0.2905 (3,4) 

Universal comp. factor Superiority of resistant bacteria, when under selective 

pressure 

>= 0 -0.2905 (3,4) 

Conjugation constant Change of growth rates due to HGT from RA to S >= 0 0.1 

RA ground probability Probability of spontaneous emergence of RA in healthy 

patient 

>= 0 10-8 

S to RA mutation prob. Probability of S transforming to RA >= 0 10-3 

RA to RP mutation prob. Probability of RA transforming to RP >= 0 10-4 

RA to S mutation prob. Probability of RA transforming back to S >= 0 10-3  

RP to S mutation prob. Probability of RP transforming back to S >= 0 10-4 

Treatment threshold The point of the infection cycle when medicine may be 

described 

Double 1011 
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Probability of treatment The probability of the doctor prescribing medicine 0…1 1.0 

Treatment hour Hour of day when each patient sees “the doctor” 0 - 24 12 

End all treatment if 

infected 

Infection time threshold for tagging the patient ‘non-

treated’ 

days 30 

Antibiotics On/Off Boolean - 

Phage therapy On/Off Boolean - 

Simultaneous treatment Whether antibiotics and PT are used simultaneously Boolean - 

RA seed The date for initial RA infection. Overrides regular 

mutation mechanisms. 

day 150 

RP seed The date for initial RP infection. Overrides regular 

mutation mechanisms. 

day 200 

 

The base values shown in Table 3 are the standard values used in the forthcoming 

experiments, unless otherwise stated. The values are derived from a handful of studies 

representing different hospital settings. The bacteria are assumed to be types of species, 

which live on the skin, respiratory tracts or digestive systems of humans as described in 

Lipsitch et al. (2000). The proportion of incoming patients already infected with S varies 

greatly from study to study. The value of 0.07 estimated by D'Agata et al. (2007) was 

eventually chosen as the base value. The infection threshold of the bacterial load was 

approximated to be 1011 as in D'Agata et al. (2007) and Webb et al. (2005). Inoculation 

amount is set to 106 cells (Sørensen et al., 2001; D'Agata et al., 2007).  

Most models describing bacterial growth within a patient express growth rate as 

‘doubling time’. The current model primarily uses the growth rate parameter due to its 

compatibility with the logistic growth equation. For practical purposes, the software also 

calculates and displays the doubling time using the formula !"  (!)
!" !!!"

 (D'Agata et al., 2006). 

Rd is then approximated to be 0.413 for susceptible bacteria (before treatments) to provide 

a doubling time of two hours as shown by Webb et al.  (2005). 

The superiority of S bacteria against other bacteria under no medicine simulates the 

tradeoffs brought about by resistance (Table 2). This advantage in fitness remains even 

while under antibiotic treatment, but since antibiotics efficiently eradicate S bacteria, the 

less-fit strains are not affected for long – as soon as S bacteria disappear, the rd of RA and 

RP bounce back to their original value (unless medication or competition between RA and 

RP have effects). The baseline competition values (the S competition factor is set to -

0.2905) provide a doubling time of approximately six hours for RA/RP bacteria under no 
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medication (D'Agata et al., 2007; Webb et al., 2005). More complex fitness-relationships 

may be explored in future versions of the model. 

The conjugation cofactor (base value 0.1, estimate) simulates HGT between 

resistant and non-resistant bacteria. This transforms S bacteria to the RA class, speeding up 

the growth of RA and decaying the S population. The model approximates the maximum 

load 1.1 * 1011 (the logistic growth equation requires the maximum load to be larger than 

the infection threshold, hence the factor 1.1). Antibiotics reduce rd of S bacteria by 0.4, 

leading to an rd of -0.05. For PT the reduction is assumed similar. In practice, this causes a 

fully saturated patient to be cleared of the bacterium in approximately in ten days (Webb et 

al., 2005). 

Resistant bacteria may emerge in a patient through spontaneous infection or 

through vector (HCW) mediated transfer. The former is defined by the parameter ‘RA 

ground probability’ for patient with no infection and by ‘S to RA mutation prob.’ for 

patient already colonized with S. Again, the mutational parameters refer to patients being 

fully saturated with the original strain. The mutation probabilities between different 

bacterial types are based on estimates. One of the goals of this study is to explore the 

parameter space for interesting combinations of mutational probabilities. 

The treatment threshold currently equals the infection threshold, since this is the 

point when the doctors are assumed to notice infections and prescribe treatment. The 

timing of treatment hour is not arbitrary – it strongly affects global infection dynamics. 

The later the event is set, the more time the patient has to spread the pathogens via HCWs. 

This is aspect is discussed in detail later.  

 The amount of interaction between HCWs and patients is usually represented by 

contact rate per patient (per unit time). Previously, the rate was determined to be 8-10 

contacts per patient in a day, depending on the infection status of the patient (D'Agata et 

al., 2005). Due to the object-oriented simulation approach implemented in this model, the 

contact rate cannot be explicitly inserted as a parameter. However, transformation between 

the two types of systems is straightforward. The contact rate per person (/day) can be 

determined with equation 2. 

 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡  𝑟𝑎𝑡𝑒 =    𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡   ×   !""#  !"#"$#  !"#  !!"#
!"#$%&  !"  !""#$

  ×  𝐻𝐶𝑊  𝑛𝑢𝑚𝑏𝑒𝑟  ×  𝑐𝑜𝑛𝑡𝑎𝑐𝑡  𝑝𝑟𝑜𝑏!"
!!!    (2) 
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The base values in Table 3 are calibrated so that the contact rate settles around 9 – the 

average value used by Agata et al. (2005). The software automatically calculates the rate 

and displays it in the data section of the graphical user interface, so implementation of 

parameters derived from previously published studies is easier. 

 HCWs are not assumed to be uniformly active throughout the day. Figure 7 shows 

a proposed model of HCW-activity. This model has no backing data and is simply an 

estimate. The activity factor multiplies the “hourly room visit” –parameter. This is then 

used to obtain the actual number of room visits per hour for each HCW. The activity table 

in Figure 7 is used as the base value for all forthcoming experiments. 

 
Figure 7. An approximation of HCW-activity through a single day. X-axis shows the hour of day. The 
activity on the Y-axis is the factor determining the number of room visits in an hour. 

5.2 Study questions 

5.2.1 Comparison with existing studies 
The capability of the model to reproduce data from previous studies was investigated. The 

parameters were set to replicate an in vivo study by Austin et al. (1999b). The authors 

observed the prevalence of vancomycin resistant enterococci in a real-world intensive care 

unit during a period of 133 days. Standard values as shown in Table 3 were used, with the 

exception of hand-washing compliance (51%) and initial infection probability (15%), as 

reported by this particular study (Austin et al., 1999b). The simulation was repeated ten 

times and the proportion of infected patients was determined after 133 days. For simplicity, 

possibility of further resistance is not allowed: VRE is represented by the S strain, which 

can be killed using other antibiotics, such as ampicillin (Quale et al., 1996). 

 The within-patient model was tested against a previously published mathematical 

model (Webb et al., 2005). This model was used to fine-tune the current within-patient 
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model. Growth rates, competition factors and medicinal effectiveness were calibrated to 

meet their data. Since the within-patient model is mathematical and deterministic, no 

simulation replicates were necessary. 

5.2.2 Sensitivity analysis 
One-factor-at-a-time sensitivity approach (Saltelli et al., 2000) was used to asses the 

relative importance of multiple parameters to the overall pathogen prevalence. The results 

were studied under linear regression, where the average number of days spent in the 

hospital is plotted as a function of the varying parameters. Seven interesting parameters 

were chosen: initial infection probability, HCW compliance, HCW contact probability, 

contamination probability, colonization probability, efficiency of antibiotics and 

patient:HCW ratio. The base-values were scaled from 10% to 200% with intervals of 10 

%. The treatment probability parameter was also studied. Since its base value is 1.0, this 

probability value could not be scaled too 200%. This parameter is therefore plotted 

separately. 

This experimental setting makes the simplifying assumption that S bacteria are the 

only pathogen type. This is done to minimize any masking factors that may arise from 

having multiple pathogens and different types of medicine - the goal is to explore which 

parameters are most important in reducing nosocomial infections in general. The values 

left unchanged are listed in Table 3; the varied values are fractions or multiples of the 

base-values. Each setting was replicated four times for 100 days. Average values and 

standard deviations were calculated. 

5.2.3 Effects of pre-emptive disinfection procedures 
In addition to the sensitivity analysis above, the effect of hand washing compliance on the 

overall prevalence of S was investigated. The hand washing compliance parameter was 

varied from 0 to 1 with intervals of 0.1. Hand-washing frequency was set to ‘after contact’. 

Five replicates were done to quantify stochasticity. Prevalence of S was determined from 

the stable state and plotted as a function of hand-washing compliance. 

5.2.4 Timing of treatment 
The timing of the treatment event may have important consequences in pathogen 

prevalence and thus the influence of timing to the efficacy of the treatment was 

investigated. The timing of the treatment was scheduled to start at different stages in 
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separate simulations and the corresponding average duration of stays were recorded. Since 

variation was observed to be low between different runs, only two replicates were done for 

each time step (1 hour). All parameters values followed the base values in Table 3. For 

simplicity, this experiment also discarded other bacterial types than S. 

5.2.5 Simultaneous or successive: the order of treatments 
The software was used to review different strategies of patient care and discover how they 

reflect on the population level. Two treatment strategies were scripted in the model: 

antibiotics and phage therapy can either be used in succession or simultaneously. If a 

patient becomes infected with S while the system is running under successive strategy, 

he/she is treated with antibiotics and no PT. Detection of an antibiotic resistant strain then 

ensues the deployment of PT and immediately cuts off antibiotics. While under 

simultaneous treatment, both treatments can be administered regardless of each other. If RP 

has been prevalent for more than 30 days, the patient receives the “non-treated tag”. The 

simulations were run for 400 days using the base values in Table 3. Two sets of five 

replicates were done. The sets differed in the treatment strategy used. 
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6 Results 

6.1 Comparison with existing studies 
The results derived with the current model were compared to the results of a previous 

study by Austin et al. (1999b), who determined the overall prevalence of vancomycin 

resistant enterococci to be 36% after 133 days. Given the customized starting conditions, 

the current model estimates the S strain to find equilibrium around 32 % (± 2.6%). 

 The mathematical within-patient model created by Webb et al. (2005) served as the 

basis for calibrating the current within-patient model. When a patient is infected, the 

pathogens take approximately three days to reach the carrying capacity – a similar result 

was observed in the current model. Similarly, antibiotics effectively eradicate the pathogen 

in approximately ten days in both models. 

6.2 Sensitivity analysis 
The sensitivity of model parameters was studied by varying each parameter around their 

base-value. In Figure 8, the average number of days a patient spends in the hospital is 

plotted against seven different parameters, whose base-values are scaled from 10% to 

200%. Figure 9 displays the effect of treatment probability on the actual average duration 

of stay. 

 
Figure 8. Sensitivity analysis of seven parameters. Each parameters was varied from 10 to 200% of its base 
value by steps of 10%. Only standard deviations exceeding 0.2 days are shown for convenience. 
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Figure 9. The logarithmic relationship between Treatment probability and days spent in the hospital. 
Standard deviations shown. 

6.3 Effects of pre-emptive disinfection procedures 
Disinfection procedures were studied further by investigating how hand-washing affects 

the overall prevalence of S. Compliancy was varied from zero to 100% and the overall 

prevalence of S at equilibrium was then plotted as a function of compliance (Figure 10). 

 
Figure 10. The effect of hand-washing compliance on the overall prevalence of S, as calculated from 
equilibrium. Compliancy refers to the probability of a health-care worker washing hands after contacting a 
patient. Standard deviations are not shown (less than 0.04 days). 
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6.4 Timing of treatment 
Timing of treatment was varied to discover its effect on the average number of days a 

patient spends in the hospital. Varying the treatment event’s timing results in an ascending 

curve (Figure 11). Two replicates per hour were done and averaged.	
  

 
Figure 11. Average amount of time spent in hospital as a function timing of the treatment event. Standard 
deviations not shown, due to their minimal size (average 0.041 days). 

6.5 Simultaneous or successive 
Running the simulation using two different treatment strategies resulted in the values 

shown in table 4. Additionally, the average durations of stay were observed to be 7.95 

(±0.06) days and 9.1 (±0.27) days in simultaneous and successive treatments, respectively. 

Simultaneous treatment reduces the average number of hospital days by approximately 

12.5 %. The prevalence of S is lowered by 29 % and the prevalence of RA by 10 %. 

 
Table 4. Effects between simultaneous and successive prescription of antibiotics and PT. Percentages are 
means of five replicates (± STD). 

 Prevalence of S Prevalence of RA 

Simultaneous 26.8 % ±1.67 % 10.6 % ±1.6 % 

Successive 37.9 % ±3.6% 11.9 % ±1.8% 
S = susceptible bacterium, RA = antibiotic resistant bacterium. 
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7 Discussion 

7.1 Comparisons with existing models 
Comparing the results produced by this model with data from previous studies is central to 

establishing an estimate for the accuracy of the model. Comparison with the study done by 

Austin et al. (1999b), indicate that the present model is capable of producing results of a 

similar scale as a real-world study. Using the calibrated base values predicts remarkably 

similar overall prevalence of S. It is worth noting that many of the base values have origins 

in other studies and may as such fail to accurately the describe the behavior of a specific 

hospital setting. Slight manipulation of the base values has severe consequences. For 

example, setting the treatment hour to 00:00 instead of 12:00 decreases the prevalence 

down to approximately 20%. Thus, whether the similarity in results between this 

simulation and the study by Austin et al. (1999b) is due to a lucky balance of parameters or 

whether it indicates great accuracy of the model is an issue to be solved by further 

calibrating the model to fit other real-world studies. 

 The within-patient model was calibrated using data from Webb et al. (2005). As the 

present within-patient model is by its nature a deterministic one, comparison with its 

deterministic peers is straightforward: the models, by definition, produce similar results 

given identical starting conditions. The positive results serve to reassure that the growth 

mechanisms and patterns are valid. 

7.2 Sensitivity analysis 
Sensitivity analysis is a commonly used technique in determining the proportional effects 

of parameters in a model. As shown by figure 8, the seven parameters have somewhat 

distinctive shapes and scales. The probability at which HCWs wash their hands (HCW 

compliance) has an exponential effect on the average number of days a patient spends in 

the hospital. Interestingly, a similar curve is observed in the Patient-HCW ratio parameter: 

the more there are HCWs, more efficient is the spread of disease. Theoretically, an HCW-

free hospital would, then, serve as the optimum environment for preventing the spread of 

nosocomial infections. Obviously, this is not true and merely goes to show that in this 

particular model the positive effects of HCWs are not modeled. 
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 Most other parameters exhibit linear relationships and are mostly overlapping 

(initial infection probability has a slightly less of an effect than the other linear 

parameters). The peculiar shape of “Effects on ab on rd” is due to the fact that as the value 

of this parameter crosses the rd value of an infectious bacterium, the growth of the 

bacterium becomes negative. When the value of “Ab rd add” is less than the rd value, the 

antibiotics are not sufficient to clear an infection and the patient are eventually released 

through the “non-treated” procedure. 

The probability of treatment has a profound effect on the number of hospital days 

(Figure 9). Since the value of this parameter is assumed 1.0, the spectrum of sensitivity 

analysis values was only varied below 1.0 (a probability value cannot exceed 1.0). It is for 

the same reason this was plotted separately.  

It is worth nothing that the parameters in Figure 8 are scaled with reference to their 

base value. If a broader spectrum of values were to be used, more profound effects would 

be observed. However, this sensitivity analysis experiment shows how realistic 

manipulation of the base values, which are assumed to approximate real-world values, may 

yield dramatic effects on the average number of hospital days. The separately plotted 

treatment probability parameter was studied under a larger scale of values (absolute values 

from zero to 100%) than other parameters and as such may not be fully comparable in a 

sensitivity analysis. 

7.3 Implications of hand-washing on pathogen prevalence 
Hand-washing compliance is a major factor in the spread of nosocomial infections, as 

shown by the sensitivity analysis and previous studies. In addition to studying the effects 

of compliance on the number of hospital days, it is also worth seeing how it affects the 

overall prevalence of pathogens. Modeling the implications involved doing a series of 

replicates on a range of compliance values. As figure 10 shows, the prevalence of S 

bacteria is reversely correlated with hand-washing compliance. Interestingly, having full 

compliance is not enough to fully eradicate the pathogen. The reason is the steady flux of 

incoming patients who provide a steady source of S bacteria. Similarly, having no hand 

washing at all doesn’t result in total saturation of the patient population with S. Instead, 

pathogen prevalence finds equilibrium at around 70%. This is due to the fact that patients 

remain infectious only for a fraction of their total infection time. After antibiotic treatment 
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has begun, the infectiousness quickly lowers and the health-care workers can no longer be 

contaminated. 

7.4 Timing of treatment event 
As the global treatment event is pushed further through the day, the average time spent in 

the hospital increases. The increase is most prevalent during daytime, since it is the active 

time of the HCWs (figure 7). If the model employed a uniform HCW-activity table, the 

increase in average time spent in hospital would most likely become linear. The most 

single dramatic rise in hospital days occurs during the first hour of day. This reveals the 

fact that early inhibition of pathogen dispersal is crucial. 

The positive effect of early treatment may seem trivial, but still calls for more 

detailed examination of the model mechanisms giving rise to it. All incoming patients are 

spawned to the hospital in the beginning of each day – that is, at midnight. Since treatment 

hour is assumed to be sometime during the day, the incoming patients that are already 

infected with the S-strain are free to spread their pathogens throughout the night (assuming 

there is HCW activity during the night). If treatment hour is set earlier, say midnight, the 

incoming patients have no means of spreading the disease since antibiotics are very quick 

at lowering the bacterial loads below the level of infectiousness. In real life, all patients are 

obviously not treated simultaneously nor do all the patients arrive at midnight – the 

treatment hour represents another simplifying assumptions of the model. The assumption 

serves to caricaturize the effect of the timing of treatment, even if it fails to provide 

realistic numerical data. The onset of treatment has also been studied by Agata and 

colleagues, who came to the conclusion it may have important inhibitory implications on 

the spread of resistant pathogens (D'Agata et al., 2007). 

7.5 Simultaneous or successive 
Let us consider discontinuing antibiotics upon starting PT. In this scenario, no S bacteria 

are assumed to remain due to antibiotics and competition. Therefore, continuing the use of 

antibiotics would be a waste of resources. In addition, the prevalence of antibiotics at this 

point may accelerate resistance-development in other bacterial strains within the patient 

and also disturb commensal intestinal flora (Levin et al., 1997). Based on these 

assumptions, the non-simultaneous usage of antibiotics and PT would seem reasonable. 

However, the possibility of RA reverting to S is present. In this case, the novel S strain 
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would thrive in an antibiotic-free environment. The initial coexistence of S and RA can also 

not be ruled out. In successive treatment, no selective pressure would suppress the growth 

of S and the infection cycle could start all over again. This might lead to an oscillating 

cycle between the two bacterial types. For patients with weak immunity, additional 

infection cycles could have severe consequences. 

 If antibiotics are continued alongside PT (simultaneous mode), the selective 

pressures are directed so that the only plausible additional phenotype would be a bacterium 

resistant both to antibiotics and to PT: RP (Jalasvuori et al., 2011). Such a strain could, of 

course, also emerge under successive treatment. An important point to notice, however, is 

that if RP reverts to S under successive-treatment mode, the S strain might outcompete RP 

in the resulting antibiotic-free environment. In simultaneous mode, S is always suppressed 

and will never subdue RP by competition.  

A previous study done on the simultaneous use of phages and antibiotics shows 

significant improvement in overall efficiency of the treatment (Zhang and Buckling, 2012). 

Another study shows that the order in which the two treatments are administered is 

important (Escobar-Páramo et al., 2012). As previously mentioned, the effect of plasmid-

dependent phages on the prevalence of antibiotic resistant microbes is notable in vitro 

(Jalasvuori et al., 2011). The current model verifies these findings, since the prevalence of 

pathogens at equilibrium is lower and average duration of stay is shortened when using 

simultaneous treatment. Interestingly, the reduction in the prevalence of S-bacteria is 

almost threefold as compared to reduction in RA. This unintuitive result stems from the 

mutational mechanisms (figure 5) and the fact that the model prioritizes phage therapy 

over antibiotics. It is more common for patients to be infected with S bacteria prior to 

being infected with RA. When a patient then becomes infected with RA, antibiotics are 

discontinued and the S strain once again saturates the patient. The infection times for S are 

longer, because RA must first be fully eradicated before the patient is again administered 

antibiotics. 

Whether this result is completely due to the built-in assumptions of the model or an 

actual reflection of real-life phenomena serves basis for speculation. The complete 

exclusion of antibiotic treatment while under PT is no doubt an artificial setting - the 

overlapping of the two treatments most likely follow a spectrum instead of confining to 

strict binary extremes. However, in cases of a double infection, prioritizing the treatment 
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of a more pathogenic strain of bacteria is a fair assumption given that the treatments do not 

occur simultaneously. Such a treatment plan may arise simply from ignorance of the 

existence of another strain. The secondary strain may also appear after the treatment plan 

has been made, due to mutations, HGT or vector-mediated transfer. It should also be 

considered that employing antibiotics alongside PT for the sake of reassurance contradicts 

the policy of reducing global antibiotic use. Simultaneous use should therefore be always 

justified. The results from this particular test are missing p-values, since statistical 

significance tests are not considered compatible with stochastic computer simulations 

(White et al., 2013). 

7.6 Conclusions 
The simulator reveals several important factors in maintaining an infection-free hospital. 

Early diagnosis of infections plays a major role in minimizing the prevalence of bacterial 

pathogens. Compliance of HCWs in disinfection-practices is crucial, but does not alone 

determine the prevalence level of pathogens. Combining antibiotics and plasmid-

dependent PT decreases the overall prevalence of susceptible and resistant pathogens, with 

emphasis on the former. 

These results illustrate the types of scenarios the simulator may be used to 

replicate. Substantiation of the results would require further fine-tuning of the parameters 

and preferably co-operation with an actual hospital. In its current form the software 

provides a functional platform for a wide range of infection simulations ranging from the 

individual to the population level. The model has been highly customized for the specific 

type of infections and dynamics that were the initial catalyst for creating the software – 

namely phage therapy.  

At the cost of specification, the model lacks generality. Major future improvements 

could include the possibility of adding unlimited types of pathogens, vectors and hosts. All 

aspects of dispersal, mutation, competition and medicine could then be freely adjusted. A 

future model might reduce to something that is not specifically tailored for hospital 

infection modeling, but a general engine for simulating vector-borne infections. More 

advanced spatial attributes could also be added along with visual representations of 

spatiality. This would allow for predicting how pathogens move within hospitals and what 

quarantine procedures prove effective. The next generation of the model could be designed 
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with emphasis on generality, extendibility and visual output. A command line interface 

could also be implemented. 

As power in computing continues to grow, models will be able comprise 

increasingly more complex interactions and thus, in principle, yield more accurate 

predictions of our world. However, as complexity increases, uncovering realistic parameter 

values must be given paramount consideration. Incorporating a new parameter always calls 

for judgment on whether its integration is indeed justifiable, given the complexity and 

increase in noise its addition may cause. However, when acknowledging the positive 

aspects of simplicity, individual-based models may prove to be extraordinarily useful in 

modeling complex systems. The simulator presented here has been a fusion of various 

modeling perspectives, but mostly driven by the individual-based modeling approach. In 

the software, the level of complexity is adjustable simply by making parameter values 

uniform or ineffective. 
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