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FOREWORD

This book of abstracts presents materials of  the International Conference for Mathematical Modeling 
and Optimization in Mechanics (MMOM 2014) 6-7 March 2014, Jyväskylä, Finland. This event is 
dedicated to Professor Nikolay Banichuk in occasion of his 70th anniversary.

It is aimed to present the latest results of leading scientists in mathematical modeling, numerical 
analysis, and optimization theory and to discuss the state of the art and open problems in the field. 

The book is divided in five sections:
1.  Mathematical Modelling of Complex Systems 
2.  Stability Analysis and Vibration 
3.  Optimization 
4.  Methods of Numerical Analysis 
5.  Shape Optimization

We hope that you will enjoy this event and that the discussions will be fruitful. Moreover, we hope 
that you meet your old friends and celebrate with us the marvelous career and long life of our 
precious friend Nick.

The Editors
Sergey Repin, Pekka Neittaanmäki and Tero Tuovinen
University of Jyväskylä



PREFACE

About Professor Nikolay Banichuk

Professor Nikolay Banichuk is a 
member of the Russian Engineering 
Academy, the International Academy 
of Astronautics, National Committee 
on Theoretical and Applied Mechanics 
(Russia). Now: Head of Laboratory 
of Mechanics and Optimization 
of Structures of the Institute for 
Problems in Mechanics (IPM) and 
Professor of the Moscow Physico-
Technical Institute (MPTI). Professor 
Banichuk is one of the leading 
scientists of the modern fields of 
solid mechanics, optimal structural 
design, computational mechanics, 
optimization and variational theory, 
numerical methods and computational 
algorithms. He wrote 12 books, 260 
scientific articles and authored more 
than 200 reports at scientific meeting. 
 Nikolay Banichuk was born in 
Komsomolsk-on-Amur-river (East 
Russia) in 1944, the son of Vladimir 
Banichuk and Iraida Ivanova. His father 
was railway engineer and participated 
in such famous construction of 
railways as Moscow-Peking, Baikal-
Amur, Sakhalin and Stalingrad. It was 
a reason why his family moved to 
various places, where Nikolay received 
many interesting impressions and was 
educated in the classics.

 In 1961 Nikolay Banichuk entered the Moscow Physico-Technical Institute (MPTI, 
Aeromechanical Faculty) where he received deep knowledge in physics and mathematics. Studies 
in MPTI Nikolay combined with practice in the Institute for Problems in Mechanics (IPM) and 
Computer Center of Russian Academy of Sciences. During education at MPTI Nikolay participated 
in creating effective computational algorithm of local variations under leadership of young scientist 
Felix Chernousko and performed investigation of elastic-plastic and visco-plastic variational 
problems with unknown boundaries. In 1967 Banichuk received diploma of Engineer-Physicist-
Researcher from MPTI and continued his investigation as a postgraduate student and researcher 
under supervision of F. Chernousko.
 Two years later Nikolay Banichuk defended his dissertation, devoted to numerical solution 
of nonlinear problems with unknown boundaries arising in mechanics of contact interaction, in 
deformation of nonelastic material and in fracture mechanics with curvilinear cracks and earned 
doctoral degree in Physico-Mathematical Sciences from IPM. 

Nikolay Banichuk 2011
Photo: Antti-Jussi Lakanen



 As a young man, Nikolay’s love for mechanics and aerospace technique led him in 1969 to 
enter the IPM where he occupied position of a junior scientific researcher. Among his first tasks there 
were the optimal design of structures interacted with moving gas or fluids. He also initiated very 
fresh studies on applications of game theory and, especially differential games to the problems of 
the structural optimization with uncertainties. There, too, he started his teaching career as a Lecturer 
at the Aerophysics and Applied Mathematics Faculty of MPTI. During these years his research in 
the area of structural mechanics and optimization became well known and in 1979 he defended 
dissertation on the shape optimization for elastic bodies and received second scientific degree 
(doctor’ habitaliation) in Phys-Math from IPM. 

 After defence of the dissertation Nikolay accepted invitation from the famous mechanician 
of the 20-th century Alexander Ishlinsky (Director of IPM, now the Institute carries his name) to 
occupy a position of the head of laboratory and to form scientific thematics and the team of the 
laboratory. In this connection Ishlinsky recommended to form the collective of the laboratory on 
the whole from the young scientists and mainly from personal pupils and thus to grow “in depth” 
but not “in extend”. From this time Banichuk, as a head of the laboratory and then as a head of the 
complex department, very closely interacted with Ishlinsky. There Banichuk began concentrating 
on the development of analytical, computational and experimental methods for problems of analysis 
and design of large space structures. He has obtained important results for large space flexible 
deployable antenna reflectors. Taking into account obtained results, Banichuk was decorated by 
Gagarin`s medals (twice), Korolev medal and was elected to International Academy of Astronautics 
at first as a correspondent member and then as a full member (academician).

Fluid-structure Interaction Group: Pekka Neittaanmäki, Maria Tirronen, Tytti Saksa,  
Juha Jeronen, Nikolay Banichuk and Tero Tuovinen

Photo: Antti-Jussi Lakanen



 The first seminar around mechanics and optimization of structures was organized by 
Nikolay Banichuk in IPM in 1980 and attracted many promising students. As a professor of MPTI 
and Moscow Aviation Technology Institute he delivered lectures, devoted applied mathematics and 
mechanics, including numerical analysis and optimization theory, starting from 1981. He was a 
supervisor for 21 academic dissertations. About 20 years he devoted to attestation and qualification 
activity as a member and vice-chairman of governmental highest attestation commission on 
mathematics and mechanics.
 Engineering activity of Banichuk was spread to engineering construction of large protection 
systems, earth reflector and structural problems for new aircraft. He was elected as Academician 
of Russian Engineering Academy and he then was elected as Academician-Secretary of Russian 
Engineering Academy and the member of its presidium. 
 International scientific cooperation plays an important role in Banichuk’s activity. The 
most fruitful relations he has with the scientists from Finland (Jyväskylä), Italy (Cagliary) Germany 
(Hannover, Braunschweig), Portugal (Lisbon), Denmark (Lyngby), USA (Iowa City), Netherlands 
(Delft), UK (London) etc., from here he had very prestigious scientific grants and where he had 
pleasure to deliver invited lectures. He served also as a chairman and a member of organizing 
committees of many international conferences.
 In 1968 Nikolay met his wife, Natalia Evgenievna Shinaeva – a most gracious and lovely 
lady. Four years later his son Alexey was born. Now Nikolay is a grandpapa for his 16 years old 
grandchild. His sister Natalia Vladimirovna also became a mathematician.
 The science and engineering community looks forward to many more years of Nikolay`s 

active participation, his leadership, and his continued contributions to science and engineering.  But 
more important, we, his friends, look forward to many, many years of much more – his congenial and 
helpful personality, his ever-smiling and energetic face, his caution wisdom, his tremendous sense 
of humor, and sheer enjoyment of being with, and learning from, a most charming and amazing 
gentleman!

Participants of CAO2011 ECCOMAS Thematic Conference - Computational Analysis and Optimization, 
June 9-11, 2011, Jyväskylä, Finland. 
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Café Alvar, Alvar Aallon katu 7, is in the same building as Alvar Aalto Museum. The distance by 
walking is about 400 meters. Please see the map.



CONTENT

I Mathematical Modeling of Complex Systems

Yuli D. Chashechkin
Agreed Analytical, Numerical and Laboratory Modelling of Flows Dynamics and 
Structure

N.G. Burago, Ilia S. Nikitin, and A.B. Zhuravlev
Multiaxial Fatigue Criteria and Durability of Titanium Compressor Disks in Low- and 
Giga-Cycle Fatigue Modes

Nikolay N. Berendeev, N.V. Leont’ev, and A.K. Lyubimov
The Finding of the Complex Construction Damping Characteristics under Random 
Loading

Irina G. Goryacheva
Modelling of Surface Texture Effect in Sliding/Rolling Contact

N. V. Banichuk and Valeri A. Baranenko
The “Weak” Infringement Restriction in Designing of Bar System by Fuzzy Modeling

Constantin V. Kukudzhanov, A. L. Levitin, and A. V. Kolomietz
The Modeling of the Elastoplastic Behavior of the Damaging Material with Defects 
under Electrothermomechanical Loading

II Stability Analysis and Vibration

Gennady Leonov, Nikolay Kuznetsov, and Svetlana Seledzhi
Open and Solved Problems in the Stability of Mechanical, Electromechanical and 
Electronic Systems

Vasily Saurin and Georgy Kostin
A Projection Approach to Analysis of Natural Vibrations for Beams with Non-
symmetric Cross-section

Juha Jeronen, Tytti Saksa, and Tero Tuovinen
Stability of a Tensioned Axially Moving Plate Subjected to Cross-direction Potential 
Flow 

Tytti Saksa and Juha Jeronen
Stability of Axially Moving Viscoelastic Beams with the Standard Linear Solid Model

Maria Tirronen
On Reliable Transition of a Paper Web through an Open Draw

Alexandr A. Barsuk
Harmonical Vibrations and Stability of Moving Elastic Band



III Optimization

Alexandr V. Sinitsin, S. Yu. Ivanova, E. V.  Makeev and N. V. Banichuk
Multipurpose Optimization with and without Uncertainties for Deformed Bodies and 
Structural Elements

István Páczelt and Attila Baksa
Some Remarks to the Solution of Different Contact Optimization Problems

Jacques Périaux and David Greiner
A Nash Genetic Algorithm for the Fully Stressed Design Problem in Structural 
Engineering Optimization

Marko M. Mäkelä, Napsu Karmitsa and Outi Wilppu
Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization

Tinkle Chugh
Handling Computationally Expensive Multi-objective Optimization Problems Using 
Evolutionary Algorithms: A Survey

S. Mohammad M. Tabatabaei
A Survey on Handling Computationally Expensive Multi-Objective Optimization

IV Methods of Numerical Analysis

Petr Harasim and Jan Valdman
Verification of Functional A Posteriori Error Estimates for Obstacle Problem in 2D

Stanislav Sysala
On Control of Loading Process up to the Limit Load in Hencky Plasticity

Georgy Kostin and Vasily Saurin
Variational Approach to Modelling and Optimization in Elastic Structure Dynamics

Olli Mali and S. Repin
Incompletely Known Coefficients in Elliptic PDE: Primal, Dual and Mixed Setting

Marjaana Nokka and S. Repin
On a Posteriori Error Bounds for Approximation of the Oseen Problem Generated by 
the Uzawa Algorithm



V Shape Optimization

Olivier Pironneau
A Model for Hemodynamics for Optimal Design

Jaroslav Haslinger and Jan Stebel
Shape Optimization for Stokes Problem with Solution Dependent Slip Bound

Franz-Joseph Barthold and N. Gerzen
Remarks on the Internal Structure of Sensitivities in Shape Optimisation

Jukka I. Toivanen
An Automatic Differentiation Based Approach to the Level Set Method

Vladimir Kobelev
The Exact Analytical Solutions in Structural Optimization and Banichuk’s Method



PARTICIPANTS

• Immanuel Anjam, University of Jyväskylä
• Nikolay Banichuk, Institute for Problems in Mechanics, RAS
• Natalia Banichuk
• Valeri Baranenko, Prydniprovs’ka State Academy of Civil Engineering and Architecture
• Franz-Joseph Barthold, TU Dortmund
• Petr Beremlijski, VSB - Technical University of Ostrava
• Nikolai Berendeev, Lobachevsky State University of Nizhni Novgorod National Research University
• Yuli Chashechkin, A.Yu. Ishlinskiy Institute for Problems in Mechanics of the RAS
• Tinkle Chugh, University of Jyväskylä
• Irina Goryacheva, Ishlinsky Institute for Problems in Mechanics RAS
• Per Gradin, Mid Sweden University
• Jussi Hakanen, University of Jyväskylä
• Markus Hartikainen, University of Jyväskylä
• Jaroslav Haslinger, Charles University in Prague
• Lisbeth Hellström, Mid Sweden University
• Juha Jeronen, University of Jyväskylä
• Napsu Karmitsa, University of Turku
• Georgy Kostin, Institute for Problems in Mechanics, RAS
• Constantin Kukudzhanov, Institute for Problems in Mechanics of the RAS
• Gennady Leonov, St. Petersburg State University
• Alexander Ljubimov, Lobachevsky State University of Nizhni Novgorod National Research 

University
• Olli Mali, University of Jyväskylä
• Svetlana Matculevich, University of Jyväskylä
• Marko Mäkelä, University of Turku
• Raino Mäkinen, University of Jyväskylä
• Pekka Neittaanmäki, University of Jyväskylä
• Ilia Nikitin, Institute for computer aided design of RAS
• Marjaana Nokka, University of Jyväskylä
• Istvan Páczelt, University of Miskolc
• Jacques Periaux, University of Jyväskylä
• Olivier Pironneau, Université Pierre et Marie Curie
• Marja-Leena Rantalainen, University of Jyväskylä
• Sergey Repin, University of Jyväskylä
• Tytti Saksa, University of Jyväskylä
• Vasily Saurin, Institute for Problems in Mechanics, RAS
• Karthik Sindhya, University of Jyväskylä
• Alexander Sinitsyn, Institute for Problems in Mechanics, RAS
• Stanislav Sysala, Institute of Geonics AS CR
• Mohammad Tabatabaei, University of Jyväskylä
• Timo Tiihonen, University of Jyväskylä
• Maria Tirronen, University of Jyväskylä
• Jukka Toivanen, University of Jyväskylä
• Tero Tuovinen, University of Jyväskylä
• Jan Valdman, VSB - TU Ostrava
• Kati Valpe, University of Jyväskylä





I Mathematical Modeling of Complex Systems



International Conference for Mathematical Modeling and Optimization in Mechanics (MMOM 2014)
S. Repin, P. Neittaanmäki, and T. Tuovinen (Eds.)

c© University of Jyväskylä, 2014

Agreed Analytical, Numerical and Laboratory
Modelling of Flows Dynamics and Structure

Yuli D. Chashechkin

Abstract
Development of optical instruments of terrestrial and space-based made its pos-

sible to observe the fine structure of flows of various scales: from light-years away
in the interstellar space, to thousands of kilometers and meters in the atmosphere
and hydrosphere of the Earth. Under laboratory conditions, a fine structure of the
vortex and wave flow patterns with scales ranging from centimeters to microns is
visualized by schlieren instruments. As illustrations the evolution pattern of liquid
and solid markers in composite vortices and a fine suspension in standing waves are
presented.

The mathematical modelling of momentum, substances and energy transport in
liquids is based on the fundamental set consisting of the equations of continuity,
momentum, constituents and energy balance, and a closing state equation. As shown
by calculations, the symmetry of the taking system, unlike many model systems
corresponds to the basic principles of physics. A complete classification of large-
scale wave mathematical and related fine- components of periodic flows is given
taking into account condition of compatibility. Degeneracy of the classical equations
of continuity and momentum transfer set in a homogeneous fluid approximation is
shown. Fields of periodic and lee internal waves accompanied by fine components
excited in continuously stratified media by compact 2D and 3D sources performing
linear and torsional oscillations are calculated by asymptotic methods.

Calculation of two-dimensional diffusion induced flows in a stationary stratified
medium on an oblique strip and wedge was done on Lomonosov MSU supercom-
puter. Formation of large and thin flow components and geometry of various phys-
ical quantities fields is studied. Detailed calculations are consistent with laboratory
visualization of internal waves by schlieren device.

Yuli D. Chashechkin
IInstitute for Problems in Mechanics RAS Moscow, Russia, e-mail: yulidch@gmail.com
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c© University of Jyv̈askyl̈a, 2014

Multiaxial Fatigue Criteria and Durability of
Titanium Compressor Disks in Low- and Giga-
Cycle Fatigue Modes

N.G.Burago, I.S.Nikitin, and A.B.Zhuravlev

Abstract The Crossland, Findley and Sines fatigue fracture models are used to esti-
mate the durability of the compressor disk for cases of low-cycle fatigue (LCF) and
giga-cycle fatigue (GCF). The model parameters are determined by using the data
of uniaxial fatigue tests for various stress ratios.

1 Introduction

The phenomenon of in-service gas turbine engine (GTE) compressor disks fatigue
fracture is well-known. Usually compressor disks are manufactured from Ti-based
alloy Ti-6Al-4V. According to fractured disk analysis in most cases the fatigue frac-
ture is observed near the contact zone of disk and blade.

The finite element model is created and 3D strain-stress state is calculated for
GTE compressor disk contact structure (disk-blades-pins-shroud ring) taking in to
account centrifugal, aerodynamic and contact cyclic loading. Several multiaxial fa-
tigue criteria used and results of simulated durability are compared with flight ser-
vice data. The giga-cycle fatigue (GCF) due to observed high frequency axial vibra-
tions of shroud ring is also studied. Because of absence of experimentally proved
GCF multiaxial criteria the known low-cycle fatigue (LCF) criteria are generalized.

2 Fatigue durability estimation models based on the stress-strain
state

Analysis of fatigue durability is based on results of uniaxial cyclic loading tests for
different values of stress ratioR= σmin/σmax, whereσmax andσmin are the maximal

N.G.Burago
Ishlinski Institute for Problems in Mechanics of RAS, Moscow, 119526, Russia, e-mail:
burago@ipmnet.ru

I.S.Nikitin
Institute for computer aided design of RAS, Moscow, 123056, Russia, e-mail: inikitin@list.ru

A.B.Zhuravlev
Ishlinski Institute for Problems in Mechanics of RAS, Moscow, 119526, Russia, e-mail: zhu-
ravlev@mail.ru
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2 N.G.Burago, I.S.Nikitin, and A.B.Zhuravlev

and minimal stresses during the cycle. The stress amplitude isσa = (σmax−σmin)/2
and the stress range is∆σ = σmax−σmin. The experimental data of uniaxial tests
in LCF mode are described by Weller curves that can be represented by the Baskin
relation

σ = σu +σcN
β (1)

whereσu is the fatigue limit,σc is the fatigue strength factor,β is the fatigue strength
exponent, andN is the number of cycles to fracture. See typical curve in Fig. 1. It
has two branches according to low (N < 107) and giga (N > 108) cycle fatigue.

According to Sines [5], the uniaxial fatigue curve (1) can be generalized to the
case of multiaxial stress state as

∆τ/2+αsσmean= S0 +ANβ (2)

whereσmean is the mean sum of principal stresses over a loading cycle,∆τ is the
change in the octahedral tangent stress per cycle,∆τ/2 is the octahedral tangent
stress amplitude, andαs , S0, A andβ are parameters to be determined from experi-
mental data.

According to Crossland [3], the uniaxial fatigue curve can be generalized to the
case of multiaxial stress state as

∆τ/2+αc(σmax−∆τ/2) = S0 +ANβ (3)

whereσmax is the maximum sum of principal stresses in a loading cycle.
The form of the Findley [4] model for the case of multiaxial stress state is:

(∆τs/2+αFσn)max = S0 +ANβ (4)

whereτs, σn are the modules of the tangent stress and normal stress for the plane
with normalni , for this plane combination∆τs/2+ αFσn takes a maximum value.
The criteria parametersαs , S0, A andβ are determined in [1] from uniaxial fatigue
curves and experimental valuesσu, σu0 , σB, whereσu andσu0 are the fatigue limits

Fig. 1 Weller’s curve for
metals.
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for R= 1 andR= 0 respectively,σB is limit strength. Here are approximate values
of the parameters for titanium alloy: the limit strength isσB = 1100MPa, the fatigue
limits according to the curvesσa(N) for R = 1 and R = 0 are equalσu = 450MPa
andσu0 = 350MPa, respectively, the exponent in the power-law dependence on the
number of cycles isβ =−0.45.

3 Example of durability estimation in LCF and GCF modes

The three-dimensional stress-strain state of the contact system of the compressor
(disk-blades-pins-shroud ring) is analyzed numerically using finite-element method
(for details see [2]). The centrifugal forces, the distributed aerodynamic pressures
on the blades, and the forces of nonlinear contact interaction between structural
elements are taken into account for LCF mode. In addition for GCF mode the small
cyclic changes of stress-strain state due to shroud ring vibrations are calculated.
Details are highlighted in [1] and [2].

For LCF mode (basic stress state) of flight cycles (takeoff-flight-landing) the
input parameters are the following: the angular velocity of rotationω = 314rad/s
(3000 revolutions per minute), the flow velocity200m/s. The material properties are
as follows:E = 116Ga, n = 0.32, andρ = 4370kg/m3 for the disk (titanium alloy),
E = 69GPa, n = 0.33, andρ = 2700kg/m3 for the blades (aluminum alloy).

Known cryteria for LCF mode are used for GCF mode. The GCF parameters for
these criteria are detected by using right branch of one-dimensional fatigue curves
in the same way as left branch is used in the LCF case. The similarity between
left and right branches of fatigue curve is used by substitutionσB → σu, σu → σ̃u,
σu0 → σ̃u0. Hereσ̃u andσ̃u0 are new fatigue limits for right branch of fatigue curve
for asymmetry factorsR=−1 R= 0. The following parameter values for titanium
alloy are used̃σu = 250MPa, σ̃u0 = 200MPa. Axial displacements of shroud ring

a) b) c)

Fig. 2 (a) - place of crack initiation in the slot of disk-blade connection and calculated durability
distributions for LCF (b) and GCF (c) modes
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are caused by its vibrations. For disc-blade sector calculation the right side of shroud
ring displacement is equal to zero while the left side displacement is equal to maxi-
mal vibration amplitude±1mm(Fig. 2c) for frequency of3000rpm. Vibration stress
state is imposed on the basic stress state.

The computations [2] show that the most dangerous areas are situated near the
“swallow tail” contact regions between the disk and the blades. Fig. 2a shows the
zone of maximum tensile stresses concentration at the left (rounded) corner of the
groove where the blade is inserted. In Fig. 2b, the computed numbers of flight cy-
cles before fracture (for various criteria of multiaxial fatigue fracture) are displayed
for most dangerous area of groove. In Fig, 2c the computed numbers of vibrations
before fracture are presented. In Fig. 2 (b) and (c) the horizontal axis represents the
dimensionless coordinate of the rounding of the groove’s left corner, the vertical axis
represents the dimensionless coordinate across the groove depth. For LCF mode the
Sines and Findley criteria provide estimates of the service life of gas turbine en-
gine disks of about 20000-50000 flight cycles. The Crossland criterion predicts the
possibility of fatigue fracture after less than 20000 flight cycles and it corresponds
to exploitation time of 50 000 hours. For GCF mode generalized criteria of Sines,
Crossland and Findley provide estimates of the service life of gas turbine engine
disks of about109÷1010 vibration cycles and it again corresponds to exploitation
time of 50 000 hours. Though the presented durability estimations are rather approx-
imate they point onto possibility of fatigue development in considered structure ele-
ments for both cases of LCF (flight cycles) and GCF (high frequency low amplitude
vibrations). The most serious danger may happen due to mutual action of mentioned
mechanisms because they may develop almost simultaneously in one and the same
place. On the whole, all these criteria give similar pictures of the fatigue fracture
regions location.

Acknowledgements Research is supported by RFBR projects No. 12-08-00366-a and 12-08-
01260-a.
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The finding of the complex construction
damping characteristics under random loading

N.N. Berendeev, N.V. Leont’ev, and A.K. Lyubimov

Now in connection with the increasing introduction of methods of environment and
technogenic processes monitoring and control with use of aircraft and space equip-
ment the growing interest represents studying of difficult multicomponent structures
behavior in the conditions of casual influence. One of the most widespread of nu-
merical analysis methods of the structures behavior is the finite element method
(FEM). At the description behavior of a mechanical system under dynamic load-
ing: shock loading, harmonic oscillations or incidental exposure the main parameter
determining the behavior of the system, its damping characteristics are. Currently
there are number of the techniques, allowing to estimate these characteristics. Let
us consider some techniques, taking into account their applicability for the evalua-
tion of the complex structures damping characteristics. The first method is based on
the assumption that the damping characteristics are fully described by the internal
friction of structural elements associated with the hysteresis loss [7], and so-called
structural damping [7], defined by dry friction in the nodes coupling in the con-
struction. In applying this approach, there are two problems that hinder its use of
the first, the structure is usually made of different materials and for the majority
of them have no knowledge about the hysteresis losses, i.e. additional experimental
studies of samples of materials are required, in secondly, the design consists of a
large number of elements between which there are ties, so the final combination is
excessively complex. The basis of the second approach is the analysis of the behav-
ior of structures under forced harmonic oscillations [7]. By results of experimental
research structure in the specified conditions the amplitude-frequency characteristic
is built. On it curve is chosen of the single peak corresponding to the resonance, its
width at a height of two thirds of the height of the peak is defined and the attenuation
logarithmic decrement is found on the known relations [7]. This method is effective
for relatively simple systems. In the case of complex systems consisting of a consid-
erable number of interacting elements, due to the dense arrangement of the natural
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frequencies, rather often it is impossible to allocate lonely peak that leads to serious
difficulties when using technique. In the basis of third approach [6] processing of
structure vibrogram and the study of its envelope under own damped oscillations lie.
All the above methods have been developed for the case of a harmonic loading. To
determine the damping characteristics of complex structure consisting of consider-
able number of interacting elements under random loading numerical-experimental
technique is proposed, based on the combined use of full-scale methods and nu-
merical experiments, which is reduced to the solution of the inverse optimization
problem [1]. The proposed methodology is based on the assumption that: first, the
function of the power of spectral density (PSD) received as a response of a design on
random external influence, allows determining the natural frequencies of the struc-
ture [2, 4], and secondly, the view the PSD function is defined by level of damping
in the structure. Let us introduce two parameters that characterize the peak of the
PSD function corresponding to the natural frequency. Parameter ξ - specifies the
height of the peak function PSD corresponding natural frequency, and parameter ς

- peak width at its base. Analysis of the power spectral density function has shown
that the level of damping is functionally dependent on values of

ϑ = ξ/ς . (1)

The suggested numerical- experimental technique of an estimation the level of
damping complex structure involves the following steps:

• Experimental determination of the functions of PSD to study structure at a finite
number of points;

• Analysis of the data obtained in the experiment, the choice of the most character-
istic features of this structure of PSD and to identify the most significant l peaks,
the calculation for them relations ϑ exp j,{ j = 1, l} ;

• Setting values domain of admissible values of the damping coefficient β

β ∈ [0, β̃ ]; (2)

• Replacing continuous interval defined by the relation (2), its discrete analogue

{βi, | i = 1,d},β1 = 0,βd = β̃ ; (3)

• Numerical analysis of structure using FEM under the action of random loading
with specified properties for each of values {βi} the discrete analogue of the
interval (3) and building on the results of its functions PSD;

• Analysis of the functions PSD obtained in the numerical experiment in order to
find the peaks corresponding to the natural frequencies. Definition for selected
peaks of the functions of the calculated power spectral density characteristics
ϑ

j
i , i = 1,d according to (1) for each of l peaks;

• Construction of the polynomial ϑ = ϑ j(β ), approximating the value of the ratio
for each of l peaks;

• Building of the convolution product
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Sϑ =

√√√√ l

∑
j=1

(ϑ j(β )−ϑ exp j)2; (4)

• Determine the desired coefficient values β ∗ by minimizing the magnitude of the
convolution (4):

Sϑ (β ∗) = minSϑ (β ). (5)

The damping characteristics of cantilever beams using the proposed approach and
the traditional experimental method study [7] were found for verification of the pro-
posed technique. Materials of beams with three various levels of damping were con-
sidered. In all cases good quantitative agreement be-tween the results was observed.
As the example illustrating abilities of the presented technique, determination of
parameter of damping for the hydrogen standard of frequency was carried out. The
studied structure consists of two blocks: block of the quantum hydrogen discrimi-
nator (tight) and block of radio engineering (not tight). The block of the quantum
hydrogen discriminator consists of the high-vacuum knot containing system of for-
mation of a bunch of atoms of hydrogen (the VCh generator, a hydrogen source, the
collimator, sort-ing magnetic system) and the microwave oven of the resonator with
the quartz accumulative flask placed in it. The APCh hub, the receiver, the power
unit, the control unit, telemetry unit enter the block of radio engineering.

The series of numerical experiments using FEM was carried out to determine the
damping characteristics of the structure in accordance with the proposed methodol-
ogy. The random vibration was applied to design in tight sealing of the base plate.
Discrete values of coefficient (3) had values 0; 0.01; 0.05; 0.1. The specified set was
chosen in accordance with the recommendations of standards [3, 5]. The follow-ing
solution of the inverse problem optimization was received: required coefficient of
own friction in structure the β ∗ = 0.0497. Received values of coefficient of damp-
ing correspond to recommended [3] values for complex structures. The main stages
of realization of the proposed numerical-experimental technique for determining the
damping properties of complex multicomponent structures, based on the solution of
inverse optimization are considered. Technique verification is carried out. The esti-
mation of damping properties for complex structure to show the effectiveness of the
proposed method is executed.
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Modelling of Surface Texture Effect in
Sliding/Rolling Contact

I. G. Goryacheva

Abstract Models are developed to study the friction force in sliding and rolling con-
tacts of deformable bodies with regular surface microgeometry. The friction arises
due to the cyclic deformation of the subsurface viscoelastic layer. For pure elas-
tic materials the friction is caused by the energy dissipation in approach-separation
cycles at elementary contact spots due to molecular attraction of the contacting sur-
faces. Periodic functions are used to describe the surface microgeometry (surface
texture). The dependence of the friction force on the surface texture characteris-
tics, mechanical properties of the contacting bodies, surface energy, as well as the
load/velocity and gap conditions are analyzed.
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The ”Weak” Infringement Restriction in
Designing of Bar System by Fuzzy Modeling

N. V. Banichuk and V. A. Baranenko

1 Introduction

In the present paper, two information situations are considered, where in the prob-
lem of optimal design of structures a ”weak” infringement of restriction of inequal-
ity type is possible. In the theory of design of structures, where the deterministic
approach dominates, consideration of more general problems with cases reflecting
the type of applying uncertainty and its degree attracts an interest. The formulation
and solution of these problems requires mathematical devices which would have a
priori possibility to consider this uncertainty [2]. For example, when factors of the
stochastic nature in design are available, the device of probability theory is used
[1, 9]. Such factors as material properties, the strength of loads acting (pressing) on
a structure, positions where they are applied, etc., having variability which is quite
significant in the course of time, are considered as random variables with the known
law of distribution. However the above-listed factors can also have another nature
of uncertainty: their fuzzy description, as well as their inexact task. In this case we
apply the theory of fuzzy sets [11], as the new direction in mathematics can effec-
tively be applied to the formulation of research problems. This device was already
applied by the authors of the works [3]-[8] to the solution of some design problems
of elastic bar systems.

Up to now, the deterministic approach dominates in mechanics. Such concep-
tions as exact, strict and quantitative are always respected, while inexact, rough and
random conceptions have been disregarded for a long time. Only at the end of the
20th century, the attitude to this problem has changed. It became especially clear
after the appearance of probability theory, statistic, fuzzy set theory and possibility
theory, and wide application of computer techniques.

Dominant idea of tolerance of designed system to defective data is rather tempt-
ing. Here tolerance means the ability of the system to transform the information of
initial data of random, fuzzy and inexact character into classical methods of analysis
and adoption of decisions. On the basis of such an approach, the appearance of new
investigation methods is possible.
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2 Problem statement and solution method

The following problem of mathematical programming is considered:

uopt
i = arg

{
min
ui∈Ωi

n

∑
j=1

g j(c j,u j)

∣∣∣∣ n

∑
j=1

φ j(t j,u j)≤ θ

}
; i = 1,2, . . . ,n , (1)

where Ωi =
{

ui | u−i ≤ ui < ∞
}

; ui ∈R; c j, t j are coefficients, and parameters u−i are
given real numbers. Varied forms of description of the initial information are caused
by existence of various formulations of optimization problems. For example, we get
a fuzzy version of problem (1) if we consider that the coefficients have fuzzy values,
and/or, if we ”soften” restrictions in its formulation, that is, admit a possibility of
the infringement of the constraint to some extent. In other words, it is necessary to
enter / symbol instead of ≤ in (1), which means that the inequality can be broken.

Let ϑ = θ +∆ ; ∆ = 2δ (Fig. 1a), where θ is the deterministic number, having
some threshold, δ , such that the inequality x≤ θ is carried out, and δ ∈ B⊂ R is a
value of fuzzy nature. In this case, we deal with infringement of an initial inequality
in the task (1). We assume that infringement is ”weak”, and the value ϑ will be ”a
little bit more” than θ . The stage of fuzzification of this uncertainty will be carried
out by means of membership function of class s for x ∈ R [10] (Fig. 1a):

(a) (b)

Fig. 1 (a) Membership function of class s value θ . (b) Four-element truss.

µB(x) =

0, if x≥ ϑ

µ(ϑ ,x), if θ < x < ϑ

1, if x≤ θ

(2)

Value ∆ defines inexact task ”amplitude” of value ϑ . For this case, it is nec-
essary to find such distribution of values uopt

i ; i = 1,n, which will satisfy the
given restricion and will provide the minimal value of objective function. If then
to use α-level approach of the theory of fuzzy sets, the problem of fuzzy opti-
mization reduces to m deterministic problems of optimum design with given α j,
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0 ≤ α j ≤ 1; j = 1,2, . . . ,m. After that, the stage of defuzzification [10] is carried
out, since the received values of objective function and decisions uopt

i ; i = 1,n are
also fuzzy.

3 Illustrative examples

For an illustration of the suggested approach we shall consider optimum design of
a truss (n = 4) where loads are applied at nodes (Fig. 1b). It is necessary to find
such distribution {Ai}; i = 1,2, . . . ,n of sections of elements of the truss, that the
restriction on value of vertical displacement of node 1, that is y ≤ [y] conditions of
strength

σ =
|Ni|
Ai
≤ R∗i (3)

would be satisfied, and also the minimal value of volume V of the structure would
be provided. Here

V =
n

∑
i=1

liAi ; y =
n

∑
i=1

Di

Ai
; Di =

NiNili
E

; R∗i =
{

Rp
i , Ni > 0

Rc
i , Ni < 0 ;

0 < θ = [y]< ymax ; ui = Ai ; ymax =
n

∑
i=1

Di

A−i
; u−i = A−i =

|Ni|
R∗i

.

The calculations are carried out on the basis of the following initial data:
l1 = 1000

√
2mm; l2 = l3 = 1000mm; l4 = 500

√
2mm; P1 = P2 = 2kN ; Rc

i =
0.15kN/mm2; Rp

i = 0.1kN/mm2; θ = 1.6mm. Membership function µB(x) is de-
termined as (Fig. 1a)

µB(x) =


1, if x≤ a
0, if x≥ b
f1, if a≤ x≤ c
f2, if c≤ x≤ b
0.5, if x = c .

Values f1, f2 are calculated according to formulas

f1 = 1− 1
2

(
x− c
c−a

)2

; f2 =
1
2

(
b− x
b− c

)2

,

where a = θ ; b = ϑ ; c = (a+b)/2.
The number of α-levels in the example is taken as m = 10. For each α-level

according to a principle of generalization [10], the deterministic problem (1) was
realized. Optimum values of volume V which appear from these calculations create a
fuzzy set (Fig. 2). Carrying out further operation of defuzzification, we shall receive
precise values which are presented in Table 1. Last column in this table presents the
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Fig. 2 Fuzzy objective function.

percent deviation value V f from design when deterministic approach to the given
problem is used.

Remark. The value of volume V received only from conditions of strength, is
127268mm3. To solve optimization task (1), a numerical-analytical version of a
method of dynamic programming [3] has been applied.

Table 1 Design results.

∆(mm) a(mm) c(mm) b(mm) V f (mm) %
1.0 1.6 2.1 2.6 232 405 10.6
0.4 1.6 1.8 2.0 247 322 4.8
0.2 1.6 1.7 1.8 253 210 2.6
0.1 1.6 1.65 1.7 254 030 2.2

0 1.6 1.6 1.6 259 876 0

Table 2 Design results with fuzzy θ .

№ θ(a,b,c) (mm) ∆(mm) V f (A,B,C) (mm3) V ∗ (mm3) %
0 θ(1.6; 1.6; 1.6) 0 V f (259876; 259876; 259876) 232 405 0
1 θ(1.55; 1.6; 1.65) 0.05 V f (252001; 259876; 268259) 260 003 0.05
2 θ(1.5; 1.6; 1.7) 0.1 V f (244589; 259876; 277201) 260 335 0.2
3 θ(1.4; 1.6; 1.8) 0.2 V f (231001; 259876; 297002) 261 939 0.8
4 θ(1.3; 1.6; 1.9) 0.3 V f (218843; 259876; 319848) 264 611 1.8
5 θ(1.2; 1.6; 2.0) 0.4 V f (207901; 259876; 346502) 268 538 3.3
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1) Δ=0.1; 2) Δ =0.3; 3) Δ=0.4; Δ=c-b; Δ=b-a

µ

20 22 24 26 28 30 32 34 V·103(mm3)

0 11 223 3

1

0.8

0.6

0.4

0.2

0.2

0

Fig. 3 Membership function V f .

Let us now consider the case where in problem (1) the value θ is fuzzy: value
θ ”approximately” equals 1.6mm. Adding a stage of fuzzification, we shall present
this description in the form of a fuzzy number of (L-R)-type [10], namely fuzzy
triangular number θ(a,b,c). The problem of optimum design (1) with different a,
c, b = 1.6mm was solved. As a result, fuzzy triangular values V f representing the
optimum values of the truss volume were obtained (Table 2 and Fig. 3).

Value V ∗ in Table 2 is the expected deterministic value of the truss volume if
values V f are fuzzy [4]:

V ∗ =
1
4
(A+2B+C) .

In Table 2 there is also the following information: how much the adopted design
V ∗ is larger (in %) than the optimal one obtained using the deterministic approach
(∆ = 0).

4 Conclusion

The situation, when within a problem of mathematical programming, ”weak” in-
fringement of restriction is probable, was described. It was modelled by a member-
ship function of class s in the theory of fuzzy sets. Data presented in Table 1 show
how the fuzzy description of data δ affects the unknown value V , that is the ”sensi-
tivity” of the design to inexact data: the increase of dispersion of value δ (increase
of uncertainty) in design leads to reduction of rigidity and, consequently, the volume
of the structure. Moreover, if we compare the obtained results to the deterministic
approach, the objective function values increase. For example, for ϑ = 1.7mm in the
fuzzy approach (∆ = 0.1mm), we have V = 254030mm3. In the precise approach
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(for ϑ = 1.7mm; δ = 0), we have V = 244589mm3. This means that as a result of
accounting for fuzzy information on the restriction in the optimization model, the
volume of the truss increases, in comparison with the deterministic task, almost by
4% — ”payment” for uncertainty.

The second information situation in the model of optimum design was carried
out for a class of fuzzy values of (L-R)-type, namely fuzzy triangular values. The
solutions received as a result of calculations have allowed to assess the influence of
the initial defective allowable value of vertical displacement of node 1 of the truss
on the optimum design. As seen from Table 2, for the given structure this influence
is insignificant.
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W. Szcześniak, editor, Polish-Ukrainian Transactions ”Theoretical Foundations of Civil En-
gineering”, volume 20, pages 163–166, Warsaw OW PW, 2012.

9. V. V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day, San Fransisco, 1969
(translated from Russian).
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The modeling of elastoplastic behavior of the
damaging material with defects under
electrothermomechanical loading

C. V. Kukudzhanov, A. L. Levitin, and A. V. Kolomietz

Abstract The direct finite element modeling of time multiscaled influence of elec-
tromagnetic field, temperature and mechanical loading on damaging material with
defects was investigated. The problems on representative elements (volumes) of ma-
terial with defects of different shapes (crack, pore) and sample with an ordered struc-
ture of these defects were solved for sequential processes current impact, cooling
and mechanical loading. The numerical investigation showed that the short intense
electrical current passing through the sample causes such high temperature fields in
the vicinity of the defects, which thereafter lead to defects ”healing” (clamping of
the cracks and melting of the material at cracks tips). The planar defects (cracks)
due to localization of the temperature and melting at the tips of the cracks are trans-
formed into defects such as spherical pores. It was modeled that after such an elec-
tromagnetic influence and a transformation of the defects the effective plastic yield
of the material decreases. The investigated mechanism can theoretically explains the
experimentally observed effect of improving the plastic characteristics of the mate-
rial (superplasticity) caused by certain modes of electrothermomechanical loading.
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Open and solved problems in the stability of
mechanical, electromechanical and electronic
systems

Gennady Leonov, Nikolay Kuznetsov, and Svetlana Seledzhi

Abstract In the lecture fundamental and frontier problems on stability and stabiliza-
tion of mechanical, electromechanical and electronic systems is discussed. The clas-
sical examples of non-stationary stabilization of linear systems are considered [1].
Two approaches [1] to the solution of the recent Brockett problem on non-stationary
stabilization [2] are presented. Problems of delayed feedback stabilization of unsta-
ble equilibria and unstable periodic orbits are discussed [3]. An effective analytical-
numerical method for the localization of undesired hidden oscillations and the con-
struction of counterexamples to famous Aizerman’s and Kalman’s conjectures on
absolute stability of nonlinear control system is presented [4-7]. An experiment by
I.A. Blekhman, confirming the theory of elastic system stabilization developed by
academician V.N. Chelomey, is presented [8]. The problems of drill string failures
[9], design of aircraft control systems and anti-windup schemes are discussed [10-
11]. Effective methods for nonlinear analysis and design of phase-locked loop based
systems are demonstrated [12].
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St.Petersburg State University, Russia e-mail: nkuznetsov239@gmail.com

Svetlana Seledzhi St.Petersburg State University, Russia e-mail: ssm@SS1563.spb.edu

1



2 Gennady Leonov, Nikolay Kuznetsov, and Svetlana Seledzhi

6. G. A. Leonov, N. V. Kuznetsov and V. I. Vagaitsev. Hidden attractor in smooth Chua systems.
Physica D: Nonlinear Phenomena, 241(18):1482–1486, 2012

7. V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov and G. A. Leonov. Algorithms for finding
hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s
circuits. Journal of Computer and Systems Sciences International, 50(4):511–543, 2011.

8. I. Blekhman. Selected Topics in Vibrational Mechanics. World Scientific, Singapore, 2004.
9. M. A. Kiseleva, N. V. Kuznetsov, G. A. Leonov and P. Neittaanmaki. Hidden oscilla-

tions in drilling system actuated by induction motor, IFAC Proceedings Volumes (IFAC-
PapersOnline), 5(1):86–89, 2013.

10. G. A. Leonov, B. R. Andrievsky, N. V. Kuznetsov and A. Yu. Pogromsky. Aircraft control
with anti-windup compensation. Differential equations, 48(13):1–21, 2012.

11. B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov and A. Yu. Pogromsky. Hidden oscillations
in aircraft flight control system with input saturation. IFAC Proceedings Volumes (IFAC-
PapersOnline), 5(1):75–79, 2013.

12. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev and R. V. Yuldashev. Analytical method for
computation of phase-detector characteristic. IEEE Transactions on Circuits and Systems II:
Express Briefs, 59(10):633–637, 2012.



International Conference for Mathematical Modeling and Optimization in Mechanics (MMOM 2014)
S. Repin, T. Tiihonen and T. Tuovinen (Eds.)

c© University of Jyväskylä, 2014

A projection approach to analysis of natural
vibrations for beams with non-symmetric
cross-section

Vasily Saurin, Georgy Kostin

Abstract A projection approach based on method of integrodifferential relations
(MIDR) and semi-discretization technique is applied to analyze natural variations
of rectilinear beams with non-symmetric cross-sections. Numerical algorithms to
composing approximating system of ordinary differential equations are presented
and discussed. It is shown, that if a non-symmetric cross-section is considered, then
natural vibrations cannot be separated into four independent types of longitudinal,
bending, and torsional motions. In this case all motions are connected to each others.
Nevertheless, only one type of displacement and stress fields makes the largest in the
corresponding amplitudes of vibrations. Several eigenfrequencies and eigenforms
are found and analyzed using explicit bilateral energy estimates following directly
MIDR. Forced vibrations of beams with triangular cross-section are also considered.
Numerical simulations shown, that quite limited periodic rotations of the beam can
excite large flexural vibrations. In this case, the beam with non-symmetric cross-
section can be considered as a mechanical amplifier that transfers a significant part
of torsional energy into the bending one.
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Stability of a tensioned axially moving plate
subjected to cross-direction potential flow

Juha Jeronen, Tytti Saksa, and Tero Tuovinen

Abstract We concentrate on the stability analysis of an axially moving Kirchhoff
plate, subjected to an axial potential flow perpendicular to the direction of motion.
The dimensionality of the problem is reduced by considering a cross-directional
cross-section of the plate, approximating the axial response with the solution of the
corresponding problem of a moving plate in vacuum. The flow component is han-
dled via a Green’s function solution. The stability of the cross-section is investigated
via the classical Euler type static linear stability analysis method. The eigenvalue
problem is solved numerically using Hermite type finite elements. As a result, the
critical velocity and the corresponding eigenfunction are found.

1 Introduction

Models out-of-plane vibrations of axially moving materials are commonly consid-
ered in the context of industrial production processes, such as paper making. Typical
models include axially moving strings, beams, panels (plates with cylindrical defor-
mation), membranes and plates. Research into the field began at the end of the 19th
century (Skutch, 1897). Other important classical studies include e.g. Sack 1954,
Archibald and Emslie 1958, Swope and Ames 1963, Simpson 1973. The field has
remained active to this day; stability problems of axially moving materials have
been considered e.g. by Parker 1998, Kong and Parker 2004, Wang et al. 2005.

Problems of out-of-plane behaviour of axially moving materials share some of
their mathematical formulation with those of axially compressed stationary materi-
als and those of gyroscopic systems, leading to questions of stability. The problem
parameter of interest is the axial velocity of the material.

In the case of lightweight materials, such as paper, the fluid–structure interac-
tion between the travelling material and the surrounding air must be accounted for,
because the inertial contribution of the surrounding air is significant. The surround-
ing air is known to change both the frequencies of natural vibration and the critical
velocity of the travelling material (see, e.g., Pramila, 1986, Frondelius et al., 2006,
Kulachenko et al., 2007).
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The present study concentrates on the stability analysis of an axially moving
Kirchhoff plate in an open draw, subjected to an axial potential flow perpendicular
to the direction of motion. The dimensionality of the problem is reduced by consid-
ering a cross-directional cross-section of the plate, approximating the axial response
with the solution of the corresponding problem of a moving plate in vacuum. The
flow component is handled via a Green’s function solution (Banichuk et al., 2011,
Jeronen, 2011), leading to a one-dimensional integrodifferential model. The stability
of the cross-section is investigated via the classical Euler type static linear stability
analysis method. The eigenvalue problem is solved numerically using Hermite type
finite elements.

2 Outline of the study

Consider a travelling, rectangular, isotropic Kirchhoff plate in the plane region

Ω ≡ {(x,y) : 0 < x < `, −b < y < b} , (1)

simply supported on the edges x= 0, x= ` and free of tractions on the edges y=±b.
The dynamic equation of small vibrations of an isotropic, axially moving Kirch-

hoff plate, travelling at constant velocity V0 in the x direction, subjected to a constant
tension T0 applied at the rollers and an aerodynamic reaction loading qf(w), is

mw,tt +2mV0w,xt +(mV 2
0 −T0)w,xx +D(w,xxxx +2w,xxyy +w,yyyy) = qf(w) , (2)

where w is the transverse displacement, m is the mass per unit area of the middle
surface of the plate, and D = Eh3/[12(1− ν2)] is the bending rigidity. Subscripts
after a comma denote partial differentiation.

The static stability analysis, applied to equation (2), is concerned with deter-
mining non-trivial steady-state solutions and the corresponding critical velocities as
eigenfunction-eigenvalue pairs (w,V0). In the steady state, (2) reduces to

(mV 2
0 −T0)w,xx +D(w,xxxx +2w,xxyy +w,yyyy) = qf(w) . (3)

It can be observed (Banichuk et al., 2010b, Jeronen, 2011) that near the middle
point of an open draw, the buckling shape is not much altered by the introduction of
an aerodynamic load, when compared to the vacuum case. Based on this observa-
tion, let us introduce the following approximation.

The steady-state solution in the vacuum case is of the form (Banichuk et al.,
2010a)

w(x,y) =C sin(kπ
x
`
) f (y) , (4)

where C is an arbitrary constant and k = 1,2,3, . . . . By differentiating (4) twice with
respect to x, we obtain
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w,xx =−
(

kπ

`

)2

w≡ βw , (5)

where the constant β is defined by the obvious identification. Using (4) as a trial
function and inserting (5) to (3), and taking into account that qf(w), describing the
aerodynamic reaction of a potential flow, is linear in w, we obtain

(mV 2
0 −T0)β f +D(β 2 f +2β f,yy + f,yyyy) = qf( f ) ,

which is an approximate equation for the steady-state solution near the midpoint
of a long open draw. The x dependence has been eliminated; f = f (y). Collecting
terms, we have

α f +2βD f,yy +D f,yyyy = qf( f ) , α = (mV 2
0 −T )β +Dβ

2 , β =−
(

kπ

`

)2

.

(6)
If α > 0, we observe that the axial tension is seen by the cross-directional cross-
section as a linear elastic foundation with stiffness α .

Now the aerodynamic reaction qf( f ) can be written explicitly in terms of f (y)
via a Green’s function solution for the Neumann problem of the Laplace equation
for a plane with slit (Banichuk et al., 2010b, Jeronen, 2011):

qf( f ) =−ρf

b

(
v∞

∂

∂y

)∫ 1

−1
N (η ,y)

(
v∞

∂

∂η

)
f (η)dη , (7)

where v∞ is the free-stream velocity of the potential flow, and N(η ,y) is the aerody-
namic kernel:

N(η ,y)≡ 1
π

ln
∣∣∣∣1+Λ(η ,y)
1−Λ(η ,y)

∣∣∣∣ , where Λ(η ,y)≡
[
(1− y)(1+η)

(1−η)(1+ y)

]1/2

. (8)

This results in a one-dimensional integro-differential model in terms of f (y).
The eigenvalue problem of classical static stability analysis, applied to equation

(6), is to find the eigenvalue α , which is related to the critical velocity V0, and the
corresponding eigenfunction f (y) (i.e. the buckling shape of the cross-section). The
boundary conditions are f,yy = 0 and f,yyy = 0 at y =±b.

In this study, equation (6) will be investigated parametrically, and the critical ve-
locities and buckling shapes will be determined. The 1D integro-differential model
will be solved numerically using Hermite type finite elements.
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Stability of axially moving viscoelastic beams
with the standard linear solid model

Tytti Saksa and Juha Jeronen

Abstract Stability of an axially moving viscoelastic beam is studied modelling the
viscoelasticity with the standard linear solid model also known as the Zener model.
We consider also the Poynting–Thompson model which is mathematically similar
to the Zener model. We present the dynamic equations for the axially moving vis-
coelastic beam assuming small out-of-plane displacement. Characteristic behaviour
of the beam is investigated performing a classical dynamic analysis, i.e., we solve
the eigenfrequencies with respect to the beam velocity. With the help of the anal-
ysis, we determine possible critical velocities at which the behaviour of the beam
changes from stable to unstable.

1 Introduction

Stability of axially moving beams has been studied for a long time beginning in
the 1970s when Simpson (1973) pointed out that the behaviour of translating beams
differs from that of stationary beams. Simpson studied the natural frequencies of the
translating beam and found out that the beam undergoes divergence instability at a
sufficiently high translation velocity. Stability of axially moving elastic beams has
been further studied e.g. by Wickert and Mote (1990) who presented the equations
of motion in a canonical form and the expressions for the critical transport velocities
explicitly. Kong and Parker (2004) derived an analytical expression for the natural
frequencies of the translating elastic beam having small bending stiffness.

Eigenfrequencies, stability and critical velocities for axially moving viscoelas-
tic beams were studied by Oh et al. (2004) and Lee and Oh (2005). They used the
Kelvin–Voigt model for viscoelasticity and the partial time derivative in the con-
stitutive relations. Mockensturm and Guo (2005) suggested that for axially moving
materials, one should use the material time derivative in the viscoelastic constitu-
tive relations. The material time derivative has been used in the recent studies for
moving viscoelastic materials. For example, Saksa et al. (2012) studied the stabil-
ity of axially moving viscoelastic Kelvin–Voigt beams and panels with the help of
eigenfrequencies and using the material time derivative. They also introduced a fifth
boundary condition for the dynamic equation that is of the fifth order in space.
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The standard linear solid (SLS) model, also known as the Zener model, for vis-
coelasticity has been also applied in models for axially moving beams. Marynowski
and Kapitaniak (2007) used the Zener model for modelling viscoelasticity in an
axially moving beam with time-dependent tension. They concentrated mainly on
bifurcation phenomena of a non-linear model but considered also the stability of
the linearized system. They found out that the instability occurs at some critical
velocity in a form of flutter and that the critical velocity increases if the damping
coefficient characterizing the viscoelasticity is increased. A model mathematically
similar to the Zener model is the Poynting–Thompson model, which has been used
for axially moving beams by Wang and Chen (2009) and Wang (2012). They con-
centrated on asymptotic stability analysis and steady-state response determination.
They called the Poynting–Thompson version also the standard linear solid. Seddighi
and Eipakchi (2013) computed the natural frequencies and critical speeds for axi-
ally moving Euler-Bernoulli and Timoshenko beams using the standard linear solid
model for viscoelasticity. In their study, the critical speeds (divergence velocities)
were determined by solving the steady-state equations. However, they did not per-
form dynamic analysis to find out if the divergence instability is the first instability.
They reported that viscoelasticity had no effect on the critical speed. In all the above
studies with the standard linear solid model, the material time derivative was used
in the viscoelastic constitutive relations.

We study the stability of axially moving viscoelastic beams using the standard
linear solid (SLS) model and classical dynamic analysis. The eigenfrequencies are
determined with respect to the beam velocity to characterize the behaviour and the
possible types of stability. The derivation of the dynamic equations for an axially
moving SLS beam has been given in Marynowski and Kapitaniak (2007), Wang
and Chen (2009), Wang (2012), and Seddighi and Eipakchi (2013). The derivation
of Marynowski and Kapitaniak (2007) differs from the derivation of the others in
the definition of bending moment and, thus, results in different equations. We will
follow quite closely the derivation of Wang and Chen (2009), Wang (2012), and Sed-
dighi and Eipakchi (2013). Since the dynamic analysis has not been performed for
this form of equations, we will focus on that. In addition, we will use five boundary
conditions for the resulting fifth order (in space) equation, whereas in the previous
studies only four boundary conditions were used.

2 Axially moving viscoelastic beam

We consider an axially moving viscoelastic beam, travelling at a constant velocity
V0 in the positive x direction. The beam is supported at x = 0 and x = `. For the
standard linear solid, viscoelasticity is characterised by the following stress–strain
relation:

Γ σ = Ξε , ε =−z
∂ 2w
∂x2 , (1)

where
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Γ (·) = a0(·)+a1
d
dt
(·) , Ξ(·) = b0(·)+b1

d
dt
(·) , d

dt
(·) = ∂

∂ t
(·)+V0

∂

∂x
, (2)

and σ is the normal stress due to bending, ε the axial bending strain, and w the
out-of-plane displacement.

In Table 1, the parameters ai and bi in (2) are given in the case of Zener and
Poynting–Thompson models. The dashpot – spring models for Poynting–Thompson
and Zener bodies are shown in Fig. 1.

Table 1 Rheological parameters for Zener and Poynting–Thompson models

a0 a1 b0 b1

Poynting–Thompson (E1 +E2) η E1E2 E1η

Zener E2 η E1E2 (E1 +E2)η

1

2 1

2

Fig. 1 Dashpot – spring models for the Poynting–Thompson (left) and Zener (right) bodies.

The dynamic equation for the axially moving beam is expressed as

m
d2w
dt2 =

∂ 2M
∂x2 +T0

∂ 2w
∂x2 , (3)

where m is the mass of the beam per unit length, M is the bending moment, and T0
is constant tension applied at the ends. We denote by Γ M the equivalent bending
moment (Sobotka, 1984) and by J the moment of inertia:

Γ M =−JΞ
∂ 2w
∂x2 , J =

∫
A

z2dA , (4)

where A is the cross-sectional area of the beam. We operate by Γ (·) on both sides
of (3) and insert (4) assuming sufficient continuity for M to obtain

a1

a0

[
∂ 3w
∂ t3 +3V0

∂ 3w
∂x∂ t2 +

(
3V 2

0 − T0

m

)
∂ 3w

∂x2∂ t
+V0

(
V 2

0 − T0

m

)
∂ 3w
∂x3

]
+

∂ 2w
∂ t2

+2V0
∂ 2w
∂x∂ t

+

(
V 2

0 − T0

m

)
∂ 2w
∂x2 +

Jb0

ma0

∂ 4w
∂x4 +

Jb1

ma0

(
∂ 5w

∂x4∂ t
+V0

∂ 5w
∂x5

)
= 0 . (5)
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The boundary conditions read

w(0, t) =
∂w
∂x

(0, t) =
∂ 2w
∂x2 (0, t) = 0 , w(`, t) =

∂w
∂x

(`, t) = 0 . (6)

In derivation of (6), we assume continuity of the equivalent bending moment Γ M
instead of the actual bending moment (see Saksa et al., 2012).

The characteristic behaviour of the beam will be studied by inserting the time-
harmonic trial function w(x, t) = exp(st)W (x) into the dynamic equation (5) and
the boundary conditions (6). Here, s = iω and ω is the angular frequency of small
transverse vibrations. The equations will be discretized using the finite difference
method and numerical results will be presented.
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On Reliable Transition of a Paper Web through
an Open Draw

Maria Tirronen

Abstract The commonly used model for a moving paper web in a paper machine
is the mathematical model of an axially moving material, e.g., a moving plate. The
model of an axially moving material is also used to describe other systems in indus-
try, and thus, the mechanics of axially moving materials has received much attention
in research. (see, e.g., the literature review by Banichuk et. al [1]).

Traditionally, the studies of axially moving materials have been based on a determin-
istic approach. However, a real-life phenomenon generally includes an amount of
uncertainty. In paper manufacture, the uncertainty factors include, e.g., the strength
of the paper web, variation of tension with respect to space and time in the press
system, and defects, which vary in their geometry and location in the web. These
factors are considerable: according to Uesaka [2], the majority of web breaks in pa-
per production are caused by tension variations, combined with strength variations
of the paper web. In addition, macroscopic defects can cause breaks if the size of
the defects is exceedingly large or if tension surges coincide with defect occurrences
[2]. On the other hand, according to Wathén [3], even a seemingly flawless paper
can fail at very low tensions due to stress concentrations caused by discontinuities,
e.g. cuts and shives, in structure of the paper.

In this paper, random tension variation and defects are included simultaneously in
the model of a moving paper web, and the critical value of average tension is stud-
ied from the view point of maximal reliability in transition of the web through an
open draw. The reliable transition of the web is considred as a state in which the
web moves through the open draw without encountering instability or fracture. This
study extends the studies by Banichuk et. al [4] and Tirronen at. al [5], in which
the safe transition of the web was analyzed by considering the random defects and
tension variation separately.

Maria Tirronen
Department of Mathematical Information Technology , P.O. Box 35 (Agora), FI40014 University
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Harmonical vibrations and stability of moving
elastic band

Alexandr A. Barsuk

Study of the dynamic behavior of moving elastic systems has for a long time at-
tracted the close attention of researchers. We note in this regard, a series of works
executed in recent time by the team of researchers led by Prof. N.V. Banichuk and
Prof. P. Neittaanmaki, and dedicated to the modeling of the papermaking process.

Of particular interest to this class of problems is the analysis of the stability of
moving systems. A common method of investigating the stability of elastic systems
is the dynamic method. In accordance with this method, we solve the problem of har-
monic vibrations of the investigated system followed by analysis of the dependence
of frequencies’ behavior on the system parameters. The appearance of complex fre-
quencies is interpreted as a loss of stability of dynamic forms and corresponds to the
loss of Lyapunov stability, while the conversion of frequencies to zero corresponds
to a loss of stability of static forms and meets the criteria of the Euler buckling.

In this report, a dynamic analysis of the system is complemented by a bifurca-
tion analysis of the relations matching the solvability of the corresponding spectral
problems. It leads to a significant expansion of the dynamic method of analysis of
elastic stability. In particular, it is shown that both static and dynamic methods in
the theory of stability lead to criteria of the Lyapunov buckling failure.

As a model problem which can be solved in closed analytic form, considering
is the problem of free harmonic vibrations of the moving with constant velocity
V panel simply supported at the ends (1D model). In standard notation and in di-
mensionless variables the mathematical formulation of this spectral boundary value
problem can be written as

uxxxx +
(
V 2−V 2

0
)

uxx +2iωVux +ω
2u = 0, (1)

u(0) = u(1) = 0, uxx (0) = uxx (1) = 0.

Solution of (1) can be obtained by standard calculations. We present here the
solution of (1) for the case V0 = 0 that corresponds to panel motion without axial
forces and for which solution has the simplest form:

∆ (ω,V ) =
√

V 4−16ω2V 2

(
cosV − cos

√
V 2 +4ω

2
cos

√
V 2-4ω

2

)
+

Alexandr A. Barsuk
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+
(
V 4−8ω

2)sin

√
V 2 +4ω

2
sin

√
V 24ω

2
= 0 (2)

By equation (2) are determined dependences ω(V ) of panel’s harmonic oscilla-
tions frequencies on its movement speed V . Graphics of these dependences for the
first four branches are shown in Figure 1

Fig. 1

Buckling failure of the panel both upon static and dynamic forms occurs at the
parameters values ω = ω∗ and V =V∗ , which are at the same time points of bifur-
cation of solutions of equation ∆(ω,V ) = 0 (2) and are determining by solving the
system of nonlinear equations

∆ (ω,V ) = 0,
∂∆ (ω,V )

∂ω
= 0 (3)

Let (ω∗1 ,V
∗
1 ), (ω

∗
2 ,V

∗
2 ), . . . - solutions of the system (3). In a small neighborhood

of each of the bifurcation points (ω∗k ,V
∗
k ) asymptotic behavior of the dependencies

ωi(V ) is described by the expressions

ωi (V )≈ ω
∗
k ±αk

√
V −V ∗k∗, |V −V ∗k |� 1 (4)

where under conditions ∂∆
(
ω∗k ,V

∗
k

)
/∂V 6= 0

α
2
k =−2

∂∆
(
ω∗k ,V

∗
k

)
/∂V

∂ 2∆
(
ω∗k ,V

∗
k

)
/∂ω2
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and thus the coefficient αk in (4) can take either real or purely imaginary values.
From the representation of dependencies ωi (V ) in form of (4) it follows that in

a small neighborhood of a bifurcation point
(
ω∗k ,V

∗
k

)
, the frequency of harmonic

oscillations always takes complex values. At that, for real values of the coefficient
αk the frequency becomes complex when V < V ∗k , while at imaginary values – at
V >V ∗k .

The emergence of complex frequencies (and simultaneously complex conjugate
to them) leads to an exponential growth in the system’s movement that meets the
definition of Lyapunov instability.

Note that defined by the expression (2) dependence ∆ (ω,)V is an even function
of the variable ω and therefore we have ∂∆ (ω,V )/∂ω = 0 for ω = 0, and thus part
of the bifurcation points lies on the axis V . Bifurcation values of V for this class of
points are given by expressions

V 2
k = k2

π
2, k = 1,2,3 . . .

The author expresses his sincere gratitude to Prof. N.V. Banichuk for long-term
cooperation, constant support and discussion of the results of this study.
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Multipurpose Optimization with and without
Uncertainties for Deformed Bodies and
Structural Elements

A.V. Sinitsin, S.Yu. Ivanova, E.V. Makeev, and N.V. Banichuk

Abstract The problems of multipurpose analysis and optimization of deformed
structures and thin-walled structural elements are studied under some constraints
concerning incomplete data. Different approaches and their applications are pre-
sented: Guaranteed Approach; Probabilistic Approach; Guaranteed-Probabilistic
Mixed Approach; Pareto-multidisciplinary and Nash-stationary Approaches. Mul-
tipurpose optimization of layered plate made from given set of materials in context
of optimization of ballistic limit velocity is presented with some other examples of
application of Pareto and Nash approaches for solving of multipurpose problems.
Shape optimization problems in contact mechanics are also considered with incom-
plete data taking into account.

1 Two approaches in multipurpose optimization

Multipurpose optimization in mechanics and optimal design of structures and struc-
tural elements plays an important role in modern problems of engineering. There
are two basic approaches for solving of multipurpose problems: the Pareto-approach
and the Nash-approach. Each of them has as some preferences as some disadvan-
tages and the investigators must take into account many different factors choosing
the appropriate approach for the treated problems.

According to Pareto-approach the minimization (or maximization) of vector
functional

J(h) = {J1(h), ...,Ji(h), ...,JN(h)}T → min
h∈Λh

(1)
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must be performed on the set Λh of admissible design variables h ∈Λh. The compo-
nents of this vector functional are the treated optimization criteria J1(h),..., Ji(h),...,
JN(h). Minimum in (1) is considered in Pareto-sense, i.e.

h∗ = arg min
h∈Λh

J(h) (2)

is the solution of the problem (1) and does not exist any other solution h̃ ∈ Λh for
which Ji(h̃) ≤ Ji(h∗) and at least for one component the strong inequality Js(h̃) <
Js(h∗) is valid. For finding of the optimal solution h∗ the minimization of objective
weighting functional or preference functional

JC(h) =
N

∑
i=1

CiJi(h)→ min
h∈Λh

(3)

can be realized where Ci ≥ 0, ∑
N
i=1 = 1, i = 1, ...,N. or any set of coefficients (fac-

tors) Ci there is one optimal solution h∗, i.e. one point in the space of functionals
J1, ...,JN . All such points create the Pareto-front.

The other approach, so-called Nash-approach, has a game character. According
to this approach there are two optimality criteria

J1(h1,h2), J2(h1,h2), h1 ∈Λh1 , h2 ∈Λh2 (4)

and two ”players” - two design variables h1 and h12. The sequence of Nash-
minimization may be described as follows. Step 1: Suppose that the first approx-
imation of optimal solution h∗2 is given. Step 2: The first criterion is minimized by
the first ”player” with given h∗2, i.e.

J1(h1,h∗2)→ min
h1∈Λh1

(5)

and the first approximation of optimal solution h∗1 is found as

h∗1 = arg min
h1∈Λh1

J1(h1,h∗2). (6)

Step 3: The second criterion is minimized by the second ”player” with given h∗1:

J2(h∗1,h2)→ min
h2∈Λh2

. (7)

The second approximation of optimal solution h∗2 is found:

h∗2 = arg min
h12∈Λh2

J2(h∗1,h2). (8)

Then we can return to the Step 2 or stop the process of optimization. The solution
(h∗1,h

∗
2) of the Nash-optimization problem defines in the space of functionals J1, J2

some equilibrium point.
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Uncertainties or incomplete data concerning external loading or internal defects
are taken into account in multipurpose optimization problems by using of sev-
eral approaches. The first guaranteed (minimax) approach realizes ”the worst case
scenario”. The second probability (stochastic) approach is used where the neces-
sary statistic data describing the problem characteristics are known. Also mixed
guaranteed-probability approach can be used.

2 Some examples of optimal solutions

Two optimality criteria have been considered for Pareto-optimization (against high-
speed penetration) of layered plate structure made from finite set of given materials
(1- aluminum, 2- soft steel, 3- copper, 4 - duraluminum): the total mass of the plate
must be minimal and the ballistic limit velocity of strikers must be maximal [4].
The total thickness of the plate was given, but thicknesses of separate layers were
unknown as well as their positions (order) in the structure. For solving this optimiza-
tion problem with incomplete data described above the evolutionary computational
method known as genetic algorithm (GA) was applied. In Fig.1 the optimal distribu-
tion of materials (red - copper, blue - steel) within layered structure and the striker
velocity decreasing are shown for arbitrary mass of the structure (CM = 0). The ma-
terial distributions for different values of objective weighing factor CM of the mass
criterion are given in Fig.2. Dark regions in Fig.4 denote cooper layers and gray
regions - steel layers. The factor CM has the following values: 1) 0-0.02; 2) 0.3; 3)
0.4; 4) 0.5; 5) 0.55. In the Fig.3 the monotonic dependence of objective weighting
functional JC on the weighting factor CM is presented. Convergence of the genetic
algorithm is illustrated in Fig.4 by the dependence of the preference functional value
on the number of generation.

Fig. 1 Optimal layered plate with
CM = 0 Fig. 2 Optimal distributions of materi-

als
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Fig. 3 Dependence of the preference
functional on CM

Fig. 4 Convergence of GA-method

Rigid punch shape optimization in contact problems of theory of elasticity was
investigated taking into account incomplete data about external loading [1]. It was
supposed that the punch is under action of given forces and moments (acting in the
contact region) and also under action of external forces (acting beyond the contact
region) as it is shown in Fig.5. Information about the value and coordinates of ap-
plication of such external forces might be incomplete. Guaranteed approach based
on worst case scenario is applied as for formulation as for solution of the considered
optimization problems with incomplete data on external forces. As a result, the op-
timal designs obtained are insensitive to load variations within a given admissible
set. Optimal shape of the rigid punch circular in-plane is presented in Fig.6.

Fig. 5 Statement of the contact prob-
lem

Fig. 6 Optimal punch shape

Multipurpose optimization problem for the rigid shell moving on the surface of the
elastic half-space has been investigated analytically [2-3] under constraints on the
total force and moments acting on the punch (Fig.7).

Multipurpose optimization problem for the rigid shell moving on the surface of the
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Fig. 7 Interaction of rigid punch and
elastic media

Fig. 8 Specific optimal punch shape

elastic half-space has been investigated analytically [2], [3] under constraints on the
total force and moments acting on the punch (Fig.7). The shape of the punch has
played the role of unknown design variable. The discrepancy functional between
the actual pressure distribution under the punch and some given pressure distribu-
tion was considered as the first optimality criterion. The second one was the friction
dissipation power functional. For minimization of these functionals the Pareto ap-
proach has been used and preference functional has been optimized. The specific
shape for rectangular in-plane rigid punch is presented in Fig. 8.

Acknowledgements The research was performed under financial support of RFBR (grant 14-08-
00016-a), RAS Program 12, Program of Support of Leading Scientific Schools (grant 2954.2014.1).
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Some remarks to the solution of different contact optimization 

problems 
 

István Páczelt, Attila Baksa 
 
Abstract The stress distribution is often not smooth and has some singularities, decreasing the lifetime of the 

machine elements. To the elimination of stress singularities the application of contact pressure control is 
recommended among the contact conditions. The lecture gives same examples of these type of optimization 
problems, also investigates the increase of the loadabiliy and influence of the steady wear state for the shape of one 
of the contacting bodies. It is assumed that the displacements and deformations are small, the material of the 
contacting bodies are elastic. 

 
1 Introduction, idea of the controlled contact pressure 

 
A designer always endeavors to avoid singularities within the contact regions in order to keep 
stresses at a low level. In optimization problems the design parameters usually concerned with 
material parameters, shape, characteristic dimensions, supports, loads, inner links, reinforcement 
and topology Banichuk and Neittaanmaki [1], Banichuk [2]. In engineering practice connection of 
machine elements are frequently modeled as unilateral contact problems. Haslinger and 
Neittaanmaki [3] dealt with the mathematical aspects of contact optimization problems.  

In our investigations we suppose that the bodies are in contact on the whole subdomain cΩ  of 

the contact zone  Ω=cS  . Let us introduce the surface coordinates s, t and assume that the 

following pressure distribution is reached due to shape optimization [4] 

         max,)()( nn pcp xx =                                                                                             (1) 

where the chosen control function must satisfy the condition 1)(0 ≤≤ xc , and,  

                               [ ]tspp nn ,),(maxmax, == xx                                                                (2) 

In the subdomain )( U nccnc ΩΩ=ΩΩ  contact pressure is not controlled and does not exceed the 

values specified by (1), so that 

                                 ncppc Ω∈≥−= xxxx 0)()()( maxχ                                                            (3) 

 
Let us introduce the functions depending on s 
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Here some of the parameters f2, f3, Li, i = 1, 2, 3, 4 are fixed while the others are determined in the 
optimization process. It is assumed that the pressure distribution now is  ( ) ( )tcscc ~)( ⋅=x , 

where we set ( ) 1~ =tc  in view of one parameter variation of contact pressure. Let us note that for 

,,0, 432132 LLLLLff =====  we obtain the uniform pressure distribution over cΩ . An 

extensive study of contact optimization problems was presented in [5] for 2D and 3D problems 
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using the control functions of type (4) - (5). The discretization of the contacting bodies was 
performed by the p-version of finite elements [6] assuring fast convergence of the numerical 
process and accurate specification of geometry for shape optimization.  
 
 

2 Optimization problems for axisymmetric bodies with arbitrary meridian profile 

 

2.1 Load induced by displacement  

 

Assume the uniform vertical displacement 0w  to be prescribed on the top punch surface. The 

pressure distribution parameters 4,...,1,,, 32 =jLff j  are assumed as fixed but the maximum 

pressure is subject to control. The minimal gap ming is assumed to be zero. The following 

optimization problems can be formulated 

 

P1: Minimize the maximal contact pressure max,np  by determining the initial gap function 

( )sgg = , such that ( ) 0min ==∗ gsg , where 0=s  at 
 
the internal punch radius ir , thus 

 
{

}0min

,0)()()(,0),(,0min

min

max.
)1()2()(

max,

==

=−==−+==≥

gg

sppscsuugusddpp nnnnnnn χα

             (6) 

         
 

After determining the optimal gap function ( )sgg = , the resultant contact force can be calculated 

by the formula  

   ( )∫ +=
∗

e

i

r

r

mnp drfrpF
2'1cos2 απ                 (7) 

 

where er  denotes the external punch radius, α  is the direction of the contact normal, 

)(rff mm =  the meridian curve, drdff mm /'
= . 

Assume now that the minimal gap ming  does not vanish but its value is determined in the 

optimization process. The value of force pF  transmitted by the contact area is now specified, so 

we have  

 

P2:  ( )( ) ( )












+====≥ ∫
e

i

r

r

mnpnnn drfrpFusddpp
2'

max, 1cos2,0,0,,0min απχα               (8)

    

When the constraint on effective stress eσ  is introduced, the value of pF  cannot be selected 

arbitrarily and its maximum value will constitute an unspecified variable. The problem of 

maximization of contact force can be formulated as follows 

 

P3:  [ ]{ }uennp dppF σσχ ≤==≥ ,0,0,0minmax max,                 (9) 

 

where uσ is the ultimate stress. 

An alternative design can be considered when the punch displacement 0w  is maximized with the 

imposed stress constraint ue σσ ≤  and the gap constraint 0min =g , thus 

 

P4:  [ ]{ }uenn gdppw σσχ ≤===≥ ,0,0,0,0minmax minmax,0 .             (10) 
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2.2 Load induced by traction: 

 

Assume the uniform axial pressure pz
~−=σ  which will be applied at the top punch surface with 

the resulting force ( ) prrF ie
~22

0 −= π . The typical optimization problem is to minimize the maximal 

contact pressure with specification of the initial gap function ( )sgg =  and proper selection of 

parameters 321 ,, LLL  and 4L . When these parameters are varied and are determined in the 

optimization process, then 
ie rrLLLL −==== 4321 ,0  are the optimal values and the uniform 

pressure distribution is attained in the contact domain. We have the problem formulation  

 

P5:  { }0,0,0,0min minmax ===≥ gdpp
n

χ                (11) 

 

There are numerous solutions of this problem in the literature, cf. [7-9]. 

 

2.3 Mixed boundary conditions 

 

Assume now that the punch rotates with respect to its axis with the angular velocity ω , 

and the uniform vertical traction pz
~−=σ  is applied it its top boundary. Consider the problem of 

torque maximization assuming the parameters 21 and LL  as unspecified and 43 , LL  as fixed. We 

have then  

P6: 
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Where µ  is the friction coefficient, 0p  is a given value. It is obvious that the contact pressure is 

shifted to the external boundary err = . A similar solution is obtained when the additional stress 

constraint is introduced and the value of max,np cannot be fixed in advance. The solution is 

generated by maximizing the value of 1L  and the problem formulation is 

 

P7:  ( ){ }0,,0,,,0,0,0max min10
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 Denote the angular punch velocity by ω , by 
nτ  the shear stress, by τu&  the relative velocity and 

specify the dissipation power due to frictional sliding at the contact surface  

( ) ωαπµωτ T
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In order to minimize the dissipation power or torque, assume that 0,0 21 == LL and 34 LL −  are 

fixed, however 4L  and 3L  may vary. The optimization problem now is formulated as follows 

P8:  ( ){ }0,0,,,0,0,0min min40
),( 4

====−=≥ gLpsFFdpD npnF
Lsg

χχ             (15) 
 

 
When the stress constraint ue σσ ≤  is set, then the dissipation power is minimized with respect to 

the parameter 4L , thus  
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3 Optimization problems for steady wear state 

The relative sliding motion of two elastic bodies in contact induces wear process and contact shape 
evolution. The transient process tends to a steady state occurring at fixed contact stress and strain 
distribution. This state corresponds to minimum of the wear dissipation power. Using the Archard 
wear rule, the optimization problem is  

P10: { }punchforequationsmEquilibriudpD nw ,0,0min =≥              (17) 

where 
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wt &  wear dissipation power, c

it  is the contact traction, iw& is the 

wear rate vector of the i-th body [10]. From the problem P10 formula for distribution of the 
contact pressure can be derived directly. Also interesting result, that at the heat generation the 
contact pressure does not depend on the temperature. However, the wear shape is totally different 
[11]. 

4 Remarks 

The lecture will demonstrate many examples for above problems, also examples for round-off 
rollers in order to reach the maximum loadability of rolling bearings.  
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A Nash Genetic Algorithm for the Fully 
Stressed Design Problem in Structural 
Engineering Optimization 

 Jacques Périaux* and David Greiner**1 

Abstract In this lecture we solve the fully stressed design problem in structural 
engineering using a game-theory based Nash – Genetic algorithm (Nash-GAs). 
The procedure performance is analyzed on different set of variable splitting of the 
problem in a fifty-five bar sized test case of discrete real cross-section types bar 
structure and compared also with the standard panmictic genetic algorithm. Re-
sults indicate that a significant increase of performance can be achieved using the 
proposed hybridized Nash game and Evolutionary Algorithm method. 

1 Introduction 

Among the tools focused to enhance the efficiency of population based global me-
ta-heuristics as optimizers in real world and complex engineering design prob-
lems, parallelization and use of game-theory based algorithms have been high-
lighted in fields like aeronautical engineering (e.g. [4][5][6][7][11]). Recently, 
also the engineering application use of Nash - Genetic Algorithms [12] have been 
widespread also in structural engineering for solving the reconstruction inverse 
problem successfully with improved performance in [1][2].  In this paper, we in-
troduce their use to speed up solving the fully stressed design problem in structur-
al engineering. 
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2 Nash – Genetic Algorithms 

Nash – Genetic algorithms were introduced in the late 90’ (Sefrioui et al., 
2000)[12] for solving computational fluid dynamics problems. They are based in 
hybridizing the mathematical concepts of Nash equilibrium [9][10] in the evolu-
tionary search, where a set of subpopulations co-evolve simultaneously each of 
which deals only with a partition of the search variables. These subpopulations in-
teract to evolve towards the “Nash equilibrium”. This approach has been success-
fully applied in aeronautical inverse problems where the fitness function is a sum 
of separable terms. 

3 The structural problem 

The fully stressed design problem is handled here. The objective is to obtain the 
structure which most fits the maximum stresses of reference; when defined as the 
material admissible stress, the problem is the fully stressed design (FSD) problem 
(e.g. [8] in frame structures). The optimum structural bar design is defined as a de-
sign in which some location of every bar member in the structure has a maximum 
stress value as accurately equal as the maximum stress of reference for that bar. 

  


 
Nbars

i
RiMAXiMAXMinFunctionFitness

1

2)(   (1) 

where σMAX-i is the maximum calculated stress and σMAX-Ri the maximum stress of 
reference, both corresponding to bar i. A value of zero of the fitness function (1) 
means a perfect fit in maximum stresses between our searched solution and the so-
lution of reference. 

4 Test Case Definition 

The structural frame test case used is introduced to solve an real engineering de-
sign with discrete cross-section type in [3], as well as solved for the reconstruction 
inverse problem in [1]. 
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 5 Results and Discussion 

A comparison between the Nash genetic algorithm and the standard panmictic ge-
netic algorithm is performed. Different cases including various split territories 
among Nash players are presented and analyzed through statistical metrics, includ-
ing average, best and standard deviation among a set of independent algorithms 
executions.  

6 Conclusions 

The performance of Nash genetic algorithms in the fully stressed design problem 
of structural engineering has been tested in a fifty-five bar sized frame test case 
showing a remarkable increased speed-up when compared with the standard 
panmictic genetic algorithm. 
The numerical experiments illustrate the potential of the hybridized Nash and 
Evolutionary Algorithms methodology. This approach can be easily extended to 
the Nash hybridization with other stochastic optimizers and also in the context of 
multidisciplinary design optimization problems [11]. 
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Proximal Bundle Method for Nonsmooth and
Nonconvex Multiobjective Optimization

Marko M. Mäkelä, Napsu Karmitsa and Outi Wilppu

Abstract We present a proximal bundle method for finding weakly Pareto optimal
solutions to constrained nonsmooth programming problems with multible objec-
tives. The method is a generalization of proximal bundle approach for single objec-
tive optimization. The multiple objective functions are treated individually without
employing any scalarization. The method is globally convergent and capable of han-
dling several nonconvex locally Lipschitz continuous objective functions subject to
nonlinear (possibly nondifferentiable) constraints. Under some generalized convex-
ity assumptions, we prove that the method finds globally weakly Pareto optimal
solutions. Concluding, some numerical examples illustrate the properties and appli-
cability of the method.

1 Introduction

Nonsmooth (nondifferentiable) optimization problems arise in very many fields of
applications, for example, in optimal shape design (see, e.g., [1, 2, 5]), economics
[10] and mechanics [9]. On the other hand, instead of one criterion the applications
typically have several, often conflicting objectives [7, 11]. Thus there exists an in-
creasing demand to be able to solve efficiently optimization problems with several,
possible nonsmooth, objective functions.

In this paper we present a proximal bundle based method for constrained non-
convex nonsmooth programming problems with multible objectives. The method
generalizes the proximal bundle approach for single objective optimization [4] by
employing the ideas presented in [3, 8, 12]. We can prove, that under some general-
ized convexity assumptions [6] the method can find globally weakly Pareto optimal
solutions. Unlike the most multicriteria optimization methods the multiple objective
functions are treated individually without employing any scalarization.
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University of Turku, Department of Mathematics and Statistics, FI-20014 Turku, Finland e-mail:
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2 Preliminaries

Let us consider a nonsmooth multiobjective optimization problem of the form{
minimize { f1(x), . . . , fk(x)}
subject to x ∈ S = {x ∈ Rn | g j(x)≤ 0, j = 1, . . . ,m},

(1)

the objective functions fi :Rn →R and the constraint functions g j :Rn →R are sup-
posed to be locally Lipschitz continuous (not necessarily smooth nor convex). For a
locally Lipschitz continuous function f : Rn →R the Clarke generalized directional
derivative at x in the direction d ∈ Rn is defined by

f ◦(x;d) = limsup
y→x
t↓0

f (y+ td)− f (y)
t

and the Clarke subdifferential of at x by

∂ f (x) = {ξ ∈ Rn | f ◦(x;d)≥ ξ T d for all d ∈ Rn}.

A function f : Rn → R is f ◦-pseudoconvex, if it is locally Lipschitz continuous and
for all x,y ∈ Rn

f (y)< f (x) implies f ◦(x;y− x)< 0

and f ◦-quasiconvex, if

f (y)≤ f (x) implies f ◦(x;y− x)≤ 0.

A vector x∗ is said to be a global Pareto optimum of (1), if there does not exist
x ∈ S such, that fi(x) ≤ fi(x∗) for all i = 1, . . . ,k and f j(x) < f j(x∗) for some j.
Vector x∗ is said to be a global weak Pareto optimum of (1), if there does not exist
x ∈ S such, that fi(x)< fi(x∗) for all i = 1, . . . ,k. Vector x∗ is a local (weak) Pareto
optimum of (1), if there exists δ > 0 such, that x∗ is a global (weak) Pareto optimum
on B(x∗;δ )∩S. Trivially every Pareto optimal point is weakly Pareto optimal.

The contingent cone and polar cone of set S ∈ Rn at point x are defined respec-
tively as

KS(x) = {d ∈ Rn | there exist ti ↓ 0 and di → d with x+ tidi ∈ S}
S≤ = {d ∈ Rn | sT d ≤ 0, for all s ∈ S}.

Let us denote

F(x) =
k∪

i=1

∂ fi(x)

and
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G(x) =
∪

i∈I(x)

∂gi(x), where I(x) = {i | gi(x) = 0}.

Now we can present the following generalized KKT optimality conditions.

Theorem 1. If x∗ is a local weak Pareto optimum of (1) and G≤(x)⊆ KS(x), then

0 ∈ convF(x∗)+ clconeG(x∗). (2)

Moreover, if fi are f ◦-pseudoconvex for all i = 1, . . . ,k and g j are f ◦-quasiconvex
for all j = 1, . . . ,m, then the condition (2) is sufficient for x∗ to be a global weak
Pareto optimum of (1).

3 Multiobjective Proximal Bundle Method

Next we briefly sketch the multiobjective proximal bundle method. Let us first con-
sider an improvement function H : Rn ×Rn → R defined by

H(x,y) = max{ fi(x)− fi(y), g j(x) | i = 1, . . . ,k, j = 1, . . . ,m}.

Now we obtain the following connection between the improvement function and the
problem (1).

Theorem 2. A necessary condition for x∗ ∈ Rn to be a local weak Pareto optimum
of (1) is that

x∗ = argminx∈Rn H(x,x∗).

Let xh be the current approximation to the solution of (1) at the iteration h. Then,
by Theorem 2, we seek for the search direction dh as a solution of{

minimize H(xh +d,xh)

subject to d ∈ Rn.
(3)

Since (3) is still a nonsmooth problem, we must approximate it somehow. Let us
assume for a moment that the problem is convex. We suppose that, at the iteration h
besides the current iteration point xh, we have some auxiliary points y j ∈Rn from the
past iterations and subgradients ξ j

fi
∈ ∂ fi(y j) for j ∈ Jh = {1, . . . ,h}, i= 1, . . . ,k, and

ξ j
gl ∈ ∂gl(y j) for j ∈ Jh, l = 1, . . . ,m. We linearize the objective and the constraint

functions at the point y j by

f̄i, j(x) = fi(y j)+(ξ j
fi
)T (x− y j) for all i = 1, . . . ,k, j ∈ Jh, and

ḡl, j(x) = gl(y j)+(ξ j
gl
)T (x− y j) for all l = 1, . . . ,m, j ∈ Jh.

Now we can define a convex piecewise linear approximation to the improvement
function by
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Ĥh(x) = max{ f̄i, j(x)− fi(xh), ḡl, j(x) | i = 1, . . . ,k, l = 1, . . . ,m, j ∈ Jh}

and we get an approximation to (3) by{
minimize Ĥh(xh +d)+ 1

2 uh∥d∥2

subject to d ∈ Rn,
(4)

where uh > 0 is some weighting parameter. The penalty term 1
2 uh∥d∥2 is added to

guarantee that there exists a solution to (4) and to keep the approximation local
enough.

We use the line search algorithm of [5] to produce the step-sizes. The iteration is
terminated when − 1

2 vh < εs, where εs > 0 is an accuracy parameter supplied by the
user. The subgradient aggregation strategy due to [3] is used to bound the storage
requirements (i.e., the size of the index set Jh) and a modification of the weight
updating algorithm of [4] is used to update the weight uh.

The efficiency and the reliability of the method is shown by some numerical
experiments.
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Handling Computationally Expensive
Multi-objective Optimization Problems Using
Evolutionary Algorithms: A Survey

Tinkle Chugh

Abstract Many industrial optimization problems deal with more than one objec-
tive to be optimized and these problems are known as multi-objective optimization
problems. If objective and/or constraint function evaluations are time-consuming,
these problems are known as computationally expensive multi-objective optimiza-
tion problems. There are various methods to solve multi-objective optimization
problems [3] but population-based evolutionary algorithms [1, 2] are widely used
because they have inherent search capabilities and do not set assumptions like con-
vexity or differentiability on the functions involved. Despite of these advantages,
evolutionary algorithms do repetitive function evaluations which increase the com-
putational time to get one solution. Simulator-based optimization involving e.g. fi-
nite element methods or computational fluid dynamics may take a long time for one
function evaluation and the need of repeated function evaluations increases the com-
putational cost further. Using evolutionary algorithms to computationally expensive
problems make them less amenable for real-world applications. It is therefore re-
quired to adapt these algorithms in a way that solutions can be found in less compu-
tational time without too much loss in the solution quality.
There are various evolutionary methods adapted in the literature to handle computa-
tionally expensive problems, but it is difficult to find a correlation between methods
and application used, in other words, which methods would be most suitable for
various applications. In this paper, a survey is presented of various evolutionary
methods which are adapted to handle computationally expensive multi-objective
optimization problems. In addition to that, advantages and disadvantages of these
methods are also discussed. To give the reader a good understanding of the usage
of these methods, correlation is also considered between methods used and appli-
cations considered. This survey is also a foundation for method development in the
future to handle computationally expensive problems.
A multi-objective optimization problem in a general form can be defined as follows
[3]:

minimize { f1(x), ..., fk(x)}
subject to x ∈ S
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There are k(≥ 2) objective functions fi(x) : S→ℜ. The vector of objective functions
is denoted by f(x)=(f1(x),. . . ,fk(x))T . The (nonempty) feasible region (set) S consists
of decision variable vectors x=(x1,. . . ,xn)

T and is a subset of the decision variable
space ℜn and formed using constraint functions. As objective functions in a multi-
objective optimization problem are typically conflicting in nature, there is no single
well-defined optimal solution but a set of so-called Pareto optimal solutions [3] can
be identified. A decision vector x∗∈ S is Pareto optimal if there does not exist another
decision vector x ∈ S such that fi(x)≤ fi(x∗) for all i=1,. . .,k and f j(x)≤ f j(x∗) for at
least one index j. Evolutionary multi-objective optimization method aim at finding
a representative set of Pareto optimal solutions and this is referred to as solving the
multi-objective optimization problem here. However, evolutionary multi-objective
optimization methods cannot typically guarantee Pareto optimality but deal with
sets of nondominated solutions where none of the solutions in the set considered
has better objective function values in all components than in others.
As discussed, the main cause of computational burden is the need of repetitive
function evaluations for different candidate solutions when using evolutionary al-
gorithms. The number of function evaluations cannot be reduced by decreasing
the population size considered, as this may reduce the efficiency of these algo-
rithms. In this survey, evolutionary approaches and algorithms are discussed which
have been adapted to handle computationally expensive multi-objective optimiza-
tion problems. Here we do not consider parallel computing which is also used in the
literature [6] to reduce the computation time.
Computational burden can be decreased by utilizing approximations in which the
computationally expensive element of the problem or the algorithm is replaced by
a simpler or a faster element which demands less computation time. Approxima-
tions can be applied at three levels: 1. problem approximation, 2. function approx-
imation and 3. fitness approximation. In problem approximation, the original prob-
lem is replaced by a simpler problem which is faster to solve [7], e.g. replacing 3-
dimensional Navier-Stokes equations by 2-dimensional Euler’s equations to reduce
the computational complexity of the problem. In function approximation, which
is the most common approximation-based methodology, a metamodel or a surro-
gate function is created to replace the computationally expensive function. In other
words, an explicit or an implicit approximation of the original function is formed
which is faster to solve [8, 4]. Neural networks [8], radial basis functions [6] and
Kriging [9, 10] are some examples of common metamodelling techniques, which
are used to replace the original function. An important question is which metamod-
elling technique should be used for a particular application. A rule of thumb is also
presented in the present survey to use different metamodels for different kinds of
applications. In fitness approximation, the fitness value of a solution is derived from
the fitness value of the existing evaluated solutions in its vicinity. Fitness inheri-
tance and fitness imitation are common ways to use fitness approximation. In fitness
inheritance [4], the fitness value of offspring solutions can be calculated from fit-
ness value of the parents. In fitness imitation [5], solutions are clustered into several
groups and only those solutions will be evaluated which represent the cluster.
In addition to classifications and subclassifications of various approaches, their ad-
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vantages and disadvantages are also discussed. Moreover, various related issues
such as dimensionality of problems and comparison of different methods are also
considered. It is also studied which methods deem suitable for various applications.
This paper not only gives the reader an understanding about various methods to
reduce computational burden but also further understanding about connections be-
tween methods used, problem dimensionality characteristics of applications.
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A Survey on Handling Computationally
Expensive Multi-Objective Optimization

S. Mohammad M. Tabatabaei

Abstract In real-world optimization problems, a need to simultaneously optimize
several conflicting objective functions often arises [1]. Such problems are called
multi-objective optimization problems. The standard form of a multi-objective op-
timization problem is:

minimize x∈S{ f1(x), . . . , fk(x)}, (1)

where there are k(≥ 2) objective functions fi : S→R. The vector of objective func-
tions is denoted by f(x) = ( f1(x), . . . , fk(x))T . The (nonempty) feasible region (set)
S consists of the decision variable vectors x = (x1, . . . ,xn)

T . The set S is a subset
of the decision variable space Rn and formed by constraint functions. The image of
the feasible region is called a feasible objective region denoted by Z = f(S) and is
a subset of the objective space Rk. Because of the conflicting nature of the objec-
tive functions, one cannot find a single solution that would be optimal for all the
objectives simultaneously. Therefore, one cannot find a single solution that would
be optimal for all the objectives simultaneously. The optimal solutions of problem
(1) are called Pareto optimal solutions. A decision vector x∗ ∈ S is Pareto optimal
if there does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x∗) for all
i = 1, . . . ,k and f j(x) < f j(x∗) for at least one index j. For a multi-objective op-
timization problem, we typically have several Pareto optimal solutions. The set of
image of the Pareto optimal solutions in the objective space is called the Pareto op-
timal front. Since there exist several Pareto optimal solutions and usually only one
solution is needed for implementation, a decision maker is needed. A DM evalu-
ates the obtained solutions and provides further preference information. It is usually
considered that the main aim of solving a multi-objective optimization problem is
to find a solution that is desirable for a DM [1].

In order to evaluate values of objective and constraint functions in multi-objective
optimization problems, performing simulation and/or experiments such as structural
analysis, computational fluid dynamics, thermodynamic analysis etc. may be re-
quired. Usually, these evaluations are time-consuming and such problems are called
computationally expensive (or costly) multi-objective optimization problems. The
Pareto optimal front of a computationally expensive multi-objective optimization
problem can be non-convex and disconnected. Solving these computationally ex-
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pensive problems can be a challenge and time consuming because generating Pareto
optimal solutions requires many objective function evaluations and the DM should
not have to wait for hours.

There exist several approaches to handle computationally expensive problems.
One approach is to construct a simple computationally inexpensive replacement
problem for the computationally expensive multi-objective optimization problem.
Such a simple problem can be constructed by metamodeling techniques [2, 3], which
is often referred as a surrogate in the literature. Combining a surrogate problem and
an optimization algorithm leads to a surrogate-based multi-objective optimization
algorithm.

Here, we present a literature survey on surrogate-based multi-objective optimiza-
tion algorithms. The focus is on approaches not utilizing nature-inspired algorithms.
Based on the structure of the methods that have been proposed, they are classi-
fied into sampling-based and optimization-based frameworks. In the sampling-based
framework, the computationally expensive multi-objective optimization problem is
optimized without utilizing any optimization algorithm while in the optimization-
based framework, a computationally expensive multi-objective optimization prob-
lem is optimized using an optimization algorithm. The optimization-based frame-
work consists of sequential and adaptive methods. In sequential methods the em-
phasis is on building an accurate surrogate problem before the optimization process,
while in adaptive methods the accuracy of the surrogate problem is improved during
the optimization process.

In the sampling-based framework, the basic idea is optimizing the computation-
ally expensive multi-objective optimization problem and representing the Pareto
optimal front with emphasis on the sampling process. To accomplish this, initial
sample points are selected by some sampling techniques such as Latin Hypercube
Sampling etc. The function values of these initial sample points are evaluated by the
original, computationally expensive functions. Using the evaluated initial sample
points, a surrogate problem is constructed. In order to represent the Pareto optimal
front, a sufficient number of new sample points is required. The process of construct-
ing a representation of the Pareto optimal front can be concluded by either selecting
sample points over the entire objective space [4] or guiding the sampling process to-
wards the Pareto optimal front relying on the surrogate problem [5, 6]. The function
values of these selected sample points are evaluated by the original, computation-
ally expensive functions. Based on a suitable stopping criterion such as convergence
criteria or accuracy measurements, if it is needed, the surrogate problem is updated
by the selected sample points. Otherwise, by comparing the selected sample points
based on the definition of the Pareto optimal solution, the Pareto optimal front is
constructed.

Another framework in this classification is the optimization-based framework.
The essential key in this framework is optimizing the multi-objective optimization
problem by introducing a surrogate problem of the original, computationally expen-
sive multi-objective optimization problem and running the optimization algorithm
over the surrogate problem [3]. Based on how the accuracy of the surrogate prob-
lem is enhanced, this framework includes two types of methods i.e. sequential and
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adaptive methods. In sequential methods the accuracy of the surrogate problem is
boosted before the optimization process [2] whereas in adaptive methods the opti-
mization algorithm improves the accuracy of the surrogate problem [7].

Constructing an accurate surrogate problem is the prerequisite step in sequen-
tial methods. In these methods after selecting initial sample points, the surrogate
problem is built. Then the accuracy of the surrogate problem is evaluated by sta-
tistical measurements such as R2 etc. If the surrogate problem is not sufficiently
accurate, by selecting new sample points the surrogate problem is updated. The sur-
rogate problem can be accurate either near the Pareto optimal front or over the entire
objective space. After obtaining an accurate surrogate problem, the Pareto optimal
front is represented by running the optimization algorithm over the accurate surro-
gate problem. In the literature, there are several procedures to select sample points
for building and updating the surrogate problem which are discussed in this paper.

Other methods in optimization-based framework are adaptive methods. In these
methods in comparison to sequential methods, the accuracy of the surrogate problem
is improved during the optimization process [7]. The essential idea of improving
accuracy of the surrogate problem is selecting sample points in the subregion in the
decision space corresponding to explored and unexplored region in the objective
space. To do this, after selecting initial sample points and building the surrogate
problem, an inexpensive multi-objective optimization problem or a subproblem is
formulated. The optimal solution(s) of the formulated problem which is (or are)
considered as sample point(s) in explored region along with other sample point(s)
in unexplored region are used to update the surrogate problem. In this paper, the
details of formulating the subproblem and selecting sample points addressed in the
literature are discussed.

With respect to the introduced classification, we categorize methods proposed
in the literature. Advantages and disadvantages of the different methods used to
tackle computationally expensive multi-objective optimization problems are pre-
sented. Particularly, we compare the number of objective functions and decision
variables in the computationally expensive multi-objective optimization problem,
noisy black-box functions, handling constraint functions, role of the DM as well
as non-convexity and discontinuity in the Pareto optimal front. Finally, some future
research directions are discussed.
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Verification of Functional A Posteriori Error
Estimates for Obstacle Problem in 2D

Petr Harasim and Jan Valdman

Abstract We verify functional a posteriori error estimates of numerical solutions of
obstacle problem proposed by S. Repin in [2]. Recent 1D results published in [1]
are extended to 2D. Quality of a numerical solution obtained by the finite element
method is compared with the exact solution from a known benchmark and estimated
by a functional majorant. It includes implementation of bilinear approximations and
Raviart-Thomas fluxes of the lowest degree.

1 The obstacle problem and its functional a posteriori error
estimate

We deal with the obstacle problem described by the following minimization prob-
lem: Find u ∈ K satisfying

J(u) = inf
v∈K

J(v), (1)

where the energy functional reads

J(v) :=
1
2

∫
Ω

∇v ·∇vdx−
∫

Ω

f vdx (2)

The admissible convex set K is defined as

K :=
{

v ∈V0 : v(x)≥ φ(x) a.e. in Ω},

where Ω is a bounded domain with Lipschitz continuous boundary, external force
density f ∈ L2(Ω), V0 := H1

0 (Ω) is the standard Sobolev space and an obstacle is
defined by a nonpositive function φ ∈ H1(Ω). It can be shown [2] that an energy
estimate

1
2
‖v−u‖2

E ≤ J(v)− J(u) for all v ∈ K (3)
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and a majorant estimate

J(v)− J(u)≤M (v, f ,φ ;β ,µ,τ∗) for all v ∈ K (4)

hold, where a functional majorant on the right-hand side reads

M (v, f ,φ ;β ,µ,τ∗) :=
1+β

2

∫
Ω

(∇v− τ
∗) · (∇v− τ

∗)dx

+
1
2

(
1+

1
β

)
C2

Ω‖divτ
∗+ f +µ‖2

L2(Ω)+
∫

Ω

µ(v−φ)dx (5)

and a constant CΩ > 0 originates from the Friedrichs inequality
∫

Ω
v2dx≤C2

Ω

∫
Ω
(∇v ·

∇v)dx valid for all v ∈ V0. The majorant estimate (4) holds for any constant
β > 0, any multiplier µ ∈ Λ :=

{
µ ∈ L2(Ω) : µ ≥ 0 a.e. in Ω

}
and any flux τ∗ ∈

H(Ω ,div), where

H(Ω ,div) := {τ∗ ∈ [L2(Ω)]2 : divτ
∗ ∈ L2(Ω)}.

Remark 1. If u has a higher regularity, u ∈V0∩H2(Ω), there exist optimal majorant
parameters τ∗opt = ∇u, µopt =−(∆u+ f ) ∈Λ and βopt→ 0 such that the inequality
in (4) changes to equality (see [1], Remark 2.3. and Lemma 3.4.).

For given solution approximation v, loading f and the obstacle φ , the majorant M
represents a separately convex functional in each of unknown variables β , µ ,τ∗.
Our goal is to find variables βopt > 0, µopt ∈Λ and τ∗opt ∈ H(Ω ,div) such that

M (v, f ,φ ;βopt,µopt,τ
∗
opt) = min

β ,µ,τ∗
M (v, f ,φ ;β ,µ,τ∗).

We use the following successive iterative algorithm for the minimization of the func-
tional majorant:

Algorithm 1 Let k = 0 and let βk > 0 and µk ∈Λ be given. Then:

(i) find τ∗k+1 ∈ H(Ω ,div) such that τ∗k+1 = argmin
τ∗∈H(Ω ,div)

M (v, f ,φ ;βk,µk,τ
∗),

(i) find µk+1 ∈Λ such that µk+1 = argmin
µ∈Λ

M (v, f ,φ ;βk,µ,τ
∗
k+1),

(iii) find βk+1 > 0 such that βk+1 = argmin
β>0

M (v, f ,φ ;β ,µk+1,τ
∗
k+1),

(iv) set k := k+1 and repeat (i)-(iii) until convergence.

2 Numerical experiments for a benchmark with known
analytical solution

This benchmark in taken from [3]. Let us consider a square domain Ω = (−1,1)2

and prescribe the contact radius R ∈ [0,1). For loading
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Fig. 1 Numerical solution v and the obstacle ϕ (left), x-component of the flux τ∗ (middle) and the
multiplier µ (right) obtained by the majorant minimization.

f (x,y) =

{
−16(x2 + y2)+8R2 if

√
x2 + y2 > R

−8(R4 +R2)+8R2(x2 + y2) if
√

x2 + y2 ≤ R,

it can be shown that

u(x,y) =

{(
max{x2 + y2−R2,0}

)2 if (x,y) ∈Ω(
x2 + y2−R2

)2 if (x,y) ∈ ∂Ω

is the exact solution of (1) in case of zero obstacle function φ = 0. The correspond-
ing energy reads

J(u) = 192
(

12
35
− 28R2

45
+

R4

3

)
−32R2

(
28
45
− 4R2

3
+R4

)
+

2
3

πR8.

For testing we choose the case R = 0.7. We consider a numerical approximation
v of the exact solution u in terms of bilinear finite element functions on rectangles.
A flux τ∗ is searched in the space of Raviart-Thomas elements of the lowest degree
and a multiplier µ is sought as a piecewise constant function. Our Matlab imple-
mentation is vectorized by following ideas of [4] to allow for fast computations.
Behaviour of the energy estimate (3) and the majorant estimate (4) obtained by Al-
gorithm 1 and their convergence for various uniform meshes is displayed in Figure
2. More details will be available in the forthcoming full paper.
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Fig. 2 Convergence: Majorant, difference of energies and the half of the squared error (in the
energy norm) versus degrees of freedom (numbers of mesh nodes of considered uniform mesh).
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On control of loading process up to the limit load
in Hencky plasticity

Stanislav Sysala

Abstract The Hencky elastic-perfectly plastic problem is formulated in dependence
on the load parameter denoted as ζ to describe the loading process up to the limit
load. For the discretized problem with the von Mises yield criterion, the parameter α

representing the work of external forces is introduced and mutual relation between
ζ and α is described. The curve describing this relation represents a global material
response and can be used for stable control of the loading process up to the limit
load. It is shown that the relation between ζ and α can be generalized even for
continuous formulation of the problem and for an abstract yield criterion.

1 Introduction

Elastic-perfectly plastic models belong among fundamental nonlinear models by
which yield strength or failure zones in bodies caused by applied forces can be
initially estimated. In this contribution, the Hencky model is considered. The corre-
sponding problem is static one for some prescribed load. From mechanical point of
view, limit analysis related to this problem is usually investigated. For more details,
see e.g. [6] .

Let us consider a 3D body which is represented by bounded domain Ω ⊆ R3

with Lipschitz boundary. The boundary is decomposed as follows: ∂Ω = Γ u∪Γ f ,
where Γu, Γf are open and mutually disjoint. We shall suppose that Γu 6= /0 and the
body is fixed there. Surface tractions of density f are applied on Γf . Finally, Ω is
subject to a body force of density F .

To formulate the variational problem in terms of stresses and displacements, we
introduce the following notation:

S =
{

τ = (τi j)
3
i, j=1 : Ω → R3×3

sym | τi j ∈ L2(Ω) ∀i, j
}
,

V=
{

v ∈
(
H1(Ω)

)3 | v = 0 on Γu

}
,

ΛL = {τ ∈ S | 〈τ,ε(v)〉= L(v) ∀v ∈ V} , L(v) :=
∫

Ω

F ·vdx+
∫

Γf

f ·vds,

P = {τ ∈ S | Φ(τ(x))≤ γ for a. a. x ∈Ω} , γ > 0,
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1



2 Stanislav Sysala

where Φ : R3×3
sym → R1

+ is a continuous, convex yield function on R3×3
sym such that

Φ(0) = 0. The notation 〈., .〉 denotes the standard scalar product on S.
The dual formulation (in terms of stresses) of our problem reads as follows:

(P∗)

{
find σ ∈ΛL∩P : S (σ)≤S (τ), τ ∈ΛL∩P, where

S (τ) = 1
2‖τ‖

2
E , τ ∈ S, ‖τ‖E := 〈C−1τ,τ〉.

Here, C = (ci jkl)
3
i, j,k,l=1 is the fourth order symmetric elasticity tensor of a general-

ized Hooke’s law. Problem (P∗) has a unique solution σ if and only if ΛL∩P 6= /0.
The primal formulation (in terms of displacements) of the problem can be for-

mally written as follows:

(P)

{
find u ∈ V : J(u)≤ J(v), v ∈ V, where

J(v) :=Ψ(ε(v))−L(v), v ∈ V.

Here,

Ψ(e) := sup
τ∈P

{
〈τ,e〉− 1

2
‖τ‖2

E

}
=−1

2
‖Σ(e)‖2

E + 〈e,Σ(e)〉 ∀e ∈ S.

where Σ : S→ S is the Fréchet derivative to Ψ representing the stress-strain relation,
i.e., if a solution u of (P) exists, then σ = Σ(ε(u)) is the corresponding solution to
(P∗). It is well-known that existence of the solution to (P) cannot be studied on
Sobolev spaces, i.e., on V , since the functional Ψ has only a linear growth at infinity.
On the other hand, it holds

inf
v∈V

J(v) = sup
τ∈ΛL∩P

{−S (τ)}.

To decide about validity ΛL∩P 6= /0, the load parameter denoted as ζ is usually in-
troduced. In particular, instead of the fixed load L, the load ζ L, ζ ≥ 0, is considered
and related primal and dual problems are denoted as (P)ζ , (P∗)ζ , respectively.
From mechanical point of view, it is useful to introduce the limit load parameter:

ζlim := sup{ζ ≥ 0 |Λζ L∩P 6= /0}.

Then it holds
Λζ L∩P 6= /0 ∀ζ ≤ ζlim, ζ ∈ R+.

Numerical methods for solving the problem of limit analysis are introduced e.g. in
[1, 3]. In engineering, there is widely used a direct enlarging of ζ to estimate ζlim.
In the next sections, a stable way of control of the loading process up to the limit
load will be introduced.
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2 Discretized problem for the von Mises criterion

In this section, some results introduced in [5, 2] are summarized and simplified for
the classical boundary conditions.

The von Mises yield criterion is defined by Φ(τ) =
√

τD : τD, where τD is the
deviatorical part of τ ∈ R3×3

sym . The problem is discretized by the standard finite el-
ement method. In particular, V and S are approximated by continuous, piecewise
linear functions, and picewise constant functions, respectively. The corresponding
approximated spaces and sets are denoted Vh, Sh, Ph, and Λ h

ζ L, respectively.
The discretized primal and dual problems denoted as (P)h,ζ , (P∗)h,ζ , respec-

tively, have the same structure as their continuous counterparts. Let

ζlim := ζlim(h) = sup{ζ ≥ 0 |Λ h
ζ L∩Ph 6= /0}.

Then (P∗)h,ζ has a unique solution for any ζ ≤ ζlim and the solution set to (P)h,ζ
is nonempty and bounded if and only if ζ < ζlim. For ζ > ζlim, problems (P)h,ζ
and (P∗)h,ζ do not have any solution. For ζ < ζlim, uniqueness of the solution to
(P)h,ζ is expected, however not proven yet.

For better description of global material response, a parameter represented the
work of external forces has been proposed. It is denoted as α and the mapping
ζ 7→ α is defined as follows: α := L(uζ ), where uζ is a solution to (P)h,ζ . Notice
that this mapping is not singlevalued, in general. On the other hand, if L 6= 0, then
the following properties hold:

1. Let 0 ≤ ζ1 < ζ2 ≤ ζlim and (P)h,ζ2
has a solution. Then L(uζ1

) < L(uζ2
) for

any uζi solving (P)h,ζi , i = 1,2.
2. For any α ≥ 0 there exist: a unique ζ := ζ (α) ∈ [0,ζlim] and uζ solving (P)h,ζ

such that L(uζ ) = α . If α > 0 then ζ > 0.
3. If α →+∞ then ζ (α)→ ζlim.
4. The function α 7→ ζ (α) is linear for sufficiently small α (elastic branch).
5. The function α 7→ ζ (α) is continuous and nondecreasing in R+.

Thus the parameter α representing the work of the external forces is more sensitive
for controlling the loading process than ζ . To control the loading process through
α , the following problem for fixed α has been introduced:

(P)α
h

{
find uα ∈ Vα

h : Ψ(ε(uα))≤Ψ(ε(v)) ∀v ∈ Kα
h , where

Vα
h := {v ∈ Vh | L(v) = α}.

Problem (P)α
h has a solution for any α ≥ 0. In addition, the function α 7→ ζ (α)

satisfies
ζ (α) =

1
α
〈Σ(ε(uα)),ε(uα)〉 (1)

and does not depend on the choice of uα solving (P)α
h . Therefore, the solution set

of (P)α
h is a nonempty subset of the solution set of (P)h,ζ (α).
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3 Generalization of the loading path on continuous problem

It is natural to ask whether the curve between ζ and α can be generalized on the
continuous problem and the abstract yield function Φ or nor. In [4], there was rec-
ommended to describe the relation between ζ and α in terms of stresses.

Notice that one can formally write continuous problem (P)α by simple omitting
the index h in the formulation of (P)α

h . The dual problem to (P)α has the following
form for any α ≥ 0:

(P∗)α


find σα = argmin

τ∈P∩Λ̃L
{S (τ)−ω(τ)α}, where

Λ̃L := {τ ∈ S | ∃ω ≥ 0 : τ ∈ΛωL},
ω(τ) := sup{ω ≥ 0 | τ ∈ΛωL}.

Notice that ω = ω(τ) is a concave function on S, Λ̃L is a convex set and 0 ∈ P∩Λ̃L.
Therefore (P∗)α has a unique solution for any α ≥ 0. In addition, the function
α 7→ ζ (α) satisfies ζ (α) = ω(σα) and has the properties introduced in Section 2.
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Variational approach to modelling and
optimization in elastic structure dynamics

Georgy Kostin, Vasily Saurin

Abstract A variational statement of initial-boundary value problems is presented
for elastic structure motions. In this formulation the constitutive relations are given
in an integral form. A numerical procedure is developed to solve direct and inverse
dynamic problems based on the Ritz method and FEM. The efficiency of explicit
error estimates in the approach is demonstrated on an example of controlled motions
of a thin rectilinear elastic rod. Its optimal longitudinal displacement at a terminal
state with the minimal mean energy is studied by taking into account modelling and
control errors in the control strategy. The obtained numerical results are analyzed
and discussed.

1 Introduction

The method of integro-differential relations is applied to generalize initial-boundary
value problems in linear elasticity [1]. Controlled motions of elastic systems are
studied. The main idea of the method is that the constitutive laws (stress–strain
and momentum–velocity relations) are specified by an integral equality instead of
their local forms. The modified weak formulation is reduced to minimization of
a nonnegative energy error functional over admissible displacement, momentum,
and stress fields under equilibrium, kinematic, initial, and boundary constraints. A
numerical algorithm is developed to solve direct and inverse dynamic problems in
elasticity based on the Ritz method and the finite element technique with spline
approximations of the unknown functions in the space-time domain.
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2 Georgy Kostin, Vasily Saurin

2 Statement of the problem

Longitudinal displacements of a thin rectilinear elastic rod are considered. In the
Lagrange coordinate system, one end of the rod atx = 0 can move in accordance
with some control lawu(t) whereas the other end atx = L is free of load [2]. No
external distributed forces is supposed. Small vibrations of the elastic rod can be
describe by the linear equations

{t,x} ∈Ω = (0,T)×(0,L) : pt = sx, η , ρ(x)wt− p= 0, ξ , κ(x)wx−s= 0 (1)

with the initial and boundary conditions

t = 0 : p= p0(x), w= w0(x); x= 0 : w= w0(0)+u(t); x= l : s= 0; u(0) =0. (2)

Here,t = T defines the time interval,ρ is the rod linear density,κ is its stiffness.
The linear momentum densityp(t,x), the normal force in the cross sections(t,x),
and the displacementsw(t,x) are unknown functions. By definition,η andξ are the
constitutive functions, the initial distributionsp0 andw0 are given.

3 Variational approach to control optimization

A variational approach is applied to solve the PDF system (1)–(2). The law of mo-
mentum balance, i.e. first equation in (1), will hold automatically if the auxiliary
functions, kinematic ˜w(t,x) as well as dynamic ˜r(t,x), are introduced such that

p = r̃x(t,x)+ p0(x), s= r̃t(t,x), w = w̃(t,x)+w0(x). (3)

The initial and boundary conditions for the variables ˜r andw̃ are given by

t = 0 : w̃ = 0, r̃ = 0; x = 0 : w̃ = u(t); x = 1 : r̃ = 0. (4)

Let us state the initial-boundary value problem (1)–(2) in the variational form:
find such functions ˜r∗(t,x), w̃∗(t,x) that

Φ [r̃∗, w̃∗] = min
r̃,w̃

Φ [r̃, w̃] = 0, Φ =
∫

Ω

ϕ dΩ ≥ 0, ϕ =
η2

2ρ
+

ξ 2

2κ
≥ 0, (5)

subject to the constraints (4). To solve the minimization problem (3)–(5), piecewise
polynomial approximations with respect to the time and space coordinatest,x are
used. For the triangulation ofΩ shown in Fig. 1, these approximations are

r̃ ∈ {r̃(t,x) : r̃ = ∑K
k+l=0 r(kl)

jmnt
kxl , {t,x} ∈ ∆ jmn}∩C0,

w̃∈ {w̃(t,x) : w̃ = ∑K
k+l=0w(kl)

jmnt
kxl , {t,x} ∈ ∆ jmn}∩C0.

(6)
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Here,∆ jmn are triangle elements of the mesh with the nodes{nT/N,mL/M} ∈ Ω̄

and{(n+ 1
2)T/N,(m+ 1

2)L/M} ∈Ω , j = 1, . . . ,4, m= 1, . . . ,M, n = 1, . . . ,N.

Fig. 1 Triangulation of the domainΩ . Fig. 2 Relative error∆ vs.Ny.

According to (4) and (6), the controlu(t) = w̃(t,0) is piecewise polynomial. Let
u = [u1, . . .uKN]T ∈RNu be the vector of control parameters. One component ofu is
used to meet a terminal condition given below. The control goal is to move the rod
end in the fixed timeT to the final positionwT and minimize the energy functional

ET(u)→min
u

, w(T,0) = wT ; ET = Ē + γ1E1 + γ2E2, γ1,2 ≥ 0;

Ē = T−1
∫ T

0
E(t)dt, E1 = E(T), E2 = T−1

Φ , E(t) =
1
2

∫ L

0

(
p2

ρ
+

s2

κ

)
dx.

Here,Ē is the mean energy stored in the rod,E1 is the terminal energy of the sys-
tem,E2 is the integral error of approximate solution in the energy norm;γ1,2 are the
weighting factors to regulate the values ofE1 andE2. Finally, the optimal control
vectoru∗ as well as the corresponding functionu∗(t) = u(t,u∗), the approximation
of displacementsw∗(t,x) = w(t,x,u∗), momentum densityp∗(t,x) = p(t,x,u∗), and
normal forcess∗(t,x) = s(t,x,u∗) is found in accordance with the algorithm de-
scribed in [1].

4 Numerical simulation and solution quality estimates

Let us choose the dimensionless parameters of the systemρ = κ = L = 1, initial
functions p0 = w0 = 0, and the control parametersT = 4, wT = 1, γ1 = 2, γ1 =
0.2. The algebraic order of the approximating system isNy = 4MNK2. For the test
control functionu0 = 3t2T−2−2t3T−3, the relative integral error∆ = E2Ē−1 versus
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the orderNy is presented in Fig. 2 by solid and dashed lines respectively for the
fixed polynomial orderK = 3 (M = N = 1÷7, h-convergence) and for the minimal
triangulationM = N = 1 (K = 3÷7, p-convergence). The accuracy of the numerical
solution grows up fast while the system dimension increases.

The optimal control as a piecewise polynomial function is found for the given
approximation parametersM = N = 5, K = 5 (Ny = 2500,Nu = 24). The optimal
displacements of the rod pointsw∗ as a function of the timet and coordinatex are
shown in Fig. 3. The distribution of local energy errorϕ(t,x) is depicted in Fig. 4.
This function is close to zero everywhere in the time-space domainΩ except a
narrow area near controlled rod endx = 0, what does not affect much the overall
level of solution quality. By using the obtained control law, the value of terminal
energyE1 = 8.3·10−4 is attained small as compared with the average energy stored
by the rodĒ = 0.0716 during the control process. The relative error obtained for
the optimal control, does not exceed∆ = 1.8 ·10−3. The weighting coefficients are
chosen so that the inequalityE2 � E1 � Ē holds.

Fig. 3 Optimal rod displacements. Fig. 4 Linear density of energy error.
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Incompletely known coefficients in elliptic PDE:
primal, dual and mixed setting

O. Mali and S. Repin

Abstract The paper is concerned with analysis of elliptic boundary value problems
which coefficients are not known exactly. We deduce guaranteed two-sided bounds
of the accuracy limit generated by uncertain data. The quantities of interests are
the primal solution, dual solution and the respective pair. The bounds can be used in
cooperation with various numerical methods in order to obtain a reasonable stopping
criteria for adaptive methods.
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On a posteriori error bounds for approximation
of the Oseen problem generated by the Uzawa
algorithm

M. Nokka and S. Repin

Abstract we derive computable bounds of deviations from the exact solution of
the stationary Oseen problem. They are applied to approximations generated by the
Uzawa iteration method. Numerical results confirm theoretical results.

Description

Our reseach is concerned with a posteriori estimates for the Oseen problem. Let Ω ⊂
Rd (d = 2,3) be a bounded connected domain with Lipschitz continuous boundary
∂Ω . We consider the classical Oseen problem: Find a velocity field u ∈ S0(Ω)+uD
and a pressure function p ∈ L̃2(Ω), which satisfy the relations

−Div(ν∇u)+Div(a⊗u) = f −∇p in Ω , (1)
divu = 0 in Ω , (2)

u = uD on ∂Ω , (3)

where a, uD, and f are given vector valued functions. It is assumed that uD is a
solenoidal field, ∫

∂Ω

uD ·ndx = 0, (4)

the viscosity ν is a positive bounded function, i.e.,

0 < ν ≤ ν(x)≤ ν , ∀x ∈Ω , (5)

and a ∈ S0(Ω) is a bounded vector function. The generalized solution of (1)–(4) is
a function u ∈ S0(Ω)+uD such that
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University of Jyväskylä, Department of mathematical information technology, FI-40014 Univer-
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2 A posteriori error estimates for Oseen problem applied to Uzawa algorithm

∫
Ω

((ν∇u : ∇w− (a⊗u) : ∇w))dx =
∫
Ω

f ·wdx, ∀w ∈ S0(Ω). (6)

Existence and uniqueness of generalized solutions to the Stokes and Oseen problems
are well established (see, e.g., [4]). We compare the function v ∈ V0(Ω)+ uD with
the exact solution in the energy norm

|||u− v ||| :=
(∫

Ω

ν∇(u− v)2dx
)1/2

, (7)

and deduce computable error bounds for (7). Approximations are generated by the
Uzawa iteration method:

1. Set k = 0 and p0 ∈ L̃2(Ω).
2. Find uk ∈V0(Ω)+uD such that∫

Ω

(
ν∇uk : ∇w −(a⊗uk) : ∇w

)
dx

=
∫
Ω

(
f ·w+ pkdivw

)
dx ∀w ∈V0.

(8)

3. Find
pk+1 = pk−ρdivuk, where ρ ∈ (0, ρ̄). (9)

4. Set k = k+1 and go to step 2.

We confirm the efficiency of the bounds by numerical experiments.

In [8, 9], guaranteed and fully computable bounds of the distance between the
exact solution of the stationary Stokes problem and any function in V0(Ω) + uD
were derived by transformations of the integral relation similar to (6) with the help
of suitable integral identities. If the function compared with u is an approximation
computed by a numerical method (e.g., by the finite element method), then these
estimates yield robust and efficient a posteriori estimates. For the Stokes problem,
these estimates were numerically tested in [2, 3]. In [10], analogous estimates were
derived for the generalized Stokes problem (which can be also treated as an incre-
mental problem arising in time discretization of the evolutionary Stokes problem).
Here we have used the same ideas in order to derive functional type a posteriori
estimates for the problem (1) –(4). In [1], computable a posteriori error bounds for
approximations computed by the Uzawa algorithm were derived for the generalized
Stokes problem.
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S. Repin, P. Neittaanmäki, and T. Tuovinen (Eds.)

c© University of Jyväskylä, 2014

A Model for Hemodynamics for Optimal Design

Olivier Pironneau

Abstract
Simulations of blood flows in arteries require numerical solutions of fluid-

structure interactions involving Navier-Stokes equations coupled with large dis-
placement visco-elasticity for the vessel.

Among the various simplifications which have been proposed, the surface pres-
sure model provide a natural and strong coupling between the structure and the
fluid. Consequently we can derive unconditionally stable discretizations by combin-
ing implicit time schemes with Finite Element discretizations of the Navier-Stokes
equations. Such models have prescribed pressure on the walls, functions of the nor-
mal velocity, but they can be analyzed mathematically and shown to be well posed.

As the change of geometry is simulated by a change into a numerical coefficient
of the boundary condition, optimal design for the best stent, for instance, for reduc-
ing the maximum pressure can be solved by a gradient optimization method on a
fixed geometry.

We shall show numerically the feasibility of the method and discuss the numeri-
cal implementation with the software freefem++.

Left. Change (exaggerated for visualization) in the geometry to reduce the pressure.
Right. Pressure iso surfaces on a real aorta.
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Shape optimization for Stokes problem with
solution dependent slip bound

Jaroslav Haslinger and Jan Stebel

Abstract We study the Stokes problems in a bounded planar domain Ω with a fric-
tion type boundary condition that switches between a slip and no-slip stage. In addi-
tion, the threshold slip depends on the solution. Our main goal is to determine under
which conditions concerning smoothness of Ω , solutions to the Stokes system with
the slip boundary conditions depend continuously on variations of Ω . Having this
result at our disposal, we easily prove the existence of a solution to optimal shape
design problems for a large class of cost functionals.

1 Formulation of the state problem

In [1] we analyzed the Stokes problem with threshold slip, where the slip bound is a
given positive function. Now we are interested in a more general case when the slip
bound is a function of the tangential velocity.

Let Ω ⊂ R2 be a bounded domain with the Lipschitz boundary ∂Ω . The slip
boundary conditions are prescribed on a part of the boundary S and the no-slip
condition on Γ = ∂Ω \S:

−∆u+∇p = f in Ω , (1a)
divu = 0 in Ω , (1b)

u = 0 on Γ , (1c)
uν = 0 on S, (1d)
|στ | ≤ g(|uτ |) on S, (1e)

uτ 6= 0⇒ |στ |= g(|uτ |) & ∃λ ≥ 0 : uτ =−λστ on S. (1f)

Here u = (u1,u2) is the velocity field, p is the pressure and f is the external force.
Further, ν , τ denote the unit outward normal, and tangential vector to ∂Ω , respec-
tively. If a ∈ R2 is a vector then aν := a ·ν , aτ := a · τ is its normal and the tangen-
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2 Jaroslav Haslinger and Jan Stebel

tial component on ∂Ω , respectively. The Euclidean norm of a is denoted by ‖a‖.
Finally, στ :=

(
∂u
∂ν

)
τ

stands for the shear stress and g : R+ → R+ is a given slip
bound function. By the classical solution of (1) we mean any couple of sufficiently
smooth functions (u, p) satisfying the differential equations and the boundary con-
ditions in (1).

To give the weak formulation of (1) we shall need the following function spaces:

V (Ω) = {v ∈ (H1(Ω))2| v = 0 on Γ , vν = 0 on S}, (2)

L2
0(Ω) = {q ∈ L2(Ω)|

∫
Ω

q = 0}, (3)

H1/2(S) = {ϕ ∈ L2(S)| ∃v ∈V (Ω) : vτ = ϕ on S}, (4)

H1/2
+ (S) = {ϕ ∈ H1/2(S)| ϕ ≥ 0 a.e. on S}. (5)

Let us introduce the following forms:

a(u,v) =
∫

Ω

∇u : ∇v, b(v,q) =
∫

Ω

qdivv, u,v ∈V (Ω), q ∈ L2(Ω),

j(ϕ,vτ) =
∫

S
g(ϕ)|vτ |, ϕ ∈ H1/2

+ (S), v ∈V (Ω).

We shall assume that g : R+→ R+ is continuous and

∃0 < gmin < gmax : gmin ≤ g(·)≤ gmax in R+. (6)

The weak formulation of (1) reads as follows:

Find (u, p) ∈V (Ω)×L2
0(Ω) such that

∀v ∈V (Ω) : a(u,v−u)−b(v−u, p)

+ j(|uτ |,vτ)− j(|uτ |,uτ)≥ ( f ,v−u)0,Ω ,

∀q ∈ L2
0(Ω) : b(u,q) = 0.


(P)

One can show [1] that if (6) is satisfied then (P) has at least one solution. The
proof is based on the weak variant of Schauder’s fixed point theorem.

If, in addition g is Lipschitz continuous in R+:

∃L > 0 : |g(x1)−g(x2)| ≤ L|x1− x2| ∀x1,x2 ∈ R+, (7)

then for sufficiently small L problem (P) has a unique solution.
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2 Shape optimization problem

We define the admissible set

Uad = {α ∈C1,1([0,1])|αmin≤α ≤αmax in [0,1], |α( j)| ≤C j, j = 1,2 a.e. in (0,1)},

where the constants αmin, αmax and C j, j = 1,2 are chosen in such a way that
Uad 6= /0. With any α ∈Uad we associate the domain Ω(α) = {(x1,x2) ∈ R2| x1 ∈
(0,1), x2 ∈ (α(x1),γ)}, where γ > 0 is a given constant which does not depend on
α ∈Uad .

For any α ∈ Uad we denote by (u(α), p(α)) ∈ V (Ω(α))× L2
0(Ω(α)) a (not

necessarily unique) solution to (P(α)):

∀v ∈V (Ω(α)) : aα(u(α),v−u(α))−bα(v−u(α)), p(α))+ jα(|uτ(α)|,vτ)

− jα(|uτ(α)|,uτ(α))≥ ( f ,v−u(α))0,Ω(α),

∀q ∈ L2
0(Ω(α)) : bα(u(α),q) = 0


(P(α))

Let Ω̂ he a hold-all domain, i.e. Ω(α)⊂ Ω̂ ∀α ∈Uad and πα ∈L (V (Ω(α)),(H1
0 (Ω̂))2)

be an extension operator from Ω(α) to Ω̂ . Since Ω(α), α ∈ Uad satisfies the uni-
form cone property, the norm of πα can be estimated independently of α ∈ Uad .
Finally, the symbol “0” denotes the zero extension of functions from Ω(α) to Ω̂ .

Theorem 1. There exists a constant c > 0 independent of α ∈Uad such that

‖πα u(α)‖1,Ω̂ +
∥∥p0(α)

∥∥
0,Ω̂ ≤ c (1)

for any solution (u(α), p(α)) to (P(α)).

Denote

G := {(α,u(α), p(α))| α ∈Uad , (u(α), p(α)) is a solution of (P(α))}

the graph of the multivalued function α 7→ (u(α), p(α)), α ∈Uad .
The following results play the crucial role in the existence analysis.

Lemma 1. G is closed in the following sense:

αn→ α in C1([0,1]), αn,α ∈Uad ,

(παnun, p0
n)⇀ (u, p) in (H1

0 (Ω̂))2×L2
0(Ω̂),

(αn,un, pn) := (αn,u(αn), p(αn)) ∈ G

⇒ (u|Ω(α), p|Ω(α)) solves (P(α))

and hence (α,u|Ω(α), p|Ω(α)) ∈ G .

Lemma 2. The graph G is compact in the above defined topology.

The optimal shape design problem reads as follows:
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Find (α∗,u(α∗), p(α∗)) ∈ G such that

J(α∗,u(α∗, p(α∗))≤ J(α,u(α), p(α)) ∀(α,u(α), p(α)) ∈ G ,

 (P)

where J : Uad× (H1(Ω̂))2×L2(Ω̂)→ R is an objective functional.
Next we shall suppose that J is lower semicontinuous in the following sense:

αn→ α in C1([0,1]), αn,α ∈Uad

yn ⇀ y in (H1(Ω̂))2, yn,y ∈ (H1(Ω̂))2

qn ⇀ q in L2(Ω̂)


⇒ liminf

n→∞
J(αn,yn|Ω(αn),qn|Ω(αn))≥ J(α,yΩ(α),q|Ω(α)). (2)

On the basis of Lemma 1 and 2 one can prove the following existence result.

Theorem 2. For any cost functional J, which satisfies (2), problem (P) has a solu-
tion.
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Remarks on the internal structure of sensitivities
in shape optimisation

F. J. Barthold and N. Gerzen

This contribution is concerned with the analysis of the internal structure of sensi-
tivities of engineering structures with respect to modifications in shape. The term
internal structure of sensitivity is introduced as an abbreviation for the eigenval-
ues and singular values, the corresponding eigenvalue spectrum and singular value
spectrum as well as for the associated eigenvectors and singular vectors of the sen-
sitivity matrix, the pseudo load matrix and the mesh velocity matrix, which build up
the central parts of the sensitivity analysis. These matrices are analysed both qual-
itatively and quantitatively utilising the singular value decomposition (SVD) and
techniques which come from principle component analysis (PCA). The impact of
the chosen models on the computed optimal designs, especially the influence of the
chosen shape parametrisation, is analysed. This knowledge enables the design en-
gineer to understand and improve the models systematically which are usually set
up entirely by engineering experience and intuition. The weakness of the models is
detected and improved design descriptions are proposed. The design of structures is
explored.

The generic concept is applied to shape optimisation of shell structures. Shell el-
ements are most commonly used to model thin structures because of their efficiency
and accuracy. The design of such structures is extremely important for their stabil-
ity, robustness and load-bearing capacity. This contribution is based on variational
design sensitivity analysis of a non-linear solid shell element, see [3] for details,
which is based on the Hu–Washizu variational principle. Enhanced design sensitiv-
ity analysis provides information which allow the engineer to find the appropriate
shape of a shell and to understand the influence of geometry and layout variants on
its behaviour.

We apply singular value decomposition (SVD) to the pseudo load matrix and
the sensitivity matrix to detect the most valuable part of information and to trans-
form sensitivity results in a form which is comprehensible for engineers. The pro-
posed theoretical concept was demonstrated on the example of non-linear buckling
analysis of shells in [2]. Similar investigations were made for parameter-free shape
optimisation in [4] and for topology optimisation problems in [1]. Within this con-
tribution SVD based sensitivity information is utilised to explore the structural de-
sign and the corresponding FE-model. Techniques are proposed, which facilitate and
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2 F. J. Barthold and N. Gerzen

substantiate the definition of a structural optimisation problem. Numerical examples
illustrate the advocated concept.
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S. Repin, P. Neittaanmäki, and T. Tuovinen (Eds.)

c© University of Jyväskylä, 2014

An automatic differentiation based approach to
the level set method

Jukka I. Toivanen

Abstract This contribution discusses an implementation of the parametrized level
set method. Adjoint approach is used to perform the sensitivity analysis, but contrary
to standard implementations, the state problem is differentiated in its discretized
form. The required partial derivatives are computed using tools of automatic differ-
entiation (AD), which avoids the need to derive the adjoint problem from the gov-
erning partial differential equation. The augmented Lagrangian approach is used to
enforce volume constraints, and a gradient based optimization method is used to
solve the subproblems. Applicability of the method is demonstrated by repeating
a well known topology optimization study, namely compliance minimization of a
cantilever beam.

1 Introduction

The level set method was proposed in [11] and [1] for the topology optimization of
structures. The basic idea of the method is quite general, and similar techniques can
in principle be applied to any problem for which we are able to perform the shape
sensitivity analysis. For example, problems of fluid mechanics and electromagnetics
are considered in [4] and [9] respectively.

The shape sensitivity analysis is usually conducted in the continuous setting,
which requires deriving an adjoint equation from the governing partial differential
equation, and subsequent discretization in order to numerically evaluate the sensitiv-
ity. While this approach is well established for traditional fields of application, such
as structural mechanics, new areas of application and multidisciplinary design cases
may be problematic. In fluid mechanics, for example, turbulence models are often
”frozen”, i.e. neglected from differentiation, to simplify calculations [8]. Moreover,
not all objective functions result in a well posed adjoint problem [8].

An alternative approach to the sensitivity analysis is to perform the differenti-
ation of the problem after discretization. In principle this can be done manually
by implementing a code that computes the derivatives of the system matrix entries.
However, the use of automatic differentiation (AD) minimizes the risk of program-
ming errors, and reduces application development time significantly. Moreover, if
the code needs to be changed for example to modify source terms, boundary con-
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ditions, the objective functional, or the constraints, the gradient computation can
be updated with very little extra work. AD tools can be applied even on simulation
codes of commercial complexity, as demonstrated in [2].

In this work the parametric level set method is implemented using the automatic
differentiation to compute the derivatives of the discrete problem. Dynamic ex-
ploitation of sparsity [3] is utilized, and AD is applied only to the assembly process,
not on the whole solver. Together with the discrete adjoint approach this technique
provides an efficient means to perform the sensitivity analysis, since only the nodes
residing near the zero level curve need to be used as independent variables in the
AD.

2 Discretization and sensitivity analysis

Let r(q(α),α) = 0 denote the set of algebraic equations arising from the finite
element discretization of the state problem. Here α are the geometrical design vari-
ables, and q is a vector containing the basis function expansion coefficients. Using
the discrete adjoint shape sensitivity analysis, the derivative of an objective function
J = J(q(α),α) is obtained as

dJ
dαi

= ∑
j,k

∂J
∂xk

j

∂xk
j

∂αi
+ γ

T

(
∑
j,k

∂ r
∂xk

j

∂xk
j

∂αi

)
(1)

where the adjoint vector γ satisfies(
∂ r
∂q

)T

γ =−
(

∂J
∂q

)T

. (2)

Here x j = (x1
j , . . . ,x

dim
j ) represents the coordinates of the jth mesh node and dim is

the dimension of the geometry (dim = 2 in this paper).
In classical shape optimization [6], geometrical changes are governed by a so

called design velocity field, and the sensitivities ∂x j/∂α are known thereof. In prac-
tise the mesh is often adapted to the changes of the geometry using some mesh de-
formation method (see e.g. [5]), which can be differentiated to obtain the sensitivity
information.

This work, however, deals with the level set approach where the mesh is not actu-
ally deformed. Instead, a fixed mesh is used, and the geometry is given implicitly as
Ω = {x ∈ D |Ψ(x) > 0} , where Ψ is a scalar function defined over a reference do-
main D containing all admissible geometries. In this work we parametrize the scalar
function using compactly supported C2-continuous radial basis functions [12]. Such
parametric approach [7] avoids the need for an upwind solution scheme, velocity
extension, and reinitialization of the level set function.

We use N ×M basis functions whose knots are uniformly distributed over the
domain D⊂ R2. The radial basis function (RBF) associated with the knot i, j is
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ψi j(x) = max
{

0,1− ri j(x)
}4 (4ri j(x)+1) (3)

where ri j(x) is the normalized distance from the knot. The parametrized scalar func-
tion ψ is defined as the linear combination ψ(α) = ∑i ∑ j αi jψi j, and the design vari-
ables of the optimization problem are given by the vector α = (α11,α12, . . . ,αNM).

Let x be a point residing on the zero level curve Ψ(x) = 0. Assuming that a
change in the design variable αi causes x to move along the normal vector ∇Ψ

|∇Ψ | , we
obtain the relation

∂x
∂αi

=−∂Ψ

∂αi

∇Ψ

|∇Ψ |2
. (4)

Even though the mesh nodes are not actually moving, we use these sensitivities as
the design velocity field in (1) to compute an approximate gradient of the objective.

To sum things up, the following approach for the sensitivity analysis in the con-
text of the parametrized level set method is proposed:

1. Solve the state problem
2. Compute ∂J/∂q, ∂J/∂x, and ∂ r/∂x using automatic differentiation
3. Solve the adjoint problem (2) (if the problem is not self adjoint)
4. Compute the gradient of J using Equation (1), where ∂xk

j/∂αi is obtained from
the scalar function Ψ using Equation (4).

3 Numerical example

To test the proposed approach a well known compliance minimization problem of
a cantilever beam under plane stress condition was solved. The Young’s modulus
had the values 2.1 · 1011 and 1.0 in material and void regions respectively, and it
was interpolated between these values in elements cut by the zero level set. The
Poisson’s ratio had the value 0.3.

The reference domain D was a rectangle of size 4×2, from which a fraction of
0.5 was allowed to be occupied by material in the final design. A vertical point load
of 40 kN was applied at the middle of the right edge of D, and zero displacement
constraints were specified on the left edge. The level set function was parametrized
using 80× 40 = 3200 design variables. The mesh had 3886 nodes and 7771 ele-
ments.

The initial is shown in Figure 1. The grey regions in the Figure denote elements
that were cut by the zero level curve, and the vectors denote the sensitivities ∂J/∂x.
Since movement of nodes inside material or void regions only affects the solution
of the problem through discretization error, such nodes were excluded from the sen-
sitivity analysis. In other words, only the nodes belonging to the grey elements were
declared as independent variables of the automatic differentiation. This significantly
increased the efficiency of the proposed approach, since the utilized AD implemen-
tation [10] inherently exploits such sparsity.
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(a) Initial guess (b) Final design

Fig. 1 Initial and final shapes of the cantilever beam.
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The exact analytical solutions in structural
optimization and Banichuk’s method

Vladimir Kobelev

The structural optimization as the industrially driven applied science is usually as-
sociated with the numerical solution of large optimization tasks and development of
commercial optimization software. Really, the technical feedback of the structural
optimization is the mass reduction of aerospace objects, lightweight automotive and
naval structures. It is naturally truth, but not the complete truth. The other aspect of
structural optimization is the understanding of fundamental laws and basic mathe-
matical principles. These principles allow deep understanding of essence of weight
reduction.

One example delivers the “fully stress design”, a primordial principle for struc-
tural optimization. Based on this principle the immense number of structures was
designed in last seventy years. Up to the end of 60th only very few mathemati-
cally correct examples for “fully stress design” structural elements, most of them
mathematically trivial solutions, were known. Since the beginning of 70th of the
last century some exactly solvable “fully stress design” elements were discovered
by Banichuk. Several torsion and bending members were analysed and deliver a
brilliant collection of mathematically correct “fully stress” solutions. The Banichuk
method for this purpose is based on the variation methods for the partial differential
equations. Initially implemented by Courant and Hilbert, this method allows estab-
lishing the conditions of unknown boundaries. With the optimality conditions the
domain optimization transforms to the nonlinear inverse boundary problem.

The other example is the uncertainty of load conditions, well known for each
practical engineer. The extremely powerful method of Banichuk consists in the re-
formulation of problem with uncertain load conditions to the game optimization
problem. The fundamental sense of this idea reflects the essence of engineering –
the endless game with and sometimes against nature. Cooperative game with nature
means the resource economy for achievement of certain prescribed aims. Antagonis-
tic games against nature – albeit sounds paradoxically – is the survival of man-made
vehicle under statistically determined, external conditions imposed by Nature. The
method of Banichuk allows the deep understanding of this subject and establishes
the mathematical apparatus for solution of game optimization problems.
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VENUE

Jyväskylä - Human Technology City in the heart of Finland

Jyväskylä is a dynamic, youthful and lively city, which on the basis of its specializations promotes 
itself as the Human Technology City. The City of Jyväskylä is the seventh largest city in Finland 
with 130 000 residents, which is famous for achievements in science and technology, high-quality 
cultural activity, and beautiful nature. Jyväskylä is situated 270 km from Helsinki at the northern 
end of Päijänne, Finland´s second largest lake. A third of Lake Päijänne lies within the boundaries 
of Jyväskylä. 

Jyväskylä was established in 
1837. From the very beginning 
the city has been closely 
associated with education. 
Teacher training in particular has 
long traditions here. Nowadays 
Jyväskylä is home to students 
in many different fields. Almost 
thirty per cent of the population 
consists of school-goers and 
students.

Local educational establishments 
are located close to one another 
and engage in various forms of 
cooperation - for this reason the 
city is like one large campus.

The traditionally strong 
industrial branches, machinery 
and automation, printing and 
communication and wood 
processing are flourishing fields 
of industry in the Jyväskylä 
Region. Special expertise is 



also to be found in the fields of paper 
making, energy and environmental 
and information technologies. 
These are complemented by 
growing new sectors such as 
wellness and nanotechnology. A 
number of international companies, 
including Metso, UPM-Kymmene, 
M-Real and Vapo are located in 
Jyväskylä. Collaboration between 
higher education and business is the 
foundation for new entrepreneurial 
activity.

Jyväskylä is a university city. It 
hosts one of the largest Finnish 
multidisciplinary universities with a 
total of seven faculties. University 
of Jyväskylä is a well-known 
international scientific center where 
students and scientists from all parts 
of the world work in a friendly and 
thoughts supporting atmosphere.

The Faculty of Information 
Technology is the first and largest 
IT faculty in Finland. Information 
Systems Science has been taught 
at the University of Jyväskylä 
since 1967. At the Department 
of Mathematical Information 
Technology, information technology 
is studied from the perspective of 
natural sciences. Here, studies are 
based upon strong knowledge in 
modern applied mathematics and 
participation in industrial projects. 
Special attention is also being given 
to research training in addition to 
both international and national co-
operation.

Jyväskylä is a great city for those on 
foot, since key services in the city 
centre are located within walking 
distance of each other. The real 
gem is the pedestrian precinct, 
the lively heart of the city, which 
serves as a venue for events and as 
a general rendezvous for residents 



and visitors alike. The region’s 
inhabitants are friendly and possess 
an excellent service attitude. Price 
levels in Jyväskylä are clearly 
more favourable than in and around 
Helsinki, the state capital.

Culture lovers can enjoy a voyage 
into the creations of world-famous 
architect Alvar Aalto, as Jyväskylä 
is his home city. The region boasts 
more buildings designed by Aalto 
than any other city in the world. 

The Alvar Aalto museum, the only 
museum in the world dedicated to 
life and work of Aalto is among of 
the top tourist attractions of the city. 
Other tourist attractions are Nyrölä 
rock planetarium, and Oravivuori 
triangulation tower, a UNESCO 
world heritage site. 

Photos: 
University of Jyväskylä, City of Jyväskylä 
and Jyväskylä Convention Bureau

More information: 

http://jkl.fi
http://www.jyu.fi/it
http://www.mit.jyu.fi

1. Hotel Alba
2. Sokos Hotel Alexandra
3. Hotel Cumulus
4. Bus and railway station
5. The main campus of the University of Jyväskylä
6. Agora - Conference Venue

Internet access

Our wireless internet connection 
is available in the Agora building 
(network is named agora-open, 
no password is needed). In case of 
technical problems please contact 
our registration desk.
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