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Abstract

Boron nitride (BN) nanostructures are both structurally and elastically very
similar to the corresponding carbon structures. The major difference is
that BN is a wide bandgap insulator whereas carbon structures are either
conductors or semiconductors. Therefore BN is a highly promising nano-
material and it is expected to have applications in nanotechnology e.g. as
encapsulating nanomaterials and nanofillers in composite materials.

Properties of BN nanostructures are usually computationally researched
either with the density-functional theory (DFT) or tight-binding (TB) mod-
els. The former is accurate but computationally demanding whereas the
latter is computationally light but inaccurate. In this work I shall present
combinination of these two theories into tight-binding density-functional
theory (DFTB). I also take into account the energy term that is in the se-
cond order in density fluctuations. The resultant theory is significantly
more accurate than TB and computationally faster than DFT. However, it
includes parameters that have to be determined in advance. Firstly, it is
needed to compute the TB-inherited S- and H°-matrix elements related to
overlaps and eigenenergies of atomic orbitals of the system. Secondly, the
repulsion potentials V, between the nuclei must be determined. The idea
behind them is to fine tune them in such a way that DFT and DFTB results
are in correspondence in as many relevant situations as possible.

I also shall present the BN parametrization determined by me and the
computational results obtained with it for properties of both perfect and
defected BN layers and nanotubes. In the case of BN layers the studied de-
fects are B-, N- and BN-vacancies and in the case of nanotubes Stone-Wales
defects. The obtained electron structures for undefected structures as well
as the formation energies of defects are in relatively good accordance with
the corresponding DFT results. The Young’s moduli of perfect structures
and agree well with the reference results. However, the elastic Poisson’s
ratios contradict strongly with the DFT references. All in all my paramet-
rization is capable of producing sufficiently good results. However, there
are room for improvement, as results of an earlier BN parametrization are
notably closer to the DFT results at least in the case of nanotubes. I most
likely should have used more reference structures where I ensured the
consistence of DFTB and DFT.
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Tiivistelma

Boorinitridin (BN) nanorakenteet ovat seka rakenteellisesti ettd lujuusomi-
naisuuksiensa puolesta hyvin samankaltaisia vastaavien hiilirakenteiden
kanssa. Suurimpana erona on BN:n sdhkoinen eristdvyys kun taas hiilira-
kenteet ovat johteita tai puolijohteita. BN onkin hyvin lupaava nanoma-
teriaali ja sille on odotettavissa sovelluksia muun muassa muiden nanora-
kenteiden suojaajana ja komposiittimateriaalien nanokudosaineena.

BN:n nanorakenteiden ominaisuuksia tutkitaan laskennallisesti yleensa
joko tiheysfunktionaaliteorialla (DFT) tai tiukan sidoksen (TB) malleilla.
Ensin mainittu on tarkka mutta laskennallisesti vaativa, kun taas jalkim-
mdinen on laskennallisesti kevyt mutta epdtarkka. Téssd tydssd esitte-
len ndiden teorioiden yhdistamisen tiukan sidoksen tiheysfunktionaali-
teoriaksi (DFTB) ottaen huomioon myos tiheysfluktuaatioissa toista ker-
talukua olevan energiatermin. Seurauksena on huomattavasti DFT:td no-
peampi ja TB:td laskennallisesti tarkempi teoria. Se kuitenkin vaatii en-
nalta méadritettdvid parametreja. Ensinnékin on laskettava tiukan sidok-
sen mallista periytyvit S-ja H’-matriisielementit, jotka liittyvét systeemin
atomiorbitaalien keskindiseen limittdytyneisyyteen ja ominaisenergioihin.
Lisdaksi atomiydinten valiset repulsiopotentiaalit V., on méddritettava. Nii-
den kohdalla johtava ajatus on pyrkid hienosddtamaan ne sellaisiksi, ettad
DFT:nja DFTB:n tulokset vastaisivat toisiaan mahdollisimman hyvin mah-
dollisimman monessa relevantissa tilanteessa.

Esittelen myds mddrittdiméni parametrisaation BN:lle ja sitd kdyttden laske-
mani tulokset sekd virheettomien ettd vaurioituneiden BN-tasojen ja -nano-
putkien ominaisuuksille. BN-tasojen kohdalla tutkimani vauriot ovat B-,
N- ja BN-vakansseja ja nanoputkien kohdalla Stone-Wales -virheitd. Saa-
mani virheettomien rakenteiden elektronirakenteet ovat suhteellisen 1a-
helld vastaavia DFT-tuloksia, samoin kuin vaurioituneiden rakenteiden
muodostumisenergiat. Vaurioitumattomien rakenteiden kimmokertoimet
ja kaikkien tutkittujen systeemien rakenteelliset ominaisuudet vastaavat
viitetuloksia pddosin hyvin. Sen sijaan elastiset Poissonin suhteet eroavat
merkittdvasti DFI-viitearvoista. Kaiken kaikkiaan parametrisaationi on
siis kykenevdinen suhteellisen hyviin tuloksiin. Parantamisen varaa kui-
tenkin on, silld aikaisemman BN-parametrisoinnin tulokset ovat huomat-
tavasti lahempéand DFT:n tuloksia ainakin nanoputkien tapauksessa. Mi-
nun olisi luultavasti erityisesti tullut kdyttdd useampia rakenteita, joissa
varmistin DFTB:n ja DFT:n yhteensopivuuden.

III



Contents
1 Introduction

2 The tight-binding density-functional (DFTB) theory
2.1 The foundations of density-functional theory (DFT)

211 The many-body problem ... .. ... ...
2.1.2 The Hohenberg-Kohn theorem . . ... ...
2.2 The Hohenberg-Kohn variational principle . . . ..
2.3 The Kohn-Sham construction . . . ... ... .. ..
2.3.1 The single-particle potential Vi(r) . ... ..
2.3.2  Solving the Kohn-Sham construction . . . .
24 Thefunctional &n] . .. ... ... . L.
2.5 The frozen core approximation . . ... ... .. ..
2.6 Second-order self-consistent charge extension . . . .
27 DFIBenergy . . ... ..................
2.7.1 Tight-binding formalism . . . . .. ... ...
2.7.2 Theband structureterm Fpg . . . . ... ..
2.7.3 Charge fluctuationterm . . . ... ... ...
274 Repulsive energyterm . . . .. ... ... ..
2.7.5 Solving the DFTBenergy . .. ... ... ..
2.7.6  Calculation of the overlap matrix S . . . . .

2.7.7 Calculation of the Hamiltonian matrix H[n]

2.7.8 Periodic boundary conditions . . . . ... ..

3 Boron nitride nanostructures

3.1 Hexagonal boron nitride layer . . . . ... ... ...
3.2 Boron nitride nanotubes . . . . ... ... ... ...
3.3 Elastic properties of BN nanostructures . . ... ..

4 DFTB parametrization

4.1 The Vou-potential and the z-parameters . . . . ..
42 TheU-parameters . . . . .. ... ... ........
43 The Vip-potentials . . .. ............. ..

43.1 Requirements for the V. -potentials . . . . .

1A%

47
47
49
51



43.2 Referencesystems . ................... 57

43.3 Fitting to the force data pointsets . . . ... ... .. 59

5 HOTBIT—the DFTB code 61
51 Usageof HOTBIT. . . . . . . . ... i i .. 61
5.2 Notes about HOTBIT . . . . . .. ... ... ... 62

6 Construction of BN-parametrization 63
6.1 The z-parameters . . . .. ... ... ... ........... 63
6.2 Parametrization of the repulsion potentials Vi, (R) . . . . . . 66
6.2.1 The used reference systems . .. ... ......... 66

6.2.2 The BB-repulsion fitting . . . .. .. ... ... .... 67

6.2.3 The NN-repulsion fitting . . .. ... ... ...... 69

6.24 The BN-repulsion fitting . . . . .. ... ... ..... 70

6.3 The final parameters . . .. ... ... ... .......... 72
6.4 Slater-Kostertables . . . .. ... ... ... .......... 74

7 DFTB parametrization benchmarking results 76
7.1 Thebandstructures . . . . . ... ... ... ... ....... 76
711 The h-BN layer band structures . . . . . .. ... ... 76

7.1.2 The BNNT band structures . . . . ... ........ 77

7.2 Elastic properties of the h-BNlayer . . . . . ... .. ... .. 78
721 Methodology . ... ...... ... ... ....... 79

722 Obtainedresults . ... ................. 85

7.3 Properties of the BN nanotubes . . . . .. ... ... ..... 85
731 Methodology . ... ........ ... ... ...... 86

7.3.2 Obtainedresults . ... ................. 88

74 Vacancy defectsonah-BNlayer ... ............. 92
741 Methodology . ... ... ................ 93

742 Obtainedresults . ... ................. 96

7.5 Stone-Wales defects on nanotubes . . . . .. ... ... ... 99
751 Methodology . ... ......... ... . ...... 102

752 Obtainedresults . .. .................. 102

8 Conclusions 105



8.1 Possible improvements . . . . .. ... ... L
82 Postscript. . . ... ... ..o
List of Figures

1 Overlap of the local orbitals I,and J, . ... .........
2 BNhoneycombnetwork. . . . .. ... ... .. ... ..
3  Thereciprocal spaceforh-BN . . . . ... ..... ... ...
4  Examples of zigzag and armchair BNNTs. . . . . . ... ...
5  Band structure of the h-BN layer for several (zg, zn).

6  An unsatisfying parametrization for the B-B repulsions. . . .
7  The final parametrization for the B-B repulsions. . . . . . . .
8  The final parametrization for the N-N repulsions. . . . . . .
9  Another parametrization for the N-N repulsions. . . . . ..
10  The final parametrization for the B-N repulsions. . . . . ..
11  Another parametrization for the B-N repulsions. . . . . . . .
12 The Slater-Koster tables for boron-boron. . . . ... ... ..
13 The Slater-Koster tables for nitrogen—nitrogen. . . . .. ...
14  The Slater-Koster tables for boron-nitrogen. . . . . . . .. ..
15 Band structure of the h-BN layer. . . . ... ... ... .. ..
16 Band structure of (2,2) BN nanotube. . . .. ... ......
17  Band structure of (3,3) BN nanotube. . . . ... ... ....
18 The optimal symmetric unitcell. . . ... ... ... .....
19  The fitting process to compute Y;and v of h-BN. . . . . . ..
20 The optimal symmetric unitcell. . .. ... ... ... ....
21 Relationship between Y; and d for BNNTs. . . ... ... ..
22 Bl2cluster. . . . ... ...
23  The final h-BN layer vacancy unitcells. . .. ... ... ...
24  h-BN monolayer vacancy formation energies under strain. .
25 5171715 Stone-Wales defectson (8,0) NTs. . . ... ... ..

VI

70

75
75
76
78

84



List of Tables

O 0 NI O U1 = W N -~

_ = =
N — O

Theused valuesof U and 7eoy. « - v« v v v v v v v o i oo
The final set of z-parameters. . . .. ... .. ... ......
Fitting parameters for V,., parameter functions . . . . . . . .
Structural parameters of NTs used in BS computations. . . .
DFTB and reference DFT Y; and v for h-BN layer. . ... ..
Diameter and radial buckling parameter of various BNNTs.

Young’s modulus Y; and strain energy of various BNNTs. . .
Poisson’s ratio of various BNNTs. . . . . ... ... ... ...
Convergence tests for AE as a function of supercell size. . .
The pseudo-Y; of vacancy defected h-BNs. . . . . . . ... ..
Effect of the supercell size for the SW defect properties. . . .
Bond lengths and Ej,y, 0of SW defectsin (8,0) NTs . . . . . .

VII



1 Introduction

Boron nitride (BN) is an isoelectric analog of carbon (C): in B-N bonding
the average number of electrons per atom is 2 in the 2p layer, as in carbon
(carbon is 2p?, boron is 2p' and nitrogen is 2p*). Thus they are mostly found
in the same phases, produce similar structures and have many shared ex-
traordinary properties. Even their bond lengths are nearly equal [1]. For
example, hardness of the cubic boron nitride (discovered in 1986 [2]) is
second only to diamond, whose structural equivalent it is.

However, in recent years the research on these materials has focused on
their nanostructures due to their wide range of applications. These struc-
tures are based on hexagonal sp*-hybridized honeycomb lattice forms of
BN and C (h-BN and h-C, respectively). In the case of boron nitride the
atoms alternate in the lattice hexagons and a B atom is bonded to three N
atoms (and vice versa) adjacent to it. Every neighbouring pair of N and
B atoms is in this case bonded to each other by a covalent bond so that
there exists only B-N bonds. In these bonds the partial displacement of
the electron density is to an N atom making them slightly ionic contrary
to the carbon case.

The intensive research on nanostructures of BN and C began from the dis-
covery of carbon nanotubes (CNTs) in 1991 [3]. After this boron-nitride
nanotubes (BNNTs) were theoretically predicted in 1994 [4, 5] and then
successfully synthesized in 1995 [6]. Subsequently other 1D BN nano-
materials such as nanowires, nanoribbons, nanofibers and nanorods were
synthesized [7-10]. Furthermore, inspired by the carbon fullerenes, cor-
responding 1D BN nanostructures were produced in 1998 [11]. But the
greatest discovery was yet to come—in 2004 graphene was sensationally
discovered [12]. After that it did not take long before also free-standing
2D BN flakes were peeled off from a BN crystal in 2005 [13].

Primarily, the interest in BN nanostructures has been due to the fact that
in contrast to their metallic or semiconducting structural carbon analogs,
they are wide bandgap (5.0eV—-6.0eV) insulators. Other notable prop-
erties include outstanding thermal conductivity and high specific heat.
Also they can resist oxidation well even in very high temperatures. Me-
chanically they are nearly as tough as the corresponding carbon struc-
tures. These properties encourage their applications e.g. as protective
shields encapsulating nanomaterials, nanofillers in composite materials,



nanoscale calorimeters, microelectronic processors, macroscopic refrigera-
tors and energy-saving buildings [14]. Unfortunately implementing these
in practice has been hindered by very challenging synthesization processes.
This is also one of the most important reasons why h-BN research has
lagged behind h-C research. Research of these two fields largely goes hand
in hand though, since actually at present day the most extensive study is
on BN structures that also involve carbon.

The standard way to study these nanostructures computationally is with
the density-functional theory (DFT) when accuracy is desired or with tight-
binding (TB) if performance is required for example due to large size of
the system in study. But also a less employed intermediate point between
these two extremes—density-functional tight-binding (DFTB)—does exist.
Similarly to the BN nanostructure research, this theory is quite young, de-
rived in 1989 [15] and improved in 1998 [16]. It is derived from full DFT
with TB approximations, so it is not ab initio and requires a pre-made para-
metrization instead. Now, the goal of this thesis is to construct such para-
metrization for boron nitride as well as possible and then study the most
important basic (electric and mechanical) properties of both perfect and
defective nanotubes and layers. Also the DFTB theory will be reviewed in
detail. I will focus on pure BN structures, even though usually in practice
hydrogen and carbon are involved.



2 The tight-binding density-functional (DFTB)
theory

In this section I will review the derivation of the theory of density-functional
tight-binding (DFTB), and it is the research training part of this work. The
used units are as follows:

Energy E: 1 Ha =27.2114eV. (2.1)
Length 1 Bohr =0.5292 A. (2.2)
Mass m: 1 atomic mass unit =1.6605 x 107" kg. (2.3)
Time t: 1.0327 fs. (2.4)

With these units the fundamental constants can be chosen to be

e=1, (2.5)
1
= — 2.
€0 471'7 ( 6)
h=0.0234 and (2.7)
kg = 3.1668 x 107°. (2.8)

2.1 The foundations of density-functional theory (DFT)
21.1 The many-body problem

The solid state and nanophysics as well as chemistry are essentially quan-
tum mechanics of systems consisting of nuclei and electrons. In general,
the wave function of such a system is a function of position and spin of
each electron and each nucleus. However, due to the three orders of mag-
nitude larger mass of the nuclei, they are practically frozen compared to
the quick electrons. Also their charge density is very strongly confined.
For these reasons it is usually sufficient to approximate them semiclassi-
cally as point-like classical particles. Therefore in practice the problem of



interest for an N-electron system is usually for the electronic wave func-
tion V(xy,...,xy), Where x; denotes the position-spin pair x; = (r;, ;).
The role of the ions is reduced to being a part of the external potential
V(r). It is now a sum of Coulombic contributions and e.g. external electric
fields.

Also the ion-ion interaction energy FEy;, which reads

N

VAR
Z ’RI - Ry’ @9)

must be added to the total energy of the system. Above Z; and Z; are the
atomic numbers and R; and R the positions of nuclei I and J, respec-
tively. Nevertheless, ¥ must fulfil the Schrodinger equation

H|U(xq,...,xy5)) = E. |¥(x1,...,%xn)), (2.10)

where F, is the electronic energy and

H=T+V+W, (2.11)
where
N
A N ve 2.12
Z SV (2.12)
N
V=Y Vx), (2.13)
=1
N
W=> W(x;,x;) (2.14)

The total energy £ of the system now reads

4



E =FE. + Ep, (2.15)

but for convention let us omit Ey; for a while.

2.1.2 The Hohenberg-Kohn theorem

A system may have several independent wave functions that yield the
lowest energy. In this case the ground state is called degenerate. But from
now on we assume that this is not the case, i.e., the ground state (GS) wave
function |¥gs) is unique up to a trivial phase factor: |Ugg) # € |Pgs)
(o € R). Similarly two potentials are considered different only if they
differ from each other by more than a trivial constant: V; # V2 +C (C € R).

With this requirement of non-degenerate ground states we can derive the
standard Hohenberg-Kohn theorems, that tie together the potential V (r)
of the system and its ground state density ngs(r). They were introduced
in 1964 by Pierre Hohenberg and Walter Kohn [17] and first of them is the
following:

Hohenberg-Kohn Theorem 1. The external potential V (r) is a unique func-
tional of the ground state wave function and vice versa.

This is readily shown: Consider a counterexample with two different po-
tentials that yield the same ground state |V ¢g)

Hy [Was) = (T FV o+ W) Was) = B [Wes)  and (2.16)

Hy |Wes) = (T V4 W) Was) = B [Wgs) . (2.17)

Subtraction of these two equations gives

(f/l — VQ) Wes) = (Br — By) |[Wes) = C [Ugs) . (2.18)



This is in contradiction with our assumption, and thus there can not exist
two different potentials with the same ground state density. And the corre-
spondence is one-to-one, since by the non-degeneracy definition for each
potential (and thus for each Hamiltonian) only one ground state wave
function exists.

Hohenberg-Kohn Theorem 2. The ground state wave function is a unique
functional of the ground state total density ngs(r) and vise versa.

This is also shown straightforwardly, again by finding a contradiction from
the assumption: Let there be two ground state wave functions |¥;) and
|U,) that produce the same ground state density n(r). Then

Ey = <\I’1|ﬁ1|‘l’1> — (U4 |Hy + Vi — V3| W)

— (W) + [ drn) (Vi) - Vo)

> Fy + /d3r n(r) (Vi(r) — Va(r)), (2.19)

where I used the fact that (\111|H2|\111) > [, since ¥; is not the ground
state wave function for H,. The previous is naturally true also in the index
interchange 1 <+ 2, so we also obtain

Ey, > E) + / dPrn(r) (Va(r) — Vi(r)). (2.20)

Adding these two equations together leads us to the contradiction E; +
E5 > FEi+ FE,. Therefore there can not be two wave functions with the same
ground state density, and the correspondence is again one-to-one, since by
definition of the density, a ground state can have only one density.

Together the HK theorems 1 and 2 form the final Hohenberg-Kohn theo-
rem:

Hohenberg-Kohn Theorem 3. The external potential V (r) is a unique func-
tional of the ground state density ngs(r) and vice versa.

The density-functional theory boils down to this remarkable theorem. Now
we can begin to apply it.



2.2 The Hohenberg-Kohn variational principle

Since the ground state wave function is a functional of ngg(r), the expec-
tation value O = (¥[nas]|O|¥[ngs]) of any ground state observable O is its
functional as well. Particularly this applies for energy:

Ecs[nas(r)] = (Unes(r)]| H|¥[nes(r)]) - (2.21)

But consider the functional

Efn(r)] = (¥ [n(x)]| H[¥[n(r)]) = Fux[n(r)] +/d3rV(r)n(r), (2.22)

where n(r) is not the ground state density for H,and Fyk [n] is the Hohenberg-
Kohn functional:

Frx[n(r)] = (U[n(r)]|T + W|¥[n(r)]). (2.23)

Now it is obvious that E[n| > Egs[ngs), and the equality applies only for
n(r) = ngs(r). This means that we can find the ground state by minimiz-
ing the functional E[n(r)]. But to be exact, it turns out that n(r) must be
V-representable, which means that it has to be the ground state density for
some other system characterized by some potential other than V' (r) [18].
Nevertheless, let us from now on assume that this is the case. The mini-
mum is obtained for the density that satisfies

foe 5

To conserve charge, we should only allow density variations for which

sn(r) = 0. (2.24)

nGs

/dr on(r) =0. (2.25)
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This implies that

OEn] = constant, or (2.26)
On(r) | ee
E[TLGS + 5n] = E[ngs] + ﬁ((STLZ) (2.27)

This is known as the KS stationary principle. It is equivalent to

on(r)

= —V(r), (2.28)

nGs

where the constant has been embedded into V' (r) because it simply amounts
to gauge of the potential and it is usually fixed in such a way that V(r) — 0
for |r| — 0.

2.3 The Kohn-Sham construction

According to the Hohenberg-Kohn theorem the GS density ngg(r) is re-
lated to a fixed external potential V' uniquely. Consider now the imagi-
nary system of non-interacting (except via Pauli exclusion principle) elec-
tron gas with the same ground state density. In this case T = 0, but since
the HK theorem did not take into account the two-particle interaction at
any stage, it is still possible to find a single-particle potential V,(r) that is
uniquely connected to ngg(r). This is a great simplification from a many-
body system into an effectively single-particle system. With this I mean
that the Schrodinger equation of this system

N
> Hy(r) [(ry,....ry)) = E|P(ry,...,ry)), (2.29)

7

where



Ha(r) = —%vz +Vi(r), (2.30)

separates into single-particle equations

Hy(r) [¢hi(r)) = € [¢i(r)) . (2.31)

With {¢;(r)} and {¢;} the solutions to the problem (2.29) read’

Pi(ry) ... Pn(ry)

\Ifgs(l‘l,...,I'N) = , (232)
Yi(rn) .o Yn(ry)
N
nes(e) =Y [ dr [uio)l*, and (233)
N
Ecs =) e (2.34)

)

Since the Pauli exclusion principle forbids any electrons to occupy the
same state simultaneously, the above ground state quantities were used
by using N states lowest in energy. Assuming spin degeneracy, pre-factor
of 2 appears for all these quantities and summation only goes up to N/2.

1T do not present the derivation of this result here, but verifying that it is the de-
sired ¥ is not difficult. Firstly, ¥qg clearly satisfies the antisymmetricity requirement
Uas(ryy ... ,ra oy, --.) = Yas(ry,...,req1,ra,-..), which is due to the fact that elec-
trons are fermions. Also for orbitals ¢ that do normalize to unity, the total density in-
tegrates to N. Finally, by inserting (2.32) into (2.29), we can see that it indeed is an
eigenstate for H: A general term in (2.32), is of the form p(1)(x1) - ¥pa)(Xa) -,
where P is a permutation of integers a € N. Now, >, ﬁs(ri)wp(l) (r1) - ¥pvy2)(tny2) =
> i €¥py(r1) - ¥pvy(ry), and since this holds for every term, HU = >, €V. Thus
(2.32) indeed is an eigenstate for H,.



2.3.1 The single-particle potential V,(r)

Egs. (2.32-2.34) now sum up the KS construction together with Eq. (2.31).
Provided V;[n|(r), the KS equations are now solvable. Its form is natu-
rally not trivial, since it includes all the complex many-body effects. Any-
how, let us begin its analyzation by dividing the energy functional into
two parts:

En(x)) = Tn(x)] + Fln(x)],  where 2.39)
B} = 32 bl - 5Vl = 32 =5 [ @i
1 3
=3 Z / d’r |[Vipi(r)]  and (2.36)
Rin() = 3 lall Finelesol) = 37 [ a°ro (vteyvate)
:/dBrVS[n(r)]n(r). (2.37)

So Ti[n(r)] is the kinetic energy of the free electron gas. It is not the same
as the kinetic energy of the real interacting system, but the hope is that it is
roughly similar in magnitude. Now the form of F'[n(r)] must be deduced.
It is not, of course, trivial at all. It is sensible to divide it to different terms
arising from different sources. Firstly, /'[n(r)] must contain

/dr Vin(r)n(r), (2.38)

i.e., the energy yielded by the potential of the original Hamiltonian. Se-
condly, it must contain the Hartree energy

r)] = %// drdr’ % (2.39)

This term approximates the many-particle interaction in the most simple
and naive possible way—it describes how the charge cloud with given

10



density n(r) repels itself. The factor of 1/2 is to void the effect of double-
counting in Fy.

The rest of F[n(r)] is defined as the exchange-correlation energy Ey.[n(r)]. It
is the term that hides the complexity of the many-body physics and takes
care that for each density the functional £[n(r)] is equal in both interacting
and non-interacting case. So

Fln(r)] = /dr Vin(r)n(r) + Exn(r)] + Ex.[n(r)]. (2.40)

It can also be written as

Exc[n(r)] = (U[n]|T¥([n]) — Ty[n(r)] + (¥ [n]|W]P[n]) — Euln(r)]. (241)

Its interpretation is clear from this: it contains the difference of many-
particle and single-particle kinetic energy and difference of many-particle
and single-particle electron-electron interaction energy.

Now, just as in the interacting case, we can see that around the ground
state density we must have

OLn()]|  _ _ 0K[n(r)]

on(r) on(r) |~ el (2.42)

nGs nGs

The functional derivative of F'[n(r)] reads

OF[n(r)]
on(r)

OVieln(r)]

= Vin|(r) = V(r) + Vi[n(r)] + sn(r)

(2.43)

where Viz[n(r)] is the Hartree potential and Vi [n(r)] is the exchange-correlation
potential:

11



Valn(r)] = / dr’ ’:(_1"’3/| and (2.44)
Vieln(r)] = %(”rgr” (2.45)

2.3.2 Solving the Kohn-Sham construction

Egs. (2.32-2.34) now sum up the KS construction together with Egs. (2.31)
and (2.43). Solution of this problem is obtained in self-consistent manner.
The procedure is as follows:

1.
2.

Begin with an input density n;,(r).

Construct with it a guess for V;[ngs)(r) with the functional (2.43), i.e.,

6 Vie[nin (1)) '

Vi[nin)(r) = V(r) + Vig[nin(r)] + Snn(r)

(2.46)

This way, the V-representability is ensured.

. Solve with it the single-particle KS Schrodinger equation (2.31):

(=57 Vi) ) = clmlis(e). 247

. Now let us denote the density produced by it as 1oy (r):

Mot [7in] () = Z i [1an] ()| . (2.48)

If noue (r) is sufficiently close to ni, (r), convergence has been achieved
and the process has been finished. Otherwise 7, becomes the new
nin and a new cycle starts from the first step.

12



Unfortunately, there do exist certain convergence problems in this process.
Firstly, as discussed, the initial guess must be good enough. Secondly, with
bad luck the system might still converge to wrong density. Thirdly, con-
sider a situation where during the self-consistent solving cycle at some
point ¢y and ¢y, are very close in energy but very different in density
(the indices have been ordered by energy so that ¢; < ¢4 V7). Now, ac-
cording to Eq. (2.33), /n+1 will be cut out from n(r). But if during the next
cycle the energy of ¢n4; becomes smaller than that of vy, ¥y will be cut
out instead of ¢n;. This situation might then reverse in the next cycle.
Now, even if each and every 1); was close to the correct solution all along,
this behavior results in a major transition in the density, and convergence
is not achieved. But this can be avoided by introducing a smooth way of
cutting the orbital contributions from n(r). The standard way to achieve
this is by using thermal broadening via Fermi-Dirac statistics so that the
occupation number +/f; of state 1; with energy ¢; is (remember that kg = 1
in our units)

1
fla) = ey (Y O (2.49)

with such chemical potential y that 3, fi = N. Now n = 3. f; |¢|° and
E =), fi;. This means that contrary to requirements in the theory of
DFT n(r) and E are no longer the true ground state density and energy,
respectively. But only so small 7" should be used that its effects on n(r)
and E are negligible.

2.4 The functional &[n]

Following Foulkes and Haydock [15], let us write down E[n] in an alter-
native way by making use of Egs. (2.34) and (2.35):

Euftas) =Y o] = [ Vit (nas(0) + Rlnod. - (250)

i

As discussed, by minimizing E[n| it is possible to find ngg through the
HK variational principle. Now, with n. = n, Eq. (2.50) is exactly equal

13



to Es[n] = Ti[n] + Fi[n], which in turn is exactly equal to E[n| by defini-
tion. Therefore the variational principle still applies. The next step is to
expand E[n,:| around n;, to the second order. It is a sensible thing to do
for differences

A?’L(I‘) = nout(r) - nin(r) (251)

because both n;, and n., are supposed to be close to ngs and due to it
An should be small. Now the concept of functional Taylor expansion is
required. For example, expansion of F;[nq] to the second order reads [18]

Finow) = Es[nin + An] (2.52)
=F[ni] + /dr (35}7}([:;] N An(r) + % // drdr’ #% - An(r)An(r').

As can be seen from this equation, the functional derivatives and their in-
tegrals easily become massive and tedious to read. Thus, in accordance
with [15], [16] and [19], from now on I will use the following kind of ab-
breviations:

n(r) = n, /dr%/,
(') = n, /dr’ N /

and so on. By adopting this notation the functional mathematics become
significantly clearer to read. But now back to the expansion. By inserting
(2.52) into (2.50) and using 1oy = nin + An gives us

1 ([ 6?Fn]
; — AnAn/.
nm+2// onon’ |, nan

in

(2.53)
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S0 Eg[nout] = &[nin]+0(An?), where & [nyy] is the Fg[noy] with ney, formally
replaced by n,:

&l Z / / 5n5n

:Zei[nout] + Fs[nin} - / 5};;751]

AnAn/
Tin

Tin. (2.54)

Min

Now it must be ensured that this functional & is stationary around the
ground state density—otherwise in the self-consistent solving cycle of the
KS constriction the density will not converge. So let us analyze it further.
By expanding T[ni,] around n,,, and using Eq. (2.42) we arrive at

1 ([ 6T,
Tinw] = T. in] AT+ 5 :
s[in] s[Mout] ""/Vs[nm] nt 2 // onon/

After this using Ty[n] = Y, ¢; — [ Vin for Ty[new| = Ts[An + niy] gives

62T,
nll’l Z E’L / nln nll’l // 5”5’]’]//

Hence we have for Eg[ni,]| = Ti[nin] + Fi[nin)

AnAn'.  (2.55)

Nout

AnAn'. (2.56)

Nout

AnAn/

Tout

1 " 62T,

Es[nin] - Zei + F [nin] - /‘/;nin + 5 // 5’]7,(57’1,/
] 22

] onon’ |,

This means that now we have two alternative expressions for &[n;,), as
besides Eq. (2.54) we also have

AnAn/'. (2.57)

out

15



AnAn'. (2.58)

&lnin] = Bl // (5n5n’

This form was obtained by expanding 7; to second order in ngy — nin,
whereas for the first form this was done for 7. With these two forms it is
now possible to expand &'[n;,] around ngs. Namely, by adding (2.54) and
(2.58) together and working to second order in small quantities

ut

Anin = Nin — NGS and Anout = Nout — NGS (259)

gives

S2E
Elnn] = Eas + 5 // 5n6n

We now see that our functional &[n;,] can actually very well be either
larger or smaller than Egg even though it usually is larger since An;, ~
Ane,. But it does not matter because it is still stationary at ngg, i.e., the
linear terms are absent. This means that in the self-consistent solving cy-
cle the density should still converge to ngs and energy to Egs. So let us
now adopt & as our new energy functional. Let us now first write it out
explicitly into a more practical form. From Eq. (2.54) we have

ny n n n
nm Z € — // ‘Tm_ 7“ - xc nm Nout + 3 // |:ut_ ;;T xc [nout]

—Z@ / / |:m_nr,| / Vie[nin]nin + Exe[nin]. (2.61)

AnpAn) .. (2.60)
GS

Finally it should be noted that even though formally the eigenenergies «;
are for the density n,,:, we can replace them with those for ngg since

" 6%¢,[n
€; [nout] =€ [nGS] + / 571(5[%/]

Angg An’

Nout

(2.62)

out’
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so the replacement €;[n,,¢] — €;[ngs] does not violate the stationarity. Now
it is possible for example to compute the values of ¢;[n¢gs] beforehands with
in principle any method.

2.5 The frozen core approximation

The KS construction includes both core and valence-electronlike solutions
(¢, and 1;,, respectively). The core wavefunctions are well localized around
the deep potential of the nuclei and “feel” the effects of the other atoms as
comparatively weak pertubations. This is why the core-electronlike solu-
tions should be very close to linear combinations of orthogonal free atomic
core functions ¢, . Suppose that the difference is of order A\. Then by using
the ordinary variational principle we obtain for the core energy

Z €, = Z (i | — %VQ + Va(r)|¢i,)
:Z (Pac

=T. + / nVs + O(N?). (2.63)

1
SV Vi) + OOV

Next, since >, = >, +>_, , the sum over the eigenvalues ¢; splits into
two parts and by using (2.63) and ignoring the 0(\?) terms (2.61) becomes

Eln) =3 e + T+ / neValn] — Euln] — / Velnln + Exe[n] + Enp. (2.64)

(2%

After this the 3rd, 4th and 5th term from this equation can be simplified
significantly by using n = n. + n,:
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nc‘/s[nc + nv] EH nc + nv /‘/;cc Ne + nv nc + nv)

Ne nc +nv
/nc nucl+// +/ncvxc nc+nv
v
nc+nv nC + ny
-3 P - [ et

:ﬁwm+%m—mmh/&wm (2.65)

Also Via(r) can be divided into core and valence parts:

N v

nucl Z I (266)

1

Here Z§ (Z7) is the amount of core (valence) electrons on atom /. So it is
the amount of positive charge being screened out (left unscreened) by the
core electrons.

Furthermore, thanks to the strong localization of the core electrons, the
core density belonging to nucleus I can be written as n. ;(r) = —0(R;)Z. s
from the point of view of other nuclei and their core electrons. So

N

ne(r) == 6(Ry)Z;. (2.67)

I

Inserting this into the first term from (2.65) ([ n.Viua) yields

R] C[ ZC + Zv)
/ Ne nucl Z/ |R[ — RJ|

Z5(Z5 + 23) Z/nczr—Rz (Z; + Z7)
- Z . (2.68)
I;éJ

|R[_RJ| ‘I‘—R’
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Here the latter term is a structure-independent constant—it does not de-
pend on R; or valence electrons—and can be ignored. All the structure-
independent constants arise from interactions between the core electrons
and nuclei, so neglecting them does not affect the final goal (solving the
valence electron problem). Eventually it just leads to different zero-point
energy.

Treating Ey[n.| similarly leads to

1/// nene’ N ijj L1 Z// nj(r —Rp)ng(r' —Ry)
2 ‘I'—I',‘ ’R[—RJl I'—I'/’ .

I;«éJ

(2.69)

Here the latter term is another structure-independent constant and is hence-
forth ignored.

Next the ion-ion interaction can be separated into a form similar with
(2.68) and (2.69) by using Z; = Z§ + Z}:

N

N N
1N zzg ATA o7
— T 2.70
2; |RI_RJ| Z |RI—RJ\ ; R; — Ry| @70)

Putting the Egs. (2.68-2.70) together only leaves us one summation term:

A YA
/nCVnud + EH [nc + EH Z | I ]‘-;l ‘ (2.71)
J
I;éJ

As the next step we can in a way “linearize” Vi [n. + n,| and Ey. [ne + ny]
so that we obtain for the xc-terms left at this point
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- /V;cc [nc + nv]nv + EXC [nc + nv]

:—/wmum—/mmmm+&mu+@m¢ (2.72)

where E.[n.] is also an ignorable structure-independent constant if we
linearize it further, since then it does not depend on the ion positions R,
anymore:

Exc [nc] ~ Z Exc [nc,l]- (273)

1

These linearizations are neither trivial nor straightforward, but they are
well-established and theoretically justified for instance in [20].

Now, by putting all the terms together and ignoring (2.73) as well as all
the other structure-independent constants, we obtain for &

N
1 v 7V
@@nvz Eiv_E nv_/‘/)(cnvnv+Excnv + - 47
= S Bin [ Venn + Bl 53 2
I#£J
(2.74)

which is basically exactly Eq. (2.61) with all the core electron energy and
density ignored through replacements } . ¢; — >, ¢, and n — n,. But
the KS valence eigenstates ¢;, (r) are still obtained from the same single-
particle KS equation (2.31) that still has the core contributions:

{§W+wwwﬂﬂwm+%W®H

+mmwwmmmﬂmm:%mw.a%>
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But if also Vi.[n.] in the above equation is linearized, we can now replace
the one-electron potential due to the frozen cores by a sum of ionic pseu-
dopotentials [21]:

{—%W + 3 VP - Ry) + Vialno(n)] + v;c[mr)]} D) = 6 o).

This way the problem becomes dependent on valence electrons only, which
is excellent since all the physics of interest is there. The pseudopotentials
that include Vi.[n.,| can be computed beforehand. Computation of these
ionic pseudopotentials is an art of its own and has been comprehensively
studied for example in [22]. Nevertheless, at this point the KS construction
is determined by Egs. (2.74) and (2.76).

2.6 Second-order self-consistent charge extension
Let us first for simplicity employ notation alterations
Iy — 1, P (r) = (r),
ny(r) — n(r), & — E.
By explicitly calculating Eq. (2.74), we obtain with these notations

1 ! !
810 = 30 (il = 5V + Vit [+ Vi)

)

- (/Vn+//%+/vn)
+ (/Vpsnjt%//l |rTT,r,| +Exc[n]>

=Dl = 5V 4 ot g [ el Bl @77
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Now in the second-order self-consistent charge extension (SCC-DFTB), which
was derived by M. Elstner et al. in 1998 [16], expands & to the second-
order in the fluctuations around n(r)—an initial guess density. So now
n = ng + ong:

Z {ilno + onol| % / n‘(;%éln‘o |[¥i[no + dngl)

A

—Z Ws[ng + dng) |/ | v |[¥[ng + dne))

// dng (ng + ong) __// no (ng + 0ng)
|r — /| |r—r/|

= Z Yi[no + dnol|Va[no][thi[no + dnol)

1 "ongdng nono
=R = &

where I at first took the dnj-term out of the brakets, then added V4/2 to
there and also subtracted the corresponding term outside the brakets. The
linear terms in dn, vanish and we are left with only second-order correc-
tions. Now, only the expansion of the exchange-correlation energy is yet
to be done. We get for E..[ni,| = Exc[no + ono)

1 " FE
B -y _Dxe
XC [nO + 5”0] xc[no] + /V;m[nO](SnO + = // 577/(5 /

(5n0(5n6. (2.79)

By plugging this into Eq. (2.77) and arranging terms so that we get Vi.[no]
inside the brakets (analogously as for Hartree potential in Eq. (2.78)) we
arrive at the standard expanded form of the Kohn-Sham energy:
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&one) = Z (i (—%VQ + V + Vir[no] + V;C[no]) |4;)

[ J/

Vv
the band structure energy

(52 <C TLO 1 ,
// ( Inoony, \r — r’\) Omoong

the charge ﬂuctuatlon term

+ Exc[”O] - / XC nO // |n0n0 + EH (280)

the repulsmn term

2.7 DFTB energy
2.7.1 Tight-binding formalism

So far the treatment has been for general valence electron densities.

Consider the valence electrons ¢, (r) of the atom / belonging to the system
in question. Assuming tight-binding, these valence electrons should first
and foremost be tightly bound to the atom to which they belong and they
should have limited interaction with pseudopotentials of the surrounding
atoms. As a result their wave functions will be rather similar to the free
atomic wave functions gofree( ) that satisfy the pseudo-atom Schrodinger
equation

1
SR VI )| gli(r) =t (r), (281)

Vore () =V () + Valng ] (r) + Vielng¥] (v) . (2.82)

Due to their similarity, it makes great sense to construct the valence elec-
tron wave functions out of the orbitals of the free atoms:

o (v Z b, (). (2.83)
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The valence electrons should now not be confused with the KS wave func-
tions ;(r), since they are obtained from a single-particle potential V;(r)
with mathematical trickery and could very well be shared by several dif-
ferent atoms in the structure. But the total density of course still is the
sum of N Kohn-Sham eigenstates lowest in energy, as is of course the sum
> 1. ¢1,- Thus also the KS wave functions can be expanded similarly to
Eq. (2.83):

Gilr) =Y e ppe(x). (2.84)
IN

However, the higher the orbitals are in energy, the smaller their contri-
bution in ¢;(r) is. Thus the computational efficiency can be improved by
neglecting the higher-energy orbitals, which is particularly topical in the
case of approximative but quick DFTB theory. The most compact sensible
reduced basis—the minimal basis—only consists of the most essential or-
bitals. That is, for example for period II elements (for example boron, car-
bon and nitrogen) the 2s and the three orthogonal 2p orbitals since their
valence electrons are in the 2s and 2p shells (1s is occupied by the core
electrons). Since there are just so few basis elements in the minimal basis,
special attention to its quality should be paid when it is used. Here quality
means possibility to find such expansion coefficients ¢; in Eq. (2.83) that
Y;(r) given by that equation differs from the true ;(r) as little as possi-
ble in several different relevant situations. Now, these requirements are
poorly met by gpﬁr;e(r) for minimal basis. Therefore it is needed to intro-
duce a better basis. A common way of doing this is to replace them with
orbitals ¢;, (r) that are obtained from a KS construction similar to the free
atom construction determined by Egs. (2.81) and (2.82). In this construc-
tion a confining potential V7™ (r) is introduced to V(r):

1
—§V2 + st}mf(r) ¢r,(r) =€r,7,(r) and (2.85)
VR =V (x) + Va[ngr () + Vie[n§' () + Vi ().
(2.86)

The additional potential V°"(r) can be interpreted as a potential mimick-
ing the repulsive potential of the surrounding electrons. Hence its name—
it is supposed to provide a potential barrier to confine the orbitals into
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smaller volume. Namely, the pseudopotential V}*(r) approaches zero for
large |r| leading to long “tails” in wﬁ‘fe(r).

As the resulting orbitals ¢, (r) are supposed to truly resemble the corre-
sponding free atomic orbitals ¢[*(r), Veone(r) should be spherically sym-
metric similarly to V*(r) and Vic[n§’'](r). Otherwise there are no eigen-
states of the angular quantum number [ for the differential equation (2.85)
and it would not make sense to talk about s and p orbitals for instance.
Also from the radial part of ¢, (r) only the tails should be cut off, s0 Vons
should be close to zero in proximity of the nucleus and grow strongly as a

function of distance 7.

The V,oni-potential is our encounter with parametrization. For each element
in calculation a V., -potential needs to be determined and the orbitals
¢, (r) calculated. But more about this later in Sec. 4.1.

2.7.2 The band structure term Fgyg

The band structure (BS) energy term is the first term from Eq. (2.80):

Bps = > _ (i Hlbi) . (2.87)

7

It is named after band structures for historic reasons—without the second-
order self-consistent charge extension part the band structures are fully
determined by this term (more about band structures in Sec. 2.7.8). But
since we are now dealing with SCC-DFTB, this naming is a bit delusive,
but we let it be.

Now, Egg can be written in the tight-binding formalism by using (2.84),
and it becomes

Bps=Y»_ Y cic) HY (2.88)

i Iy

where [} ; are the matrix elements of the H°-matrix:
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Hy 5, = {1, (r = R)|H|,(r = Ry)) . (2.89)

The notation ) | 5, implies that the summation is carried over all the pos-
sible indices, i.e., first over all the possible orbital numbers 4 related to
the specific atom I and secondly over all the possible atoms I. It is thus a

shorthand notation for 3, >~ ;.

2.7.3 Charge fluctuation term

The charge fluctuation term, or self-consistent charge term, Egcc was de-
fined as

3 E..[n 1 ,
Escclno + dnel = // ( in (mo T r’]> dnoony,. (2.90)
00Mg -

It is the only term in Eq. (2.80) possessing the electron density (i.e., charge)
fluctuations dng, hence the name. Its role is therefore to describe the effect
of the change in the guessed input density to the value of &[n]. We, how-
ever, already know it from atomic physics. Namely,

OF 1/ 6°E )
E(Aq) = Ey + (G_Aq) Aq + 5 ( ) (Aq)

0 (Aqg)?
1
= Ey — xAq + ;U (Ag)*, (2.91)
where
~ (IE+ EA)/2, (2.92)
U~ IE— EA, (2.93)

and where in turn U is the Hubbard on-site energy (or Hubbard U) and IE
and E'A are the first ionization energy and electron affinity of the atom in
question, respectively.
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This observation provides us with a route to simplify this term enormously
by making use of U—a measurable and calculable physical constant. This
is very much of tight-binding fashion, where the overall goal is to try to
make use of the assumption of tightly bound electrons as much as possi-
ble and replace some troublesome quantities with something that can be
calculated in advance, or in other words parametrized. This time the trou-
blesome quantity is essentially the E\ -contribution in this term.

Another approximation in the tight-binding fashion arises from the fact
that by definition the electronic densities are confined around the nuclei.
Thus it makes sense to discuss atomic volumes. More explicitly it is possible
to define a volume around an atom that “belongs” to that atom. Now,
consider the real space ¥ divided into volumes 7;, related to atoms I, so
that

zj:%:"ﬂ and /V:Zf:/% (2.94)

We do not need to specify these atomic volumes at any point—they should
just provide some kind of heuristic picture of some volumes that belong to
each nucleus. Anyway, according to this picture, the excess charge related
to dng(r) can be divided between the atomic volumes and we have for
atom J

Aqr = dng(r). (2.95)
¥

Analysis of these excess charges is known as Mulliken charge analysis. Any-
way, in turn, the density fluctuation dn, can be expressed with Mulliken
charges Ag;:

dno(r) =Y Agqséns(r) and (2.96)
I

Snp(r) = 1. (2.97)
)
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In other words, Ag; is simply dgo,; normalized with Ag;. Now, together

with Egs. (2.95) and (2.96) Escc becomes
E 1
Fsce = 5™ (Agq) (A / / e
sccC Z QI qJj )y <(5n05n0 . |r_ M)

= Z EX.. (2.98)

In order to analyze this further, consider first terms with I = J:

52
EII — A / / XC
SCC ar) v Jv Inoong,

This result should be in correspondence with our result (2.91) from the
atomic physics and thus we find that

1 !/
|r — M) onrong. (2.99)

no

1
Eite = §U1 (Aqr)*. (2.100)

Next for different atoms (A # B) the xc-contributions will vanish since
for E,. it holds that 6*Fy./dndén’ o< d(r — r’). Thus the interaction is only
electrostatic and these terms read

1 !/ /
Eitc = B (AQI>2/// /7/ 5n15nJ. (2.101)
I J

v —r'|

Now recall that for a given 7; the density function én,(r) describes the
distribution of the “excess” charge when compared to n(r). Its only re-
striction is Eq. (2.97) and thus in principle it could be any function that
integrates to unity. However, the expression (2.101) can only be calculated
if on;(r) is known. Therefore some assumptions have to be made for its
form. Firstly, it can be assumed, that their form is radial in good approxi-
mation. Secondly, in order to preserve the simplicity, we must expect it to
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have the same form for all the same atoms. This means that if atoms I and
J are of the same element,

(STL[(I' — R[) = 57’LJ(I‘ — RJ) (2102)

Thirdly, it can be shown that a Gaussian profile for dn; is a good choice. Fi-
nally, in order to obtain the correct limit we must require that when I = J
the result coincides with the result for E{l.. Importantly, with this way
we can relate this term to the Hubbard U as well. Now, by using the sym-
metry of Eq. (2.102) the integral [[dn;0n/,/ |r — 1’| can be evaluated. This
has been done in detail in [19] as well as in [16]. Nevertheless, the final
results for those calculations are

1
Bsce = 3 ; Y15 (R17) Aqi Mgy, (2103)

(Riy) = U;, I=1J
T = it (CryRiy) JRigy T # .

s 1
C :UU”—— 2.105
1J vYJ 2U12+U3’ ( )

where erf(z) is the error function.

and (2.104)

So instead of three-dimensional density functions dng(r) for which we
should have performed complex integrals, Escc is now given by a set of
real-valued variables {Agq;}. The simplification is remarkable, thanks to
the tight-binding approximations. But we cannot really exploit this form
yet. We should manage to express it as a function of the expansion coef-
ficients {cf } just like the Epg-term. So we should somehow express the
Mulliken populations ¢; as their function even though they contain inte-
grals over the nonspecific atomic volumes 7;:

QI:Z/VI|¢1'(I')|2 :Z Z cjﬂcgﬁ/ gpza@—RA)gOBB(I‘—RB),

i Aa,Bg 71

(2.106)
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Performing this integration directly would be a difficult task even if we
had specific forms for #4. Thus some approximations should be made.
Firstly, if A # I and B # I the following approximation is very reasonable:

/V Pt —Ra)pp,(r—Rp) =0, A#IB#I (2.107)

But what if A = I, but B # I? Let us define the S-matrix, i.e., the overlap
integral

SaaBs = / ¢, (r —Ra)pp,(r — Rp). (2.108)

Now, by means of Fig. 1 we can use the elements of the S-matrix to ap-
proximate

1
/ ©u.(r —Ra)pp,(r — Rp) = 5By B#L (2.109)
71

Figure 1: Overlap of the local orbitals
I,, and J,, in the case pictured y = v
(both are s-orbitals). As it can be seen,
particularly in this case the approxi-
mation (2.109) is actually even exact
(if also ¥7 and ¥ are identical). Oth-
erwise (for example in the case of 2p,-
orbital in the origin and 2p,-orbital in
L,0,0) the approximation clearly fails
but on the other hand in such cases
the overlaps are small anyway:.

Now only the case where A = B = | remains. We would like to relate
these terms to elements of the S-matrix as well. Hence we write
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/ QOZ(I' — RI)SO,B(I‘ — R[) = XSIDCIB = Xéag. (2110)
V1

It is not completely intuitive what we should have for X in this case. The
value X = 1/2is intuitively too small, but X = 1 would mean that orbitals
of atom [ fully belong to #; which would contradict with (2.109) since in
that case we should have zero overlap between orbitals of neighbouring
atoms. But what is certain is that X should be such that the sum of the ¢;
from (2.106) agree with

ZCH = Z (Yi|vs) = Z Z CZQC%BSAQB,B' (2.111)
T

i i AaBpg

In other words we require correct normalization. Performing the compar-
ison and using (2.107), (2.109) and (2.110) yields for us X = 1 after all.
Thus, all in all by using /-algebra we have

/V ©a(r —Ra)ps(r — Rp)

1 1
— [§§AI (1—4p1) —|—§§Bl (1— 5,41)1—1- dardB1 SAaBﬁ

A=I, B£I B=I, A£I A=B=I
1
=3 [6ar +0B1] S4B, (2.112)

Inserting this into Eq. (2.106), performing some index changes and using
the property 5% p, = Sp,4, and the relation z + 2" = 29e¢(z) we obtain for
Aqr = qr — ¢ (where ¢Y is the valence electron count of atom I)
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1 . .y
Aqr =5 Z Z 1.Cp, 1By + Z h CrSaa, | — 47

i |a,Bg Aa,B

:5 Z Z [CI#CAQSI“‘AQ + CI;_LCAQSI#AOC:| — q?

i A

=) ) Re (cgc;aswa) — qf. (2.113)

i pAa

Thus all in all we have managed to express this Escc-term only as a func-
tion of {c} } despite its very complex first form (2.90).

2.7.4 Repulsive energy term

The third and last line of the SCC-DFTB energy is the repulsive energy
term

Frep = Bt — Eulno] + Exelno] — / Vee[nolno. (2.114)

It chiefly consists of the ion-ion repulsive energy Ej;, hence the name. The
term Ey[no| is the screening of the ion-ion repulsion due to the initial va-
lence electron density ny and the last two terms are many-body effects
associated with ny.

Now, something needs to be done to these terms. Let us postulate that
all of these can be expressed as a sum of pairwise repulsive functions de-
pending only on the distances of the atom pairs:

Erep = > Vil (Ru). (2.115)
I<J

According to Eq. (2.9) the ion-ion repulsion term Ej; is of this form by def-
inition. Also Ey[ng| can be shown to be exactly of this form if we assume
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that the atomic initial densities n{ are spherically symmetric (consistently
with Ag; in Escc). So, we have

=> nj(r—Ry). (2.116)
I

Plugging this into the definition of Ey (2.44) gives

’n,O TLOI'—R]’I’LOI'—RJ)
ST

Z// nor—RInOr—RJ Z// ni(r — Ry)nd(r' — Ry)
N |r—r’| lr — 1/

1<J
”0
;// !I'—I"-FRIJ| Z// |r—r’]
= Z frs(Ryy) + (structure-independent constant), (2.117)
I<J

where f;; is some unknown function, which most importantly only de-
pends on the distance R;; between the atoms / and .J and the element of
I and J. The structure-independent constant should be further ignored,
since it is of the form ), f; instead of ) _,; f1;(R;;). It also can be ignored
since it is structure-independent, (i.e., independent of R;;), and thus only
affects the indifferent zero energy level.

Also the two xc-terms can be argumented to be of the form (2.115) simi-
larly to Ex[ng| if we have

Vie[no] = Vaelni), (2.118)

i.e., the Vi -functional is linear. This is of course not the case, but is a rea-
sonable approximation similarly to linearization of V. in the frozen-core
approximation part.
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The V¢, -functions should also be short-ranged. Firstly, from Eq. (2.117)
we see how Ey[ng] screens out the ion-ion repulsions in larger distances
since

Z // Ir—r' + Ry r’ + RIJ| Z R” = B forlarge Ry,. (2.119)

1<J I<J

Secondly also the xc-contribution terms cancel each other when distances
gTOw.

after all for each atom pair (I, J) we have a universal function V,(R;;).

For a system with n different elements, a total of (n? + n)/2 different V.-

functions exist. Their forms are not calculated—they should be simply
constructed in such a way that the results given by Epprp are consis-
tent with those of DFT, experiments etc. In other words they should be
parametrized. This is not a simple task and will be discussed in detail in
chapter 4. But after the parametrization the calculation of this repulsion
term happens practically in zero time.

2.7.5 Solving the DFTB energy

From now on let us assume that the coefficients Ci’u and the functions in

the basis set {¢, } (and hence also H?M 5, and S, ;,) are real. By combining
the real versions of Egs. (2.88), (2.103), (2.113) and (2.115) the DFTB energy
reads

E = Z Z cl ¢, Hy , += Z’V{J RIJ)AQIAQJ+Z o (Rig),

i IuJy 1<J

(2.120)

Mgy =303 (chchSnoan) — b, (2.121)
i wAq

where 45 is defined by Eq. (2.104). So we have managed to reduce the
original problem of KS construction including multidimensional differen-
tial equations into this purely algebraic problem of finding the station-
ary point of a function of multiple variables (expansion coefficients ¢} ).
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This kind of problem is best solved through the method of multiple La-
grange multipliers. Its theory tells us that in a stationary point of a function
f(z1,...,zy) the following equations hold:

M
Vof(21,.. . an) = > AiVagi(zr,....2y) =0 and (2.122)
gi(xy,...,xy) =0 Vi, (2.123)
where g;(z1,...,zy) are the constraint functions and ); are the Lagrange

multipliers themselves.

In our case this method is particularly appropriate, since as discussed in
the derivation of the energy functional & (2.120), it is no longer assumed
to be minimized by ngg. It is rather only assumed to be stationary at ngs.
So in the correct density & might actually be in a local maximum.

Nevertheless, now the functions constraining the expansion coefficients
c;, are the KS wave function inner products (¢;¢);) = d;;. Also naturally
we must have Ci’u € [0,1]. Now, writing Egs. (2.122) and (2.123) down in
our case yields

) ) .
—F — Z eia_(jz[)u <¢z|¢]> =0 VCI’i and (2124)

ach,
(Wilhj) = bij Vi, j, (2.125)
I have labeled the undefined Lagrange multipliers as e, since in this case
it should physically have dimension of energy. Nevertheless, it now only

remains to work out the c-dependencies of these equations. Starting from
the Epg term, we get
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0
o Epg = acp ZZCACBBHABg

b Aa,Bjs
0
= Z Z (5@5]”% CGBB + 6ap5[MB[j> Hy, B,
b A(17B£
0 0 0

- Z ¢p,Hi,p, + Z ot =2 Z W (2.126)

B o

N’ S———

Bs—Jy, Aa—Jy

where in the last step I used the symmetricity of H°.

Next with completely identical steps we obtain for the inner products

(‘3
<¢a|wa> — 4. 5,808, =2 Si (2.127)
IM Ju

The derivative of the Egcc is the most complex one. First of all, we need
to calculate the derivative of Ag;:

O(Aqa) _ 0(qa —
o o¢. e 3D NI

b o,y

=SS (bnnds, + h D) Sa

b o, Jy

=014 Z €7, Suat, + Z CaSAal, (2.128)

With this result the derivative of the whole Escc can be calculated:
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aESCC o 0 1

=5 Z V1BC5, 510,808 + 5 Z YapCy, S aa1,2q5

AqA d(Agg)

a
oct

©w

Agp + Aqa

2 57
Aa—>Ju
1 a 1 a
+3 > varch, Spa,Aqa + 3 > vanch, Spa1,Aq
A, ABg
35:JV

1
252 Y18 +VsB) €5, S1,0,808 + Z (Yar +7var) €¢5,51,5,Aq4
B,J,

24
BK A K
= Z 5, | St Z (Vi +vir) Agr | (2.129)
Ju J

where in the last step I used the symmetricity of v and S. Now, by plug-
ging Egs. (2.126), (2.127) and (2.129) into (2.124) and (2.125) gives us the
final forms of the KS equations in the tight-binding formalism:

Z ng (HIMJV - eCLSIMJV> = 0 vaﬂ ];,1,7 (2-130)
Ju
where
1
iy, = Hi g, + 5800, ) (v + 1) Mg (2.131)
J

and in these Egs. the c-coefficients are restricted through
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> eSS, =1 Va. (2.132)

[[,MJV

For a total of N valence electrons in the system and M orbitals in the
minimal bases of all the different elements we have NM/2 different c-
coefficients (factor 1/2 is for degenerated spin). Each of them has its own
equation in (2.130). Also we have N/2 undetermined Lagrange multipli-
ers e, and N/2 different Eqs. from (2.132). Hence in total we have here
(NM + N)/2 variables and equations. After the {c} } have been solved,
they can be plugged in to Eqgs. (2.120) and (2.121) to yield the final value
for EDFTB-

Egs. (2.130) and (2.132) are the KS equation equivalents in the DFTB. Al-
beit they are mathematically very different to the KS equations, they have
the same physics in the background and they have to be solved similarly,
i.e., self-consistently: from an initial guess of {c} } we obtain H;, ;, which
we can plug into (2.130) to yield new set of {cj } and so on until self-
consistency is achieved. With this method also the convergence problems
are similar with KS equations [19]. But without the Egcc term Agy = 0
and Egs. (2.130) and (2.131) become very simple and convergence is not a
problem anymore.

2.7.6 Calculation of the overlap matrix S

Computation of the overlap matrix elements

St.a, = (1, (r = Rip)lps, (r —Ry)) = /901(1“ —Rp)ps,(r—Ry) (2.133)

can be simplified considerably. Namely, it can be reduced to a linear com-
bination of S-matrices with another orbital at origin and another at Rz
with R = |R] — R[‘Z

S[HJV Z C]w]ﬁ / )(,OJB r— RZ Z C S (2134)

InJs
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To see this, let us first make a linear transformation of spacer — r — R; or
r — r — R ;. The transform should be chosen so that the orbital with lower
principal quantum number n (or with lower angular momentum quantum
number [ if both orbitals have the same n) ends up in the origin. After this
let us make a rotation I' that rotates the system so that the other orbital
gets into Rz. Obviously the final value of the integrand (2.133) remains
unaltered under these transformations if we rotate the orbitals with I" as
well.

Now, firstly s-orbitals are spherically symmetric and hence they need not
be rotated at all. But the p-orbitals are not spherically symmetric. They
however have the rotational symmetries p,(r) = I',(7/2)p,(r) and p.(r) =
I'y(7/2)p,(r) as well as I';(0)p;(r) = pi(r) for i = z,y, 2z and for any §. So
under rotations these functions behave exactly like the space coordinates
z, y and z. Thus the p-orbitals in a way form a basis in a “p-space” (like z,
y and z form a basis in Euclidean space) and a “p-vector” p can be rotated
similarly to r.

There exists an infinite amount of different rotations that yield the desired
result, i.e., the orbital that is not in the origin ends up in RZ. Different
rotations might leave the orbitals in different orientations though, but in
such a way that the amount of overlap does not change. Now, consider
an example of such a rotation I'y = I'y(—a.)'s(—a,,), where 'y and I,
are rotations with respect to the y-axis and z-axis, respectively, «,,. is the
angle between R and the yz-plane, and «, is the angle between R and the
xz-plane. It is a straightforward procedure to find that I'; reads

A2 Yy __xz
1 X V1—z2 V1—z2
z Y

Fl - 0 V1—2a2 T V122
T y z

(2.135)

where z, y and z are the components of the unit direction vector R/ |R).
Now I'; rotates for example p,(r) = (1,0,0), in the following way:

VIT# i =1 N (VI
z Y

[ype(r) = 0 = e 0| = 0
v Yy o P . P
=V —a2p,(r) + ap.(r). (2.136)
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Similarly

xy z

i-r2 xQPx

Lipy(r) = —

Now, by using symmetries

/dSr s*(r)pj(r — Rz) =0, ifi#z and

/dgrpf(r)pj(r — Rz) =0, ifi#j,

we can see just for example that

Ssp, (1) =2Ssps(R),
Spapy (R) =2 Sppo(R) + (1 — 2°)Spr(R)  and
szpy (R) :IySmw(R) - 133/Spp7r(R)a

where

Sspo(R) = /dgr s*(r)p.(r — RZ),
Sppo(R) = /d?’rpj(r)pz(r — Rz), and

SnlB) = [ Erpi(p(x - Fa)

(2.137)

(2.138)

(2.139)

(2.140)
(2.141)
(2.142)

(2.143)
(2.144)

(2.145)

The integrals (2.143-2.145) are examples of the Slater-Koster (SK) integrals.
They have been named after the basic ¢ and m bonding situations (for ex-
ample S, is the overlap integral of o-bond between s and p-orbitals).
The coefficients determining the contributions of these integrals in the ma-
trix elements of S, as in Eqs. (2.140-2.142), are the Slater-Koster coefficients.

Now we can rewrite Eq. (2.134) as
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S, = Y C-S-(R), (2.146)

where 7 labels all the different bonding situations, e.g. ppm, many of which
are zero by symmetry. As there are more orbitals than just the s and p
orbitals, there are more bonding situations than just the ones discussed so
far. For example with d-orbitals also the §-bond comes into play.

A comprehensive collection of the Slater-Koster coefficients was first listed
by J. C. Slater and G. F. Koster in 1954 [23]. With the notation used here
they are also listed in [19]. Now these Slater-Koster tables allow rapid
computation of 57, ;, since the SK integrals can be computed in advance.
Details of their computation are discussed in [19].

The SK integrals are pairwise like the V.,-functions and therefore there ex-
ist own SK integrals for each element pair. But for V;.,-functions we have
also V;lJ = V;/I, which is in general not the case for SK integrals. Hence, in
general we actually have two different SK integrals for each element pair,
unless the pair is of same element or there is rotational symmetry present
(for example S,,, and S,,.). But for example for S,,, there are no such
symmetries and we have two different integrals for it in the heteroelemen-

tal case.

2.7.7 Calculation of the Hamiltonian matrix H n|

The Hamiltonian matrix elements H} ; read

HY ) = (o1, (r — Ro)| Hlngllps, (v — Ry)) = / o1, () HOnoJios, (v — Ryy).
(2.147)

To determine them more explicitly, we now need the exact form of H[ny(r)],
for which we need to consider what the initial density guess n,(r) actually
is. In principle we could choose it to be nearly any density that is rea-
sonably close to the true n(r), but it is preferable to have n, to be the true
density in the limit R;; — oo for all I, J. Then we must have
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Z nie(r—R;) and (2.148)

Hlng) = — §v2 + Vo). (2.149)

Above the orbitals @free( ) contributing to nj¥(r — R;) are from the KS
construction for the free atoms, i.e., Egs. (2.81-2.82) and V**°[n,] is the KS
single particle potential producing the initial free atom density n.

Now, for I = J the matrix elements of H° read (¢;,| — $V? + V*[ng]| ¢y, ).
Consistently with previously used approximations we can consider the
orbitals to be localized within 77 and hence we can also ignore all the po-
tential of V™*°[n,] that is not in ¥;—that part of the potential would have
negligible contributions to the matrix element integrand. Now, the po-
tential left unignored thus only produces nf$ through the KS equations,
and hence this potential must be Vfree from Eq (2.82). This is called the
one-center approximation. The orbitals ¢, are eigenstates for the KS Hamil-
tonian with this potential and thus these matrix elements become 9,,,¢,.
However, this would lead to a situation where in the discussed limit of
infinite separation the initial density would be the correct density but the
initial energy would be >, >, ¢} €u- SO to obtain the correct final energy
in this limit, approximation ¢, ~ ¢,° should be made. Luckily this ap-
proximation is not particularly crude, since the free and confined orbitals
are not far from one another in density and as discussed, for small density
changes energies change quadratically.

Next, for the non-diagonal matrix elements (for which I # J) we can sim-
ilarly to the previous case argue that the two-center approximation, where
Vieelng] = Ve + Ve, is sufficient. Therefore these matrix elements now
read (¢;,| — —V2 + Vf]ree + V5|¢,,). This form can be further simplified
by using the fact that the orbitals o1, are eigenstates for —3V? + V.
Now comparing Eqgs. (2.82) and (2.86) shows that we can rewrite Vf]Cee
as V™ — Vione,r and therefore by operating with —1V? + V5™ to the left
gives €,57,7,(Rry) + (01,|Vs,s — Veont,1|¢5,). We Could have also operated
with —1V? + V9" to the right to obtain a bit different equivalent form. In
[19] both of these two forms are used to improve the numerical accuracy
in the integration. Nevertheless, all in all we have obtained for H?H 7
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O € ifI = J,
HY = O ith=J (2.150)
o €uS1,0, T | (Vo,s — Veont,r) 1.0, il # J.

Finally, the integral [ (Vi — Viont.1) ©7, s, In the non-diagonal case can be
decomposed into a linear combination of Slater-Koster integrals similarly
to the S matrix—the only difference between these cases is the potential
Vs or Voone centered at either of the ions. And since it is spherically sym-
metric, angular properties are equal in both cases and thus Slater-Koster
transformations apply for H as well. So similarly to the S case, calculation
of the H matrix can be made rapid by computing the H-Slater-Koster
integrals beforehand and then applying the SK transformation rules in the
simulation.

2.7.8 Periodic boundary conditions

So far we have only considered tight-binding within a finite amount of
atoms. But for example hexagonal boron nitride layers and nanotubes
are best modelled as infinite periodic lattices. In such case the nuclear

potential Viuel can be constructed by repeating the atomic potential

‘Zucl(r) = Z ‘/nucl,l<r - T) (2151)
1, T

where the sum runs over atoms I belonging to the unit cell and lattice
vectors T. The crystal Hamiltonian is

~ 1 ~
H(r) = =5V* + Vaa(r) (2.152)
and its eigenstates ¢, (r) have the Bloch form

Yix(r) = ey (x), (2.153)
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where u;(r) has the same periodicity with ‘Zml(r), ie., u(r +T) = u(r) for
every T. Now we want the basis functions ¢,x(r) to have the Bloch form
as well, since otherwise their linear combination would not be a Bloch
function. Also, it would be convenient if this basis would be related to the
previously used basis ¢, (r) that satisfies the pseudoatom equation (2.85).
This can be done by extending the pseudoatom eigenstates ¢, (r) to the
whole crystal in the following way:

Pux(r \/_ > e Ty, (r—T). (2.154)

It can be seen readily that ¢, (r + To) = e*T0Q,(r). That is, when the
physical location in real space is shifted by T, only the phase of the wave
function will be changed. In other words it is of the Bloch form (2.153) as
required. It is also easily seen that (¢,x|¢,kx) = 0,.,. Now, the KS wave
functions read with this basis as

Yige(r) =Y g Bua(r). (2.155)

I

In this new basis the elements of the S-matrix (now labeled as §) become

~ 1 e
Sune =y T [ 6= Dt - )

T, T

1 ik- 1"
=¥ Z ek T /gpu(r—T)go,,(r—T—T”)

T, T+T"

=> T / 1), (r — Z e*TS,,(T (2.156)
T

Next, for the Ho%-matrix H° , = (Z,u(r)|H[no]|@vax(r)) we obtain with

pvsk
identical steps

Hp\ = Z e*THY, (2.157)
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Finally, by respectively substituting H° and S from Egs. (2.130-2.132) with
H" and S we obtain

Y (f]m,;k - ei;k@w;k) ~0 Vip and (2.158)
> S =1 Vi, (2.159)
W,V
where
~ 1
H,, = H2V+ §S]HJUZ(’Y[K+’7JK) Aqy. (2.160)
J

The Mulliken charges can be also calculated with the substitution Sy, ;, —

S,vx. However, now we have charge fluctuations for several different k.
Hence it is necessary to introduce a summation for k£ = |k| from 0 to k,
i.e., the Fermi wave vector (remember that 7" = 0 is assumed). Now, from
Eq. (2.113) we obtain

kg
Agr = Z Z Z CpcCia ST A — 4 (2.161)
¢ u»Aa kZO

After the c-coefficients have been solved, calculating the DFTB-energy is
not as straightforward as previously. The band structure term that now
reads

kg
Eps =Y > Y chaciaHy, (2.162)

i pv k=0

is not much more complex than before but the Escc-term
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unit cell

1
Escc = 3 ; ;fYIJ(‘RIJ — T|)AqrAqy (2.163)

has become trickier. But there do exist standard methods for computing
the infinite sum over all translations T, e.g. the Ewald summation [24].
The sum over ions I and J should only go through the ions within the
unit cell, since now we should consider the Epprp per unit cell. Lastly,
when we are considering F..,, we must take into account that the repulsive
potential energy of two atoms in neighbouring unit cells should be divided
evenly between their unit cells. Now, it is easily seen that the formula

unit cell

1
Eey=5 > > Viy(Ris =T (2.164)
1J T

gives the correct E.., with a special case definition V;.,(0) = 0. Now, this
formula is very easy to compute, since due to the short-rangedness of the
repulsions there are only few terms in the summation.

46



3 Boron nitride nanostructures

3.1 Hexagonal boron nitride layer

As discussed, the BN nanostructures are based on the hexagonal graphene-
like honeycomb structure. The simplest such structure is the hexagonal
boron nitride layer (h-BN). Its geometry is defined by the lattice vectors
a and the atom position vectors R within the unit cell. They can be de-
fined in various different but equivalent ways, but in this thesis I use the
following configuration for the lattice vectors

aj :(l<1,070), (31)
as=a (—%, ?, O) and (3.2)
az=c(0,0,1). (3.3)

Now the position vectors for boron and nitrogen (Rp and Ry, respec-
tively) read

R =4a(0,0,0) and (3.4)

Ry =a (o, % 0) . (3.5)

These vectors are visualized in Fig. 2. The lattice is then obtained by re-
peating the unit cell infinitely in each direction. The lattice vectors T are
now of the form T = nja; + nsas + nsas

The reciprocal lattice is defined through the usual relation
. 2 €ijk

bk = Vuc a; X aj, (36)

where V. = a?¢V/3 /2 is the volume of the unit cell. Now we can see why
also for the single h-BN layer it was necessary to define the third lattice
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Figure 2: BN honeycomb network with lattice vectors a; and ay as well as the
two-atom unit cell spanned by them (in green). The definition of the chirality
vector C(n,m) is clarified with an example for C'(2,2): The lines bordering the
yellow area are perpendicular to the C'(2,2). The yellow area is rolled and its
borders connected to form the tube. Positions of the different B and N atoms can
be labeled as Rgp(i, j) = Rp+ia;+jas and Rn (7, j) = Rp+ia; + jag, respectively.

vector a;. Nevertheless, now with the definitions (3.1-3.3) the reciprocal
space unit vectors become

2w 1
bi=—1|(1 — 7
1 a (7\/370)7 (3 )
2 2
by == (0, =0 d 3.8
=2 ﬁ) an (3.8)
2
by = == (0,0,1) (3.9)

They are visualized in Fig. 3 along with the so-called special symmetry
points I', M, K and K’. It can be seen from the picture that M = b,/2,
K = (2b; — by)/3 and K’ = (b; + by)/3. Thus we have
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Figure 3: The reciprocal lattice vectors b; and b, as well as the reciprocal unit cell
(in green). The hexagons represent the Brillouin zones, first of which is coloured
in blue. Also its first quarter, which is adequate in describing the whole 1st Bril-
louin zone due to symmetry reasons, is highlighted in darker blue. Also the spe-
cial symmetry points are shown.

2

- % 0,0,0), (3.10)
2w 1

M =" (0,——,0), 3.11
a( V3 ) G0

K- 2T (2,0, o) and (3.12)
a \ 3
or (1 1

K="(-—0 3.13
" (3 750) 613

3.2 Boron nitride nanotubes

After defining the lattice, the nanotubes can be defined through so-called
Chirality vector

C(n,m) = na; +mag, n >m. (3.14)

49



() (b)

Figure 4: Examples of (a) zigzag and (b) armchair BNNTs for n = 5. Their unit
cells have been repeated 3 and 5 times, respectively. So it is seen that for constant
n the unit cell of the zigzag/armchair BNNT is long/short and narrow /wide.

It specifies the way in which the layer is wrapped into tubular form. Fig.
2 demonstrates how this is done through an example for C(2,2). The
NTs obtained by using the C'(n, m) are referred to as (n,m) BNNTs. The
special cases of (n,0) and (n,n) nanotubes are called zigzag and armchair
nanotubes, respectively. Fig. 4 shows examples of zigzag and armchair
tubes for n = 5. In this thesis, as well as in most computational papers,
only these cases are considered due to the simplicity of their unit cells.
Besides, when BNNTs are synthesized, they commonly end up in either
zigzag or armchair form. A unit cell of (n,0) or (n,n) BNNT consists of
4n atoms. However, there are some underlying rotational symmetries—
there are only three different kinds of bonds in chiral NTs, and in zigzag
and armchair NTs this number is reduced to just two. Consequently, in
zigzag and armchair BNNTs the B and N atoms lay in their own cylinder
levels with slightly different radii. Due to these symmetries the 4n-atom
unit cell can be simplified greatly by revisiting the standard Bloch theorem
and applying the rotational symmetry [25, 26]. However, this theory is not
utilized in this work. It only applies to perfect NTs and with defected ones
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this symmetry cannot be employed.

As nanotubes are quasi-one-dimensional there are periodic boundary con-
ditions only in one direction (2-direction in this thesis) and thus the k-
space is one-dimensional as well. The reciprocal lattice is defined with

_27T

b
[

(0,0,1), (3.15)

where [ is the length of the BNNT. The only symmetry points are I' = 0
and X = b/2.

3.3 Elastic properties of BN nanostructures

This section is based on R. Feynman’s classic book [27]. Now, Young’s mod-
ulus, or elastic modulus, is a measure of the stiffness of an elastic material
and is used to chararacterize materials. Any material obeys Hooke’s law
for small enough stretchings. It states that the force and the stretching
caused by it are linearly related. Now, consider an object of initial length
lop and initial cross-section area Ay. Thus it has initial volume V, = [y A,.
Under stretching of [ — [, the object resists the change with certain force
F(l—1) =dE/d(l—-1)) = dE/dl. According to Hooke’s law the corre-
spondence between the stretching and the force is linear:

F(l—1p) = K(I — ). (3.16)

But here the constant K (the spring constant) as well as F'(I—Iy) are extensive
physical properties, i.e., they depend on the size and shape of the structure
in question. However, Eq. (3.16) can be manipulated by defining strain e
and stress o:

€= and (3.17)
0
1dE 1 dE
-4 a 3.18
TV, de A, dl (3.18)



The result of this manipulation reads

o=7Ye, (3.19)

where Y is a material-dependent constant—Young’s modulus. Note that
it indeed is only material-dependent instead of being also size-dependent,
i.e., itis an intensive physical quantity. Also note that the stretching in one
direction induces shrinkage in the other directions, and that all the above
equations assume this, though not explicitly written down.

However, as the BN nanostructures are one atom layer thick, the concept
of cross-section area is rather vague. Particularly the thickness h of the
structures can not be defined indisputably. Luckily we can define so-called
modified Young's modulus Y;, which relates to Y through

Y. = Yh (3.20)

and thus is independent of the thickness of the object. Therefore

ho dE
— = =Y. 3.21
Vo de € (3.21)
Now, for the h-BN layer unit cell we have V;, = lywoho, where wy is the
initial width of the object, and for nanotubes we can approximate V{, =
2nrolohg, where rq is the initial radius of the tube. Thus for h-BN and
BNNTs Eq. (3.21) becomes

1 dE
——— =Y, and (3.22)

lowo de

1 dE
= = Ve, 3.23
271'7”010 de ‘ ( )

respectively. These equations still define Y; as structure-independent and
material-specific constant for single h-BN layer and single-walled BNNT.
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Anyhow the obtained modified moduli can be converted back into ordi-
nary Young’s modulus through (3.20) by using the usual thickness value
ho = 3.33 A [28], which is the interplanar thickness of h-BN layers.

In general it is possible to have strains in any direction and there also are
shear-type strains. Thus strain becomes a tensor of 2nd order. Also stress
is a tensor of 2nd order. These two are then related (similarly to Eq. (3.19))
through

Oi5 = Z Cijklekb (324)
kl

where the 4th rank tensor C' is the elasticity tensor. Only one of its com-
ponents is Young’s modulus. Another physical quantity appearing in the
components of C' is the Poisson’s ratio v. If the strain is applied to the %X-
direction, the system experiences shrinking in the other directions and v is
defined as

p=-v - (3.25)

Above I have for simplicity denoted strain (stress) in i-direction as ¢; (0;)
instead of ¢;; (0;;). This is because I will not cover any situations with shear
strains or stresses in this thesis, so all the strains and stresses will be of the
type €;i OY Oj;.
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4 DFTB parametrization

In this section I shall go in more detail to the theory and practical con-
struction of DFTB parametrization—particularly from the viewpoint of
BN-parametrization and HOTBIT, which is the code with which I have per-
formed the BN-parametrization in this thesis (see the next section).

4.1 The V., -potential and the z-parameters

Now the V. ¢-potential determining the confinement of the orbitals ¢,
through Eq. (2.85) should be determined. As discussed, V;ons should be
close to zero in proximity of the nucleus and grow (strongly) as a func-
tion of distance r. Thus in the Taylor expansion of V¢ () the linear term
should be ruled out and therefore V..u¢(|r|) is of the form

Voot (Ir]) = (U) @)

To

at its simplest, e.g. under the first-order approximation. This form is also
a sufficient approximation in our case. Namely, the majority of the error
from the minimal basis {y,} anyhow comes from its small size and thus
endless fine-tuning of its elements ¢, by adding more and more higher-
order terms into V., is not sensible. Therefore we adapt the form (4.1).
Next, it has been observed [19] that in practice usually the optimal is of
the order 2r.,,, where 7., is the covalent radius of the element in question.
Therefore we write

Vient (1)) = (L) , 42)

27 cov

where z is a new parameter with default value 1. It may be substantially
larger than 1 too since it only means that the pseudoatomic orbitals ¢, are
closer to the free orbitals goffee, but it should not be significantly smaller,
since then the V., deforms the orbitals too much. A sensible range is
x 2 0.6.
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4.2 The U-parameters

The derivation of the Fgcc term in Sec. 2.7.3 made use of the Hubbard
on-site energy and expressed Egcc in terms of it. However this physical
constant might be taken as a parameter as well—deviating its value from
the true Hubbard U does not cause anything illegal. It thus can be used to
fine-tune the value of Egcc. But usually its value is not needed to change
and this will be the case in my work as well.

The quality of given set of z- and U-parameters should be inspected by
first computing with these parameter values in some chosen test systems
such physical quantities that do not depend on F., and then comparing
them to references. In practice this kind of quantities are the equilibrium
band structures for periodic systems (for example the h-BN layer). This
is because when the Fermi energy is diminished from the BS energies, the
contributions from both F.., and the zero-point energy vanish. So, after
deciding some values for the z- and U-parameters and computing the con-
fined orbitals for the chosen z, one should calculate the band structures
in the test systems (with geometries from reference literature) both with
DFTB and LDA-DFT. The better the correspondence, the better choices the
values of z- and U-parameters were.

4.3 The V. -potentials

The repulsion functions V., (R) should provide transferability of the para-
metrization in very different bonding situations and in systems of various
scales. Thus they should be constructed in such a way that the differ-
ence between DFTB and DFT energies is minimized on average. In practice
this happens by selecting a set of reference systems with as comprehensive
selection of different bonding situations as possible and minimizing this
difference in these systems.

Also the z- and U-parameters alter the V,-functions, since they affect the
Eps and Egcc energy terms. And they can do this differently for different
reference systems. Thus tweaking of z- and U-parameters is an important
part of parametrization of the V,.,-potentials. This also complicates the
process of the DFTB parametrization, and it is not necessarily a straight-
forward task.
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4.3.1 Requirements for the V,.,-potentials

Often all the possible bonding situations are not covered by the reference
systems used in the parametrization. Thus even if good V,e,-functions
were found for the used reference systems, it would not guarantee trans-
ferability for systems with different bonding situations. For such cases
there however does exist a set of requirements and rules of thumb that
suggest good quality and transferability of V,.,-functions:

1. The V;ep-functions should be short-ranged as discussed in the previ-
ous section. If the construction of the V;.,-potentials leads to them
having long “tails”, it implies a large error in Egg + Escc. This is be-
cause the long-ranged interaction energies should originate from the
single-particle interactions (through matrix elements of S and H")
only.

Therefore for each V,¢,-function there should exist a relatively short
limit distance called the cutoff distance R, so that for R > R, we
would have V,., = 0. This limit should not be much larger than the
typical equilibrium bond length.

2. They should decrease strictly monotonically from oo to 0 in the range
0 < R < oo. After all, we can think of them as generalized ion-
ion repulsion potentials and odd non-monotonic behavior would be
unphysical. Moving two ions closer to each other should not de-
crease E.,. Such unphysical behavior of V;.,-functions would more
likely lead into problems with other systems than the used reference
systems. In other words the transferability of the parametrization
would probably be poor.

3. The previous requirement for the mathematical form of V,,-functions
is not actually enough. For good transferability we should also re-
quire for dViep(R)/dR (e.g. the repulsion forces between the atom
pairs) strictly monotonic growth from —oo to 0 for 0 < R < oo. This
is because these forces also have a physical meaning as generalized
ion-ion repulsion forces and odd behavior of these forces would most
likely lead into bad transferability also in this case and with the same
arguments.

If these requirements are not filled, it suggests that the values of z- and
U-parameters should be improved, or in the worst case proper DFTB pa-
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rametrization can not be done at all for the elements in question.

4.3.2 Reference systems

Now, in the construction of the V. ,-functions their individual contribu-
tions to Erep = >4 Vrég (Rry) should be separated in general, since there
are several different V.,-functions for different kinds of interactions (with
an exception for homoelemental systems). This is obtained for example by
using reference systems with only one kind of repulsion interactions (for
example in the case of BN-parametrization only B-B bonds, N-N bonds
or B-N bonds) and then parametrizing the V,.,-functions one by one. The
simplest such system is the dimer, i.e., the two-atom molecule with the
bond length R. For them E,.,(R) = Viep(R) and thus to satisfy E, =

Epprp we simply obtain for dimers

Viep(R) = Eret(R) — [EBs(R) + Escc(R)] . (4.3)

The simplest single-bond-type reference systems after the dimer are ob-
tained by generalizing the dimer into systems with N equal bond lengths
R instead of just one (for example the h-BN lattice). For those kinds of
systems we have FE,., = NV, (R) and thus

Viep(R) = — [Eret(R) — [EBs(R) + Escc(R)]] - 4.4)

1
N

However, for example in lattices there is of course an infinite amount of
different R;; for each atom /. But if they are above the R, they do not
contribute to the F,., and hence it is allowed to have atomic distances
larger than R, in reference systems. So if we are using a lattice as a refer-
ence system, we should be careful in keeping R, shorter than the second
smallest neighbor distance of given interaction type. For example for h-
BN lattice and B-N interactions R.,; should be shorter than the 3rd nearest
neighbor distance as with the 2nd nearest neighbor distances the interac-
tion types are either B-B or N-N.

Also itis possible to use systems with several kinds of interactions if all but
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one V,¢p-function is already parametrized. In this case an equation similar
to (4.4) can be obtained.

At this point construction of the V,.,-potentials is already doable: By deter-
mining the reference system energies E,;(R) for a collection of reference
systems and with a set of different 12, we obtain sets of data points from
Eq. (4.4) (with N = 1 for dimers). Then the V,.,-functions can be fitted to
these data points. However, this is not the ideal way to fit the repulsions.
Instead, a better result is usually obtained if the fitting is performed to the
force data points dV,e,(R)/dR. They are obtained from Eq. (4.4) through
differentiation and read

Vi (R) = 3¢ [BLu(R) — [Bs(R) + Elco( )] 45)

Now the repulsion potentials can be recovered from the repulsion forces
through integration.

There are numerous reasonings behind this complication. First of all, it is

not necessarily seen at the first glance from the V,.,-functions itself whether

or not dV;e, (R)/d R grows monotonically as required. But from dV,.,(R)/dR
it is naturally easily seen. Secondly, the reference energies might not have

the same zero-point energy with DFTB energies and the Eq. (4.4) would

apply only after taking this difference into account. But with forces the

zero-point energy vanishes due to the differentiation and (4.5) always ap-

plies. Thirdly, the force approach allows more reference system types and

hence it allows to take into account a broader range of different bonding

situations.

For instance for the equilibrium systems we have E/ ;(Ry) = 0 by defini-
tion for the equilibrium bond length R, and Eq. (4.5) becomes

Vg (Ro) =~ [Bhs(Fo) + Bio(Fo)]. (4.6

With this it is possible to obtain a force fitting points from experimental
equilibrium bond lengths.

It is also possible to use general single-bond-type structures (with arbi-
trary bond lengths) as reference systems. The force data points are ob-
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tained by minimizing the total difference of DFTB and reference forces
(more details in [19]).

Also, with the force approach reference systems are even allowed to con-
tain several bond types whose V,.,-functions are yet to be parametrized.
This is possible by selecting just a subset of bonds where the only un-
known bond type is the one under parametrization. It is allowed to have
other bond types though (if their Vi, is already constructed). Now, if
the lengths of these bonds are kept constant, the force contributions from
these constant bonds vanish through differentiation (just like the zero-
point energy). After this, the force differences should be minimized as
before: If all the bond lengths are equal, an equation similar to Eq. (4.5)
can be derived. And if there are different bond lengths, the differences be-
tween reference and DFTB forces can be minimized similarly to the non-
subset case.

4.3.3 Fitting to the force data point sets

In this thesis only equal bond length cases in non-subset situations (Egs.
(4.5) and (4.6)) will be employed. In practice these equations can be used in
several different ways. And now in this subsection I describe how the us-
age of these equations is implemented in HOTBIT and how they are there-
fore used in this thesis.

Firstly, in the non-equilibrium case one should compute a repulsion po-
tential data point set {Vc,(R,)} with Eq. (4.4). After this a smooth spline
of 3rd order is fitted to this data point set internally in HOTBIT. And the
repulsion force data point set {V};,(R,)} is obtained as a derivative of this
spline at points { R, }.

Secondly, in the equilibrium case Eq. (4.5) is directly employed. To deter-
mine Efq(Ry) + Esoo(Ro), computation of Fgs+ Escc is performed at both
Ry and Ry + AR for a small AR and the derivative is approximated as a
slope between these two energies.

After calculating the force data point sets, also the fitting of the force re-
pulsions to them is parametrized in HOTBIT. More accurately, the fit for
the repulsion force F'(R) = dV,e,(R)/dR is obtained through minimizing
the functional

59



i) =Y (

i

with a constraint F'(R..) = 0. Above the new parameters are firstly ),
which is the smoothness parameter of the fit—increasing A makes the cur-
vature more expensive resulting in a smoother fit. Secondly, the set of pa-
rameters {o;} are the weights for each reference system set i—increasing
o, results into fit following data points of system i more closely. These pa-
rameters should now be tuned until a fit that follows the force data points
in an eye-satisfying way and also satisfies the discussed requirements. Af-
ter this V., (R) is recovered through the following integration:

Viep(R) = — /R " ARF(R) 4.8)
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5 HOTBIT—the DFTB code

The HOTBIT code [29], written by Pekka Koskinen, is capable of creating
DFTB parametrizations and utilizing them in calculations. It is written
in PYTHON for clarity and transparency albeit resulting in slightly slower
performance when compared to C++ , for instance. But due to the light-
ness of the used DFTB theory, it is still remarkably fast. This code is used
as an implementation to ASE (Atomistic Simulation Environment) [30],
which also is a PYTHON -based code. As per its name, it is designed for
setting up and simulating all kinds of atomic problems.

5.1 Usage of HOTBIT

A HOTBIT calculator is initialized in a following way:

calc = Hotbit(
elements={'B’: 'B.elm’, #Element file for B
'‘N’:’N.elm’}, #Element file for N
tables ={’'BB’:’rep_BB.par’, #BB—interaction parameter file
‘BN’ : ‘rep_BN.par’, #BN-interaction parameter file
‘NN”: ‘rep_NN.par’},#NN-interaction parameter file

SCC=True, #SCC-DFTB is used
gamma_cut=1e9, #E_SCC—term integration cutoff
width=0.1 amount of the Fermi smearing
txt="output.cal’, #output file of calculations
rs="k’ #periodic k—point calculation
kpts=(20,20,1), #the k—point sampling

This features the setting I have mostly used in my calculations. Firstly
B.elm and N.elm are the element files for B and N, respectively. These
tiles include firstly the Hubbard U for the element in question. Secondly
they include from the unconfined pseudopotential calculation (2.81) the
eigenenergies €5 and 5. They are needed in the computation of H?mm 7
(see Eq. (2.150)). The .par-files are the parametrization functions con-
taining the SK integrals and V,.,-functions. The parameter gamma_cut
sets the limit in the integration of the Fgcc-term Eq. (2.163) with the pe-
riodic boundary conditions. In my calculations I used values between
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10? — 10" and I found them sufficient in my tests. HOTBIT employs the
thermal broadening (see the discussion in Sec. 2.3.2). Strength of it is char-
acterized by parameter width, which is the width of the Fermi occupation
(i.e., width of f defined by Eq. (2.49)) in eVs. In the used units (kg = 1) it
equals to 7" and its default value is 0.1 eV.

This particular calculator is for some pseudo-2D structure, since the k-
point sampling is two-dimensional. It can be attached to this 2d structure
with

BNstructure.set_calculator (calc)

5.2 Notes about HOTBIT

Here I have gathered a list of miscellaneous notes about the theory em-
ployed by HOTBIT and practical issues related to the usage of HOTBIT (and
ASE):

1. The ASE version 3.6.0. is preferred to be used with HOTBIT, since at
the time HOTBIT was coded, it was the ASE version available. The
newer versions might have some compatibility issues.

2. The units defined by Eqs. (2.1-2.8) are used internally by HOTBIT.
But since HOTBIT is an ASE calculator, the units viewed from out-
side are electronvolts and Angstroms. This has to be taken into ac-
count with values of U and r.,,—they have to be given to HOTBIT in
Hartrees and Bohrs, respectively.

3. HOTBIT uses internally the reciprocal lattice defined by Eq. (3.6) in
the k-point calculations. Consequently also Egs. (3.7-3.15) apply.
But in ASE the reciprocal vectors are defined in such a way that
|bASE| = 1 Vi. This induces relations k*SF = /3a/(47) k" for 2D
h-BN structures (a is the lattice parameter) and k*°E = [/(27) k"'® for
BNNTs (I is the length of the tube). This has to be taken into account
for example when plotting DFTB band structures to the same figure
with band structures computed with ASE with other calculators.
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6 Construction of BN-parametrization

Table 1: The used values of U and r.,,. The value for U has been calculated from
IE and EA with Eq. (2.93). In the parametrization the U in Ha and 7.,y in Bohr
should be used as discussed in the precious section.

IE(eV) [31] EA(eV) [32] v [eov [33]
(eV) (Ha) (A) (Bohr)

B 8.294 0.277 8.017 0.295 0.84 159
N 14527 0.072 14.455 0.531 0.71  1.34

Table 1 features the values of U and 7., used in my parametrization.
I chose not to alter U at all, and I just employed the default U-values
shown in this table. Also the used values for r.,, read there. However,
it afterwards turned out that I accidentally had used the r., in eV in-
stead of Bohrs. Luckily this mistake did not have any effect on the fi-
nal parametrization since due to this I only thought I was dealing with
1/0.529 = 1.890 times larger z-parameters than I really was. In the fol-
lowing I will however keep my erroneous z-parameter notation so now
the z-parameters are defined through Vious(|r|) = [|r| /(2-0.529 - 270y )]’
instead of Veons(|1|) =[] /(227eov)]?, Which is the Eq. (4.2).

6.1 The z-parameters

As discussed in Sec. 4.3.1, the quality of different z-parameters should first
be compared based on their effects on the band structures. More explic-
itly, the general matching between the DFTB and reference (LDA-DFT)
energy bands implies that the minimal basis set {¢,} is of good quality.
In this sense all the bands are equally important in seeking the good z-
parameters. But on the other hand the band structures are not only a tool
for finding the optimal z-parameters. They also are an application of the
parametrization and in that sense the valence and conduction bands and
the band gap Eg,, are particularly important. Thus, all in all, when judg-
ing the quality of z-parameters from the point of view of band structures,
all the bands but particularly the conduction and valence bands and E,,,
are important.

In my work I used as the only reference band structure system the h-BN
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layer with a = 2.50 A [14] as the reference value for the lattice constant. All
BN nanostructures are based on this layer and therefore good correspon-
dence between the DFT and DFTB band structures probably ensures that
they are good also for other BN nanostructures—such as BN nanotubes.
Hence making the z-parameter comparisons only based on the h-BN band
structures should be enough.

I studied a quite broad range of z = (zp, zx), since the sensible range for
z-parameters is from ~ 0.6 to infinity>—the lower bound is explained by
the fact that too tight confinement results in {¢,, } too different from {f*}
and hence unphysical and the infinity limit just leads to {¢,} = {¢}*}.
Now, the results of my experimentings with different z-parameters are
presented in Fig. 5. Only a selected array of (zp,zy) in a bit narrow
range is shown, but the general behavior should be well visible. It is seen
that modifying the z-parameters around the default values does not have
particularly drastic effects on the band structures and clearly for any pair
(g, zn) perfect match between the DFTB and LDA-DFT band structures
is not found. But some z-parameter values are certainly better than others,
so analyzing the effects of changing x5 and zy to the h-BN BS properties
can be done. And it seems that luckily these effects are somewhat system-
atic and linear and the contributions from z and zy can be approximately
separated. This simplifies the process of choosing the final z-parameters
as their effects can be considered independently.

When it comes to variation of zg, first of all the four lowest bands seem
to mostly retain their shape, but increasing zp shifts these bands lower
in the energy as a whole. As the result the valence band ends up in too
low energy when compared to DFT. This increases the DFTB-E,,,, since
the conduction band is hardly altered by changes in xg. The conduction
band is also too low in energy (even strongly and for any zg), so lowering
the valence band when increasing xp improves the DFTB-E,,,—even for
(B, zx) = (3.0,2.0) we only have Eg,, = 4.35 eV whereas the experimental
Fgap is ~ 5eV. Considering all this, larger xg should be preferred but also
low g might be an option if it provides better V,.,-functions.

Next, xx has even less influence on the h-BN BS. Bands from 2nd to 4th
seem not to be altered by it nearly at all, but increasing it improves the
tirst band. On the other hand, lowering it improves the conduction band
around the I'-point as well as the higher bands in general. Hence based on
this analysis it is difficult to deduce the best xx and it really does not rule

2 Now with my mistake from ~ 1 to infinity.
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Figure 5: Band structure of the h-BN layer for several values for (zp, 2znx)—DFTB
bands in solid coloured and LDA-DFT in grey dashed. There are 4 valence elec-
tron positions in the h-BN unit cells (three from B and one from N) and thus the
four lowest bands are the normally occupied valence bands. In singular, valence
band refers to the highest of them (the 4th band) and conduction band refers to
the band above it (the 5th band).

out any value for it from a sensible range. Thus the final value for zy is
left to be decided by the quality of V,.p,-parametrizations.

In the numerical calculation of the band structures I experimented with
different settings with both DFTB and DFT (e.g. the Fermi width), but they
had little influence on the results. With DFT I even tried more advanced
xc-functionals than the V1P, but the results were again similar.
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6.2 Parametrization of the repulsion potentials V,.,(R)

Now, for BN-parametrization B-B, N-N and B-N interactions each need
their own V,,-function. In order to construct them, one needs to specify
the reference systems and calculate the reference forces there at first.

6.2.1 The used reference systems

The selection of possible reference systems for BB-V,., is not particularly
large. Aside the dimer (B, molecule), the other possible reference sys-
tems include at least other small boron clusters. But the eventual use of
this parametrization will be in BN nanostructures where one boron atom
is bonded to one other boron atom at maximum (and even then only in
special cases as in the h-BN network there are only B-N interactions).
Meanwhile in boron clusters there are several B-B bonds per boron atom
and thus there are interactions that in a way are not represented in BN
nanostructures with one B-B interaction. Of course, though, the B-B in-
teractions in BN nanostructures are also affected by the surrounding B-N
bonds. They could be taken into account at their simplest by construct-
ing a three-atom cluster from two boron and one nitrogen atom. In such
case we will have two B-N interactions and one B-B one. The effect of the
B-N interactions could be taken into account by keeping them constant
when changing the B-B bond length or by performing the fitting for B-N
interactions first so that the BN-V,, would be known.

After all, I use as reference systems for BB-V/,, only equilibrium and non-
equilibrium dimers. With the equilibrium dimer the equilibrium bond
length Ry = 1.59 A was used and Vip(Ro) was computed as described
earlier. With the non-equilibrium dimer E(B,) was calculated with LDA
DFT with degenerated spin.

For the NN-V,,, I used exactly similar reference systems with same rea-
sonings. For the equilibrium dimer the experimental bond length Ry, =
1.0977 A [34] was employed.

Finally for the BN-V,, I used firstly the non-equilibrium BN dimer simi-
larly to the BB- and NN-V,.,. But instead of the equilibrium BN dimer I
used as an equilibrium structure the h-BN layer. It is a very relevant struc-
ture for the BN-V/,, since the eventual usage of this parametrization will
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be in structures based on h-BN and thus it will be important to take it into
account in the parametrization of the BN-V,p,.

6.2.2 The BB-repulsion fitting

It was immediately evident that there are going to be problems with the
parametrization for the BB-V/.,. For instance for the initial guess (zg = 1.0)
a parametrization that followed the reference force points violated each
and every requirement for V., and V,,, listed in Sec. 4.3.1. This is visu-
alized in Fig. 6: the reference force points form a large S-curve and as
a result a fit following the reference force points would be slightly long-
ranged, V() would be positive around R = 1.6 A, Vip(R) would not
grow monotonically and also V;.,(R) would not decrease monotonically.
Due to this improving zp was crucially important. Luckily, after some ex-
amining of different values of zp it turned out that for high x5 a much
better (although still not excellent) BB-V,, can be found. The best layouts
for the reference force points were found around zp = 1.8, which I even-
tually chose for the final value of zg. This value also agrees well with the

preferences set for zp based on the band structure considerations.

The final BB-V;, repulsion fitting with said zg = 1.8 is presented in Fig.
7. As can be seen, the major S-curve has smoothed down significantly
resulting in an enormously better parametrization fitting when compar-
ing to Fig. 6. In the fitting I have slightly factitiously cut the repulsion at
R = 2.0 A to avoid the long-rangedness of the BB-V,., and to be sure
that the BB-V],  is strictly monotonous. This means that for large R we
in a way approximate forces that are based on the dimer reference sys-
tem to zero even though they are in the range of (1 — 2)eV/A, which is
really not neglible. However, it must be remembered that all the reference
points come from Efp(R) — [Ejg(R) + Eioe(R)] and thus include errors
from Efq(R)+ Ego(R) that naturally are notable due to the minimal basis
and other approximations as well. The adjustment of xg only minimizes
the error from the minimal basis and some of the error is inevitably left.
And this error should not be compensated with BB-V.,—it would be con-
ceptually dubious and it would not probably work anyway in practice—
the fitting is based only on the dimer reference system. And now, since
around (1.8 — 2.0)eV/A the strong monotonical growth of the reference
points comes to its end and for larger distances the forces” values settle
down to a smallish value, it implies that the short-ranged E,., comes to its
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Figure 6: An unsatisfying parametrization for the B-B repulsions (with zp =
1.0—the default value). The green dots are the non-equilibrium dimer force
points from LDA-DFT calculations and the red dot is the equilibrium dimer with
experimental bond length.

end there and rest of the difference E})p(R) — [Eis(R) + E§cc(R)] comes
from errors in Efg(R) and Ey(R). And thus cutting of Vi, (R) already at
2.0 A is justified.

Otherwise the fitting process was simple. An eye-satisfying curve was
easy to obtain. The fitting parameters related to the Eq. (4.7) are listed in
Tab. 3.

This fitting of BB-V/, provided an excellent example of the benefits of fit-
ting to the repulsion forces instead of directly to the repulsion potential.
Namely, it was difficult to find a value for the zp that did not violate the
preference for monotonically increasing BB-V,, (R).

rep

68



Rdimer Rcut
T T T

®0g000°° 4r

/—\3_
=
A
S
o,
B2

: 1k

15k — dViep(R)/dR |
@09 B:
: e®e B, (DFT) :
111.6182022242628 071516 17 18 19 2.0
R (A) R (A)

Figure 7: The final parametrization for the B-B repulsions (with g = 1.8). Also
the calculated reference force points for R > Ry are shown in this picture, but
naturally they haven’t been taken into account in the fitting.

6.2.3 The NN-repulsion fitting

Unlike for BB-V,,, for the NN-V,, a parametrization of good quality was
possible to perform practically in any case (for any zy). For instance for
xn = 1.0 (which I eventually chose to be the final zy) and zx = 2.0 the
repulsion fits are shown in Figs. 8 and 9, respectively. As can be seen,
in both cases the force reference points formed a nice smooth monotoni-
cally growing curve. It also nicely approached zero for large bond lengths
when zy = 2.0. For 2y = 1.0 it goes slightly over zero implying a small
error in Fgg and E{.c. But all in all, similarly to the band structures, this
consideration did not rule out any values for zyx and thus in the decision
for its eventual value zx = 1.0 the biggest emphasis was put on its effects
on the quality of the BN-V,.,-parametrization.
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Figure 8: The final parametrization for the N-N repulsions (with 2y = 1.0—the
default value).

6.2.4 The BN-repulsion fitting

In the BN-V/,, both 25 and zy affect the configuration of the reference force
points. But for the BB-V,., g = 1.8 was optimal and the band-structure
considerations suggested a high zp as well. And meanwhile for the zy
hardly any preferences were found. Thus, in the parametrization of BN-
Viep I chose xp = 1.8 for the initial guess and only modified xy. A clear
behavior stemming from zyx was found. Comparing the final parametri-
zation (in Fig. 10) to a parametrization with high zy (in Fig. 11—an = 2.0)
shows that increasing xy improved the error of Ej4(R) + E{cc(R) (based
on dimers), since for large R the force reference points were closer to zero.
On the other hand, decreasing xy improved the alignment of the equilib-
rium h-BN force point with the dimer reference force points. This sug-
gested good transferability as two different systems agreed in V,, . For
the final value xx = 1.0 these two desirable effects were compromised,
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Figure 9: Another parametrization for the N-N repulsions (with xn = 2.0).

with emphasis being on the latter effect. Based on it, it might have been
justifiable to choose even smaller zx (0.9 or perhaps even 0.8). But based
on the band structures, I also wanted to compromise between the quality
of the lowest band (improved by higher xy) and the quality of the con-
duction band (improved by smaller xy) and thus this most neutral value
of xx = 1.0 seemed to be the best possible choice. And also decreasing
xy slightly decreased the quality of NN-V/., as explained in the previous
section.

Now, since for z = (1.8,1.0) the fitting was reasonably satisfying, I chose
not to alter zg anymore. It would have led to reduced quality in BB-V/,,
but after all the quality of BN-V,., would have been by far more important
as the BN nanostructures are based on the BN bonds. Anyway, now I was
luckily able to choose zg so that it allowed both reasonably good BB-V,,
and BN-V,, parametrizations.
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Figure 10: The final parametrization for the B-N repulsions (with zg = 1.8 and
IN = 2.0).

6.3 The final parameters

To quickly sum up the parametrization I have aggregated all the parame-
ters used to achieve my BN-parametrization in Tabs. 2 and 3.

Table 2: The final set of z-parameters. Both the erroneous and corrected values
are shown. Also for 79, which is defined by Egs. (4.1) and (4.2), the correct value
is shown both in Angstroms and Bohrs.

T To
Erroneous Real (A) (Bohr)
B 1.8 0.952 1.600 3.024
N 1.0 0.529 0.751  1.420
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Figure 11: Another parametrization for the B-N repulsions (with zg = 1.8 and
IN = 2.0).

Table 3: The final set of fitting parameters for Vo, parameter functions.

Reference system weights o

Rcut (A) )\
Dimer (DFT) Dimer (Exp.) Lattice (Exp.)
BB-Viep 2.0 0.55 1.0 1.0
NN-Vi, 2.2 3.0 2.0 1.0
BN-V}ep 1.55 40.0 1.0 2.0
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6.4 Slater-Koster tables

Finally I present the Slater-Koster tables (both for S- and H°-matrices)
for z = (1.8,1.0) in Figs. 12-14. The points in these tables have range
from R = 1Bohr (0.53 A) to R = 8 Bohr (4.23 A) with intervals of 0.1 Bohr
(0.053 A). As it can be seen, the tables of different interactions resemble
one another quite much.

The valence electrons are for both B and N in the 2nd electron shell and
thus the SK tables consist of integrals between 2s (labeled simply as s) and
2p; (labeled simply as p) orbitals. By symmetry both S and H are zero for
T = ssm and ssm, so there exist tables that are different from zero only for
ssa, spo, ppo and ppm.

].O T T T I I I I

710 | | | | | | |

R (Bohr)

Figure 12: The Slater-Koster tables for boron-boron.

For sso, ppo and ppm we have equality between the B-N and N-B cases
due to symmetry both for S and H—if we interchange the elements in
the S and H integrals (which means interchanging the radial parts), the
system can be rotated in such a way that it is reduced to the original case.
But with spo this is naturally not possible.
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Figure 13: The Slater-Koster tables for nitrogen-nitrogen.
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Figure 14: The Slater-Koster tables for boron—nitrogen (solid lines) and nitrogen—
boron (dashed lines). If the dashed lines are missing for some N-B interaction,
then this interaction equals to the corresponding B-N interaction.
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7 DFTB parametrization benchmarking results

In this section I shall present the results of my DFTB computations of prop-
erties of various different BN nanostructures and benchmark those results
against DFT results found from literature or calculated by me.

7.1 The band structures

7.1.1 The h-BN layer band structures

2 Eyp = 3.44eV — DFTB
—————— DFT (LDA) ||

Figure 15: Band structure of the h-BN layer (the seven bottommost bands shown).
Compare to Fig. 5, where the same band structures are shown for different z- and
U-parameters.

The band structure of h-BN was discussed already in the parametrization

section since it was used as an indicator for properly chosen U- and z-
parameters. Nevertheless, I present the h-BN BS for the final z- and U-
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parameters in Fig. 15. Here the same fixed lattice constant a = 2.507 A has
been used as before. The final obtained E,,, was 3.44eV.

7.1.2 The BNNT band structures

As with the BN layer, I wanted the used nanotube structures to be fixed
with geometries from references. However, constructing NT structures
from reference structural parameters is not quite as trivial since the sym-
metry properties of zigzag and armchair nanotubes allow for them two
different bond lengths 7, and r; (as discussed in Sec 3.2). But I have used
for simplicity the average of these two bond lengths (7 = (r; + r2)/2) in
my structures as common bond length. This makes the tubes a lot eas-
ier to construct but does not affect the band structures much. Besides,
I computed the LDA-DFT data myself, so both LDA-DFT and DFTB re-
sults have been calculated in the same structures. Therefore the exact ge-
ometries of these structures are not greatly relevant. Moreover, studies
with GGA-DFT by Jian-Feng Jia et al. [35] show that for armchair BNNTs
Ar = ry —r; = 0 (see also Tab. 4) whereas for small and medium zigzag
tubes Ar is relatively big (at largest it is 0.092 A for (3,0)-NT). Thus when
using 7 with armchair BNNTs there is in practice no deviation from the
correct situation. Hence I decided to calculate band structures for a set of
armchair nanotubes with 7. The used values are listed in Tab. 4. For the
Monkhorst-Pack sampling I used 20 k-points for DFTB computations, but
only 10 for LDA-DFT in order to reduce the computational effort. I per-
formed the DFT computation with GPAW code [36, 37] and used the plane
wave mode with energy cutoff parameter E,,; = 200 (in atomic units).

Table 4: Structural parameters of NTs used in BS computations. More explicitly
this table lists amount of atoms in unit cell (V), amount of valence bands in BS
(Ny), mean of the different bond lengths 7y and r; in the NT (7) and difference of
these bond lengths (Ar). The values of r; and r are taken from [35], where they
also have been defined more explicitly.

NT N N, 7(A) Ar(A)

22) 8 16 14645 0.001
(33) 12 24 1.4470 0.006

However, I encountered convergence problems both with DFT and DFTB
computations so I ended up calculating the band structures only for few
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Figure 16: Band structure of (2,2) BN nanotube (25 bottommost bands shown).
Blue: valence bands, red: conduction bands and grey dashed: LDA-DFT.

smallest possible armchair NTs. As a result (see Figs. 16 and 17 ) there is
no band gap seen at all. Even though the BNNTs are typically high band
gap insulators, in this extremely low and in practice perhaps unrealistic
limit they seem to be (semi)conducting.

7.2 Elastic properties of the h-BN layer

I have also determined for the h-BN monolayer the most relevant elastic
properties—the reduced Young’s modulus Y; as well as the Poisson’s ratio
oc—and compared the results to those of K. N. Kudin et al. [38]. In their
paper they have used the gradient corrected PBE E,-functional.

Even though due to the hexagonal symmetry h-BN should have similar
elastic properties in each direction (i.e., it should be isotropic), Kudin et al.
have computed Y; and v in both X- and y-directions. (that is, under strain
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Figure 17: Band structure of (3,3) BN nanotube (25 bottommost bands shown).
Blue: valence bands, red: conduction bands and grey dashed: LDA-DFT.

€, OF €, respectively). As expected, they have obtained the same results in
both cases. Also I determined these quantities in both directions.

To be exact Kudin et al. have actually considered h-BN only as a limit case
since their paper is actually primarily a NT study. This is why they refer
to h-BN as (00, 0) and (0o, o) BNNTs. In my case (for h-BN layer oriented
2) the former case refers to strain applied in the y-direction and
the latter case refers to strain applied in the z-direction.

721 Methodology

First I created an initial symmetric h-BN monolayer unit cell with unit cell
vectors (3.1-3.3) and position vectors (3.4-3.5). As the value for a I used
the optimum a-value. I found it by first creating a set of unit cells with
lattice constants a and with large ¢ (to be exact 30 A) to ensure
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a large enough vacuum in the z-direction. Then i computed the energies
of these structures. It was evident that F(a) behaved quadratically (as
expected based on Sec. 3.3). So I performed a quadratical fit for the energy:

E(CL) = CQCLQ + C’la + C[)‘ (71)

From this it was easy to deduce the optimal lattice constant ay:

Ch

ag = ———. 7.2
0= ~30: 72)
x1072 — 2.136x10"
71.0 I I I I I I
—-15}F .
—~ —20F y T —-— A
= 251 . \ \
= — = | \ \
m —3.0 \ \
—35} . \ \
A0 T 7] \
—4.5 k1 L ! L L T \A
2.48 2.49 2.50 2.51 2.52 2.53 -
a(A)
(a) The parabolic fit performed to find out (b) The final optimal sym-
the ag. The dotted lines represent the value metric h-BN unit cell, i.e.,
for the optimal lattice parameter and the unit cell with a = ay.

energy of the unit cell for that value.

Figure 18: Evaluation of the optimal symmetric unit cell (a) and the final result
(b). The optimal value for the lattice constant was found to be a = 2.508 A.

This gave the result ay = 2.508 A.

However, there exists such an issue that optimized periodic systems® tend
to have certain asymmetries when computed with DFTB*. For example

3 With this I mean systems optimized with ASE’s BEGS method by using HOTBIT as
the calculator. The BFGS method first computes the forces acting on each atom and then
manipulates their positions in an attempt to find energetically more favourable configu-
ration, and repeats this until forces acting on the atoms are reasonably small.

% Or at least with HOTBIT—I am not sure what is the reason behind this. But I reckon
that this might be in some way consequent of the atoms being located exactly in the edge
of the unit cell—under BFGS they can move only to one direction at the edge.
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for h-BN layer the perfectly symmetric configuration with lattice param-
eter ay (shown in Fig. 18b) is not the energy minimum of the system. I
found that for the symmetric unit cell forces of 0.0825eV/ A are found
and minimizing the forces yields a configuration 36.6 neV lower in energy.
For this result I used (20 x 20 x 1) k-points in each direction, and one
might think of this being consequent from too sparse Monkhorst-Pack k-
point sampling even though already this sampling is quite dense. But the
results remain nearly unchanged even for exaggeratively dense k-point
mesh (100 x 100 x 1)—then these numbers read 0.0823eV /A and 36.4 peV.
These differences might seem negligible, but as it turns out, when the unit
cell is stretched, the energy difference can grow so large that they greatly
affect Y; and v. But it is unclear which of these ways is more “correct”.
Thus I will perform the computations both in the symmetric and the BFGS-
optimized case.

Now back to the computations. After making the symmetric unit cell with
a = ag I chose a set of different A\, (\, = ¢, + 1 = [,,/l, o is the stretch ratio
in the z-direction) and applied them to the optimal unit cell. This kind of
stretching is a source for stresses in the transverse (y) direction and they
had to be relaxed. It had to be done manually5, so for each )\, I chose a set
of \, and applied them to the structures stretched with \,. After applying
the A-tensors to the structure the lattice and position vectors were then
given by

al =a()\;,0,0), (7.3)
! /\33 \/g/\y
A =a <_?7 9 70> ’ (74)
% =a(0,0,0) and (7.5)
, A
R, =a (o, 7% o) . (7.6)

Then I computed the dimensions [, and [, of the stretched unit cell. They
are the length of the unit cell in the X-direction and in the y-direction,
respectively. They are defined as

°> With ASE it could in principle have been done automatically, but this feature is not
(at the time of writing this work) implemented to HOTBIT. More explicitly, the stress
tensors that are used in this dynamical altering of the unit cell dimensions within opti-
mization calculation, are not supported by HOTBIT.
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l, =a},=a)\, and (7.7)

(7.8)

After this I computed the energy E(l,,!,) of each of these structures with
my HOTBIT parametrization. Then I performed a parabolic fit similar to
the fit in Eq. (7.1) for E as a function of [, and for fixed [,. From this fit I
deduced similarly to Eq. (7.2) the [, yielding the situation for which o, = 0.
This [, is dependent on [, so I mark it as ly(lz)|ay:0. Also E(ly)|, -y =
E(ly, 1y, ) (ie., the energy at this point) was given from the fitting con-
stants by

CQ
E(ly)l - = —4—52 + Cp. (7.9)

I repeated this for each [, to obtain a set of [,(l,)|, _, as wellas E(l,)|, _-
Then I performed another parabolic fit for E(l,) ’a;,:o as a function of /,;:

E(l,)|, _y = Pl + Pz + P, (7.10)

oy=0

From this fit I obtained [, o (the equilibrium /,) similarly to Eq. (7.2). I also
made a linear fit for ly‘ay:o as a function of /,:

Ly(12)],,—0 = Lilz + Lo. (7.11)

From this fit I deduced [, ; (the value of equilibrium [,) through

Lo = Lilyo + Lo. (7.12)

Now by using the Egs. (3.22), (3.25), (7.10) and (7.11) as well as the equality
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it was possible to compute Y; and v from these fits:

1 d2E(€w)|g =0 lz0 dzE(lx)L; -0 lz0
= =0 _le0 7 TV ey=0 _ 9lel p d 7.14
Lzoly0 dez ly0 diz Lo o 714
dey,  Lodll)l, 2o .o
— w0 W ley=0 20 7.15
YT e, Ge dl lo " 715

I have demonstrated all these described steps for both symmetric and
BFGS-optimized cases in Fig. 19. As it is seen, there are significant sys-
tematic differences between these two cases—for [, , and [, are different
in both of these cases. This is also the reason why I did not use values of
Egs. (7.7) and (7.8) with A, = A\, = 0 for [, o and [, .

I also repeated this process in the reverse case, i.e., with y-direction as the
axial direction and X-direction as the transverse direction.

This methodology allowed the computation of Y; and v in a quite straight-
forward and conceptually simple way (i.e., in low level of theory without
the need to consider the explicit form of the 4th rank elasticity tensor).

The reference study by Kudin et al. employed 64 k-points along the shorter
translational vector of their four-atom unit cell and proportionally smal-
ler number along the longer vector. They relaxed the structures until the
forces acting on ions were 0.0005 eV A~! at maximum.

In my calculations I employed 40 different k-points in both directions. In
the BFGS optimizations the maximum force per ion that I allowed was
0.01eV A~'. So my computations were not in this sense as accurate as the
reference study computations, but according to my testings they should be
more than sufficient (i.e., increasing accuracy here would not change the
results in practice). I could probably have performed these computations
with equal values with the reference study though because the calcula-
tions were quite rapid.

Finally I also carried out several tests to ensure that the symmetric unit
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lines. The values for [, o are from the fit shown

in (b).

Figure 19: The fitting process to compute Y; and v of h-BN layer in the X-direction.
These quantities are obtained from fits in Figs 19b and 19c, respectively. In the
graphs there are pictured both the case with geometrically symmetric unit cell
and the case where the (erroneous) forces in this unit cell have been relaxed with
the BFGS optimization method leading to asymmetric configuration.
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cells I studied truly were symmetric. For example I checked for each struc-
ture that the following symmetry properties hold (see Fig. 2 for notation):

) RB<171)’7

IRx(0,0) — R(0,1)] = [Rx(0,0) —
| = |R(0,0) — Ru(—1, -1)].

‘RB(Oa O) - RN(Ov _1)

7.2.2 Obtained results

The results for the studied elastic constants are presented in Tab. 5. The dif-
ference between the symmetric and the BFGS-optimized case is bafflingly
clear. Interestingly in the BFGS-optimized case Y; is reasonably close to
the reference result but v definitely is not, whereas for the symmetric case
the situation reverses.

Table 5: DFTB and reference DFT Y; and v for h-BN layer. As h-BN is strictly not
isotropic Strain in both = and y directions is

Strain Y;(TPanm) v

direction  p[prR DFT[38] Err. (%) DFTB DFT[38] Err. (%)
% (BEGS) 315 271 16 0.541 0.211 156

v (BEGS) 315 271 16 0.540 0.211 156

X (symm.) 473 271 75 0.308 0.211 46

y (symm.) 477 271 76 0.310 0.211 47

7.3 Properties of the BN nanotubes

Here I have computed various mechanical properties for a group of zigzag
and armchair BNNTs and benchmarked them against DFT calculations by
B. Baumeier et al. from their 2007 paper [39]. Firstly, what comes to geom-
etry of the tubes, I have computed the diameter d and the radial buckling
constant (3 of the tubes. The radius is defined in the reference study as

1
r = 5 (rg +7n), (7.16)
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where dp and dy are the diameters of the boron and nitrogen cylinders,
respectively.® The radial buckling constant is defined as the difference of
the radii of these cylinders:

ﬂ =TN — TB- (717)

Secondly I computed some elastic properties, namely the reduced Young's
modulus Y; and the elastic strain energy per atom es, which is defined as

1
es = %E(BNNT) ~ 3 E(BNan). (7.18)

To put it simply, it is the energy per atom required to roll a h-BN sheet into
tubular form.

7.3.1 Methodology

In my computations I proceeded similarly to the methodology of the pre-
vious section—first I created an initial guess for the equilibrium structure
for every tube type studied and then scaled them in the z-direction with
different scales and relaxed them by again employing the ASE’s BFGS
method. This yielded for each studied tube type a total of 16 structures
with slightly different unit cell lengths [ in the z-direction. Then I deter-
mined the average radii g and ry of each of these structures. The used
method for this was to first calculate the location of the tube axis (7,7)
by averaging the x and y-coordinates of all the nuclei (both B and N) in
the unit cell. After this 7 and 7y were given as the arithmetic means of
distances of the B and N atoms from this axis, respectively.

Since in this case there were periodic boundary conditions only in the di-
rection of the axial strain, the shear stresses did not affect the unit cell
dimensions as in the previous case and computations were in that sense
much more simple. I only had to perform one parabolic fit for E(l), and

® As already discussed in Sec. 3.2, in zigzag and armchair BNNTs the B and N atoms
lay in their own cylinder levels with slightly different radii.
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one linear fit for r(l). These fits then yielded the equilibrium unit cell
length [y and energy Ey = E(ly) and the equilibrium tube radius ry = ().
After this Y; and v were obtained from Egs. (3.23) and (3.25) through

1 d®E(e)] lh PEDl, o Iy

UJ_ZO
- _ - %P and (7.9
271'7"0[0 dEg 277'700 dl;% o 2 an ( )
de; lpd T(Z)LH:O lo
_der b =0 _ b, 7.20
1% dEZ o dl To 1, ( )

where P, and L, are similar fitting constants as in the previous section.

In the Brillouin zone integrations I used 20 k-points in the Z-direction. This
should be a sufficient amount for unit cell lengths of ~ 4.3 A (for zigzag)
and ~ 2.5 A (for armchair). The BEGS process was continued until all the
forces were under 0.01eV/A.

(b)

Figure 20: The structures used for the computation of elastic strain energy: (a)
is a BFGS-optimized BNNT and (b) is a BFGS-optimized h-BN layer supercell
obtained by repeating the minimal h-BN layer unit cell 20 x 2 times. It tries to
replicate unfold BNNTs as well as possible.

Due to the issue related to energy differences between symmetric and opti-
mized periodic structures that was discussed on page 80, when Eq. (7.18) is
used for computing the elastic strain energy, both energy of the BNNT and
the h-BN layer should be coming from BFGS-optimized structures. But it
turned out that it is not enough. If the minimal BFGS-optimized h-BN
unit cell was used, even negative F; was obtained for the largest BNNT.
The reason for this is that there also are some scaling issues with periodic
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structures.” Hence the comparison of the BNNT and the h-BN layer should
be done also for structures of similar size. Moreover, the same amount
of k-points should be used in calculations for them. I have used for the
BN layer a supercell that has been obtained by repeating the minimal unit
cell 20 x 2 times (see Fig. 20b). As the result it has equal width to the
BNNT. Its long length is to mimic the unwrapped BNNT. I also used only
one k-point in that direction, since it makes it effectively one-dimensional,
as the BNNT is. In the width direction I used an equal amount of k-points
(20).

7.3.2 Obtained results

The obtained results as well as the reference values are presented in Tab. 6
(the geometric properties) and Tab. 7 (the elastic properties). Moreover,
Tab. 8 features the DFTB results for the Poisson’s ratio. Firstly, the diam-
eters are in very good agreement with the DFT results but the buckling
constants not so much. This error for /3 is not so alarming because just a
small deviation in rg /7y leads to big relative error in /. In my opinion it is
actually well done for DFTB to predict the correct buckling behavior, i.e.,
rn > rp instead of ry < rg.

What comes to the Young’s moduli, they are in accordance with Y; of the
BN layer in the BEGS-optimized case (see Tab. 5), i.e., 315 TPanm. Namely,
when the diameter of the tubi is increased and the elastic strain energy
decreases, Y;(BNNT) — Y;(BN layer). To be exact, for (15,15) BNNT Y,
is actually already 6 TPanm larger than Y;(BN layer), which is unphysical
result. But since the difference is only 6 TPanm, this is a minor glitch and
probably due to numerical errors, and is not worrisome. Also for (15, 15)
BNNT Y;(BNNT) the DFT reference result is 8 TPanm larger than the DFT
reference result for Y;(BNNT). The errors to the DFT results are of the same
order as in the case BN layer. But what is perplexing, is that whereas the
reference study found that Y; approximately only depends on d, my DFTB
computations also found notable chirality-dependence. More explicitly
for armchair BNNTs I obtained (15 — 30)TPanm larger results than for

7 When unit cells of periodic structures are repeated say, (n.,n,,n.) times, energy
of the system should scale accordingly (i.e., become n,n,n,-fold). However, with
DFTB/HOTBIT there is some issue causing this not to be exactly the case, and according
to my tests this problem occurs even with dense k-point samplings. Thus, if the energies
of different periodic structures are compared, they should be of the same size. Otherwise
the comparison might lead to significant errors.
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Table 6: Diameter d and radial buckling parameter 3 of various BNNTs. Both
DFTB results and DFT reference values are presented and compared to each oth-
ers.

(N, M) d(A) B(A)
DFTB DFT[39] Err. (%) DFTB DFT[39] Err. (%)

(4,0)  3.38 3.35 0.9 0205  0.149 38
(5,0) 413  4.08 1.3 0168  0.122 38
(6,0)  4.91 483 1.6 0.140  0.101 38
(7,0)  5.69 5.60 15 0120  0.085 42
(8,0) 647  6.37 1.6 0105  0.073 44
(9,0)  7.26 7.15 1.5 0.094  0.064 46
(10,0)  8.05 7.99 0.7 0084  0.057 47
(15,0) 12.02  11.85 14 0055  0.037 50
(4,4)  5.61 5.49 23 0122 0.089 37
(5,5)  6.98  6.87 1.6 0.096  0.068 42
(6,6)  8.35 8.23 1.5 0.080  0.055 46
(7,7 9.73 9.59 15  0.069  0.046 49
(8,8) 11.11  10.95 14 0.060  0.040 50
(9,9) 1249  12.31 14 0053  0.036 A7
(10,10) 13.86  13.67 14 0048  0.032 49
(15,15) 20.77  20.48 14 0032  0.022 43

zigzag BNNTs with equal diameter. This is illustrated in Fig. 21.

It is noteworthy that also Kudin et al. [38] have studied Y; of some same
BNNTs as Baumeier et al. [39]. They obtained for (7,0) BNNT 255 TPanm,
for (4,4) BNNT 258 TPanm and for (7, 7) BNNT 267 TPanm.? These values
are 3.0%, 3.7% and 2.9 % smaller than those in [38], respectively. This
means that these two DFT studies are in reasonably good agreement with
each other and hence it was sensible to compare Y;(BN layer) to [38] and
Y,(BNNT) to [39].

My DFTB parametrization clearly underestimates the elastic strain energy
values for each BNNT studied. This is most likely partly related to the dis-
cussed vaguenesses of Epprg when unlike structures are compared. This

8 In their paper there are some minor glitches concerning units and definition of Y,
but they also have reported d?E/de? as well as all the other quantities needed to deduce
Y;, which allowed me to recalculate their Y; and verify that I was reading their tables
correctly.
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Table 7: Young’s modulus and strain energy per atom es of various BNNTs. Both
DFTB results and DFT reference values are presented and compared to each oth-

ers.

(N, M) Y;(TPanm) es(eV)

’ DFTB DFT[39] Err. (%) DFTB DFT[39] Err. (%)
(4,0) 230 227 1.1 0356 0479  —25.7
(5,0) 251 246 20 0228 0301  —244
(6,0) 266 259 2.9 0.157 0.218 —27.8
(7,0) 275 263 45 0115 0171  —32.9
(8,0) 282 267 5.6 0.087 0.140 —38.0
(9,0) 288 269 6.9 0.068 0.118 —42.7

(10,0) 293 273 7.4 0.054 0.102 —47.0
(15,0) 304 278 9.3 0.023 0.063 —64.1
(4,4) 304 268 13.6 0118  0.168  —29.7
(5,5) 309 272 13.5 0.077 0.123 —37.7
(6,6) 312 274 14.0 0.054 0.096 —43.3
(7,7) 315 275 14.6 0.041 0.080 —48.3
(8,8) 317 276 15.0 0.033 0.069 —52.0
(9,9) 319 277 15.2 0.028 0.061 —54.7
(10,10) 315 278 13.4 0.024 0.055 —56.9
(15,15) 321 279 149 0015 0041  —63.7

Table 8: Poisson’s ratio v of various BNNTs. Only DFTB results are presented.

(N,M) v (N,M) v
(4,0) 009 (4,4) 0.14
(5,0) 0.11 (5,5) 0.17
(6,0) 013 (6,6) 021
(7,0) 015 (7,7) 0.25
(8,0) 017 (8,8) 028
9,0) 019 (9,9) 0.32
10,0) 021 (10,10) 0.36
15,0) 031 (15,15) 0.54
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Figure 21: Relationship between Y; and d for BNNTs for both DFTB and DFT
reference [39] results.

time energies of BNNTs were compared to energy of a BN layer and they
are inevitably quite a different type of structures even though I tried to
mimic the BNNTs as well as possible with my BN layer.

Lastly, according to my results, v is very small for small BNNTs, but for
large BNNTs it seems to approach the overly big value obtained for h-BN
in the BFGS-optimized case. Baumeier et al. have not studied v, but Kudin
et al. have. Their results for v were 0.244 for (7,0) BNNT, 0.217 for (4,4)
BNNT and 0.213 for (7,7) BNNT. Differences of my results to these are
—38%, —37 % and 15 %, respectively. They also studied the (12,0) BNNT
and obtained v = 0.226 for it, and it can be deduced by interpolating that
error of my results are ~ 0%. So it seems that whereas in Ref. [38] the
Poisson’s ratio was found to be approximately constant, I found strong
diameter dependence and obtained way too small (large) values for small
(large) BNNTs.

Also another SCC-DFTB study about this precise subject exists. In their
1998 paper Hernandez et al. [40] have computed d, 3, Y, es and v for var-
ious BNNTs. Interestingly, all of their results are close to the DFT results.
Only their diameter values were slightly worse than mine. Performance
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of their BN parametrization regarding 3, es and v is quite staggering con-
sidering all the troubles my parametrization had with them.

7.4 Vacancy defects on a h-BN layer

Defects, where there is an atom or a small atom cluster missing, are known
as vacancy defects. Next I will study their formation energies Eto, on a h-
BN layer under strain. For the reference paper I have chosen a study by
Kuzubov et al. [41], where formation energies of vacancies in h-BN have
been calculated with PBE-DFT. The considered vacancies include single
boron and nitrogen vacancies (Vg and Vy, respectively) as well as double
vacancies (Vpy). In these defects also the chemical potential 1(X) of the sep-
arated atom(s) X needs to be taken into account. This potential depends
on the chemical environment into which X is to detach. Therefore the for-
mation energy E,m(X) reads as follows:

Eform (X) =F (X) — FEo + M(X)’ (721)

where £ (X) is the energy of the structure with atom(s) X and Ej is the
energy of the original undefected structure. As used in [41], the chemical
potentials for Vi, Vy and Vpy are

1 (B) = E(BNeen) — %E(Nz), (7.22)
11(N) = E(BNuy) — %E(Bm) and (7.23)
(B +N) = E(BNeen), (7.24)

respectively. Above BN is the two atom unit cell of a h-BN layer unit
cell (as in Fig. 2), N, is the nitrogen molecule and B, is a boron cluster
that according to the reference paper is the most stable boron phase.

The above chemical potential definitions are not fully clear to me, but I
suppose that the reasonings behind these potentials are as follows: since
(B +N) = E(BNc), it is thought that the separated BN-pair joins the
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edge of another BN layer and for example forming a BN dimer molecule
is not an option. So the chemical environment of the BN layer is thought
to be full of other BN layers, perhaps they all are in some solution. Next,
i (B) = E(BNcan) — E(N2)/2 implies that when two boron atoms eject from
the system, they share two nitrogens from a Ny molecule and then join
another BN layer. So it is thought that the environment in this case is rich
in both N, molecules and BN layers. Similarly to the case of x (N) it is
thought that the environment is rich in both B, molecules and BN layers.
If I am correct, all these definitions do represent different situations. But
perhaps the idea behind this is that in an N-rich environment N-vacancies
do not occur and that in a B-rich environment B-vacancies do not occur.

7.4.1 Methodology

The standard procedure in modelling defects in periodic structures is to
construct periodic supercells by repeating unit cells in the periodicity direc-
tions, and this is what has been done also in the reference study. This kind
of handling is a source for defect-defect interactions, that are unwanted at
least if the goal is to compute the formation energies of single defects, as
in this case. But the cure is to make the supercells large enough so that
the defect-defect interactions die off. The very large 100-atom supercell
used by Kuzubov et al. is surely large enough to achieve this. Actually
2D structures of such size are so large, that optimizing them with BFGS is
quite heavy even with DFTB. Thus to find a sufficiently large supercell I
computed in a test case the convergence of the formation energy as a func-
tion of supercell size In this test case the minimal unit cell was repeated
Nye X Ny x 1 times along each direction. This way the largest possible min-
imum distance between periodic defect images for constant defect density
was obtained—but for the peculiar supercell used in the reference study
this is not the case due to its rectangular shape with unequal side lengths.
Thus in my case convergence should occur for smaller supercell size (for
smaller N,.).

I chose to study this convergence for Vgy because it is the most severely
defected vacancy studied, and hence its Ef,m(/Ny) probably converges
more slowly than those of Vg and Vy. Actually I studied only AE(Vpy) =
Ey — E(Vpn), i.e., I left the chemical potential ;(Vpy) out (it is not rele-
vant for the convergence). I also made a big simplification by not opti-
mizing either of the structures with BFGS. This means that F is energy
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of Ny X Ny x 1 repeated minimal, symmetric, unstrained unit cell (see
Fig. 23a) and Efom(Ven) is energy of a structure simply with adjacent B
and N atoms deleted (see Fig. 23d). This simplification was to reduce
the computational effort significantly, as the BFGS optimization requires
~ 10 — 50 optimization steps (in other words separate computations of po-
tential energy). But this should not have much effect on the convergence
of AE (VBN)-

Table 9: Convergence tests for AE(Vpn) = Ey—E(Ven) as a function of supercell
size when for simplicity neither of the structures has been optimized with BFGS.
The supercell has been obtained by repeating the minimal unit cell Ny X Nye x 1
and therefore it consists of N = 2N2, atoms. The Monkhorst-Pack k-point sam-
pling is ny x ng x 1. For the value of ny I chose the smallest number for which
nENye > 20 to make sure that my k-point sampling was at least as dense as the
one used in the reference study.

Noe N np AE (eV)

4 32 5  34.761
5 50 4  34.755
6 72 4 34752
798 3 34.749
8 128 3 34.746

The results of the convergence test are shown in table 9. It is clear that
the convergence occurs already for small N, and the decrease in AE is
just 0.015eV when N, is increased from 4 to 8 while computational effort
is increased dramatically. Thus I chose to use in the final computations
the smallest tested N,,—that is N, = 4. In the final computations I also
employed 5 x 5 x 1 k-points in each direction as in test calculations for
Ny = 4.

In the final calculations I optimized the structures until all the atomic
forces were smaller than 0.01eV/A. I tried to make the defected and un-
defected structures as similar as possible due to the issues discussed in the
previous section related to the difference in Epprg of structures of different
type. So I used as big supercell for both structures and BFGS-optimized
also the undefected BN layer. Now when the energies of clean and de-
fected structures are compared, there should be the same systematical er-
ror related to these issues, and hence it should cancel out. Both of these
treatments for the undefected supercell turned out be a necessity to take
into account because without them the obtained results were quite odd
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and very far from the reference results.

As the lattice parameter I employed the previously obtained value of ay =
2.508 A (see Sec. 7.2). This means that I did not use exactly the same q,
as Kuzubov et al., but since a, is supposed to yield the stressless situation
for the clean structures, with my parametrization usage of my own qy is
appropriate.

I did not relax the stresses induced to the supercell through introduction
of the defects, i.e., did not seek for the supercell dimensions yielding the
energy minimum. In this case it can be justified in several ways: firstly,
apparently Kuzubov et al. have not done it either and my goal is to repli-
cate their computations. Secondly, also in reality the stresses caused by a
single defect in a layer that is large or fixed from its edges can not change
the dimensions of the layer. Thirdly, as it will be seen, the stresses caused
by the vacancies are very small since the atoms surrounding the vacancies
are hardly affected by the vacancy formation.

Also when applying the strains, I did not relax the strains induced in the
transverse direction as I did in the case of clean BN layer, but apparently
this has not been done in the reference study either.

As for the “most stable boron phase”, whose energy is needed for ;(N), its
exact definition is vague. Thus I have used a randomized boron structure
which I have attempted to optimize with global minimization methods.
The end result is shown in Fig. 22 and I obtained E(B;3) = —79.496 V.
For E(N;) I computed a value of —14.535eV and as £(BN,.;) I employed
Ey/16, where E is the 4 x 4 repeated BFGS-optimized clean unit cell with
lattice parameter a.

Figure 22: The By, cluster  have used in Eq. (7.23).
I started with a cluster with randomized initial po-
sitions and then optimized the structure with Bas-
inHoppin global energy minimization algorithm
implemented in ASE. I repeated this procedure
several dozen times and then chose the final clus-
ter with the lowest energy. That particular cluster
is shown in this image and I obtained for its energy
—79.496 eV.
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Figure 23: The final h-BN layer vacancy unit cells that were used in this study.
All these structures have been BFGS-optimized.

7.4.2 QObtained results

As examples of used optimized structures, I have presented in Fig. 23 the
unstrained optimized unit cells of the studied vacancies, as well as the
original 4 x 4 supercell. As it can be seen, the atoms surrounding the
vacancies nearly completely stay put instead of moving to fill the empty
space. This is in accordance with previous vacancy studies for h-BN [42].
The reason for this is that once the atom(s) are removed and the bonds are
cut, the atoms surrounding the vacancies do not manage to form any new
bonds with other atoms and the cut bonds are left dangling in the space
unsatisfied.

In Fig. 24 I have presented the results for vacancy formation energies ver-
sus strain for each studied vacancy type and, for comparison, also the ref-
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Figure 24: Comparison of DFTB (a) and reference DFT (b) vacancy formation en-
ergies. h-BN monolayer vacancy formation energies under strain both for DFTB
(a) and DFT (b). For A = 1 naturally Vgy,;1 = Vgy;|, but in the reference paper
this seems to be not the case for some odd reason. In the fittings for F(\) there
were a lot of spread of the fitting points particularly for Vg and Vgy;|. This can
be seen from (a) as well. This probably indicates that for some values of strain
convergence for slightly wrong density has occurred.
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erence results by Kuzubov et al. These graphs do have relatively much
in common, which means that my DFTB parametrization more or less has
managed to capture the essential behavior of the vacancy formation ener-
gies under strain. More explicitly, particularly for Ex,.,(Vg) there is excel-
lent agreement with the DFTB and reference results. For each strain value
the difference is within 1eV. Also the DFIB formation energy curve for
the another monovacancy (i.e., Vx) obeys the DFT reference curve well. It
seems that for compression the DFTB values are a bit too small (at largest
~ 2eV) but for stretching they are quite equal. But the divacancy forma-
tion energies contradict strongly with the reference energies; Efom (Vi1 )
has completely reverse behavior under strain and the difference is over
4eV at its largest (for e = 1.04). But the Efo,m(Vpny,|) curve at least gener-
ally resembles the DFT curve—but is ~2 eV too high in energy.

Lastly, since [ already had the energies of these defected structures for vari-
ous strain values, I as well computed their (reduced) Young’s moduli. I fit-
ted parabolic fits for the energies with respect to strain and then employed
Eq. (7.14). But it must be stressed that in this case the transverse stresses
have not been relaxed since I did not relax them in the Ej,,,-computations
either. Thus the obtained values actually are some kind of pseudo-Y; in-
stead of the true Y;. Now, for example for the clean structures I obtained
451.2 TPanm (from ¢,) and 450.5 TPanm (from ¢,). These values are in cor-
respondence with the previous results (in Sec. 7.2) for h-BN even though
there I obtained Y; = 315TPanm in the BFGS-optimized case, which is
about 30 % lower value. Namely, based on the data I had for Sec. 7.2 1
calculated that if the transverse strains are not relaxed, Y; = 444.8 TPanm
(from €,) and 447.7 TPanm (from €,).

Table 10: The pseudo-Y; of vacancy defected h-BNs. Note that the transverse
stresses are not relaxed, so these values are higher than for the real Y; and the
reductions are more relevant. But also those numbers apply only for the studied
vacancy density.

Vacancy Strain direction Y;(TPanm) Reduction (%)
Vs X 263.7 —41.6

Vi b’e 289.8 —35.8
Ve X 128.0 ~71.6
Vi 5 325.7 977
Perfect h-BN X 451.2

Perfect h-BN y 450.5
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Since there is quite much error in the absolute value of Y, in this case I
rather considered the relative reduction of the Y, resulted from introduction
of the defect. However, also with those numbers it must be noted that
they depend on the size of the supercell—larger supercell means lower
defect density and therefore less weakened structure. And as in this case
the supercells are based on a 4 x 4 times repeated minimal unit cell, the
obtained results correspond to very high defect densities. Nevertheless,
they have been gathered to Tab. 10. Interestingly, in the case of Vg1
the reduction is very low even when compared to the monovacancies, but
reduction for Vpy;| is very large.

7.5 Stone-Wales defects on nanotubes

Stone-Wales (SW) defects are typical crystallographic defects that are char-
acteristic to hexagonal (e.g. BN and carbon) structures. Unlike the vacancy
defects, they are structural rearrangements, so the amount of atoms has
not been changed in them. For example the so-called 5|7|7|5 SW defects
are obtained through rotating a BN atom pair by 90° with respect to the
midpoint of the bond. This transforms four hexagons into two pentagons
and two heptagons. Fig. 25 illustrates 5|7|7|5 SW defects on zigzag nan-
otubes. Since there are two different kinds of B-N bonds in zigzag BNNTs’
for which the SW-transformation can be applied, there do also exist two
different kinds of 5|7|7|5 SW defects labeled as SW-I and SW-II (the exact
definitions are in the referred figure). Fig. 25 also shows that introducing
the SW defect leads to formation of energetically unfavorable homoele-
mental bonds. So far the BN nanostructures studied do have quite similar
structural and elastic properties with their carbon analogs. However, the
B-B and N-N bonds cause the formation energies and elastic properties of
the SW-defected tubi to significantly differ from their carbon analogs (for
formation energies see for example [43]).

These homoelemental bonds also are particularly important in the context
of this thesis since they employ the V,.,-functions constructed for the B-B
and N-N interactions and therefore measure their quality, which has not
been done in this thesis up to this point. The 5|7|7|5 defects are particularly
demanding for the quality of the used parametrization also because they
put the transferability of the BN-V,,, function to more thorough test than
before. Namely, the SW defects contain both a lot shorter and longer B-

9 This was discussed in Sec. 3.2.
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(a) The type I 5|7|7|5 SW defect (SW-I) on a (8,0) BNNT (highlighted with green). This
defect is obtained by rotating by by 90° an atom pair with that is aligned with the axis of
the tube.

(b) The type II 5|7|7|5 SW defect (SW-II) on a (8,0) BNNT (highlighted with green). This
defect is obtained by rotating by 90° an atom pair with that is in an angle of 60° with respect
to the axis of the tube.

Figure 25: The two possible orientations of the 5171715 Stone-Wales defect on
zigzag NTs. Also definitions of the bond lengths d(B — B), d(N — N) and d(B — N)
are shown. These example tubes are (8,0) BNNTs with N, = 4 and they have
been taken from my study, so they are BEGS-optimized with DFTB. To show here,
I selected structures with unit cell length [ closest to the equilibrium unit cell
length ly. The backsides of the NTs are not shown for clarity.
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N bonds than ay. Previously BN-V,.,(R) has been used only with quite
narrow scale of R—in the process of determining the Young’s moduli for
different structures the used stretchings have been just a few percent and
the vacancy defects in practice only broke the bonds belonging to them
and did not affect rest of the bonds. This is why the 5|7|7|5 defects also
puts the quality (transferability) of the BN-V,,, function to more thorough
test than before. Hence all in all the following computations with 5|7|7|5
SW defects might be the most important ones so far.

Also so-called 4(8|8|4 SW defects exist. They are similar to 5|7|7|5 SW de-
fects but in accordance with their name they consist of two quadrilaterals
and two octagons. Therefore they only consist of B-N bonds and their
formation energies are rather similar to 4|8/8|4 SW defected carbon NTs.

In a paper by Yafei Li et al. properties of (8,0) nanotubes with 5|7|7|5 SW
defects are comprehensively investigated by means of gradient-corrected
DFT simulations. The studied properties include the geometries, forma-
tion energies and electronic properties. All this is calculated for both type I
and type II SW defects (SW-I and SW-II). Out of their results I have tried to
reproduce with DFTB the formation energies E,,,, (SW-I) and Efyy, (SW-II)
as well as the most relevant bond lengths, e.g. the most deformed bond
lengths from the center of the defect. These bond lengths are the boron-
boron bond d(B — B), nitrogen-nitrogen bond d(N — N) and the boron-
nitrogen bond d(B — N) that was initially rotated with 90°. Also these
definitions are pictured in Fig. 25.

Also, in [44] the authors have used as initial unit cell a supercell con-
structed out of 4 minimal unit cells (V,, = 4), totalling toa 4 x 4 x 8 = 128-
atom supercell. They have stated that it is large enough to eliminate the
defect-defect interactions, but I have wanted to verify this claim. Namely,
since the full DFT calculations are expensive, the authors might not have
had resources to verify it themselves. But since DFTB is so light, it allows
such tests relatively easily compared to full DFT. Therefore I repeated my
calculations also for N,. = 3,4, 5 and 6 in the case of SW-I defect.

It is noteworthy that in reality the defected nanotubes are usually bent.
But such structures can not be modelled with periodic one-dimensional &-
point calculations, and thus the standard way is to perform computations
for unbent tubes. Thus the appropriate periodic defect structure would
be a BNNT ring constructed from bent supercells. These kinds of com-
putations can be done quasi-one-dimensionally by revisiting the standard
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Bloch theorem as discussed in Sec. 3.2. Another possibility to avoid this
is to study NTs with defects symmetrically on both sides of the BNNT so
that the tube is naturally unbent.

7.5.1 Methodology

I proceeded similarly to before. I first created the initial guesses for the
structures with different supercell sizes, and then I optimized them with
BFGS. These supercells were 3-, 4-, 5-, and 6-fold minimal unit cells, for
which I used 7, 5, 4 and 4 k-points for sampling the one-dimensional Bril-
louin zone, respectively. This k-point density is in accordance with Li et al.,
who used as supercell 4 times repeated minimal unit cell and 5 k-points.

As in Sec. 7.3, after the optimization I performed parabolic fit £(!) to find
the equilibrium energy (£) and length (Iy) of each structure (both defected
and clean tubes). Also for the defected structures I created linear fits for
d(B —B), d(B — N) and d(N — N) with respect to [ to find their values at .
As [y I used the optimal [ of the defected tube, not that of the clean one.
In other words after introducing the SW defects to optimized strainless
clean tubes I also relaxed the induced strains from the defected tube. Also
I am fairly sure that this was done also in Ref. [44] even though it was
not mentioned. Besides, I checked the properties for [y of clean tubes, and
the difference was 3 % for Ef, (SW-I) and less for geometries as well as
Eform (SW-II). Therefore it does not effectively matter if I did this differently
from the reference study.

Also, as previously, in the comparison between defected and clean BNNTs
these structures had unit cells of the same size, they were both optimized
with BFGS and in the optimization the amount of used k-points as well as
all the other settings were equal. Hence I did not use the properties for the
minimal unit cell of the clean (8,0) BNNT computed in Sec. 7.3, and rather
recomputed them.

7.5.2 Obtained results

As already mentioned, Fig. 25 presents the final optimized structures. It
is seen that the general geometry of the tube does not remain smooth at
the SW-defected areas—the tubes have very strong local surface buckling
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instead. This buckling behavior is universal for SW defects, and it occurs
even in flat BN and graphene sheets, as has also been experimentally ob-
served [45]. This behavior is more strong for BN than carbon structures,
though. It is a promising sign that also with my parametrization qualita-
tively similar parametrization shows up. Quite similar-looking buckling
can also be seen in the DFT study of the Ref. [46].

I have gathered a set of different properties of the SW-I-defected (8,0)
BNNT for different supercell sizes to Tab. 11 to test the convergence of
these properties as a function of supercell size. From these results it is ob-
vious that for the 4-fold supercell these properties have not completely
converged. Most notably the formation energy decreases with 0.12eV
when the size of the structures is brought up from 4-fold minimal clean
unit cell to 6-fold. This difference is relatively significant, and it is ex-
pected, that the similar correction to 4-fold minimal clean unit cell DFT
calculations is in the same order of magnitude. Thus the results of Yafei
Li et al. for Ej,m could probably be relatively notably improved by en-
larging the used unit cells. The degree of convergence is much greater for
geometrical properties in my convergence tests, though.

Table 12 presents my DFTB results for both SW-I and SW-II defects com-
pared against the reference DFT results. Firstly it is seen that my DFTB
BN parametrization clearly overestimates the formation energies in both
cases. The geometries are in much better agreement, though. Particularly
interestingly the DFTB results for d(B — B) and d(N — N) were good. This
is a sign of good quality of my V,.,-parametrizations for B-B and N-N
interactions.

Moreover, from the DFTB data it is seen that introduction of the type I SW
defect shrinks the tube with 0.14 A after all the forces have been relaxed,
whereas type II enlarges it with 0.04 A. Thus based on this, we might
expect to observe type I SW defects under compression of the tube and
type II SW defects under stretching.

Also I studied the Young’s moduli. In the case of four times repeated min-
imal unit cell as the supercell, I found that introduction of SW-I defect
reduces Y; with 0.6 % from 283.3 TPanm to 281.7 TPanm, which is surpris-
ingly small reduction. For SW-II the reduction is much more significant—
9.67 % from 283.28 TPanm to 255.88 TPanm. This seconds the impression
of SW-II being more severely defected than SW-I. But it must again be re-
membered that these reductions apply for studied defect densities only.
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Table 11: Effect of the supercell size for various 5|7|7|5 SW-I defect properties on
a (8,0) BNNT. Both the formation energy FEf,m, and several geometric properties
are considered. The 3-, 4-, 5-, and 6-fold unit cells consist of 96, 128, 160 and 192
atoms, respectively, as the unit cell of a (8, 0) nanotube has 32 atoms.

Nu Emm(eV) AL(A) d(B-B)A) dB-N)A) dN-N)(A)

3 6.86 —0.141 1.683 1.478 1.443
4 6.72 —0.141 1.679 1.466 1.443
5 6.65 —0.143 1.678 1.462 1.443
6 6.60 —0.144 1.677 1.459 1.444

Table 12: Comparison of DFTB and reference bond lengths and E¢,,n, of both type
I and II SW defects in (8,0) NTs. More explicitly, the three studied bonds are the
monoatomic B-B and N-N bonds introduced by the defect and the most severely
defected B-N bond (see Fig. 25 for clarification). Both studies have employed
128-atom supercells.

d(B — B)(A) d(N —N)(A)
DFTB DFT [44] Err. (%) DFTB DFT [44] Err. (%)
(8,0)-1 1.679 1.724 —2.6 1.466 1.485 —1.3
(8,0)-I 1.653 1.666 —0.8 1.449 1.442 0.5
d(B —N)(A) Erorm(eV)
DFTB DFT [44] Err. (%) DFTB DFT [44] Err. (%)
(8,01 1443 1414 21 6.72 4.85 39
(8,0)-IT 1.421 1.361 4.4 7.06 5.84 21
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8 Conclusions

The band structures managed to capture the essential properties of the
studied structures and I believe that their accuracy is enough for introduc-
tory studies of new systems. This applied also to the geometries of the
structures—unless the structures were stretched. Namely, then the behav-
ior of the systems in the transverse direction (characterized by Poisson’s
ratios) was erroneous by large margin.

8.1 Possible improvements

There is obviously much room for improvement for my parametrization
since as discussed in Sec. 7.3.2, in Ref. [40] BN DFTB results clearly better
than mine have been performed. Their parametrization [47] shows that
they used ryp = 1.48 A and ToN = 1.38 A whereas I used (see table 2)
rop = 1.60A and rox = 0.75 A. It is glaring how small my 7y is. Based
on the band structures and the used dimer reference systems I still believe
that I chose its value correctly, but for more complex structures it simply
does not seem to be good. Moreover, in [47] the authors have employed a
notably larger amount of different reference systems and situations. This
inevitably leads not only to better choice of z-parameters but also the V-
functions. All in all the conclusion is that to improve upon the parametri-
zation, simply more reference systems should be used.

8.2 Postscript

At the beginning of the this project I was quite baffled about nearly ev-
erything and did not fully understand what I was doing and why. I had
taken a course on DFT so I knew about it a bit, but it took a long time until
the TB aspect became clear to me. That is one reason why I wanted to de-
rive the DFTB theory so carefully in the theory section, and it eventually
transformed into my research training thesis. This surely familiarized me
with the subject thoroughly. Also the improvement in my knowledge of
the practical simulations in computational nanoscience was of the same
order of magnitude. All in all I can say that I learnt immensely during this
project and this prepared me well to my upcoming postgraduate studies.
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