
194
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Simple Memetic Computing
Structures for Global Optimization

Ilpo Poikolainen

JYVÄSKYLÄ STUDIES IN COMPUTING 194

Ilpo Poikolainen

Simple Memetic Computing
Structures for Global Optimization

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Mattilanniemen D-rakennuksen salissa MaD259

syyskuun 18. päivänä 2014 kello 14.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in Mattilanniemi, hall MaD259, on September 18, 2014 at 14 o’clock.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

Simple Memetic Computing
Structures for Global Optimization

JYVÄSKYLÄ STUDIES IN COMPUTING 194

Ilpo Poikolainen

Simple Memetic Computing
Structures for Global Optimization

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-5803-9
ISBN 978-951-39-5803-9 (PDF)

ISBN 978-951-39-5802-2 (nid.)
ISSN 1456-5390

Copyright © 2014, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2014

ABSTRACT

Poikolainen, Ilpo
Simple Memetic Computing Structures for Global Optimization
Jyväskylä: University of Jyväskylä, 2014, 60 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 194)
ISBN 978-951-39-5802-2 (nid.)
ISBN 978-951-39-5803-9 (PDF)
Finnish summary
Diss.

During the recent years, Memetic Computing (MC) and Memetic Algorithms
(MAs) have been drawing increasing attention in the scientific community. While
MAs, by classic definition, include a population based algorithm and a local
search, MC structures include several algorithmic components (memes) within
a co-operative framework. Using several algorithmic components is preferable,
over a single component, when wisely selected to complement each other. Along
with the selection of these components, the designer needs to define a memetic
structure, which determines how the components interact during the optimiza-
tion process. Defining this structure is crucially important in order to achieve a
robust algorithmic framework with good balance between exploration and ex-
ploitation. This thesis analyzes MC structures, focusing on the concept of sim-
plicity, and understanding the role of each component.

Several MC structures are presented in the included articles. First, a simple
memetic structure is studied in depth, and its performance is enhanced by mod-
ified variants. This simple structure contains a resampling mechanism inspired
by the exponential crossover of Differential Evolution (DE). The resulting algo-
rithms retain the properties of the original implementation, in terms of simplicity
and memory requirements, while remaining competitive against more complex
state-of-art algorithms.

Differential Evolution is studied in depth as some novel MC structures de-
signed in this thesis are based on a DE logic. DE is a versatile optimization al-
gorithm which can be applied to a wide range of problems. The overall simple
structure is achieved by adding components and/or modifying operators from
the original DE scheme. Finally, motivated by the philosophy that the role of each
part of an algorithm should be clear to the designer and the algorithm should be
tailored around the problem features, a novel DE based MC scheme is introduced.
The MC scheme estimates the multimodality of an optimization problem, and de-
tects the most interesting areas of the decision space in order to intelligently guide
the initial population sampling for DE.

Keywords: Memetic Computing, Differential Evolution, Evolutionary Algorithms,
Memetic Algorithms, Memetic Structures, Local Search

Author Ilpo Poikolainen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisor Ferrante Neri
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Dr. Swagatam Das
Electronics and Communication Sciences Unit
Indian Statistical Institute
India

Prof.Dr. A.E. (Gusz) Eiben
Head of the Computational Intelligence Group
Department of Computer Science
Faculty of Sciences
Vrije Universiteit Amsterdam
Netherlands

Opponent Giovanni Acampora
College of Arts and Science, School of Science &
Technology
Nottingham Trent University
United Kingdom

ACKNOWLEDGEMENTS

My first thanks go to my supervisor Ferrante Neri without whom this work
would not exist. I am especially thankful for resourceful discussions on research
ideas, problems, and being available when ever, despite the distance. Thank you.

I also want to thank my former assistant supervisor Matthieu Weber, who
guided me through the very basics and introduced me to optimization tech-
niques, eventually resulting to this work. I wish to express my gratitude to
Ernesto Mininno, Giovanni Iacca, and Fabio Caraffini for their work towards op-
timization platform Kimeme and from the assistance they provided various times
over different cases and the work towards articles included in this dissertation.

For reviewing the dissertation manuscript I wish to thank Prof.Dr. A.E.
(Gusz) Eiben and Dr. Swagatam Das. I am also very grateful to Giovanni Acam-
pora for agreeing to be my opponent. Further acknowledgements needs to be
given to the Faculty of Information Technology and the employees for all the
support they provided. Finally I want to thank all of my family, colleagues, and
friends for the assistance and discussions.

LIST OF FIGURES

FIGURE 1 Difference between general purpose algorithms and tailored
algorithms.. 22

FIGURE 2 DE/rand/1 mutation scheme... 26
FIGURE 3 Difference vectors and their distribution 26
FIGURE 4 Four possible crossover outcomes between parent xi and mu-

tant xi,o f f . Point xi being degenerate as no genes are swapped. . 29
FIGURE 5 Functioning scheme of 3SOME. Arrows indicate transitions

between active component and letters S and F indicate suc-
cess and failure on component improving solution................... 40

FIGURE 6 2-dimensional illustration of clusters Ck and their respective
pivot individuals xp−k. In stage three pivot individuals are
used as mean values with standard deviations σx and σy to fill
in remaining population. ... 49

LIST OF ALGORITHMS

ALGORITHM 1 Determinisitic local search .. 14
ALGORITHM 2 Evolutionary algorithm pseudo-code............................... 17
ALGORITHM 3 Differential Evolution pseudo-code 24
ALGORITHM 4 Differential Evolution pseudo-code 25
ALGORITHM 5 Exponential crossover .. 28
ALGORITHM 6 Long distance exploration... 40
ALGORITHM 7 Stochastic short distance exploration 40
ALGORITHM 8 Modified stochastic short distance exploration.................. 43
ALGORITHM 9 Meta-Lamarckian coordination 44
ALGORITHM 10 μDEA ... 45
ALGORITHM 11 DEcfbLS.. 46
ALGORITHM 12 Pseudo-code of the Second Stage. 48
ALGORITHM 13 Pseudo-code of the Third Stage. 49

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND ALGORITHMS
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 11
1.1 Derivative-based optimization ... 12
1.2 Derivative-free optimization.. 12

1.2.1 Hooke-Jeeves Algorithm .. 13
1.2.2 Rosenbrock’s Method... 13
1.2.3 Nelder-Mead Method .. 13
1.2.4 Deterministic Local Search.. 14

2 META-HEURISTICS ... 15
2.1 Single-solution Meta-heuristics .. 16

2.1.1 Random walk.. 16
2.1.2 Simulated Annealing ... 16

2.2 Population-Based Meta-heuristics .. 16
2.2.1 Evolutionary Algorithms.. 17

2.2.1.1 Genetic Algorithms ... 17
2.2.1.2 Evolutionary Programming 18
2.2.1.3 Evolutionary Strategies 18

2.2.2 Swarm Intelligence .. 19
2.2.2.1 Particle Swarm Optimization 19
2.2.2.2 Ant Colony Optimization 20

2.2.3 Memetic Algorithms .. 20
2.2.4 Performance of Meta-heuristics 21

3 DIFFERENTIAL EVOLUTION .. 23
3.1 Population Initialization.. 24
3.2 Mutation ... 24
3.3 Crossover .. 27

3.3.1 Uniform (Binomial) Crossover .. 27
3.3.2 Exponential Crossover ... 27

3.4 Selection .. 29
3.5 Implicit Self-Adaptation and Stagnation 30
3.6 Ways Around Stagnation in DE.. 31

3.6.1 Modified Structures of Differential Evolution 31
3.6.1.1 Self-Adaptive Control Parameters in Differential

Evolution ... 32
3.6.1.2 Adaptive Differential Evolution With Optional Ex-

ternal Archive... 32

3.6.1.3 Self-Adaptive Differential Evolution 33
3.6.2 Differential Evolution Integrating Extra Components........ 33

3.6.2.1 Differential Evolution with Scale Factor Local Search 34
3.6.2.2 Differential Evolution with Global and Local Neigh-

borhoods.. 34
3.6.2.3 Opposition Based Differential Evolution 35
3.6.2.4 Differential Evolution with Population Size Re-

duction .. 36

4 MEMETIC COMPUTING STRUCTURES ... 37
4.1 Coordination of the Algorithmic Components 37
4.2 Single Solution Memetic Structure.. 38

4.2.1 Three Stage Optimal Memetic Exploration 39

5 CONTRIBUTION OF THIS WORK .. 41
5.1 Test Framework.. 41
5.2 Modified Structures of Three Stage Optimal Memetic Exploration. 42
5.3 Differential Evolution based Memetic Structures 44
5.4 Cluster-Based Population Initialization in Differential Evolution... 46

5.4.1 Optimization by Local Search ... 47
5.4.2 Clustering and Cluster Evaluation................................... 47
5.4.3 Cluster-Based Population Initialization 48

6 CONCLUSION .. 50

YHTEENVETO (FINNISH SUMMARY) ... 52

REFERENCES.. 54

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI I. Poikolainen, G. Iacca, F. Neri, E. Mininno, M. Weber. Shrinking Three
Stage Optimal Memetic Exploration. Proceedings of the fifth international con-
ference on bioinspired optimization methods and their applications, pages 61-74,
2012.

PII I. Poikolainen, F. Caraffini, F. Neri, M. Weber. Handling Non-Separability
in Three Stage Memetic Exploration. Proceedings of the fifth international con-
ference on bioinspired optimization methods and their applications, pages 195-
205, 2012.

PIII F. Neri, M. Weber, F. Caraffini, I. Poikolainen. Meta-Lamarckian Learning
in Three Stage Optimal Memetic Exploration. 12th UK Workshop on Compu-
tational Intelligence (UKCI), pages 1-8, 2012.

PIV I. Poikolainen, G. Iacca,F. Caraffini, F. Neri. Focusing the search: a progres-
sively shrinking memetic computing framework. Int. J. Innovative Comput-
ing and Applications, pages 3-16, 2013.

PV F. Caraffini, F. Neri, I. Poikolainen. Micro-Differential Evolution with Ex-
tra Moves Along the Axes. IEEE Symposium on Differential Evolution (SDE),
pages 46-53, 2013.

PVI I. Poikolainen, F. Neri. Differential Evolution with Concurrent Fitness
Based Local Search. IEEE Congress on Evolutionary Computation (CEC), pages
384-391, 2013.

PVII I. Poikolainen, F. Neri, F.Caraffini. Cluster-Based Population Initialization
for Differential Evolution Frameworks. submitted in April, 2014.

Author’s contribution in the articles listed above was as follows.
In articles [PI] and [PII] modified versions of Three Stage Optimal Memetic

Exploration (3SOME) algorithm are proposed. For these articles the author con-
tributed in design and implementation of the proposed algorithms, while original
algorithm and other comparison algorithms were implemented by co-authors.
Numerical experiments and statistical tests related to both articles were performed
by the author. Writing of the articles was carried out together with co-authors.

Article [PIII] proposes alternative memetic structure for coordination of com-
ponents in 3SOME algorithm. For article [PIII] the author contributed in the de-
sign of memetic structure while implementation of the structure and comparison
algorithms were done by co-authors. Numerical experiments were carried by
author while statistical tests regarding comparison algorithms and most of the
writing of the article was performed by co-authors.

Article [PIV] is revised and extended version of article [PI]. Additional
numerical experiments and statistical test were performed by author, while co-
authors contributed to writing of the article and experiments regarding compu-
tational overhead.

In article [PV] parallel structure of micro-Differential Evolution with Extra
Moves Along the Axes (μDEA) is proposed. Author contributed in design of
the μDEA, while majority of the implementation was performed by co-authors.
Author participated in performing numerical experiments and statistical tests.
Majority of the writing of the article was done by co-authors.

Article [PVI] proposes a novel memetic algorithm, namely Differental Evo-
lution with Concurrent Fitness Based Local Search (DEcfbLS). In this article, both
the algorithmic design and implementation were performed by author. Majority
of the writing was done by the author with occasionally assisted by the co-author.
Statistical tests performed, for both of those included in the article and those sent
to organizers of CEC2013 competition were performed by the author.

Finally article [PVII] introduces new module for Differential Evolution (DE)
based algorithms, namely Clustering-Based Population Initialization (CBPI). The
proposed module is tested with classical DE and 5 modern variants of DE. Orig-
inal idea behind approach came from co-authors while final design of clustering
and population initialization were put together by the author. Each of modi-
fied versions of DE were implemented by the author and numerical results for
BBOB2010, CEC2013, and CEC2010 benchmarks were performed by the author,
while numerical results regarding real-world problem were done by co-authors.
Author contributed to the writing of the article for numerical results section and
miscellaneous parts of other sections.

Many of benchmark problems and comparison algorithms included in all of
the articles were implemented by co-authors within Kimeme optimization plat-
form [13], which I am greatly thankful for.

1 INTRODUCTION

An optimization process can be described as trying to find best possible answer
for a given problem. These problems can be categorized into two different classes
of problems: combinatorial problems and continuous problems. An example of
combinatorial problem is a Nesting Problem, where one tries to minimize the
wasted space when filling given container with predefined pieces (this problem
is very familiar e.g. in clothing industry). An example of continuous problem
could be designing an airfoil with best aerodynamic qualities. More formally
optimization problem is finding solution x∗ ∈ D for a given problem f : D → E,
such that f (x∗) < f (x), ∀x ∈ D. It must be noted that sign < used here means
"better" and D ⊂ Rn is a design space or a search space, E ⊂ Rm is a result space and
f is an objective function or a fitness function. If m > 1 the optimization problem
is called multi-objective or many-objective optimization problem. In this work we
only consider single-objective problems where m = 1. More specifically, we focus
on objective functions

f : Rn → R (1)

and trying to find optimum x∗ ∈ Rn, such that

f (x∗) = min f (2)

For clarity: In future chapters we assume that we are working with mini-
mization problems and thus refer function’s minimum as optimum unless other-
wise mentioned. In general it is trivial to convert any maximization problem to
minimization problem (and vice versa).

This thesis is organized as follows. The present Chapter 1 introduces some
classical methods for local and global optimization. Chapter 2 presents some
of most popular single-solution and population-based meta-heuristics for global
optimization and also discusses combinations of meta-heuristics called memetic
algorithms. In Chapter 3 a popular meta-heuristic, namely Differential Evolution
(DE), is discussed more in detail. Chapter 4 briefly describes concepts of memetic
computing, memetic structures, and introduces a simple memetic computing

12

structure, namely Three Stage Optimal Memetic Exploration (3SOME). Finally,
Chapter 5 presents the main contributions of this work. Additional operators for
3SOME-algorithm are presented regarding scalability and complementary search
moves and also modified algorithmic structure of 3SOME applying concept of
meta-Lamarckian learning is included. Also two new memetic structures of DE
are introduced along with cluster-based population initialization method to im-
prove DE-based algorithms in general.

1.1 Derivative-based optimization

If objective function f has an analytical expression, is continuous, twice differen-
tiable, and unimodal (has only one local optima), it’s optima can be found analyt-
ically using Taylor series:

f (x) = f (x) +∇ f (x)(x − x) +
1
2

H f (x)(x − x)(x − x)T + ... (3)

where ∇ f (x) is gradient and H f (x) is Hessian matrix of function f :

H f (x) =

⎡
⎢⎢⎣

∂2 f (x)
∂x1∂x1

. . . ∂2 f (x)
∂x1∂xn

...
∂2 f (x)
∂xn∂x1

. . . ∂2 f (x)
∂xn∂xn

⎤
⎥⎥⎦ (4)

At global optima x∗ it must be that ∇ f (x∗) = 0 and it can be found by solving
equation:

x∗ = −∇ f (x)H−1 f (x) + x (5)

Calculation of Hessian matrix can be difficult and approximation of Taylor se-
ries causes new problems to appear. These problems can be worked with Quasi-
newton methods or conjugate gradient based methods. However for arbitrary func-
tions these techniques may fall short and their performance is not guaranteed.

1.2 Derivative-free optimization

If calculation of derivatives is hard or the objective function does not have an
analytical expression (for example solution is gained with a computer program
or by running a simulation) above mentioned techniques cannot be directly used.
In these cases one can use so called direct search methods. Simplest direct searcher
follows random directions and generates series of approximations for minimum
until solution of certain accuracy is found. Direct search methods do not require
information about objective function or its derivative although they use "discrete

13

derivative" when calculating difference of fitness values between points. One
example of a such method is Hooke-Jeeves algorithm.

1.2.1 Hooke-Jeeves Algorithm

Hooke-Jeeves algorithm [26] has two basic steps: first it evaluates fitness of nearby
points along coordinate-axes and second uses "pattern search" based on previous
step to select desirable direction for next step. The algorithm starts from an ini-
tial point x0 and explores along coordinate-axes with step size h, if there is no
improvement towards selected axis algorithm tries the opposite direction with
similar step size. After going through all search directions along the axes, new
point x1 is gained by adding the step sizes for relevant directions. If no improve-
ment is gained the search is applied again with smaller step size. Otherwise, next
step is taken to direction derived by x0 and x1 assuming that this direction is
leading towards better fitness and then the algorithm is applied again on x2.

1.2.2 Rosenbrock’s Method

Rosenbrock’s method, see [60] is similar to Hooke-Jeeves algorithm as it’s a single
point optimizer and uses somewhat similar search logic. Initially starting from
point x0 Rosenbrock’s method searches along coordinates axes with step size h, if
no improvement is found it looks to opposite direction with similar step size. If
there is still no improvement the step size is halved. When improvement is found,
initial coordinate axes are rotated towards approximated gradient and next iter-
ation begins with step size reset following rotated coordinate axes. These steps
are repeated until stop criterion is met. Downside of this approach is that for
high-dimensional problems calculating rotated coordinate axes can be computa-
tionally expensive.

1.2.3 Nelder-Mead Method

While Rosenbrock and Hooke-Jeeves methods are single-point optimizers, Nelder-
Mead, see [44], uses set of n + 1 solutions forming n dimensional polyhedron, or
simplex in search space D. At each iteration of the algorithm, these points are
sorted according to their fitness, so that x0 has the best fitness and the xn has the
worst fitness. The algorithm then constructs candidate replacement point xr for
point xn by reflection of point xn respect with the center of other points x0, ..., xn−1.
Depending on the fitness of replacement point xr to point x0 and xn−1, an ex-
tension point may be created in an optimistic attempt to explore further in the
same direction, or on the contrary a contraction point may be computed closer to
point xm. If above search fails (does not lead to better solution), the simplex is
contracted around its best point in order to reduce exploration range in the next
iteration of the algorithm.

14

1.2.4 Deterministic Local Search

Algorithms presented above are all deterministic by their nature, thus they follow
a predictable path of search moves as there is no randomness involved. In sev-
eral articles related to this work an single-point optimizer is used, which is very
similar with the family of algorithms mentioned above. This component was
first introduced in [28] as an one part of optimization process involving three dif-
ferent parts, which is discussed in detail in Chapter 4, and further modified in
[5] where it was successfully used in conjunction with Rosenbrock’s method to
provide co-operative optimization framework. This particular local searcher is
a deterministic single-point search very similar to Hooke-Jeeves. Starting from
random point xe, first it searchers along the coordinate axes with step size h, if
there is no improvement along the axis it searches from opposite direction with
step size h/2. After looking at each coordinate direction, best solution among
these coordinates is selected as beginning point xt for next iteration. Difference
between Hooke-Jeeves is that there is no pattern search involved and Hooke-
Jeeves is more greedy by nature as it moves to new point instantly when there is
improvement, while Deterministic Local Search looks along all coordinates axes
before deciding which direction to follow. Pseudocode for Deterministic Local
Search is provided in algorithm 1.

Algorithm 1 Determinisitic local search

while termination condition is not met do

xt = xe
xs = xe
for i = 1 : n do

xs[i] = xe[i]− h
if f (xs) ≤ f (xt) then

xt = xs
else

xs[i] = xe[i] + h
2

if f (xs) ≤ f (xt) then

xt = xs
end if

end if

end for

if f (xt) ≤ f (xe) then

xe = xt
else

h = h
2

end if

end while

2 META-HEURISTICS

Methods presented in previous chapter were classified into two categories: deriva-
tive-based and derivative-free techniques. These techniques both work well on
uni-modal problems when problem has only one local optima. However often
objective functions are more complex by their nature: multi-modal, non-separable,
ill-conditioned etc. where multi-modality refers to functions having multiple local
optimas and in optimization one is interested in finding the global optima. For
single-point techniques multi-modal functions present a starting point problem:
they are highly dependent on an initial selection of the starting point and often
converge to a nearest local optima. Selecting proper step size can be problematic
especially for ill-conditioned problems. Function is said to be separable if it can
be minimized one variable at time. However objective functions often are non-
separable and search techniques which highly rely on moving along the coordi-
nate axes are insufficient in finding the global optima in such cases. To overcome
these more complicated problems one has to turn to so called meta-heuristics.

Meta-heuristics can be considered as an efficient way to produce new solu-
tions by trial and error to a complex problem within a reasonable amount of time.
The complexity of the problem makes it impossible to check every possible solu-
tion to find best within acceptable time. In meta-heuristics there is no guarantee
that the best solution can be found, and we may not even know whether given
algorithm will work or why if it does work. The idea is to have an efficient and
also practical algorithm that will work most of the time and is able to produce
good quality solutions that are nearly optimal even there is no guarantee for the
optimal one.

Many meta-heuristics typically have global convergence properties and thus
can find acceptable solution within relatively limited amount of iterations or fit-
ness evaluations. This property makes them suitable for solving global optimiza-
tion problems. Meta-heuristics employ techniques that use pseudo intelligent
ways for exploring new solutions. Such techniques involve both single-point op-
timizers: Random Walk or Simulated Annealing and population-based meta-heuristics
where algorithms are often inspired by phenomena observed in nature, such
as: Genetic Algorithms, Evolutionary Programming, Evolution Strategies, and parti-

16

cle swarm optimization. In the following sections we take a short survey on the
methods mentioned above.

2.1 Single-solution Meta-heuristics

2.1.1 Random walk

The Random Walk algorithm, see e.g. [22], is one of the simplest ways to perform
global optimization. Random Walk starts from a randomly generated point and
tries to improve this solution by adding a random vector (point) to the existing
solution. In the case where the new point leads to improvement in fitness value
the point is stored for next iteration of the algorithm. It is possible that Random
Walk can escape a local optima and find the global optima. Unfortunately this
probability of the algorithm stepping from a basin of attraction to an another
more promising basin is very low and thus is very time consuming process and
not very useful approach. However, these kind of techniques inspire the more
modern algorithms which use more sophisticated search logics than randomized
addition vectors.

2.1.2 Simulated Annealing

Simulated Annealing, see [34], is inspired by how atoms move in molten metal
while it’s cooling, at the early stages when temperature is still high atoms rapidly
move in the metal and "settle down" as the temperature gets lower. Algorithm
follows the basic structure of Random Walk with the addition that Simulated
Annealing can accept worse solutions with a probability that is controlled by
temperature parameter. Temperature lowers each iteration of the algorithm and
probability of accepting worse solution gets exponentially lower. Simulated An-
nealing can escape local optima with higher chance than standard Random Walk
algorithm but it is not guaranteed. There exists modifications to improve the per-
formance of the algorithm such as continuing iterations from previous better so-
lutions than the current one, this is called restarting. Restarting can be done when
for example if algorithm has run for fixed amount of iterations, no improvements
for previous N iterations or by some other criteria.

2.2 Population-Based Meta-heuristics

In population-based meta-heuristics the search space is explored from several
points simultaneously: forming a population of solutions. From population based
techniques two categories can be distinguished:Evolutionary Algorithms (EA) and
Swarm Intelligence (SI) algorithms. EAs generally mimic evolutionary processes
observed in nature and main driving force of these algorithms comes from re-

17

combination of solutions and their genes (variables). SI algorithms emulate the
behavior of flocks of birds or swarms of insects, for example how ants find the
shortest path to food source. Instead of recombination of individuals these meth-
ods use individuals personal experience and behavior of other members/leader
of the flock to produce new solutions. Third category of population-based meta-
heuristics that should be mentioned are Memetic Algorithms (MAs). MAs utilize
both population-based techniques but also include local searchers, which emu-
late life time learning of the individual, during some stage of optimization in a
hybrid fashion. In following sections we take a short survey on these three cate-
gories and to related algorithms.

2.2.1 Evolutionary Algorithms

In the first category of population-based meta-heuristics we take a look into EAs.
In EAs solutions form a population and by recombination try to adapt to their en-
vironment (in terms of fitness), this adaptation is done by four main mechanisms:
1) parent selection, 2) crossover, 3) mutation and 4) survivor selection. Generic
pseudo-code for EAs is given in algorithm 2. We will shortly introduce some of
more popular EAs used: Genetic Algorithms (GAs), Evolutionary Programming
(EP), and Evolution Strategies (ES).

Algorithm 2 Evolutionary algorithm pseudo-code

Generate an initial population N
Evaluate fitness of each solution in N
while termination condition is not met do

Select parents
Create offspring by crossover
Mutate the offspring
Evaluate fitness of each offspring
Select survivors for next generation

end while

2.2.1.1 Genetic Algorithms

Genetic algorithms, see [21], are inspired by reproduction process of living or-
ganisms, in GA parent population of solutions (phenotypes) are initialized then
parents are recombined by mixing their attributes (genotypes) by crossover or mu-
tation forming offspring solutions. In traditional GA phenotypes are represented
by bit strings, this means that in a way or an another phenotypes need to be bi-
nary encoded, using for example Gray coding. In more modern approaches GA
is proposed to use real numbers instead.

When selecting parents for recombination, the selection can be done differ-
ent ways such as proportional selection where more fit parents have higher chance
to get selected. Another way of selection is k-tournament selection where random
sample of k parents is taken and the one with best fitness gets selected.

18

Recombination is done with two selected parents using crossover function.
Two commonly used crossover schemes are single-point and two-point crossover
where in case of single-point, both genotypes are cut from a random position and
the other part is switched with the other candidate forming two new solutions.
In two-point crossover string of bits is exchanged between parents. Other more
complicated crossovers exist such as multi-point crossover, mask crossover or
mapped crossover, see [17].

After recombination is done the two new offspring have probability to un-
dergo a mutation. If the phenotype is presented as a bit string the mutation can
be done by switching a random bit from 0 to 1 or vice versa, if phenotype is pre-
sented as real-valued vector, mutation can be done by adding (or subtracting) a
random value to a random variable. Generally probability of mutation is set to
be very low since too high occurrence of mutations can cause a loss of good solu-
tions, that being said the importance of mutation is to provide search moves that
would not be possible purely by crossover.

Once recombination phase is complete the final survival selection is done
by generational selection where parents are replaced by their offspring.

2.2.1.2 Evolutionary Programming

Evolutionary Programming (EP), see [20], is inspired by how genomes alter in
living beings by mutation rather than recombination. While still having a popu-
lation of solutions as in GA, in EP each solution include additional real-numbered
variables and also scaling parameters:

(x, v) = (x1, ..., xn, v1, ..., vn) (6)

where xi is i’th variable and vi is scaling parameter for the i’th variable. At each it-
eration of the algorithm for each indivual (x, v) new candidate is generated using
following formulas: {

vi = vi(1 + α · N (0, 1))
xi = xi + vi · N (0, 1)

(7)

where α is a control parameter of the algorithm and N (0, 1) is Gaussian random
variable with mean at 0 and standard deviation of 1. After mutations the new can-
didate population is merged with parent population. Survivor selection is done
individually by comparing solutions against a randomly selected set of individ-
uals from merged population. Solutions with highest win percentages against
their comparison set are then selected for the next generation.

2.2.1.3 Evolutionary Strategies

Evolution Strategies (ES), see [59], are similar to GA using both recombination
and mutation as evolution tools. In ES solutions are coded in real-values so it’s
more suitable for continuous optimization than GA. As in Evolutionary Program-
ming, ES uses similar way to represent the solutions:

19

(x, v) = (x1, ..., xn, v1, ..., vn) (8)

where each xi is associated with a self-adaptive scaling parameter vi.
At recombination, population of μ parents are recombined to form a popu-

lation of λ offspring. In general offspring population size λ ≥ μ. Recombination
can be discrete where components from two parents are combined or intermediate
where offspring are for example an average of the parents.

As in GA, after recombination follows mutation that uses similar logic which
is used in EP:

x′i = xi + v′i · N (0, 1) (9)

where xi is solution being mutated and v′i is scaling parameter. Several ways to
generate scaling parameter v′i has been proposed in literature for example, see
[24].

Finally when selecting survivors, there is two common approaches: In (μ, λ)-
ES also know as "comma" variant, the best μ offspring are selected to become next
parent population and in (μ + λ)-ES also knows as "plus" variant, the parent and
offspring populations are merged and then best μ solutions are selected as par-
ents for the next generation.

2.2.2 Swarm Intelligence

While EAs simulate the evolution, Swarm Intelligence (SI) algorithms simulate
behavior of swarms of insects/animals where solutions represent members of
such swarm. Instead of recombination new solutions are generated by following
earlier behavior of the individual, current "swarm leader" and/or neighboring
solutions. Replacement is usually done by "one-to-one" spawning logic, where
individual is compared against it’s old position and only replaced in case of im-
provement. We present here two well-known SI algorithms: Particle Swarm Opti-
mization which is inspired by studying how flock of birds behave and Ant Colony
Optimization simulates how ants find shortest path to food source.

2.2.2.1 Particle Swarm Optimization

As mentioned above, Particle Swarm Optimization (PSO), see [32], mimics how
flock of birds or fishes move. Each solution represents one bird in the flock and
when initialized each solution xi is given not only location but also velocity vi.
Over iterations locations of solutions are updated by adding their velocity:

x′i = xi + vi (10)

In addition to location and velocity, each solution keeps track of their past best
location xbest

i called local best. From the collection of local bests the one with best
fitness xbest is called global best. By using these memories of individuals and the
flock "leader", velocities are adjusted between iterations by following formula:

20

v′i = vi + α · U (0, 1)(xbest
i − xi) + β · U (0, 1)(xbest − xi) (11)

where α, β are scaling parameters and U (0, 1) is uniformly distributed random
number between 0 and 1. How particle swarm optimization is guided by using
local and global bests is conceptually similar to crossover operation used in many
evolutionary algorithms.

2.2.2.2 Ant Colony Optimization

Ant Colony Optimization, see [12], is inspired by ants searching for shortest route
to food source. While searching for food ants leave behind pheromones to help
other ants to find the source. Pheromones evaporate over time and thus short
paths get selected by more and more ants eventually leading to all ants using
same path. Originally Ant Colony Optimization was used to find optimal path
on graph and while it’s applicable to other problems as well, problem needs to be
expressed as a search for a best path along given graph.

Solutions in Ant Colony Optimization present single ant traveling the graph.
While these ants travel randomly at start the pheromones they leave behind at-
tract other ants to the same path. As mentioned earlier the pheromone levels on
paths/nodes of graph evaporate over time, short paths have higher probability
to get selected and more ants traveling same paths further enhance pheromone
levels of selected path. Eventually all ants will travel optimal path found. Evap-
oration of pheromones is essential for optimization to not get stuck on local op-
tima, without this feature the paths selected by very first ants would be favored
on following iterations leading to this problem.

2.2.3 Memetic Algorithms

While Genetic Algorithms try to emulate biological evolution, Memetic Algo-
rithms (MAs) can be seen trying to emulate a cultural evolution. Word “meme”
is introduced as unit of imitation in cultural transmission in “The Selfish Gene” by
R. Dawkins. Quoting Dawkings:

"Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of makings
pots or to building arches. Just as genes propagate themselves in the gene pool by
leaping from body to body via sperm or eggs, so memes propagate themselves in the
meme pool by leaping from brain to brain via a process which, in the broad sense, can
be called imitation."

In practice MAs are mix of population-based global search (by evolution) and
individual based local search (by learning). The reasoning behind these type of
techniques is that different algorithmic components perform better together than
components alone would, when implemented in a co-operative framework. In-
clusion of local search can be classified into two categories. In the first category
local search is applied within recombination process instead of mutation and/or
crossover and the in the second category local search is applied after generation
of offspring trying to improve upon their initial fitness value. In the latter case the

21

process is called life-time learning as it simulates the newborn going to school and
picking other parts of information along what the individual inherited from the
parents. There are generally two different philosophies of how life-time learning
can be implemented: Lamarckian and Baldwinian. In Baldwinianism the improve-
ment in fitness gained by the life-time learning only affects individuals fitness
value but not its genotype. Thus, genotype is not transferred into the offspring.
While in Lamarckianism the improvement gained by life-time learning causes
mutation in genotype and thus can be transferred into the offspring. In human
genetics Lamarckianism does not hold, but in MAs such approach can be very
successful.

When applying local search within evolutionary framework the designer
has to make decisions regarding how often LS is applied, which individuals LS is
applied on or what is the depth of the local search (depth e.g how many fitness
evaluations LS should do)? All of these decisions are crucial to the performance of
the algorithm as the local searchers are usually very expensive in terms of fitness
evaluations and unnecessary activations can majorly hinder the performance of
the whole algorithm, for example when local search is applied too intensively
causing premature convergence to a local optima. In [27] "partial Lamarckian-
ism" is used as a strategy to control when local search is applied by giving it a
certain probability. In [43], the volume of the local search applied on individual
is dependent on their fitness. In [42], balance between exploration and exploita-
tion is highlighted.

2.2.4 Performance of Meta-heuristics

Key components in any meta-heuristic is to achieve good balance between ex-
ploitation and exploration. In other words algorithm needs to be able to generate
new solutions improving on previous solutions and also cover most important
areas where global optimum may lie. In MAs exploration is generally done by
population based meta-heuristic while applying local searcher to exploit most
promising solutions in order to improve on best solution found so far. As possi-
ble applications are almost limitless it is more or less impossible task to generate
algorithm which would have perfect balance on every possible problem. This is
also known as No Free Lunch Theorem (NFL):

"what an algorithm gains in performance on one class of problems is necessarily offset
by its performance on the remaining problems."

as written in [73]. In practice when dealing with a specific problem the opti-
mization algorithm which is to be used should be modified taking into account
problem specific knowledge to guarantee best performance. Even though tai-
lored algorithms are indeed better when dealing with specific problem it is still
important to develop good general (and specific) purpose algorithms as they of-
ten work as a very promising base which tuning can be applied on. In figure
1 we have illustration of general purpose algorithms versus tailored algorithms
compared over different types of problems.

22

Problem type

Pe
rfo

rm
an

ce

General purpose algorithm
Problem specific algorithm

FIGURE 1 Difference between general purpose algorithms and tailored algorithms

3 DIFFERENTIAL EVOLUTION

Differential Evolution (DE), see [66], deserves separate mention among population-
based meta-heuristics. DE contains some characteristics from both Evolution-
ary Algorithms and Swarm Intelligence. Initial population is randomly spread
around search space as in other EAs, but recombination schemes have differ-
ent approach. While sharing same four mechanisms of producing offspring with
EAs: parent selection, crossover, mutation, and survivor selection, in DE muta-
tion becomes before crossover and while in EAs crossover is between two parents,
in DE crossover is between one parent and the provisional offspring generated by
mutation. Also mutations generated in DE does not necessarily contain the par-
ent that’s being mutated. Selection procedure is also different, in GA the popula-
tion is replaced by their offspring and in ES most fit solutions are being selected.
In GA the parent selection is based on their fitness which allows the generational
offspring generation. In DE selection of parent is random and not based on their
fitness and thus generational approach does not work. Instead DE uses one-to-
one spawn logic where offspring is directly compared against it’s parent and the
better solution is selected as a member of new population. These differences in
parent selection, mutation, crossover and survivor selection do not anymore fol-
low the classic evolution and in this light DE is not directly inspired by nature.
Generic pseudo-code for DE is given in algorithm 3.

Being very versatile, easy to implement, and having high performance, DE
is one of the most popularly used optimization algorithms among scientists and
engineers. This has lead to many proposals of improvements on the standard
scheme of DE. In this chapter we will review the classic version of DE and also
take a look into some of the modified structures related to parameter settings,
self-adaptation, population etc., and to reasons which have lead to these new
implementations.

24

Algorithm 3 Differential Evolution pseudo-code

Generate an initial population of Np individuals
Evaluate fitness of each solution in population Np
while termination condition is not met do

for each xi in Np do

Create provisonal offspring xi,o f f by mutation
Create offspring xo f f by crossover
Evaluate fitness of xo f f
Select survivor between xi and xo f f

end for

end while

3.1 Population Initialization

Before generating initial population, for each variable xj upper and lower bounds
bj,U and bj,L needs to be specified. Once these bounds have been set, a random
Np solutions are generated within these bounds. For example, the initial value of
the jth variable of the ith solution is:

xi,j = U (0, 1) · (bj,U − bj,L) + bj,L. (12)

Even in the case where variables are discrete values they should be initialized
with real-value since DE internally treats all variables as floating-point values.
Next, each parent in population undergoes a mutation, a crossover and a selection
in that order. More detailed pseudo-code for DE is presented in algorithm 4.

3.2 Mutation

After initialization of a population, DE mutates and recombines the parent pop-
ulation to produce an offspring population of another Np trial solutions. To per-
form mutation DE randomly picks three solutions from the population: xt, xr,
and xs, such that xt �= xr �= xs. In differential mutation solution xi is mutated to
create provisional offspring or mutant xi,o f f :

xi,o f f = xt + F · (xr − xs) (13)

where F ∈]0, 1[is called scale factor that controls the distance how far provisional
offspring are generated. Scale factor F is one of the parameters in DE and while it
has no upper limit, values greater than 1 are rarely considered to be effective. As
mentioned earlier the mutation of solution xi does not contain the solution itself
unless it’s randomly selected as one of the solutions xt, xr or xs. In standard DE
the selection of xt, xr, xs is done by random, but in some mutation schemes the
base vector xt can, for example, be selected as xbest, where xbest refers to best solu-

25

Algorithm 4 Differential Evolution pseudo-code

Generate an initial population of Np individuals
while termination condition is not met do

while i = 1 : Np do

Calculate f (xi)
end while

for i = 1 : Np do

Create provisional offspring xi,o f f by mutation
Select xt, xr and xs randomly from population Np such that t �= r �= s.
Calculate xi,o f f = xt + F · (xr − xs)
Create offspring xo f f by crossover
xo f f = xi
for j = 1 : n do

Generate p = U (0, 1)
if p < Cr then

xo f f [j] = xi,o f f [j]
end if

end for

Generate jrand randomly such that j ∈ 1, ..., n
xo f f [jrand] = xi, o f f [jrand]
Evaluate fitness of xo f f
***Select survivor between xi and xo f f ***
Calculate f (xo f f)
if f (xo f f < xi then

Save index for replacement xi = xo f f
end if

end for

perform replacements
end while

tion in population. The mutation scheme in eq. 13 is also known as DE/rand/1.
Example of generation of provisional offspring by DE/rand/1 can be seen in pic-
ture 2.

Also other mutation schemes have been proposed in the literature, see [55]:

– DE/best/1: xi,o f f = xbest + F · (xr − xs)

– DE/cur-to-best/1: xi,o f f = xi + F · (xbest − xi) + F · (xr − xs)

– DE/best/2: xi,o f f = xbest + F · (xr − xs) + F · (xu − xv)

– DE/rand/2: xi,o f f = xt + F · (xr − xs) + F · (xu − xv)

– DE/rand-to-best/2: xi,o f f = xt + F · (xbest − xi) + F · (xr − xs) + F · (xu − xv)

where xbest is the best solution in the population and xu and xv are additional
pseudo-random individuals selected from the population. One more mutation
operator should be mentioned; this operator is known-as rotation invariant muta-
tion, see [52]:

26

X

X

X

X
X

X

0

1

r

s

t

i,off

F(X - X)sr

FIGURE 2 DE/rand/1 mutation scheme

FIGURE 3 Difference vectors and their distribution

– DE/current-to-rand/1: xi,o f f = xi + K · (xt − xi) + F′ · (xr − xs)

where combination coefficient K is uniformly distributed random number from
[0, 1] and F′ = K · F. When using this mutation operator solution does not un-
dergo crossover, which is described in the next section.

In figure 3 we have population of five points and all possible difference
vectors that can be generated by mutation. Thing to be noted is that possible
combinations of directions is defined and thus also limited by current population,
we will discuss this matter in the following sections. Mutation schemes using
more than one difference vectors (e.g. DE/rand/2) increase this pool of possible
provisional offspring generated and thus increasing the exploration capability of
the mutation operator.

It must be noted that different mutation schemes perform better/worse
when applied on different problems and none of them has been proven to be
the best [9].

27

3.3 Crossover

After provisional offspring xi,o f f is generated by mutation it is recombined with
the parent xi to form final offspring xo f f . There is generally two main ways of
doing crossover in DE: binomial and exponential crossover.

3.3.1 Uniform (Binomial) Crossover

In binomial crossover each variable in xi is exchanged with provisional offspring
with probability of Cr, this is called crossover rate. More precisely, binomial crossover
is done by the following formula:

xo f f [j] =
{

xi,o f f [j] if (U (0, 1) ≤ Cr or j = jrand)
xi[j] otherwise

(14)

where j is index of gene being selected and U (0, 1) is uniformly distributed ran-
dom number. Parameter Cr can be interpreted as expected percentage of genes
altered by provisional offspring. One gene jrand should be randomly selected to
be swapped to ensure that at least one of the genes is altered. Binomial crossover
is often referred as "bin" in context to present full DE scheme being used, such as
DE/rand/1/bin.

3.3.2 Exponential Crossover

Second commonly used crossover is called exponential crossover (referred as
"exp"), see [8] which is two-point crossover similar to crossover used for example
in GA. Main idea is that every gene between these two points should be selected
from the provisional offspring xi,o f f while others are preserved from the parent xi.
First index of crossover jrand is selected by random and this and following gene in
index jrand + 1 is selected with probability Cr, this is repeated until U (0, 1) > Cr,
which indicates the last point of crossover. Every gene selected this way is taken
from provisional offspring, while remaining are kept from the parent. More pre-
cisely, formula of exponential crossover is:

xo f f [j] =
{

xi,o f f [j] if j ∈ J)
xi[j] otherwise

(15)

where jrand is randomly selected starting index and J = {j ∈ mod Np | j =
jrand or j − 1 ∈ J and U ≤ Cr} is an index set which is defined by starting index
and number of occurrences of U ≤ Cr and Np is population size. For sake of
clarity pseudo-code for exponential crossover is given in algorithm 5.

One must note that crossover rate Cr has different interpretation in expo-
nential than in binomial crossover, as it does not anymore correspond to ex-
pected percentage of genes altered by crossover and it’s not anymore indepen-
dent of problem dimension. This is especially important when problem dimen-
sion goes very high, to hundreds or thousand different variables, the meaning of

28

Algorithm 5 Exponential crossover
xo f f = xi
generate j = round (n · rand (0, 1))
xo f f [j] = xi,o f f [j]
k = 1
while rand (0, 1) ≤ Cr AND k < n do

xo f f [j] = xi,o f f [j]
j = j + 1
if j == n then

j = 1
end if

k = k + 1
end while

Cr changes crucially and that needs to be taken into account when setting param-
eter value of crossover rate Cr. To overcome this situation inheritance factor can be
used:

αe ≈ ne

n
(16)

where ne is the number of mutant genes we expect to copy from mutant xi,o f f
into offspring xo f f in addition to the gene deterministically copied. In order to
achieve that on average ne are copied into the offspring we need to impose that

Crnαe = 0.5. (17)

It can easily be seen that, for a chosen αe, the crossover rate can be set on the basis
of the dimensionality in the following way, see [47] for details:

Cr =
1

nαe
√

2
. (18)

Another point worth mentioning considering both binomial and exponen-
tial crossover is that like mutation these crossover schemes also have limited
amount of search moves. For example in 2-dimensions there is only four possible
combinations of crossovers where one is "degenerate" as there is no difference
between offspring xo f f and parent xi:

– Neither of genes of mutant xi,o f f are transferred to parent xi resulting to
degenerate offspring which is identical with parent.

– One of the genes of mutant xi,o f f is transferred to parent xi providing two
possible offspring (x0 and x1 in figure 4).

– Both genes are transferred and offspring xo f f equals to mutant xi,o f f .

In figure 4 one can see these four different offspring on 2-dimensional problem.
Possible drawbacks in DE regarding limited search moves for both mutation and
crossover are discussed in section 3.5.

29

X

X X

X

X

X

0

1

i

i,off1

0

FIGURE 4 Four possible crossover outcomes between parent xi and mutant xi,o f f . Point
xi being degenerate as no genes are swapped.

Other crossover strategies such as one-point crossover, see [31] and N-point
crossover, see [18], can also be considered. Whichever crossover strategy is used,
lower Cr corresponds to lower mutation rate of solutions while increasing Cr
increases mutation rate, as value close to 0 produces solution nearly similar to
parent and with values closer to 1 most genes come from the offspring.

3.4 Selection

Final step in one iteration of DE is selection step where it is decided which solu-
tions among offspring and current parent population form the next generation.

As discussed earlier, in GA the parent selection is based on their fitness
which allows age-based offspring generation. However parents are selected ran-
domly in DE and thus such approach does not work. Objective function based
selection is present e.g. in (μ + λ)-ES on page 18, where parent population and
trial population are combined, sorted and then best μ solutions are selected as
parents for next generation. It’s clear that age of solution does not play role in this
selection procedure, fitness being only one that does. This fitness based selection
ensures that best solution is always retained for next generation, such property
of an algorithm is also known as elitism.

Tournament selection is used for example in Evolutionary Programming,
where tournaments are held between solutions. Selection is then based on solu-
tions win percentages in the tournaments. One problem present in the tourna-
ment selection is that population may suffer from premature convergence as dom-
inated solutions are eliminated from the population in few generations and ge-
netic diversity of the subsequent population of children suffers. In DE selection
procedure is one-to-one tournament selection which is also used in Particle Swarm

30

Optimization algorithms. One-to-one tournament selection is based both on fit-
ness and age as generated offspring solutions are directly compared to their par-
ent in the current index xi and the solution with best fitness gets selected as part of
new population. Traditionally selection is done after all parents have generated
offspring solutions but it’s also possible to do selection as offspring are generated
thus replacing the parent while iteration is still in progress. The latter selection
procedure is called continuous selection and the former is called discrete selection.
Clear difference is that in continuous selection newly selected solutions can be
selected as xr, xs and xt, continuous selection mechanism has been studied e.g. in
[68].

Generally selection procedure in DE is indeed elitist as best individual is
always preserved and offspring population never contains worse solutions than
parent population. Compared to other tournament selection mechanisms, one-to-
one tournament selection is able to maintain population diversity better as less fit
solutions do not disappear as rabidly from the population as they do not have
to compete against the best solutions in the whole population but only their own
offspring.

3.5 Implicit Self-Adaptation and Stagnation

As discussed earlier in section 2.2.4, balance of explorative and exploitative search
moves is essential for any successful meta-heuristic. Mutation and crossover form
an implicit self-adaptation mechanism in DE: At the very beginning the popula-
tion is initialized randomly in decision space and thus when selecting mutation
vectors xt, xr and xs and combining them, for example using DE/rand/1/bin-
strategy, leads to step sizes that result to offspring which are generally far away
from their parent. As a result of convergence more solutions will be gathered in
the more interesting areas of search space, to so called basins of attraction, and
offspring generated during later generations are generally more near the parent
solutions than during first iterations. This is due to fact that mutation vectors
xt, xr and xs can be selected from the same basin of attraction and step size in the
mutation is reduced. In this sense DE shifts from explorative to more exploitative
nature as optimization process progresses.

At the first glance this can be seen as a very nice feature but it can also lead to
an undesired stagnation condition, as pointed out in [38], where algorithm is not
capable to produce search moves that lead to improved solutions. If all solutions
happen to converge to same basin of attraction it is impossible for DE to generate
solutions outside this basin because of the limited search moves, as mentioned
at section 3.3, the original DE implementation has. This stagnation condition can
also happen even when DE has not converged towards an optima (even a local
optima).

31

3.6 Ways Around Stagnation in DE

During the last years much effort has been put in overcoming stagnation in DE.
As a result multiple new variants of DE has also been proposed in literature, in
[49] are listed number of DE-variants for single-objective optimization problems
and comparison among these variants. In aforementioned study the variants are
categorized in to following two groups:

– Modified structures of DE. This class includes those algorithms which make
considerable modifications in the search logic of basic DE as a form of mu-
tation, crossover or selection mechanism.

– DE integrating extra components. In this class belong algorithms which
integrate one or more additional algorithmic components into DE, such as
local searcher, alternate recombination mechanism, etc.

3.6.1 Modified Structures of Differential Evolution

Selection of control parameters crossover rate Cr, scale factor F and population
size Np having huge impact on how DE performs is widely agreed fact. Dis-
cussion on optimal parameter settings for these control parameters can be found
e.g. in [53], where it is indicated that a reasonable value Np could be chosen
from [5D, 10D], where D is problem dimension, and initial choice for scale factor
was F = 0.5 and effective range of Cr is [0, 0.2] when the function is separable
and [0.9, 1] for non-separable functions. There are some contradicting report con-
sidering selection of these parameters as the selection is always problem related
and can be considered as an optimization task itself. This difficulty of adjusting
parameter settings can be a very confusing task for people who try to solve prac-
tical problems with DE and thus researchers have considered approaches with
dynamic control parameters and self-adaptation mechanisms to find optimal set-
tings for these values also to tackle the stagnation problem.

If stagnation is caused by having too large step-sizes, which depends on
difference of the two vectors in the population and the scale factor F, where scale
factor is something that can be dynamically modified. Instead of using constant
scale factor, the scale factor can be selected separately for each individual in pop-
ulation and is called dithering. Sampling different scale factor for each component
of each individual is called jitter. While dithering changes the norm of the differ-
ence vector, jitter changes the orientation as well. In [75] the scale factor F is
replaced by normally distributed random variable Fi or Fj, where Fi is scale fac-
tor for each individual xi and Fj is scale factor of each component xi,j of solution
xi. Differential Evolution with Random Scale Factor presented in [15], mainly de-
signed for the optimization of noisy functions, is another example of dithering
where F is selected with uniform distribution Fi = 0.5 · (1 + U (0, 1)). The algo-
rithm also presents a threshold margin of τ = k · σ2

n, where σ2
n is variance of noise,

for offspring to get selected to be selected over it’s parent.

32

3.6.1.1 Self-Adaptive Control Parameters in Differential Evolution

In Self-Adaptive Control Parameters in Differential Evolution, presented in [2],
namely jDE, self-adaptive strategy has been proposed to avoid manual parameter
setting. This approach employs the standard DE/rand/1/bin strategy, presented
earlier in section 13, with some modifications. When initial population is gener-
ated another extra values in range [0, 1] are generated per each individual in the
population. These values represent Fi and Cri for individual xi thus each individ-
ual will have their own control parameters. When generating the offspring for xi
new parameter values are generated by following formulas:

Fi =

{
Fl + Fu · rand1, i f rand2 < τ1

Fi, otherwise
(19)

and

Cri =

{
rand3, i f rand4 < τ2

Cri, otherwise
(20)

where randj, j ∈ 1, 2, 3, 4 are uniform pseudo random numbers between 0 and 1,
τ1 and τ2 are the probabilities that parameters are updated and Fl and Fu are lower
and upper boundaries for scale factor, respectively. These values are then used
in the generation of offspring. Approach has also been extended to large-scale
problems in [77] and multi-objective problems in [76].

3.6.1.2 Adaptive Differential Evolution With Optional External Archive

In modified DE structure called JADE, presented in [78], the values of the control
parameters are updated when offspring lead to improvements by outperforming
their parents. The algorithm uses specific mutation scheme called DE/current-
to-pbest/1/bin:

xi,o f f = xi + Fi · (xp
best − xi) + Fi · (xr − xs), (21)

where xp
best is randomly chosen among the 100 · p% best individuals in the cur-

rent population with p ∈]0, 1], Fi is the scale factor for individual xi and xr, xs are
two random individuals in the population. The provisional offspring is then re-
combined with parent individual xi by uniform (binomial) crossover, where the
crossover rate Cri is the crossover rate assigned to xi. The values for Fi and Cri
are randomly generated at the beginning of each iteration based on the param-
eters μF and μCr]. The values for crossover rates Cri are generated by normally
distributed random variable with mean μCr and for scale factors Fi: one third
are generated by normally distributed random variable centered around μF and
rest by uniformly distributed random variable. After selection the parameters of
more promising solution are saved into two sets SF and SCr and at the end of
generation the values for μF and μCr are updated by calculating weighted aver-
age between value of the parameter and for μCr the mean value of SCr and for μF
the Lehmer mean of SF, where Lehmer mean is defined by:

33

L(SF) =
∑F∈SF

F2

∑F∈SF
F

. (22)

3.6.1.3 Self-Adaptive Differential Evolution

Differential Evolution employing multiple mutation schemes along with individ-
ual based control parameters has been originally proposed in [55]. This algorithm
is called Self-Adaptive Differential Evolution (SaDE) and improved version on
the original scheme was proposed in [54]. In SaDE each individual has a proba-
bility to select one of four different mutation schemes: DE/rand/1, DE/rand-to-
best/2, DE/rand/2 and DE/current-to-rand/1, while using binomial crossover
strategy for everything except for DE/current-to-rand/1 (as it uses no crossover).
For initial learning period of LP generations probabilities for each mutation pk

i is
set to 0.25 and for each individual xi success ratios of each mutation strategy ni,k

s

are recorded, also failures to generate outperforming offspring ni,k
f are recorded.

At the end of learning period and at the end of each generation G the probabilities
pk

i are updated by following formula:

pk
i =

Sk
i

∑4
1 Sk

i

(23)

where

Sk
i =

∑G−1
G−LP ni,k

s

∑G−1
G−LP ni, ks + ∑G−1

G−LP nn,k
f

+ ε (24)

and ε equals to 0.01 to ensure numerical stability of the algorithm in the case
where Sk

i = 0 for all mutation schemes. The mutation scheme to create each
provisional offspring is selected by Stochastic Universal Sampling [1] based on
the updated probabilities.

Along with mutation probabilities each individual is also assigned with
crossover rate Crk

i for each mutation scheme and one scale factor Fi. The value
for Fi is randomly sampled from normal distribution N(μ, σ), where μ = 0.5 and
σ = 0.3. The crossover values Crk

i are initialized as 0.5 for each strategy k and
are updated on every generation during learning period by a random normally
distributed value N(μ, σ), where μ = Crk

i and σ = 0.1. Crossover rate values
leading to improvements in offspring are saved for each individual and mutation
scheme and at the end of learning period Crk

i is replaced by the median of saved
values Crk

i . After the learning process the crossover continue to be updated as
before for the remainder of the optimization process.

3.6.2 Differential Evolution Integrating Extra Components

Another category of modifications to standard DE implementations is generally
adding additional components that aim to complement the limitations in stan-

34

dard search moves. One way of introducing new component to DE is bring in
for example Local Search which can be applied on some of the individuals in the
population (commonly to one with best performance). Another approach could
be to introduce new mutation operation as is done in Differential Evolution with
Trigonometric mutation, see [19]. This mutation scheme includes the fitness of
the three randomly selected vectors involved in the mutation. The provisional
offspring is computed by:

xi,o f f =
xr + xs + xt

3
+ (ps − pr)(xr − xs) + (pt − ps)(xs − xt) + (pr − pt)(xt − xr),

(25)
where k = r, s, t and

pk =
| f (xk)|

| f (xr)|+ | f (xs)|+ | f (xt)| . (26)

Thus the provisional offspring generated is the centroid of the triangle formed
by xr, xs and xt, where the weight of each solution is a function of it’s fitness
and average fitness of other two solutions. Solutions generated are improved in
more greedy manner than in standard DE thus accelerating convergence speed
which can be beneficial especially in the case where evaluation of fitness value
is a time consuming process. The algorithm uses new control parameter Mt as
a probability to activate trigonometric mutation scheme which can be tuned to
control the greediness of the algorithm.

3.6.2.1 Differential Evolution with Scale Factor Local Search

Differential Evolution with Scale Factor Local Search (DESFLS) has been intro-
duced in [48] and further extended in [50] for self-adaptive DE schemes. Main
feature of this modification is to consider selection of proper scale factor value
F as an one dimensional optimization problem. With certain probability a local
searcher is applied on scale factor when generating provisional offspring. More
specifically after individuals xt, xs and xr have been selected for generation of
provisional offspring, the algorithm tries to generate best possible offspring by
solving following minimization problem:

min f (F) , where F ∈ [−1.2, 1.2]. (27)

Minus values in the problem above are for inversion of the search direction.
In solving of this problem two different local search algorithms are studied and
compared in [71] and []: Golden Section Search, see [33], and Hill-Climb Local
Search, see [62]. Experimental results in showed that cooperative framework of
both above mentioned local searchers lead to best performance.

3.6.2.2 Differential Evolution with Global and Local Neighborhoods

The Differential Evolution with Global and Local Neighborhoods (DEGL), see
[10] and [14] draws inspiration from PSO algorithms by defining index based so-

35

lution neighborhoods. A set of population individuals {xi−k, ..., xi, ..., xi+k} form
the local neighborhood with a radius k for a solution xi. A new mutation operator
is then defined as:

xi,o f f = wGi + (1 − w)Li, (28)

where w ∈ [0, 1] is a weight factor balancing the weight of local and global con-
tribution Li and Gi correspondingly. Local contribution Li is defined by:

Li = xi + α(xl−best − xi) + β(xp − xq) (29)

and global contribution Gi by:

Gi = xi + α(xg−best − xi) + β(xr − xs), (30)

where xl−best is a solution with best fitness in the neighborhood of xi, xp and
xq are randomly selected individuals in the same neighborhood, xg−best is the
best individual in the whole population and xr and xs are two randomly selected
individuals from the population. In [10] it is suggested to set α = β equal to a
constant value and weigh factor w to vary in a following way:

w = wmin + (wmax − wmin)
g

gmax
, (31)

where wmin and wmax are the lower and upper bounds of weight factor, respec-
tively. The indexes g and gmax denote the current generation index and the max-
imum amount of generations, respectively. In [14] four alternative weight factor
schemes have been compared which of a self-adaptive scheme proved to be the
most efficient one.

3.6.2.3 Opposition Based Differential Evolution

In the Opposition Based Differential Evolution (OBDE), proposed in [57] and [58],
supplementary search moves are introduced by testing for opposite points of so-
lutions in the search space. Opposite point x̃i for solution xi = (xi[1], ..., xi[n])
belonging to a set D = [a1, b1]× ... × [an, bn] is defined as:

x̃i = (a1 + b1 − xi[1], ..., an + bn − xi[n]). (32)

Checking for opposite points is done at two steps: after initialization of the
population and after survivor selection. After initialization of first solutions is
done their opposite solutions are calculated forming two populations of size Np.
Then these two population are combined and best Np solutions are selected to
first generation. At each subsequent generation opposite solutions are calculated
for the population with the probability jr (jump rate). In this case each opposite
point is calculated with:

x̃i =
(
minixi[1] + maxixi[1]− xi[1], ..., minixi[n] + maxixi[n]− xi[n]

)
, (33)

36

where minixi[j] and maxixi[j] are respectively minimum and maximum values
over the coordinate j of all solutions in the present generation. In other words,
minimum and maximum values are taken from the bounding hypercube gener-
ated around current solutions. The populations for offspring and their opposite
solutions are then merged and again Np best performing solutions are selected
for next generation.

3.6.2.4 Differential Evolution with Population Size Reduction

Another approach to provide supplementary search moves is to vary population
size during the search as modifying the amount of available solutions directly
translates into change in the possible search moves generated in mutation. In
Differential Evolution with Population Size Reduction (DEPSR), see[3] the pop-
ulation size is progressively reduced during the optimization process. The main
idea behind this approach is to focus the search progressively to avoid possi-
ble stagnation condition, especially in high-dimensional problems. Population
reduction strategy used requires that initial population size N1

p, total budget Tb
(i.e. total number of fitness evaluations) and number of stages Ns (i.e number of
population sizes employed) are predefined.

The population reduction is carried at the end of each stage by simply halv-
ing the current population. More specifically, the population is divided into two
equal size sub-populations and then one-to-one selection occurs between these
sub-populations. The individual with better fitness is selected into population
used in the next stage.

4 MEMETIC COMPUTING STRUCTURES

By original definition MAs are combination of a population-based meta-heuristic
and a local searcher as briefly discussed in section 2.2.3. The MAs form a cor-
nerstone for Memetic Computing (MC), which is more broad subject defined as
following in [46]:

"Memetic Computing is a broad subject which studies complex and dynamic comput-
ing structures composed of interacting modules(memes) whose evolution dynamics
is inspired by the diffusion of ideas. Memes are simple strategies whose harmonic
coordination allows the solution of various problems."

4.1 Coordination of the Algorithmic Components

While MAs are related to hybrid style of algorithms, MC structures are related
to not only to the algorithmic components itself, but to the structures how these
components coordinate. In this light, MC can be seen as a subject that studies
structures composed of modules (memes) which interact and adapt to problem in
order to solve it. This adaptation is often done online (during optimization run).
In recent survey [45] coordination between memes is categorized to be performed
one of the following ways:

– Adaptive Hyper-heuristic, where the coordination of the memes is performed
by means of heuristic rules

– Meta-Lamarckian learning, where the success of the memes biases their ac-
tivation probability, thus performing an on-line algorithmic design which
can flexibly adapt to various optimization problems

– Self-Adaptive and Co-Evolutionary, where the memes, either directly en-
coded within the candidate solutions or evolving in parallel to them, take
part in the evolution and undergo recombination and selection in order to
select the most promising operators

– Fitness Diversity-Adaptive, where a measure of the diversity in fitness is
used to select and activate the most appropriate memes.

38

In the first category are those implementations which include a prefixed coordi-
nation scheme. These schemes can be either randomized or deterministic. Ran-
domized schemes include selection probability to active memes one by one. In
deterministic implementations one can use prefixed amount of fitness evalua-
tions for each meme, see [35], or choice function based on the success of the
meme, e.g. in the case of success meme is subsequently reapplied. Example of a
deterministic scheme used to coordinate three memes is described more in detail
in the following section 38.

In meta-Lamarckian learning, see [51], active component is selected by means
of it’s success. The success ratios are used to adapt selection probabilities online,
thus making the optimization algorithm adapt to a problem and use most suc-
cessful memes in solving it.

In third category are self-adaptive and co-evolutionary schemes. In such
schemes solutions consist of genetic and memetic material. Where genetic mate-
rial represent the design variables of solution and memetic material are the evo-
lution parameters, see e.g. [36], [63], [74] and [64].

In final category are the fitness diversity-adaptive schemes, which analyze
the fitness diversity of the current population and decide, for example, if local
search component should be activated. In a case where fitness diversity is low
an alternative search logic can be applied to explore other regions of the search
space or if this fails to increase diversity more exploitative meme can be selected
to finalize the search. Examples of fitness diversity-adaptive schemes are studied
e.g in [4] and [69].

In the following section a simple memetic structure, with a deterministic
coordination scheme based on the success of memes, is described more in detail.

4.2 Single Solution Memetic Structure

Three Stage Optimal Memetic Exploration (3SOME), proposed in [29], is a sin-
gle solution optimizer designed for devices plagued by a limited hardware, such
as embedded systems or simple mobiles. Above mentioned algorithm was orig-
inally implemented with the concept of "Ockham’s Razor" in mind: "The sim-
pler solution is better than the more complex one given the same performance".
The 3SOME algorithm is a combination of three different components: stochas-
tic long distance exploration (L), stochastic short distance exploration (M) and
deterministic short distance exploration (S) and a memetic structure framework
which guides the coordination between these three components. Design wise
the components were added one by one until a certain level of performance was
reached without complicating the resulting structure beyond necessity following
the Ockham’s Razor rule. The general working principles of components and the
framework of 3SOME are described below.

39

4.2.1 Three Stage Optimal Memetic Exploration

During stochastic long distance exploration algorithm is looking for promising
basins of attraction over the whole search space D by sampling uniformly dis-
tributed random trial solution in D and then performing crossover between trial
xt and current best solution xe. The crossover operator used is exponential crossover
from Differential Evolution, see 3.3.2 on page 27. Exponential crossover is applied
with high crossover rate Cr, thus most genes of the trial solution are copied mak-
ing crossover highly explorative. Retaining small portion of current elite’s genes
seem to be beneficial compared to purely stochastic blind search (which would
generate totally random solution). Long distance search is active until algorithm
is able to improve on current best solution. Upon improving the best solution,
the stochastic short distance search is activated to focus search around hopefully
more promising area.

In stochastic short distance exploration a hyper-cube is generated around
best solution to focus search to a hopefully more promising area. A number of
points N (N equal to k times dimensionality of the problem) are sampled within
the hyper-cube and crossover is performed with the best solution using exponen-
tial crossover with mediocre crossover rate. Crossover rate is altered (lowered)
from long distance search to focus the search. Each time new solution outper-
forms current best the hyper-cube is centered around the new solution and pro-
cess is continued until process is repeated N times. If during the N samples the
M managed to improve the initial solution, it is activated again for another N re-
peats. On the other hand if M did not lead to improvement of the initial solution
the next search logic, deterministic local search, is activated.

The purpose of deterministic local search is to exploit the current solution
and finalize the optimization process, if the current solution lies in the same basin
of attraction as the global optima. The description of deterministic local search
is shown in section 1.2.4 on page 14. The deterministic local search is run for
predefined budget of fitness evaluations and if solution is improved, within this
budget, the stochastic short distance search (M) is activated subsequently. In the
case of failure of improving the solution the long distance searcher (L) is acti-
vated. The reasoning behind which component is activated after S completes can
be explained by following logic: in the case where local search cannot improve
the current solution it is (or is close to) either local or global optima, thus long
distance search is activated to escape possible local optima. In terms of fitness
evaluations local search can be ineffective global optimizer due to it’s exploita-
tive nature by performing search moves limited to the coordinate axis. Thus, in
the case of success on improving the initial solution the stochastic short distance
search (M) is activated again to provide complementary search moves also with
higher convergence rate. For the sake of clarity, the overall coordination scheme
of the three components L, M and S is show in figure 5 and pseudo-codes for L,M
and S can be seen in algorithms 6, 7 and 1 (see page 14) respectively.

40

Long Stochastic short

Deterministic short

S

F
S

S or F

FIGURE 5 Functioning scheme of 3SOME. Arrows indicate transitions between active
component and letters S and F indicate success and failure on component
improving solution.

Algorithm 6 Long distance exploration

generate a random solution xt within D
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if

end while

if f (xt) ≤ f (xe) then

xe = xt
end if

Algorithm 7 Stochastic short distance exploration

generate a hypercube around xe with side width λ

for i = 1 : N do

generate randomly a trial solution xt within the hypercube
generate i = round(n · rand(0, 1))
while rand(0.1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i == N then

i = N
end if

end while

if f (xt) ≤ f (xe) then

xe = xt
end if

end for

5 CONTRIBUTION OF THIS WORK

In this chapter the contribution of the each article included in this work is de-
scribed. Each article included, except from article [PVII], proposes a new algo-
rithmic structure, where resulting algorithms can be categorized into two groups:
single solution optimizers based on Three Stage Optimal Memetic Exploration
(3SOME) and memetic structures of Differential Evolution. More specifically, in
the articles [PI] and [PII] modifications to operators of 3SOME are proposed re-
garding scalability and complementary search moves respectively. Article [PIII]
introduces a modified structure of the 3SOME-algorithm by including concept of
the Meta-Lamarckian learning as a coordination scheme, see section 4.1 on page
37, and article [PIV] is a revisited version of article [PI] extending the analysis and
benchmark problems included.

Articles [PV] and [PVI] both propose a novel memetic computing algorithm
by introducing modified structure of Differential Evolution integrating a local
search component. Article [PVII] introduce an additional component for DE and
clustering-based population initialization, which aim to improve DE-based algo-
rithms in general. It must be noted that the local searcher described in algorithm
1 is applied (to some extent) on all of the algorithms presented in the articles.

Remainder of this chapter is organized as follows: the test framework is pre-
sented in section 5.1, articles related to memetic computing framework of 3SOME
are discussed in section 5.2, articles introducing modifed structures of DE are dis-
cussed in section 5.3, and article [PVII] is discussed in a separate section 5.4.

5.1 Test Framework

Algorithms introduced in the articles are compared in artificial benchmark prob-
lems, see BBOB2010 [23], CEC2013 [39], CEC2010 [70], CEC2005 [67], and a real
world benchmark problem [16] (in article [PVII]), which provide wide variety of
test problems with multiple characteristics such as separability, modality, sym-
metry, etc. As optimization in general is a stochastic process, one run does not

42

necessarily reflect the performance of the algorithm. Thus, multiple runs are per-
formed to determine average performance and related standard deviation. Also,
as average is not always the best measure of performance statistical tests such as
Wilcoxon Rank-sum test [72], which aim to determine if samples of two different
distributions are identical giving certain confidence level, is applied on each of
the articles included. Also the values of the best, worst and median results are in-
cluded in the article [PVI] as required by organizers of Congress on Evolutionary
Computing 2013 (CEC2013) [40]. To compare overall performance of the algo-
rithms on a set of problems the Holm-Bonferroni method, see [25], is also applied
in articles [PV], [PVI], and [PVII].

It should be mentioned that all the algorithms use toroidal transformation
for bounded problems, see [53]. More specifically, when a new point x is gener-
ated if one it’s components (design variables) xi is not from the bounded interval
[a, b] defined by the design space, the value for xi is computed by following for-
mula:

{
xi = a + xi − b if xi > b
xi = b − xi + a if xi < a

(34)

this guarantees that every new point belongs to the search space.

5.2 Modified Structures of Three Stage Optimal Memetic Explo-
ration

Three Stage Memetic Optimal Memetic Exploration algorithm consists of three
different components, each tailored to specific "role" in the optimization pro-
cess. Where long distance exploration focuses on finding promising solutions
from whole design space, the other two components have more exploitative role
and focus the search on hopefully more promising area. While modifications
can be applied on the components itself, one can also modify the behavior of
co-operative framework which controls the transitions between components de-
ciding which component is active. Instances of both of these approaches are given
in the examples below.

Articles [PI] and [PIV] focus on the scalability of the 3SOME algorithm to
higher dimensional problems. Goal of this approach is to have an algorithmic
structure which retains it’s behavior independent of problem dimensionality in
terms of explorative and exploitative search moves. The article [PI] proposes
a modified scheme, namely Shrinking Three Stage Optimal Memetic Exploration
(S-3SOME), where the stochastic short distance exploration is modified to be scal-
able with dimensionality of the problem. Scalability is achieved by redefining ini-
tial hyper-cube constructed around solution such that it has fixed hyper-volume
of 20 percent of search space hyper-volume. In addition if the search fails to
improve the current solution the hyper-volume is halved and a new set of N
solutions are sampled within the hyper-cube. In the case of success the search

43

is repeated within same hyper-cube. These steps are repeated until the certain
threshold of hyper-volume is met and the algorithm activates the deterministic
local search component. The role of the modified stochastic short distance search
is more explorative at the beginning and shifts towards more exploitative while
hyper-cube shrinks. Article [PIV] is a revision of article [PI] and extends the anal-
ysis and the problems included in the article [PI]. Pseudo-code for modified com-
ponent is given in algorithm 8.

Algorithm 8 Modified stochastic short distance exploration

generate a hypercube around elite xe with a hyper-volume 20% of that of D;
while the hyper-volume is bigger than 0.0001% of D do

for i = 1 : n do

generate randomly a trial solution xt within the hypercube;
generate i = round(n · rand(0, 1))
while rand(0.1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i == N then

i = 1
end if

end while

if f (xt) ≤ f (xe) then

xe = xt;
center the hypercube around xe;

end if

end for

if no elite update occurred then

halve the hyper-volume;
end if

end while

One of the of weak-points in original implementation of 3SOME was that all
the components perturbed current solution only along the coordinate axes, thus
lacking diagonal search moves. This issue is addressed in article [PII], which pro-
poses a rotation invariant mutation operator DE/current-to-rand/1, as described
earlier in section 3.2, to be applied instead of exponential crossover in stochastic
short distance search (M). The aim here is to increase the algorithms performance
on non-separable problems, while not suffering too much on separable problems,
and retain the simple structure of 3SOME.

While the articles discussed above focus on the operators of the 3SOME
algorithm, article [PIII] proposes an adaptive coordination scheme between the
three major components. Meta-Lamarckian learning is an efficient adaptive scheme
defined in [51], where meta-Lamarckian learning is used in the coordination of
different local search components within a Memetic Algorithm (MA) framework.
At the beginning, adaptive scheme organizes each component into a pool and

44

assigns each an equal selection probability. Active component is selected based
on the selection probability and this probability is updated during the optimiza-
tion process depending on the success history of the component. While adap-
tive scheme performs better on some problems, it can be observed that the origi-
nal 3SOME coordination scheme can provide promising results especially in the
early stages of optimization. However, one observation which can be done on
the basis of this study is that different coordination schemes can lead to a differ-
ent performance even when the algorithmic operators remain the same. Generic
pseudo-code for the Meta-Lamarckian adaptive coordination scheme can be seen
in algorithm 9. In the pseudo-code, variables PL, PM and PM represent the proba-
bilities assigned to each component L, M and S respectively.

Algorithm 9 Meta-Lamarckian coordination
t ← 0
while termination condition is not met do

Update probabilities PL(t), PM(t) and PS(t)
generate uniformly distributed random number U = rand(0, 1)
Select component S, M or L by a roulette wheel selection based on U and
Pi(t)
t ← t + 1

end while

All the proposed variations of the Three Stage Optimal Memetic Exploration
are simple memetic computing structures with modest hardware requirements
while remaining competitive with more complex modern state-of-art algorithms.
These features make them valid optimizers especially for environments where
only limited hardware resources are available and/or rapid response times are
required.

5.3 Differential Evolution based Memetic Structures

Micro-Evolution Algorithms (Micro-EAs) are instances of evolutionary algorithms
characterized with a small population size. While originally used for an ed-
ucational purposes, attempts on applying Micro-EAs for real-world problems
have been proposed in the literature. One of the first implementations of micro-
algorithms is micro-Genetic Algorithm (μGA) proposed in [11] and [37], in [56]
micro-Differential Evolution (micro-DE or μDE) with opposition-based mecha-
nism has been used to solve image thresholding problems, and recently in [65]
for evolving bin packing problem. Having a small population usually offers
a rapid convergence but with a cost of efficiency: micro-algorithms often con-
verge into a local optima as having a small population limits exploration capa-
bilities. However, using micro-algorithms on problems with high-dimensionality
can be beneficial due to their fast convergence properties. In general, solving

45

high-dimensional problems is challenging as the search space grows exponen-
tially when dimensionality increases.

Algorithm 10 μDEA

Generate an initial population of Np individuals and computer their fitness
values
while termination condition is not met do

for i = 1 : Np do

select three individuals xr, xs and xt
compute mutant individual xi,o f f = xt + F(xr − xs)
compute offspring xo f f by exponential crossover.
compute fitness f (xo f f)

end for

perform selection
if rand(0, 1) < η then

perform deterministic local search on xp
end if

end while

In article [PV] μDE is integrated with a deterministic local search (S). Micro-
DE component uses DE/rand/1 mutation strategy with exponential crossover.
After each iteration of μDE the local search component is activated on a best
performing population member with certain probability η. Deterministic local
search has a large initial step-size to attempt exploratory search moves along the
axis complementing limited search moves of the μDE. The resulting algorithm
called micro-Differential Evolution with Extra Moves Along the Axes (μDEA) is
compared against standard μDE, and more modern algorithms with a standard
population size: SADE, JADE and MDE-pBX, on a variety of problems up to
1000 design variables. μDEA shows respectable performance against compari-
son algorithms especially on high-dimensional problems. General pseudo-code
for μDEA can be seen in algorithm 10.

Building upon the structure of μDEA, a novel algorithm design has been
proposed in article [PVI], namely Differential Evolution with Concurrent Fitness
Based Local Search (DEcfbLS), for pseudo-code see algorithm 11. Algorithm was
designed to take part into competition on real-parameter single objective opti-
mization held in Congress on Evolutionary Computation 2013 (CEC-2013), see
[40]. Similarly to μDEA, DEcfbLS is a combination of DE/rand/1/exp scheme,
described in sections 13 and 3.3.2, and a deterministic local search (S) (shown
in 1.2.4). However, DEcfbLS differs from μDEA as more a standard population
size is used rather than micro population and also from the memetic structure
which controls the coordination between components. Alternation between com-
ponents follows a deterministic rule: both components should get close to equal
amount of fitness evaluations (FEs) over the course of the optimization run. Thus,
the number of (FEs) needs to be predefined. In addition, when the local search
is activated, as S is a single-point optimizer, S is applied on solutions that have

46

better than average fitness of the population. At the beginning of the optimiza-
tion, DEcfbLS also employs a population refining strategy where S is activated
on each of the solutions in the initial population with shallow depth to perform
explorative steps (using large step size) along axes. The resulting algorithm is
compared against state-of-art algorithms in a benchmark provided by the orga-
nizers of the competition, see [39]. Also further comparison is done by the or-
ganizers against the other algorithms accepted into the competition. The results,
performed by the organizers, are presented at [30].

Algorithm 11 DEcfbLS

generate randomly NP individuals of the initial population and compute their
fitness values
for i = 1 : NP do

apply LS on i with local budget of 4 iterations.
end for

compute fitness evaluation breakpoint FEbp
while termination condition is not met do

for i = 1 : NP do

select three individuals xr, xs, and xt
compute mutant individual xo = xt + F(xr − xs)
compute exponential crossover between xi and xo thus generating xo f f
if f (xo f f) ≤ f (xi) then

save index
end if

end for

perform survivor selection where proper on the basis of saved indexes
if iterations i is greater or equal than the breakpoint FEbp then

compute populations fitness average favg
for i = 1 : NP do

if f (i) < favg then

apply LS on i with local budget of 40 iterations.
end if

end for

update breakpoint FEbp
end if

end while

5.4 Cluster-Based Population Initialization in Differential Evolu-
tion

In the final article [PVII] included in this work a new clustering-based popula-
tion initialization (CBPI) strategy for DE-based algorithms is proposed. In classic

47

DE the initial population is usually selected by random from uniform distribu-
tion, as described earlier in 3.1. In CBPI the initialization is emphasized on more
promising areas detected by a local search and a clustering method. The whole
procedure of CBPI can be divided into three different stages: Optimization by
local search, clustering, and Cluster-Based Population Initialization. First two
stages are run before the DE framework and the last stage replaces the population
initialization within the DE framework. The CBPI is tested on multiple modern
DE variants, on a wide spectrum of problems from different benchmarks, and on
a Lennard-Jones Potential problem. The proposed module implicitly performs
an analysis on multi-modality and estimates the location of the strongest basins
of attraction. Then, the module exploits this piece of information to "suggest" DE
where to search for the global optimum. Description of the three stages are briefly
presented below.

5.4.1 Optimization by Local Search

At the first stage a number of Np solutions are pseudo-randomly generated to
form an initial population. Similar to approach used in article VI , where popu-
lation was refined with a deterministic local search, here the initial population is
optimized for prefixed amount of fitness evaluations with two local searchers: S
and Rosenbrock’s, see 1.2.4 and 1.2.2 on page 13. The goal here is to locate more
promising areas of search space by applying local search. The selection of these
two local searchers is based on that they complement each other well, as observed
in [6] and [7], while S performs search moves along the axes, Rosenbrock’s local
search uses gradient information to detect most promising search direction. After
local search, cluster analysis is performed on the current population.

5.4.2 Clustering and Cluster Evaluation

In the second stage of CBPI clustering analysis is performed to check how points
are spread along search space. As an output this phase produces candidate so-
lutions divided into k clusters. Clustering is made by means of similarity in Eu-
clidean distance between points. The clustering algorithm used is k-means, see
[41], which needs the amount of clusters k to be predefined, thus the algorithm
is run with different values of k. To decide which of these k clusterings is the
most suitable one, the clusters are evaluated by computing an average Silhouette
of the cluster, see [61]. The goal here is to get an estimate of function’s modal-
ity: if points belong into a single cluster, the problem is most likely uni-modal
and if multiple clusters are detected the function is more likely multi-modal with
several local optimas. While being only an estimate, this information is used in
third stage to create a new population around the most promising solutions in
each cluster, thus giving weight but not limiting the search to these areas (as they
may be local optimas). For the sake of clarity, pseudo-code of the second stage is
provided in algorithm 12.

48

Algorithm 12 Pseudo-code of the Second Stage.

1: INPUT Spop candidate solutions improved by two subsequent local search
algorithms

2: for k = 2 : M do

3: Execute k-means with k clusters
4: save clustering
5: end for

6: for k = 2 : M do

7: Evaluate clustering k by average Silhouette
8: end for

9: select the best clustering scenario on the basis of the average Silhouette value
10: OUTPUT Spop candidate solutions divided into k clusters

5.4.3 Cluster-Based Population Initialization

In the final stage of the CBPI, clustering information is used to initialize popu-
lation around the detected clusters. Each cluster is characterized by their best
individual xk (pivot individual). First, all the k pivot individuals (one for each clus-
ter) are copied into the population. The pivot individuals are the only solutions
which get copied into population used within DE framework and all other solu-
tions are essentially ignored. The remaining population members are generated
as described below.

When initializing a new point into the population, single cluster best xk is se-
lected by a roulette wheel selection giving more weight on more promising clus-
ters. Initialization of points is done by generating pseudo-random solution with
normal distribution around point xk, thus giving weight but not being limited
to neighborhood of point xk. More specifically, each design variable x[i] is sam-
pled with normal distribution with mean xk[i] and standard deviation σ, where
σ = 0.1 · W and W is width of the design variable i. Illustration of 2-dimensional
case is show in picture 6 and pseudo-code describing third stage more in detail is
given in algorithm 13.

Each of the stages described above have a specific role: the first stage im-
proves initial solutions locally and attempts to map promising basins of attrac-
tion. The second stage attempts to organize promising basins into clusters esti-
mating multi-modality of the problem. The third stage utilize the information
gained from the second stage to fill in population around the basins of attraction,
while not completely excluding the other areas of the search space. Results show
that the intelligent sampling of the search space is able to consistently improve
the performance of various DE frameworks.

49

x

y

x

y

2ox

2oy
c1

c2

c3

c4

xp-4

x
p-1

x
p-2

x
p-3

x
p-2

x
p-1

x
p-4

x
p-3

- Empty small circles represent pivot individuals within each cluster c1, c2, c3 and c4.

Clustering Pivot individuals

FIGURE 6 2-dimensional illustration of clusters Ck and their respective pivot individ-
uals xp−k. In stage three pivot individuals are used as mean values with
standard deviations σx and σy to fill in remaining population.

Algorithm 13 Pseudo-code of the Third Stage.

1: INPUT Spop candidate solutions divided into k clusters
2: for i = 1 : k do

3: select, for each cluster the individual with the best fitness xp−i

4: Popk = xp−k

5: end for

6: for i = 1 : K do

7: assign to the cluster a score sck on the basis of f
(
xp−i

)
8: calculate pci = sci

∑ K
j=1scj

9: end for

10: for i = K + 1 : Spop do

11: generate a random number rand (0, 1)
12: select a cluster k by means of the roulette wheel selection and the assigned

probabilities
13: for j = 1 : n do

14: Popi
j = N

(
xp−k

j , 1
)

15: end for

16: end for

17: OUTPUT Pop

6 CONCLUSION

The goal of Computational Intelligence Optimization (CIO) is ultimately to be
able to generate a system capable of understanding problem specific features and
select appropriate algorithmic components/memes for intelligent problem solv-
ing. As this goal is very ambitious, it’s not within the limits of this thesis. How-
ever, steps toward this goal can be achieved by understanding memetic structures
and components (memes) involved in the optimization algorithms. Memetic
Computing is a subject in computer science that studies optimization structures
and memes involved from CIO perspective. A cornerstone for MC approaches
are Memetic Algorithms, which by classic definition includes an evolutionary
framework with one or multiple local search components.

Memetic Computing approaches presented in this work are related to both
single-solution and population-based algorithms and combinations of them as
memetic structures. In the first category of single-solution optimizers, modifica-
tions of the Three Stage Optimal Memetic Exploration algorithm are proposed.
These modifications aim to address problems in the original implementation of
the above mentioned memetic structure, more specifically, features such as di-
mensionality and separability. As exploration and exploitation properties are
ingredients for any successful optimization algorithm, the components of an al-
gorithm need to be able to retain their role as the problem dimension increases.
This can be a very challenging task and is known as the curse of dimensional-
ity. Scalability in Three Stage Optimal Memetic Exploration is addressed with a
shrinking mechanism that scales with dimension and is more explorative at the
beginning of the optimization process shifting towards more exploitative each
iteration. Regarding separability, the original algorithm lacks so called rotation
invariant search moves, which can limit the performance especially on rotated
or non-separable problems. To address this problem rotation invariant mutation
is included within one of the three components. Also an alternative memetic
structure for the algorithm is presented, which employs meta-Lamarckian learn-
ing. The results show that exactly same memes can achieve different results with
different memetic structures.

Two Memetic Computing approaches with Differential Evolution as the evo-

51

lutionary framework are included. Differential Evolution, while being efficient
population-based optimization algorithm, contains an inherent flaw which can
limit its performance. Because of Differential Evolution’s limited search moves
stagnation can occur. In this case Differential Evolution is unable to generate
an offspring that outperforms its parent. Various research directions have been
explored in order to avoid stagnation and premature convergence. One such ap-
proach is to include complementary search moves as an additional component.
Including simple local search with an intelligent memetic structure can help Dif-
ferential Evolution to avoid stagnation and increase the performance of the algo-
rithm in general. In this work, local search is integrated with micro-Differential
Evolution and a classical Differential Evolution to tackle a wide-range of opti-
mization problems. Building upon the concept, a general component for Differ-
ential Evolution (or another population-based algorithm) is presented, which in-
telligently samples the design space before initialization of the population, thus,
guiding the optimization algorithm. The component itself is a memetic structure
consisting of two local searchers: Rosenbrock’s method and Deterministic Local
Search, which complement each other in terms of search moves.

A main finding in this work is that even simple algorithmic components,
when selected wisely to address problem specific features and implemented with
intelligent co-operative structure, can attain comparable performance on various
global optimization problems. Also local search has been utilized, at least in the
view of the author, with a more broad role for both explorative and exploitative
purposes.

52

YHTEENVETO (FINNISH SUMMARY)

Perusajatus optimoinnissa on päästä parhaaseen mahdolliseen ratkaisuun tietyil-
lä rajoitteilla. Optimointiongelmia esiintyy kaikkialla, esimerkkinä pakkauson-
gelma, jossa annetut palaset tulisi sijoittaa rajoitettuun tilaan. Ongelma on ylei-
nen esimerkiksi vaateteollisuudessa. Kyse voi olla myös optimaalisen muodon
ja/tai materiaalin löytämisestä lentokoneen siipeä suunnitellessa tai traktorinko-
pin äänieristyksessä. Optimointia tarvitaan arkielämässä, liike- ja talouselämässä,
sekä tekniikassa.

Yksi optimointimenetelmien keskeisistä tavoitteista on pyrkimys kehittää
itsenäinen systeemi, joka kykenee analysoimaan optimointiongelmalle ominaisia
piirteitä ja pystyy niiden perusteella älykkäästi valitsemaan ratkaisumenetelmän.
Tavoite on kuitenkin hyvin kunnianhimoinen eikä se ole tämän väitöskirjan saa-
vutettavissa. On kuitenkin mahdollista ottaa askel kohti tätä tavoitetta tutkimalla
optimointimenetelmissä esiintyviä memeettisiä struktuureja sekä komponentte-
ja. Memeettinen laskenta on tieteellisen laskennan ala, joka tutkii optimointime-
netelmien struktuureja laskennallisen älykkyyden perspektiivistä. Yksi memeet-
tisen laskennan tunnettu osa-alue on memeettiset algoritmit. Memeettiset algo-
ritmit määritellään klassisesti optimointi algoritmeina, joissa on populaatiopoh-
jainen optimointimenetelmä yhdistettynä lokaalihakumenetelmään.

Tässä työssä esitellyt memeettisen laskennan metodit käsittelevät yhden
ratkaisun malleja, populaation pohjaisia metodeja sekä näiden yhdistelmiä. Yh-
den ratkaisun mallit keskittyvät "Three Stage Optimal Memetic Exploration-me-
netelmän muunnoksiin. Nämä muunnokset tähtäävät korjaamaan alkuperäisen
menetelmän heikkouksia tietyissä ongelmatyypeissä. Näiden muunnoksien li-
säksi esitellään vaihtoehtoinen struktuuri, joka ohjaa siirtymiä menetelmän kol-
men eri vaiheen välillä. Edellä mainitun menetelmän laskennallisista tuloksista
voidaan nähdä, että samoilla algoritmisilla komponenteilla struktuuria vaihta-
malla voidaan päätyä erilaisiin tuloksiin ongelmatyypistä riippuen.

Lisäksi työhön liitetyissä artikkeleissa esitellään kaksi differentiaalievoluu-
tioon (DE) perustuvaa memeettistä struktuuria. Differentiaalievoluutio on teho-
kas optimointimenetelmä, jossa on kuitenkin ominaisuus, joka voi rajoittaa sen
suorituskykyä. Tämä rajoittava ominaisuus johtuu DE:n tavasta tuottaa ratkai-
sua, joita on rajoitettu määrä. Mikäli yksikään näistä ratkaisuista ei johda ratkai-
suun, joka olisi edeltäjäänsä parempi, voi ratkaisujen evoluutio pysähtyä. Tältä
tilanteelta voidaan välttyä esimerkiksi lisäämällä uusia tapoja tuottaa ratkaisuja,
esimerkiksi yhdistämällä jokin toinen optimointimenetelmä differentiaalievoluu-
tioon. Työssä esitellään kaksi differentiaalievoluution muunnosta, joista toinen
keskittyy mikro-differentiaalievoluutioon, jossa käytetään pientä populaatiokan-
taa, ja toinen klassiseen differentiaalievoluutioon. Edellä mainittuihin algoritmei-
hin perustuen esitellään myös yleinen komponentti differentiaalievoluutioon pe-
rustuville algoritmeille. Tämä komponentti arvioi lokaaleiden optimien määrää
ja keskittää alkuperäispopulaation alustuksen älykkäästi tähän informaatioon pe-
rustuen.

53

Työssä esitellyt algoritmit koostuvat yksinkertaisista komponenteista, siten
niiden käyttötarkoitus säilyy selkeänä sekä suunnittelijalle että käyttäjälle. Lisäk-
si algoritmit ovat helposti toteutettavissa. Huolimatta yksinkertaisuudestaan, esi-
tellyt menetelmät voivat tarjota varteenotettavan vaihtoehdon globaaleiden opti-
mointiongelmien ratkaisemisessa.

54

REFERENCES

[1] J. E. BAKER, Reducing Bias and Inefficiency in the Selection Algorithm, in Pro-
ceedings of the International Conference on Genetic Algorithms, Lawrence
Erlbaum Associates, Inc. Mahwah, NJ, USA, 1987, pp. 14–21.

[2] J. BREST, S. GREINER, B. BOŠKOVIĆ, M. MERNIK, AND V. ŽUMER, Self-
Adapting Control Parameters in Differential Evolution: A Comparative Study on
Numerical Benchmark Problems, IEEE Transactions on Evolutionary Compu-
tation, 10 (2006), pp. 646–657.

[3] J. BREST AND M. S. MAUČEC, Population size reduction for the differential evo-
lution algorithm, Applied Intelligence, 29 (2008), pp. 228–247.

[4] A. CAPONIO, F. NERI, AND V. TIRRONEN, Super-fit control adaptation in
memetic differential evolution frameworks, Soft Computing - A Fusion of Foun-
dations, Methodologies and Applications, 13 (2009), pp. 811–831.

[5] F. CARAFFINI, F. NERI, G. IACCA, AND A. MOL, Parallel memetic structures,
Information Sciences, 227 (2013), pp. 60 – 82.

[6] , Parallel memetic structures, Information Sciences, 227 (2013), pp. 60 – 82.

[7] F. CARAFFINI, F. NERI, AND L. PICINALI, An analysis on separability for
memetic computing automatic design, Information Sciences, 265 (2014), pp. 1–
22.

[8] R. A. CARUANA, L. J. ESHELMAN, AND J. D. SCHAFFER, Representation
and hidden bias ii: Eliminating defining length bias in genetic search via shuffle
crossover, in Proceedings of the 11th international joint conference on Artifi-
cial intelligence-Volume 1, Morgan Kaufmann Publishers Inc., 1989, pp. 750–
755.

[9] U. K. CHAKRABORTY, ed., Advances in Differential Evolution, vol. 143 of Stud-
ies in Computational Intelligence, Springer, 2008.

[10] U. K. CHAKRABORTY, S. DAS, AND A. KONAR, Differential Evolution with Lo-
cal Neighborhood, in Proceedings of the IEEE Congress on Evolutionary Com-
putation, 2006, pp. 2042–2049.

[11] C. A. C. C. COELLO AND G. T. PULIDO, A micro-genetic algorithm for multi-
objective optimization, in Evolutionary multi-criterion optimization, Springer,
2001, pp. 126–140.

[12] A. COLORNI, M. DORIGO, V. MANIEZZO, ET AL., An investigation of some
properties of an“ant algorithm”., in PPSN, vol. 92, 1992, pp. 509–520.

[13] CYBER DYNE SRL HOME PAGE, Kimeme, 2012. http://cyberdynesoft.it/.

55

[14] S. DAS, A. ABRAHAM, U. K. CHAKRABORTY, AND A. KONAR, Differential
Evolution with a Neighborhood-based Mutation Operator, IEEE Transactions on
Evolutionary Computation, 13 (2009), pp. 526–553.

[15] S. DAS, A. KONAR, AND U. K. CHAKRABORTY, Two improved differential evo-
lution schemes for faster global search, in Proceedings of the 2005 conference on
Genetic and evolutionary computation, ACM, 2005, pp. 991–998.

[16] S. DAS AND P. SUGANTHAN, Problem definitions and evaluation criteria for cec
2011 competition on testing evolutionary algorithms on real world optimization
problems, Jadavpur Univ., Nanyang Technol. Univ., Kolkata, India, (2010).

[17] A. E. EIBEN AND J. E. SMITH, Introduction to Evolutionary Computation,
Springer Verlag, Berlin, 2003, pp. 175–188.

[18] L. J. ESHELMAN, R. A. CARUANA, AND J. D. SCHAFFER, Biases in the
crossover landscape, in Proceedings of the third international conference on
Genetic algorithms, Morgan Kaufmann Publishers Inc., 1989, pp. 10–19.

[19] H.-Y. FAN AND J. LAMPINEN, A Trigonometric Mutation Operation to Differ-
ential Evolution, vol. 27, 2003, pp. 105–129.

[20] L. J. FOGEL, A. J. OWENS, AND M. J. WALSH, Artificial Intelligence through
Simulated Evolution, John Wiley, New York, USA, 1966.

[21] D. E. GOLDBERG, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Co., Reading, MA, USA, 1989.

[22] D. GROSS AND C. M. HARRIS, Fundamentals of Queueing Theory, Wiley, NY,
1985.

[23] N. HANSEN, A. AUGER, S. FINCK, AND R. ROS, Real-Parameter Black-Box
Optimization Benchmarking 2010: Experimental Setup, Tech. Report RR-7215,
INRIA, 2010.

[24] F. HERRERA, M. LOZANO, AND A. M. SÁNCHEZ, A taxonomy for the
Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Study,
International Journal of Intelligent Systems, 18 (2003), pp. 309–338.

[25] S. HOLM, A simple sequentially rejective multiple test procedure, Scandinavian
Journal of Statistics, 6 (1979), pp. 65–70.

[26] R. HOOKE AND T. A. JEEVES, Direct search solution of numerical and statistical
problems, Journal of the ACM, 8 (1961), pp. 212–229.

[27] C. HOUCK, J. A. JOINES, M. G. KAY, AND J. R. WILSON, Empirical inves-
tigation of the benefits of partial lamarckianism, Evolutionary Computation, 5
(1997), pp. 31–60.

56

[28] G. IACCA, F. NERI, E. MININNO, Y. S. ONG, AND M. H. LIM, Ockham’s
Razor in Memetic Computing: Three Stage Optimal Memetic Exploration, Infor-
mation Sciences, 188 (2012), pp. 17–43.

[29] G. IACCA, F. NERI, E. MININNO, Y.-S. ONG, AND M.-H. LIM, Ockhams
razor in memetic computing: three stage optimal memetic exploration, Information
Sciences, 188 (2012), pp. 17–43.

[30] T. S. ILYA LOSHCHILOV AND T. LIAO, Ranking results of cec1́3 special ses-
sion & competition on real-parameter single objective optimization at CEC2013,
tech. report, 2013. http://www.ntu.edu.sg/home/EPNSugan/index_files/
CEC2013/results_21.pdf.

[31] H. JOHN, Holland, adaptation in natural and artificial systems, 1992.

[32] J. KENNEDY AND R. C. EBERHART, Particle swarm optimization, in Proceed-
ings of IEEE International Conference on Neural Networks, 1995, pp. 1942–
1948.

[33] J. KIEFER, Sequential minimax search for a maximum, Proceedings of the Amer-
ican Mathematical Society, 4 (1953), pp. 502–506.

[34] S. KIRKPATRICK, C. D. J. GELATT, AND M. P. VECCHI, Optimization by sim-
ulated annealing, Science, (1983), pp. 671–680.

[35] A. V. KONONOVA, K. J. HUGHES, M. POURKASHANIAN, AND D. B. IN-
GHAM, Fitness Diversity Based Adaptive Memetic Algorithm for solving inverse
problems of chemical kinetics, in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2007, pp. 2366–2373.

[36] N. KRASNOGOR AND J. SMITH, A tutorial for competent memetic algorithms:
model, taxonomy, and design issues, IEEE Transactions on Evolutionary Com-
putation, 9 (2005), pp. 474–488.

[37] K. KRISHNAKUMAR, Micro-genetic algorithms for stationary and non-stationary
function optimization, in 1989 Advances in Intelligent Robotics Systems Con-
ference, International Society for Optics and Photonics, 1990, pp. 289–296.

[38] J. LAMPINEN AND I. ZELINKA, On stagnation of the differential evolution algo-
rithm, in Proceedings of MENDEL, 2000, pp. 76–83.

[39] J. LIANG, B. QU, P. SUGANTHAN, AND A. G. HERNÁNDEZ-DÍAZ, Problem
definitions and evaluation criteria for the cec 2013 special session on real-parameter
optimization, Computational Intelligence Laboratory, Zhengzhou University,
Zhengzhou, China and Nanyang Technological University, Singapore, Tech-
nical Report, 201212 (2013).

[40] J. J. LIANG, B. Y. QU, P. N. SUGANTHAN, AND A. G. HERNÁNDEZ-DIAZ,
Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on

57

Real-Parameter Optimization, Tech. Report 201212, Zhengzhou University and
Nanyang Technological University, Zhengzhou China and Singapore, 2013.

[41] S. LLOYD, Least squares quantization in pcm, IEEE Transactions on Information
Theory, 28 (1982), pp. 129–137.

[42] M. LOZANO AND C. GARCÍA-MARTÍNEZ, Hybrid metaheuristics with evolu-
tionary algorithms specializing in intensification and diversification: Overview and
progress report, Computers & Operations Research, 37 (2010), pp. 481–497.

[43] D. MOLINA, F. HERRERA, AND M. LOZANO, Adaptive local search parame-
ters for real-coded memetic algorithms, in Evolutionary Computation, 2005. The
2005 IEEE Congress on, vol. 1, IEEE, 2005, pp. 888–895.

[44] A. NELDER AND R. MEAD, A simplex method for function optimization, Com-
putation Journal, Vol 7 (1965), pp. 308–313.

[45] F. NERI AND C. COTTA, Memetic algorithms and memetic computing optimiza-
tion: A literature review, Swarm and Evolutionary Computation, 2 (2012),
pp. 1–14.

[46] F. NERI, C. COTTA, AND P. MOSCATO, Handbook of Memetic Algorithms,
vol. 379 of Studies in Computational Intelligence, Springer, 2011.

[47] F. NERI, G. IACCA, AND E. MININNO, Disturbed Exploitation compact Dif-
ferential Evolution for Limited Memory Optimization Problems, Information Sci-
ences, 181 (2011), pp. 2469–2487.

[48] F. NERI AND V. TIRRONEN, Scale Factor Local Search in Differential Evolution,
Memetic Computing Journal, 1 (2009), pp. 153–171.

[49] , Recent Advances in Differential Evolution: A Review and Experimental
Analysis, Artificial Intelligence Review, 33 (2010), pp. 61–106.

[50] F. NERI, V. TIRRONEN, AND T. KÄRKKÄINEN, Enhancing Differential Evo-
lution Frameworks by Scale Factor Local Search - Part II, in Proceedings of the
IEEE Congress on Evolutionary Computation, CEC’09, Piscataway, NJ, USA,
2009, IEEE Press, pp. 118–125.

[51] Y. S. ONG AND A. J. KEANE, Meta-Lamarkian Learning in Memetic Algorithms,
IEEE Transactions on Evolutionary Computation, 8 (2004), pp. 99–110.

[52] K. PRICE, An Introduction to Differential Evolution, in New Ideas in Optimiza-
tion, D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and
K. V. Price, eds., McGraw-Hill, 1999, pp. 79–108.

[53] K. V. PRICE, R. STORN, AND J. LAMPINEN, Differential Evolution: A Practical
Approach to Global Optimization, Springer, 2005.

58

[54] A. K. QIN, V. L. HUANG, AND P. N. SUGANTHAN, Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimization, IEEE
Transactions on Evolutionary Computation, 13 (2009), pp. 398–417.

[55] A. K. QIN AND P. N. SUGANTHAN, Self-adaptive differential evolution algo-
rithm for numerical optimization, in Proceedings of the IEEE Congress on Evo-
lutionary Computation, vol. 2, 2005, pp. 1785–1791.

[56] S. RAHNAMAYAN AND H. R. TIZHOOSH, Image thresholding using micro
opposition-based differential evolution (micro-ode), in Evolutionary Computa-
tion, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on, IEEE, 2008, pp. 1409–1416.

[57] S. RAHNAMAYAN, H. R. TIZHOOSH, AND M. M. SALAMA, Opposition-Based
Differential Evolution, IEEE Transactions on Evolutionary Computation, 12
(2008), pp. 64–79.

[58] S. RAHNAMAYAN, H. R. TIZHOOSH, AND M. M. A. SALAMA, Opposition-
Based Differential Evolution, in Advances in Differential Evolution, U. K.
Chakraborty, ed., vol. 143 of Studies in Computational Intelligence, Springer,
2008, pp. 155–171.

[59] I. RECHENBERG, Evolutionsstrategie – Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution, PhD thesis, Technical University of
Berlin, 1971.

[60] H. H. ROSENBROCK, An automatic Method for finding the greatest or least Value
of a Function, The Computer Journal, 3 (1960), pp. 175–184.

[61] P. J. ROUSSEEUW, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, Journal of Computational and Applied Mathematics, 20
(1987), pp. 53 – 65.

[62] S. J. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Approach (2nd
ed.), Prentice Hall, 2003.

[63] J. E. SMITH, Coevolving Memetic Algorithms: A Review and Progress Report,
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37 (2007),
pp. 6–17.

[64] J. E. SMITH, Estimating meme fitness in adaptive memetic algorithms for combi-
natorial problems, Evolutionary Computation, 20 (2012), pp. 165–188.

[65] M. A. SOTELO-FIGUEROA, H. J. P. SOBERANES, J. M. CARPIO, H. J. F.
HUACUJA, L. C. REYES, AND J. A. S. ALCARAZ, Evolving bin packing heuris-
tic using micro-differential evolution with indirect representation, in Recent Ad-
vances on Hybrid Intelligent Systems, Springer, 2013, pp. 349–359.

[66] R. STORN AND K. PRICE, Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces. TR-95-012, 1995.

59

[67] P. N. SUGANTHAN, N. HANSEN, J. J. LIANG, K. DEB, Y.-P. CHEN,
A. AUGER, AND S. TIWARI, Problem definitions and evaluation criteria for the cec
2005 special session on real-parameter optimization, KanGAL Report, 2005005
(2005).

[68] K. TAGAWA, A statistical study of the differential evolution based on continuous
generation model, in Evolutionary Computation, 2009. CEC’09. IEEE Congress
on, IEEE, 2009, pp. 2614–2621.

[69] J. TANG, M. H. LIM, AND Y. S. ONG, Diversity-Adaptive Parallel Memetic
Algorithm for Solving Large Scale Combinatorial Optimization Problems, Soft
Computing-A Fusion of Foundations, Methodologies and Applications, 11
(2007), pp. 873–888.

[70] K. TANG, X. LI, P. N. SUGANTHAN, Z. YANG, AND T. WEISE, Benchmark
Functions for the CEC’2010 Special Session and Competition on Large-Scale Global
Optimization, tech. report, University of Science and Technology of China
(USTC), School of Computer Science and Technology, Nature Inspired Com-
putation and Applications Laboratory (NICAL): Hefei, Anhui, China, 2010.

[71] V. TIRRONEN AND F. NERI, Differential Evolution with Fitness Diversity
Self-Adaptation, in Nature-Inspired Algorithms for Optimisation, Studies in
Computational Intelligence, R. Chiong, ed., vol. 193 of Studies in Computa-
tional Intelligence, Springer, 2009, pp. 199–234.

[72] F. WILCOXON, Individual comparisons by ranking methods, Biometrics Bulletin,
1 (1945), pp. 80–83.

[73] D. H. WOLPERT AND W. G. MACREADY, No free lunch theorems for optimiza-
tion, IEEE Transactions on Evolutionary Computation, 1 (1997), pp. 67–82.

[74] E. L. YU AND P. N. SUGANTHAN, Ensemble of niching algorithms, Information
Sciences, 180 (2010), pp. 2815–2833.

[75] D. ZAHARIE, Critical Values for Control Parameters of Differential Evolution Al-
gorithm, in Proceedings of 8th International Mendel Conference on Soft Com-
puting, R. Matuŝek and P. Oŝmera, eds., 2002, pp. 62–67.

[76] A. ZAMUDA, J. BREST, B. BOŠKOVIĆ, AND V. ŽUMER, Differential evolution
for multiobjective optimization with self adaptation, in Proceedings of the IEEE
Congress on Evolutionary Computation, 2007, pp. 3617–3624.

[77] A. ZAMUDA, J. BREST, B. BOŠKOVIĆ, AND V. ŽUMER, Large Scale Global
Optimization Using Differential Evolution With Self-adaptation and Cooperative
Co-evolution, in Proceedings of the IEEE World Congress on Computational
Intelligence, 2008, pp. 3719–3726.

[78] J. ZHANG AND A. SANDERSON, Jade: Adaptive differential evolution with op-
tional external archive, Evolutionary Computation, IEEE Transactions on, 13
(2009), pp. 945–958.

ORIGINAL PAPERS

PI

SHRINKING THREE STAGE OPTIMAL MEMETIC
EXPLORATION

by

I. Poikolainen, G. Iacca, F. Neri, E. Mininno, M. Weber 2012

Proceedings of the fifth international conference on bioinspired optimization
methods and their applications, pages 61-74

SHRINKING THREE STAGE OPTIMAL
MEMETIC EXPLORATION

Ilpo Poikolainen*, Giovanni Iacca †, Ferrante Neri*,
Ernesto Mininno*, Matthieu Weber*
* Department of Mathematical Information Technology

P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland

ilpo.poikolainen@jyu.fi, ferrante.neri@jyu.fi, ernesto.mininno@jyu.fi, matthieu.weber@jyu.fi

† INCAS3 , Dr. Nassaulaan 9, 9401 HJ Assen, The Netherlands

giovanniiacca@incas3.eu

Abstract The Ockham’s razor in Memetic Computing states that optimization
algorithms composed of few, simple, and tailored components can be
very efficient, if properly designed. If the designer is aware of the role
and effect of each algorithmic component an high performance can be
easily obtained. Following this principle, this paper proposes a novel
algorithm for numerical optimization. The proposed algorithm, namely
Shrinking Three Stage Optimal Memetic Exploration (S-3SOME), per-
forms the progressive perturbation of a candidate solution by alternating
three search operators, the first is a stochastic global search, the sec-
ond is random sampling within progressive narrowing hypervolume, the
third is a deterministic local search. The proposed S-3SOME is an effi-
cient scheme which outperforms, for the considered problems, a similar
scheme proposed in literature and, despite its simplicity, is competi-
tive with complex population-based algorithms which require massive
overhead and memory employment.

Keywords: Memetic computing, Computational intelligence optimization, Algorithm
for resource-constrained hardware

1. Introduction

During the latest years, modern research papers in numerical opti-
mization claim to propose high performance general purpose algorithms.
For practical reasons, these algorithms are usually tested on standard-
ized sets of artificial test problems proposed in conferences and special
issues and are compared with other recent algorithms. Commonly, new

1

2

algorithms are not really based on novel ideas, on the contrary, they are
designed by following one of the design criteria mentioned below.

1) Starting from an existing optimization algorithm, its structure is
“perturbed” by slightly modifying the structure and adding on extra
components. Obviously, this approach attempts to obtain a certain per-
formance improvement in correspondence to the proposed modifications.
Successful examples of this research approaches are given in [2], where
a controlled randomization on Differential Evolution (DE) parameters
offers a promising alternative to the standard DE framework, and [5],
where the variation operator combining the solutions of a population is
modified in the context of Particle Swarm Optimization (PSO).

2) Starting from a set of algorithms, they are combined in a hybrid
fashion with the trust that their combination and coordination leads
to a flexible structure displaying a better performance than the various
algorithms considered separately. Two examples of recently proposed
algorithms which are basically the combination, by means of activation
probabilities, of various meta-heuristics are given in [9] and [13].

Recently, algorithmic design has been tackled by means of the so-
called Ockham Razor’s principle in Memetic Computing (MC) or more
generally in Computational Intelligence Optimization, see [4]. According
to the Ockham’s Razor, the simplest explanation of natural phenomena
is likely to be the closest to the truth. In an analogous way, an optimiza-
tion problem can be seen as a natural phenomenon and the optimization
algorithm should be based on its understanding. This means that the
optimization algorithm contains the countermeasures to handle the fea-
tures of the fitness landscape. In order, on one hand, to avoid a waste
of computational resources, and, on the other hand, to allow a proper
algorithmic development when the fitness landscape changes (adding
and removing memes/components/modules) only the strictly necessary
components must be employed.

It must be remarked that we are referring to the concept of MC as
reported in [7], MC is intended as “a broad subject which studies com-
plex and dynamic computing structures composed of interacting modules
(memes) whose evolution dynamics is inspired by the diffusion of ideas.
Memes are simple strategies whose harmonic coordination allows the so-
lution of various problems”. In a metaphorical way, the proposed view
on the subject considers the various operators as cooking ingredients.
The ingredients require then to be properly selected and combined in
order to address the specific taste and requirements of the guests. Thus,
the algorithmic design should be performed by implementing a bottom-
up procedure where the role and function of each operator should be
clear. On the basis of this idea, in [4], it is shown how a very simple al-

Shrinking Three Stage OptimalMemetic Exploration 3

gorithm, namely Three Stage Optimal Memetic Exploration (3SOME),
which combines three perturbation mechanisms over a single solution,
is competitive with complex algorithms representing the-state-of-the-art
in Computational Intelligence Optimization, while requiring only little
memory and computational resources (see [4] for a detailed analysis of
the computational overhead and memory usage of 3SOME).

By following the lex parsimoniae principle of Ockham’s Razor and the
example of 3SOME algorithm, this paper proposes a simple algorithmic
solution obtained by the sequential application of three perturbation
procedures, one is a random global search which attempts to detect
promising search directions, one is a random local search and the last
is a deterministic local search. Two perturbation mechanisms are taken
from the 3SOME algorithm while one of them has been replaced with
a novel one. More specifically, while 3SOME is built-up on the idea
that the search of the optimum should be reached by alternating the
radius of the search and thus using long, middle, and short distance per-
turbation, this paper combines the long distance exploration with two
short distance operators, with different roles, the first is stochastic and
progressively focuses the search towards the most interesting areas of
the decision space, the second is deterministic and perturbs each vari-
able separately. The combination of these two different operators has
been done on purpose to flexibly handle landscapes with diverse fea-
tures. Since the stochastic operator performs the search by means of
a progressive shrinking of the hypervolume, the proposed algorithm is
indicated as Shrinking 3SOME (S-3SOME).

The remainder of this paper is organized in the following way. Section
2 gives a detailed description of the three operators and the coordination
scheme composing the proposed algorithm. Section 3 shows the perfor-
mance comparison between the proposed algorithm, 3SOME algorithm,
and a set of modern algorithms. Finally, Section 4 gives the conclusive
remarks of this study.

2. Shrinking Three Stage Optimal Memetic
Exploration

In order to clarify the notation used, we refer to the minimization
problem of an objective function f (x), where the candidate solution x
is a vector of n design variables (or genes) in a decision space D.

In the beginning of the optimization procedure one candidate solu-
tion is randomly sampled within the decision space D. In analogy with
compact optimization, see [8], we will refer to this candidate solution as
elite and indicate it with the symbol xe. In addition to xe, the algo-

4

rithm makes use of another memory slot for attempting to detect other
solutions. The latter solution, namely trial, is indicated with xt. In the
following subsections the three exploratory stages and their coordination
are described.

2.1 Long distance exploration

This exploration move attempts to detect a new promising solution
within the entire decision space. While the elite xe is retained, at first,
a trial solution xt is generated by randomly sampling a new set of n
genes. Subsequently, the exponential crossover in the fashion of DE is
applied between xe and xt, see [10]. More specifically, one gene from xe
is randomly selected. This gene replaces the corresponding gene within
the trial solution xt. Then, a set of random numbers between 0 and 1
are generated. As long as rand (0, 1) ≤ Cr, where the crossover rate Cr
is a predetermined parameter, the design variables from the elite xe are
copied into the corresponding positions of the trial solution xt. The first
time that rand (0, 1) > Cr, the copy process is interrupted. Thus, all
the remaining design variables of the offspring are those initially sam-
pled (belonging to the original xt). This exploration stage performs the
global stochastic search and thus attempts to detect unexplored promis-
ing basins of attraction. On the other hand, while this search mecha-
nism extensively explores the decision space, it also promotes retention
of a small section of the elite within the trial solution. This kind of
inheritance of some genes appears to be extremely beneficial in terms
of performance with respect to a stochastic blind search (which would
generate a completely new solution at each step). If the trial solution
outperforms the elite, a replacement occurs. A replacement has been
set also if the newly generated solution has the same performance of the
elite. This is to prevent the search getting trapped in some plateaus of
the decision space (regions of the decision space characterized by a null
gradient). The pseudo-code of this component is shown in Algorithm 1.

It can easily be observed that, for a given value of Cr, the meaning
of the long distance exploration would change with the dimensionality
of the problem. In order to avoid this problem and make the crossover
action independent on the dimensionality of the problem, the following
quantity, namely inheritance factor, is fixed: αe ≈ ne

n , where ne is the
number of genes we expect to copy from xe into xt in addition to the
gene deterministically copied. The probability that ne genes are copied
is Crne = Crnαe . In order to control the approximate amount of copied
genes and to achieve that about ne genes are copied into the offspring
we imposed that Crnαe = 0.5. It can easily be seen that, for a chosen

Shrinking Three Stage OptimalMemetic Exploration 5

αe, the crossover rate can be set on the basis of the dimensionality as
follows: Cr = 1

nαe
√
2
. The long distance exploration is repeated until it

does not detect a solution that outperforms the original elite. When a
new promising solution is detected, and thus the elite is updated, the
stochastic short distance exploration is activated.

Algorithm 1 Long distance exploration
generate a random solution xt within D
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if

end while
if f (xt) ≤ f (xe) then

xe = xt

end if

2.2 Stochastic short distance exploration

This exploration move attempts to detect promising areas of the de-
cision space by making use of a stochastic logic. In a nutshell, when the
long distance exploration detects a new promising solution, the stochas-
tic short distance exploration generates a hypercube centered in the
newly detected solution xe and having a hypervolume which is 20% of
the decision space D. This exploration samples a point for n times and
simply attempts to outperform solution xe where n is dimensionality of
the problem. In other words, for n times, a trial solution xt is generated.
If f (xt) ≤ f (xe), the elite solution is updated and the hypervolume is
centered around the new elite solution. If, after n comparisons, at least
one replacement occurred, n new samples of trial solutions and the re-
spective comparisons are scheduled. On the contrary, if all the n compar-
isons led to no improvements, the hypervolume is halved and the search
is repeated by sampling n solutions around the elite xe. This shrinking
mechanism is repeated until the hypervolume is smaller than 0.0001 %
of the total hypervolume. The pseudo-code displaying the working prin-
ciples of the stochastic short distance exploration is given in Algorithm
2. The new elite xe is then passed to the following operator for further
improvements. The size of the initial hypervolume and the number of
times the hypercube volume is halved were empirically fixed to achieve
good performance over the various problems considered in this paper.

6

Algorithm 2 Stochastic short distance exploration
generate a hypercube around xe with a hypervolume 20% of that of D;
while the hypervolume is bigger than 0.0001% of D do

for i = 1 : n do
generate randomly a trial solution xt within the hypercube;
if f (xt) ≤ f (xe) then

xe = xt;
centre the hypercube around xe;

end if
end for
if no elite update occurred then

halve the hypervolume;
end if

end while

Algorithm 3 Deterministic short distance exploration
while local budget condition do

xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i] − ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xe[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2
end if

end while

2.3 Deterministic short distance exploration

This exploration move attempts to fully exploit promising search di-
rections. The meaning of this exploration stage is to perform the descent
of promising basins of attraction and possibly finalize the search if the
basin of attraction is globally optimal. De facto, the short distance explo-
ration is a simple steepest descent deterministic local search algorithm,
with an exploratory move similar to that of Hooke-Jeeves algorithm, see
[3], or the first local search algorithm of the multiple trajectory search,
see [12]. The short distance exploration stage requires an additional
memory slot, which will be referred to as xs (s stands for short). Start-
ing from the elite xe, this local search, explores each coordinate i (each
gene) and samples xs[i] = xe[i] − ρ, where ρ is the exploratory radius.
Subsequently, if xs outperforms xe, the trial solution xt is updated (it
takes the value of xs), otherwise a half step in the opposite direction
xs[i] = xe[i]+

ρ
2 is performed. Again, xs replaces xt if it outperforms xe.

If there is no update, i.e. the exploration was unsuccessful, the radius ρ

Shrinking Three Stage OptimalMemetic Exploration 7

is halved. This exploration is repeated for all the design variables and
stopped when a prefixed budget (equal to 150 iterations as suggested in
[12]) is exceeded. The pseudo-code displaying the working principles of
the deterministic short distance exploration is given in Algorithm 3.

After the application of the deterministic short distance exploration,
if there is an improvement in the quality of the solution, the stochastic
short distance exploration is repeated subsequently. Otherwise, if no
improvement in solution quality is found, the long distance search is
activated to attempt to find new basins of attractions.

As a remark, a toroidal management of the bounds has been imple-
mented for the three operators above. This means that if, along the
dimension i, the design variable x[i] exceeds the bounds by a value of
ζ, it is reinserted from the other end of the interval at a distance of ζ
from the edge, i.e. given an interval [a, b], if x[i] = b + ζ it takes the
value of a + ζ. Finally, if we consider that each operator (meme) pro-
cesses an elite xe and returns, as an output, a fitness-wise improved elite
solution, the operator can be said to “succeed” if the output is differ-
ent from the input (and obviously better than it) and can be said to
“fail” otherwise. In this light, S-3SOME functioning is represented by
the scheme composed of interacting memes reported in Fig. 1. With
the words, “Long”, “Stochastic short”, and “Deterministic short” the
three above mentioned operators are represented. The arrows represent
the interaction amongst the memes. The “S” and “F”, represent success
and failure, respectively, of the meme application.

Figure 1. Functioning scheme of S-3SOME

3. Numerical Results

In order to test the potential of S-3SOME, numerical experiments
have been performed on the testbed in [6] (24 problems) in 10, 40, and
100 dimensions. The proposed S-3SOME has been compared with the
3SOME algorithm proposed in [4]. Both 3SOME and S-3SOME have the
same parameter values for the two common components, i.e. αe = 0.05
and ρ equal to 40% of the total decision space width. With reference
to 3SOME, it can be mentioned that middle distance exploration sam-
ples 4n points at each activation, as suggested in the original paper.
In addition, S-3SOME has been compared with the following modern
algorithms. 1) Covariance Matrix Adaptive Evolution Strategy with in-
creasing population size (G-CMA-ES) proposed in [1] with initial pop-
ulation λstart = 10 and factor for increasing the population size equal
to 2. All the other parameters are set to standard values. 2) Self-

8

Adaptive Differential Evolution (SADE) proposed in [11]. SADE has
been run with Learning Period LP = 20 and population size Np = 50.
The other cconstant values are the same reported in the formulas of
the original paper. For each algorithm and test problem, 30 runs have
been performed. Each run has been continued for 5000n fitness evalu-
ations. Numerical results containing average final value and standard
deviations are reported in Tables 1, 2, and 3, respectively. The best re-
sults are highlighted in bold face. In order to strengthen the statistical
significance of the results, the Wilcoxon Rank-Sum test has also been
applied according to the description given in [14], where the confidence
level has been fixed at 0.95. The null-hypothesis being that the results
of both algorithms come from the same statistical distribution, the re-
jection of the null-hypothesis is indicated with the symbol “+”(“-”) –
the reference algorithm thus performs better (worse) than the algorithm
labeled on the top of the column – while the symbol “=” indicates that
the null-hypothesis cannot be rejected and that both algorithms have a
statistically equivalent performance.

Numerical results show that the S-3SOME scheme appears to be, on
a regular basis, more promising than the 3SOME scheme. According to
our interpretation the shrinking mechanism is leading to an efficient al-
gorithmic behavior. More specifically, S-3SOME, in a memetic fashion,
contains two local search components that compete and cooperate tack-
ling the problems from different perspectives. While the deterministic
search is very efficient for separable problems or for non highly mul-
tivariate landscapes, the stochastic search attempts to improve upon
the solutions regardless of the separability or multi-modality of prob-
lem. The combination of these two simple mechanism with a stochastic
global search leads to the generation of a very efficient algorithm capable
to compete with modern complex optimization algorithms. For example,
it can be observed that S-3SOME tends to have, for all the dimensional-
ity levels under examination, a similar performance with respect to the
G-CMA-ES. Regarding the comparison with SADE, an interesting ob-
servation can be done: while for low dimensionality levels SADE seems
to be extremely competitive, in 100 dimensions its performance tends
to deteriorate and is outperformed by S-3SOME. This fact can be ex-
plained that while SADE is a complex and efficient structure designed
for addressing problems with a low dimensionality (tuned for up to 30
dimensions), the proposed approach lead to simple (which employ lim-
ited resources and can be encoded in a few lines) and flexible algorithms
having a respectable performance for a various set of optimization prob-
lems.

S
h
rin

kin
g
T
h
ree

S
ta
ge

O
p
tim

a
lM

em
etic

E
xp
lo
ra
tio

n
9

Table 1. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the Fitness (reference = S-3SOME) for 10D case

S-3SOME GCMAES SADE 3SOME

f1 7.95e + 01 ± 0.00e + 00 7.95e + 01± 0.00e + 00 = 7.95e + 01± 0.00e + 00 = 7.95e + 01± 0.00e + 00 =
f2 −2.10e + 02 ± 0.00e + 00 1.37e + 03± 1.16e + 03 + −2.10e + 02± 0.00e + 00 = −2.10e + 02± 0.00e + 00 =
f3 −4.60e + 02 ± 1.28e + 00 −5.32e + 01± 8.06e + 01 + −4.60e + 02± 2.66e + 00 = −4.61e + 02± 1.05e + 00 =
f4 −4.59e + 02 ± 1.70e + 00 −1.59e + 01± 8.88e + 01 + −4.59e + 02± 2.61e + 00 = −4.60e + 02± 9.64e − 01 -
f5 5.14e + 00 ± 2.87e + 01 1.11e + 01± 8.59e + 00 + −9.21e + 00± 0.00e + 00 = 2.52e + 01± 3.69e + 01 +
f6 3.59e + 01 ± 0.00e + 00 3.59e + 01± 0.00e + 00 = 3.59e + 01± 0.00e + 00 = 3.59e + 01± 0.00e + 00 =
f7 1.06e + 02 ± 1.03e + 01 9.29e + 01± 0.00e + 00 - 9.32e + 01± 3.52e − 01 - 1.10e + 02± 1.54e + 01 =
f8 1.49e + 02 ± 1.65e − 01 1.49e + 02± 0.00e + 00 - 1.49e + 02± 0.00e + 00 - 1.49e + 02± 1.85e − 01 =
f9 1.24e + 02 ± 1.20e + 00 1.24e + 02± 0.00e + 00 - 1.24e + 02± 0.00e + 00 - 1.27e + 02± 1.31e + 01 =
f10 5.68e + 03 ± 2.92e + 04 5.11e + 02± 5.64e + 02 = −1.51e + 01± 4.10e + 01 - 2.48e + 02± 1.08e + 02 =
f11 1.65e + 02 ± 2.63e + 01 7.63e + 01± 0.00e + 00 - 7.74e + 01± 1.40e + 00 - 1.60e + 02± 2.68e + 01 =
f12 −6.13e + 02 ± 1.78e + 01 8.90e + 03± 1.82e + 04 + −6.21e + 02± 7.60e − 01 = −6.13e + 02± 1.43e + 01 =
f13 3.88e + 01 ± 1.10e + 01 3.00e + 01± 0.00e + 00 - 3.00e + 01± 0.00e + 00 - 4.26e + 01± 1.20e + 01 =
f14 −5.23e + 01 ± 0.00e + 00 5.07e + 00± 4.97e + 01 + −5.23e + 01± 0.00e + 00 = −5.23e + 01± 0.00e + 00 =
f15 1.07e + 03 ± 3.32e + 01 1.00e + 03± 9.74e − 01 - 1.01e + 03± 4.18e + 00 - 1.11e + 03± 7.04e + 01 +
f16 7.80e + 01 ± 3.91e + 00 7.14e + 01± 0.00e + 00 - 7.23e + 01± 7.78e − 01 - 7.85e + 01± 4.42e + 00 =
f17 −1.41e + 01 ± 1.01e + 00 1.31e + 01± 2.36e + 01 + −1.69e + 01± 0.00e + 00 - −1.08e + 01± 3.74e + 00 +
f18 −8.25e + 00 ± 4.78e + 00 6.55e + 01± 6.98e + 01 + −1.69e + 01± 0.00e + 00 - 8.59e − 01± 1.75e + 01 +
f19 −1.00e + 02 ± 1.35e + 00 −5.50e + 01± 2.54e + 01 + −1.02e + 02± 6.26e − 01 - −9.81e + 01± 2.03e + 00 +
f20 −5.46e + 02 ± 2.98e − 01 2.54e + 04± 3.78e + 04 + −5.46e + 02± 3.03e − 01 = −5.46e + 02± 3.40e − 01 =
f21 4.98e + 01 ± 6.78e + 00 4.22e + 01± 1.52e + 00 - 4.19e + 01± 9.47e − 01 - 5.36e + 01± 1.15e + 01 =
f22 −9.89e + 02 ± 1.35e + 01 −9.17e + 02± 3.24e + 00 + −9.98e + 02± 3.51e − 01 - −9.87e + 02± 1.46e + 01 =
f23 7.98e + 00 ± 4.53e − 01 6.96e + 00± 0.00e + 00 - 7.23e + 00± 2.91e − 01 - 7.85e + 00± 5.05e − 01 =
f24 1.68e + 02 ± 1.98e + 01 1.12e + 02± 4.33e + 00 - 1.21e + 02± 4.43e + 00 - 1.89e + 02± 3.98e + 01 +

Table 2. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the Fitness (reference = S-3SOME) for 40D case

S-3SOME GCMAES SADE 3SOME

f1 7.95e + 01 ± 0.00e + 00 7.95e + 01± 0.00e + 00 - 7.95e + 01± 0.00e + 00 - 7.95e + 01± 0.00e + 00 =
f2 −2.10e + 02 ± 0.00e + 00 3.57e + 02± 2.30e + 02 + −2.10e + 02± 0.00e + 00 - −2.10e + 02± 0.00e + 00 =
f3 −4.43e + 02 ± 5.15e + 00 1.08e + 02± 8.31e + 01 + −4.24e + 02± 1.35e + 01 + −4.56e + 02± 2.97e + 00 -
f4 −4.38e + 02 ± 6.99e + 00 1.29e + 02± 7.11e + 01 + −4.04e + 02± 2.86e + 01 + −4.51e + 02± 3.42e + 00 -
f5 −9.21e + 00 ± 0.00e + 00 2.16e + 01± 9.77e + 00 + −9.21e + 00± 0.00e + 00 + −9.21e + 00± 0.00e + 00 +
f6 3.59e + 01 ± 0.00e + 00 3.59e + 01± 0.00e + 00 - 3.79e + 01± 2.92e + 00 + 3.59e + 01± 0.00e + 00 =
f7 1.78e + 02 ± 3.02e + 01 9.48e + 01± 3.13e + 00 - 1.30e + 02± 1.02e + 01 - 2.15e + 02± 7.26e + 01 =
f8 1.49e + 02 ± 3.59e − 01 1.49e + 02± 0.00e + 00 - 1.82e + 02± 2.23e + 01 + 1.50e + 02± 7.35e − 01 +
f9 1.25e + 02 ± 1.60e + 00 1.24e + 02± 0.00e + 00 - 1.58e + 02± 1.67e + 00 + 1.25e + 02± 2.07e + 00 =
f10 3.78e + 05 ± 2.03e + 06 1.91e + 02± 1.12e + 02 - 6.09e + 03± 2.16e + 03 - 9.73e + 02± 4.00e + 02 =
f11 3.38e + 02 ± 4.95e + 01 7.63e + 01± 0.00e + 00 - 1.16e + 02± 1.20e + 01 - 3.67e + 02± 5.95e + 01 +
f12 −6.14e + 02 ± 7.57e + 00 2.69e + 03± 2.68e + 03 + −6.13e + 02± 6.60e + 00 = −6.10e + 02± 9.48e + 00 =
f13 4.00e + 01 ± 9.14e + 00 3.00e + 01± 0.00e + 00 - 3.75e + 01± 6.50e + 00 = 4.37e + 01± 1.28e + 01 =
f14 −5.23e + 01 ± 0.00e + 00 5.01e + 01± 4.14e + 01 + −5.23e + 01± 0.00e + 00 + −5.23e + 01± 0.00e + 00 =
f15 1.41e + 03 ± 1.04e + 02 1.01e + 03± 2.40e + 00 - 1.06e + 03± 1.52e + 01 - 1.99e + 03± 4.48e + 02 +
f16 8.36e + 01 ± 5.33e + 00 7.14e + 01± 0.00e + 00 - 8.31e + 01± 3.72e + 00 = 8.94e + 01± 6.30e + 00 +
f17 −1.02e + 01 ± 1.31e + 00 1.47e + 01± 1.42e + 01 + −1.60e + 01± 4.13e − 01 - −5.39e + 00± 3.51e + 00 +
f18 7.02e + 00 ± 4.89e + 00 2.18e + 01± 1.18e + 01 + −1.30e + 01± 1.25e + 00 - 2.67e + 01± 1.31e + 01 +
f19 −9.67e + 01 ± 1.67e + 00 −5.03e + 01± 1.29e + 01 + −1.01e + 02± 1.27e + 00 - −9.48e + 01± 2.97e + 00 +
f20 −5.46e + 02 ± 1.64e − 01 3.66e + 03± 2.87e + 03 + −5.45e + 02± 1.98e − 01 + −5.46e + 02± 1.67e − 01 =
f21 5.08e + 01 ± 1.36e + 01 4.16e + 01± 1.04e + 00 - 4.25e + 01± 2.30e + 00 - 5.20e + 01± 1.71e + 01 =
f22 −9.86e + 02 ± 1.00e + 01 −9.14e + 02± 6.51e − 01 + −9.91e + 02± 8.09e + 00 - −9.91e + 02± 7.57e + 00 -
f23 8.19e + 00 ± 5.09e − 01 7.62e + 00± 1.29e + 00 - 8.21e + 00± 7.58e − 01 = 8.11e + 00± 7.06e − 01 =
f24 5.45e + 02 ± 8.96e + 01 1.50e + 02± 1.68e + 01 - 1.90e + 02± 1.21e + 01 - 8.98e + 02± 2.53e + 02 +

10

Table3.AverageFitness±StandardDeviationandWilcoxonrank-sumtestontheFitness(reference=S-3SOME)for100Dcase

S-3SOMEGCMAESSADE3SOME

f17.95e+01±0.00e+007.95e+01±0.00e+00=7.95e+01±0.00e+00=7.95e+01±0.00e+00=
f2−2.10e+02±0.00e+002.56e+02±1.01e+02+−2.10e+02±0.00e+00=−2.10e+02±0.00e+00=
f3−4.03e+02±9.30e+003.77e+02±1.57e+02+−2.92e+02±4.41e+01+−4.41e+02±7.57e+00-
f4−3.88e+02±1.28e+013.83e+02±1.56e+02+−1.59e+02±7.73e+01+−4.27e+02±1.20e+01-
f5−9.21e+00±0.00e+001.18e+02±1.82e+01+−9.21e+00±0.00e+00+1.04e+02±4.22e+02=
f63.59e+01±0.00e+003.59e+01±0.00e+00-1.18e+02±3.97e+01+3.59e+01±0.00e+00=
f73.75e+02±9.17e+011.33e+02±9.67e+00-3.63e+02±7.58e+01=5.89e+02±2.63e+02+
f81.71e+02±3.06e+011.50e+02±1.59e+00-2.79e+02±4.17e+01+1.71e+02±2.61e+01=
f91.75e+02±2.08e+011.24e+02±1.13e+00-2.31e+02±2.31e+01+1.77e+02±1.12e+01=
f103.04e+03±8.61e+026.31e+01±5.68e+01-4.57e+04±1.70e+04+3.03e+03±9.61e+02=
f116.30e+02±8.95e+017.63e+01±0.00e+00-1.79e+02±2.23e+01-3.68e+02±6.38e+01-
f12−6.19e+02±3.74e+001.23e+03±1.04e+03+−6.15e+02±7.44e+00+−6.13e+02±9.46e+00+
f133.66e+01±4.13e+003.00e+01±0.00e+00-3.16e+01±2.64e+00-3.27e+01±2.88e+00-
f14−5.23e+01±0.00e+002.59e+01±1.58e+01+−5.23e+01±0.00e+00+−5.23e+01±0.00e+00=
f152.44e+03±2.77e+021.03e+03±1.16e+01-1.33e+03±4.72e+01-4.49e+03±6.17e+02+
f168.92e+01±3.32e+007.15e+01±0.00e+00-9.75e+01±4.14e+00+9.33e+01±5.37e+00+
f17−8.00e+00±1.67e+005.16e+00±4.19e+00+−1.39e+01±4.73e−01-6.39e−02±3.81e+00+
f181.57e+01±5.86e+002.43e+01±1.77e+01=−5.43e+00±1.90e+00-4.63e+01±1.53e+01+
f19−9.32e+01±2.39e+006.69e+00±1.57e+01+−9.98e+01±4.45e−01-−8.99e+01±4.96e+00+
f20−5.46e+02±0.00e+002.45e+03±2.25e+03+−5.45e+02±1.94e−01+−5.46e+02±0.00e+00-
f215.36e+01±1.44e+014.30e+01±1.06e+00-4.68e+01±6.22e+00-5.24e+01±1.02e+01=
f22−9.83e+02±1.32e+01−9.14e+02±0.00e+00+−9.95e+02±5.84e+00-−9.80e+02±1.46e+01=
f238.31e+00±6.04e−018.59e+00±2.06e+00=9.33e+00±7.66e−01+8.27e+00±4.79e−01=
f241.66e+03±3.07e+023.66e+02±9.61e+01-3.74e+02±3.33e+01-2.79e+03±4.45e+02+

Shrinking Three Stage OptimalMemetic Exploration 11

4. Conclusion

This paper proposes a simple scheme for numerical optimization. The
design of the algorithm has been performed in a bottom-up fashion by
following the lex parsimoniae. The proposed algorithm, namely Shrink-
ing Three Stage Optimal Memetic Exploration (S-3SOME) is composed
of a random optimizer, a stochastic local search which progressively
shrinks the search radius, and a deterministic local search. Numeri-
cal results show that this simple scheme is flexible and performs well on
a set of diverse problems and for various dimensionality levels. The com-
parison with the inspiring algorithm, i.e. 3SOME, shows that S-3SOME
enhance upon its performance by converging to similar or better solu-
tion. The comparison with modern complex algorithms demonstrates
that S-3SOME is highly competitive, especially in high dimensions, de-
spite a much smaller requirement in terms of memory (as it perturbs
only one solution) and overhead (as it does not make use of learning
components or sophisticated structures).

Acknowledgments

This research is supported by the Academy of Finland, Akatemiatutk-
ija 130600 and Tutkijatohtori 140487.

References

[1] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing pop-
ulation size. In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 1769–1776, 2005.

[2] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting control
parameters in differential evolution: A comparative study on numerical bench-
mark problems. IEEE Transactions on Evolutionary Computation, 10(6):646–657,
2006.

[3] R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical
problems. Journal of the ACM, 8:212–229, March 1961.

[4] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim. Ockham’s razor
in memetic computing: Three stage optimal memetic exploration. Information
Sciences, 188(1):17-43, 2012.

[5] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions. IEEE
Transactions on Evolutionary Computation, 10(3):281–295, 2006.

[6] N. Hansen, A. Auger, S. Finck, R. Ros, et al. Real-parameter black-box opti-
mization benchmarking 2010: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2010.

[7] F. Neri, C. Cotta, and P. Moscato. Handbook of Memetic Algorithms, volume 379
of Studies in Computational Intelligence. Springer, 2011.

12

[8] F. Neri, G. Iacca, and E. Mininno. Disturbed exploitation compact differen-
tial evolution for limited memory optimization problems. Information Sciences,
181(12):2469–2487, 2011.

[9] F. Peng, K. Tang, G. Chen, and X. Yao. Population-based algorithm portfolios
for numerical optimization. IEEE Transactions on Evolutionary Computation,
14(5):782–800, 2010.

[10] K. V. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer, 2005.

[11] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation, 13(2):398–417, 2009.

[12] L. Y. Tseng and C. Chen. Multiple trajectory search for large scale global
optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 3052–3059, 2008.

[13] J. A. Vrugt, B. A. Robinson, and J. M. Hyman. Self-adaptive multimethod
search for global optimization in real-parameter spaces. IEEE Transactions on
Evolutionary Computation, 13(2):243–259, 2009.

[14] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

PII

HANDLING NON-SEPARABILITY IN THREE STAGE MEMETIC
EXPLORATION

by

I. Poikolainen, F. Caraffini, F. Neri, M. Weber 2012

Proceedings of the fifth international conference on bioinspired optimization
methods and their applications, pages 195-205

HANDLING NON-SEPARABILITY IN THREE
STAGE OPTIMAL MEMETIC EXPLORATION

Ilpo Poikolainen*, Fabio Caraffini*, Ferrante Neri*,
Matthieu Weber*
* Department of Mathematical Information Technology

P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland

ilpo.poikolainen@jyu.fi, fabio.caraffini@jyu.fi, ferrante.neri@jyu.fi, matthieu.weber@jyu.fi

Abstract Three Stage Optimal Memetic Exploration (3SOME) is a powerful al-
gorithmic framework which progressively perturbs a single solution by
means of three distinct operators. This paper proposes the integration of
a simple and still powerful component to enrich the 3SOME algorithm.
This component, based on a special mutation scheme of Differential Evo-
lution, replaces an existing 3SOME operator and allows 3SOME to effi-
ciently handle non-separable problems. The resulting algorithm, namely
Rotationally Invariant Three Stage Differential Evolution (RI3SOME)
displays a good performance on a set of various problems. In particular,
the proposed component in RI3SOME improves upon 3SOME perfor-
mance for non-separable problems and without excessively deteriorating
the algorithmic performance for separable problems. The comparison
with modern optimization algorithms shows that RI3SOME, despite its
simplicity and modest use of computational resources, displays a re-
spectable performance.

Keywords: Memetic Computing, Ockham Razor, Computational Intelligence Opti-
mization, Separability

1. Introduction

A function of n independent variables is said to be separable if it can
be expressed as a sum of n functions, each of them depending on only one
variable. From an optimization viewpoint, these functions are very easy
to handle as the optimization problem in n variables can be expressed
as n problems in one variable. In other words, a separable function
can be efficiently optimized by perturbing separately each variable. Un-
fortunately, in real world applications it often (if not always) happens
that the objective functions are non-separable. Nonetheless, while in

1

2

mathematics a function can be hardly classified either as separable or
non-separable, the concept of separability in computational intelligence
optimization is more fuzzy: a function can be fully separable, moder-
ately separable, moderately non-separable, fully non-separable. Modern
testbeds tend to classify test problems according to similar criteria, see
[6]. To better understand the practical implications of this remark, a
function, even if non-separable, can still be handled by perturbing sep-
arately each variable. Even though this approach will not lead to the
detection of the optimum it can still spot an area of the decision space
characterized by a high performance. Thus, if coupled with some other
components, the resulting algorithm can turn out being an efficient op-
timizer.

The idea of searching optima not along preferential directions but
performing search moves which simultaneously involve multiple vari-
ables (diagonal) has been studied in various contexts over the last few
decades. For example, in 60’s Rosenbrock and Powell algorithms, un-
like the Hooke-Jeeves algorithm, were tackling optimization problems by
including diagonal moves.

In modern times, with the development of computational intelligence
optimization, many move operators, e.g. several kinds of recombination
in Evolutionary Algorithms (EAs), naturally perform diagonal moves.
On the other hand, only in a minor portion of literature the separability
is explicitly handled in optimization problems. One famous example is
the Covariance Matrix Adaptation (CMA) integrated within Evolution
Strategy (ES) frameworks. The first algorithm employing this logic,
known as CMAES, see [2]. The general algorithmic idea is that new
trial solutions are generated by a distribution which progressively adapts
to the fitness landscape and thus performs search moves along the most
convenient direction. Other relevant algorithms based on the CMA have
been proposed in literature, e.g. [3], [1], and [5].

In [14], the non-separability of the fitness landscape in handled by the
employment of structured populations. Some biologically inspired algo-
rithms, despite their efficiency, naturally perform a biased search along
specific axes. This situation occurs in Differential Evolution (DE) where
the crossover is executed by an inheritance mechanism of variables from
a parent to an offspring solution. As a consequence, even when DE can
be very efficient for some fitness landscapes, it may dramatically dete-
riorate its performance after a rotation operation. It must be observed
that the rotation operation over a separable function jeopardizes the
separability (with respect to the original axes) of the problem making it
non-separable. In order to handle these conditions, several corrections
to the DE variation operators have been designed. For example, in [11],

Handling Non-separability in Three Stage Optimal Memetic Exploration 3

a reference rotation procedure is integrated within DE crossover and in
[12] a modified DE crossover is introduced by making use of the cen-
troid point. A classical but still efficient way to obtain a rotationally
invariant DE is to combine an arithmetic crossover within the mutation
scheme. This mutation scheme, namely DE/current-to-rand/1, has been
presented in [10].

Recently, in [4], it has been shown that algorithms with a simple
structure can be as efficient as complex algorithms (Ockham’s Razor)
while requiring little memory and having low computational overhead
(see [4] for details). Thus, when an algorithm is designed, it is impor-
tant to build it up with a bottom-up approach by including the minimum
amount of components and figuring out about the role of each operator.
In accordance with Memetic Computing (MC) fashion, an algorithm is a
structure composed of multiple operators which interact and cooperate
to tackle various optimization problems, see [8] and [7]. An algorithm
composed of three operators and namely Three Stage Optimal Memetic
Exploration (3SOME) has also been proposed in [4] as an example for
the Ockham’s Razor principle in MC. The main drawback of the 3SOME
algorithm was that the non-separability was not explicitly addressed and
thus the algorithm displayed a not so good performance in some cases.
This paper proposes a modified algorithm based on 3SOME structure
where a component for explicitly tackling non-separability is included in
the algorithmic framework. The remainder of this paper is organized in
the following way. Section 2 describes the proposed Rotationally Invari-
ant Three Stage Memetic Exploration (RI3SOME). Section 3 displays
the experimental testbed and numerical results related to the proposed
RI3SOME with respect to 3SOME and other modern optimization al-
gorithms. Section 4 gives the conclusion of this work.

2. Rotationally Invariant Three Stage Memetic
Exploration

In order to clarify the notation in this paper, we refer to the min-
imization problem of an objective function f (x), where the candidate
solution x is a vector of n design variables (or genes) in a decision space
D.

At the beginning of the optimization problem one candidate solution
is randomly sampled within the decision space D. In analogy with com-
pact optimization, see [9], we will refer to this candidate solution as elite
and indicate it with the symbol xe. In addition to xe, the algorithm
makes use of another memory slot for attempting to detect other so-
lutions. The latter solution, namely trial, is indicated with xt. In the

4

following sub-sections the three exploratory stages and their coordina-
tion are described.

The proposed algorithm, like the 3SOME structure proposed in [4],
is composed of three operators which perturb a single solution, thus ex-
ploring the decision space from complementary perspectives. The first
operator, namely long distance exploration, is a randomized long dis-
tance search where the newly generated solution xt inherits part of the
elite solution xe by means of the exponential crossover typical of DE,
see [9]. This operator is continued until a new solution outperforming
the original one is generated. The second operator, namely intermediate
diagonal exploration, processes the elite solution and samples a trial solu-
tion xt by means of the DE/current-to-rand/1 mutation. This operation
is continued until a given budget is expired. If the final solution outper-
forms the initial one, a replacement occurs and a new elite is generated.
Regardless of the success of the intermediate diagonal exploration, the
elite solution xe is processed by the short distance exploration. This
third operator perturbs the variables separately and attempts to quickly
and deterministically descend the corresponding basin of attraction. In
this way a component for handling non-separable functions supports the
first and third operators which are especially efficient for separable and
moderately non-separable problems.

2.1 Long distance exploration

This exploration move attempts to detect a new promising solution
within the entire decision space. While the elite xe is retained, at first,
a trial solution xt is generated by randomly sampling a new set of n
genes. Subsequently, the DE exponential crossover is applied between
xe and xt, see [9]. This exploration stage performs the global stochastic
search and thus attempts to detect unexplored promising areas of the
decision space. On the other hand, while this search mechanism exten-
sively explores the decision space, it also promotes retention of a small
section of the elite within the trial solution. This kind of inheritance
of some genes appears to be extremely beneficial in terms of perfor-
mance with respect to a stochastic blind search (which would generate a
completely new solution at each step). If the trial solution outperforms
the elite, a replacement occurs. A replacement has been set also if the
newly generated solution has the same performance of the elite. This is
to prevent the search getting trapped in some plateaus of the decision
space. The pseudo-code of this component is shown in Algorithm 1. The
long distance exploration is repeated until it does not detect a solution
that outperforms the original elite. When a new promising solution is

Handling Non-separability in Three Stage Optimal Memetic Exploration 5

detected, and thus the elite is updated, the stochastic short distance
exploration is activated.

Algorithm 1 Long distance exploration
generate a random solution xt within D
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if

end while
if f (xt) ≤ f (xe) then

xe = xt

end if

2.2 Intermediate diagonal exploration

Around the solution xe returned by the long distance exploration a
hypercube is considered. This hypercube has a volume equal to one
fifth of the volume of the entire decision space D and is centred around
xe. Subsequently, three points, xr, xs, and xv, respectively are sampled
(from an implementation viewpoint the points are progressively sampled
and allocated into the trial solution to occupy only one memory slot).
These points are then combined with xe by means of DE/current-to-
rand/1 to generate xt:

xt = xe +K (xv − xe) + F ′ (xr − xs) (1)

where K is the combination coefficient, which should be chosen with a
uniform random distribution from [0, 1] and F ′ = K · F . The trial solu-
tion replaces the elite if it displays a higher performance. This operation
is repeated for a given budget.

This component replaces the middle distance search of 3SOME, see
[4]. In 3SOME the middle distance exploration samples points in the
same hypercube and performs the exponential crossover to increase the
exploitation and thus guide the search towards the improvements. This
mechanism is equivalent to keep constant some variables and move along
the others. In the present paper, we propose the inheritance of xe to
xt by means of a linear combination and a search along all the direc-
tions simultaneously. This component is supposed to tackle, in a simple
and computationally inexpensive way, non-separable problems. Trial
solutions can be generated outside the hypercube. The pseudo-code dis-
playing the working principles of the short distance exploration is given
in Algorithm 2.

6

Algorithm 2 Intermediate diagonal distance exploration
while local budget condition do

generate xr, xs, and xv

xt = xe + K (xv − xe) + F ′ (xr − xs)
end while
if f (xt) ≤ f (xe) then

xe = xt

end if

2.3 Short distance exploration

This exploration move attempts to fully exploit promising search di-
rections. The meaning of this exploration stage is to perform the de-
scent of promising basins of attraction and possibly finalize the search
if the basin of attraction is globally optimal. De facto, the short dis-
tance exploration is a simple steepest descent deterministic local search
algorithm, with an exploratory move similar to that of Hooke-Jeeves
algorithm, or the first local search algorithm of the multiple trajectory
search, see [13]. The short distance exploration stage requires an addi-
tional memory slot, which will be referred to as xs (s stands for short).
Starting from the elite xe, this local search, explores each coordinate i
(each gene) and samples xs[i] = xe[i]− ρ, where ρ is the exploratory ra-
dius. Subsequently, if xs outperforms xe, the trial solution xt is updated
(it takes the value of xs), otherwise a half step in the opposite direction
xs[i] = xe[i]+

ρ
2 is performed. Again, xs replaces xt if it outperforms xe.

If there is no update, i.e. the exploration was unsuccessful, the radius ρ
is halved. This exploration is repeated for all the design variables and
stopped when a prefixed budget (equal to 150 iterations as suggested in
[13]) is exceeded. The pseudo-code displaying the working principles of
the short distance exploration is given in Algorithm 3.

After the application of the deterministic short distance exploration,
if there is an improvement in the quality of the solution, the stochastic
short distance exploration is repeated subsequently. Otherwise, if no
improvement in solution quality is found, the long distance search is
activated to attempt to find new basins of attractions.

As a remark, a toroidal management of the bounds has been imple-
mented for the three operators above. This means that if, along the
dimension i, the design variable x[i] exceeds the bounds of a value ζ, it
is reinserted from the other end of the interval at a distance ζ from the
edge, i.e. given an interval [a, b], if x[i] = b+ζ it takes the value of a+ζ.

3. Numerical Results

The proposed RI3SOME has been tested on the testbed in [6] (24
problems) in 10, 40, and 100 dimensions. It must be noted that func-

Handling Non-separability in Three Stage Optimal Memetic Exploration 7

Algorithm 3 Short distance exploration
while local budget condition do

xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i] − ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xe[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2
end if

end while

tions f1 to f5 of that testbed are separable, while the remaining ones
are not. In order to perform a fair comparison 3SOME and RI3SOME
have been run with the same parameters, αe = 0.05 and ρ equal to
40% of the total decision space width. Both the budgets, for middle
length and intermediate diagonal explorations, have been fixed equal to
4n points at each activation. Regarding the DE/current-to-rand/1 mu-
tation in RI3SOME, the scale factor F has been set equal to 0.75 while
K is a random number between 0 and 1. For an extensive discussion
on the parameter setting of the 3SOME framework see [4]. In addition,
RI3SOME has been compared with DE/current-to-rand/1 and with the
same parameter setting of F used for RI3SOME and a population size
of 50 individual. Finally, also (1+1)-CMAES proposed in [5] has been
included in the comparison. The latter algorithm has been chosen since
it is explicitly designed for non-separable problems and, like RI3SOME,
is based on a single solution. However, it must be remarked that (1+1)-
CMAES and RI3SOME do not require a similar computational overhead
(having an algorithmic structure similar to 3SOME, RI3SOME is very
similar to the latter with regards to memory requirements and compu-
tational overhead). More specifically, while RI3SOME requires only two
memory slots (one memory slot for the elite and one for the trial solu-
tion), (1+1)-CMAES requires to store a covariance matrix. Thus, the
corresponding (1+1)-CMAES memory employment grows quadratically
with the dimensionality of the problem. Each algorithm has been run
for 5000×n fitness evaluations for each run. For each problem 100 runs
have been performed.

Tables 1, 2, and 3 display the numerical results (in terms of final value
and standard deviation) for the test problems considered in this work.

8

The best results are highlighted in bold face. In order to strengthen the
statistical significance of the results, the Wilcoxon Rank-Sum test has
also been applied according to the description given in [15], where the
confidence level has been fixed at 0.95. The null-hypothesis being that
the results of both algorithms come from the same statistical distribu-
tion, the symbol “+”(“-”) indicate that the null-hypothesis is rejected
(the reference algorithm thus performs better (worse) than the algorithm
labeled on the top of the column) while the symbol “=” indicates that
the null-hypothesis cannot be rejected and that both algorithms have a
statistically equivalent performance. Note that DE/current-to-rand/1 is
outperformed by RI3SOME on at least 22 test problems over dimensions
10, 40 and 100, and outperforms the latter only on f16 in 10 dimensions.
For this reason and due to lack of space, the results of that algorithm
have been left out from the tables.

Table 1. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the
Fitness (reference = RI3SOME) for 10D case

RI3SOME 3SOME (1+1)-CMAES

f1 7.95e + 01 ± 1.24e − 14 7.95e + 01± 1.14e − 14 = 7.95e + 01± 0.00e + 00 =
f2 −2.10e + 02 ± 1.50e − 14 −2.10e + 02± 1.77e − 14 = 4.16e + 05± 2.91e + 06 +
f3 −4.58e + 02 ± 1.68e + 00 −4.61e + 02± 1.28e + 00 - −3.92e + 02± 3.25e + 01 +
f4 −4.57e + 02 ± 2.35e + 00 −4.60e + 02± 1.39e + 00 - −3.63e + 02± 5.42e + 01 +
f5 6.45e + 00 ± 2.95e + 01 5.32e + 00± 2.91e + 01 = 1.18e + 01± 5.27e + 01 +
f6 2.26e + 02 ± 8.70e + 02 3.59e + 01± 5.97e − 02 - 3.59e + 01± 0.00e + 00 -
f7 1.03e + 02 ± 5.97e + 00 1.06e + 02± 1.36e + 01 = 1.03e + 02± 6.80e + 01 -
f8 1.49e + 02 ± 1.51e − 01 1.49e + 02± 1.51e − 01 = 1.50e + 02± 1.20e + 00 +
f9 1.26e + 02 ± 1.00e + 01 1.25e + 02± 1.78e + 00 = 1.25e + 02± 1.70e + 00 -
f10 2.16e + 02 ± 1.43e + 02 3.44e + 03± 2.25e + 04 = −5.49e + 01± 0.00e + 00 -
f11 1.54e + 02 ± 2.97e + 01 1.57e + 02± 3.26e + 01 = 7.63e + 01± 0.00e + 00 -
f12 −6.05e + 02 ± 2.13e + 01 −6.13e + 02± 1.18e + 01 = −6.21e + 02± 0.00e + 00 -
f13 4.14e + 01 ± 1.14e + 01 4.36e + 01± 1.28e + 01 = 4.05e + 01± 1.08e + 01 =
f14 −5.23e + 01 ± 2.48e − 05 −5.23e + 01± 3.09e − 05 = −5.24e + 01± 0.00e + 00 =
f15 1.09e + 03 ± 5.13e + 01 1.10e + 03± 6.32e + 01 = 1.09e + 03± 5.90e + 01 =
f16 7.91e + 01 ± 4.58e + 00 7.94e + 01± 4.41e + 00 = 7.89e + 01± 4.57e + 00 =
f17 −1.13e + 01 ± 3.23e + 00 −9.15e + 00± 8.04e + 00 = −1.26e + 01± 2.50e + 00 =
f18 1.01e + 01 ± 2.23e + 01 4.21e + 00± 2.16e + 01 - 6.93e + 00± 2.58e + 01 =
f19 −9.89e + 01 ± 1.92e + 00 −9.81e + 01± 2.95e + 00 = −9.97e + 01± 1.74e + 00 =
f20 −5.46e + 02 ± 3.06e − 01 −5.46e + 02± 2.36e − 01 = −5.45e + 02± 3.56e − 01 +
f21 5.36e + 01 ± 1.49e + 01 5.22e + 01± 1.27e + 01 = 4.81e + 01± 7.52e + 00 =
f22 −9.90e + 02 ± 1.26e + 01 −9.89e + 02± 1.46e + 01 = −9.91e + 02± 1.07e + 01 =
f23 7.80e + 00 ± 4.62e − 01 7.88e + 00± 5.48e − 01 = 8.00e + 00± 6.60e − 01 =
f24 1.87e + 02 ± 3.65e + 01 1.88e + 02± 4.30e + 01 = 1.69e + 02± 2.68e + 01 -

Numerical results show that the proposed RI3SOME algorithm tends
to outperform 3SOME for non-separable problems (f6 and following)
while it is sometimes outperformed for separable problems (f1 to f5).
It must be noted that in the case where the Wilcoxon rank-sum test
indicates that RI3SOME is outperformed by 3SOME, the differences
in average fitness values between these two algorithms are at least one
order of magnitude smaller than the difference between 3SOME and
the other two algorithms. It is also shown that RI3SOME appears to
be much more promising than 3SOME in relatively high dimensions.
This can be interpreted that the coordination of diverse components, the
first perturbing the variables separately, the second performing diagonal

Handling Non-separability in Three Stage Optimal Memetic Exploration 9

Table 2. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the
Fitness (reference = RI3SOME) for 40D case

RI3SOME 3SOME (1+1)-CMAES

f1 7.95e + 01 ± 2.70e − 14 7.95e + 01± 1.98e − 14 = 7.95e + 01± 0.00e + 00 =
f2 −2.10e + 02 ± 3.08e − 14 −2.10e + 02± 3.00e − 14 = −2.09e + 02± 6.24e − 01 +
f3 −4.23e + 02 ± 1.02e + 01 −4.54e + 02± 3.52e + 00 - 5.45e + 01± 1.47e + 02 +
f4 −4.17e + 02 ± 1.08e + 01 −4.50e + 02± 4.57e + 00 - 4.07e + 02± 2.18e + 02 +
f5 2.31e + 01 ± 1.28e + 02 4.58e + 01± 1.66e + 02 + 6.57e + 01± 1.36e + 02 +
f6 3.59e + 01 ± 5.75e − 07 3.59e + 01± 5.63e − 07 = 3.59e + 01± 0.00e + 00 =
f7 1.95e + 02 ± 4.14e + 01 2.11e + 02± 6.18e + 01 = 1.08e + 02± 4.77e + 00 -
f8 1.52e + 02 ± 1.17e + 01 1.55e + 02± 2.08e + 01 = 1.50e + 02± 1.65e + 00 =
f9 1.25e + 02 ± 1.79e + 00 1.25e + 02± 1.42e + 00 = 1.25e + 02± 1.70e + 00 =
f10 9.04e + 02 ± 3.34e + 02 3.89e + 05± 1.97e + 06 + −5.42e + 01± 1.03e + 00 -
f11 3.59e + 02 ± 7.12e + 01 3.83e + 02± 6.35e + 01 = 7.90e + 04± 5.52e + 05 +
f12 −6.12e + 02 ± 8.76e + 00 −6.10e + 02± 8.87e + 00 = −6.21e + 02± 5.35e − 04 -
f13 4.00e + 01 ± 1.07e + 01 4.24e + 01± 1.25e + 01 = 4.18e + 01± 1.47e + 01 =
f14 −5.23e + 01 ± 6.56e − 05 −5.23e + 01± 6.67e − 05 = −5.23e + 01± 7.89e − 09 =
f15 1.76e + 03 ± 2.48e + 02 2.04e + 03± 3.78e + 02 + 1.69e + 03± 1.91e + 02 =
f16 8.78e + 01 ± 6.29e + 00 8.80e + 01± 5.35e + 00 = 9.01e + 01± 5.67e + 00 =
f17 −8.18e + 00 ± 1.53e + 00 −5.39e + 00± 3.67e + 00 + −9.70e + 00± 1.44e + 00 -
f18 1.80e + 01 ± 8.10e + 00 2.61e + 01± 1.39e + 01 + 1.13e + 01± 6.06e + 00 -
f19 −9.51e + 01 ± 2.87e + 00 −9.37e + 01± 3.34e + 00 + −9.57e + 01± 2.33e + 00 =
f20 −5.45e + 02 ± 1.65e − 01 −5.46e + 02± 1.28e − 01 = −5.45e + 02± 1.89e − 01 =
f21 4.65e + 01 ± 6.85e + 00 5.19e + 01± 1.57e + 01 = 4.57e + 01± 8.91e + 00 -
f22 −9.85e + 02 ± 1.53e + 01 −9.85e + 02± 1.25e + 01 = −9.88e + 02± 8.00e + 00 =
f23 7.89e + 00 ± 4.38e − 01 8.04e + 00± 5.27e − 01 = 8.31e + 00± 6.33e − 01 +
f24 6.84e + 02 ± 1.66e + 02 9.16e + 02± 2.89e + 02 + 6.61e + 02± 1.21e + 02 =

Table 3. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the
Fitness (reference = RI3SOME) for 100D case

RI3SOME 3SOME (1+1)-CMAES

f1 7.95e + 01 ± 3.37e − 14 7.95e + 01± 3.31e − 14 = 7.95e + 01± 0.00e + 00 =
f2 −2.10e + 02 ± 5.50e − 14 −2.10e + 02± 5.93e − 14 = −3.79e + 01± 5.19e + 01 +
f3 −3.41e + 02 ± 2.11e + 01 −4.38e + 02± 7.95e + 00 - 1.49e + 03± 3.57e + 02 +
f4 −3.17e + 02 ± 2.13e + 01 −4.26e + 02± 7.83e + 00 - 2.67e + 03± 5.19e + 02 +
f5 −9.21e + 00 ± 3.64e − 12 2.40e + 01± 2.33e + 01 + 3.52e + 02± 5.04e + 01 +
f6 3.59e + 01 ± 1.72e − 07 3.59e + 01± 3.79e − 08 = 3.59e + 01± 2.01e − 07 =
f7 4.22e + 02 ± 1.49e + 02 5.77e + 02± 2.57e + 02 + 2.26e + 02± 4.24e + 01 -
f8 1.91e + 02 ± 3.99e + 01 1.85e + 02± 3.31e + 01 = 1.93e + 02± 1.80e + 01 =
f9 1.74e + 02 ± 1.01e + 01 1.74e + 02± 1.41e + 01 = 1.73e + 02± 1.94e + 01 =
f10 2.80e + 03 ± 6.37e + 02 2.77e + 03± 7.75e + 02 = 1.62e + 02± 6.56e + 01 -
f11 5.52e + 02 ± 1.12e + 02 3.74e + 02± 8.53e + 01 - 7.63e + 01± 0.00e + 00 -
f12 −6.12e + 02 ± 1.18e + 01 −6.11e + 02± 1.83e + 01 = −6.19e + 02± 2.27e + 00 -
f13 3.33e + 01 ± 4.07e + 00 3.37e + 01± 5.33e + 00 = 3.34e + 01± 4.91e + 00 =
f14 −5.23e + 01 ± 5.96e − 05 −5.23e + 01± 6.17e − 05 = −5.23e + 01± 2.74e − 07 -
f15 3.98e + 03 ± 6.59e + 02 4.60e + 03± 5.47e + 02 + 3.52e + 03± 4.94e + 02 -
f16 9.25e + 01 ± 5.70e + 00 9.41e + 01± 6.01e + 00 = 9.95e + 01± 4.99e + 00 +
f17 −3.10e + 00 ± 2.75e + 00 −2.60e − 01± 3.41e + 00 + −6.32e + 00± 2.27e + 00 -
f18 3.49e + 01 ± 1.09e + 01 4.58e + 01± 1.62e + 01 + 2.20e + 01± 7.05e + 00 -
f19 −9.23e + 01 ± 2.87e + 00 −9.08e + 01± 3.25e + 00 + −8.99e + 01± 3.26e + 00 +
f20 −5.45e + 02 ± 1.26e − 01 −5.46e + 02± 9.34e − 02 = −5.43e + 02± 1.19e − 01 +
f21 5.32e + 01 ± 1.16e + 01 5.38e + 01± 1.37e + 01 = 4.82e + 01± 6.61e + 00 -
f22 −9.84e + 02 ± 1.27e + 01 −9.84e + 02± 1.20e + 01 = −9.84e + 02± 1.16e + 01 =
f23 8.20e + 00 ± 4.53e − 01 8.18e + 00± 4.44e − 01 = 8.86e + 00± 4.80e − 01 +
f24 2.10e + 03 ± 3.66e + 02 2.71e + 03± 5.25e + 02 + 1.96e + 03± 2.41e + 02 =

movements is beneficial for hard to solve problems. The comparison
with (1+1)-CMAES shows that RI3SOME and (1+1)-CMAES display a
comparable performance. Since RI3SOME imposes lower computational
requirements that (1+1)-CMAES, its implementation is preferable for
those applications characterized by a limited hardware, see[4] and [9].

4. Conclusions

This paper proposes the integration, within 3SOME framework, of
a rotationally invariant mutation from differential evolution as an al-

10

gorithmic component to handle non-separability in fitness landscapes.
The resulting algorithm is simple, processes only one solution, and is
characterized by modest hardware requirements. These features make
RI3SOME suitable for embedded implementations. Numerical results on
a set composed of diverse optimization problems shown that RI3SOME
outperforms in the majority of the cases the original 3SOME structure.
This effect is particularly evident for the high dimensional problems
taken into account in this work. Finally, RI3SOME appears to be a
competitive option also with respect to complex modern algorithms.

Acknowledgments

This research is supported by the Academy of Finland, Akatemiatutk-
ija 130600.

References

[1] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-
ES). Evolutionary Computation, 11(1):1–18, 2003.

[2] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Proceedings of the
IEEE International Conference on Evolutionary Computation, pages 312–317,
1996.

[3] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evo-
lution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[4] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim. Ockham’s razor
in memetic computing: Three stage optimal memetic exploration. Information
Sciences, 188:17–43, 2012.

[5] C. Igel, T. Suttorp, and N. Hansen. A computational efficient covariance matrix
update and a (1+1)-CMA for evolution strategies. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 453–460. ACM Press, 2006.

[6] N. Hansen, A. Auger, S. Finck, R. Ros, et al. Real-parameter black-box opti-
mization benchmarking 2010: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2010.

[7] F. Neri and C. Cotta. Memetic algorithms and memetic computing optimization:
A literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.

[8] F. Neri, C. Cotta, and P. Moscato. Handbook of Memetic Algorithms, volume 379
of Studies in Computational Intelligence. Springer, 2012.

[9] F. Neri, G. Iacca, and E. Mininno. Disturbed exploitation compact differen-
tial evolution for limited memory optimization problems. Information Sciences,
181(12):2469–2487, 2011.

[10] K. Price. An introduction to differential evolution. In David Corne, Marco
Dorigo, Fred Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli, and Ken-
neth V. Price, editors, New Ideas in Optimization, pages 79–108. McGraw-Hill,
1999.

Handling Non-separability in Three Stage Optimal Memetic Exploration 11

[11] T. Takahama and S. Sakai. Solving nonlinear optimization problems by differen-
tial evolution with a rotation-invariant crossover operation using gram-schmidt
process. In Proceedings of the World Congress on Nature and Biologically Inspired
Computing, pages 533–540, 2010.

[12] T. Takahama and S. Sakai. Efficient nonlinear optimization by differential evo-
lution with a rotation-invariant local sampling operation. In Proceedings of IEEE
Congress on Evolutionary Computation, pages 2215–2222, 2011.

[13] L. Y. Tseng and C. Chen. Multiple trajectory search for large scale global
optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 3052–3059, 2008.

[14] D. Whitley, S. Rana, and R. B. Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and
Information Technology, 7:33–47, 1998.

[15] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

PIII

META-LAMARCKIAN LEARNING IN THREE STAGE OPTIMAL
MEMETIC EXPLORATION

by

F. Neri, M. Weber, F. Caraffini, I. Poikolainen 2012

12th UK Workshop on Computational Intelligence (UKCI), pages 1-8

Meta-Lamarckian Learning in Three Stage Optimal
Memetic Exploration

Ferrante Neri∗†, Matthieu Weber∗, Fabio Caraffini∗†, and Ilpo Poikolainen∗
∗Centre for Computational Intelligence, School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, England, United Kingdom

Email: {fneri, fcaraffini}@dmu.ac.uk
†Department of Mathematical Information Technology, University of Jyväskylä

P.O. Box 35 (Agora), 40014 Jyväskylä, Finland
Email: {ferrante.neri, matthieu.weber, fabio.caraffini, ilpo.poikolainen}@jyu.fi

Abstract—Three Stage Optimal Memetic Exploration
(3SOME) is a single-solution optimization algorithm where the
coordinated action of three distinct operators progressively
perturb the solution in order to progress towards the problem’s
optimum. In the fashion of Memetic Computing, 3SOME is
designed as an organized structure where the three operators
interact by means of a success/failure logic. This simple
sequential structure is an initial example of Memetic Computing
approach generated by means of a bottom-up logic. This
paper compares the 3SOME structure with a popular adaptive
technique for Memetic Algorithms, namely Meta-Lamarckian
learning. The resulting algorithm, Meta-Lamarckian Three
Stage Optimal Memetic Exploration (ML3SOME) is thus
composed of the same three 3SOME operators but makes use
a different coordination logic. Numerical results show that
the adaptive technique is overall efficient also in this Memetic
Computing context. However, while ML3SOME appears to be
clearly better than 3SOME for low dimensionality values, its
performance appears to suffer from the curse of dimensionality
more than that of the original 3SOME structure.

Index Terms—Memetic Computing, Ockham Razor, Computa-
tional Intelligence Optimization, Automatic Algorithmic Design,
Meta-Lamarckian Learning

I. INTRODUCTION

In the past few years, the notion of Memetic Algorithm
(MA) for solving optimization problems, introduced in [1],
has evolved into a more general framework named Memetic
Computing (MC), see e.g., [2], [3], and [4]. According to
its original definition, a MA is defined as the fusion of
one or more local search algorithms within an evolutionary
framework, the former being activated within the generation
cycle of the latter. When more than one local search algo-
rithm are employed, the designer of the algorithm faces the
problem of deciding the manner in which these algorithmic
modules (referred to as memes) can be coordinated in order
to improve the global performance of the algorithm; these
research problems are at the core of the study of MAs. The
success and diffusion of MAs is to be searched within their
flexibility. The No Free Lunch Theorem [5] proves that there
is no universally suitable optimization algorithm and that each
optimization problem is a separate story which must be ad-
dressed by a specific algorithmic instrument. Since MAs (and
MC approaches) are naturally designed each time by selecting

their components, they appeared a valid alternative to tackle
specific applications, see e.g. [6]. If the concept of algorithmic
design is looked from a complementary perspective, most,
if not all, optimization algorithms can be considered as a
collection of relatively simple modules, the memes, that are in
some way coordinated in order to solve optimization problems.
In this sense, MC is an umbrella name to identify all the
optimization algorithms. Nonetheless, the MC definition is
crucially important as it allows to think about optimization
algorithms no longer as paradigms but as structured collections
of operators. For a given problem, the proper selection of the
operators and their coordination rule are at the basis of the
success of an algorithm.

The topic of algorithmic coordination in MAs has been
extensively disccused over the last years. In [7] a classification
is given. In [4] the classification of coordination methods has
been extended and updated. The following four categories have
been identified: 1) Adaptive Hyper-heuristic, where heuris-
tic rules are employed (e.g., [8], [9], [10], [11]); 2) Meta-
Lamarckian learning defined in [12], where the activation of
the memes depends on their success, see also [13], [14], [15];
3) Self-Adaptive and Co-Evolutionary, where the rules coor-
dinating the memes are evolving in parallel with the candidate
solutions of the optimization problem or encoded within the
solution, see [16], [17], [18], [19]; and 4) Fitness Diversity-
Adaptive, where the activation of the memes depends on a
measure of the diversity (e.g., [20], [21], [6], [22], [23]). As
a general idea, the algorithmic designer attempts to have a
system which performs the coordination automatically. The
algorithm is supposed to decide itself during runtime the
manner in which the different memes are applied, adapting
itself to the problem at hand and thus leading to a preliminary
form of automatic design of optimization algorithms.

In this paper, we study the effect of employing a Meta-
Lamarckian learning approach to coordinate the three opera-
tors composing the Three Stage Optimal Memetic Exploration
(3SOME) algorithm originally presented in [24]. The 3SOME
algorithm, as a choice of the authors, employs a minimalistic
coordination scheme simply based on the success of each
operator. The 3SOME coordination scheme constitutes the
structure of the algorithm. In the present work we attempt

to study the dependency of the algorithmic performance on
the coordination of the operators. More specifically, the same
3SOME operators are here tested without the 3SOME structure
but by means of the Meta-Lamarckian learning coordination,
thus generating the Meta-Lamarckian 3SOME (ML3SOME).
The selection of this simple coordination scheme instead of
modern relatively complex adaptive systems for parameter
setting and component coordination, see [25], [26], [27], has
been carried out as a consequence of the Oackham’s Razor
principle in MC formulated in [24]. It is fundamental to
avoid unnecessary complexity while the algorithmic design
is performed. MC structures should be constructed, in a
bottom-up logic, by progressively adding complexity until the
optimization aim is achieved.

The remainder of this paper is organized in the follow-
ing way. Section II describes the three operators composing
3SOME, while Section III describes in details the two coordi-
nation schemes. Section IV displays the experimental test bed
and numerical results produced by the two algorithms studied
in this paper. Finally, Section V gives the conclusion of this
work.

II. OPERATORS OF THE THREE STAGE OPTIMAL MEMETIC

EXPLORATION

In order to clarify the notation in this paper, we refer to the
minimization problem of an objective function f(x), where
the candidate solution x is a vector of n design variables (or
genes) in a decision space D.

At the beginning of the optimization problem one candidate
solution is randomly sampled within the decision space D. In
analogy with compact optimization, see e;g; [28] and [29], we
will refer to this candidate solution as elite and indicate it with
the symbol xe. In addition to xe, the algorithm makes use of
another memory slot for attempting to detect other solutions.
The latter solution, namely trial, is indicated with xt.

The following subsections describe the working principle
of each operator composing the 3SOME algorithm and the
other two variants proposed in this paper. These three operators
(memes) are named long-distance, middle-distance, and short-
distance exploration, respectively. Further details about the
implementation of each operator are available in [24].

A. Long-distance exploration

The purpose of the long-distance operator is to explore the
entire decision space and detect a new promising solution.
While the elite xe is retained, at first, a trial solution xt

is generated by randomly sampling a new set of n genes.
Subsequently, the DE exponential crossover is applied between
xe and xt, see [29]. If the trial solution outperforms the
elite, a replacement occurs. A replacement has been set also
if the newly generated solution has the same performance
as the elite, to prevent the search getting trapped in some
plateaus of the decision space. This exploration stage per-
forms a global stochastic search and thus attempts to detect
unexplored promising areas of the decision space. While this
search mechanism extensively explores the decision space,

the employed crossover method also promotes retention of a
small section of the elite within the trial solution. This kind of
inheritance of some genes appears to be extremely beneficial
in terms of performance with respect to a stochastic blind
search (which would generate a completely new solution at
each step). The pseudo-code of this component is shown in
Algorithm 1. The long-distance exploration is repeated until
it detects a solution that outperforms the original elite.

Algorithm 1 Long-distance exploration
generate a random solution xt within D
generate i = round (n · rand (0, 1))
count = 1
xt[i] = xe[i]
while rand (0, 1) ≤ Cr AND count < n do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if
count = count + 1

end while
if f (xt) ≤ f (xe) then

xe = xt

end if

B. Middle-distance exploration

The middle-distance exploration operator attempts to focus
the search started by the long-distance exploration in order to
exploit the detected search directions. At first a a hypercube
of side δ, centred around the solution xe, is constructed.
The middle-distance exploration performs the search within
the hyper-volume contained in this hyper-cube of side δ.
Subsequently, for 4n times (n is the dimensionality), a trial
point xt is generated within the hypercube. The trial point xt

is generated from the elite xe by performing random sampling
within the hyper-cube at first and then an exponential crossover
between xe and the randomly generated point. The fitness of
this newly generated point is then compared with the fitness of
the elite. If the new point outperforms the elite (or has the same
performance), xe is replaced by the new point, otherwise no
replacement occurs. The pseudo-code displaying the working
principles of this operator is given in Algorithm 2.

Algorithm 2 Middle-distance exploration
construct a hyper-cube with side width δ around xe

for j = 1 : 4n do
generate a random solution xt within the hyper-cube
generate i = round (n · rand (0, 1))
count = 1
xt[i] = xe[i]
while rand (0, 1) ≤ Cr AND count < n do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if
count = count + 1

end while
if f (xt) ≤ f (xe) then

xe = xt

end if
end for

C. Short-distance exploration

The short-distance exploration is a deterministic search that
perturbs the variables of the elite one by one, behaving as a
simple steepest descent deterministic local search algorithm.
The perturbation is not symmetrical but is heuristically ar-
ranged in order to save budget with respect to an exhaustive
exploratory step, see [30]. This exploration move attempts to
fully exploit promising search directions by performing the
descent of promising basins of attraction and possibly finalize
the search if the basin of attraction is globally optimal. The
short-distance exploration stage requires an additional memory
slot, which will be referred to as xs (s stands for short).
Starting from the elite xe, this local search, explores each
coordinate i (each gene) and samples xs[i] = xe[i]−ρ, where
ρ is the exploratory radius. Subsequently, if xs outperforms
xe, the trial solution xt is updated (it takes the value of xs),
otherwise a half step in the opposite direction xs[i] = xe[i]+

ρ
2

is performed. Again, xs replaces xt if it outperforms xe. If
there is no update i.e., the exploration was unsuccessful, the
radius ρ is halved. This exploration is repeated for all the
design variables and stopped when a prefixed budget (equal
to 150 iterations) is exceeded. The pseudo-code displaying the
working principles of the short-distance exploration is given
in Algorithm 3.

I should be noted that short distance exploration employs
an asymmetric search step as it explores solutions, along each
axis, at a ρ distance in one direction verse and ρ

2 in the opposite
verse. Although a rigorous theoretical explanation of this al-
gorithmic choice is not yet available, experimentally this logic
appeared to be much more efficient than a straightforward
symmetric exploration, see [30].

As a remark, a toroidal management of the bounds has been
implemented for the three operators above. This means that
if, along the dimension i, the design variable x[i] exceeds the
bounds of a value ζ, it is reinserted from the other end of the
interval at a distance ζ from the edge, i.e. given an interval
[a, b], if x[i] = b+ ζ it takes the value of a+ ζ.

Algorithm 3 Short-distance exploration
while local budget condition do

xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i] − ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xe[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2
end if

end while

III. COORDINATION OF THE OPERATORS

Let us indicate with L, M , and S, the long-distance, middle-
distance, and short-distance exploration respectively. The fol-
lowing subsections describe, at first, the original coordination
scheme employed in [24] and then a coordination according
to the Meta-Lamarckian learning proposed for the first time
in this paper.

A. Original 3SOME memetic structure

In the original 3SOME algorithm, the three operators are
coordinated according to a heuristically determined scheme,
which is repeated until the termination criterion is met, that is
the exhaustion of a budget of fitness evaluations.

The L operator is first applied until it produces a solution
that outperforms the elite. This operators has thus the role
of exploring the decision space to generate a new promising
solution to be further exploit. The M operator is then run
repeatedly, until it does not improve anymore upon the elite.
This means that this second operator attempts to search within
the interesting area of the decision space. If this search
leads to an improvement, the research is continued. It must
be appreciated that L and M are stopped by diametrically
opposite criteria. This is set because while L aims to detect one
new basin of attraction or a new promising search direction,
M aims to subsequently improve upon the genotype detect
by L and exploit the area of interest as much as possible.
This explains why L is interrupted when the search succeeded
(possibly after numerous failures) and M is interrupted when
the exploitation turns out to be unsuccessful.

Finally, S further refines the work performed by M by
performing a steepest descent deterministic search to fully
exploit the basin of attraction. As a further consideration,
S performs a narrow search and is a pretty computationally
expensive. Thus, it is used only when the basin of attraction
seems promising indeed and when M is no longer capable to
perform improvements. If S detects new promising solutions,
the exploitation of the area is continued by activating M
again (and then S again). If S fails at detecting a new elite
solution, the area is likely fully exploited and there is no use in
continuing the local search within it’s neighbourhood. For this
reason, if S fails, L is activated anew to attempt the exploration
in other areas of the decision space.

The description of the working principles of the 3 SOME
structure is given Algorithm 4.

B. Meta-Lamarckian learning

Meta-Lamarckian learning is a sophisticated and efficient
adaptive scheme proposed in [12] in the context of MAs.
This adaptive scheme organizes the operators composing the
algorithm (originally the local search components) within a
pool. A selection probability is associated to each operator.
The selection probability of each operator depends on its
performance history during the previous activations. More
specifically, the performance ηp(t) of the operator p at iteration

Algorithm 4 3SOME structure (coordination of the operators)
generate the solution xe

while global budget condition do
while xe is not updated do

apply to xe the long-distance exploration L
end while
while xe is updated do

apply to xe the middle-distance exploration M
end while
apply to xe the short-distance exploration S
if xe has been updated then

apply middle-distance exploration M
else

apply long-distance exploration L
end if

end while

t is computed as

ηp(t) =
fe∗p(t)
fep(t)

(1)

where fep(t) is the number of fitness evaluations spent by the
operator p at iteration t since the algorithm was started, and
fe∗p(t) is the number of fitness evaluations, at iteration t, used
by operator p, that have led to an improvement of the elite. In
our case, the probability Pp(t) for operator p to be selected at
iteration t is thus defined as

Pp(t) =
ηp(t)

ηL(t) + ηM (t) + ηS(t)
. (2)

The actual choice of the next operator is performed by the
mean of a roulette-wheel selection, as described in [12].

However, since the probability for an operator to be selected
depends on its past success, each operator must be given a
chance to accumulate some amount of success in order for its
selection probability to be above zero. The operators therefore
undergo at first a training period, during which their probabil-
ity of being selected does not follow Equation 2, but instead is
equal among all three operators. Every time t that an operator
has exhausted its allocated budget (or returns, in the case of
the long-distance operator), the number of fitness evaluations
fep(t) used by each of the three operators is checked. The
training period thus ends when ∀p ∈ {L,M,S} fep(t) > 0.
For the sake of clarity, this coordination scheme is represented
as pseudo-code in Algorithm 5.

IV. NUMERICAL RESULTS

The performance of the original 3SOME structure has been
compared with the ML3SOME.

The algorithms in this study have been tested on the
test bed defined in [31] (24 problems) in 10, 40, and 100
dimensions and on the testbed defined in [32] (20 problems)
in 1000 dimensions. In order to perform a fair comparison,
both the algorithms have been run with the same parameters,
αe = 0.05, δ and ρ equal to respectively 10 % and 40 % of the
total decision space width and the budget for middle length
exploration has been fixed equal to 4n fitness evaluations at
each activation. For an extensive discussion on the parameter
setting of the 3SOME framework see [24]. Each algorithm has
been allocated a budget of 5000×n fitness evaluations for each
run and for each problem, 100 runs have been performed.

Algorithm 5 Meta-Lamarckian coordination
t ← 0
while termination condition is not met do

generate U ← rand(0, 1)
if feL(t) > 0 and feM (t) > 0 and feS(t) > 0 then

if U < PL(t) then
apply the long-distance operator

else if U < PL(t) + PM (t) then
apply the middle-distance operator

else
apply the short-distance operator

end if
else

if U < 1
3 then

apply the long-distance operator
else if U < 2

3 then
apply the middle-distance operator

else
apply the short-distance operator

end if
end if
update PL(t), PM (t) and PS(t)
t ← t + 1

end while

Tables I, II, III, and IV display the numerical results (in
terms of final value and standard deviation) for the test prob-
lems considered in this work. The best results are highlighted
in bold face. In order to strengthen the statistical significance
of the results, the Wilcoxon Rank-Sum test has also been
applied according to the description given in [33], where
the confidence level has been fixed at 0.95: a “+” symbol
indicates the case when ML3SOME outperforms the algorithm
it is compared against, “−” indicates that ML3SOME is on
the contrary outperformed, and “=” indicates that the two
algorithms have indistinguishable performance.

The displayed results extend the finding in [12]. While in
[12] the meta-Lamarckian learning was proven to be effective
for coordinating multiple local search components within a
standard MA framework, the results here presented show
that the effectiveness of meta-Lamarckian schemes can be
etended to algorithms which do not have a population nor
an evolutionary structure. It can be observed that in 10
dimensions ML3SOME clearly outperforms 3SOME in 11
cases while it is outperformed for only 3 problems. Thus,
for the testbed proposed in [31] and in 10 dimensions, the
coordination of the operators by means of a meta-Lamarckian
scheme appears preferable. It must be observed that the testbed
in [31] is composed of 24 diverse problems which display
various features in terms of multimodality, separability, ill-
conditioning etc. In this sense, we can conclude that for low
dimensionality values the meta-Lamarckian coordination is a
robust and valid option for the meme coordination. A similar
consideration can be done for the problems in 40 dimensions.

Numerical results in 100 and 1000 dimensions are much
more contrasted. The comparison of the meta-Lamarckian
learning with the original 3SOME structure show that,
for high-dimensional values the performance of the two
scheme, albeit different, is equally good. More specifically, the
Wilcoxon test indicates that ML3SOME outperforms 3SOME
in roughly half of the test cases, while the opposite is true
in the other cases, with a small number of undecided cases.

TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 10-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME
f1 7.95e + 01 ± 1.22e − 14 7.95e + 01± 1.21e − 14 =
f2 −2.10e + 02 ± 1.58e − 14 −2.10e + 02± 1.63e − 14 =
f3 −4.61e + 02 ± 2.77e + 00 −4.61e + 02± 1.18e + 00 +
f4 −4.60e + 02 ± 4.22e + 00 −4.60e + 02± 1.39e + 00 +
f5 −9.21e + 00 ± 5.42e − 14 5.33e + 00± 2.91e + 01 +
f6 3.59e + 01 ± 3.81e − 03 8.25e + 01± 2.83e + 02 =
f7 1.03e + 02 ± 7.31e + 00 1.05e + 02± 1.23e + 01 =
f8 1.49e + 02 ± 1.89e − 01 1.49e + 02± 1.86e − 01 -
f9 1.24e + 02 ± 9.47e − 01 1.25e + 02± 1.69e + 00 +
f10 3.13e + 02 ± 1.64e + 02 3.95e + 03± 2.63e + 04 +
f11 1.60e + 02 ± 3.21e + 01 1.57e + 02± 3.36e + 01 =
f12 −6.02e + 02 ± 2.32e + 01 −6.12e + 02± 1.33e + 01 -
f13 4.08e + 01 ± 9.36e + 00 4.26e + 01± 1.28e + 01 =
f14 −5.23e + 01 ± 2.41e − 05 −5.23e + 01± 3.05e − 05 -
f15 1.07e + 03 ± 4.10e + 01 1.10e + 03± 6.38e + 01 +
f16 7.83e + 01 ± 4.25e + 00 7.97e + 01± 4.63e + 00 +
f17 −1.31e + 01 ± 2.74e + 00 −1.03e + 01± 6.57e + 00 +
f18 −3.60e + 00 ± 1.06e + 01 5.80e + 00± 2.56e + 01 +
f19 −9.93e + 01 ± 1.72e + 00 −9.80e + 01± 2.98e + 00 +
f20 −5.46e + 02 ± 2.99e − 01 −5.46e + 02± 2.59e − 01 =
f21 5.05e + 01 ± 1.14e + 01 5.36e + 01± 1.34e + 01 =
f22 −9.90e + 02 ± 1.33e + 01 −9.88e + 02± 1.55e + 01 =
f23 7.80e + 00 ± 4.53e − 01 7.86e + 00± 4.95e − 01 =
f24 1.71e + 02 ± 2.80e + 01 1.92e + 02± 4.46e + 01 +

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 40-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME
f1 7.95e + 01 ± 1.96e − 14 7.95e + 01± 2.56e − 14 =
f2 −2.10e + 02 ± 3.18e − 14 −2.10e + 02± 3.28e − 14 =
f3 −4.56e + 02 ± 9.98e + 00 −4.54e + 02± 3.44e + 00 +
f4 −4.53e + 02 ± 8.17e + 00 −4.51e + 02± 4.06e + 00 +
f5 −9.21e + 00 ± 8.63e − 13 5.63e + 01± 1.78e + 02 +
f6 3.59e + 01 ± 3.02e − 06 3.59e + 01± 9.31e − 07 =
f7 1.60e + 02 ± 2.50e + 01 2.10e + 02± 6.39e + 01 +
f8 1.50e + 02 ± 8.20e + 00 1.53e + 02± 1.69e + 01 =
f9 1.26e + 02 ± 7.77e + 00 1.25e + 02± 1.53e + 00 -
f10 1.00e + 03 ± 3.53e + 02 1.95e + 05± 1.40e + 06 =
f11 4.20e + 02 ± 7.64e + 01 3.80e + 02± 6.30e + 01 -
f12 −6.16e + 02 ± 6.25e + 00 −6.11e + 02± 8.98e + 00 +
f13 4.37e + 01 ± 1.25e + 01 4.19e + 01± 1.28e + 01 =
f14 −5.23e + 01 ± 5.44e − 05 −5.23e + 01± 7.18e − 05 -
f15 1.40e + 03 ± 1.71e + 02 2.06e + 03± 4.04e + 02 +
f16 8.63e + 01 ± 5.03e + 00 8.87e + 01± 5.44e + 00 +
f17 −9.70e + 00 ± 2.00e + 00 −5.52e + 00± 3.25e + 00 +
f18 1.13e + 01 ± 8.67e + 00 2.56e + 01± 1.47e + 01 +
f19 −9.62e + 01 ± 2.43e + 00 −9.33e + 01± 3.68e + 00 +
f20 −5.45e + 02 ± 1.98e − 01 −5.46e + 02± 1.28e − 01 -
f21 5.06e + 01 ± 1.47e + 01 5.28e + 01± 1.62e + 01 =
f22 −9.87e + 02 ± 1.12e + 01 −9.85e + 02± 1.31e + 01 =
f23 8.06e + 00 ± 5.71e − 01 8.10e + 00± 5.26e − 01 =
f24 6.06e + 02 ± 1.98e + 02 9.44e + 02± 2.79e + 02 +

Despite the fact that ML3SOME and 3SOME appear to
consistently outperform each other on a subset of the test
problems across the number of dimensions, the interpretation
of the results is not trivial. In 100 dimensions, the original
3SOME structure appears to offer a slightly better performance
than the meta-Lamarckian scheme for separable, weakly ill-
conditioned, and uni-modal problems. This tendency has any-
way some exceptions such as linear slope and step ellipsoidal
functions (f5 and f7) respectively. For these two problems
ML3SOME achieves a better result with an important margin.
It is relevant to observe that the meta-Lamarckian learning
appears to be regularly more efficient than the 3SOME struc-

ture for all the multi-modal functions with adequate global
structure (f15 − f19). Regarding the multi-modal functions
with weak global structure, ML3SOME and 3SOME appear to
be equally good. In 1000 variables, ML3SOME outperforms
3SOME in half of the problems and is outperformed in most of
the other cases. It can be observed that when 3SOME displays
a better performance than ML3SOME, the difference in terms
of final fitness value is usually small with repect to the total
decay (see Fig.s 1 and 5) while in those problems where
ML3SOME outperforms 3SOME the margin of difference in
the fitness values is remarkably wide (see Fig.s 2, 3, and 4).
Although the relevance of the outperformance margin width

TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 100-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME
f1 7.95e + 01 ± 3.75e − 14 7.95e + 01± 3.29e − 14 =
f2 −2.10e + 02 ± 5.43e − 14 −2.10e + 02± 5.69e − 14 =
f3 −4.22e + 02 ± 2.49e + 01 −4.39e + 02± 7.28e + 00 -
f4 −4.04e + 02 ± 3.73e + 01 −4.27e + 02± 8.70e + 00 -
f5 −9.21e + 00 ± 4.84e − 12 7.40e + 00± 1.65e + 02 +
f6 3.59e + 01 ± 9.81e − 08 3.59e + 01± 8.86e − 08 =
f7 3.67e + 02 ± 8.58e + 01 5.97e + 02± 2.83e + 02 +
f8 1.78e + 02 ± 4.10e + 01 1.83e + 02± 3.31e + 01 +
f9 1.94e + 02 ± 3.86e + 01 1.76e + 02± 1.36e + 01 -
f10 3.27e + 03 ± 7.21e + 02 2.68e + 03± 6.96e + 02 -
f11 7.97e + 02 ± 1.34e + 02 3.83e + 02± 8.22e + 01 -
f12 −6.17e + 02 ± 6.16e + 00 −6.09e + 02± 1.83e + 01 +
f13 3.69e + 01 ± 5.04e + 00 3.35e + 01± 4.87e + 00 -
f14 −5.23e + 01 ± 5.17e − 05 −5.23e + 01± 5.47e − 05 -
f15 2.44e + 03 ± 5.95e + 02 4.53e + 03± 5.89e + 02 +
f16 8.97e + 01 ± 4.38e + 00 9.51e + 01± 6.11e + 00 +
f17 −6.35e + 00 ± 3.68e + 00 −2.63e − 02± 3.97e + 00 +
f18 2.24e + 01 ± 1.32e + 01 4.55e + 01± 1.54e + 01 +
f19 −9.31e + 01 ± 2.56e + 00 −9.08e + 01± 3.39e + 00 +
f20 −5.45e + 02 ± 1.17e − 01 −5.46e + 02± 9.61e − 02 -
f21 5.18e + 01 ± 1.17e + 01 5.19e + 01± 1.21e + 01 =
f22 −9.84e + 02 ± 1.36e + 01 −9.82e + 02± 1.47e + 01 =
f23 8.25e + 00 ± 4.62e − 01 8.21e + 00± 4.93e − 01 =
f24 1.88e + 03 ± 4.62e + 02 2.79e + 03± 4.75e + 02 +

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 1000-DIMENSION PROBLEMS [32] (THE REFERENCE ALGORITHM

IS ML3SOME)

ML3SOME 3SOME
f1 1.90e − 10 ± 1.40e − 10 1.33e − 11± 3.43e − 11 -
f2 9.92e − 06 ± 1.03e − 05 1.07e − 04± 1.77e − 04 +
f3 6.21e − 05 ± 1.16e − 05 5.42e − 04± 2.85e − 04 +
f4 1.89e + 13 ± 5.33e + 12 7.14e + 12± 2.35e + 12 -
f5 5.07e + 08 ± 1.50e + 08 7.06e + 08± 1.23e + 08 +
f6 1.93e + 07 ± 2.60e + 06 1.98e + 07± 1.01e + 05 =
f7 3.42e + 09 ± 9.45e + 08 1.00e + 09± 2.56e + 08 -
f8 8.73e + 08 ± 2.05e + 09 3.29e + 08± 1.42e + 09 -
f9 2.56e + 08 ± 6.34e + 07 2.12e + 08± 4.13e + 07 -
f10 3.47e + 03 ± 2.88e + 02 6.80e + 03± 3.43e + 02 +
f11 1.50e + 02 ± 5.12e + 01 1.98e + 02± 1.94e − 01 +
f12 5.37e + 04 ± 1.14e + 04 5.54e + 04± 1.18e + 04 =
f13 6.63e + 03 ± 4.53e + 03 4.68e + 03± 4.77e + 03 -
f14 6.38e + 07 ± 3.16e + 06 5.62e + 07± 5.44e + 06 -
f15 7.33e + 03 ± 5.57e + 02 1.38e + 04± 4.63e + 02 +
f16 8.67e + 01 ± 5.23e + 01 3.81e + 02± 6.26e + 01 +
f17 3.69e + 04 ± 7.04e + 03 4.78e + 04± 1.78e + 04 +
f18 1.40e + 03 ± 2.59e + 03 1.80e + 04± 1.24e + 04 +
f19 4.39e + 05 ± 6.23e + 04 8.71e + 04± 9.95e + 03 -
f20 9.94e + 02 ± 1.86e + 02 1.04e + 03± 1.63e + 02 +

strictly depends on the features of the fitness landscape, it can
be conjectured that this result is due to the meta-Lamarckian
logic which tends to select the components that mostly produce
fitness enhancements.

Fig.s 1, 2, 3, 4, and 5 show some examples of performance
trends.

V. CONCLUSION

This paper compares the performance of the original heuris-
tic scheme for coordinating the operators in the 3SOME al-
gorithm against an algorithm composed of the same operators
but where the algorithmic structure is replaced by an adaptive
scheme, namely meta-Lamarckian learning.

An extensive set of problems have been setup for this
comparison. This set includes very diverse problems in
terms of problem dimensionality, multimodality, separability,

and ill-conditioning. Numerical results show that the meta-
Lamarckian coordination appears to be more efficient than the
original heuristic structure for low dimensional problems. On
the other hand, the advantages of the adaptive coordination
are not too evident in high dimensions. In the latter cases, the
two coordination schemes display a different but still almost
equally good performance. Nonetheless, it can be observed
that the meta-Lamarckian learning is, in some cases, much
more efficient than than the heuristic structure. Despite the
fact that the two algorithms use the same set of operators,
the meta-Lamarckian coordination allows a regular achieve-
ment of much better results on multi-modal problems with
adequate global structure. Also in other isolated cases, the
meta-Lamarckian learning allows the detection of final fitness
values a few order of magnitude smaller than those detected

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000
0

2

4

6

8

10

12
x 10

10

Fitness Evaluations

F
i
t
n
e
s
s

V
a
l
u
e

ML3SOME

3SOME

Fig. 1. Performance trends for f7 from [32] in 1000 dimensions

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000
0

0.5

1

1.5

2

2.5

3
x 10

4

Fitness Evaluations

F
i
t
n
e
s
s

V
a
l
u
e

3SOME

ML3SOME

Fig. 2. Performance trends for f10 from [32] in 1000 dimensions

by the heuristic scheme. On the other hand, the original
algorithm for a limited amount of problems, appears to be
capable of detecting slightly better results compared to those
detected by ML3SOME. In addition, the 3SOME structure
appears, in some cases, very efficient in the early stages of
the evolution and capable of quickly finding solutions with a
high performance.

This study, although preliminary, has the important role of
highlighting the fact that different coordination schemes of
the same operators can lead to different results. Future studies
focused on the bottom-up algorithmic design will attempt to
combine and integrate adaptive coordination schemes within
the structure of the algorithms.

ACKNOWLEDGMENTS

This research is supported by the Academy of Finland,
Akatemiatutkija 130600.

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Fitness Evaluations

F
i
t
n
e
s
s

V
a
l
u
e

ML3SOME

3SOME

Fig. 3. Performance trends for f15 from [32] in 1000 dimensions

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000
50

100

150

200

250

300

350

400

450

Fitness Evaluations

F
i
t
n
e
s
s

V
a
l
u
e

3SOME

ML3SOME

Fig. 4. Performance trends for f16 from [32] in 1000 dimensions

REFERENCES

[1] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms,” Tech. Rep. 826, 1989.

[2] Y.-S. Ong, M.-H. Lim, and X. Chen, “Memetic computation-past,
present and future,” IEEE Computational Intelligence Magazine, vol. 5,
no. 2, pp. 24–31, 2010.

[3] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms,
ser. Studies in Computational Intelligence. Springer, 2012, vol. 379.

[4] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[5] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–
82, 1997.

[6] F. Neri, J. Toivanen, G. L. Cascella, and Y. S. Ong, “An adaptive multi-
meme algorithm for designing HIV multidrug therapies,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 4,
no. 2, pp. 264–278, 2007.

[7] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, “Classification of
adaptive memetic algorithms: A comparative study,” IEEE Transactions

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Fitness Evaluations

F
i
t
n
e
s
s

V
a
l
u
e

ML3SOME

3SOME

Fig. 5. Performance trends for f19 from [32] in 1000 dimensions

On Systems, Man and Cybernetics - Part B, vol. 36, no. 1, pp. 141–152,
2006.

[8] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu search hyperheuristic
for timetabling and rostering,” Journal of Heuristics, vol. 9, no. 6, pp.
451–470, 2003.

[9] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to
scheduling a sales summit,” in Proceedings of the Third International
Conference on Practice and Theory of Automated Timetabling, ser.
Lecture Notes in Computer Science. Springer, 2000, vol. 2079, pp.
176–190.

[10] G. Kendall, P. Cowling, and E. Soubeiga, “Choice function and random
hyperheuristics,” in Proceedings of the Fourth Asia-Pacific Conference
on Simulated Evolution and Learning, 2002, pp. 667–71.

[11] A. V. Kononova, D. B. Ingham, and M. Pourkashanian, “Simple sched-
uled memetic algorithm for inverse problems in higher dimensions:
Application to chemical kinetics,” in Proceedings of the IEEE World
Congress on Computational Intelligence, 2008, pp. 3906–3913.

[12] Y. S. Ong and A. J. Keane, “Meta-lamarkian learning in memetic
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, pp. 99–110, 2004.

[13] P. Korošec, J. Šilc, and B. Filipič, “The differential ant-stigmergy
algorithm,” Information Sciences, 2011, to appear.

[14] M. N. Le, Y. S. Ong, Y. Jin, and B. Sendhoff, “Lamarckian memetic
algorithms: local optimum and connectivity structure analysis,” Memetic
Computing Journal, vol. 1, no. 3, pp. 175–190, 2009.

[15] Q. C. Nguyen, Y. S. Ong, and M. H. Lim, “A probabilistic memetic
framework,” IEEE Transactions on Evolutionary Computation, vol. 13,
no. 3, pp. 604–623, 2009.

[16] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474–488, 2005.

[17] J. E. Smith, “Coevolving memetic algorithms: A review and progress
report,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 37, no. 1, pp. 6–17, 2007.

[18] E. L. Yu and P. N. Suganthan, “Ensemble of niching algorithms,”
Information Sciences, vol. 180, no. 15, pp. 2815–2833, 2010.

[19] J. E. Smith, “Estimating meme fitness in adaptive memetic algorithms
for combinatorial problems,” Evolutionary Computation, vol. 20, no. 2,
pp. 165–188, 2012.

[20] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A
fast adaptive memetic algorithm for on-line and off-line control design
of pmsm drives,” IEEE Transactions on System Man and Cybernetics-
part B, special issue on Memetic Algorithms, vol. 37, no. 1, pp. 28–41,
2007.

[21] A. Caponio, F. Neri, and V. Tirronen, “Super-fit control adaptation in
memetic differential evolution frameworks,” Soft Computing-A Fusion

of Foundations, Methodologies and Applications, vol. 13, no. 8, pp.
811–831, 2009.

[22] J. Tang, M. H. Lim, and Y. S. Ong, “Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization problems,”
Soft Computing-A Fusion of Foundations, Methodologies and Applica-
tions, vol. 11, no. 9, pp. 873–888, 2007.

[23] V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi, “An
enhanced memetic differential evolution in filter design for defect
detection in paper production,” Evolutionary Computation, vol. 16, no. 4,
pp. 529–555, 2008.

[24] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim, “Ockham’s
razor in memetic computing: Three stage optimal memetic exploration,”
Information Sciences, vol. 188, pp. 17–43, 2012.

[25] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
Portfolio-based algorithm selection for SAT,” Journal of Artificial In-
telligence Research, vol. 32, pp. 565–606, 2008.

[26] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, “Pa-
rameter control in evolutionary algorithms,” in Parameter Setting in
Evolutionary Algorithms, ser. Studies in Computational Intelligence,
F. G. Lobo, C. F. Lima, and Z. Michalewicz, Eds. Springer, 2007,
vol. 54, pp. 19–46.

[27] H. H. Hoos, “Automated algorithm configuration and parameter tuning,”
in Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds.
Springer, 2012, ch. 3, pp. 37–71.

[28] E. Mininno, F. Neri, F. Cupertino, and D. Naso, “Compact Differential
Evolution,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 32–54, 2011.

[29] F. Neri, G. Iacca, and E. Mininno, “Disturbed exploitation compact
differential evolution for limited memory optimization problems,” In-
formation Sciences, vol. 181, no. 12, pp. 2469–2487, 2011.

[30] L. Y. Tseng and C. Chen, “Multiple trajectory search for large scale
global optimization,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2008, pp. 3052–3059.

[31] N. Hansen, A. Auger, S. Finck, R. Ros et al., “Real-parameter black-
box optimization benchmarking 2010: Noiseless functions definitions,”
INRIA, Tech. Rep. RR-6829, 2010.

[32] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the cec’2010 special session and competition on large-
scale global optimization,” University of Science and Technology of
China (USTC), School of Computer Science and Technology, Nature
Inspired Computation and Applications Laboratory (NICAL): Hefei,
Anhui, China, Tech. Rep., 2010.

[33] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

PIV

FOCUSING THE SEARCH: A PROGRESSIVELY SHRINKING
MEMETIC COMPUTING FRAMEWORK

by

I. Poikolainen, G. Iacca,F. Caraffini, F. Neri 2013

Int. J. Innovative Computing and Applications, pages 3-16

Int. J. Innovative Computing and Applications, Vol. 5, No. 1, 2013 3

Focusing the search: a progressively shrinking
memetic computing framework

Ilpo Poikolainen*

Department of Mathematical Information Technology,
University of Jyväskylä,
Jyväskylä, Finland
E-mail: ilpo.poikolainen@jyu.fi
*Corresponding author

Giovanni Iacca
INCAS3 - Innovation Centre for Advanced Sensors and Sensor Systems,
Assen, The Netherlands
E-mail: giovanniiacca@incas3.eu

Fabio Caraffini and Ferrante Neri
Centre for Computational Intelligence,
School of Computer Science and Informatics,
De Montfort University,
Leicester, England, United Kingdom
and
Department of Mathematical Information Technology,
University of Jyväskylä,
Jyväskylä, Finland
E-mail: fcaraffini@dmu.ac.uk and fabio.caraffini@jyu.fi
E-mail: fneri@dmu.ac.uk and ferrante.neri@jyu.fi

Abstract: An extremely natural, yet efficient design pattern in Memetic Computing
optimisation is the sequential structure: algorithms composed of few simple memes
executed sequentially, each one with its own specific role, have proven to be robust
and versatile on various optimisation problems with diverse features and dimensionality
values. This principle of non-complexity, which can be seen as an application of the
Ockham’s Razor in Memetic Computing, lead us to create S-3SOME (Shrinking Three
Stage Optimal Memetic Exploration), a scheme which progressively perturbs a candidate
solution by alternating three search operators, the first one being a stochastic global
search, the second a random sampling within progressive narrowing hyper-volume, and the
third a deterministic local search. Numerical results show that the proposed S-3SOME,
despite its simplicity, is competitive not only with other memory-saving schemes recently
proposed in literature, but also with complex state-of-the-art population-based algorithms
characterised by high computational overhead and memory employment.

Keywords: algorithm for resource-constrained hardware; computational intelligence
optimisation; memetic computing.

Reference to this paper should be made as follows: Poikolainen, I., Iacca, G., Caraffini, F.
and Neri, F., (2013) ‘Focusing the search: a progressively shrinking memetic computing
framework’, Int. J. Innovative Computing and Applications, Vol.5, No. 1, pp.3–16.

Biographical notes: Ilpo Poikolainen received his M.Sc. degree from the University
of Jyväskylä, Finland, in 2011. He is currently a Ph.D. student at the University
of Jyväskylä, Faculty of Information Technology. His research interests include
computational intelligence optimisation and more specifically memetic computing,
differential evolution, noisy and large scale optimisation, and compact and parallel
algorithms.

4 I. Poikolainen et al.

Giovanni Iacca received his Ph.D. degree in Computer Science from the University of
Jyväskylä, Finland, in 2011. He is currently a postdoctoral researcher at INCAS3, Assen,
The Netherlands, in the Systems & Controls research group. His research interests include
evolutionary optimisation, memetic computing, memory-saving algorithms, robotics, real-
time systems, wireless sensor networks and distributed computing. He is a member of
IEEE and IEEE CIS.

Fabio Caraffini received his M.Sc. degree in Computer and Electronic Engineering from
the University of Perugia, Italy, in 2011. He is currently a Ph.D student in Computer
Science at De Montfort University, Leicester, United Kingdom. His research interests
include computational intelligence optimisation, robotics, and embedded systems.

Ferrante Neri obtained his first Ph.D in Electro-technical Engineering, from the Technical
University of Bari, Italy, in Apr 2007. In Nov 2007, he obtained a second Ph.D in
Computer Science from the University of Jyväskylä, Finland. In 2009 he was awarded
an Academy Research Fellowship by the Academy of Finland. Dr. Neri is currently
an Adjunct Professor in Computational Intelligence at the University of Jyväskylä and
Reader in Computational Intelligence at the De Montfort University, United Kingdom.
His current research interests include computational intelligence optimisation and more
specifically memetic computing, differential evolution, noisy and large scale optimisation,
and compact and parallel algorithms.

1 Introduction

Despite the very well-known No Free Lunch Theorems
(Wolpert and Macready, 1997), the computational
intelligence community every year still tries to propose
new robust and versatile algorithms which can be
applied to a broad range of optimisation problems
with different dimensionalities and features (separability,
multi-modality, ill-conditioning, etc.). In order to design
such high performance general purpose algorithms, one
might consider for example the idea of “combining”
multiple algorithmic components, trying to exploiting
the advantages of each of them. This concept is at
the basis of Memetic Computing (MC), “a broad
subject which studies complex and dynamic computing
structures composed of interacting modules (memes)
whose evolution dynamics is inspired by the diffusion
of ideas. Memes are simple strategies whose harmonic
coordination allows the solution of various problems”
(Neri el al., 2012). Being MC one of the major trends
in modern computational intelligence, most of the state-
of-the-art algorithms can be considered truly memetic
structure in the light of the previous definition. Although
several design patterns inspired the creation of new
memetic structures in recent years, at least two design
approaches can be individuated in modern optimisation:

1 Starting from an existing optimisation algorithm,
its structure is “perturbed” by slightly modifying
the structure and adding on extra components.
Obviously, this approach attempts to obtain a
certain performance improvement in
correspondence to the proposed modifications.
Successful examples of this research approaches are
given in (Brest el al., 2006), where a controlled
randomisation on Differential Evolution (DE)
parameters offers a promising alternative to the

standard DE framework, and (Liang el al., 2006),
where the variation operator combining the
solutions of a population is modified in the context
of Particle Swarm Optimisation (PSO).

2 Starting from a set of algorithms, they are
combined in a hybrid fashion with the trust that
their combination and coordination leads to a
flexible structure displaying a better performance
than the various algorithms considered separately.
Two examples of recently proposed algorithms
which are basically the combination, by means of
activation probabilities, of various meta-heuristics
are given in (Peng el al., 2010) and (Vrugt el al.,
2009).

As an alternative to these two approaches, (Iacca
el al., 2012) proposed the application of the Ockham’s
Razor in MC, and more more generally in Computational
Intelligence Optimisation. According to the Ockham’s
Razor, the simplest explanation of natural phenomena
is likely to be the closest to the truth. In an
analogous way, an optimisation algorithm should
be designed in the most natural and simple way,
based on the understanding of its components, and
following a bottom-up procedure where the role
and function of each meme should be clear. Once
a given “performance goal” is defined, one should
include in the algorithmic structure only the strictly
necessary components which guarantee, on one hand,
an efficient use of computational resources, and, on
the other hand, an efficient handling of different fitness
landscapes. On the basis of this idea, in (Iacca el al.,
2012), it is shown how a very simple algorithm,
namely Three Stage Optimal Memetic Exploration
(3SOME), which combines three sequential perturbation
mechanisms over a single solution, is competitive

Focusing the search: a progressively shrinking memetic computing framework 5

with complex algorithms representing the-state-of-
the-art in Computational Intelligence Optimisation,
while requiring only little memory and computational
resources.

In the attempt of applying the “perturbation” design
approach to the aforementioned 3SOME algorithm,
while maintaining at the same time its successful
simplicity, in this paper we propose a memetic framework
in which one of the three original components of
3SOME is replaced with an alternative operator. More
specifically, we kept the random global search (which
attempts to detect promising search directions) and the
deterministic local search (which refines the search in
a given basin of attraction perturbing each variable
separately), and we replaced the original random
local search with a stochastic search operator which
progressively focuses the search towards the most
interesting areas of the decision space. Since the latter
component performs the search by means of a progressive
shrinking of the hyper-volume, the proposed approach is
named Shrinking 3SOME (S-3SOME).

The remainder of this paper is organised in the
following way. Section 2 gives a detailed description
of the three operators and the coordination scheme
composing the proposed algorithm. Section 3 shows
the performance comparison between the proposed
algorithm and a set of modern algorithms on
two complete benchmarks which include numerous
test problems with different dimensionalities and
characteristics. An analysis of the algorithmic overhead
is also provided. Finally, Section 4 gives the conclusion
of this study.

2 Shrinking three stage optimal memetic
exploration

In order to clarify the notation used, we refer to the
minimisation problem of an objective function f (x),
where the candidate solution x is a vector of n design
variables (genes) in a decision space D.

In the beginning of the optimisation procedure, one
candidate solution is randomly sampled within the
decision space D. In analogy with compact optimisation,
see (Neri el al., 2011), we will refer to this candidate
solution as “elite” and indicate it with the symbol xe.
In addition to xe, the algorithm makes use of another
memory slot for attempting to detect other solutions (we
here refer to “memory slot” to indicate an n-dimensional
array containing a candidate solution of the optimisation
problem). The latter solution, namely trial, is indicated
with xt.

Similar to 3SOME, the S-3SOME algorithm we
here propose is composed of three memes, namely the
“Long”, “Stochastic short”, and “Deterministic short”
exploration operators (memes) which are activated
sequentially and perturb progressively the current elite
solution. If we consider that each operator processes
the current xe and returns, as an output, a (possibly)

Figure 1 Functioning scheme of S-3SOME.

fitness-wise improved solution, the operator can be said
to “succeed” if the output is different from the input
(and obviously better than it) and can be said to
“fail” otherwise. In this light, the S-3SOME functioning
is represented by the scheme composed of interacting
memes reported in Figure 1. The arrows represent the
interaction amongst the memes. The “S” and “F”,
represent success and failure, respectively, of the meme
application.

In the following subsections, the three aforementioned
exploratory stages are described. As a remark, it should
be noticed that a toroidal management of the bounds
has been implemented for the all the three operators: if,
along the dimension i, the perturbed design variable x[i]
exceeds the bounds by a value of ζ, it takes a value at
a distance of ζ from the other end of the interval, i.e.,
given an interval [a, b], if x[i] = b+ ζ, then x[i] = a+ ζ.

2.1 Long distance exploration

The goal of this operator is finding new promising
solutions within the entire decision space D. While
the elite xe is retained, at first, a trial solution xt is
randomly sampled in D. Subsequently, the exponential
crossover typically used in DE is applied between xe and
xt, see (Price el al., 2005). More specifically, one gene
from xe is randomly selected. This gene replaces the
corresponding gene within the trial solution xt. Then, a
set of random numbers between 0 and 1 is generated.
As long as rand (0, 1) ≤ Cr, where the crossover rate Cr
is a predetermined parameter, the design variables from
the elite xe are copied into the corresponding positions
of the trial solution xt. The copy process is interrupted
when rand (0, 1) > Cr. It can easily be observed that,
for a given value of Cr, the meaning of the long distance
exploration would change with the dimensionality of the
problem. In order to avoid this problem and make the
crossover action independent on the dimensionality of
the problem, the following quantity, namely inheritance
factor, is fixed: αe ≈ ne

n , where ne is the number of genes
we expect to copy from xe into xt in addition to the
gene deterministically copied. The probability that ne

genes are copied is Crne = Crnαe . In order to control the
approximate amount of copied genes and to achieve that
about ne genes are copied into the offspring we imposed
that Crnαe = 0.5. It can easily be seen that, for a chosen
αe, the crossover rate can be set on the basis of the
dimensionality as follows: Cr = 1

nαe
√
2
.

6 I. Poikolainen et al.

From this description, it is clear that the long distance
exploration performs a “partially” global stochastic
search: while the search mechanism extensively explores
the decision space, it also promotes retention of a small
section of the elite within the trial solution. This kind
of inheritance of some genes appears to be extremely
beneficial in terms of performance with respect to
a stochastic blind search (which would generate a
completely new solution at each step). The long distance
exploration is repeated until it does not detect a solution
that outperforms the original elite: in this case, a
replacement of the current elite occurs. To prevent the
search getting trapped in some plateaus of the decision
space (regions of the decision space characterised by
a null gradient), elite replacements are performed also
when the newly generated solutions have the same
performance of the elite. Whenever the current elite
is updated, the stochastic short distance exploration is
activated. The pseudo-code of this component is shown
in Algorithm 1.

Algorithm 1 Long distance exploration

generate a random solution xt within D
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr do

xt[i] = xe[i]
i = i+ 1
if i == n then

i = 1
end if

end while
if f (xt) ≤ f (xe) then

xe = xt

end if

2.2 Stochastic short distance exploration

This exploration move attempts to detect promising
areas of the decision space by making use of a stochastic
logic. In a nutshell, when the long distance exploration
detects a new promising solution, the stochastic short
distance exploration generates a hypercube centered in
the newly detected solution xe and having a hyper-
volume which is 20% of the decision space D. This
exploration samples a trial solution xt for n times
(being n the dimensionality of the problem), attempting
to outperform the current elite xe. If f (xt) ≤ f (xe),
the elite solution is updated and the hyper-volume
is centered around the new elite solution. If, after n
comparisons, at least one replacement occurred, n new
attempts are scheduled in the same hyper-volume, and
comparisons performed accordingly. On the contrary,
if all the n comparisons led to no improvements,
the n new samplings are scheduled in a new hyper-
volume, obtained halving the current one. This shrinking
mechanism is repeated until the hyper-volume is smaller
than 0.0001% of the total hyper-volume. When this
condition occurs, the current xe is passed to the following

operator for further improvements. The difference
between the original implementation in 3SOME is that
edge length of the hypercube created is not fixed value
but also shrinks over time. This modification allows
scaling along the dimensionality of the problem and
being more explorative at start and turning into more
exploitative search operator towards the end. The size
of the initial hyper-volume and the number of times
the hypercube volume is halved were empirically fixed
to achieve good performance over the various problems
considered in this paper. The pseudo-code displaying
the working principles of the stochastic short distance
exploration is given in Algorithm 2.

Algorithm 2 Stochastic short distance exploration

generate a hypercube around xe with a hyper-volume 20%
of that of D;
while the hyper-volume is bigger than 0.0001% of D do

for i = 1 : n do
generate randomly a trial solution xt within the
hypercube;
if f (xt) ≤ f (xe) then

xe = xt;
centre the hypercube around xe;

end if
end for
if no elite update occurred then

halve the hyper-volume;
end if

end while

2.3 Deterministic short distance exploration

This operator attempts to fully exploit promising search
directions, with the goal of performing the descent of
promising basins of attraction, and possibly finalising
the search if the basin of attraction is globally optimal.
De facto, the short distance exploration is a simple
steepest descent deterministic local search algorithm,
with an exploratory move similar to that of Hooke-Jeeves
algorithm, see (Hooke and Jeeves, 1961), or the first local
search algorithm of the multiple trajectory search, see
(Tseng and Chen, 2008). The short distance exploration
stage requires an additional memory slot, which will be
referred to as xs (s stands for short). Starting from the
elite xe, this local search perturbs each i-th decision
variable as xs[i] = xe[i]− ρ, where ρ is the exploratory
radius. Subsequently, if xs outperforms xe, the trial
solution xt is updated (the values of xs are copied in
it), otherwise a half step in the opposite direction is
performed (xs[i] = xe[i] +

ρ
2). Again, xs replaces xt if it

outperforms xe. If there is no update, i.e., the exploration
was unsuccessful, the radius ρ is halved. This exploration
is repeated for all the design variables and stopped when
a prefixed budget (equal to 150 iterations as suggested in
(Tseng and Chen, 2008)) is exceeded. The pseudo-code
displaying the working principles of the deterministic
short distance exploration is given in Algorithm 3.

Focusing the search: a progressively shrinking memetic computing framework 7

After the application of the deterministic short
distance exploration, if there is a fitness improvement
for the current elite, the stochastic short distance
exploration is repeated subsequently. Otherwise, if no
improvement is found, the long distance search is
activated in order to search for new basins of attractions,
as depicted in Figure 1.

Algorithm 3 Deterministic short distance exploration

while local budget condition do
xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i]− ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xe[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2

end if
end while

3 Numerical results

An extensive set of numerical experiments has been
performed to test the performance of S-3SOME. To
evaluate the scalability of the proposed algorithm S-
3SOME, two complete benchmarks have been used,
namely the noiseless Black Box Optimisation Benchmark
(BBOB) 2010 (Hansen el al., 2010) and the benchmark
proposed for the CEC 2010 Competition on Large-
Scale Global Optimisation (Tang el al., 2010). The
BBOB 2010, consisting of 24 scalable functions, has
been tested in 10, 40, and 100 dimensions, while the 20
functions composing the CEC 2010 testbed have been
tested in 1000 dimensions. Thus, a total of 24× 3 +
20 = 92 optimisation problems with various features and
dimensionalities has been tested.

The proposed S-3SOME, with αe = 0.05 and ρ equal
to 40% of the total decision space width, has been
compared with three recently proposed memory-saving
algorithms employing different search logics:

1 compact Differential Evolution (cDE) with rand/1
mutation and exponential crossover, proposed in
(Mininno el al., 2011), with virtual population size
equal to 300, scale factor F = 0.5, and proportion
of genes undergoing exponential crossover, see
(Neri el al., 2011), αm = 0.25.

2 real-value compact Genetic Algorithm (cGA),
proposed in (Mininno el al., 2008), with virtual
population size equal to 300.

3 Simplified Intelligence Single Particle Optimisation
(ISPO), proposed in (Zhou el al., 2008), with
acceleration A = 1, acceleration power factor
P = 10, learning coefficient B = 2, learning factor
reduction ratio S = 4, minimum learning threshold
E = 1e− 5, and learning steps PartLoop = 30.

In addition, S-3SOME has been compared with the
following modern algorithms:

1 Covariance Matrix Adaptive Evolution Strategy
with increasing population size and restart
(G-CMAES), proposed in (Auger and Hansen,
2005), with initial population λstart = 10 and
factor for increasing the population size equal to 2.
All the other parameters are set to standard values.

2 Self-Adaptive Differential Evolution (SADE),
proposed in (Qin el al., 2009), with Learning
Period LP = 20 and population size Np = 50. The
other constant values are the same reported in the
formulas of the original paper.

3 Cooperatively Coevolving Particle Swarms
Optimiser (CCPSO2), proposed in (Li and Yao,
2012), with population size equal to Np = 30
individuals, Cauchy/Gaussian-sampling selection
probability p = 0.5 and set of potential group sizes
S = {2, 5, 10}, S = {2, 5, 10, 50, 100},
S = {2, 5, 10, 50, 100, 250} for experiments in
10–40, 100 and 1000 dimensions, respectively.

It is important to notice that these algorithms were
grouped in two categories, based on their memory
employment in terms of minimum number of memory
slots, as defined above. In this sense, as shown in (Iacca
el al., 2012), cDE requires 4 slots, S-3SOME 3 (as well as
the original 3SOME), while cGA and ISPO only 2. Thus
these algorithms can be considered truly memory-saving.
On the other hand, the complex modern algorithms
area characterised by a much heavier memory footprint:
it can be easily proved that G-CMAES requires
2Nrestartsλstart + n slots (where Nrestarts indicates the
number of restarts performed, and the term n accounts
for the covariance matrix, defined in R

n × n), SADE
Np + 1 + archive (where archive is a variable-size list of
solutions), and CCPSO2 2Np + 2.

It should also be remarked that the original 3SOME
algorithm, proposed in (Iacca el al., 2012), has been
purposely excluded from comparisons on the BBOB
2010 benchmark since a detailed comparison between
S-3SOME and 3SOME has already been presented
in (Poikolainen el al., 2012). On the other hand, we
performed a comparison of the two algorithms on the
CEC 2010 testbed, as described below.

For each algorithm and test problem considered
in this study, 30 runs have been performed, each

8 I. Poikolainen et al.

one with a fixed budget which was set to 3000 · n
and 5000 · n fitness evaluations, being n the problem
dimensionality, respectively for the BBOB 2010 and
the CEC 2010 testbeds. These budgets are those ones
suggested in optimisation competitions and used in
most of the literature in the field. Numerical results
are reported in Tables 1-9, in terms of average final
value and standard deviation computed over 30 runs
of each algorithm. The best results (minimum average
final value) are highlighted in bold face. The output
of the Wilcoxon Rank-Sum test (Wilcoxon, 1945),
applied with a confidence level of 0.95 on the pair-
wise comparison between S-3SOME and the algorithm
labelled on the top of each column, is also shown.
More specifically, a symbol “=” indicates that the null-
hypothesis (i.e., the final values obtained by the two
algorithms come from the same statistical distribution)
cannot be rejected, meaning that the two algorithms
have a statistically equivalent performance. In case
of null-hypothesis rejection, the symbol “+” (“−”) is
used to indicate that S-3SOME has a better (worse)
performance than the compared algorithm, in terms of
average final value.

3.1 Low and medium scale problems

As shown in Table 1 the S-3SOME scheme appears
to be, on a regular basis, more promising than ISPO.
Compared to cDE and cGA, S-3SOME shows instead a
global similar performance, which is slightly better on
some separable functions (f2–f5), particularly unimodal.
On non-separable multi-modal functions, especially
cGA seems however to outperform S-3SOME. The
comparison with the complex algorithm, reported in
Table 2, shows instead that SADE outperforms regularly
S-3SOME: this fact can be explained considering that
SADE is an efficient structure designed for addressing
problems with a low dimensionality (tuned for up to
30 dimensions). On the other hand, no clear out-
performance trend emerges from the comparisons with
G-CMAES (12 “+” and 12 “-”) and CCPSO2 (11
“+”, 8 “-” and 5 “=”): these two algorithms can be
considered essentially the same as S-3SOME, from a
global performance point of view.

Similar results can be seen on 40-dimensional
problems, where the performance of S-3SOME is
even better. As shown in Table 3, S-3SOME clearly
outperforms the other three memory-saving algorithms.
In addition to that, the proposed algorithm shows again
a similar global performance with respect to G-CMAES
and CCPSO2, see Table 4. Interesting to notice, for
this dimensionality the performance of SADE tends to
deteriorate, being almost equaled by S-3SOME: as we
have observed previously, this behaviour was expected
since the SADE structure has been designed and tuned
especially for problems up to 30 dimensions.

When the problem dimensionality grows up to 100
variables, the improvements produced by S-3SOME
are even more evident, as shown in Tables 5 and 6:

once again it outperforms all the three memory-saving
algorithms, and shows similar performances with respect
to G-CMAES, SADE and CCPSO2.

Two examples of average fitness trend on 100-
dimensional problems are also illustrated in Figures 2
and 3.

Figure 2 Average fitness trend of memory-saving
algorithms on f16 from BBOB 2010 in 100
dimensions.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

S-3SOME
cDE
cGA

ISPO

Figure 3 Average fitness trend of complex algorithms on
f23 from BBOB 2010 in 100 dimensions.

 0

 2

 4

 6

 8

 10

 12

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

S-3SOME
G-CMAES

SADE
CCPSO2

3.2 Large scale problems

Tables 7 and 8 present the results obtained on the CEC
2010 benchmark, respectively with memory-saving and
complex algorithms. It is clear from Table 7 that S-
3SOME outperforms, also on large scale problems, all
the memory-saving algorithms considered in this study.
This result confirms the trend shown in the previous
subsection on problems with 40 and 100 variables
(Tables 3 and 4) and proves the superiority of S-
3SOME, compared to other memory-saving algorithms,
on problems with different features and different
dimensionalities. This finding has a great importance
from an application point of view: S-3SOME can be
considered an excellent solution for problems that must
be solved on systems endowed with limited memory.

The average fitness trend obtained by the memory-
saving algorithms on the test function f10 is shown in
Figure 4, where it can be seen how S-3SOME is able to
improve upon the initial solution better than the other
algorithms, which get stuck into different local optima.

Focusing the search: a progressively shrinking memetic computing framework 9

Table 1 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on the BBOB 2010 in 10 dimensions

S-3SOME cDE cGA ISPO

f1 2.23e− 14 ± 1.23e− 14 0.00e+ 00 ± 0.00e+ 00 - 1.04e− 14 ± 0.00e+ 00 - 0.00e+ 00 ± 0.00e+ 00 -
f2 2.56e− 14 ± 1.77e− 14 2.27e− 14 ± 1.14e− 14 = 8.19e− 12 ± 3.50e− 11 + 0.00e+ 00 ± 0.00e+ 00 -
f3 6.90e− 01 ± 8.14e− 01 1.79e+ 00 ± 1.44e+ 00 + 1.88e+ 01 ± 7.12e+ 00 + 5.54e+ 01 ± 3.69e+ 01 +
f4 1.18e+ 00 ± 9.51e− 01 1.89e+ 00 ± 1.42e+ 00 + 2.46e+ 01 ± 9.44e+ 00 + 6.69e+ 01 ± 3.81e+ 01 +
f5 1.07e− 13 ± 6.24e− 14 6.22e− 10 ± 2.29e− 10 + 2.33e− 08 ± 1.94e− 08 + 0.00e+ 00 ± 0.00e+ 00 -
f6 1.33e− 03 ± 4.68e− 03 1.36e− 01 ± 2.81e− 01 + 1.06e+ 00 ± 1.11e+ 00 + 1.37e+ 01 ± 1.66e+ 01 +
f7 8.04e+ 00 ± 5.45e+ 00 6.49e+ 00 ± 6.24e+ 00 - 4.74e+ 00 ± 3.54e+ 00 - 7.10e+ 00 ± 6.28e+ 00 =
f8 1.10e− 01 ± 2.20e− 01 1.93e+ 00 ± 1.93e+ 00 + 6.45e+ 00 ± 1.15e+ 00 + 2.22e+ 00 ± 1.68e+ 00 +
f9 1.31e+ 00 ± 7.18e+ 00 5.13e+ 00 ± 1.64e+ 00 + 4.42e+ 01 ± 5.16e+ 01 + 8.98e+ 00 ± 2.27e+ 01 +
f10 3.12e+ 02 ± 1.58e+ 02 2.33e+ 03 ± 2.22e+ 03 + 3.65e+ 03 ± 2.54e+ 03 + 2.82e+ 03 ± 1.93e+ 03 +
f11 8.80e+ 01 ± 3.12e+ 01 6.98e+ 01 ± 3.27e+ 01 - 5.53e+ 01 ± 2.14e+ 01 - 1.34e+ 02 ± 4.44e+ 01 +
f12 1.09e+ 01 ± 1.61e+ 01 7.40e+ 00 ± 1.30e+ 01 = 6.01e+ 00 ± 8.95e+ 00 = 1.83e+ 01 ± 2.06e+ 01 +
f13 9.49e+ 00 ± 1.01e+ 01 1.08e+ 01 ± 9.43e+ 00 = 7.52e+ 00 ± 8.81e+ 00 = 2.91e+ 01 ± 1.50e+ 01 +
f14 1.01e− 04 ± 2.45e− 05 3.03e− 04 ± 6.93e− 05 + 6.55e− 04 ± 4.46e− 04 + 4.10e− 04 ± 1.03e− 04 +
f15 5.72e+ 01 ± 2.66e+ 01 4.49e+ 01 ± 1.93e+ 01 - 2.11e+ 01 ± 9.85e+ 00 - 4.16e+ 02 ± 1.44e+ 02 +
f16 4.07e+ 00 ± 2.49e+ 00 4.04e+ 00 ± 2.39e+ 00 = 2.32e+ 00 ± 1.52e+ 00 - 2.14e+ 01 ± 1.67e+ 01 +
f17 2.58e+ 00 ± 1.73e+ 00 1.46e+ 00 ± 8.92e− 01 - 5.70e− 01 ± 5.86e− 01 - 5.09e+ 01 ± 5.83e+ 01 +
f18 8.60e+ 00 ± 5.93e+ 00 4.75e+ 00 ± 2.84e+ 00 - 2.05e+ 00 ± 2.60e+ 00 - 2.79e+ 02 ± 4.27e+ 02 +
f19 2.62e+ 00 ± 1.42e+ 00 2.08e+ 00 ± 1.01e+ 00 = 1.54e+ 00 ± 8.41e− 01 - 2.28e+ 01 ± 1.24e+ 01 +
f20 6.63e− 01 ± 2.56e− 01 5.49e− 01 ± 2.26e− 01 - 1.47e+ 00 ± 2.97e− 01 + 1.10e+ 00 ± 2.78e− 01 +
f21 3.38e+ 00 ± 3.47e+ 00 3.93e+ 00 ± 3.60e+ 00 = 3.00e+ 00 ± 3.13e+ 00 = 1.28e+ 01 ± 1.23e+ 01 +
f22 2.75e+ 00 ± 4.04e+ 00 5.73e+ 00 ± 8.81e+ 00 = 2.21e+ 00 ± 1.88e+ 00 = 1.62e+ 01 ± 1.98e+ 01 +
f23 7.56e− 01 ± 2.47e− 01 6.50e− 01 ± 2.65e− 01 - 4.64e− 01 ± 3.51e− 01 - 1.64e+ 00 ± 5.64e− 01 +
f24 5.14e+ 01 ± 1.83e+ 01 4.09e+ 01 ± 1.40e+ 01 - 3.95e+ 01 ± 1.43e+ 01 - 2.61e+ 02 ± 8.05e+ 01 +

Table 2 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
complex algorithms on the BBOB 2010 in 10 dimensions

S-3SOME G-CMAES SADE CCPSO2

f1 2.23e− 14 ± 1.23e− 14 0.00e+ 00 ± 0.00e+ 00 - 0.00e+ 00 ± 0.00e+ 00 - 7.25e− 07 ± 1.99e− 06 +
f2 2.56e− 14 ± 1.77e− 14 1.56e+ 03 ± 1.27e+ 03 + 0.00e+ 00 ± 0.00e+ 00 - 2.19e− 01 ± 5.23e− 01 +
f3 6.90e− 01 ± 8.14e− 01 4.12e+ 02 ± 1.13e+ 02 + 2.75e+ 00 ± 2.10e+ 00 + 3.39e+ 00 ± 1.69e+ 00 +
f4 1.18e+ 00 ± 9.51e− 01 4.66e+ 02 ± 8.11e+ 01 + 3.93e+ 00 ± 2.45e+ 00 + 3.95e+ 00 ± 1.64e+ 00 +
f5 1.07e− 13 ± 6.24e− 14 2.14e+ 01 ± 8.25e+ 00 + 9.44e− 14 ± 1.50e− 13 - 5.83e− 01 ± 6.57e− 01 +
f6 1.33e− 03 ± 4.68e− 03 1.18e− 14 ± 0.00e+ 00 - 2.81e− 14 ± 1.34e− 13 - 1.68e+ 00 ± 1.15e+ 00 +
f7 8.04e+ 00 ± 5.45e+ 00 0.00e+ 00 ± 0.00e+ 00 - 2.31e− 01 ± 3.13e− 01 - 2.47e+ 00 ± 6.63e− 01 -
f8 1.10e− 01 ± 2.20e− 01 0.00e+ 00 ± 0.00e+ 00 - 2.39e− 02 ± 3.08e− 01 - 1.99e+ 00 ± 2.19e+ 00 +
f9 1.31e+ 00 ± 7.18e+ 00 0.00e+ 00 ± 0.00e+ 00 - 3.88e− 02 ± 3.77e− 01 - 2.26e+ 00 ± 1.44e+ 00 +
f10 3.12e+ 02 ± 1.58e+ 02 8.19e+ 02 ± 1.14e+ 03 + 4.23e+ 01 ± 5.70e+ 01 - 5.87e+ 03 ± 3.56e+ 03 +
f11 8.80e+ 01 ± 3.12e+ 01 0.00e+ 00 ± 0.00e+ 00 - 1.10e+ 00 ± 1.36e+ 00 - 2.10e+ 01 ± 6.57e+ 00 -
f12 1.09e+ 01 ± 1.61e+ 01 1.22e+ 04 ± 1.53e+ 04 + 4.28e− 01 ± 8.04e− 01 - 4.02e+ 00 ± 7.84e+ 00 -
f13 9.49e+ 00 ± 1.01e+ 01 1.98e− 11 ± 3.18e− 11 - 1.32e− 02 ± 3.38e− 02 - 2.42e+ 00 ± 1.97e+ 00 -
f14 1.01e− 04 ± 2.45e− 05 6.99e+ 01 ± 6.01e+ 01 + 1.16e− 05 ± 1.05e− 05 - 1.52e− 03 ± 1.08e− 03 +
f15 5.72e+ 01 ± 2.66e+ 01 1.45e+ 00 ± 1.02e+ 00 - 1.04e+ 01 ± 4.91e+ 00 - 4.21e+ 01 ± 1.20e+ 01 -
f16 4.07e+ 00 ± 2.49e+ 00 4.37e− 03 ± 1.07e− 02 - 9.48e− 01 ± 8.54e− 01 - 4.11e+ 00 ± 1.16e+ 00 =
f17 2.58e+ 00 ± 1.73e+ 00 4.00e+ 01 ± 2.95e+ 01 + 9.04e− 04 ± 2.16e− 03 - 7.17e− 01 ± 2.44e− 01 -
f18 8.60e+ 00 ± 5.93e+ 00 1.37e+ 02 ± 1.30e+ 02 + 2.43e− 02 ± 2.64e− 02 - 2.51e+ 00 ± 8.58e− 01 -
f19 2.62e+ 00 ± 1.42e+ 00 3.88e+ 01 ± 1.87e+ 01 + 5.96e− 01 ± 5.50e− 01 - 2.10e+ 00 ± 3.86e− 01 =
f20 6.63e− 01 ± 2.56e− 01 1.53e+ 04 ± 1.33e+ 04 + 7.59e− 01 ± 2.81e− 01 + 4.68e− 01 ± 1.70e− 01 -
f21 3.38e+ 00 ± 3.47e+ 00 1.67e+ 00 ± 1.15e+ 00 - 1.14e+ 00 ± 8.75e− 01 - 1.64e+ 00 ± 1.41e+ 00 =
f22 2.75e+ 00 ± 4.04e+ 00 8.19e+ 01 ± 4.66e+ 00 + 1.92e+ 00 ± 2.74e− 01 - 1.23e+ 00 ± 1.16e+ 00 =
f23 7.56e− 01 ± 2.47e− 01 1.06e− 01 ± 2.28e− 01 - 4.33e− 01 ± 4.23e− 01 - 1.39e+ 00 ± 2.39e− 01 +
f24 5.14e+ 01 ± 1.83e+ 01 8.72e+ 00 ± 4.55e+ 00 - 1.84e+ 01 ± 4.67e+ 00 - 4.50e+ 01 ± 7.31e+ 00 =

The comparison with the complex state-of-the-art
algorithms reported in Table 8 also suggests some
interesting considerations. First of all, while G-CMAES
slightly outperforms S-3SOME, which was expected
considering the complexity of G-CMAES compared to
S-3SOME, it’s interesting to notice that SADE and
CCPSO2, despite their complexity, are at least equaled,
if not outperformed by S-3SOME. More specifically,
S-3SOME tends to outperform G-CMAES and SADE
on separable functions (f1–f3) and some non-separable

multi-modal functions. The comparison with CCPSO2
is more difficult to interpret, although it seems that
S-3SOME shows a better performance with functions
characterised by a high level of multi-modality (second
half of the benchmark).

The average fitness trend obtained by the complex
algorithms on the test function f11 is shown in Figure 4,
where it is possible to notice that G-CMAES gets
stuck into a local optimum, while SADE and CCPSO2

10 I. Poikolainen et al.

Table 3 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on the BBOB 2010 in 40 dimensions

S-3SOME cDE cGA ISPO

f1 9.81e− 14 ± 2.30e− 14 1.47e− 10 ± 7.39e− 10 = 7.66e− 01 ± 6.03e− 01 + 4.03e− 14 ± 0.00e+ 00 -
f2 1.43e− 13 ± 2.98e− 14 5.00e− 01 ± 2.68e+ 00 + 2.67e+ 03 ± 1.69e+ 03 + 8.05e− 14 ± 1.29e− 14 -
f3 1.08e+ 01 ± 3.10e+ 00 7.46e+ 01 ± 1.79e+ 01 + 2.71e+ 02 ± 6.83e+ 01 + 1.94e+ 02 ± 5.66e+ 01 +
f4 1.54e+ 01 ± 3.14e+ 00 8.76e+ 01 ± 1.96e+ 01 + 4.56e+ 02 ± 9.71e+ 01 + 2.89e+ 02 ± 1.02e+ 02 +
f5 2.45e− 12 ± 9.36e− 13 1.28e− 02 ± 6.89e− 02 + 2.19e− 04 ± 7.91e− 04 + −3.55e− 14 ± 0.00e+ 00 -
f6 8.87e− 07 ± 4.72e− 06 2.01e+ 02 ± 7.30e+ 01 + 2.46e+ 02 ± 7.45e+ 01 + 5.29e+ 01 ± 5.60e+ 01 +
f7 8.91e+ 01 ± 3.18e+ 01 1.95e+ 02 ± 5.19e+ 01 + 1.71e+ 02 ± 5.57e+ 01 + 1.45e+ 02 ± 5.57e+ 01 +
f8 3.32e− 01 ± 5.31e− 01 6.68e+ 01 ± 6.88e+ 01 + 5.00e+ 02 ± 2.75e+ 02 + 3.96e+ 01 ± 3.73e+ 01 +
f9 1.31e+ 00 ± 1.72e+ 00 8.44e+ 01 ± 7.68e+ 01 + 1.09e+ 03 ± 6.88e+ 02 + 3.17e+ 01 ± 9.28e+ 00 +
f10 9.77e+ 02 ± 3.04e+ 02 8.97e+ 04 ± 3.64e+ 04 + 2.52e+ 05 ± 1.27e+ 05 + 1.40e+ 04 ± 4.66e+ 03 +
f11 2.96e+ 02 ± 7.46e+ 01 2.85e+ 02 ± 5.68e+ 01 = 3.37e+ 02 ± 6.24e+ 01 + 4.79e+ 02 ± 9.67e+ 01 +
f12 6.48e+ 00 ± 6.67e+ 00 6.51e+ 04 ± 2.00e+ 05 + 1.69e+ 06 ± 1.66e+ 06 + 1.70e+ 01 ± 1.37e+ 01 +
f13 9.65e+ 00 ± 9.28e+ 00 4.82e+ 01 ± 2.63e+ 01 + 3.70e+ 02 ± 1.04e+ 02 + 1.47e+ 01 ± 1.36e+ 01 =
f14 3.08e− 04 ± 5.49e− 05 8.85e− 02 ± 1.34e− 01 + 3.00e+ 00 ± 1.37e+ 00 + 1.61e− 03 ± 3.15e− 04 +
f15 3.88e+ 02 ± 1.04e+ 02 3.92e+ 02 ± 1.19e+ 02 = 2.96e+ 02 ± 7.48e+ 01 - 2.65e+ 03 ± 6.48e+ 02 +
f16 1.42e+ 01 ± 4.25e+ 00 1.64e+ 01 ± 3.90e+ 00 + 1.28e+ 01 ± 3.84e+ 00 = 3.54e+ 01 ± 7.71e+ 00 +
f17 6.91e+ 00 ± 1.47e+ 00 6.08e+ 00 ± 1.37e+ 00 - 4.87e+ 00 ± 1.38e+ 00 - 2.41e+ 01 ± 1.23e+ 01 +
f18 2.22e+ 01 ± 5.74e+ 00 2.27e+ 01 ± 3.66e+ 00 = 1.86e+ 01 ± 4.20e+ 00 - 1.25e+ 02 ± 8.17e+ 01 +
f19 6.13e+ 00 ± 2.38e+ 00 7.26e+ 00 ± 1.97e+ 00 + 6.83e+ 00 ± 1.74e+ 00 = 4.64e+ 01 ± 1.29e+ 01 +
f20 8.96e− 01 ± 1.30e− 01 1.01e+ 00 ± 1.62e− 01 + 2.17e+ 00 ± 5.25e− 01 + 1.28e+ 00 ± 1.58e− 01 +
f21 1.19e+ 01 ± 1.50e+ 01 3.94e+ 00 ± 5.58e+ 00 - 4.89e+ 00 ± 5.52e+ 00 = 1.55e+ 01 ± 1.92e+ 01 =
f22 1.49e+ 01 ± 1.55e+ 01 1.48e+ 01 ± 6.10e+ 00 + 1.28e+ 01 ± 7.44e+ 00 + 1.77e+ 01 ± 1.47e+ 01 =
f23 1.05e+ 00 ± 4.17e− 01 1.79e+ 00 ± 5.40e− 01 + 1.14e+ 00 ± 3.99e− 01 = 3.15e+ 00 ± 9.00e− 01 +
f24 3.88e+ 02 ± 7.13e+ 01 4.16e+ 02 ± 6.53e+ 01 = 4.17e+ 02 ± 8.56e+ 01 = 1.27e+ 03 ± 1.79e+ 02 +

Table 4 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
complex algorithms on the BBOB 2010 in 40 dimensions

S-3SOME G-CMAES SADE CCPSO2

f1 9.81e− 14 ± 2.30e− 14 1.56e− 14 ± 0.00e+ 00 - 1.04e− 14 ± 1.03e− 14 - 1.28e− 13 ± 5.81e− 14 +
f2 1.43e− 13 ± 2.98e− 14 5.17e+ 02 ± 2.05e+ 02 + 6.73e− 14 ± 2.25e− 13 - 3.82e− 13 ± 4.32e− 13 +
f3 1.08e+ 01 ± 3.10e+ 00 5.44e+ 02 ± 6.34e+ 01 + 3.57e+ 01 ± 1.60e+ 01 + 8.16e− 01 ± 7.69e− 01 -
f4 1.54e+ 01 ± 3.14e+ 00 5.48e+ 02 ± 4.96e+ 01 + 5.39e+ 01 ± 2.25e+ 01 + 4.47e+ 00 ± 1.68e+ 00 -
f5 2.45e− 12 ± 9.36e− 13 2.54e+ 01 ± 8.99e+ 00 + 1.84e− 10 ± 3.47e− 10 + 1.37e− 10 ± 4.95e− 10 +
f6 8.87e− 07 ± 4.72e− 06 4.41e− 14 ± 0.00e+ 00 - 1.35e+ 00 ± 2.47e+ 00 + 2.36e+ 01 ± 1.77e+ 01 +
f7 8.91e+ 01 ± 3.18e+ 01 4.11e+ 00 ± 4.13e+ 00 - 3.61e+ 01 ± 1.19e+ 01 - 5.64e+ 01 ± 1.23e+ 01 -
f8 3.32e− 01 ± 5.31e− 01 3.03e− 14 ± 0.00e+ 00 - 3.72e+ 01 ± 2.63e+ 01 + 3.40e+ 01 ± 2.63e+ 01 +
f9 1.31e+ 00 ± 1.72e+ 00 1.33e− 01 ± 7.16e− 01 - 3.41e+ 01 ± 1.49e+ 00 + 3.48e+ 01 ± 1.06e+ 01 +
f10 9.77e+ 02 ± 3.04e+ 02 1.34e+ 02 ± 5.36e+ 01 - 6.09e+ 03 ± 2.10e+ 03 + 1.12e+ 04 ± 5.32e+ 03 +
f11 2.96e+ 02 ± 7.46e+ 01 2.40e− 14 ± 0.00e+ 00 - 3.46e+ 01 ± 1.29e+ 01 - 1.78e+ 02 ± 4.92e+ 01 -
f12 6.48e+ 00 ± 6.67e+ 00 4.57e+ 03 ± 4.68e+ 03 + 8.74e+ 00 ± 6.35e+ 00 = 1.63e+ 01 ± 8.10e+ 00 +
f13 9.65e+ 00 ± 9.28e+ 00 7.65e− 05 ± 2.31e− 04 - 6.86e+ 00 ± 5.80e+ 00 = 7.71e+ 00 ± 7.51e+ 00 =
f14 3.08e− 04 ± 5.49e− 05 9.08e+ 01 ± 2.74e+ 01 + 4.68e− 04 ± 1.36e− 04 + 8.60e− 04 ± 1.69e− 04 +
f15 3.88e+ 02 ± 1.04e+ 02 1.10e+ 01 ± 2.28e+ 00 - 7.14e+ 01 ± 2.51e+ 01 - 3.70e+ 02 ± 8.74e+ 01 =
f16 1.42e+ 01 ± 4.25e+ 00 3.03e− 02 ± 3.60e− 02 - 1.12e+ 01 ± 3.38e+ 00 - 1.40e+ 01 ± 3.11e+ 00 =
f17 6.91e+ 00 ± 1.47e+ 00 2.75e+ 01 ± 9.16e+ 00 + 8.30e− 01 ± 3.22e− 01 - 5.57e+ 00 ± 1.78e+ 00 -
f18 2.22e+ 01 ± 5.74e+ 00 4.00e+ 01 ± 1.97e+ 01 + 3.32e+ 00 ± 8.50e− 01 - 1.83e+ 01 ± 5.42e+ 00 -
f19 6.13e+ 00 ± 2.38e+ 00 5.19e+ 01 ± 1.42e+ 01 + 1.45e+ 00 ± 7.96e− 01 - 6.22e+ 00 ± 3.69e− 01 =
f20 8.96e− 01 ± 1.30e− 01 4.33e+ 03 ± 3.00e+ 03 + 1.84e+ 00 ± 1.87e− 01 + 4.77e− 01 ± 8.79e− 02 -
f21 1.19e+ 01 ± 1.50e+ 01 1.08e+ 00 ± 1.24e+ 00 - 2.93e+ 00 ± 2.46e+ 00 - 9.98e− 01 ± 1.14e+ 00 -
f22 1.49e+ 01 ± 1.55e+ 01 8.61e+ 01 ± 3.74e− 01 + 1.07e+ 01 ± 8.15e+ 00 - 2.74e+ 00 ± 3.28e+ 00 -
f23 1.05e+ 00 ± 4.17e− 01 8.92e− 01 ± 1.37e+ 00 - 1.32e+ 00 ± 5.41e− 01 = 2.65e+ 00 ± 4.42e− 01 +
f24 3.88e+ 02 ± 7.13e+ 01 3.97e+ 01 ± 1.98e+ 01 - 8.52e+ 01 ± 1.09e+ 01 - 2.60e+ 02 ± 5.16e+ 01 -

converge slower than S-3SOME, and to worse final
values.

To further strengthen the improvements reached with
S-SOME, we also compared its performance on the CEC
2010 testbed with its inspiring memetic framework, i.e.,
the 3SOME algorithm proposed in (Iacca el al., 2012).
3SOME was executed with the same parameter values
of αe and ρ used for S-3SOME in the experiments
described above, while the number of solutions generated
during each activation of the middle distance exploration

was set to 4 · n, as suggested in the original paper.
Table 9 reports the numerical results of this comparison.
It can be noticed that 3-3SOME seems to generally
outperform the original 3SOME (13 “+”, 5 “-” and
2 “=”), while 3SOME outperforms S-3SOME on some
unimodal (partially) non-separable functions (f4, f7 and
f19). This result can be seen as a consequence of the
shrinking mechanism, which tends to rapidly exploit the
promising regions found by the long distance focusing
the search over them. In case of large scale problems, this

Focusing the search: a progressively shrinking memetic computing framework 11

Table 5 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on the BBOB 2010 in 100 dimensions

S-3SOME cDE cGA ISPO

f1 2.52e− 13 ± 2.38e− 14 1.55e+ 01 ± 9.03e+ 00 + 8.72e+ 01 ± 2.74e+ 01 + 1.08e− 13 ± 1.25e− 14 -
f2 3.92e− 13 ± 4.83e− 14 2.85e+ 05 ± 4.50e+ 05 + 5.25e+ 05 ± 2.71e+ 05 + 1.98e− 13 ± 2.26e− 14 -
f3 4.51e+ 01 ± 6.25e+ 00 6.01e+ 02 ± 9.86e+ 01 + 1.69e+ 03 ± 3.58e+ 02 + 5.75e+ 02 ± 1.19e+ 02 +
f4 6.41e+ 01 ± 9.26e+ 00 1.03e+ 03 ± 1.70e+ 02 + 3.22e+ 03 ± 4.80e+ 02 + 6.84e+ 02 ± 1.46e+ 02 +
f5 1.34e− 11 ± 4.63e− 12 2.53e+ 01 ± 9.38e+ 00 + 7.11e+ 01 ± 3.60e+ 01 + −3.55e− 14 ± 0.00e+ 00 -
f6 8.06e− 09 ± 2.85e− 08 1.33e+ 03 ± 1.95e+ 02 + 2.14e+ 03 ± 1.89e+ 03 + 2.11e+ 02 ± 9.09e+ 01 +
f7 3.03e+ 02 ± 1.10e+ 02 1.18e+ 03 ± 2.45e+ 02 + 1.09e+ 03 ± 2.33e+ 02 + 1.96e+ 03 ± 5.75e+ 02 +
f8 3.74e+ 01 ± 3.84e+ 01 6.44e+ 03 ± 3.83e+ 03 + 1.93e+ 05 ± 1.01e+ 05 + 1.17e+ 02 ± 3.82e+ 01 +
f9 5.15e+ 01 ± 1.79e+ 01 1.93e+ 04 ± 1.18e+ 04 + 1.43e+ 05 ± 5.01e+ 04 + 9.13e+ 01 ± 1.27e+ 01 +
f10 3.13e+ 03 ± 6.46e+ 02 1.42e+ 06 ± 3.80e+ 05 + 2.22e+ 06 ± 4.99e+ 05 + 3.24e+ 04 ± 6.15e+ 03 +
f11 5.58e+ 02 ± 1.04e+ 02 8.49e+ 02 ± 1.04e+ 02 + 9.78e+ 02 ± 1.04e+ 02 + 1.12e+ 03 ± 1.59e+ 02 +
f12 3.81e+ 00 ± 5.10e+ 00 4.72e+ 07 ± 2.37e+ 07 + 2.20e+ 08 ± 7.38e+ 07 + 8.78e+ 00 ± 1.79e+ 01 =
f13 5.81e+ 00 ± 4.55e+ 00 1.23e+ 03 ± 1.64e+ 02 + 2.03e+ 03 ± 3.08e+ 02 + 3.76e+ 00 ± 4.01e+ 00 -
f14 3.08e− 04 ± 5.65e− 05 1.99e+ 01 ± 3.64e+ 00 + 3.49e+ 01 ± 5.28e+ 00 + 2.40e− 03 ± 5.54e− 04 +
f15 1.45e+ 03 ± 2.94e+ 02 1.93e+ 03 ± 3.35e+ 02 + 1.75e+ 03 ± 2.86e+ 02 + 6.85e+ 03 ± 1.20e+ 03 +
f16 1.85e+ 01 ± 5.16e+ 00 2.87e+ 01 ± 4.61e+ 00 + 2.15e+ 01 ± 4.01e+ 00 + 5.05e+ 01 ± 8.30e+ 00 +
f17 8.58e+ 00 ± 1.40e+ 00 1.02e+ 01 ± 1.68e+ 00 + 9.63e+ 00 ± 1.13e+ 00 + 4.77e+ 01 ± 4.08e+ 01 +
f18 3.31e+ 01 ± 5.57e+ 00 4.17e+ 01 ± 6.39e+ 00 + 3.61e+ 01 ± 5.90e+ 00 + 1.67e+ 02 ± 9.53e+ 01 +
f19 9.53e+ 00 ± 2.11e+ 00 1.77e+ 01 ± 2.63e+ 00 + 1.82e+ 01 ± 3.14e+ 00 + 1.22e+ 02 ± 2.00e+ 01 +
f20 9.26e− 01 ± 7.75e− 02 1.73e+ 00 ± 1.52e− 01 + 1.70e+ 04 ± 9.71e+ 03 + 1.27e+ 00 ± 8.71e− 02 +
f21 1.25e+ 01 ± 1.20e+ 01 1.58e+ 01 ± 9.15e+ 00 = 2.59e+ 01 ± 1.14e+ 01 + 1.12e+ 01 ± 1.15e+ 01 =
f22 1.58e+ 01 ± 1.75e+ 01 1.78e+ 01 ± 1.11e+ 01 + 2.75e+ 01 ± 1.69e+ 01 + 1.34e+ 01 ± 1.12e+ 01 =
f23 1.41e+ 00 ± 3.67e− 01 2.95e+ 00 ± 5.66e− 01 + 1.83e+ 00 ± 4.29e− 01 + 3.90e+ 00 ± 6.96e− 01 +
f24 1.46e+ 03 ± 1.99e+ 02 1.67e+ 03 ± 1.48e+ 02 + 2.12e+ 03 ± 2.33e+ 02 + 3.59e+ 03 ± 3.46e+ 02 +

Table 6 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
complex algorithms on the BBOB 2010 in 100 dimensions

S-3SOME G-CMAES SADE CCPSO2

f1 2.52e− 13 ± 2.38e− 14 2.89e− 14 ± 0.00e+ 00 - 1.92e− 13 ± 2.23e− 13 - 3.46e− 13 ± 2.19e− 13 =
f2 3.92e− 13 ± 4.83e− 14 3.50e+ 02 ± 7.34e+ 01 + 6.12e− 13 ± 9.92e− 13 = 8.69e− 13 ± 7.75e− 13 +
f3 4.51e+ 01 ± 6.25e+ 00 6.93e+ 02 ± 1.58e+ 02 + 1.70e+ 02 ± 4.68e+ 01 + 1.01e+ 01 ± 8.65e+ 00 -
f4 6.41e+ 01 ± 9.26e+ 00 8.03e+ 02 ± 1.57e+ 02 + 2.78e+ 02 ± 7.73e+ 01 + 1.85e+ 01 ± 1.24e+ 01 -
f5 1.34e− 11 ± 4.63e− 12 1.27e+ 02 ± 3.06e+ 01 + 1.69e− 01 ± 7.97e− 01 + 4.93e− 06 ± 2.50e− 05 +
f6 8.06e− 09 ± 2.85e− 08 3.36e− 13 ± 1.14e− 13 - 8.18e+ 01 ± 4.38e+ 01 + 7.89e+ 01 ± 3.60e+ 01 +
f7 3.03e+ 02 ± 1.10e+ 02 3.46e+ 01 ± 7.29e+ 00 - 2.77e+ 02 ± 9.83e+ 01 = 3.54e+ 02 ± 4.98e+ 01 +
f8 3.74e+ 01 ± 3.84e+ 01 1.10e+ 00 ± 2.02e+ 00 - 1.38e+ 02 ± 4.89e+ 01 + 1.21e+ 02 ± 3.45e+ 01 +
f9 5.15e+ 01 ± 1.79e+ 01 7.52e− 01 ± 1.36e+ 00 - 1.01e+ 02 ± 1.64e+ 01 + 1.11e+ 02 ± 3.40e+ 01 +
f10 3.13e+ 03 ± 6.46e+ 02 1.18e+ 02 ± 3.69e+ 01 - 4.88e+ 04 ± 2.53e+ 04 + 2.91e+ 04 ± 1.05e+ 04 +
f11 5.58e+ 02 ± 1.04e+ 02 8.05e− 14 ± 1.34e− 14 - 1.03e+ 02 ± 2.07e+ 01 - 5.58e+ 02 ± 2.17e+ 02 =
f12 3.81e+ 00 ± 5.10e+ 00 1.51e+ 03 ± 8.00e+ 02 + 5.90e+ 00 ± 7.30e+ 00 = 9.47e+ 00 ± 1.49e+ 01 =
f13 5.81e+ 00 ± 4.55e+ 00 2.85e− 02 ± 4.17e− 02 - 1.53e+ 00 ± 1.88e+ 00 - 2.74e+ 00 ± 3.17e+ 00 -
f14 3.08e− 04 ± 5.65e− 05 8.07e+ 01 ± 1.66e+ 01 + 5.64e− 03 ± 9.96e− 03 + 1.27e− 03 ± 1.58e− 04 +
f15 1.45e+ 03 ± 2.94e+ 02 3.73e+ 01 ± 3.18e+ 01 - 3.49e+ 02 ± 6.97e+ 01 - 1.41e+ 03 ± 2.33e+ 02 =
f16 1.85e+ 01 ± 5.16e+ 00 1.29e− 01 ± 8.03e− 02 - 2.53e+ 01 ± 4.22e+ 00 + 2.71e+ 01 ± 3.94e+ 00 +
f17 8.58e+ 00 ± 1.40e+ 00 2.70e+ 01 ± 5.38e+ 00 + 3.29e+ 00 ± 5.89e− 01 - 8.74e+ 00 ± 1.93e+ 00 =
f18 3.31e+ 01 ± 5.57e+ 00 4.02e+ 01 ± 1.44e+ 01 = 1.15e+ 01 ± 1.66e+ 00 - 3.31e+ 01 ± 4.69e+ 00 =
f19 9.53e+ 00 ± 2.11e+ 00 1.10e+ 02 ± 1.57e+ 01 + 3.16e+ 00 ± 9.98e− 01 - 7.89e+ 00 ± 1.07e+ 00 -
f20 9.26e− 01 ± 7.75e− 02 3.29e+ 03 ± 1.96e+ 03 + 2.04e+ 00 ± 1.63e− 01 + 4.99e− 01 ± 7.67e− 02 -
f21 1.25e+ 01 ± 1.20e+ 01 1.99e+ 00 ± 1.56e+ 00 - 6.18e+ 00 ± 6.08e+ 00 - 3.63e+ 00 ± 2.95e+ 00 -
f22 1.58e+ 01 ± 1.75e+ 01 8.65e+ 01 ± 7.01e− 02 + 5.22e+ 00 ± 6.53e+ 00 - 3.66e+ 00 ± 6.54e+ 00 =
f23 1.41e+ 00 ± 3.67e− 01 1.61e+ 00 ± 2.03e+ 00 = 2.22e+ 00 ± 7.32e− 01 + 2.54e+ 00 ± 4.46e− 01 +
f24 1.46e+ 03 ± 1.99e+ 02 2.28e+ 02 ± 8.75e+ 01 - 2.74e+ 02 ± 2.81e+ 01 - 1.06e+ 03 ± 1.70e+ 02 -

effect seems to be especially beneficial on multi-modal
functions, where a strong exploitation is needed as soon
as the global search component finds a promising area of
the search space. On the contrary, on unimodal functions
this exploitation pressure appears to be detrimental,
since it can focus the search on regions relatively far
from the single optimum. As a conjecture, due to
the random search within fixed bounds performed by
the original middle distance exploration, the 3SOME
algorithm appears instead to be able to avoid suboptimal

areas and, possibly, detect solutions that are closer to
the optimum.

3.3 Algorithmic overhead

In order to highlight the difference, in terms
of computational overhead, among the algorithms
considered in this study, we recorded the execution time
needed by all of them to perform an optimisation process
of the test function f1 from the BBOB 2010 (sphere

12 I. Poikolainen et al.

Table 7 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on the CEC 2010 benchmark in 1000 dimensions

S-3SOME cDE cGA ISPO

f1 6.03e− 04 ± 4.71e− 04 1.70e+ 11 ± 1.67e+ 10 + 1.08e+ 11 ± 1.60e+ 10 + 0.00e+ 00 ± 0.00e+ 00 -
f2 3.99e− 02 ± 9.13e− 03 1.49e+ 04 ± 3.51e+ 02 + 2.02e+ 04 ± 4.59e+ 02 + 1.38e+ 04 ± 4.22e+ 02 +
f3 7.56e− 03 ± 6.83e− 04 2.08e+ 01 ± 4.19e− 02 + 2.12e+ 01 ± 4.14e− 02 + 1.99e+ 01 ± 1.38e− 02 +
f4 2.08e+ 13 ± 6.90e+ 12 9.51e+ 13 ± 4.02e+ 13 + 2.02e+ 14 ± 6.92e+ 13 + 8.49e+ 12 ± 2.60e+ 12 -
f5 4.27e+ 08 ± 1.16e+ 08 3.79e+ 08 ± 7.46e+ 07 = 2.75e+ 08 ± 6.82e+ 07 - 8.84e+ 08 ± 1.48e+ 08 +
f6 1.54e+ 07 ± 5.39e+ 06 1.76e+ 07 ± 2.17e+ 06 = 1.30e+ 07 ± 3.27e+ 06 = 1.98e+ 07 ± 4.88e+ 04 +
f7 1.07e+ 10 ± 2.83e+ 09 3.99e+ 10 ± 1.23e+ 10 + 6.69e+ 10 ± 1.70e+ 10 + 3.85e+ 10 ± 1.81e+ 10 +
f8 1.78e+ 09 ± 2.68e+ 09 4.56e+ 11 ± 6.70e+ 11 + 5.82e+ 13 ± 5.83e+ 13 + 1.33e+ 09 ± 2.12e+ 09 -
f9 3.54e+ 08 ± 7.89e+ 07 7.44e+ 10 ± 7.07e+ 09 + 1.10e+ 11 ± 1.54e+ 10 + 8.55e+ 07 ± 9.80e+ 06 -
f10 5.12e+ 03 ± 2.63e+ 02 1.80e+ 04 ± 5.19e+ 02 + 2.02e+ 04 ± 4.75e+ 02 + 1.49e+ 04 ± 4.90e+ 02 +
f11 1.97e+ 02 ± 4.27e+ 00 2.31e+ 02 ± 4.61e− 01 + 2.31e+ 02 ± 3.94e− 01 + 2.18e+ 02 ± 2.25e− 01 +
f12 8.74e+ 04 ± 2.12e+ 04 6.18e+ 06 ± 4.44e+ 05 + 8.88e+ 06 ± 6.73e+ 05 + 2.21e+ 05 ± 2.84e+ 04 +
f13 5.61e+ 05 ± 7.34e+ 05 6.88e+ 11 ± 7.25e+ 10 + 1.53e+ 12 ± 1.93e+ 11 + 5.98e+ 03 ± 4.10e+ 03 -
f14 8.79e+ 07 ± 2.66e+ 06 6.76e+ 10 ± 6.23e+ 09 + 1.05e+ 11 ± 1.53e+ 10 + 1.97e+ 08 ± 1.41e+ 07 +
f15 1.33e+ 04 ± 2.40e+ 03 1.91e+ 04 ± 4.61e+ 02 + 1.99e+ 04 ± 3.09e+ 02 + 1.58e+ 04 ± 5.33e+ 02 +
f16 1.60e+ 02 ± 1.14e+ 02 4.22e+ 02 ± 6.53e− 01 + 4.23e+ 02 ± 5.48e− 01 + 3.97e+ 02 ± 2.63e− 01 +
f17 6.31e+ 04 ± 8.74e+ 03 1.05e+ 07 ± 9.29e+ 05 + 1.46e+ 07 ± 1.84e+ 06 + 4.84e+ 05 ± 6.56e+ 04 +
f18 3.88e+ 03 ± 4.66e+ 03 2.47e+ 12 ± 1.65e+ 11 + 4.65e+ 12 ± 2.42e+ 11 + 1.79e+ 04 ± 7.91e+ 03 +
f19 1.16e+ 06 ± 8.91e+ 04 1.10e+ 07 ± 1.21e+ 06 + 3.54e+ 07 ± 5.03e+ 06 + 5.57e+ 07 ± 1.41e+ 07 +
f20 1.20e+ 03 ± 1.93e+ 02 2.81e+ 12 ± 1.65e+ 11 + 5.25e+ 12 ± 2.10e+ 11 + 1.19e+ 03 ± 3.07e+ 02 =

Table 8 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
complex algorithms on the CEC 2010 benchmark in 1000 dimensions

S-3SOME G-CMAES SADE CCPSO2

f1 6.03e− 04 ± 4.71e− 04 4.75e+ 05 ± 4.02e+ 04 + 2.52e+ 07 ± 4.74e+ 07 + 5.12e− 05 ± 7.94e− 05 -
f2 3.99e− 02 ± 9.13e− 03 1.02e+ 04 ± 4.45e+ 02 + 5.70e+ 03 ± 3.34e+ 02 + 1.33e+ 02 ± 1.26e+ 02 +
f3 7.56e− 03 ± 6.83e− 04 1.99e+ 01 ± 1.08e− 02 + 1.90e+ 01 ± 2.17e− 01 + 2.13e− 06 ± 3.52e− 06 -
f4 2.08e+ 13 ± 6.90e+ 12 1.54e+ 11 ± 2.13e+ 10 - 3.44e+ 12 ± 2.41e+ 12 - 3.80e+ 12 ± 2.29e+ 12 -
f5 4.27e+ 08 ± 1.16e+ 08 6.73e+ 08 ± 9.20e+ 07 + 1.05e+ 08 ± 1.78e+ 07 - 4.08e+ 08 ± 1.10e+ 08 =
f6 1.54e+ 07 ± 5.39e+ 06 1.98e+ 07 ± 6.46e+ 04 + 5.52e+ 05 ± 8.13e+ 05 - 1.67e+ 07 ± 4.94e+ 06 =
f7 1.07e+ 10 ± 2.83e+ 09 5.46e+ 06 ± 3.41e+ 05 - 2.35e+ 08 ± 4.41e+ 08 - 1.33e+ 10 ± 1.33e+ 10 =
f8 1.78e+ 09 ± 2.68e+ 09 5.62e+ 06 ± 1.88e+ 05 - 8.28e+ 07 ± 3.25e+ 07 - 7.40e+ 07 ± 4.88e+ 07 -
f9 3.54e+ 08 ± 7.89e+ 07 5.04e+ 05 ± 4.39e+ 04 - 3.90e+ 08 ± 3.22e+ 08 - 8.51e+ 07 ± 1.25e+ 07 -
f10 5.12e+ 03 ± 2.63e+ 02 1.04e+ 04 ± 3.99e+ 02 + 6.37e+ 03 ± 2.69e+ 02 + 4.55e+ 03 ± 2.93e+ 02 -
f11 1.97e+ 02 ± 4.27e+ 00 2.18e+ 02 ± 2.14e− 01 + 2.05e+ 02 ± 3.33e+ 00 + 2.01e+ 02 ± 6.51e+ 00 =
f12 8.74e+ 04 ± 2.12e+ 04 1.04e− 12 ± 8.83e− 14 - 4.85e+ 05 ± 1.82e+ 05 + 1.38e+ 05 ± 1.27e+ 05 +
f13 5.61e+ 05 ± 7.34e+ 05 2.20e+ 02 ± 3.37e+ 02 - 1.32e+ 07 ± 3.61e+ 07 - 1.36e+ 03 ± 3.96e+ 02 -
f14 8.79e+ 07 ± 2.66e+ 06 5.52e+ 05 ± 5.43e+ 04 - 6.30e+ 08 ± 2.98e+ 08 + 2.93e+ 08 ± 5.53e+ 07 +
f15 1.33e+ 04 ± 2.40e+ 03 1.03e+ 04 ± 5.24e+ 02 - 6.58e+ 03 ± 4.22e+ 02 - 9.27e+ 03 ± 6.90e+ 02 -
f16 1.60e+ 02 ± 1.14e+ 02 3.97e+ 02 ± 3.14e− 01 + 3.83e+ 02 ± 1.82e+ 00 + 3.94e+ 02 ± 1.40e+ 00 +
f17 6.31e+ 04 ± 8.74e+ 03 1.97e− 11 ± 8.02e− 12 - 9.23e+ 05 ± 1.67e+ 05 + 2.68e+ 05 ± 1.38e+ 05 +
f18 3.88e+ 03 ± 4.66e+ 03 4.47e+ 02 ± 3.88e+ 02 - 1.98e+ 09 ± 4.20e+ 09 + 8.02e+ 03 ± 6.53e+ 03 +
f19 1.16e+ 06 ± 8.91e+ 04 1.48e+ 04 ± 3.07e+ 03 - 2.69e+ 06 ± 1.96e+ 05 + 4.38e+ 06 ± 7.34e+ 06 =
f20 1.20e+ 03 ± 1.93e+ 02 8.33e+ 02 ± 6.48e+ 01 - 2.29e+ 09 ± 2.93e+ 09 + 1.52e+ 03 ± 1.36e+ 02 +

Figure 4 Average fitness trend of memory-saving
algorithms on f10 from CEC 2010 in 1000
dimensions.

 5000

 10000

 15000

 20000

 25000

 30000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Fi
tn

es
s

Fitness evaluations

S-3SOME
cDE
cGA

ISPO

Figure 5 Average fitness trend of complex algorithms on
f11 from CEC 2010 in 1000 dimensions.

 195

 200

 205

 210

 215

 220

 225

 230

 235

 240

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Fi
tn

es
s

va
lu

e

Fitness evaluations

S-3SOME
G-CMAES

SADE
CCPSO2

Focusing the search: a progressively shrinking memetic computing framework 13

Table 9 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
3SOME and S-3SOME on the CEC 2010 benchmark in 1000 dimensions

S-3SOME 3SOME

f1 6.03e− 04 ± 4.71e− 04 2.15e− 02 ± 6.88e− 02 +
f2 3.99e− 02 ± 9.13e− 03 1.36e+ 01 ± 1.91e+ 01 +
f3 7.56e− 03 ± 6.83e− 04 4.81e− 01 ± 4.94e− 01 +
f4 2.08e+ 13 ± 6.90e+ 12 8.08e+ 12 ± 3.04e+ 12 -
f5 4.27e+ 08 ± 1.16e+ 08 7.26e+ 08 ± 1.38e+ 08 +
f6 1.54e+ 07 ± 5.39e+ 06 1.98e+ 07 ± 9.20e+ 04 +
f7 1.07e+ 10 ± 2.83e+ 09 1.48e+ 09 ± 3.73e+ 08 -
f8 1.78e+ 09 ± 2.68e+ 09 8.68e+ 08 ± 2.62e+ 09 -
f9 3.54e+ 08 ± 7.89e+ 07 4.24e+ 08 ± 6.35e+ 07 +
f10 5.12e+ 03 ± 2.63e+ 02 6.75e+ 03 ± 3.69e+ 02 +
f11 1.97e+ 02 ± 4.27e+ 00 1.99e+ 02 ± 5.28e− 01 +
f12 8.74e+ 04 ± 2.12e+ 04 1.57e+ 05 ± 7.74e+ 04 +
f13 5.61e+ 05 ± 7.34e+ 05 1.48e+ 04 ± 6.61e+ 03 -
f14 8.79e+ 07 ± 2.66e+ 06 1.12e+ 08 ± 2.13e+ 07 +
f15 1.33e+ 04 ± 2.40e+ 03 1.37e+ 04 ± 6.36e+ 02 =
f16 1.60e+ 02 ± 1.14e+ 02 3.81e+ 02 ± 6.13e+ 01 +
f17 6.31e+ 04 ± 8.74e+ 03 2.78e+ 05 ± 2.26e+ 05 +
f18 3.88e+ 03 ± 4.66e+ 03 2.27e+ 04 ± 1.47e+ 04 +
f19 1.16e+ 06 ± 8.91e+ 04 1.44e+ 05 ± 1.83e+ 04 -
f20 1.20e+ 03 ± 1.93e+ 02 1.14e+ 03 ± 1.51e+ 02 =

function), with a budget of 10000 fitness evaluations.
Due to the scalability of the sphere function, we
tested all the algorithms for solving the same problem
in 2, 10, 20, 40, 80 and 100 dimensions. For each
algorithm and problem dimensionality, 30 independent
runs were performed, and for each run the computational
overhead, i.e., the time employed by the algorithm to
perform its operations, was computed subtracting the
calculation time of 10000 fitness evaluations (at the
selected dimensionality) from the total execution time
of the run. The average computational overhead, in
dependence on the dimensionality of the problem, is
shown for all the algorithms in Figure 6 and Table 10.

It can be observed that, among the selected
algorithms, ISPO shows the minimum overhead, which
does not even depend on the problem dimensionality. On
the other hand, the other two memory-saving algorithms
considered, namely cGA and cDE, are characterised by
an overhead which grows linearly with the dimensions,
being cDE more expensive than cGA (due to the multiple
sampling mechanism performed at each step of the
algorithm).

Amongst the complex algorithms, G-CMAES is by
far the most expensive in terms of computational
overhead: it’s easy to prove that, due to the covariance
matrix update mechanism, its complexity grows with
the square of the problem dimensionality (O (

n2
)
). On

the other hand, the complexity of SADE and CCPSO2
grows linearly with the dimensionality, being CCPSO2
computationally much cheaper than SADE.

Finally, 3SOME and S-3SOME are also characterised
by a linear complexity, being S-3SOME slightly cheaper
than the original 3SOME framework. However, the
most important observation is that S-3SOME is the
second computationally cheapest algorithm of the entire
experimental setup, after ISPO (whose performance,
except for 10-dimensional problems, is generally worse,

as we have seen before). Together with its low memory
requirement and its respectable performance, this fact
makes the S-3SOME scheme an appealing candidate for
real-time optimisation on embedded systems.

Figure 6 Overhead of the selected algorithms over 10000
fitness evaluations of f1 from BBOB 2010.

20 40 60 80 100
Problem dimension

0

500

1000

1500

2000

C
o
m

p
u
ta

ti
o
n
a
l
o
v
e
rh

e
a
d
 [

m
s
]

G-CMAES

CCPSO2

SADE

ISPO

cDE

cGA

3SOME

S-3SOME 75 80 85 90 95 100
0

5

10

15

20

3.4 Dynamic behaviour of memory-saving
algorithms

We here conclude the discussion of our experiments with
some remarks on the dynamic behaviour of S-3SOME
compared to the other memory-saving algorithms in the
experimental setup described above, namely cDE, cGA
and ISPO. Our goal is to analyse how those algorithms
perform when a limited budget is allotted: this can be
the case, for example, of a real-time optimisation process
performed on board of an embedded system. In this
context a large budget is often not available and the
optimisation must be completed within a reasonably

14 I. Poikolainen et al.

Table 10 Average overhead of the selected algorithms (ms) over 10000 fitness evaluations of f1 from BBOB 2010.

Problem Dimension
Algorithm 2 10 20 40 80 100

G-CMAES 22.60 28.27 106.83 270.53 997.90 1841.27
CCPSO2 10.60 10.27 10.13 12.30 14.60 19.97
SADE 45.37 46.50 53.30 65.07 88.03 103.07

ISPO 3.63 2.73 3.30 2.97 2.80 2.93
cDE 14.53 58.70 122.60 244.70 486.17 618.73
cGA 6.57 18.93 43.43 75.03 151.10 191.43

3SOME 10.00 6.50 10.00 6.10 14.13 17.73
S-3SOME 4.50 6.40 8.13 6.33 12.17 16.73

short amount of time. Due to hardware limitations and a
higher algorithmic complexity, modern population-based
meta-heuristics cannot be used, in general, in this kind
of application. For this reason we purposely focus this
analysis only on memory-saving algorithms.

Tables 11 and 12 show the final values and Wilcoxon
Rank-Sum Test results obtained, at different budget
levels, by the four aforementioned algorithms on a
selected subset of test functions taken from the BBOB
2010 and CEC 2010 testbeds. More specifically, Table
11 shows the results obtained on f5, f8 and f19 from
BBOB 2010 in 40 dimensions, while Table 12 shows the
results obtained on f3, f6 and f19 from CEC 2010 in 1000
dimensions. These functions have been chosen looking
at the benchmark definitions (Hansen el al., 2010) and
(Tang el al., 2010) and selecting, for each of the two
testbeds, a separable problem (f5 from BBOB 2010 and
f3 from CEC 2010), a moderately non-separable problem
(f8 from BBOB 2010 and f6 from CEC 2010), and a
fully non-separable problem (f19 from both BBOB 2010
and CEC 2010). Although this choice might not be
completely exhaustive, it gives at least some clues about
the behaviour of the selected algorithms on different
classes of problems.

In order to highlight the converge trend of the four
algorithms, three stopping criteria were used, namely
50 · n, 500 · n and 5000 · n, where n is usual the problem
dimensionality. Intermediate results were collected at
each budget level and statistic analyses were performed
accordingly.

From Table 11 it can be seen that, while ISPO,
due to its variable-wise perturbation, is extremely good
at handling separable medium scale functions (f5), on
(at least partially) non-separable problems S-3SOME is
able to improve upon the initial solution faster than
the other memory-saving algorithms, and to better final
values. This trend is confirmed on large scale problems,
see Table 12, where the performance of S-3SOME is
improved also on separable functions (f3). This result
confirms how S-3SOME is an excellent candidate for real-
time optimisation, where a good solution has to be found
as quickly as possible, especially on large scale problems.

4 Conclusion

In this paper a simple memetic scheme for numerical
optimisation has been proposed. Combining a
random global search, a stochastic local search
which progressively shrinks the search radius, and a
deterministic local search, the resulting algorithm, called
Shrinking Three Stage Optimal Memetic Exploration
(S-3SOME), has proven to be extremely flexible at
handling efficiently a set of diverse problems at various
dimensionality levels. Numerical results obtained on an
extensive experimental setup composed of two entire
benchmarks in 10, 40, 100 and 1000 dimensions showed
that, despite much smaller requirements in terms of
computational resources (memory and CPU operations),
the proposed approach is highly competitive with some
of the state-of-the-art global optimisers, particularly
in high dimensions. In addition to that, from the
comparison with other algorithms requiring limited
computational resources, it emerged that S-3SOME is
generally able to obtain the best results in the shortest
amount of time (fitness evaluations). Thus the S-3SOME
scheme can be considered a suitable solution for solving
especially (semi) large scale problems in contexts where
limited hardware resources are available and a rapid
(even real-time) optimised response is needed.

Acknowledgments

This research is supported by the Academy of Finland,
Akatemiatutkija 130600 and Tutkijatohtori 140487.
INCAS3 is co-funded by the Province of Drenthe, the
Municipality of Assen, the European Fund for Regional
Development and the Ministry of Economic Affairs,
Peaks in the Delta.

This paper is a revised and expanded version
of a paper entitled ‘Shrinking Three Stage Optimal
Memetic Exploration’ presented at the 5th International
Conference on Bioinspired Optimization Methods and
their Applications, 24–25 May 2012, Bohinj, Slovenia.

Focusing the search: a progressively shrinking memetic computing framework 15

Table 11 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on f5, f8 and f19 from BBOB 2010 in 40 dimensions and multiple budget levels.

stop S-3SOME cDE cGA ISPO

f5 50 · n 6.57e+ 01 ± 1.16e+ 01 8.19e+ 01 ± 1.66e+ 01 + 1.89e+ 02 ± 1.49e+ 01 + 2.85e+ 01 ± 4.14e+ 01 -
500 · n 3.42e− 06 ± 1.78e− 06 6.61e− 02 ± 1.77e− 01 + 1.51e− 01 ± 8.13e− 01 + −3.55e− 14 ± 0.00e+ 00 -
5000 · n 2.45e− 12 ± 9.36e− 13 1.28e− 02 ± 6.89e− 02 + 2.19e− 04 ± 7.91e− 04 + −3.55e− 14 ± 0.00e+ 00 -

f8 50 · n 8.87e+ 02 ± 3.08e+ 02 4.08e+ 03 ± 1.64e+ 03 + 6.46e+ 04 ± 2.05e+ 04 + 4.21e+ 04 ± 6.84e+ 04 +
500 · n 5.64e+ 01 ± 3.46e+ 01 9.24e+ 01 ± 8.25e+ 01 = 5.96e+ 02 ± 3.27e+ 02 + 1.30e+ 02 ± 4.69e+ 01 +
5000 · n 3.32e− 01 ± 5.31e− 01 6.68e+ 01 ± 6.88e+ 01 + 5.00e+ 02 ± 2.75e+ 02 + 3.96e+ 01 ± 3.73e+ 01 +

f19 50 · n 1.04e+ 01 ± 2.22e+ 00 1.17e+ 01 ± 1.74e+ 00 + 1.61e+ 01 ± 2.16e+ 00 + 5.17e+ 01 ± 1.61e+ 01 +
500 · n 6.91e+ 00 ± 2.38e+ 00 7.61e+ 00 ± 1.98e+ 00 = 6.88e+ 00 ± 1.74e+ 00 = 4.84e+ 01 ± 1.46e+ 01 +
5000 · n 6.13e+ 00 ± 2.38e+ 00 7.26e+ 00 ± 1.97e+ 00 + 6.83e+ 00 ± 1.74e+ 00 = 4.64e+ 01 ± 1.29e+ 01 +

Table 12 Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) obtained with
memory-saving algorithms on f3, f6 and f19 from CEC 2010 in 1000 dimensions and multiple budget levels.

stop S-3SOME cDE cGA ISPO

f3 50× n 1.90e+ 01 ± 9.58e− 02 2.10e+ 01 ± 1.65e− 01 + 2.12e+ 01 ± 4.14e− 02 + 1.99e+ 01 ± 1.54e− 02 +
500× n 9.53e+ 00 ± 4.03e− 01 2.08e+ 01 ± 4.24e− 02 + 2.12e+ 01 ± 4.14e− 02 + 1.99e+ 01 ± 1.41e− 02 +
5000× n 7.56e− 03 ± 6.83e− 04 2.08e+ 01 ± 4.19e− 02 + 2.12e+ 01 ± 4.14e− 02 + 1.99e+ 01 ± 1.38e− 02 +

f6 50× n 1.62e+ 07 ± 5.32e+ 06 1.76e+ 07 ± 2.19e+ 06 = 1.30e+ 07 ± 3.27e+ 06 - 2.01e+ 07 ± 8.34e+ 04 =
500× n 1.57e+ 07 ± 5.39e+ 06 1.76e+ 07 ± 2.17e+ 06 = 1.30e+ 07 ± 3.27e+ 06 = 1.98e+ 07 ± 4.88e+ 04 =
5000× n 1.54e+ 07 ± 5.39e+ 06 1.76e+ 07 ± 2.17e+ 06 = 1.30e+ 07 ± 3.27e+ 06 = 1.98e+ 07 ± 4.88e+ 04 +

f19 50× n 5.79e+ 06 ± 3.93e+ 05 5.74e+ 07 ± 1.19e+ 08 + 3.54e+ 07 ± 5.03e+ 06 + 8.74e+ 08 ± 4.93e+ 08 +
500× n 3.10e+ 06 ± 1.32e+ 05 1.10e+ 07 ± 1.21e+ 06 + 3.54e+ 07 ± 5.03e+ 06 + 1.75e+ 08 ± 5.49e+ 07 +
5000× n 1.16e+ 06 ± 8.91e+ 04 1.10e+ 07 ± 1.21e+ 06 + 3.54e+ 07 ± 5.03e+ 06 + 5.57e+ 07 ± 1.41e+ 07 +

References

Auger, A. and Hansen, N. (2005) ‘A restart CMA
evolution strategy with increasing population size’,
Proceedings of the IEEE Congress on Evolutionary
Computation, 2–4 September, Edinburgh, UK,
pp.1769–1776.

Brest, J., Greiner, S., Bošković, B., Mernik, M. and
Žumer, V. (2006) ‘Self-adapting control parameters
in differential evolution: A comparative study on
numerical benchmark problems’, IEEE T. Evolut.
Comput., Vol. 10, No. 6, pp.646–657.

Hooke, R. and Jeeves, T.A. (1961) ‘Direct search solution
of numerical and statistical problems’, J. ACM, Vol. 8,
No. 2, pp.212–229.

Iacca, G., Neri, F., Mininno, E., Ong, Y.S. and Lim,
M.H. (2012) ‘Ockham’s razor in memetic computing:
Three stage optimal memetic exploration’, Inform.
Sciences, Vol. 188, No. 1, pp.17-43.

Li, X. and Yao, X. (2012) ‘Cooperatively coevolving
particle swarms for large scale optimization’, IEEE T.
Evolut. Comput., Vol. 16, No. 2, pp.210–224.

Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar,
S. (2006) ‘Comprehensive learning particle swarm
optimizer for global optimization of multimodal
functions’, IEEE T. Evolut. Comput., Vol. 10, No. 3,
pp.281–295.

Hansen, N., Finck, S., Ros, R. and Auger, A.
(2010) ‘Real-parameter black-box optimization

benchmarking 2010: Noiseless functions definitions’,
Technical Report RR-6829, INRIA.

Mininno, E., Cupertino, F. and Naso, D. (2008)
‘Real-valued compactgenetic algorithms for embedded
microcontroller mptimization’, IEEE T. Evolut.
Comput., Vol. 12, No. 2, pp.203–219.

Mininno, E., Neri, F., Cupertino, F. and Naso, D. (2011)
‘Compact differential evolution’, IEEE T. Evolut.
Comput., Vol. 15, No. 1, pp.32–54.

Neri, F., Cotta, C. and Moscato, P. (2012) Handbook
of Memetic Algorithms, Vol. 379 of Studies in
Computational Intelligence, Springer.

Neri, F., Iacca, G. and Mininno, E. (2011) ‘Disturbed
exploitation compact differential evolution for limited
memory optimization problems’, Inform. Sciences,
Vol. 181, No. 12, pp.2469–2487.

Peng, F., Tang, K., Chen, G. and Yao, X. (2010)
‘Population-based algorithm portfolios for numerical
optimization’, IEEE T. Evolut. Comput., Vol. 14,
No. 5, pp.782–800.

Poikolainen, I., Iacca, G., Neri, F., Mininno, E.
and Weber, M. (2012) ‘Shrinking three stage
optimal memetic exploration’, Proceedings of the Fifth
International Conference on Bioinspired Optimization
Methods and their Applications, 24–25 May, Bohinj,
Slovenia, pp.61–74.

Price, K.V., Storn, R.M. and Lampinen, J.A. (2005)
Differential Evolution: A Practical Approach to Global
Optimization, Springer.

16 I. Poikolainen et al.

Qin, A.K., Huang, V.L. and Suganthan, P.N. (2009)
‘Differential evolution algorithm with strategy
adaptation for global numerical optimization’, IEEE
T. Evolut. Comput., Vol. 13, No. 2, pp.398–417.

Tang, K., Li, X., Suganthan, P.N., Yang, Z. and Weise,
T. (2010) ‘Benchmark Functions for the CEC’2010
Special Session and Competition on Large-Scale
Global Optimization’, Technical Report, University of
Science and Technology of China (USTC), School of
Computer Science and Technology, Nature Inspired
Computation and Applications Laboratory (NICAL),
Hefei, Anhui, China.

Tseng, L.Y. and Chen, C. (2008) ‘Multiple trajectory
search for large scale global optimization’, Proceedings
of the IEEE Congress on Evolutionary Computation,
1–6 June, Hong Kong, China, pp.3052–3059.

Vrugt, J.A., Robinson, B.A. and Hyman, J.M.
(2009) ‘Self-adaptive multimethod search for global
optimization in real-parameter spaces’, IEEE T.
Evolut. Comput., Vol. 13, No. 2, pp.243–259.

Wilcoxon, F. (1945) ‘Individual comparisons by ranking
methods’, Biometrics Bull., Vol. 1, No. 6, pp.80–83.

Wolpert, D.H. and Macready, W.G. (1997) ‘No free lunch
theorems for optimization’, IEEE T. Evolut. Comput.,
Vol. 1, No. 1, pp.67–82.

Zhou, J., Ji, Z. and Shen, L. (2008) ‘Simplified
intelligence single particle optimization based neural
network for digit recognition’, Proceedings of the
Chinese Conference on Pattern Recognition, 22–24
October, Beijing, China, pp.1–5.

PV

MICRO-DIFFERENTIAL EVOLUTION WITH EXTRA MOVES
ALONG THE AXES

by

F. Caraffini, F. Neri, I. Poikolainen 2013

IEEE Symposium on Differential Evolution (SDE), pages 46-53

Micro-Differential Evolution with Extra Moves
Along the Axes

Fabio Caraffini and Ferrante Neri
Centre for Computational Intelligence,

School of Computer Science and Informatics,

De Montfort University,

The Gateway, Leicester LE1 9BH, United Kingdom

Email: fabio.caraffini@email.dmu.ac.uk and fneri@dmu.ac.uk

Department of Mathematical Information Technology,

P.O. Box 35 (Agora), 40014

University of Jyväskylä, Finland

Email: fabio.caraffini@jyu.fi and ferrante.neri@jyu.fi

Ilpo Poikolainen
Department of Mathematical Information Technology,

P.O. Box 35 (Agora), 40014

University of Jyväskylä, Finland

Email: ilpo.poikolainen@jyu.fi

Abstract—This paper proposes a novel implementation of
micro-Differential Evolution (μDE) that incorporates within the
DE scheme an extra search move that attempts to improve the
best solution by perturbing it along the axes. These extra moves
complement the DE search logic and allows the exploration of
the decision space from an alternative perspective. In addition,
these extra moves at subsequent activations tend to explore
a progressively narrowing area. this mechanism increases the
exploitation of the original scheme thus helping μDE to pre-
vent from stagnation. An experimental set-up including various
test problems and dimensionality values has been considered.
Numerical results show that the proposed algorithm enhances
upon the original μDE performance and, despite its simplicity,
is competitive with modern complex DE based algorithms.

I. INTRODUCTION

Population-size a crucially important, if not the most impor-

tant, parameter in algorithms that process multiple solutions,

such as Evolutionary and Swarm Intelligence Algorithms (EAs

and SIAs, respectively), see e.g. [1]. The tuning of this param-

eter is hard since, the success of a given problem can heavily

depend on it. Looking at this issue from a complementary

perspective, a robust algorithmic design might have a variable

population size. This variation can be deterministic as in [2]

or self-adaptive as in [3], [4], and [5]. The topic whether a

large, a small, or unitary population is preferable is a topic

under discussion in computational intelligence community.

In this regard, an extensive study on population-based al-

gorithms and their advantages over single solution algorithms

has been reported in [6]. Five distinct mechanisms that would

justify the superiority of population-based algorithms over

schemes that perturb a single solution have been identified

and studied. The first mechanism is that a population offers a

diversified pool of building blocks whose combination might

generate new promising solutions. The second mechanism

is the result of focusing of the search caused by recombi-

nation operators. Since most recombination operators have

the property that, if both parents share the same value of

a variable, then the offspring also has the same value in

correspondence of that variable, see [7], recombination has

the power of exploring the part of the search space where

individuals disagree. In contrast, mutation explores the entire

search space. According to this analysis this mechanism of

focusing of the search by crossover can dramatically enhance

the speed of the algorithm to detect a good solution. The

third mechanism is the capability of a population to act as

a low-pass filter of the landscape, ignoring short-length scale

features in the landscape (e.g. shallow basins of attractions).

The fourth mechanism is the possibility to search different

areas of the decision space. This mechanism can be seen

also in a different way: since population-based algorithms

naturally perform an initial multiple sampling, the chance that

an unlucky initial sample jeopardizes the entire algorithmic

functioning is significantly mitigated. The fifth mechanism is

the opportunity of using the population to learn about good

parameters of the algorithm, i.e. to find a proper balance

between exploration and exploitation.

For the above-listed reasons, the employment of a

population-based algorithm would, in principle, be preferable

when possible. However, in counter-tendency with the anal-

ysis in [6], some algorithms recently proposed in literature,

although based on a single solution, still display an excellent

performance, even when compared with that of modern com-

plex population-based algorithms, see e.g. [8].

Contradictory results in literature are not only about the

advisability of using or not a population within an optimization

framework, but also about the proper sizing of the population.

Some studies clearly suggest the usage of large populations

in order to ensure the success of the algorithm, see [9]. On

the other hand, in [10] and [11], it is shown that, if properly

designed, a population-based algorithm with a very small

population size can efficiently solve large scale problems, see

also [12] and [13].

The latter kind of algorithms, i.e. population-based algo-

rithm that use a small population, are indicated as micro algo-

rithms and indicated by the prefix μ. An early implementation

of micro algorithm is the micro Genetic Algorithm (μGA), see

e.g. [14] and [15]. Over the latest years, micro algorithms have

been employed in various engineering applications as they are

proven to be lighter in terms of hardware requirements and

thus are prone to their use in embedded systems, see [16].

In addition, algorithms that make use of small populations are

more exploitative than the large ones and thus quickly achieve

improvements during the early stages of the optimization

process. This feature makes micro-algorithms especially useful

in real-time applications when a quick answer is needed, see

e.g. [17]. The effect of small populations is obviously different

when applied to various search strategies, see [18].

Amongst the various micro algorithms proposed in liter-

ature, micro-Differential Evolution (μDE) is a successfully

applied scheme. For example, in [19] a μDE employing

opposition-based mechanism has been proposed for image

thresholding problems. In [20] a μDE apprach is proposed

for evolving an indirect representation of the Bin Packing

Problem.

This paper proposes a novel implementation of μDE,

namely micro-Differential Evolution with Axis-moves

(μDEA). The proposed μDEA is a DE/rand/1/exp scheme,

see [21], that employs a very small population. In addition,

μDEA makes use of an extra refinement operator that perturbs

the solution of the micro-population characterized by the

highest performance. This refinement operator attempts to

improve upon the solution by means of an exploratory move

in the direction of each variable.

The remainder of this paper is organized in the following

way. Section II describes the working principles of the pro-

posed μDEA. Section III displays the experimental results of

this study. Section IV gives the conclusions of this work.

II. MICRO-DIFFERENTIAL EVOLUTION WITH AXIS MOVES

Without a loss of generality, in order to clarify the notation

in this paper, we refer to the minimization problem of an

objective function f(x), where the candidate solution x is a

vector of n design variables (or genes) in a decision space D.

The ith design variable of the vector x is indicated as x[i].
The proposed μDEA algorithm consists of a DE framework

and the extra moves along the axes. Section II-A and II-B

describe framework and extra moves, respectively. Section II-C

analyzes the μDE behavior and gives a justification to the

proposed algorithmic structure.

A. Micro-Differential Evolution framework

At the beginning of the optimization process, al sampling

of Spop individuals is performed randomly with a uniform

distribution function within the decision space D. In our

implementation, the μDE population size Spop has been set

equal to 5.

At each generation, for each individual xj of the Spop , three

individuals xr , xs and xt are randomly extracted from the

population. According to the DE logic, a provisional offspring

x′
off is generated by mutation:

x′
off = xt + F (xr − xs) (1)

xoff = xj

generate i = round (n · rand (0, 1))
xoff [i] = x′

off [i]
k = 1
while rand (0, 1) ≤ Cr AND k < n do

xoff [i] = x′
off [i]

i = i+ 1
if i == n then

i = 1
end if
k = k + 1

end while

Fig. 1. Pseudo code of the exponential crossover

where F ∈ [0, 1 + ε[is a scale factor which controls the length

of the exploration vector (xr−xs) and thus determines how far

from point xj the offspring should be generated. With F ∈
[0, 1 + ε[, it is meant here that the scale factor should be a

positive value which cannot be much greater than 1 (i.e. ε is

a small positive value), see [22]. While there is no theoretical

upper limit for F , effective values are rarely greater than 1.0.

The mutation scheme given in Equation (1) is also known

as DE/rand/1. In literature many other mutation variants have

been proposed, see [21] and [23].

When the provisional offspring has been generated by

mutation, a popular crossover, namely exponential crossover is

applied to the parent solution xj and the provisional offspring

x′
off , see [22]. In this crossover scheme, the number of

variables xj that are exchanged during one crossover follows a

geometric distribution. A geometric distribution is the discrete

counterpart of the exponential distribution (that gives the name

to this operator).

In the exponential crossover, a design variable of the pro-

visional offspring x′
off (j) is randomly selected and copied

into the jth design variable of the solution xi. This guar-

antees that parent and offspring have different genotypes.

Subsequently, a set of random numbers between 0 and 1 are

generated. As long as rand (0, 1) ≤ CR, where the crossover

rate CR is a predetermined parameter, the design variables

from the provisional offspring (mutant) are copied into the

corresponding positions of the parent xi. The first time that

rand (0, 1) > CR the copy process is interrupted. Thus, all the

remaining design variables of the offspring are copied from the

parent. When this crossover is combined with the DE/rand/1

mutation, the algorithm is referred to as DE/rand/1/exp (in or

case μDE/rand/1/exp). For the sake of clarity the pseudo-code

of the exponential crossover is shown in Fig. 1.

As shown in [24], it can easily be observed that for a

given value of Cr, the meaning of the exponential crossover

would change with the dimensionality of the problem. For

low dimensionality problems the trial solution would inherit

most of the genes from the elite while for high dimensionality

problems, only a small portion of xe would be copied into

xt. In order to avoid this problem and make the crossover

action independent on the dimensionality of the problem, the

following quantity is fixed:

αe ≈ ne

n
(2)

where ne is the number of genes we expect to copy from

parent to offspring in addition to that gene deterministically

copied. The probability that ne genes are copied is Crne =
Crnαe . In order to control the approximate amount of copied

genes and to achieve that about ne genes are copied into the

offspring with probability 0.5, we imposed that

Crnαe = 0.5. (3)

It can easily be seen that, for a chosen αe, the crossover rate

can be set on the basis of the dimensionality as follows:

Cr =
1

nαe
√
2
. (4)

By means of formula (4), the expected quantity of information

to be transmitted from parent to offspring is controlled.

B. Extra moves along the axes

Let us indicate with xp the pivot individual, i.e. the individ-

ual of the micro-population that displays the best performance.

With a given probability η, the pivot individual undergoes the

following operator that perturbs a single solution along its n
axes, i.e. separately perturbs each design variable. This oper-

ator can be seen as a modification of a classical hill-descend

algorithm and employs the perturbation logic proposed in [25].

The implementation of this operator requires an additional

solution, which will here be referred to as xs. The pivot

individual xp is perturbed by computing, for each variable

i:
xs[i] = xp[i]− ρ, (5)

where ρ is the exploratory radius. Subsequently, if xs outper-

forms xp, its values (the values of the vector elements) are

saved and the pivot solution is updated), otherwise a half step

in the opposite direction is taken:

xs[i] = xp[i] +
ρ

2
. (6)

Again, xs replaces xp if it outperforms it. If there is no update,

i.e. the exploration was unsuccessful, the radius ρ is halved.

This operation is repeated a limited prefixed amount of times

Iter, thus working as a shallow local search. The current value

of ρ is saved and used as the initial radius for the subsequent

activation of this operator.

The complete pseudo-code of the proposed μDEA algorithm

is shown in Fig. 2.

C. Algorithmic functioning

The DE algorithm is a very versatile and efficient optimizer

for continuous optimization problem. However, the original

scheme has a wide margin of improvement. For this reason,

part of the computer science community put an energetic

effort in order to propose DE variants that can outperform

the original DE scheme over various optimization problems.

Some of these variants turned out to be very successful.

generate randomly Spop individuals of the initial population
and compute their fitness values
while the computational budget is smaller than the prefixed
amount do

for j = 1 : Spop do
select three individuals xr, xs, and xt

compute mutant individual xoff = xt + F (xr − xs)
compute exponential crossover in Fig. 1

end for
for j = 1 : Spop do

compute f (xj)
end for
if rand(0, 1) < η then

extract the pivot individual xp from the micro-
population
xs = xp

for k = 1 : Iter do
for i = 1 : n do

compute xs[i] = xp[i]− ρ
if f (xs) ≤ f (xp) then

xp = xs

else
compute xs[i] = xp[i] +

ρ
2

if f (xs) ≤ f (xp) then
xp = xs

end if
end if

end for
end for

end if
end while

Fig. 2. Pseudo code of the μDEA algorithm

For example, the so called jDE [26] proposed a controlled

randomization of the DE parameters. Another popular DE

variant based on controlled randomization of the parameters

has been proposed in [27]. The Self-Adaptive Differential

Evolution (SADE) proposed in [28] employs multiple mutation

strategies and a randomized coordination scheme based on

an initial learning. Another efficient coordination strategy for

a multiple mutation structure has been proposed in [29]. A

modified selection strategy, based on the location within the

population, for the individuals undergoing mutation has been

proposed in [30]. Another example of efficient DE variant has

been proposed in [31] where a novel DE mutation is combined

with a randomized fitness based selection of the individuals

undergoing mutation.

As highlighted in [23] and [32], the reasons behind the

wide margin of improvements for the original DE scheme

are mainly two. The first reason is that DE scheme has

a limited amount of search moves. Thus, DE variants that

include extra moves into the original framework, usually,

lead to improved versions. The extra moves can be explicitly

implemented within the DE framework, see e.g. [33] and

[34], or can be implicitly contained in other perturbation

mechanism. The randomization, as shown in [32] and [35],

plays a very important role as it allows the generation of

candidate solutions that would not be generated by standard

mutation and crossover operations. The second reason is that

DE can be excessively exploratory. As shown in [36], a

typical challenge in DE functioning is that the solutions in

a population can be diverse and still unable to outperform the

individual with the best performance (i.e. DE can easily suffers

from stagnation). In order to prevent from this condition, the

employment of exploitative component or the implementation

of exploitative actions can be beneficial to DE performance.

The μDE schemes, due to the fact that use a small

population-size, are intrinsically more exploitative than stan-

dard DE schemes and this would, in principle, make them

less prone to stagnation issues. On the other hand, small

populations could potentially lead to an excessively quick

diversity loss and thus to a premature convergence. The

undesired premature convergence effect would actually have

a major impact on the performance on a micro-Evolutionary

Algorithm (μEA), such as a μGA. Unlike μEAs, the DE search

logic does not appear to lead too often to a diversity loss.

In low dimensions and for simple fitness landscapes, a DE

with a small population would obviously lose the diversity

and converge to a solution. On the other hand, in complex

multi-modal and multi-dimensional problems (already in 30
dimensions), even though only a few solutions (e.g. 5) com-

pose the population of a DE scheme, the μDE population

tends to keep the diversity high and its solutions could still be

distant within the decision space D. Since the distance among

solutions in a μDE scheme is correlated to the position of

the potential offspring, after initial improvements, a μDE can

be too exploratory and generate new points far away from

the interesting areas. On the contrary, in order to continue

achieving fitness improvements, the algorithm may require to

enhance the exploitation and focus the search in the areas of

interest.

The proposed μDEA aims at compensating this effect by

including within the search moves an alternative exploration

rule for the neighbourhood of the best solution. The extra

moves along the axes are supposed to offer, in a simplistic

way, a support to the μDE framework. These moves offer an

alternative search logic with respect to the normal DE muta-

tion and crossover and, most importantly, performs thorough

exploration of the most interesting areas so far detected, i.e.

the areas surrounding the solution characterized by the best

performance. As a result, μDEA explicitly incorporates extra

moves within a μDE framework and increases the exploitation

of the original scheme. Finally, the fact that the exploratory

radius of the moves along the axes is not re-initialized (but

used for the subsequent activation) results in a natural increase

in the exploitation action of this operator. In this way, the

moves along the axes explore a progressively narrowing area

arount the pivot solution xp.

III. NUMERICAL RESULTS

All the test problems included in the following four test-

beds have been considered in this study.

• The CEC2005 benchmark described in [37] in 30 dimen-

sions (25 test problems)

• The BBOB2010 benchmark described in [38] in 100
dimensions (24 test problems)

• The CEC2008 benchmark described in [39] in 1000
dimensions (7 test problems)

• The CEC2010 benchmark described in [40] in 1000
dimensions (20 test problems)

Thus, 76 test problems have been considered in this study.

For each algorithm in this paper (see following subsections)

100 runs have been performed. Each run has been continued

for 5000×n fitness evaluations, where n is the dimensionality

of the problem. For each test problem and each algorithm, the

average final fitness value standard deviation over the 100

available runs has been computed. In order to strengthen the

statistical significance of the results, for each test problem the

Wilcoxon Rank-Sum test [41] has been also applied, with a

confidence level of 0.95.

the proposed μDEA has been run with Spop = 5, F = 0.7,

αe = 0.5, see eq. (2), Iter = 20, η = 0.25, and ρ = 0.4 of

the width of the decision space D.

The following algorithms with respective parameter setting

have been considered for comparison against μDEA.

• A μDE with the same parameter setting of μDEA

• Self-Adaptive Differential Evolution (SADE) proposed in

[28] with population size equal to 50 individuals.

• Adaptive Differential Evolution (JADE) proposed in [27]

with population size equal to 60 individuals, group size

factor p = 0.05 and parameters adaptation rate factor

c = 0.1.

• Modified Differential Evolution with p-Best Crossover

(MDE-pBX) proposed in [31] with population size equal

to 100 individuals and group size q equal to 15% of the

population size.

Tables I, II, III, and III show the comparison against μDE

for the four benchmarks under consideration. Tables V, VI,

VII, and VIII, show the comparison against SADE, JADE, and

MDE-pBX. The tables in this study display the average final

fitness value over the 100 available runs and the corresponding

standard deviation value. The results of the Wilcoxon test

are also reported in terms of pair-wise comparisons. The

symbols“=” and “+” (“-”) indicate, respectively, a statistically

equivalent performance and a better (worse) performance of

RIS compared with the algorithm in the column label.

The numerical comparison between μDEA and μDE shows

that the extra moves along the axes tend to have a positive

effect on the algorithmic performance in the majority of the

considered cases. This fact confirms the validity of the analysis

reported in [23] about the lack of moves in DE frameworks and

that extra moves appear to be beneficial for DE. In addition, as

shown Tables III and IV, the success of μDEA with respect to

μDE in high dimensions demonstrates that an increase in the

exploitation is beneficial also in DE schemes that employ a

micro-population. In our opinion, this fact can be interpreted

by considering that even in the case micro-populations, DE

solutions tend to be scattered in the decision space, thus using

a large exploration step whilst a neighbourhood search would

TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST μDE ON

CEC2005[37] IN 30 DIMENSIONS.

μDEA μDE

f1 −4.50e + 02 ± 2.18e − 13 −3.98e + 02± 5.14e + 02 +

f2 −4.50e + 02 ± 2.43e − 12 −4.29e + 02± 1.28e + 02 +

f3 1.83e + 05 ± 1.05e + 05 1.66e + 07± 5.61e + 06 +

f4 6.74e + 04 ± 1.60e + 04 7.59e + 02 ± 1.22e + 03 -

f5 7.20e + 03 ± 2.22e + 03 9.49e + 03± 2.07e + 03 +

f6 8.52e + 02 ± 1.03e + 03 2.79e + 07± 1.94e + 08 =

f7 −1.80e + 02 ± 1.35e − 02 2.99e + 11± 1.20e + 12 +

f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02± 5.98e − 02 +

f9 −1.17e + 02 ± 1.16e + 00 −1.16e + 02± 1.78e + 00 =

f10 2.62e + 02 ± 2.05e + 01 2.56e + 02 ± 1.89e + 01 -

f11 1.18e + 02 ± 3.55e + 00 1.21e + 02± 2.50e + 00 +

f12 1.49e + 03 ± 2.90e + 03 1.55e + 04± 6.55e + 03 +

f13 −1.22e + 02 ± 1.45e + 00 −1.27e + 02 ± 1.20e + 00 -

f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02 ± 2.60e − 01 -

f15 1.45e + 03 ± 2.89e + 00 1.45e + 03 ± 4.25e + 00 -

f16 1.59e + 03 ± 1.56e + 01 1.58e + 03 ± 1.20e + 01 =

f17 1.74e + 03 ± 1.81e + 01 1.61e + 03 ± 1.13e + 01 -

f18 9.10e + 02 ± 5.26e − 12 9.10e + 02± 5.41e − 02 +

f19 9.10e + 02 ± 5.82e − 12 9.10e + 02± 1.64e − 01 +

f20 9.10e + 02 ± 5.61e − 12 9.10e + 02± 4.18e − 01 +

f21 1.72e + 03 ± 1.09e + 01 1.72e + 03± 8.91e + 00 +

f22 2.60e + 03 ± 5.80e + 01 2.54e + 03 ± 4.93e + 01 -

f23 1.73e + 03 ± 9.39e + 00 1.72e + 03 ± 8.43e + 00 -

f24 1.71e + 03 ± 1.44e + 01 1.71e + 03 ± 9.66e + 00 =

f25 1.88e + 03 ± 3.40e + 02 1.91e + 03± 1.37e + 02 =

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON

BBOB2010[38] IN 100 DIMENSIONS.

μDEA μDE

f1 7.95e + 01 ± 3.23e − 03 7.95e + 01± 2.08e − 01 +

f2 −1.50e + 02 ± 1.73e + 02 1.67e + 03± 1.13e + 04 +

f3 −2.20e + 02 ± 1.05e + 02 −4.09e + 02 ± 2.79e + 01 -

f4 −1.16e + 02 ± 1.12e + 02 −3.81e + 02 ± 3.26e + 01 -

f5 −8.26e + 00 ± 2.06e + 00 −6.49e + 00± 4.89e + 00 +

f6 8.73e + 01 ± 1.34e + 02 4.32e + 02± 1.03e + 02 +

f7 4.42e + 02 ± 1.71e + 02 6.35e + 02± 8.28e + 01 +

f8 2.74e + 02 ± 9.87e + 01 2.99e + 02± 9.18e + 01 +

f9 1.92e + 02 ± 5.80e + 01 2.26e + 02± 2.78e + 01 +

f10 5.65e + 04 ± 9.88e + 04 2.07e + 05± 2.87e + 04 +

f11 8.30e + 02 ± 1.30e + 02 6.43e + 02 ± 6.68e + 01 -

f12 6.52e + 02 ± 3.39e + 03 7.29e + 04± 3.11e + 05 +

f13 4.02e + 01 ± 1.04e + 01 6.89e + 01± 9.00e + 01 =

f14 −5.23e + 01 ± 1.73e − 02 −5.23e + 01± 2.41e − 01 +

f15 2.36e + 03 ± 3.43e + 02 2.87e + 03± 2.09e + 02 +

f16 9.04e + 01 ± 6.19e + 00 9.80e + 01± 3.31e + 00 +

f17 −7.56e + 00 ± 2.73e + 00 −3.41e + 00± 2.08e + 00 +

f18 1.75e + 01 ± 8.38e + 00 3.62e + 01± 7.70e + 00 +

f19 −9.29e + 01 ± 2.50e + 00 −9.08e + 01± 8.39e − 01 +

f20 −5.45e + 02 ± 2.07e − 01 −5.46e + 02 ± 6.08e − 02 -

f21 4.98e + 01 ± 6.24e + 00 4.32e + 01 ± 2.40e + 00 -

f22 −9.87e + 02 ± 9.58e + 00 −9.95e + 02 ± 6.34e + 00 -

f23 8.60e + 00 ± 8.04e − 01 9.85e + 00± 3.78e − 01 +

f24 1.71e + 03 ± 3.62e + 02 2.10e + 03± 1.88e + 02 +

be more beneficial. The extra moves along the axes, explore

progressively narrowing neighbourhood and support the basic

DE search moves to detect solutions characterized by a high

quality.

Numerical results in 30 dimensions show that the proposed

μDEA is, in general, slightly less promising that some of

TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON

CEC2008[39] IN 1000 DIMENSIONS.

μDEA μDE

f1 −4.50e + 02 ± 1.42e − 09 5.49e + 02± 2.25e + 03 +

f2 −4.50e + 02 ± 2.53e − 02 −3.59e + 02± 1.33e + 01 +

f3 1.52e + 03 ± 8.92e + 01 2.83e + 08± 1.52e + 09 +

f4 5.77e + 03 ± 4.56e + 02 2.16e + 02 ± 5.30e + 01 -

f5 −1.80e + 02 ± 1.89e − 03 −1.70e + 02± 2.25e + 01 +

f6 −1.40e + 02 ± 5.01e − 07 −1.37e + 02± 7.81e − 01 +

f7 −1.35e + 04 ± 6.61e + 01 −1.44e + 04 ± 2.61e + 01 -

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON

CEC2010[40] IN 1000 DIMENSIONS.

μDEA μDE

f1 4.44e − 18 ± 7.20e − 19 4.45e + 07 ± 1.87e + 08 +

f2 5.71e + 03 ± 3.66e + 02 5.26e + 02 ± 4.45e + 01 -

f3 2.47e − 02 ± 9.79e − 02 2.88e + 00 ± 8.15e − 01 +

f4 2.07e + 13 ± 3.99e + 12 3.12e + 13 ± 7.40e + 12 +

f5 4.49e + 08 ± 1.16e + 08 6.32e + 08 ± 8.94e + 07 +

f6 1.90e + 07 ± 3.01e + 06 2.04e + 07 ± 2.15e + 05 +

f7 1.92e + 10 ± 4.99e + 09 1.83e + 10 ± 3.99e + 09 =

f8 2.36e + 10 ± 1.22e + 10 2.70e + 11 ± 1.71e + 12 +

f9 1.71e + 08 ± 7.24e + 06 4.55e + 08 ± 2.53e + 08 +

f10 7.23e + 03 ± 2.88e + 02 6.95e + 03 ± 2.85e + 02 -

f11 1.48e + 02 ± 4.56e + 01 2.08e + 02 ± 2.18e + 00 +

f12 8.39e + 04 ± 1.48e + 05 3.79e + 05 ± 2.10e + 04 +

f13 2.26e + 05 ± 9.13e + 04 9.57e + 07 ± 4.98e + 08 =

f14 1.33e + 08 ± 2.53e + 08 9.38e + 08 ± 4.51e + 07 +

f15 7.31e + 03 ± 3.08e + 02 1.37e + 04 ± 3.75e + 02 +

f16 2.23e + 02 ± 1.08e + 02 4.11e + 02 ± 2.25e + 00 +

f17 1.14e + 05 ± 2.39e + 05 8.07e + 05 ± 2.43e + 04 +

f18 3.57e + 04 ± 1.21e + 04 3.71e + 08 ± 2.08e + 09 +

f19 5.47e + 05 ± 3.43e + 04 2.82e + 05 ± 2.68e + 04 -

f20 1.49e + 04 ± 1.10e + 03 1.99e + 08 ± 7.66e + 08 +

0 1e+6 2e+6 3e+6 4e+6 5e+6

10 15

10 10

10 5

100

105

1010

Fitness function call

Fi
tn

es
s

va
lu

e
 [L

og
ar

ith
m

ic
 s

ca
le

]

μDEA
μDE
MDE pBX
SADE
JADE

Fig. 3. Performance trend for f1 of CEC2010 [40] in 1000 dimensions.

the other three modern DE versions but still is capable to

display a respectable performance. More specifically, μDE out

performs each of the other three algorithms in slightly less

than half of the cases. In 100 dimensions, μDE is still slightly

outperformed by SADE and MDE-pBX while is definitely

competitive with JADE. The most interesting results of this

study are reported in the large scale cases. In 1000 dimensions,

μDE displays a surprisingly good performance with respect to

the other modern DE based algorithms considered in this study.

In high dimensions, μDEA displays the best performance

(see Table VIII) by slightly outperforming SADE and clearly

outperforming JADE and MDE-pBX. This result is especially

interesting if we take into account that μDEA is a very simple

and light (in terms of memory requirement and computational

overhead) algorithm. It is important to remark that this study

shows that small DE populations are more adequate than large

ones to tackle large scale problems. Fig 3 shows the average

performance in a case of successful application of the μDEA

scheme.

TABLE V
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2005[37] IN 30 DIMENSIONS.

μDEA MDE-pBX SADE JADE

f1 −4.50e + 02 ± 2.18e − 13 −4.50e + 02 ± 1.62e − 13 = −4.50e + 02 ± 2.90e − 14 = −3.51e + 02 ± 1.99e + 02 +

f2 −4.50e + 02 ± 2.43e − 12 −4.50e + 02 ± 2.54e − 03 + −4.39e + 02± 2.31e + 01 + 3.08e + 02 ± 7.32e + 02 +

f3 1.83e + 05 ± 1.05e + 05 2.81e + 05 ± 1.99e + 05 + 8.97e + 05± 4.27e + 05 + 3.71e + 06 ± 1.77e + 06 +

f4 6.74e + 04 ± 1.60e + 04 −1.29e + 02 ± 9.67e + 02 - −8.60e + 01± 5.87e + 02 - 2.27e + 03 ± 1.68e + 03 -

f5 7.20e + 03 ± 2.22e + 03 2.74e + 03 ± 6.34e + 02 - 2.86e + 03± 5.36e + 02 - 3.91e + 03 ± 9.18e + 02 -

f6 8.52e + 02 ± 1.03e + 03 4.33e + 02 ± 4.81e + 01 - 4.16e + 02 ± 3.62e + 01 - 5.07e + 06 ± 1.53e + 07 +

f7 −1.80e + 02 ± 1.35e − 02 2.03e + 06 ± 1.88e + 07 + 4.39e + 02± 6.16e + 03 + 1.69e + 13 ± 1.78e + 13 +

f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02 ± 4.23e − 01 + −1.19e + 02± 4.24e − 01 + −1.19e + 02 ± 5.75e − 02 +

f9 −1.17e + 02 ± 1.16e + 00 −1.17e + 02 ± 1.14e + 00 - −1.17e + 02 ± 4.60e − 01 - −1.17e + 02 ± 1.22e + 00 =

f10 2.62e + 02 ± 2.05e + 01 2.23e + 02 ± 2.44e + 01 - 2.27e + 02± 2.25e + 01 - 2.02e + 02 ± 2.20e + 01 -

f11 1.18e + 02 ± 3.55e + 00 1.11e + 02 ± 4.59e + 00 - 1.16e + 02± 3.54e + 00 - 1.16e + 02 ± 4.48e + 00 -

f12 1.49e + 03 ± 2.90e + 03 3.77e + 03 ± 3.87e + 03 + 4.90e + 03± 5.23e + 03 + 1.72e + 04 ± 1.54e + 04 +

f13 −1.22e + 02 ± 1.45e + 00 −1.19e + 02 ± 2.28e + 00 + −1.24e + 02± 9.45e − 01 - −1.26e + 02 ± 9.64e − 01 -

f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02 ± 4.50e − 01 - −2.87e + 02± 4.22e − 01 - −2.87e + 02 ± 2.02e − 01 -

f15 1.45e + 03 ± 2.89e + 00 1.46e + 03 ± 6.43e + 00 + 1.44e + 03 ± 1.67e + 00 - 1.45e + 03 ± 3.45e + 00 =

f16 1.59e + 03 ± 1.56e + 01 1.58e + 03 ± 1.11e + 01 - 1.56e + 03± 8.59e + 00 - 1.56e + 03 ± 6.50e + 00 -

f17 1.74e + 03 ± 1.81e + 01 1.62e + 03 ± 9.04e + 00 - 1.62e + 03± 9.84e + 00 - 1.59e + 03 ± 7.53e + 00 -

f18 9.10e + 02 ± 5.26e − 12 9.10e + 02 ± 8.31e − 11 + 9.10e + 02± 4.66e − 09 + 9.10e + 02 ± 2.62e − 01 +

f19 9.10e + 02 ± 5.82e − 12 9.10e + 02 ± 2.42e − 10 + 9.10e + 02± 5.64e − 09 + 9.10e + 02 ± 1.31e − 01 +

f20 9.10e + 02 ± 5.61e − 12 9.10e + 02 ± 3.41e − 11 + 9.10e + 02± 1.36e − 10 + 9.10e + 02 ± 1.40e − 01 +

f21 1.72e + 03 ± 1.09e + 01 1.70e + 03 ± 5.51e + 00 - 1.70e + 03± 7.05e + 00 - 1.69e + 03 ± 4.32e + 00 -

f22 2.60e + 03 ± 5.80e + 01 2.41e + 03 ± 4.97e + 01 - 2.34e + 03± 3.99e + 01 - 2.29e + 03 ± 3.44e + 01 -

f23 1.73e + 03 ± 9.39e + 00 1.70e + 03 ± 5.28e + 00 - 1.71e + 03± 6.04e + 00 - 1.70e + 03 ± 4.48e + 00 -

f24 1.71e + 03 ± 1.44e + 01 1.67e + 03 ± 1.55e + 01 - 1.67e + 03± 1.21e + 01 - 1.66e + 03 ± 1.40e + 01 -

f25 1.88e + 03 ± 3.40e + 02 1.83e + 03 ± 1.55e + 02 = 1.78e + 03 ± 2.05e + 02 - 1.86e + 03 ± 4.65e + 01 =

TABLE VI
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON BBOB2010[38] IN 100 DIMENSIONS.

μDEA MDE-pBX SADE JADE

f1 7.95e + 01 ± 3.23e − 03 7.95e + 01 ± 7.60e − 05 = 7.95e + 01 ± 9.67e − 13 = 8.77e + 01 ± 7.64e + 00 +

f2 −1.50e + 02 ± 1.73e + 02 −2.10e + 02 ± 6.06e − 03 - −2.10e + 02 ± 9.83e − 13 - 5.73e + 04 ± 8.69e + 04 +

f3 −2.20e + 02 ± 1.05e + 02 3.29e + 01 ± 7.94e + 01 + −2.94e + 02± 4.40e + 01 - −3.11e + 02 ± 4.95e + 01 -

f4 −1.16e + 02 ± 1.12e + 02 4.03e + 02 ± 1.31e + 02 + −1.61e + 02 ± 1.19e + 02 - −1.43e + 02 ± 9.83e + 01 -

f5 −8.26e + 00 ± 2.06e + 00 −3.09e − 02 ± 1.27e + 01 + −9.16e + 00 ± 4.59e − 01 - 1.24e + 02 ± 5.08e + 01 +

f6 8.73e + 01 ± 1.34e + 02 8.03e + 01 ± 3.32e + 01 - 1.11e + 02± 3.87e + 01 + 3.92e + 02 ± 1.18e + 02 +

f7 4.42e + 02 ± 1.71e + 02 3.70e + 02 ± 7.43e + 01 - 3.39e + 02± 6.69e + 01 - 3.08e + 02 ± 6.50e + 01 -

f8 2.74e + 02 ± 9.87e + 01 3.40e + 02 ± 6.77e + 01 + 2.82e + 02± 6.22e + 01 + 7.24e + 03 ± 6.15e + 03 +

f9 1.92e + 02 ± 5.80e + 01 2.52e + 02 ± 3.75e + 01 + 2.28e + 02± 2.45e + 01 + 1.78e + 03 ± 1.33e + 03 +

f10 5.65e + 04 ± 9.88e + 04 1.64e + 04 ± 7.99e + 03 - 5.22e + 04± 2.07e + 04 - 1.94e + 05 ± 8.87e + 04 +

f11 8.30e + 02 ± 1.30e + 02 9.16e + 01 ± 7.45e + 00 - 1.83e + 02± 2.72e + 01 - 2.11e + 02 ± 2.76e + 01 -

f12 6.52e + 02 ± 3.39e + 03 −5.99e + 02 ± 7.07e + 01 - −6.14e + 02 ± 7.07e + 00 = 2.22e + 07 ± 2.13e + 07 +

f13 4.02e + 01 ± 1.04e + 01 3.47e + 01 ± 6.70e + 00 - 3.20e + 01 ± 2.81e + 00 - 7.69e + 02 ± 2.46e + 02 +

f14 −5.23e + 01 ± 1.73e − 02 −5.23e + 01 ± 2.55e − 03 = −5.23e + 01 ± 1.86e − 03 = −4.65e + 01 ± 3.89e + 00 +

f15 2.36e + 03 ± 3.43e + 02 1.66e + 03 ± 1.10e + 02 - 1.35e + 03 ± 6.05e + 01 - 1.59e + 03 ± 8.67e + 01 -

f16 9.04e + 01 ± 6.19e + 00 8.85e + 01 ± 4.46e + 00 = 9.72e + 01± 4.30e + 00 + 1.01e + 02 ± 3.46e + 00 +

f17 −7.56e + 00 ± 2.73e + 00 −1.35e + 01 ± 4.83e − 01 - −1.38e + 01± 5.21e − 01 - −1.45e + 01 ± 5.96e − 01 -

f18 1.75e + 01 ± 8.38e + 00 −4.84e + 00 ± 1.68e + 00 - −5.07e + 00± 1.98e + 00 - −8.79e + 00 ± 2.11e + 00 -

f19 −9.29e + 01 ± 2.50e + 00 −1.00e + 02 ± 7.13e − 01 - −9.98e + 01± 6.72e − 01 - −9.50e + 01 ± 2.26e − 01 -

f20 −5.45e + 02 ± 2.07e − 01 −5.44e + 02 ± 1.14e − 01 + −5.45e + 02± 1.61e − 01 + −5.12e + 02 ± 9.92e + 01 +

f21 4.98e + 01 ± 6.24e + 00 4.49e + 01 ± 5.88e + 00 - 4.63e + 01± 5.76e + 00 - 4.93e + 01 ± 6.25e + 00 =

f22 −9.87e + 02 ± 9.58e + 00 −9.92e + 02 ± 9.11e + 00 - −9.93e + 02± 7.97e + 00 - −9.94e + 02 ± 6.66e + 00 -

f23 8.60e + 00 ± 8.04e − 01 9.34e + 00 ± 7.99e − 01 + 9.17e + 00± 6.78e − 01 + 1.07e + 01 ± 3.78e − 01 +

f24 1.71e + 03 ± 3.62e + 02 4.75e + 02 ± 4.72e + 01 - 3.73e + 02 ± 3.17e + 01 - 1.03e + 03 ± 4.44e + 01 -

In addition to the results presented above, the ranking

among all the algorithms considered in this article has been

performed by means of the Holm-Bonferroni procedure, see

[42] and [43], for the 5 algorithms under study and the 76
problems under consideration. The Holm-Bonferroni proce-

dure consists of the following. Considering the results in

the tables above, the 5 algorithms under analysis have been

ranked on the basis of their average performance calculated

over the 76 test problems. More specifically, a score Ri for

i = 1, . . . , NA (where NA is the number of algorithms under

analysis, NA = 5 in our case) has been assigned. The score

has been assigned in the following way: for each problem,

a score of 5 is assigned to the algorithm displaying the best

performance, 4 is assigned to the second best, 3 to the third and

so on. The algorithm displaying the worst performance scores

1. For each algorithm, the scores obtained on each problem

are summed up averaged over the amount of test problems (76
in our case). On the basis of these scores the algorithms are

sorted (ranked). With the calculated Ri values, RIS has been

taken as a reference algorithm. Indicating with R0 the rank

of RIS, and with Rj for j = 1, . . . , NA − 1 the rank of one

of the remaining eleven algorithms, the values zj have been

calculated as

zj =
Rj −R0√
NA(NA+1)

6NTP

(7)

where NTP is the number of test problems in consideration

(NTP = 76 in our case). By means of the zj values, the

corresponding cumulative normal distribution values pj have

been calculated. These pj values have then been compared

with the corresponding δ/j where δ is the level of confidence,

set to 0.05 in our case. Table IX displays the ranks, zj
values, pj values, and corresponding δ/j obtained in this way.

The rank of RIS is shown in parenthesis. Moreover, it is

indicated whether the null-hypothesis (that the two algorithms

have indistinguishable performances) is “Rejected”, i.e. RIS

statistically outperforms the algorithm under consideration, or

TABLE VII
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2008[39] IN 1000 DIMENSIONS.

muDEA MDEpBX SADE JADE

f1 −4.50e + 02 ± 1.42e − 09 1.20e + 05± 4.41e + 04 + 5.06e + 03 ± 6.00e + 03 + 1.02e + 06 ± 3.49e + 05 +

f2 −4.50e + 02 ± 2.53e − 02 −3.33e + 02± 4.09e + 00 + −3.19e + 02 ± 5.11e + 00 + −3.20e + 02 ± 7.98e + 00 +

f3 1.52e + 03 ± 8.92e + 01 3.13e + 10± 1.65e + 10 + 9.97e + 08 ± 1.66e + 09 + 4.40e + 11 ± 2.18e + 11 +

f4 5.77e + 03 ± 4.56e + 02 7.60e + 03± 2.55e + 02 + 5.88e + 03 ± 3.95e + 02 = 4.43e + 03 ± 8.64e + 02 -

f5 −1.80e + 02 ± 1.89e − 03 1.08e + 03± 4.60e + 02 + −1.20e + 02 ± 6.46e + 01 + 8.70e + 03 ± 2.95e + 03 +

f6 −1.40e + 02 ± 5.01e − 07 −1.21e + 02± 5.10e − 02 + −1.21e + 02 ± 1.77e − 01 + −1.22e + 02 ± 5.79e − 01 +

f7 −1.35e + 04 ± 6.61e + 01 −1.11e + 04± 1.63e + 02 + −1.11e + 04 ± 1.28e + 02 + −1.19e + 04 ± 4.24e + 02 +

TABLE VIII
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2010[40] IN 1000 DIMENSIONS.

μDEA MDE-pBX SADE JADE

f1 4.44e − 18 ± 7.20e − 19 1.05e + 09 ± 6.58e + 08 + 2.89e + 07 ± 1.02e + 08 + 1.40e + 10 ± 6.91e + 09 +

f2 5.71e + 03 ± 3.66e + 02 7.02e + 03 ± 2.38e + 02 + 5.55e + 03 ± 2.99e + 02 - 4.56e + 03 ± 1.04e + 03 -

f3 2.47e − 02 ± 9.79e − 02 1.93e + 01 ± 4.76e − 02 + 1.89e + 01 ± 2.83e − 01 + 1.76e + 01 ± 6.75e − 01 +

f4 2.07e + 13 ± 3.99e + 12 3.21e + 12 ± 9.76e + 11 - 1.95e + 12 ± 8.82e + 11 - 2.62e + 12 ± 1.03e + 12 -

f5 4.49e + 08 ± 1.16e + 08 1.54e + 08 ± 2.77e + 07 - 1.03e + 08 ± 1.83e + 07 - 8.58e + 07 ± 1.77e + 07 -

f6 1.90e + 07 ± 3.01e + 06 3.65e + 06 ± 1.75e + 06 - 9.16e + 05 ± 1.21e + 06 - 3.48e + 06 ± 1.40e + 06 -

f7 1.92e + 10 ± 4.99e + 09 6.79e + 06 ± 1.01e + 07 - 1.01e + 08 ± 2.36e + 08 - 3.37e + 09 ± 3.66e + 09 -

f8 2.36e + 10 ± 1.22e + 10 2.03e + 08 ± 1.63e + 08 - 7.08e + 07 ± 3.71e + 07 - 6.31e + 13 ± 1.80e + 14 +

f9 1.71e + 08 ± 7.24e + 06 1.68e + 09 ± 1.00e + 09 + 2.11e + 08 ± 2.93e + 08 + 1.67e + 10 ± 5.87e + 09 +

f10 7.23e + 03 ± 2.88e + 02 7.33e + 03 ± 2.55e + 02 + 6.22e + 03 ± 3.15e + 02 - 7.50e + 03 ± 1.07e + 03 +

f11 1.48e + 02 ± 4.56e + 01 2.06e + 02 ± 2.40e + 00 + 2.05e + 02 ± 4.34e + 00 + 1.94e + 02 ± 7.49e + 00 +

f12 8.39e + 04 ± 1.48e + 05 2.92e + 05 ± 6.60e + 04 + 3.15e + 05 ± 1.36e + 05 + 2.32e + 06 ± 4.55e + 05 +

f13 2.26e + 05 ± 9.13e + 04 2.88e + 09 ± 3.17e + 09 + 5.67e + 07 ± 2.48e + 08 = 8.02e + 10 ± 4.76e + 10 +

f14 1.33e + 08 ± 2.53e + 08 1.04e + 09 ± 1.97e + 08 + 3.77e + 08 ± 1.13e + 08 + 1.31e + 10 ± 4.64e + 09 +

f15 7.31e + 03 ± 3.08e + 02 7.44e + 03 ± 2.80e + 02 + 6.49e + 03 ± 2.38e + 02 - 8.51e + 03 ± 1.03e + 03 +

f16 2.23e + 02 ± 1.08e + 02 3.84e + 02 ± 1.22e + 00 + 3.82e + 02 ± 2.00e + 00 + 3.83e + 02 ± 1.19e + 01 +

f17 1.14e + 05 ± 2.39e + 05 4.35e + 05 ± 8.33e + 04 + 6.37e + 05 ± 2.00e + 05 + 2.63e + 06 ± 7.56e + 05 +

f18 3.57e + 04 ± 1.21e + 04 3.73e + 10 ± 1.95e + 10 + 7.60e + 08 ± 1.14e + 09 + 4.42e + 11 ± 1.91e + 11 +

f19 5.47e + 05 ± 3.43e + 04 9.22e + 05 ± 1.06e + 05 + 2.11e + 06 ± 1.61e + 05 + 3.59e + 06 ± 7.17e + 05 +

f20 1.49e + 04 ± 1.10e + 03 4.18e + 10 ± 2.02e + 10 + 2.26e + 09 ± 3.42e + 09 + 5.48e + 11 ± 2.10e + 11 +

TABLE IX
HOLM TEST ON THE FITNESS, REFERENCE ALGRITHM = μDEA (RANK =

3.24E+00)

j Optimizer Rank zj pj δ/j Hypothesis

1 SADE 3.68e+00 2.14e+00 9.84e-01 5.00e-02 Accepted
2 MDE-pBX 3.08e+00 -7.54e-01 2.25e-01 2.50e-02 Accepted
3 μDE 2.53e+00 -3.39e+00 3.46e-04 1.67e-02 Rejected
4 JADE 2.46e+00 -3.71e+00 1.05e-04 1.25e-02 Rejected

“Accepted” if the distribution of values can be considered the

same (there is no out-performance).

As shown in Table IX, the proposed μDEA is ranked second

after SADE over all the 76 problems included in this study,

thus confirming that μDEA is a valuable algorithm that makes

use of a micro-population.

IV. CONCLUSION

This paper proposes a micro-Differential Evolution scheme

that includes, in a memetic fashion, a shallow local search that

performs, a limited amount of times exploitation in the direc-

tions of each variable of the candidate solution displaying the

best performance. The extra moves according to the axes com-

plement the search carried out by the DE logic and support the

external workshop to detect solutions with a high performance.

More specifically, DE schemes, even when characterized by

a small population, tend to keep the candidate solutions far

from each other. This may result into an excessive exploration,

especially in high dimensions, thus resulting into an undesired

stagnation condition. The extra moves increase the exploitation

of the algorithm and allow an overall better performance. The

comparison with modern DE based algorithms show that the

proposed algorithm, notwithstanding its simplicity, is nearly as

good as them for low dimensional problem, thus displaying

a respectable performance. The comparison in large scale

domains show that the proposed algorithm outperforms all the

other algorithms contained in this study. From this finding,

we can conclude that small populations in DE schemes can

be preferable to the large ones.

The proposed micro-Differential Evolution implementation

appears a good and robust alternative that can be promisingly

applied in those application characterized by a limted hard-

ware, such as embedded systems, and in those problems that

impose a modest computational overhead, such as real-time

optimization problems. Future work will consider randomized

operators and mechanisms that impose a narrowing of the

search in the late stage of the optimization.

ACKNOWLEDGMENT

This research is supported by the Academy of Fin-

land, Akatemiatutkija 130600, “Algorithmic design issues in

Memetic Computing”.

The numerical experiments have been carried out on the

computer network of the De Montfort University by means of

the software for distributed optimization Kimeme [44]. We

thank Dr. Lorenzo Picinali, Dr. Nathan Jeffery and David

Tunnicliffe for the technical support of the computer network.

REFERENCES

[1] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and ana-
lyzing evolutionary algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 19–31, 2011.

[2] J. Brest and M. S. Maučec, “Population size reduction for the differential
evolution algorithm,” Applied Intelligence, vol. 29, no. 3, pp. 228–247,
2008.

[3] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A
fast adaptive memetic algorithm for on-line and off-line control design
of PMSM drives,” IEEE Transactions on System Man and Cybernetics-
part B, vol. 37, no. 1, pp. 28–41, 2007.

[4] F. Neri, J. I. Toivanen, G. L. Cascella, and Y. S. Ong, “An Adap-
tive Multimeme Algorithm for Designing HIV Multidrug Therapies,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 4, no. 2, pp. 264–278, 2007.

[5] N. S. Teng, J. Teo, and M. H. A. Hijazi, “Self-adaptive population sizing
for a tune-free differential evolution,” Soft Computing – A Fusion of
Foundations, Methodologies and Applications, vol. 13, no. 7, pp. 709–
724, 2009.

[6] A. Prügel-Bennett, “Benefits of a population: Five mechanisms that
advantage population-based algorithms,” IEEE Transactions on Evolu-
tionary Computation, vol. 14, no. 4, pp. 500–517, 2010.

[7] N. J. Radcliffe, “Forma analysis and random respectful recombination,”
in Proceedings of the 4th Int. Conf. Genet. Algorithms. Morgan
Kaufmann, 1991, pp. 222–229.

[8] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim, “Ockham’s Ra-
zor in Memetic Computing: Three Stage Optimal Memetic Exploration,”
Information Sciences, vol. 188, pp. 17–43, 2012.

[9] T. Chen, K. Tang, G. Chen, and X. Yao, “A large population size can
be unhelpful in evolutionary algorithms,” Theoretical Computer Science,
vol. 436, pp. 54–70, 2012.

[10] K. E. Parsopoulos, “Cooperative micro-differential evolution for high-
dimensional problems,” in Proceedings of the conference on Genetic and
evolutionary computation, 2009, pp. 531–538.

[11] ——, “Parallel cooperative micro-particle swarm optimization: A
master-slave model,” Applied Soft Computing, vol. 12, no. 11, pp. 3552–
3579, Nov. 2012.

[12] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On stability and
convergence of the population-dynamics in differential evolution,” AI
Communications - The European Journal on Artificial Intelligence,
vol. 22, no. 1, pp. 1–20, 2009.

[13] A. Rajasekhar, S. Das, and S. Das, “Abc: a micro artificial bee colony
algorithm for large scale global optimization,” in GECCO (Companion),
2012, pp. 1399–1400.

[14] K. Krishnakumar, “Micro-genetic algorithms for stationary and non-
stationary function optimization.”

[15] C. A. Coello Coello and G. Toscano Pulido, “A micro-genetic algorithm
for multiobjective optimization,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2001. Springer-Verlag,
2001, pp. 126–140.

[16] A. Rajasekhar, S. Das, and P. N. Suganthan, “Design of fractional order
controller for a servohydraulic positioning system with micro artificial
bee colony algorithm,” in IEEE Congress on Evolutionary Computation,
2012, pp. 1–8.

[17] V. Tam, K.-Y. Cheng, and K.-S. Lui, “Using micro-genetic algorithms
to improve localization in wireless sensor networks,” Journal of Com-
munications, vol. 1, no. 4, pp. 137–141, 2006.

[18] F. Viveros-Jimènez, E. Mezura-Montes, and A. Gelbukh, “Empirical
analysis of a micro-evolutionary algorithm for numerical optimization,”
International Journal of Physical Sciences, vol. 7, no. 8, pp. 1235–1258.

[19] S. Rahnamayan and H. R. Tizhoosh, “Image thresholding using micro
opposition-based differential evolution (micro-ode),” in IEEE Congress
on Evolutionary Computation, 2008, pp. 1409–1416.

[20] M. A. Sotelo-Figueroa, H. J. P. Soberanes, J. M. Carpio, H. J. F.
Huacuja, L. C. Reyes, and J. A. S. Alcaraz, “Evolving bin packing
heuristic using micro-differential evolution with indirect representation,”
in Recent Advances on Hybrid Intelligent Systems, ser. Studies in
Computational Intelligence, 2013, vol. 451, pp. 349–359.

[21] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” Evolutionary Computation, IEEE Transactions on, vol. 15,
no. 1, pp. 4–31, feb. 2011.

[22] K. V. Price, R. Storn, and J. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Springer, 2005.

[23] F. Neri and V. Tirronen, “Recent Advances in Differential Evolution:
A Review and Experimental Analysis,” Artificial Intelligence Review,
vol. 33, no. 1–2, pp. 61–106, 2010.

[24] F. Neri, G. Iacca, and E. Mininno, “Disturbed Exploitation compact

Differential Evolution for Limited Memory Optimization Problems,”
Information Sciences, vol. 181, no. 12, pp. 2469–2487, 2011.

[25] L.-Y. Tseng and C. Chen, “Multiple trajectory search for Large Scale
Global Optimization,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2008, pp. 3052–3059.

[26] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[27] J. Zhang and A. C. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” vol. 13, no. 5, 2009, pp. 945–958.

[28] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 398–417, 2009.

[29] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–
1696, 2011, the Impact of Soft Computing for the Progress of Artificial
Intelligence.

[30] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
Evolution with a Neighborhood-based Mutation Operator,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 3, pp. 526–553, 2009.

[31] S. Islam, S. Das, S. Ghosh, S. Roy, and P. Suganthan, “An Adaptive
Differential Evolution Algorithm With Novel Mutation and Crossover
Strategies for Global Numerical Optimization,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2,
pp. 482–500, april 2012.

[32] E. Mininno, F. Neri, F. Cupertino, and D. Naso, “Compact Differential
Evolution,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 32–54, 2011.

[33] N. Noman and H. Iba, “Accelerating Differential Evolution Using an
Adaptive Local Search,” IEEE Transactions on Evolutionary Computa-
tion, vol. 12, no. 1, pp. 107–125, 2008.

[34] F. Neri and V. Tirronen, “Scale Factor Local Search in Differential
Evolution,” Memetic Computing Journal, vol. 1, no. 2, pp. 153–171,
2009.

[35] M. Weber, V. Tirronen, and F. Neri, “Scale Factor Inheritance Mecha-
nism in Distributed Differential Evolution,” Soft Computing - A Fusion
of Foundations, Methodologies and Applications, vol. 14, no. 11, pp.
1187–1207, 2010.

[36] J. Lampinen and I. Zelinka, “On Stagnation of the Differential Evolution
Algorithm,” in Proceedings of 6th International Mendel Conference on
Soft Computing, P. Oŝmera, Ed., 2000, pp. 76–83.

[37] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization,” Nanyang
Technological University and KanGAL, Singapore and IIT Kanpur,
India, Tech. Rep. 2005005, 2005.

[38] N. Hansen, A. Auger, S. Finck, R. Ros et al., “Real-Parameter Black-
Box Optimization Benchmarking 2010: Noiseless Functions Defini-
tions,” INRIA, Tech. Rep. RR-6829, 2010.

[39] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen,
and Z. Yang, “Benchmark Functions for the CEC 2008 Special Session
and Competition on Large Scale Global Optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, Tech. Rep.,
2007.

[40] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
Functions for the CEC’2010 Special Session and Competition on Large-
Scale Global Optimization,” University of Science and Technology of
China (USTC), School of Computer Science and Technology, Nature
Inspired Computation and Applications Laboratory (NICAL): Hefei,
Anhui, China, Tech. Rep., 2010.

[41] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[42] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[43] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Computing, vol. 13, no. 10,
pp. 959–977, 2008.

[44] Cyber Dyne Srl Home Page, “Kimeme,” 2012, http://cyberdynesoft.it/.

PVI

DIFFERENTIAL EVOLUTION WITH CONCURRENT FITNESS
BASED LOCAL SEARCH

by

I. Poikolainen, F. Neri 2013

IEEE Congress on Evolutionary Computation (CEC), pages 384-391

Differential Evolution with Concurrent Fitness Based
Local Search

Ilpo Poikolainen
Department of Mathematical Information Technology

University of Jyväskylä
Jyväskylä, Finland

Email: ilpo.poikolainen@jyu.

Ferrante Neri
Department of Mathematical Information Technology

University of Jyväskylä
Jyväskylä, Finland

Email: ferrante.neri@jyu.

Centre for Computational Intelligence,
School of Computer Science and Informatics, De Montfort University,

The Gateway, Leicester LE1 9BH, United Kingdom
Email: fneri@dmu.ac.uk

Abstract—This paper proposes a novel implementation of
memetic structure for continuous optimization problems. The
proposed algorithm, namely Differential Evolution with Concur-
rent Fitness Based Local Search (DEcfbLS), enhances the DE
performance by including a local search concurrently applied
on multiple individuals of the population. The selection of the
individuals undergoing local search is based on a tness-based
adaptive rule. The most promising individuals are rewarded
with a local search operator that moves along the axes and
complements the normal search moves of DE structure. The ap-
plication of local search is performed with a shallow termination
rule. This design has been performed in order to overcome the
limitations within the search logic on the original DE algorithm.
The proposed algorithm has been tested on various problems in
multiple dimensions. Numerical results show that the proposed
algorithm is promising candidate to take part to competition
on Real-Parameter Single Objective Optimization at CEC-2013.
A comparison against modern meta-heuristics con rms that the
proposed algorithm robustly displays a good performance on the
testbed under consideration.

I. INTRODUCTION

Differential Evolution (DE), see [1], is a popular and reli-
able optimizer that shows a robust performance across various
continuous optimization problems. DE employs a population
of solutions and generates its offspring by means of the scaled
difference of two (or more) individuals of the population. The
survivor selection is made between the parent individual and
offspring by following the so called one-to-one spawning: the
offspring directly replaces the parent that generated it when
the offspring outperforms the parent. Thanks to its simplicity
features and performance, after its original de nition, DE
has become popular among both researches and practitioners.
Some examples of successful DE applications can be found in
[1] and [2]. Practical applications include multisensor fusion
problem, see [3], aerodynamic design, see [4], lter design, see
[5] and many other engineering applications. Survey papers on
DE framework and its variants are reported in [6] and [7]. The
reasons behind the DE success are listed and analysed by the
following points.

1) DE has rather simple implementation with respect
to other computational intelligence optimization al-

gorithms while still having very high performance
on complex tness landscapes including uni-modal,
multi-modal, separable, non-separable etc, see [8].

2) Control parameters of DE are relatively few (only
three classical DE), see [9]. Although a proper selec-
tion of these parameters is essential for guaranteeing
a good performance on a given problem, a reasonably
quick parameter tuning appears to often allow a good
performance, see [10]. However, due to the dynamic
nature of evolution/optimization, modern DE schemes
often propose a dynamic/adaptive parameter setting
or employment of multiple search rules. Some pop-
ular examples are given in the self-adaptive (and
randomized) DE version proposed in [11], and in the
controlled parameter randomization proposed in [12].

3) The computational complexity of DE is relatively
low, thus making DE schemes exibly applicable in
large scale optimization problem. This advantage is
especially evident when we consider the features of
algorithms based on a covariance matrix adaptation,
see e.g. [13]. Although the latter algorithms are very
ef cient (thanks to their theoretical foundations) in
low dimensions, they might lead to an unacceptable
computational cost (due to calculations involving
square matrices with size equal to number of vari-
ables) for large scale problems.

Although DE is capable at displaying a high performance,
this algorithm is characterized by some limitations, see [7]. If
the algorithm does not manage to generate an offspring which
outperforms the corresponding parent solution, the search is
likely to be jeopardized and result into the undesired stagnation
condition. If the search is repeated over and over again with
similar step sizes without succeeding to improve upon the
candidate solutions, DE can display a poor performance, see
[14]. As shown in the analysis reported in [7], DE scheme
is characterized by a limited amount of search moves. Some
countermeasure to mitigate this issue include a randomization
of parameters, see e.g. [12], [11], and [15], progressive popu-
lation size reduction, see [16], and explicit inclusion of local
search operators, see e.g. [17], [18], and [19].

Modern DE-based algorithms can thus be divided into the
two following categories, see [7]:

1) DE integrating an extra component This class in-
cludes those algorithms that use DE as an evo-
lutionary framework assisted by other algorithmic
components, e.g., local searchers or extra operators
(see [20] [17] and [19]). The algorithms belonging to
this category can be decomposed as DE framework
and additional components

2) Modi ed strutures of DE This class includes those
algorithms which modify the DE structure, search
logic, selection etc. Some examples of such modi-
cations are given in articles [11], [21], and [22]

In this paper we use integration of local searcher as
extra component with DE to overcome possible problems
of stagnation and to improve exploitative capabilities of DE
algorithm. The proposed algorithm, at rst, samples a popu-
lation of candidate solutions within a decision space. Then,
each population individual is re ned with a a local search by
using a small local budget. Small local budget appears very
important for achieving some initial improvements without
excessively biasing the search towards local optima. After this
initialization, the main components a DE framework coop-
erates with a local search to enhance upon the performance
of the candidate solutions. While DE is a population based
component, deterministic Local Search (LS) is a single point
optimizer which is performed on multiple population members
on each activation.

The remaining of this paper is organized as follows. Section
II describes the algorithmic structure of DEcfbLS and its
components. Section III shows the experimental setup and
numerical results of the study. Section IV gives the conclusions
of this work.

II. DIFFERENTIAL EVOLUTION WITH CONCURRENT
FITNESS BASED LOCAL SEARCH

In order to clarify the notation used in this paper, we
refer to the minimization problem of an objective function
f(x), where a candidate solution x is a vector of n design
variables in decision space D. This section describes the
algorithmic framework of DEcfbLS by analysing the three
different components that compose it:

1) Local Search Initialization
2) Differential Evolution
3) Deterministic Local Search

A. Local Search Initialization

At the beginning of optimization process, the population
is randomly initialized (with uniform distribution) within the
search space D. In our implementation we have set population
size NP equal to 30 individuals. After the initialization, we
perform a LS with very small local budget (4 iterations) over
all the individuals of the initial population, see Algorithm 2.

B. Differential Evolution

After initialization and re ning, DE is activated over the
individuals of the population, see e.g. [23] and [1]. The

working principles of this framework are here described. At
each generation, for each solution xi, three other solutions
xt, xs and xt are randomly selected from population. Then, a
provisional offspring xo is generated by mutation:

xo = xt + F (xr − xs), (1)

where F is a parameter namely scale factor. Scale factor is
a positive value tat usually is selected to be greater than 1. In
our implementation we have set the scale factor F to be equal
to 0.7. The mutation scheme shown in ed. (1) is known as
DE/rand/1. Many other mutation schemes have been proposed
in the literature as well as self-adaptive schemes that make use
of multiple mutation strategies, for example see [11] and [6].

When the provisional offspring has been generated by
mutation, the so-called exponential crossover is applied to
combine the genes of the parent solution xi and provisional
offspring xo. At rst a copy of the parent solution xi is
performed. Then, one design variable is chosen at random and
copied from the provisional offspring (also referred as mutant)
to the corresponding position of xi (its copy more precisely)
to make sure atleast one parameter is exchanged. The source
of subsequent trial parameters is determined by comparing
prede ned crossover rate Cr to uniformly distributed random
number between 0 and 1 that is generated anew for each
parameter, i.e, randj(0, 1). As long as randj(0.1) ≤ Cr,
parameters continue to be taken from mutant xo. As soon as
randj(0, 1) > Cr, the copy process is interrupted. Thus, the
current and all remaining parameters of the nal offspring xoff

are those from the parent solution xi. The pseudo-code of the
exponential crossover is shown in Algorithm 1.

Algorithm 1 Exponential crossover
xoff = xi

generate j = round (n · rand (0, 1))
xoff [j] = xo[j]
k = 1
while rand (0, 1) ≤ Cr AND k < n do

xoff [j] = xo[j]
j = j + 1
if j == n then

j = 1
end if
k = k + 1

end while

In other words, this crossover operator generates offspring
composed of the parent xi and contains, within it, a section
of the chromosome of the mutant vector xo. According to
its original de nition, see e.g. [1], for a xed Cr value the
exploration feature of the crossover operator is dependant on
the dimensionality of the problem. For example, if Cr is
prearranged in a low dimensional problem, the offspring is
composed mainly of the mutant vector (provisional offspring),
while for a high dimensional problem, the offspring is mainly
composed of the parent. In this study, we propose to slightly
modify the de nition of exponential crossover by xing,
instead of Cr, the approximate proportion of mutant genes
within the offspring. Let us de ne this proportion, namely
inheritance factor, as

αe ≈ ne

n
(2)

where ne is the number of mutant genes we expect to copy
from xo into xoff in addition to the gene deterministically
copied. In order to achieve that on average ne are copied into
the offspring we need to impose that

Crnαe = 0.5. (3)

It can easily be seen that, for a chosen αe, the crossover rate
can be set on the basis of the dimensionality in the following
way, see [24] for details:

Cr =
1

nαe
√
2
. (4)

C. Deterministic local search

The deterministic local search is a single solution algorithm
that attempts to exploit promising solutions by performing
steps along the axis. This LS has been effectively used in
[25], [26], and [27]. The search logic is similar to that of
Hooke-Jeeves algorithm, see [28]. The purpose of this search
algorithm is to exploit promising basins of attraction. The
algorithm searches each design variable by performing steps
along the axis and if the solution does not improve the search
step-size is halved for the following iteration. More precisely,
for each dimension j, the algorithm samples x[j] − ρ, where
x[j] is the jth design variable of the selected point x on which
LS is performed. If the perturbed solution is better than x, it
replaces the old solution and moves to the next dimension
j+1. If there is no out-performance, the search looks towards
the opposite direction with a step-size ρ/2 before moving
towards the following dimension. After having gone through
each dimension if there was no improvement the step-size ρ
is halved before subsequent iteration. For the sake of clarity,
the pseudo-code of the proposed LS is given in Algorithm 2.

Algorithm 2 Determinisitic local search
while local budget condition do

xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i] − ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xe[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2
end if

end while

D. Coordination of the local search

The functioning of this LS, albeit ef cient, is characterized
by a steepest descent pivot rule and thus requires up to 2 ×
n Fitness Evaluations (FEs) per iteration. In order to prevent
an excess use of LS budget, especially in the early stages of
optimization process, each time LS is activated we allocate a
local budget of Iter = 40 iterations (how many times step size
is halved at maximum) for LS. In addition, both algorithmic
components are given a similar budget and are alternatively

activated. Both DE and LS component are given equal budget
of FEs, thus we can activate LSK times, whereK is calculated
as follows:

K =
maxFEs

(LSFE ∗NP ∗ 2) , (5)

where LSFE is tness evaluations used at most by LS and
NP is population size. These K breakpoints are evenly spread
along optimization process:

FEbp =
maxFEs

K
(6)

and LS is activated every FEbp tness evaluations. It can
be observed that if the LS component improves upon the
starting solution it uses less FEs than when it fails to succeed
also not all population members get selected for LS. Thus, in
general, the number of FEs used by DE is greater or equal than
that used by LS used over the whole optimization process.

At each breakpoint, the LS is performed on multiple indi-
viduals selected from the population. This selection is based
on the individual performance (tness of individuals) with
respect to the average performance of the population. More
speci cally, the LS is performed over all those individuals
whose tness is better than the average tness over all the
individuals of the population. For the sake of clarity pseudo-
code for selection is shown in Algorithm 3.

Algorithm 3 Selection for LS
for i = 1 : NP do
if f(xi) ≤ favg then
activate LS on xi

end if
end for

The owchart of the entire DEcfbLS is presented in Fig.
1 while the pseudocode displaying the implementation details
of the proposed algorithm is given in Algorithm 4.

III. NUMERICAL RESULTS

In this study, the proposed algorithm has been run with
following parameters Np = 30, F = 0.7, αe = 0.5, Iter =
40, and ρ = 0.4 times the width of decision space D along
axis.

All experiments have been performed on CEC2013 test
suite [29] in 10, 30 and 50 dimensions over 28 test problems.
For each problem, 51 runs have been performed for 10000×n
tness evaluations, where n is the dimensionality of the prob-
lem. For each test problem and each algorithm, the best, worst,
median, mean and standard deviation over the 51 runs has been
computed as function error value (f(x)−f∗(x)), where f∗(x)
is the global minimum of function. Also algorithm complexity
has been considered by calculating three different runtime
values T0, T1 and T2 as follows:

• T0 is calculated by running test program shown in
table I.

• T1 is calculated by evaluating computation time of
function 14 for 200000 evaluations of certain dimen-
sion D.

Algorithm 4 DEcfbLS
generate randomly NP individuals of the initial population and
compute their tness values
for i = 1 : NP do
apply LS on i with local budget of 4 iterations.

end for
while iterations is less than prede ned budget do
for i = 1 : NP do
select three individuals xr , xs, and xt

compute mutant individual xo = xt + F (xr − xs)
compute exponential crossover between xi and xo thus gen-
erating xoff

if f(xoff) ≤ f(xi) then
save index

end if
end for
perform survivor selection where proper on the basis of saved
indexes
compute FEbp according to eq. (6)
if iterations is greater or equal than the breakpoint FEbp then
compute populations tness average favg
for i = 1 : NP do
if f(i) < favg then
apply LS on i with local budget of 40 iterations.

end if
end for
update tness evaluations breakpoint

end if
end while

Fig. 1. Flowchart

• T2 is calculated by running function 14 and comput-
ing total computation time with 200000 evalutations
of the same D dimensional benchmark function 14.

The procedure for the computation of T0 is reported in
Algorithm 5.

The complexity of algorithm is re ected by T̂2, T1, T0 and
(T̂2−T1)/T0. The machine used for complexity computations

Algorithm 5 compute T0
for i = 1 : 1000000 do

x = 0.55 + (double)i;
x = x+ x;x = x./2;x = x ∗ x;
x = sqrt(x);x = log(x);x = exp(x); y = x/x;

end for

TABLE I. COMPUTATIONAL COMPLEXITY

T0 T1 T̂2 (T̂2 − T1)/T0
D = 10 797.0 740.6 −0.9
D = 30 66.0 1976.0 3167.0 18
D = 50 3266.0 7523.8 64.5

is PC with Intel(R) Core(TM)2 Quad CPU Q9650 3.00GHz,
8GB RAM.

Table I shows the computational complexity of the pro-
posed algorithm while Tables II, III, and IV shows the numeri-
cal results in the competition format for the proposed DEcfbLS
in 10, 30, and 50, respectively.

A. Comparison against state-of-art algorithms

In order to proved a better understanding of the DEcfbLS
performance, the proposed algorithm has been compared with
the following modern metaheuristics:

• Covariance Matrix Adaptive Evolution Strategy with
increasing population size and restart (G-CMAES),
proposed in [30], with initial population λstart = 10
and factor for increasing the population size equal to
2. All the other parameters are set to standard values.

• Comprehensive Learning Particle Swarm Optimizer
(CLPSO), proposed in [31], with population size 60.

TABLE II. RESULTS IN 10 DIMENSIONS

DEcfbLS
Best Worst Median Mean Std

f1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f2 0.00e + 00 4.38e + 03 1.77e − 05 1.01e + 02 6.09e + 02
f3 6.09e − 06 6.37e + 00 2.88e − 01 1.14e + 00 2.00e + 00
f4 1.91e − 07 3.21e + 01 8.82e − 03 8.19e − 01 4.57e + 00
f5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f6 0.00e + 00 9.81e + 00 0.00e + 00 1.35e + 00 3.38e + 00
f7 7.30e − 02 4.32e + 00 6.23e − 01 8.71e − 01 8.21e − 01
f8 2.00e + 01 2.06e + 01 2.03e + 01 2.03e + 01 1.12e − 01
f9 5.95e − 01 5.40e + 00 3.82e + 00 3.54e + 00 1.09e + 00
f10 7.40e − 03 7.63e − 02 2.95e − 02 3.29e − 02 1.71e − 02
f11 0.00e + 00 9.95e − 01 0.00e + 00 1.95e − 02 1.38e − 01
f12 2.98e + 00 1.09e + 01 5.97e + 00 6.15e + 00 1.88e + 00
f13 4.00e + 00 2.18e + 01 1.10e + 01 1.19e + 01 4.39e + 00
f14 0.00e + 00 1.25e − 01 0.00e + 00 1.84e − 02 3.10e − 02
f15 2.36e + 02 8.32e + 02 5.20e + 02 5.27e + 02 1.38e + 02
f16 2.00e − 04 1.34e + 00 2.51e − 01 2.79e − 01 1.99e − 01
f17 1.61e + 00 1.05e + 01 1.01e + 01 9.80e + 00 1.51e + 00
f18 9.03e + 00 2.24e + 01 1.63e + 01 1.65e + 01 2.66e + 00
f19 1.58e − 01 4.14e − 01 2.82e − 01 2.90e − 01 6.21e − 02
f20 1.82e + 00 3.43e + 00 2.50e + 00 2.56e + 00 4.01e − 01
f21 4.00e + 02 4.00e + 02 4.00e + 02 4.00e + 02 0.00e + 00
f22 9.31e + 00 1.17e + 02 2.73e + 01 3.08e + 01 1.89e + 01
f23 3.47e + 02 1.18e + 03 6.28e + 02 6.56e + 02 1.59e + 02
f24 1.03e + 02 2.00e + 02 1.08e + 02 1.13e + 02 2.19e + 01
f25 1.09e + 02 2.16e + 02 2.00e + 02 1.82e + 02 3.70e + 01
f26 1.03e + 02 2.00e + 02 1.08e + 02 1.10e + 02 1.31e + 01
f27 3.00e + 02 4.00e + 02 4.00e + 02 3.90e + 02 2.97e + 01
f28 1.00e + 02 3.00e + 02 3.00e + 02 2.41e + 02 9.11e + 01

TABLE III. RESULTS IN 30 DIMENSIONS

DEcfbLS
Best Worst Median Mean Std

f1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f2 4.77e + 04 5.48e + 05 1.89e + 05 1.99e + 05 1.07e + 05
f3 6.94e + 00 2.86e + 07 2.77e + 05 2.11e + 06 4.64e + 06
f4 2.14e + 01 2.49e + 03 2.36e + 02 3.82e + 02 5.12e + 02
f5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f6 2.96e − 02 2.64e + 01 6.61e + 00 7.08e + 00 4.17e + 00
f7 2.33e + 01 8.93e + 01 5.29e + 01 5.68e + 01 1.66e + 01
f8 2.07e + 01 2.11e + 01 2.09e + 01 2.09e + 01 9.44e − 02
f9 1.48e + 01 3.12e + 01 2.45e + 01 2.40e + 01 2.86e + 00
f10 0.00e + 00 6.89e − 02 1.23e − 02 2.01e − 02 1.73e − 02
f11 0.00e + 00 9.95e − 01 0.00e + 00 5.85e − 02 2.34e − 01
f12 3.68e + 01 6.87e + 01 5.47e + 01 5.42e + 01 8.80e + 00
f13 5.57e + 01 1.37e + 02 1.02e + 02 1.01e + 02 1.86e + 01
f14 8.14e + 00 7.62e + 01 3.08e + 01 3.29e + 01 1.35e + 01
f15 1.94e + 03 7.35e + 03 3.10e + 03 3.43e + 03 1.08e + 03
f16 9.05e − 02 3.90e + 00 3.57e − 01 7.27e − 01 8.93e − 01
f17 3.28e + 01 3.75e + 01 3.52e + 01 3.53e + 01 1.14e + 00
f18 5.26e + 01 1.02e + 02 8.03e + 01 7.94e + 01 1.10e + 01
f19 1.22e + 00 1.93e + 00 1.47e + 00 1.50e + 00 1.74e − 01
f20 9.77e + 00 1.36e + 01 1.18e + 01 1.17e + 01 6.52e − 01
f21 2.00e + 02 4.44e + 02 3.00e + 02 3.36e + 02 9.78e + 01
f22 9.83e + 01 4.66e + 02 2.46e + 02 2.56e + 02 9.13e + 01
f23 2.12e + 03 4.77e + 03 3.59e + 03 3.59e + 03 4.99e + 02
f24 2.29e + 02 2.77e + 02 2.66e + 02 2.64e + 02 9.15e + 00
f25 2.60e + 02 2.93e + 02 2.85e + 02 2.83e + 02 5.79e + 00
f26 2.00e + 02 2.00e + 02 2.00e + 02 2.00e + 02 6.62e − 03
f27 7.73e + 02 1.05e + 03 9.38e + 02 9.38e + 02 5.75e + 01
f28 3.00e + 02 3.00e + 02 3.00e + 02 3.00e + 02 0.00e + 00

TABLE IV. RESULTS IN 50 DIMENSIONS

DEcfbLS
Best Worst Median Mean Std

f1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f2 3.16e + 05 2.42e + 06 5.73e + 05 6.55e + 05 3.74e + 05
f3 2.04e + 07 1.39e + 09 1.87e + 08 2.20e + 08 2.14e + 08
f4 7.86e + 01 1.25e + 04 6.16e + 02 1.21e + 03 1.94e + 03
f5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
f6 4.34e + 01 4.34e + 01 4.34e + 01 4.34e + 01 0.00e + 00
f7 7.74e + 01 1.25e + 02 1.07e + 02 1.05e + 02 9.53e + 00
f8 2.09e + 01 2.13e + 01 2.11e + 01 2.11e + 01 9.52e − 02
f9 4.00e + 01 5.37e + 01 4.73e + 01 4.71e + 01 3.17e + 00
f10 0.00e + 00 6.64e − 02 3.20e − 02 3.21e − 02 1.67e − 02
f11 4.20e − 03 1.79e + 01 4.02e + 00 4.64e + 00 4.38e + 00
f12 6.37e + 01 2.06e + 02 1.31e + 02 1.34e + 02 3.55e + 01
f13 1.63e + 02 3.67e + 02 2.39e + 02 2.47e + 02 4.87e + 01
f14 4.72e + 01 4.41e + 02 2.23e + 02 2.31e + 02 8.64e + 01
f15 4.99e + 03 1.45e + 04 5.96e + 03 6.25e + 03 1.40e + 03
f16 2.00e − 01 4.15e + 00 8.09e − 01 1.63e + 00 1.37e + 00
f17 5.95e + 01 7.04e + 01 6.62e + 01 6.58e + 01 2.31e + 00
f18 1.12e + 02 1.98e + 02 1.55e + 02 1.57e + 02 2.09e + 01
f19 2.46e + 00 3.68e + 00 2.98e + 00 2.95e + 00 2.89e − 01
f20 1.89e + 01 2.30e + 01 2.20e + 01 2.17e + 01 8.51e − 01
f21 2.00e + 02 1.12e + 03 2.00e + 02 5.24e + 02 3.98e + 02
f22 3.58e + 02 1.04e + 03 6.63e + 02 6.89e + 02 1.50e + 02
f23 5.89e + 03 1.56e + 04 7.04e + 03 7.77e + 03 2.18e + 03
f24 3.06e + 02 3.43e + 02 3.31e + 02 3.31e + 02 7.40e + 00
f25 3.18e + 02 3.82e + 02 3.61e + 02 3.60e + 02 9.94e + 00
f26 2.00e + 02 2.00e + 02 2.00e + 02 2.00e + 02 3.37e − 02
f27 1.29e + 03 1.71e + 03 1.54e + 03 1.55e + 03 9.50e + 01
f28 4.00e + 02 4.00e + 02 4.00e + 02 4.00e + 02 0.00e + 00

• Modi ed Differential Evolution with p-best crossover,
proposed in [32], with population size 100 and q =
0.15 as suggested in original paper.

Each algorithm has been run 51 times for 10000×n tness
evaluations. The same problems and dimensionality values
mentioned above have been considered in this section. Tables
V, VI, and VII show the average nal tness ± the standard
deviation and the associated statistical signi cance according
to the Wicloxon test with con dence level 0.95, see [33]. For
each pair-wise comparison on the nal values obtained by
DEcfbLS against GCMAES, MDE-pBX and CCPSO2 (“+”,

TABLE VIII. HOLM-BONFERRONI TEST ON THE FITNESS (REFERENCE
= DECFBLS)

i Optimizer z p α/i Hypothesis
3 GCMAES -7.77e+00 3.96e-15 1.67e-02 Rejected
2 CLPSO -4.24e+00 1.10e-05 2.50e-02 Rejected
1 MDEpBX -3.35e+00 4.09e-04 5.00e-02 Rejected

“-” and “=” indicate, respectively, a better, worse or equivalent
performance of DEcfbLS against the other algorithms).

Numerical results show that for all the considered dimen-
sionality values, the proposed DEcfbLS tends to outperform
the other algorithms. The most challenging competitor ap-
peared to be the MDE-pBX. However, the latter scheme is
outperformed of the vast majority of the problems by the pro-
posed memetic structure. This result is con rmed by the Holm-
Bonferroni prodedure [34], which we performed as described
in [35], with con dence level 0.05. As shown in Table VIII,
DEcfbLS is ranked rst among the four algorithms, with
the null-hypothesis rejected in all the pair-wise comparisons.
In other words, DEcfbLS is signi cantly the best algorithm
amongst the four considered in this study and for the problems
under investigation.

IV. CONCLUSION

This paper presents a memetic approach based on a DE
framework and a simple local search that moves along the axes.
The proposed algorithm, namely Differential Evolution with
concurrent tness based Local Search (DEcfbLS) is composed
of a DE/rand/1/exp framework and a local search operator.
After rst step of population initialization, this local search
is applied for one time and with a small local budget to all
the individuals of the population. This operation appears to
have a great impact on the nal performance. Subsequently,
the local search activations are scheduled by means of cri-
terion based on the exhausted budget. More speci cally, DE
is performed until a breakpoint is met and LS is activated
on multiple population members. The individuals undergoing
LS are selected on the basis of their tness with respect
to the tness of the other population members (the most
promising individuals are those undergoing LS). Thus, the
total DE and LS budget is made comparable. This scheme,
although simple, appears to effectively balance global and local
search necessities and offer a respectable performance on a
range of various problems. Numerical results demonstrate that
DEcfbLS displays a very good performance with respect to
modern metaheuristics representing the-state-of-the-art in com-
putational intelligence optimization. The proposed DEcfbLS is
potentially a promising candidate to take part to competition on
Real-Parameter Single Objective Optimization at CEC-2013.

ACKNOWLEDGMENT

This research is supported by the Academy of Fin-
land, Akatemiatutkija 130600, “Algorithmic design issues in
Memetic Computing”. The numerical experiments have been
carried out on the computer network of the University of
Jyväskylä by means of the software for distributed optimization
Kimeme [36].

TABLE V. AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON THE FITNESS IN 10D (REFERENCE = DECFBLS)

DEcfbLS GCMAES MDEpBX CLPSO
f1 0.00e + 00 ± 0.00e + 00 7.95e + 03± 7.28e + 03 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f2 1.01e + 02 ± 6.09e + 02 2.28e + 04± 2.99e + 04 + 4.47e + 02± 8.73e + 02 + 1.22e + 06± 6.11e + 05 +
f3 1.14e + 00 ± 2.00e + 00 6.58e + 06± 1.73e + 07 + 9.56e + 03± 4.38e + 04 - 9.67e + 06± 7.61e + 06 +
f4 8.19e − 01 ± 4.57e + 00 1.19e + 04± 8.61e + 03 + 8.25e − 04± 5.54e − 03 - 6.81e + 03± 2.37e + 03 +
f5 0.00e + 00 ± 0.00e + 00 1.09e + 04± 1.74e + 04 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f6 1.35e + 00 ± 3.38e + 00 7.06e + 03± 5.57e + 03 + 6.35e + 00± 4.69e + 00 + 3.62e + 00± 3.40e + 00 +
f7 8.71e − 01 ± 8.21e − 01 1.42e + 13± 4.70e + 13 + 7.24e + 00± 9.11e + 00 + 1.69e + 01± 4.76e + 00 +
f8 2.03e + 01 ± 1.12e − 01 2.13e + 01± 1.82e − 01 + 2.05e + 01± 8.15e − 02 + 2.03e + 01± 6.42e − 02 +
f9 3.54e + 00 ± 1.09e + 00 1.90e + 01± 2.45e + 00 + 2.20e + 00± 1.43e + 00 - 4.47e + 00± 6.22e − 01 +
f10 3.29e − 02 ± 1.71e − 02 1.96e + 03± 1.87e + 03 + 1.36e − 01± 1.24e − 01 + 1.14e + 00± 2.24e − 01 +
f11 1.95e − 02 ± 1.38e − 01 8.28e + 02± 4.02e + 02 + 2.48e + 00± 1.70e + 00 + 0.00e + 00± 0.00e + 00 =
f12 6.15e + 00 ± 1.88e + 00 6.60e + 02± 3.49e + 02 + 1.09e + 01± 5.21e + 00 + 1.39e + 01± 3.52e + 00 +
f13 1.19e + 01 ± 4.39e + 00 8.41e + 02± 7.26e + 02 + 2.03e + 01± 9.51e + 00 + 1.74e + 01± 5.51e + 00 +
f14 1.84e − 02 ± 3.10e − 02 1.02e + 03± 3.02e + 02 + 1.14e + 02± 9.80e + 01 + 2.11e − 01± 8.61e − 02 +
f15 5.27e + 02 ± 1.38e + 02 9.81e + 02± 2.53e + 02 + 7.99e + 02± 2.85e + 02 + 7.62e + 02± 1.37e + 02 +
f16 2.79e − 01 ± 1.99e − 01 6.38e − 04± 4.51e − 03 - 6.01e − 01± 4.43e − 01 + 9.83e − 01± 2.00e − 01 +
f17 9.80e + 00 ± 1.51e + 00 1.14e + 01± 8.32e − 01 + 1.29e + 01± 2.05e + 00 + 1.02e + 01± 5.16e − 02 +
f18 1.65e + 01 ± 2.66e + 00 2.61e + 02± 3.58e + 02 = 1.97e + 01± 4.99e + 00 + 3.12e + 01± 4.35e + 00 +
f19 2.90e − 01 ± 6.21e − 02 6.49e − 01± 1.15e − 01 + 6.48e − 01± 2.22e − 01 + 3.43e − 01± 1.17e − 01 +
f20 2.56e + 00 ± 4.01e − 01 2.93e + 00± 6.26e − 01 + 2.89e + 00± 5.42e − 01 + 2.94e + 00± 2.53e − 01 +
f21 4.00e + 02 ± 0.00e + 00 3.24e + 02± 1.21e + 02 - 4.00e + 02± 0.00e + 00 = 2.83e + 02± 6.63e + 01 -
f22 3.08e + 01 ± 1.89e + 01 1.70e + 03± 4.35e + 02 + 1.19e + 02± 1.00e + 02 + 1.86e + 01± 1.45e + 01 -
f23 6.56e + 02 ± 1.59e + 02 1.77e + 03± 3.37e + 02 + 8.83e + 02± 3.33e + 02 + 1.09e + 03± 1.70e + 02 +
f24 1.13e + 02 ± 2.19e + 01 1.65e + 02± 5.82e + 01 = 2.04e + 02± 4.82e + 00 + 1.56e + 02± 1.39e + 01 +
f25 1.82e + 02 ± 3.70e + 01 1.88e + 02± 3.35e + 01 - 2.01e + 02± 2.12e + 00 = 1.77e + 02± 1.79e + 01 -
f26 1.10e + 02 ± 1.31e + 01 1.23e + 02± 4.38e + 01 - 1.41e + 02± 4.23e + 01 + 1.18e + 02± 5.06e + 00 +
f27 3.90e + 02 ± 2.97e + 01 3.00e + 02± 1.10e − 03 - 3.01e + 02± 3.92e + 00 - 3.45e + 02± 1.95e + 01 -
f28 2.41e + 02 ± 9.11e + 01 5.48e + 02± 7.65e + 02 + 3.09e + 02± 6.90e + 01 = 2.50e + 02± 6.13e + 01 =

TABLE VI. AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON THE FITNESS IN 30D (REFERENCE = DECFBLS)

DEcfbLS GCMAES MDEpBX CLPSO
f1 0.00e + 00 ± 0.00e + 00 4.42e + 03± 2.94e + 03 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f2 1.99e + 05 ± 1.07e + 05 7.65e + 03± 4.66e + 03 - 8.57e + 04± 5.00e + 04 - 1.84e + 07± 4.43e + 06 +
f3 2.11e + 06 ± 4.64e + 06 8.56e + 06± 1.25e + 07 + 1.48e + 07± 2.46e + 07 + 1.40e + 09± 5.54e + 08 +
f4 3.82e + 02 ± 5.12e + 02 5.28e + 03± 3.44e + 03 + 1.33e + 01± 3.92e + 01 - 2.79e + 04± 3.15e + 03 +
f5 0.00e + 00 ± 0.00e + 00 2.62e + 03± 1.18e + 03 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f6 7.08e + 00 ± 4.17e + 00 2.15e + 03± 1.09e + 03 + 3.34e + 01± 3.00e + 01 + 6.76e + 01± 9.13e + 00 +
f7 5.68e + 01 ± 1.66e + 01 1.64e + 13± 8.15e + 13 + 6.09e + 01± 1.73e + 01 = 7.21e + 01± 7.80e + 00 +
f8 2.09e + 01 ± 9.44e − 02 2.15e + 01± 7.45e − 02 + 2.10e + 01± 5.23e − 02 + 2.10e + 01± 4.75e − 02 +
f9 2.40e + 01 ± 2.86e + 00 5.97e + 01± 4.92e + 00 + 2.27e + 01± 4.25e + 00 = 2.81e + 01± 1.73e + 00 +
f10 2.01e − 02 ± 1.73e − 02 1.52e + 03± 6.51e + 02 + 1.44e − 01± 8.45e − 02 + 3.57e + 00± 6.63e − 01 +
f11 5.85e − 02 ± 2.34e − 01 6.27e + 02± 2.94e + 02 + 4.70e + 01± 1.32e + 01 + 0.00e + 00± 0.00e + 00 -
f12 5.42e + 01 ± 8.80e + 00 1.05e + 03± 8.28e + 02 + 7.18e + 01± 1.85e + 01 + 1.43e + 02± 1.71e + 01 +
f13 1.01e + 02 ± 1.86e + 01 1.60e + 03± 1.28e + 03 + 1.46e + 02± 3.27e + 01 + 1.80e + 02± 1.42e + 01 +
f14 3.29e + 01 ± 1.35e + 01 3.57e + 03± 1.06e + 03 + 1.16e + 03± 4.50e + 02 + 1.74e + 01± 2.37e + 01 -
f15 3.43e + 03 ± 1.08e + 03 4.50e + 03± 7.47e + 02 + 3.92e + 03± 6.42e + 02 + 4.62e + 03± 3.64e + 02 +
f16 7.27e − 01 ± 8.93e − 01 6.24e − 03± 6.80e − 03 - 1.26e + 00± 7.53e − 01 + 1.97e + 00± 2.77e − 01 +
f17 3.53e + 01 ± 1.14e + 00 3.78e + 03± 1.19e + 03 + 7.09e + 01± 1.28e + 01 + 3.15e + 01± 2.73e − 01 -
f18 7.94e + 01 ± 1.10e + 01 3.94e + 03± 8.53e + 02 + 8.15e + 01± 1.34e + 01 = 1.99e + 02± 1.41e + 01 +
f19 1.50e + 00 ± 1.74e − 01 2.45e + 00± 4.67e − 01 + 9.86e + 00± 7.61e + 00 + 1.39e + 00± 3.12e − 01 -
f20 1.17e + 01 ± 6.52e − 01 1.41e + 01± 2.04e + 00 + 1.08e + 01± 7.21e − 01 - 1.30e + 01± 4.56e − 01 +
f21 3.36e + 02 ± 9.78e + 01 2.24e + 02± 4.24e + 01 - 3.23e + 02± 8.67e + 01 = 3.02e + 02± 5.03e + 00 =
f22 2.56e + 02 ± 9.13e + 01 4.50e + 03± 1.57e + 03 + 1.24e + 03± 4.50e + 02 + 1.21e + 02± 7.91e + 00 -
f23 3.59e + 03 ± 4.99e + 02 5.70e + 03± 9.43e + 02 + 4.48e + 03± 7.47e + 02 + 5.59e + 03± 3.59e + 02 +
f24 2.64e + 02 ± 9.15e + 00 3.01e + 02± 3.53e + 02 - 2.32e + 02± 1.10e + 01 - 2.47e + 02± 4.51e + 00 -
f25 2.83e + 02 ± 5.79e + 00 2.54e + 02± 1.71e + 01 - 2.78e + 02± 1.12e + 01 - 2.97e + 02± 1.07e + 01 +
f26 2.00e + 02 ± 6.62e − 03 2.62e + 02± 2.45e + 02 - 2.26e + 02± 5.21e + 01 - 2.01e + 02± 3.45e − 01 +
f27 9.38e + 02 ± 5.75e + 01 4.01e + 02± 1.28e + 02 - 6.48e + 02± 1.18e + 02 - 8.19e + 02± 1.92e + 02 -
f28 3.00e + 02 ± 0.00e + 00 5.76e + 02± 1.11e + 03 + 2.88e + 02± 4.71e + 01 + 3.00e + 02± 8.00e − 02 +

REFERENCES

[1] K. V. Price, R. Storn, and J. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Springer, 2005.

[2] V. P. Plagianakos, D. K. Tasoulis, and M. N. Vrahatis, “A Review
of Major Application Areas of Differential Evolution,” in Advances in
Differential Evolution, ser. Studies in Computational Intelligence, U. K.
Chakraborty, Ed. Springer, 2008, vol. 143, pp. 197–238.

[3] R. Joshi and A. C. Sanderson, “Minimal representation multisensor
fusion using differential evolution,” IEEE Transactions on Systems, Man
and Cybernetics, Part A, vol. 29, no. 1, pp. 63–76, 1999.

[4] T. Rogalsky and R. W. Derksen, “Hybridization of Differential Evo-
lution for Aerodynamic Design,” in Proceedings of the 8th Annual
Conference of the Computational Fluid Dynamics Society of Canada,
June 2000, pp. 729–736.

[5] N. Karaboga and B. Cetinkaya, “Design of Digital FIR Filters Using
Differential Evolution Algorithm,” Circuits, Systems, and Signal Pro-
cessing, vol. 25, no. 5, pp. 649–660, October 2006.

[6] S. Das and P. Suganthan, “Differential Evolution: A Survey of the State-
of-the-Art,” Evolutionary Computation, IEEE Transactions on, vol. 15,
no. 1, pp. 4–31, feb. 2011.

[7] F. Neri and V. Tirronen, “Recent Advances in Differential Evolution:
A Review and Experimental Analysis,” Arti cial Intelligence Review,
vol. 33, no. 1–2, pp. 61–106, 2010.

[8] M. Weber, V. Tirronen, and F. Neri, “Scale Factor Inheritance Mecha-
nism in Distributed Differential Evolution,” Soft Computing - A Fusion
of Foundations, Methodologies and Applications, vol. 14, no. 11, pp.
1187–1207, 2010.

[9] J. Brest, A. Zamuda, B. Bosković, and V. Zumer, “An Analysis of the
Control Parameters’Adaptation in DE,” in Advances in Differential Evo-

TABLE VII. AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON THE FITNESS IN 50D (REFERENCE = DECFBLS)

DEcfbLS GCMAES MDEpBX CLPSO
f1 0.00e + 00 ± 0.00e + 00 2.67e + 03± 1.07e + 03 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f2 6.55e + 05 ± 3.74e + 05 7.96e + 03± 4.11e + 03 - 4.59e + 05± 2.43e + 05 - 3.58e + 07± 5.81e + 06 +
f3 2.20e + 08 ± 2.14e + 08 1.01e + 06± 1.78e + 06 - 9.84e + 07± 1.60e + 08 - 2.77e + 09± 6.96e + 08 +
f4 1.21e + 03 ± 1.94e + 03 4.58e + 03± 2.72e + 03 + 2.36e + 01± 2.36e + 01 - 3.42e + 04± 3.57e + 03 +
f5 0.00e + 00 ± 0.00e + 00 2.13e + 03± 6.58e + 02 + 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 =
f6 4.34e + 01 ± 0.00e + 00 1.98e + 03± 9.49e + 02 + 5.57e + 01± 2.33e + 01 + 4.67e + 01± 5.09e − 01 +
f7 1.05e + 02 ± 9.53e + 00 6.65e + 14± 3.78e + 15 + 6.46e + 01± 1.37e + 01 - 8.88e + 01± 6.24e + 00 -
f8 2.11e + 01 ± 9.52e − 02 2.15e + 01± 5.98e − 02 + 2.12e + 01± 4.37e − 02 + 2.11e + 01± 3.28e − 02 =
f9 4.71e + 01 ± 3.17e + 00 9.78e + 01± 5.23e + 00 + 4.43e + 01± 7.26e + 00 - 5.40e + 01± 2.41e + 00 +
f10 3.21e − 02 ± 1.67e − 02 1.35e + 03± 4.56e + 02 + 1.53e − 01± 2.67e − 01 + 1.44e + 01± 2.11e + 00 +
f11 4.64e + 00 ± 4.38e + 00 5.13e + 02± 2.36e + 02 + 1.19e + 02± 2.73e + 01 + 0.00e + 00± 0.00e + 00 -
f12 1.34e + 02 ± 3.55e + 01 2.33e + 03± 1.34e + 03 + 1.59e + 02± 3.07e + 01 + 3.25e + 02± 2.65e + 01 +
f13 2.47e + 02 ± 4.87e + 01 3.64e + 03± 1.05e + 03 + 3.20e + 02± 4.24e + 01 + 3.92e + 02± 2.01e + 01 +
f14 2.31e + 02 ± 8.64e + 01 7.46e + 03± 9.56e + 02 + 2.76e + 03± 7.65e + 02 + 2.97e + 01± 2.13e + 01 -
f15 6.25e + 03 ± 1.40e + 03 8.56e + 03± 8.83e + 02 + 7.61e + 03± 8.52e + 02 + 9.57e + 03± 4.86e + 02 +
f16 1.63e + 00 ± 1.37e + 00 3.03e − 03± 2.72e − 03 - 1.85e + 00± 8.83e − 01 + 2.60e + 00± 2.92e − 01 +
f17 6.58e + 01 ± 2.31e + 00 7.07e + 03± 1.20e + 03 + 1.74e + 02± 3.90e + 01 + 5.35e + 01± 5.13e − 01 -
f18 1.57e + 02 ± 2.09e + 01 6.96e + 03± 1.09e + 03 + 1.84e + 02± 2.96e + 01 + 4.11e + 02± 2.07e + 01 +
f19 2.95e + 00 ± 2.89e − 01 4.42e + 00± 6.69e − 01 + 3.61e + 01± 1.68e + 01 + 2.68e + 00± 3.69e − 01 -
f20 2.17e + 01 ± 8.51e − 01 2.01e + 01± 3.02e + 00 - 1.98e + 01± 8.35e − 01 - 2.22e + 01± 3.52e − 01 +
f21 5.24e + 02 ± 3.98e + 02 6.85e + 02± 4.33e + 02 = 8.67e + 02± 3.67e + 02 + 5.32e + 02± 2.15e + 02 +
f22 6.89e + 02 ± 1.50e + 02 1.05e + 04± 1.33e + 03 + 3.24e + 03± 1.15e + 03 + 5.55e + 01± 2.84e + 01 -
f23 7.77e + 03 ± 2.18e + 03 1.15e + 04± 1.05e + 03 + 9.00e + 03± 1.16e + 03 + 1.14e + 04± 6.12e + 02 +
f24 3.31e + 02 ± 7.40e + 00 3.79e + 02± 5.21e + 02 - 2.84e + 02± 1.42e + 01 - 3.01e + 02± 7.53e + 00 -
f25 3.60e + 02 ± 9.94e + 00 3.16e + 02± 6.31e + 01 - 3.67e + 02± 1.44e + 01 + 4.22e + 02± 6.94e + 00 +
f26 2.00e + 02 ± 3.37e − 02 3.58e + 02± 5.17e + 02 = 3.46e + 02± 8.23e + 01 + 2.04e + 02± 8.57e − 01 +
f27 1.55e + 03 ± 9.50e + 01 8.00e + 02± 2.42e + 02 - 1.28e + 03± 1.63e + 02 - 1.67e + 03± 1.86e + 02 +
f28 4.00e + 02 ± 0.00e + 00 1.35e + 03± 2.06e + 03 = 5.42e + 02± 7.05e + 02 - 4.00e + 02± 1.02e − 03 +

lution, ser. Studies in Computational Intelligence, U. K. Chakraborty,
Ed. Springer, 2008, vol. 143, pp. 89–110.

[10] N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella,
“Optimization of Delayed-State Kalman Filter-based Algorithm via
Differential Evolution for Sensorless Control of Induction Motors,”
IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 385–
394, 2010.

[11] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 398–417, 2009.

[12] J. Brest, S. Greiner, B. Bosković, M. Mernik, and V. Zumer, “Self-
Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[13] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[14] J. Lampinen and I. Zelinka, “On Stagnation of the Differential Evolution
Algorithm,” in Proceedings of 6th International Mendel Conference on
Soft Computing, P. Oŝmera, Ed., 2000, pp. 76–83.

[15] J. Zhang and A. C. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” vol. 13, no. 5, 2009, pp. 945–958.

[16] J. Brest and M. S. Maucec, “Population size reduction for the differ-
ential evolution algorithm,” Applied Intelligence, vol. 29, no. 3, pp.
228–247, 2008.

[17] N. Noman and H. Iba, “Accelerating Differential Evolution Using an
Adaptive Local Search,” IEEE Transactions on Evolutionary Computa-
tion, vol. 12, no. 1, pp. 107–125, 2008.

[18] A. Caponio, F. Neri, and V. Tirronen, “Super- t control adaptation in
memetic differential evolution frameworks,” Soft Computing - A Fusion
of Foundations, Methodologies and Applications, vol. 13, pp. 811–831,
2009.

[19] F. Neri and V. Tirronen, “Scale Factor Local Search in Differential
Evolution,” Memetic Computing Journal, vol. 1, no. 2, pp. 153–171,
2009.

[20] Z. Z. Liu, F. L. Luo, and M. A. Rahman, “Robust and precision motion
control system of linear-motor direct drive for high-speed X-Y table
positioning mechanism,” IEEE Transactions on Industrial Electronics,
vol. 52, no. 5, pp. 1357–1363, Oct. 2005.

[21] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential

Evolution with a Neighborhood-based Mutation Operator,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 3, pp. 526–553, 2009.

[22] S. Islam, S. Das, S. Ghosh, S. Roy, and P. Suganthan, “An Adaptive
Differential Evolution Algorithm With Novel Mutation and Crossover
Strategies for Global Numerical Optimization,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2,
pp. 482–500, april 2012.

[23] R. Storn, “Differential evolution design of an IIR- lter,” in Proceedings
of IEEE International Conference on Evolutionary Computation, 1996,
pp. 268–273.

[24] F. Neri, G. Iacca, and E. Mininno, “Disturbed Exploitation compact
Differential Evolution for Limited Memory Optimization Problems,”
Information Sciences, vol. 181, no. 12, pp. 2469–2487, 2011.

[25] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim, “Ockham’s
Razor in Memetic Computing: Three Stage Optimal Memetic Explo-
ration,” Information Sciences, vol. 188, pp. 17–43, 2012.

[26] F. Caraf ni, F. Neri, G. Iacca, and A. Mol, “Parallel Memetic Struc-
tures,” Information Sciences, vol. 227, pp. 60–82, 2013.

[27] I. Poikolainen, G. Iacca, F. Neri, E. Mininno, and M. Weber, “Shrinking
three stage optimal memetic exploration,” in Proceedings of the Fifth
International Conference on Bioinspired Optimization Methods and
their Applications, 2012, pp. 61–74.

[28] R. Hooke and T. A. Jeeves, “Direct search solution of numerical and
statistical problems,” Journal of the ACM, vol. 8, pp. 212–229, Mar.
1961.

[29] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernndez-Daz,
“Problem De nitions and Evaluation Criteria for the CEC 2013 Special
Session on Real-Parameter Optimization,” Zhengzhou University and
Nanyang Technological University, Zhengzhou China and Singapore,
Tech. Rep. 201212, 2013.

[30] A. Auger and N. Hansen, “A Restart CMA Evolution Strategy With
Increasing Population Size,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2005, pp. 1769–1776.

[31] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 3, pp. 281–295, 2006.

[32] S. G. S. R. S. S. P. Islam, S.M.; Das, “An adaptive differential
evolution algorithm with novel mutation and crossover strategies for
global numerical optimization,” IEEE Transactions on System Man and
Cybernetics-part B, vol. 42, pp. 482–500, 2012.

[33] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[34] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[35] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Computing, vol. 13, no. 10,
pp. 959–977, 2008.

[36] Cyber Dyne Srl Home Page, “Kimeme,” 2012, http://cyberdynesoft.it/.

PVII

CLUSTER-BASED POPULATION INITIALIZATION FOR
DIFFERENTIAL EVOLUTION FRAMEWORKS

by

I. Poikolainen, F. Neri, F.Caraffini 2014

submitted in April

	Simple Memetic Computing Structures for Global Optimization
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ALGORITHMS
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Derivative-based optimization
	1.2 Derivative-free optimization

	2 META-HEURISTICS
	2.1 Single-solution Meta-heuristics
	2.2 Population-Based Meta-heuristics

	3 DIFFERENTIAL EVOLUTION
	3.1 Population Initialization
	3.2 Mutation
	3.3 Crossover
	3.4 Selection
	3.5 Implicit Self-Adaptation and Stagnation
	3.6 Ways Around Stagnation in DE

	4 MEMETIC COMPUTING STRUCTURES
	4.1 Coordination of the Algorithmic Components
	4.2 Single Solution Memetic Structure

	5 CONTRIBUTION OF THIS WORK
	5.1 Test Framework
	5.2 Modified Structures of Three Stage Optimal Memetic Exploration
	5.3 Differential Evolution based Memetic Structures
	5.4 Cluster-Based Population Initialization in Differential Evolution

	6 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	SHRINKING THREE STAGE OPTIMAL MEMETIC EXPLORATION
	HANDLING NON-SEPARABILITY IN THREE STAGE MEMETIC EXPLORATION
	META-LAMARCKIAN LEARNING IN THREE STAGE OPTIMAL MEMETIC EXPLORATION
	FOCUSING THE SEARCH: A PROGRESSIVELY SHRINKING MEMETIC COMPUTING FRAMEWORK
	MICRO-DIFFERENTIAL EVOLUTION WITH EXTRA MOVES ALONG THE AXES
	DIFFERENTIAL EVOLUTION WITH CONCURRENT FITNESS BASED LOCAL SEARCH
	CLUSTER-BASED POPULATION INITIALIZATION FORDIFFERENTIAL EVOLUTION FRAMEWORKS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

