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Modern nanofabrication technology enable fabrication of very narrow quasi-1-
dimensional superconducting nanowires demonstrating finite resistivity within
the range of experimentally obtainable temperatures. The observations were re-

ported in∼10 nm nanowires of certain superconducting materials. The effect has

been associated with quantum phase slip process - the particular manifestation of
quantum fluctuations of the order p arameter. In titanium, the phenomenon can

be observed already at dimensions ∼35 nm where the fabrication is well repro-

ducible and the dimensions of samples can be characterized with high accuracy.
We have performed systematic study of the size dependence of transport prop-
erties for superconducting ultra-narrow titanium nanowires utilizing method of
gradual size reduction by low energetic ion beam milling. The method enables
the study of the same nanowire with 1 nm effective diameter reduction between
measurement cycles. The experiments demonstrated clear crossover to fluctua-
tion dominated regime when the dimensions are reduced below a certain thresh-
old. All available at our disposal microscopic analyses indicate no damage or
contamination of the bulk of the nanowire due to the ion milling.

The next stage of the work was to demonstrate experimentally the quantum

duality between the physics of Josephson junction and superconducting nanowire

governed by quantumfluctuations. We showed that sufficiently narrow nanowires

embedded in high-impedance environment demonstrate the insulating state -

Coulomb blockade. The system can be considered as a single Cooper pair tran-

sistor without any dielectric barriers. Irradiation of the nanowire with external

RF drive leads to formation of the Bloch steps on the IV characteristics - the phe-

nomenon dual to the well-known Shapiro effect, currently used as quantum stan-

dard of electric voltage. We have performed experiments demonstrating the cor-

responding current singularities which confirm the hypothesis. The observation

is of significant importance for both scientific and metrological communities.

Keywords: superconductor, fluctuation, phase slip, Bloch oscillation, QPS-transistor,

1-dimensional, titanium, ion milling
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1 INTRODUCTION

More than hundred years after the discovery of superconductivity the phenomenon

can be considered known but not yet completely understood. The strangeness of

quantum physics is fully realized in it even though superconductivity is easily

observable in simple demonstration experiments. Some manifestations of super-

conductivity phenomena are counterintuitive without theoretical understanding

(e.g. Meissner effect). During my studies I’ve had to reformulate many of the

facts that I thought I knew. I can’t even imagine the surprise for Kamerlingh

Onnes in 1911 when he was able to cool down a Hg-sample below the supercon-

ducting critical temperature and notice the sudden and absolute disappearance

of resistivity!

Comprehensive theory for conventional superconductivity [1, 2] was for-

mulated some forty years after the discovery and no significant improvements

were made for next thirty years. Only after the discovery of high-Tc supercon-

ductors roughly thirty years ago, the research in the field reignited. Then for next

ten to twenty years the superconductor research was mainly about high-Tc su-

perconductors. Only after development of micro- and nanofabrication methods

the conventional superconductor research became active again. By reducing the

dimensions of a superconductor or bymakingmore exotic structures utilizing the

unique features related to superconductivity, several new types of devices were

made.

Our research is about quasi-1-dimensional superconductivity. In strict sense,

a 1-dimensional conductor never can be a true superconductor as there is always

finite dissipation due to inevitable fluctuation effects. The research related to 1-

dimensional superconductors began already in 1967 by pioneering work of W.

Little [3] who analyzed the impact of fluctuations on the phase of superconduct-

ing order parameter, so called, phase slip (PS). The research was about how a

finite temperature affects the shape of R(T) in transition from normal to supercon-

ducting state. At that time in realistically obtainable sample the thermal effects

were small, only measurable few millikelvin range below the transition tempera-

ture, and never had significant contribution to superconductivity at temperatures

T ≪ Tc.
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Two decades later, an idea of quantum tunneling in addition to thermally

activated fluctuations was introduced by N. Giordano.[4] The requirements for

observation of macroscopic tunneling of the order parameter or quantum phase

slips (QPS) are strict. Thus systematic research requiredmodern fabricationmeth-

ods. The next round of experiments claiming the existence of quantum fluctua-

tions were published in 2000 by A. Bezryadin, C. Lau and M. Tinkham.[5] Their

method utilized suspended insulating carbon nanotubes, which were covered

with thin layer of amorphous 5-nm-thick Mo79Ge21 film.

Uncertainty originating from uniqueness of nanoscale samples, fabricated

in different experimental runs, gives rise to speculations: whether to associate

the claimed effect to size-dependent ’physics’ or to particular strange artefacts?

In the group I’ve been doingmy Ph.D. research, QuantumNanoelectronics group

in university of Jyväskylä, a method for progressive reduction of dimensions of

a pre-fabricated superconducting nanowire was invented.[6, 7] The approach al-

lows systematic study of a size effect in a same sample. With this method, alu-

minumnanowires were studied byM. Zgirski.[8] The results supported the quan-

tum fluctuation hypothesis.[9, 10]

At the same time in our group, T. Hongisto studied size dependent decay

of persistent currents in superconducting nanorings due to the QPS. My contri-

bution to the project was to fabricate samples and participate in the measure-

ments. The experiment was the first non-transport measurement studying the

QPS-phenomenon and it demonstrated that the QPS affects the magnitude, the

period and the shape of the current-phase relation of a superconducting nanoring.[11]

The discovery was the first experimental observation of the impact of quantum

fluctuations on the ground state of a macroscopically coherent system. Addition-

ally to the basic science importance, the research contributed to the development

of QPS-based qubit.[12]

The transport experiments with aluminum nanowires with diameters ∼ 10

nm[8, 9, 10] gave promising results, but the dimensions of the those samples were

at the limit of available fabrication. For more practical utilization and more con-

clusive study of the phenomenon, the rate of the fluctuations should be a) higher

and b) the fabrication more controllable compared to 10 nm scales for aluminum.

Theory predicts that for high QPS-rate high resistivity and low transition temper-

ature is preferable. Suitable material satisfying these criteria is titanium. Other

materials were also tested, but titanium had several advantages compared to the

rest of the tested materials, one of most important being that from technological

point of view Ti is easy-to-use material.

The first part of my experiments concentrates on systematic study of size

dependent superconductivity of titanium nanowires in low-ohmic environment.

At this stage, suitable methods for fabrication andmeasurement were developed.

Second part of the studies deals with titanium nanowires embedded into high-

ohmic environment, where QPS-stimulated charge phenomena lead to two in-

triguing applications: QPS junctionless transistor and quantum standard of elec-

tric current.

In Chapter 2 is the relevant theoretical background for understanding the



5

experiments starting from conventional superconductivity and fluctuations in 1-

dimensional superconductors to duality between thin superconducting nanowire

and Josephson junction. Sample fabrication, including the method of reducing

pre-fabricated sample dimensions, and measurement methods are briefly dis-

cussed in Chapter 3. The results, which of large portion is yet unpublished, are

presented in Chapter 4 followed by conclusions in Chapter 5.



2 THEORETICAL BACKGROUND

2.1 Introduction to superconductivity

Originally, superconductivity, a sudden loss of electrical resistivity below a cer-

tain threshold temperature, was discovered by Kamerlingh Onnes in 1911 when

he studied the temperature dependencies of resistivity of various metals. The

discovery of superconductivity became available solely due to developments of

cryogenics. Actually the Nobel prize awarded to K. Onnes was not for the dis-

covery of superconductivity, but for the method of helium liquefaction. It even

could be said that after reaching the certain temperature range the discovery of

superconductivity was inevitable: there are number of metals with high enough

superconducting critical temperature.

At first, Onnes studied materials that were good conductors, gold and plat-

inum. Luckily for him he switched to more easily refinable material: mercury.

Much later with development of the microscopic theory, it became clear that typ-

ically the better conductor the metal is at room temperature, the lower critical

temperature of superconductivity it has. This is due to the electron-phonon inter-

actions which will be discussed later. For mercury the superconducting critical

temperature is 4.2 K. At this temperature there is infinitely sharp drop in the re-

sistance, as Onnes reported, "Mercury has passed into a new state, which on ac-

count of its extraordinary electrical properties may be called the superconductive

state".[13]

Superconductors are more than a perfect conductors of electricity. In 1933

Walther Meissner and Robert Ochsenfeld discovered that a superconductor ex-

cludes applied magnetic fields within its interior (Meissner effect). The magnetic

field induces circulating currents that oppose and repel the buildup of magnetic

field in the bulk. In a solid, this effect is called diamagnetism, and in a perfect

conductor – superconductor – perfect diamagnetism. It should be noted that re-

pulsion of magnetic field from a hypothetical ’perfect conductor’ and a supercon-

ductor (Meissner effect) are qualitatively different. In the former the repulsion

happens only for a time-dependent magnetic field, while in superconductors the
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Meissner state can be reached in a static field just by cooling the superconductor

below the critical temperature.

2.1.1 Overview of theories in superconductivity

The London theory, developed in 1935 by brother Heinz and Fritz London, was

the first phenomenological description of superconductivity. The London equa-

tions were able to describe the Meissner effect and were based on intuitive logic

to treat the superconducting electrons as free electrons under the influence of a

uniform external electric field. Nowadays the London model is the starting point

in introductory courses on superconductivity but does not provide any insight

on the origin of the effect.

In 1950 Ginzburg and Landau (GL) theory was published. It was an attempt

to describe conventional superconductivity based on Landau’s theory of second-

order phase transitions. It doesn’t give explanations for the microscopic origin of

the phenomena, but examines the macroscopic properties of superconductivity

with the aid of thermodynamic arguments. The theory can be used to describe

both type-I and type-II superconductors. It has been proven that the GL theory

is valid near Tc being in fact a limited form of the microscopic description of

superconductivity.

Only few years after the GL-theory, in 1957, Bardeen, Cooper and Schrief-

fer (BCS) published two papers [1, 2], which provided the microscopic theory of

superconductivity. The model describes the second-order phase transition at crit-

ical temperature Tc, the exponential dependence of electronic specific heat near

T = 0, the Meissner effect, the infinite conductivity and the isotope effect i.e.

why the lattice atoms mass affects the critical temperature. The model gives

good quantitative agreement for specific heat and magnetic penetration depth

and their temperature dependencies. The Nobel prize in 1972 was awarded to

Bardeen, Cooper and Schrieffer for the development of their theory.

The rigorous derivation of BCS theory can be found in numerous papers,

including the original articles, but for this work qualitative understanding of the

theory is enough. The model is based on three main insights: the attractive force

between electrons; the bound states formed by electrons outside the Fermi surface

by the weak attractive force (no matter how weak); and the construction of the

many-particle wavefunction, which has all the electrons near the Fermi surface

paired up. From this frame, all necessary consequences and features of the BCS

theory can be derived. Here we are only going to utilize the results derived from

BCS model, mainly equations for the superconducting energy gap ∆, coherence

length ξ and critical temperature Tc.

2.1.2 Electron-phonon coupling and Cooper pairs

The electrons are fermions and obey the Pauli exclusion principle, but when

paired they behave like bosons, which can condense into the same quantum state.

In classical (BCS) superconductivity the pairing is attained by phonon-electron
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FIGURE 1 Qualitative picture of the electron - electron pairing by the distortion trail

within the ion lattice. Note the long distance between electrons in a e-e pair

(∼100 nm) compared to the distance between atoms in typical metallic lattice

(∼0.5 nm).

coupling. The electron causes local polarization a material by attracting positive

ions in the vicinity. This leaves a distortion trail. Such distortions have higher

ion-density resulting an attractive influence to nearby electrons. This attraction

is delayed by the difference of the time-scales of the electronic and the ionic mo-

tion (Fig. 1). The deformation is at maximum when the distance to the electron

is approximately d ≈ vF2π
ωD

≈ 100− 300nm, where vF is the Fermi velocity of the

electron, typically (1 to 3) ∗ 106m
s , and ωD the Debye frequency, which measures

the response of the ionic sub-system and is about (2 to 8) ∗ 1013 Hz. This sets the

average electron pair separation, typically of the scale of hundreds inter-atomic

distances screening the Coulomb repulsion between the paired electrons almost

completely.

The energy of the pairing interaction is weak, of the order of 10−5 to 10−3 eV.

This means that only at low temperatures a significant number of paired electrons

(Cooper pairs), having the same state with respect to both relative and center-of-

mass coordinate, are Bose condensed. The tendency for all the Cooper pairs to

’condense’ into the same ground quantum state is responsible for the peculiar

properties of superconductivity. The pair formalisms is adequate for classical

superconductors (e.g. single element metals) and it probably includes also high-

TC superconductors with the exception that the pairing mechanism responsible

for the Cooper pair formation in high-TC superconductors is (probably) different.

However, the only requirement for the superconductivity is that the potential is

attractive regardless of its origin.

2.1.3 Dimensionality of a superconductor

Superconductivity in 1-dimension can be argued not to exist. By definition a

’conventional’ superconductor doesn’t dissipate energy. This is not true in 1-

dimensional (1D) case. Actually in 1D there is always finite dissipation and non-

zero electrical resistance. This is due to the fluctuations. There is always a finite

probability that themodulus of the order parameter approaches zero allowing the

phase of the order parameter to change by 2π. In practice this phase slippage is

short dynamic process where a section of a 1D superconductor looses supercon-

ductivity for time∼ h̄
∆
. It is important to notice that this effect is enabled only for
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FIGURE 2 Picture of a a) 3D- b) 2D- and c) 1D-superconductor. The fluctuating region -

the red dot - is shunted by neighboring superconducting area in the 3D and

2D case. In 1D-case there are no shunting regions.

1D limit. In 2- or 3-dimensional superconductor a fluctuation-driven momentary

suppression of superconductivity is shunted by surrounding superconducting

regions.(Figure 2) Thus only in 1-dimensional superconductor the fluctuations

should have a measurable effect on the electric transport properties.

The dimensionality of the superconductor is defined by a characteristic length

called coherence length ξ. The coherence length is the smallest length scale at

which the superconducting electron density cannot change significantly. In typ-

ical conventional superconductor, ξ roughly defines the size of a Cooper pair.

Thus the smallest length scale in which the suppression of superconductivity can

happen is the coherence length. The BCS coherence length is given by expression

ξ =
h̄v f

π∆
, (1)

where v f is the Fermi velocity and ∆ is the temperature dependent supercon-

ducting energy gap, which for weak coupling superconductors h̄ωD
kTc

≫ 1 can

be evaluated assuming continuous density of states from the following integral

equation:

1

N(0)V
=
∫ h̄ωD

0

tanh(12β(δ2 + ∆2)
1
2 )

(δ2 + ∆2)
1
2

dδ, (2)

where β = 1
kbT

, h̄ωD is the Debye cut-off energy, N0 is the density of states at

T→ 0 and V0 is a term related to electron-phonon coupling strength.
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2.2 Superconductivity in quasi-1-dimensional limit

2.2.1 Concept of a phase slip

The concept of phase slips was introduced by W. Little [3]. He considered that

thermodynamic fluctuations in a very thin superconducting wires could be de-

tectable. The basis of the calculations were made within the GL model minimiz-

ing the free energy expressed by the GL functional in one dimension.

F(Φ) =
∫

[a|Ψ(x)|2 + b|Ψ(x)|4 + c|∆Ψ(x)|2]dx. (3)

The order parameter Ψ(x) is a complex function with real amplitude ∆(x)
and phase eiφ(x). In the equilibrium the fluctuations are ignored and the equilib-

rium value for Ψ(x) is calculated by minimizing ∆(x) and φ(x). Other functional

forms of ∆(x) and φ(x) are still possible with a probability proportional to the

Boltzman factor e−βF(x). This means that in the vicinity of transition tempera-

ture there is a finite probability that the temperature fluctuations allow the order

parameter to diffuse to higher free-energy states.

The concept of a phase slip can be easily understood for a loop geometry.

The requirement for persistent current in a ring-shaped superconductor is that

the line integral of the order parameter around the ring is multiple of 2π. The

supercurrent is due to the gradient of the phase and the phase can only change

an integer times 2π. When supercurrent decays, it can only decay by a discrete

amount due to the change of thewinding number. When the results are translated

into a singly connected superconducting wire, the conclusion is that the ends

of the wire retain a constant relative phase φ12 while the perfect conductivity

requires that the potential difference between the ends of the wire is zero.

If to consider a current carrying superconducting nanowire having a fi-

nite resistance (whatever the cause), the averaged phase difference φ12 should

increase steadily with time in order to retain the zero potential difference be-

tween the wire ends. The solution for this apparent inconsistency is that phase-

slip events occur, in which the phase coherence is momentarily broken at some

point(s) of the superconductor allowing the phase to change by 2π. To main-

tain the steady state, according to the Josephson relation (41), such events should

occur with frequency

f j =
2eV

h
, (4)

where the V is the time-averaged voltage. This means that the relative phase

difference increases in time until a phase slip process occurs reducing the phase

difference φ12. When the phase-slip occurs, with the current being constant (kept

by external source), the result is a finite voltage across the sample.

The steady-state order parameter of a current carrying superconductor is

depicted in figure 3a, where the solutions Ψ0e
iqx of the GL complex function Ψ(x)

are expressed in polar coordinates. The solutions for J < Jc is can be presented
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FIGURE 3 After M. Tinkham.[14] a) Uniform solution of complex current-carrying GL

equation in one dimensional superconductor presented as Argand diagram.

b) Non-uniform solution where the helix is tightened |Ψ|− > 0 just before

the phase-slip happens.

by helices of pitch 2π
q and radius Ψ0. The presented equilibrium solution is for

current-carrying superconductor at zero voltage.

If a voltage is applied the relative phase difference between wire ends in-

creases at steady rate 2eV/h as has been just discussed. This can be schematically

presented by tightening of the helix until it ’looses’ one turn presented in figure

3b. This process can be formally understood as acceleration of the supercurrent

explained by the London equation

∂js

∂t
=

nse
2

m
E, (5)

which means that the presence of voltage increases q until the phase difference

between the ends of wire obeys φ12 = qL or from the London equation

∂vs

∂t
=

eE
m

(js = nsevs), (6)

where the supercurrent density js is related to velocity vs through the concentra-

tion of ’superconducting’ electrons ns. When the velocity v reaches the critical

limit of vc the uniform solution is no longer possible. The phase slip processes

maintain the steady state at vs < vc, in the presence of non-zero voltage, if the

turns of the helix are annihilated at the same rate of the new ones are cranked.

Langer andAmbegaokar presented the theory that is based on the Ginzburg-

Landau equation constructed in analogy with the droplet model of a supersatu-

rated vapor.[15] Just as in the droplet model, the fluctuations are extremely im-

probable and play no role determining the bulk properties of system. The model

equates the constantly increased current caused by non-zero voltage with fluctu-

ations reducing the phase difference.
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Neglecting the possible contribution of normal current, the conservation of

the current requires that the supercurrent is constant. According to G-L model

the supercurrent is proportional to the gradient of phase and the density of su-

perconducting electrons:

|Ψ|2 dφ

dx
= I (7)

which serves as constraint on variations of the order parameter. If the amplitude

of the order parameter is small at some point, the gradient dφ/dx must be large.

Thus when |Ψ| → 0, it is easy to subtract or add a turn of a helix (fig. 3).[3] Langer

and Ambegaokar used this idea and found a path through function space where

two uniform solutions with different amount of turns have the lowest free-energy

barrier to overcome. That way, they found the saddle point barrier of the GL free

energy. By this, they calculated the saddle-point free-energy increment

∆F0 =

√
2Hc(T)

2

3π
σξ, (8)

where σ is the area of the conductor and ξ is the coherence length and HC is

the temperature-dependent critical magnetic field. It can be thus deducted that

the free-energy barrier is reduced when the wires cross section is reduced. The

energy ∆F0 is of the same order as the condensation energy of the length of wire

of ∼ ξ, which is plausible since one can argue that the Ψ cannot vary on scales

smaller than the coherence length.

In the absence of net current, the phase slips ±2π are equally probable.

When a finite current is applied the slips in one direction become more proba-

ble than in the other. The energy difference between the initial and the final state

is unequal depending on the direction in the phase space. This difference stems

from the electrical work done in the process. The situation can be qualitatively

described by modeling the phase slip within a model of resistively and capac-

itively shunted Josephson junction.[14] The model is discussed in more details

section 2.3.1 in context of Josephson junctions. For a phase slip of 2π the energy

difference is

δF = ∆F+ − ∆F− =
h

2e
I. (9)

McCumber showed that Langer and Ambegaokar arguments can be used

as well with in current and voltage bias regimes.[16]

The phase slip rate can be easily calculated with accuracy of an unknown

prefactor Ω

dφ12

dt
= Ω[e

−∆F0− δF
2

kBT − e
−∆F0+

δF
2

kBT ] =
2eV

h̄
. (10)

The prefactor is often called attempt frequency. The attempt frequency is de-

pendent on the wire length since one could expect that in the simplest case of

non-interacting phase slips, the phase slips should happen independently from

each other.
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FIGURE 4 The washboard model with finite current describing the thermal phase-slips

energy scale and escapes to different directions.

The correlation between voltage and current for a wire undergoing phase

slips can be resolved from the equation (10) using the result (9). Figure 4 schemat-

ically depicts the corresponding energy-phase relation at finite current: tilted

wash-board potential.

McCumber and Halperin derived equation for the attempt frequency using

time dependent GL theory (TDGL) [17]

Ω =
L

ξ
(

∆F0
kBT

)
1
2
1

τs
, (11)

where τs is the characteristic relaxation rate of the supercurrent in the TDGL. Thus

an attempt frequency is resolved and using equations (10) and (9) for voltage-

current relation, one gets:

V =
h̄Ω

e
e
−∆F0
kBT sinh (

hI

4ekT
). (12)

The model is called LAHM (Langer-Ambegaokar-Halperin-McCumber).

For comparison with experiment the resistance caused by the TAPS needs to

be calculated. For simplicity we can assume small current approximation which

replaces the hyberbolic sine by its argument and by using the Ohm’s law the

resistance can be calculated
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RTAPS =
V

I
=

Ωπh̄2

2e2kBT
exp (

−∆F0
kBT

). (13)

The approximation is valid when I < I0, where I0 = 4ekBT/h. At lowest

temperature used to measure R(T) dependencies in our experiments ∼ 20 mK

the maximum current is I0(T= 0.020 K) ≈ 0.27 nA which is much larger than the

AC-currents used in the R(T) measurements, typically 50 pA.

The LAHM model has been verified by several experiments. The most

well known experiments are the measurements of the resistive transition and

the current-voltage characteristics of single-crystal tin whiskers.[18, 19] The ther-

mally activated phase slips proposed by Langer and Ambegaokar were observed

and their contribution, determined by the rate of phase slippage, was verified

with themodification of the attempt frequency proposed byMcCumber andHalperin.

The peculiar point of the model is that it only works at temperatures just

below the transition temperature. The LAHM theory doesn’t work when tem-

perature approaches Tc since the attempt frequency and free-energy barrier go

to zero at Tc. On the other hand, the model is based on GL theory which works

only at values T/Tc ≈ 1. For thermally activated phase slips the constraint is

unimportant since the effects are noticeable only sufficiently close to the critical

temperature, but for the phase slips of quantum origin, expected to be observable

well below the Tc, GL formalism is not applicable even qualitatively.

2.2.2 Microscopic model of Quantum Phase Slips (QPS)

When the temperature is lowered, the probability of thermally activated phase

slips reduces exponentially and no measurable resistance should be expected

when T is much smaller than Tc (13). However, certain experiments on ultra-

narrow nanowires [4, 5, 9, 10, 20, 21, 22, 23, 24, 25, 26] have shown the opposite:

resistance has a finite value even at T → 0. Several phenomenological models

were suggested to explain the phenomena.[23, 27, 28, 29] Instead of the thermally

activated phase slips, the phase slips originating from quantum tunneling of the

phase of the order parameter start to be of essence.

The first estimate for the QPS tunneling rate ∼ e−SQPS lead to a disappoint-

ing conclusion, that couldn’t explain the experimental results, because of an over-

estimated QPS action term. The term was assumed to be equal to the number of

transverse channels SQPS ∼ Nch = kF
2σ in a wire of cross section σ [4, 22]. That

assumption leads to a huge value for SQPS in experimentally achievable samples.

When the diameter is about ∼ 10 nm the SQPS would be about 102 − 103 and

therefore the QPS should be virtually non-existent.

Golubev and Zaikin (GZ) argued that the estimation needs qualitative

improvement.[30] The first approximation they made was to take into consider-

ation the finite dimension l < 10 nm of the experimentally obtainable nanowires

falling into the dirty limit l ≪ ξ0 . The coherence length ξ ∼
√

lξ0 << ξ0 can

be considered as the typical QPS lateral dimension. They also argued that the

role of electromagnetic field should be smaller than that was calculated earlier.
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Third revision was to presume that dissipative currents should not have a strong

impact on the QPS rate when temperature is significantly smaller than Tc. They

used microscopic approach contrary to the TDGL-model used in the earlier esti-

mations.

The GZ model gives the QPS rate in the following form:

ΓQPS = Ωe−SQPS = Ωe−(Sout+Score). (14)

The action SQPS is divided into two terms. The term Score considers the ’stand

alone’ phase slip, and it is determined by the condensation energy and the dissi-

pation of the normal currents. The Sout is a hydrodynamic part which depends

on propagation of electromagnetic fields originating from each phase slip event.

Estimation of the Sout can be simplified by the fact that outside the core the abso-

lute value of the order parameter remains equal to some mean value and only the

phase of the order parameter changes. The Sout saddlepoint action can be written

in the form

Sout = µ ln [
min (c0β,X)

max (c0τ0x0)
], (15)

where c0 =
1

LsCl
is the Mooij-Schön plasmon velocity [31], Cl and Ls are the wire’s

capacitance and inductance per unit length, the x0 and τ0 are the typical length

and time scales of the QPS event.

µ =
π

4α

√
Cl

Ls
(16)

is a dimensionless parameter describing the characteristic damping of the elec-

tromagnetic excitations, where α is the fine structure constant. For infinitely long

wire the Sout at the limit of T → 0 diverges logarithmically towards zero making

the contribution of the Sout term dominant.

The other part of the SQPS is the core contribution. The calculation of the

core action parameter is a complicated task. However, if a dimensionless prefac-

tor, which can be obtained from the experimental data, is utilized, the calculations

are much simplified. The approach allows to approximate the order parameter

field inside the QPS core by two types of fluctuations. The absolute value of the

the order parameter should vanish at limits x = 0 and τ = 0 and coincide with

the mean field value outside the QPS core. The phase flips at x = 0 and τ = 0

provide change of the net phase 2π. This leads to a trial function describing the

dynamics of the phase slip [32]

|δΨ(x, τ)| = Ψ0exp(−
x2

2x02
− τ2

2τ02
). (17)

By minimizing the action Score with respect to x0 and τ0 it is possible to get

intuitively expected results:
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x0 = a

√
D

Ψ0
≈ ξ (18)

τ0 =
b

Ψ0
≈ ∆0

h
(19)

The above estimations give the net result:

Score = πAN0σ
√

DΨ0 = A
RqL

RNξ
, (20)

where a, b, A are the dimensionless prefactors, RN is the total normal state re-

sistance, Rq = πh̄
2e2

= 6.453 kΩ is the quantum resistance. The QPS rate can be

approximated SQPS ≈ Score for sufficiently short nanowire with length L in which

the capacitive effects are small enough and thus Sout << Score. The limit of the

validity of the approximation is

L≪ L∗ = ξ
e2N0σ

Cl
. (21)

For a typical dirty superconductor this limit is around 10 µm. In longer

wires the capacitative effects start to affect the core part and the separation of the

action terms into Score and Sout isn’t an ideal approximation. In our experiments,

the wires are of the order of the characteristics length L∗ and the approximation

works well enough compared to the experimental accuracy. In the opposite limit

for sufficiently long nanowires L > 100 µm the core action takes more compli-

cated form

Score =
DRq

RN
(
L

ξ
)
3
2

√
D

e2N0σ
, (22)

where D is the numerical prefactor.

The model [30] gives for SQPS action the value about ∼ 2 orders of magni-

tude smaller than the first estimates [23, 29] supporting the expectation that QPS

should be observable for sufficiently thin wires.

The prefactor Ω can be calculated by instanton technique:

Ω =
BSQPSL

τ0x0
(23)

where B is the numerical constant of the order of unit. The QPS rate for suffi-

ciently short nanowires can be approximated using equations (14), (18), (19) and

(20) and A, B ≈ 1

ΓQPS =
∆0

h

RQ

RN
(
L

ξ
)2 exp (−RQ

RN

L

ξ
). (24)
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2.2.3 Resistance of a superconducting nanowire below Tc

The QPS rate for the nanowires in the zero current limit is set by the equations

(14) and (24). A heuristic model for calculating the resistance caused by the QPS

with small currents can be build up by using the same approach as in the LAHM

model for TAPS. The approach leads to the relation, which is relatively close to

the one obtained bymore advanced calculations, but the derivation is more easily

understandable. Let’s write the action in the form

SQPS =
∆F0
Ech

, (25)

where Ech is the characteristic energy scale of the QPS process. Using the result

for the tunneling rate calculated for non-zero current

ΓQPS = Γ− − Γ+ = Ω exp (−[∆F0 − δF/2

Ech
])−Ω exp (−[∆F0 + δF/2

Ech
])

= 2Ω sinh (
δF

2Ech
) exp (

−∆F0
Ech

). (26)

The effective dc voltage can be derived in full analogy with the LAHM

model (12):

VQPS =
h

2eτQPS
= Ω

h

e
sinh (

hI

4eEch
) exp (

−∆F0
Ech

). (27)

The effective resistance in the linear limit RQPS =
VQPS

I (I → 0) is

RQPS ≡
VQPS

I
=

ΩRqh

Ech
exp (−SQPS). (28)

Note that Ech appears only in the prefactor Ω. Making an assumption Ech ≈
∆ one arrives to a simple expression

RQPS = Rq
hΩ

∆
exp(−SQPS). (29)

The expression used for fitting our experimental data is more complicated

compared to (29) and has been based on the microscopic model.[30, 32] The

heuristic model presented above gives almost identical results at high temper-

ature limit 1/2Tc < T < Tc. The equation used for the fitting the data is [32]:

RQPS = bSQPS
2∆(T)

L

ξ(T)
exp (−2SQPS). (30)

Note the coefficient "2" under exponent originating from pairs of phase slips

± 2π. The expression (30) is based on model for QPS only taking into account

the core action being the valid approximation for sufficiently short wires. The fit-

ting parameter b isn’t dimensionless. Likely it has the form of b ∼= RN
∆0
. However,
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note that due to strong exponential dependence the exact coefficient in the pref-

actor of (30) is not so that important. Using expression (20) for the core action, the

equation (30) can be written in form utilizing the parameters obtainable from the

experiment

RQPS = RN(A
RqL

RNξ(T)
)2

∆(T)

∆0

L

ξ(T)
exp (−2A RqL

RNξ(T)
). (31)

The parameter A ≈ 1 is dimensionless and describes the magnitude of the

QPS action. In this work the coefficient A has been used as the fitting parame-

ter when comparing our data with the model.[30, 32] It should be noted that all

above derivations consider the phase slips to be rare events, ie. RQPS << RN. To

our best knowledge no theory has been proposed so far to describe the limit of

"strong" phase slips RQPS ≈ RN reachable in the experiments (see Chapter 4).

2.2.4 Superconductor to insulator transition (SIT)

Extensive experiments conducted on short ultra-thin superconductingMoGewires,

fabricated with molecular templating method [33], have showed SIT transition

when two conditions are met: the wire length is short L ≪ ξ
√

NT, where NT

is number of transverse channels, and the resistance of the wire is higher than

the superconducting resistance quantum RQ = h/4e2 ≈ 6.5 kΩ.[21, 34] MoGe

nanowires with slightly lower resistance have transitions that can be explained

by LAHM [3, 16] and G-Z [30] models.

The SIT transition in short superconducting MoGe nanowires is accounted

for Chakravarty-Schmid-Bulgadaev (CSB) dissipative phase transition [35, 36, 37]

and later generalized for thin nanowires.[38, 39, 40] It is not clear whether the SIT

occurs in ultra-thin short superconducting wires or is it a crossover from wires

with small QPS rate to wires in which the QPS rate so large that it drives the wire

to normal state.

The shape of the transitions of the short ultra-thin MoGe nanowires, when

compared to our experiments with Ti-nanowires, is qualitatively different. In ad-

dition, we have observed only very weak (barely observable) Coulomb blockade

in titanium nanowires with low-ohmic environment, even when the wire resis-

tance has been of the order higher than the superconducting resistance quan-

tum. Our nanowires embedded in high-ohmic environment show pronounced

Coulomb blockade but the observations cannot be accounted to CSB mechanism,

applicable only to short nanowires.[40] Furthermore, the temperature and mag-

netic field dependencies of the Coulomb blockade are qualitatively different. In

our wires, observed Coulomb blockades are likely to be associated with coherent

QPS discussed in the following section.
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FIGURE 5 Qualitative image of a Josephson junction, two superconducting electrodes

separated by a thin dielectric layer.

2.3 Josephson effect and quantum phase slip
junction

2.3.1 The Josephson effect

In 1962 Josephson made a prediction [41] that a finite supercurrent should exist

between two superconducting electrodes separated by very thin insulating layer

(fig. 5). Each of the superconducting electrodes can be described by G-L com-

plex order parameter Ψ. The derivation of Josephson relations follows the Feyn-

man lecture series,[42] which is much simpler compared to the original paper of

Josephson [41]. Let us consider the superconducting order parameter

Ψm = |Ψm| exp (iφm) =
√

nm exp (iφm), (32)

where m = 1,2 is the index of the left and right electrode and nm is the concen-

tration of "superconducting" electrons. One can write following time-dependent

Schödinger equations for each electrode

(1) ih̄
dΨ1

dt
= µ1Ψ1 + KΨ2, (33)

(2) ih̄
dΨ2

dt
= µ2Ψ2 + KΨ1, (34)

where µm is the chemical potential and K is a coupling term defined by the prop-

erties of the junction. For a thick insulating layer the K approaches zero and the

equations describe just energy states of two uncoupled superconductors.

Grouping the imaginary parts of equations (33), (34) and utilizing expres-

sion (32), the equations can be written in following forms:

(1) Im[ih̄
dΨ1

dt
] =

1

2
h̄
dn1
dt

+ K
√

n1n2 sin(φ2 − φ1), (35)

(2) Im[ih̄
dΨ2

dt
] =

1

2
h̄
dn2
dt

+ K
√

n1n2 sin(φ1 − φ2), (36)
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(1) Re[ih̄
dΨ1

dt
] = n1h̄

dφ1

dt
+ µ1n1 + K

√
n1n2 cos(φ2 − φ1), (37)

(2) Re[ih̄
dΨ2

dt
] = n2h̄

dφ2

dt
+ µ2n2 + K

√
n1n2 cos(φ1 − φ2). (38)

The current through the junction is

IJ =
dQ

dt
= (µ1 − µ2)

dn1
dt

= (µ2 − µ1)
dn2
dt

, (39)

and utilizing the imaginary parts (35), (36) with the current relation above we

obtain equation for the current through the junction

IJ =
2K∆µ

h̄
sin(φ2 − φ1) = Ic sin(∆φ). (40)

The equation corresponds to so called DC Josephson effect. By reducing the

real parts of the equations (37) and (38) and keeping in mind that the difference

between chemical potentials is equal to the applied voltage 2eV = µ2 − µ1 we

obtain the AC Josephson effect:

∆φ

dt
=
−∆µ

h̄
=

2eV

h̄
, (41)

where V is the voltage difference over the junction. The equations (40) and (41)

have very interesting implications. The DC Josephson effect equation states that

a phase difference ∆φ leads to a finite supercurrent. If the current (set by external

source) doesn’t exceed the critical current Ic the phase-difference over the junction

stays constant. From the AC-effect equation (41) it can be seen that only time

dependent phase difference results in finite voltage. Thus at small currents the

transport through the junction is dissipationless: the voltage across the junction

is zero until the critical current is exceeded. If to apply voltage over the junction

the phase varies in accordance with the AC-relation (41), i.e. constant voltage

results in phase/current oscillations.

The Josephson effect, even though originally based on theoretical analysis

of quantum mechanical tunneling of electrons through an insulating barrier, can

be generalized. In reality the effect is much more general. Any “weak link” be-

tween superconducting electrodes behaves as Josephson junction. For example,

Josephson junctions can be made just by having normal metal region or even

constriction between two ’massive’ superconducting electrodes.

2.3.2 Semi-classical approach

To describe electrodynamics of a Josephson junction with classical arguments,

the model of resistively and capacitively junction (RCSJ) is typically used. In this

model, the physical junction is modeled by an ideal junction following equations

(40) and (41) shunted by a resistance R and a capacitance C (fig 6a). The impact of

resistance R is important only after the critical current is exceeded, i.e. in the finite
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FIGURE 6 a) RCSJ-model for current biased Josephson junction. The washboard poten-
tials energy vs. phase correspond to three limits zero bias current, small bias

current 0 < I < IC and large bias current situations. The system is either

trapped in one of the minima (zero current or small current) or slides down

(with friction) the potential (large bias current). b) Corresponding model for

voltage biased QPSJ. As above, the washboard potentials energy vs. charge

correspond to zero voltage, small bias voltage 0 < V < VC and large bias

voltage situations. The system is trapped in one of the minima if the volt-age
doesn’t exceed the critical voltage VC. At larger bias voltages the charge

slides down the potential.

voltage regime, when the resistance is responsible for the dissipation. The resis-

tance R is approximately the normal state resistance RN of the junction. In high

quality junctions, where the freeze-out of quasi-particles at low temperatures is

the dominant factor, the R increases as ∼ RN exp (∆/kbT). The capacitance C

is the geometrical shunting capacitance between the superconducting electrodes,

which depends on the insulating layer thickness and the junction area. The total

current from the three parallel channels is

I(t) = IC sin φ +
Φ0

2π
(C

d2φ

dt2
+

1

R

dφ

dt
). (42)

The differential equations (42) is formally identical to a mechanical model

where a particle of mass ( h̄
2e )

2C moves along the phase axis in an effective poten-

tial (fig. 6a).

U(φ) = −EJ cos (φ)− (
h̄I

2e
)φ, (43)

where EJ =
h̄Ic
2e is Josephson energy, ie. the energy accumulated in the junction

by the flow of the supercurrent. The critical current IC for a superconductor-

insulator-superconductor junction can be determined usingAmbegaokar-Baratoff

relation ICRN = π
2e∆(T) tanh (∆(T)

2kBT
). Time independent solution corresponds to

the zero-voltage state where the system is trapped in a potential minimum. When

current exceeds Ic = 2πEJ/Φ0 the wash-board potential is "too tilted" and no

minima trapping the phase are left. Even in the limit I << Ic the system can
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change its quantum state by thermal activation over the barrier or by tunneling

through the barrier. Both processes will cause finite voltage.[43, 44] Already at

this stage one can notice the resemblance of Josephson physics with the phase

slippage (fig. 6).

2.3.3 QPS junction

If to model a narrow superconducting nanowire in the regime of strong quantum

fluctuations and with high-impedance environment in a similar way, the current

bias needs to be replaced by voltage bias, the parallel resistor by series resistor

and the series capacitance by parallel inductance.[45] The series resistance R is

the normal state resistance of the nanowire and the inductance L is the kinetic

inductance of the nanowire. The quantum phase slips in this context can be con-

ceptually considered as the passages of a quantized vortexes through the system

resulting in changes of phase by 2π. In the limit where the energy related to

the phase/vortex tunneling is larger than the inductive energy ES = h̄ΓQPS >>

EL = φ2

2L and the high-impedance environment provides charge isolation so that

the charge is the well defined quantum variable, the assumptions lead to reversed

properties compared to a classical JJ (42):

V(t) = VC sin
2πq

2e
+ (L

d2q

dt2
+ R

dq

dt
), (44)

where q is the quasicharge corresponding to accumulated charge in the nanowire.

Instead of critical current now the system is characterized by a critical volt-

age resulting in Coulomb blockade. The system enters a finite current regime

when the bias voltage exceeds the critical voltage

VC = 2πEQPS/2e. (45)

The solution to the differential equation (44) leads to a result where the

charge is trapped in the effective potential (fig. 6b)

U(q) = −EQPS cos
2πq

2e
+ (

h̄V

Rq
)
q

2e
. (46)

The nanowire in this context can be called quantum phase slip junction

(QPSJ) in analogy with conventional Josephson junction. The reversed properties

are the result of the fact that the phase φ and quasicharge q in superconductors

are quantum mechanical conjugate variables [q̂, φ̂] = −i. Utilizing the uncer-

tainty principle δqδφ > e one recovers the expected result, if one is well defined

the other fluctuates. In a current biased Josephson junction the phase difference

over the physical barrier is well defined, but the charge over the junctions fluc-

tuates. In case of a voltage-biased QPSJ the reverse is true, the wire has a well

defined charge but due to the QPS, the phase along the wire fluctuates. QPSJ

biased with small voltage V < Vc demonstrates Coulomb blockade behaving as

a perfect insulator. Even though we tried to describe QPSJ and JJ in terms of

classical variables (and with aid of some quantum mechanical arguments) the
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underlaying reason for the duality, and even more so, proper understanding of

the effects requires quantum mechanical model.

2.3.4 From semi-classical model to quantum mechanics

Though the presented above semi-classical model can be considered adequate,

it lacks the power to explain the phenomenon properly. The quantum effects

and dissipation needs proper quantum mechanical approach. In the following

section we follow the reasoning of Mooij and Nazarov.[45] Starting from the well

known Josephson junction Hamiltonian, the duality between Hamiltonians of JJ

and QPSJ can be demonstrated. In the simplest case the Hamiltonian for a JJ can

be written as

ĤJ J = Ecq̂− EJ cos (φ̂) + Ĥenv + Ĥcoupling, (47)

where Ĥenv describes the boson-like environment and Ĥcoupling is a coupling term

taking into account the effect of fluctuations and is different for voltage and cur-

rent bias

Ĥcoupling =

{
φ0
2π (I − Îr) for current bias

−2e(V − V̂r) for voltage bias
, (48)

where the operators Îr =
−iωh̄
2e Y(ω)φ(ω) and V̂r = −iω(2e)Z(ω)q(ω) are current

and voltage fluctuations. The Z(ω) and Y(ω) are the resistance and the admit-

tance of the serial and parallel resistor, respectively.

The Hamiltonian (47) describes the circuit from figure 6a. For the QPSJ-

circuit (fig. 6b) we can utilize the JJ Hamiltonian and do the canonical transfor-

mation of the phase and charge (q̂, φ̂) → (
φ̂
2π ) , 2πq̂), replace the corresponding

energies, EJ → ES, EC → EL, change the current bias to voltage bias I → R−1q V

and change the parallel resistor (admittance) to serial resistor Y(ω)→ R−2q Z(ω).
Thus the Hamiltonian for a QPSJ is

ĤQPSJ =
EL

(2π)2
φ̂2 − ES cos (2πq̂) + Ĥenv + Ĥcoupling. (49)

This duality relation allows the exact mapping of any transport characteris-

tics of a Josephson junction to a QPSJ. In the following sections we will discuss

the QPSJ I(V)-characteristics based on the theory of Josephson junctions.

2.3.5 Energy bands and Bloch oscillations

For conventional Josephson junctionwith large capacitance and hence small charg-

ing energy Ec = e2/2C, other characteristic energies kBT and eV are typically

larger and, hence, Coulomb effect are suppressed. On the contrary, in a small

Josephson junction (=small capacitance and, hence, large Ec) Coulomb phenom-

ena should be pronounced in an experimentally reachable limit Ec > kBT.[46] To

our best knowledge, so far a microscopic theory dealing with electrodynamics
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of a QPSJ has not been developed. Anticipating equivalence of a Josephson tun-

neling and a phase slip,[45] one may conjecture that electrodynamics of a JJ and

QPSJ should be similar. Hereafter we continue the presentation considering a JJ,

but keeping in mind the duality between a JJ and a QPSJ.

In this section we follow the review by Schön and Zaikin.[47] Let’s first con-

sider a dissipationless Josephson junction for which the Hamiltonian is

Ĥ0 =
Q̂2

2C
+U(φ̂). (50)

In the classical limit the dissipationless Hamiltonian reduces to the equation

of motion described by the washboard model. The dissipation can be added fol-

lowing the Caldeira-Legget approach where the junction is coupled to a bath of

harmonic oscillators.[48]

Following the graphical presentation in fig. 6 the system can escape from

one of the local minima to another by quantum mechanical tunneling through

the barrier. In this process the macroscopic variable phase φ changes by 2π. The

process is known as macroscopic quantum tunneling (MQT) and has been exper-

imentally studied in JJs about thirty years ago.[46, 49] The rate of the tunneling

can be written as

ΓMQT =
ωq

2π
exp (−A). (51)

where the prefactor and the exponent in the weak Ohmic dissipation limit

are wq = cω0

√
A and A = ( a∆U

h̄ω2
0
)( 1+b

RsCω0
) and in the strong dissipation limit wq =

c′ω0

√
A(RsCω0)

−3 and A = a′∆U
h̄ω2

0RsC
. The ∆U is the height of the barrier, ω0 the

plasma frequency in the local minimum and a, b, c, c’ are numerical constants

depending on the form of the potential. Do not confuse with parameters from

sections 2.2.2 and 2.2.3!

Within each minimum energy-phase relation can be approximated by har-

monic potential

U(φ) =
1

2
Cω2

0(
h̄φ

2e
)2. (52)

while within each minima the spectrum is degenerated into discrete states (fig.

7).

The Hamiltonian (50) is analogous to the solid state Hamiltonian of a parti-

cle in a periodic potential. Thus the eigenfunctions should resemble Bloch states.

The spectrum depends on parameter Qx denoted as "quasicharge" in analogy

with the quasimomentum [50] of Bloch states in a periodic lattice

Ψn,Qx
(φ + 2π) = exp(

i2πQx

2e
)Ψn,Qx

(φ). (53)

The physical meaning of Qx, is that of an external charge on the junction

electrodes created by the flow of electric current. To enable the charge to behave

as a classical variable one should provide the current biasing regime embedding
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FIGURE 7 Each potential minimum in phase is divided to discreet eigen states. The

phase is no longer well defined but spreads to larger range, the “phase” par-

ticle is no longer strongly localized near the minimum of the potential.

the junction into a high impedance environment consisting of e.g. resistors [51]

or arrays of JJs [52].

The discrete energy levels En in figure 7, relevant for a single minimum, de-

velop into energy bands En(Qx) [53, 50], where the first Brillouin zone extends

over the range −e ≤ Qx ≤ e. The form of En(Qx) depends on the ratio of EC
EJ
. The

energy levels can be obtained by numerical solution utilizing the ’plane waves’

eq. (53) and the Mathieu equation that is a time independent Schrödinger equa-

tion for the Hamiltonian (50):

4
∂Ψ

∂φ
+ (

E

EC
+

EJ

EC
cos (φ))Ψ = 0. (54)

In "nearly free-electron" limit EJ ≪ EC, the energy bands can be approxi-

mated by a parabola

En(Qx) ≃
Q2

x

2C
. (55)

The energy levels are built up from the infinite set of parabolas. The Joseph-

son energy couples the neighboring charge states opening the gap in the degen-

eracy points ±e (fig. 8). The energy gap between the bands "n" and "n - 1" is

δEn ≈ EC(
EJ

EC
)n/nn−1. (56)

The energy gap δEn decreases with the increase of the quantum number "n"

being maximum for the lowest bands δE1 = EJ .

In the opposite case of a small-capacitance Josephson junction, where EJ ≫
EC. The energy bands E(Qx) degenerate into quasi-sinusoidal pattern(fig. 8) with

the ground state energy

E0(Qx) = −∆0 cos (
2πQx

2e
), (57)
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FIGURE 8 The band structure as a function of the quasicharge Qx. The first Brillouin

zone covers the range −e ≤ Qx ≤ e. The bands are infinite and periodic and

thus the situation can be always reduced to the first zone. In the left side

is the “nearly free electron” limit EJ ≪ Ec. On the right side is the “tight-

binding” limit EJ ≫ EC. Transitions due to Zener tunneling or quasiparticle

tunneling are indicated with arrows.

where the bandwidth is

∆0 = 16(
EJEC

π
)
1
2 (

EJ

2EC
)
1
4 exp [−(8EJ

EC
)
1
2 ] (58)

and the energy gap between the lowest (n=0) and the next (n=1) bands

δE1 = h̄ω0 = (8EJ/EC)
1/2. (59)

The two limits EC ≫ EJ and EC ≪ EJ are depicted in the left and the right

panels of figure 8. In the following section we mainly focus on the "nearly free

electron" limit, EC ≫ EL, keeping in mind the experimentally achievable case

for a dual system – the QPSJ. If the value of the quasicharge is small Qx ≪ |e|,
the lowest energy state has expectation value for charge 〈0 |q̂| 0〉 ≈ q and for

energy E0(Qx) ≈ Qx
2C . When the Qx ≃ |e| the Cooper pair tunneling removes the

degeneracy mixing the states. As the result 〈0 |q̂| 0〉 diminishes and the energy is

lowered by EJ resulting in opening of the gap in the energy spectrum. If the Qx

is increased beyond |e|, the Cooper pair tunnels in way that the charge remains

small. Thus also the energy of the ground state remains small. The process makes

the energy bands 2e-periodic in quasicharge representation.

If at low temperatures, kBT is much smaller than the band splitting δE1, the

quasicharge is increased adiabatically so that h̄ dQx/2e
dt ≪ δE1, the system will stay

in its lowest energy and follow the neighboring energy parabola down. As the

energy bands are periodic and infinite, there are two equally valid approaches:

either the quasicharge can have any value, or the charge is restricted to the first

Brillouin zone and the Cooper pair tunneling at q = e(q = −e) brings it back to

q = −e(q = e). The energy and other observables, for example voltage

V =
dE0
dq

(60)
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vary in time. If the variation of charge in time, being equal to the current I = dQx
dt ,

is a constant, then the voltage oscillates with frequency fB = I
2e . The process,

named as Bloch oscillations, is analogue to oscillations of an electron confined in

a periodic potential and driven by constant electric field: the motion of a Bloch

electron in a perfect crystal lattice.

If the junction is driven by both dc-current and ac-current

I(t) = Idc + Iac sin(2π fact), (61)

there are resonances when the frequency of the ac-current and the Bloch oscilla-

tions match each other In = n(2e) fac. Single electron oscillations, with frequency

fqp = 1/2 fB, should co-exist with the "2e" Bloch oscillations. The quasi-particle

tunneling causes the bands to be e-periodic, but opens no further gaps.[54]

2.3.6 Zener tunneling

Previously we’ve discussed only the situation when the system always stays in

the lowest energy state. However if the quasicharge is increased non adiabat-

ically h̄ dQx/2e
dt > δE1, Zener transitions can excite the system to higher energy

bands (fig.8).[55] Originally, Zener tunneling have been studied in context of the

motion of an electron in a perfect crystal under the influence of an applied elec-

tric field [56]. The discussed similarity of a small JJ dynamics with motion of a

Bloch electron in periodic crystal lattice, makes the analogy with Zener process

quite obvious. When reaching the boundary of the Brillouin zone Qx → e, the

system makes a transition to the adjacent band n ± 1 with probability PZ
n↔n+1

or it remains in the band with probability 1− PZ
n↔n+1. In the limit EC ≫ EJ the

probability of Zener tunneling from energy level (n− 1) to level n is

PZ
n−1↔n = exp

(
−π

8

(δEn)
2

nEc

e

h̄I

)
= exp

(
− IZener

I

)
, (62)

where the gaps between the energy levels are given by equation (56). Thuswe can

define the Zener breakdown current IZ = −π(δEn)2e/(8nEch̄). In the opposite

limit EJ ≫ EC the gaps δEn are large and the probability of transitions to higher

bands are vanishingly important. Given the reduction of the energy gaps δEn (56)

with increase of the band number "n", if the system can tunnel from the ground

state n = 0 to the first excited state n = 1, then all transitions to higher states

will happen with high probability. The system will "climb" to higher states until

assuming the energy spectrum given by equation (54). With further increase of

the current I = dQ/dt the I-V characteristics eventually switches to quasiparticle

branch. The Zener tunneling can be suppressed by adding parallel shunt resistor

which provides energy dissipation enabling the system to relax to the ground

state.
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FIGURE 9 Schematics of low temperature (T → 0) I-V characteristic of a small resis-

tively shunted (or with finite quasiparticle tunneling) JJ with EC ≫ EJ in the

current biasing regime. Region 0A corresponds to Coulomb blockade: JJ is

in insulating mode and the current completely flows through the resistive

shunt Rs or through the quasiparticle channel characterized by Rt. Region

AB corresponds to Bloch oscillations: periodic charging and discharging of

the junction. Region BC corresponds to Zener tunneling. And finally region

CD at high current above the critical current Ic corresponds to quasiparticle

tunneling.

2.3.7 Current-voltage characteristics of shunted junction

Let us first consider at low temperature, T ≈ 0, a current biased small JJ with

EC ≫ EJ and a parallel resistive shunt. The current flows completely through the

shunt resistor at small currents when

I < Ith =
e

RsC
(63)

and the time averaged voltage is V = I/Rs. This limit corresponds to

Coulomb blockade (region 0A in fig. 9) When the current is increased above

the threshold Ith, the system is driven to the regime of Bloch oscillations: and the

current increases while voltage over the junction decreases. This back-bending

of the V(I) is often called "Bloch nose" (region AB in fig. 9). Above I > Ith the

current-voltage characteristics can be expressed as:
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V

Rs
= I − 2Ith

ln ( I+Ith
I−Ith

)
. (64)

The Bloch oscillation frequency depends on the current and the current

flowing through the parallel resistor reduces the current though the junction V
Rs

thus the oscillations are expected at fB = Idc−V/Rs
2e . Region BC (fig. 9) with pos-

itive derivate corresponds to Zener tunneling. At high currents, exceeding the

critical value Ic, the system switches to the quasiparticle branch (region CD in fig.

9).

2.3.8 Current-voltage characteristics of unshunted junction with weak quasi-
particle tunneling

If to take into account the effect of single electron tunneling the situation changes

compared to a parallel resistive shunt. Weak tunneling can be treated perturba-

tively, allowing transitions between states Qx ± e (fig. 8). In a simplified pic-

ture, the quasiparticle tunneling current can be approximated by Iqp(V) ≈ V/Rt,

where Rt depends on the energy differences E±n,n′(Qx) = E′n(Qx ± e) − En(Qx)
compared to the superconducting energy gap ∆. If the energy differences are

smaller then Rt = Rqp and if the energy differences are larger then Rt = RN.

If the quasichargeQx is increased adiabatically, for small current I ≪ e/RtC,

the Qx rarely reaches the boundary of the Brillouin zone. Therefore no Bloch os-

cillations can develop, but single electron oscillations can be observed. For a junc-

tion with EC ≫ EJ at small bias currents IRtC/e ≪ 1 the time averaged voltage

is

V =

√
π IdcRte

2C
. (65)

When the current is relative large I ≥ e
RtC

the quasicharge is frequently

driven to the edge of the Brillouin zone. If the probability for the Zener tunneling

is small, Bloch oscillations will develop and the quasiparticle tunneling is less

important. Due to Bloch oscillations the system spends part of time in states with

negative voltage and, if tunneling from −e < Qx < e happens, it increases the

charge. This leads to negative differential current: voltage decreaseswith increase

of current.

For large currents, the current-voltage characteristics of the system have an

analytic form, which can be obtained by solving master equation for the system

[47]

V =
EC

12IdcRtC
. (66)

The I-V characteristics of unshunted JJ is qualitatively similar to the resis-

tively shunted one shown in figure 9a. At small voltages the system demon-

strates the Coulomb gap. The crossover from the single electron tunneling region

to Bloch oscillations causes the back bending of the I-V characteristics: the Bloch
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nose. In the opposite limit EJ ≫ EC the same crossover can be observed but at

much smaller voltage scales defined by the bandwidth ∆0 (58).

It should be noted that only in case of large Rt, the probability of Zener tun-

neling is small. This is reversed when compared to the shunt resistor case, where

the small shunt resistor decreases the probability of Zener tunneling. When the

Rt is large the Bloch oscillations suppress the quasiparticle tunneling more effec-

tively compared to the case of small Rt. The strength of the quasiparticle tunnel-

ing can be quantified by parameter αt = h
π2e2Rt

. The probability of Zener tun-

neling and thus the expression for the IZ can be obtained from equation (62) by

replacing the relevant parameters and assuming EJ ≪ EC

PZ
0↔1 = exp (−1

8
(
EJ

EC
)2

e

IdcRtC

πe2Rt

2h̄
). (67)

2.3.9 Bloch oscillations and SET oscillations

Small Josephson junction EJ << EC embedded in high-ohmic environment should

exhibit both single electron and Bloch oscillations. At small currents I ≪ e
RtC

the

single-electron tunneling overrides the Cooper pair tunneling and 2e Bloch oscil-

lations are suppressed. The oscillations are e-periodic fqp =
I
e .

At intermediate currents e/RtC ≪ I ≪ IZ, the voltage exhibits 2e Bloch

oscillations, but the single electron tunneling causes phase shift π in the oscilla-

tions. Thus the fundamental oscillation frequency is given by the single electron

frequency fqp. This effect hides the 2e Bloch oscillations even when the mag-

nitude of single electron oscillations is small compared to 2e Bloch oscillations.

Qualitatively the only difference between a normal metal tunnel junction and a JJ

is that in a JJ the range of parameters where the oscillations are observed is wider

compared to normal metal tunnel junction. This is due to the gap δEn in the en-

ergy spectrum reducing the Zener transitions to the higher bands which limits

the process in the normal metal tunnel junctions.

Synchronization of internal 2e Bloch oscillations with external drive can be

observed if the system is driven by dc and ac currents I = Idc + Iac sin (2π fact):

resonances happen at mfac =
Idc
2e n2e, where the n2e and m are the number of har-

monics. At the V(I) characteristics those resonances should manifest themselves

as current steps with differential conductance 1
Rt
. In addition to 2e Bloch singular-

ities there should be single electron resonances mfac =
Idc
e ne. For larger currents

(but still I < IZ) the single electron steps have negligible amplitude, while the 2e

Bloch resonances remain observable.

The step-width in voltage depends on the RF-amplitude

V(Qx(0)) = −
e

C

∞

∑
s=1

(−1)s(n+m)

πns
Jms(

msIac
I

) sin(
2πnsQx(0)

e
), (68)

where Jms are Bessel functions.[57]
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2.4 Physics of QPSJ illustrated with devices

To our best knowledge, so far the comprehensive model describing the quantum

dynamics of a QPSJ has not been yet developed. Postulating the equivalence of

Cooper pair tunneling in a conventional JJ and a QPS event in a superconducting

nanowire one can use duality transformations ’mapping’ the extensively studied

Josephson physics on QPSJ.[45] However, one should always keep in mind that

the analogy between a JJ and a QPSJ is qualitative. There are at least two points,

which should be taken into consideration in projecting the results of conventional

JJs to a QPSJ. First, while a conventional JJ is a zero dimensional system, a QPSJ is

an essentially 1D object with ’distributed’ parameters. Second, already analyzing

the effect of Zener tunneling in small JJs, we have noticed the qualitative differ-

ence between parallel resistive shunt and a tunnel resistance. In case of a QPSJ

the origin of finite dissipation is still an open question. We strongly believe that

our experiments can stimulate theory development.

In the following section we’ll describe some applications that have been

proposed to verify the duality between JJ and QPSJ.[58, 59, 60] We have realized

two of those: QPS-transistor and synchronization of Bloch oscillations with exter-

nal RF-irradiation. The latter can be considered as a candidate for the quantum

standard of electric current in analogue to the voltage standard based on Shapiro

effect [61]. Several groups are currently actively working on various QPS appli-

cations: QPS-transistor [62, 63] and QPS-qubit [12, 64].

2.4.1 Coherent QPS

Coherent quantum phase slip is the magnetic counterpart for charge tunneling a

JJ: instead of charge tunneling through electrically insulating layer the magnetic

vortexes tunnel through the superconductor (magnetic insulator). The effect is as

fundamental as Josephson effect.

In coherent tunneling single events can not be discerned and the phase slips

are characterized by quantum amplitude Es. The amplitude depends exponen-

tially on the instanton action which is typically dominated by the core action [65]

Score = α(
R′ξe2

πh̄
), (69)

where R’ is a wire normal state resistance per unit length and α is a numerical

prefactor which depends on the core profile. Exact estimation of the QPS am-

plitude is difficult due to the uncertainty in α and the strong exponential depen-

dence of Es ∝ exp(−Score).[65]
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FIGURE 10 Qualitative picture of tunneling processes in Josephson junction (left side)

and coherent quantum phase slip (right side).

2.4.2 QPS qubit

The QPS qubit utilizes coherent QPS and consist of a superconducting loopwhere

part of the loop is a narrow nanowire in the regime of QPS.[58] The equivalent

circuit and illustration of the circuit is presented in figure 11. Neglecting the

geometric capacitance and spatial distribution of the phase-slip events so that the

tunneling between different phase-states of the nanowire can be described by a

single amplitude we can define the Hamiltonian of the QPS qubit.

Ĥ = EL(n− f )2 − EQPS

2 ∑
n

(|n+ 1 >< n|+ |n >< n+ 1|), (70)

where f = φ/φ0 is the applied flux normalized by the flux quantum, EL = φ2

2L the

inductive energy of the loop and EQPS = hΓQPS is the energy associated with the

quantum phase slips. The energy spectrum E(φ) consists of parabolas intersect-

ing at semi-integer values of flux φ/φ0 = n + 1/2. The QPS coupling mixes the

states with adjacent fluxoid numbers, enabling formation of the two-level quan-

tum system. The level splitting equals EQPS, provided that EQPS ≪ EL. Through

the duality transformation the QPS qubit can be shown to be dual to a Cooper

pair box.[45]
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FIGURE 11 In the left upper corner is a typical layout of a QPS flux qubit. It consists of
a superconducting (thicker) loop and a narrow superconducting nanowire

in the regime of QPS. In the lower left corner the equivalent circuit is pre-
sented characterized by the kinetic inductance of the loop LK and the QPS

amplitude EQPS of the narrow nanowire. The qubit is flux biased with φ.

In the right side is the energy diagram of the qubit as a function of applied

flux. The coherent QPS processes open in the spectrum at the ’anti-

crossing’ points φ/φ0= n + 1/2.

2.4.3 QPS transistor

The QPS transistor (QPST) is a single electron transistor based on the charge-

phase duality of a superconducting nanowire circuit. It is dual to a DC SQUID.

As DC SQUID is sensitive to phase across the JJs, the QPS transistor is sensitive to

the charge through the QPS elements. The charge sensitivity of the QPS transistor

depends on the voltage across the QPSJ and inductances of the QPS elements, and

requires high-impedance environment to suppress charge fluctuations.

QPST is equivalent to a single electron transistor (SET) or a Cooper pair

transistor (CPT). In conventional SET or CPT charge isolation is maintained by

static in space and time (tunnel) junctions. QPST can be considered as a dynamic

equivalent of the above devices, where delocalized QPSs enable charge isolation.

The structure of the QPST is presented in figure 12. When compared to the QPS

qubit (fig. 11), the QPS-transistor is defined by same energies: inductive energy

EL and the phase-slip energy EQPS. In full analogy with the dual system, voltage

biased Josephson junction, demonstrating the text-book current-phase relation

I = Ic sin (φ/φ0), the current biased QPSJ demonstrates periodic voltage-charge

relation [62, 63]

VQPS(q) = VCsin(
πq

e
), (71)

where the VC is the critical voltage (45).



34

FIGURE 12 Schematics of the QPS-transistor. The high-impedance environment can

consist of various elements: e.g. metallic resistors or SQUID-arrays. The

equivalent circuit is presented below.

In Kirchhoff presentation the equivalent circuit (fig. 12) has the form

Vi = L
q2i
dt

+ Ri
q

dt
+VQPSi(qi), i = 1, 2. (72)

For symmetric configuration V1 = V2 and V = V1 + V2. Through the charge

conservation relation one obtains

q1 − q2 = −CgVg − (Cg + C0)(V1 −V2) = 0, (73)

where Cg is the capacitance between the gate electrode and the island, and the

C0 is the parasitic capacitance between the island and the ground. In small ca-

pacitance limit Cg,C0 ≪ e/VC, the charge difference solely depends on the gate

voltage Vg = Q
Cq
. The voltage over the QPS transistor is the result of coherent

interference of individual QPS events controlled by the gate charge

V = VQPS1 +VQPS2 = Vm(Qq)sin(πQ/e), (74)

where Q is the “average” charge, which in symmetric case is Q = q1,2 ± Qg

2 and

Vm = 2VC|cos(πQg/e)| is the maximum amplitude of the Coulomb blockade. In

case of an asymmetric circuit the modulation amplitude significantly decreases.

2.4.4 Quantum standard of electric current

For a long time quantum standard of electric current has been a ’dream’ device

under development. For the moment the most promising methods are related

to superconducting tunnel junction based charge pumps driven with ac-drive.

To obtain reasonable noise level for the metrological triangle experiment [66] the
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current should be of the order 1 nA (or higher) with relative level of uncertainty

of about 10−8. Reaching these parameters utilizing charge pumps have been chal-

lenging over the last 20 years and so far has not been demonstrated.

With QPS based structures current outputs of few nA should be possible.[63,

67] The QPS based current standard consist of a QPSJ operating in the regime

of Bloch oscillations. The oscillations are synchronized with external RF-drive.

At positions In = n(2e) fac the V(I) dependencies should demonstrate plateaus

of constant voltage(or Vstep = IRt, see section 2.3.8). The region of the Bloch

oscillation depends on the shunting resistance or the strength of the quasiparticle

tunneling, as discussed earlier. In case of the shunt resistor corrections to the step

positions need to be made (see section 2.3.7). The synchronization of the Bloch

oscillations have also been observed in ultra-small Josephson junction but so far

only rather broad and very weak n = 1 singularities have been reported.[68]

For the current standard relatively high values of the QPS rate ΓQPS are re-

quired so that the value In is as high as possible, but it should be less than the

superconducting energy gap. The last requirement originates from the assump-

tions of existing models considering quantum fluctuations as small perturbation

of a superconductor. One should not exclude the possibility that in the limit of

strong fluctuations hΓQPS ≫ ∆0 some interesting phenomena develop. The en-

vironment should maintain it’s high impedance over the frequency range up to

few GHz.

If the high-impedance environment is made out of a normal metal, the elec-

tron heating might be an issue.[63] The electron temperature Te and the phonon

temperature Tph in a mesoscopic-size normal metal conductor at ultra-low tem-

peratures might differ significantly:

T5
e = T5

ph +
P

ΣΩ
, (75)

where P = I2R is the power dissipated in the resistor with resistance R, Ω is the

volume of the resistor and the Σ is the electron-phonon coupling constant. For

example, the Joule heating in bismuth resistors, used in our experiments, with

length 20 µm, cross section 1500 nm2, resistance ∼ 1 MOhm and typical electron-

phonon coupling constant Σ ∼ 109Wm3K−5 at the phonon temperature 20 mK

and 1 nA current rises the electron temperature up to Te = 0.67 K. The estimation

gives the upper limit for the electron temperature Te as it only takes into account

the volume of the resistor and the dissipation within. Heat escape to wider elec-

trodes and to the substrate (though suppressed by Kapitza interface thermal re-

sistance) somehow relaxes the constrain, while still keeps the overheating of the

current-biasing electrodes a serious problem. Our research related to the current

standard [69] has been mainly focused on optimization of the high-impedance

environment and the coupling of the RF-drive to QPSJ.(section 4.3)
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For investigation of QPS effect thin superconducting nanowires with effective

diameter of few tens of nm have to be fabricated and characterized. This limit

can be reached by modern e-beam lithography, but reproducible fabrication is

still challenging. The resolution at sub-20 nm scales can be obtained in small

structures, but for the nanowires of lengths with tens of micrometers maintain-

ing the geometrical homogeneity of the nanowire is rather challenging. For some

materials the Tc increases as the dimensions are smaller(for example In[4] and

Al[9, 24]), and for others the effect is reverse(Nb[70], MoGe[5] and Ti[71, 72]).

The origin of the phenomenon is still unclear but models exits predicting either

enhancement[73] or suppression[74] of the critical field with reduction of the di-

mensions. Either way the Tc size dependence leads to broader R(T) transition

in realistically fabricated nanowires of finite length and containing wider node

sections. For example the effect of varying aluminum nanowire cross section be-

tween 5000 to 6500 nm2 (effective diameter varying between ∼70 to 80 nm) leads

to larger contribution to the R(T) characteristics than the TAPS.[75] The small

variations of the diameter of the nanowire resulting in deviations in the Tc within

the nanowire length can be misinterpreted in the R(T)-measurements as fluctua-

tion effect.

For observation of the coherent QPS effects on-chip high-impedance en-

vironment for proper current biasing is required in addition to a narrow (and

preferably homogeneous) nanowire. Typically both the superconducting nanowire

and the high-impedance environment were fabricated in one fabrication cycle

without breaking the vacuum. If to use two or more cycles the surface of the pre-

vious cycle evaporated metal needs to be carefully cleaned before the new layer

is added. The treatment varies between materials. In noble metals gentle oxy-

gen plasma cleaning is sufficient, but for the materials that oxidize, for example

titanium and aluminum, the oxide layer should be removed. This is possible by

sputtering the oxide layer away with directional Ar+ plasma before evaporation

of the next layer but the process requires formation of protective layer on top of

the PMMA. Unfortunately plasma sputtering affects the PMMA mask even with

the protective layer. Typically the linewidth is increased, and even some PMMA
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residues can be accumulated on the surface of the substrate. Alternative is to

cover the pre-fabricated bottom layer with noble metal prior to deposition of the

top material. However, we found that for our studies this approach introduced

too much undesired disturbance: even 2 to 3 nm thickness layers of gold or plat-

inum noticeably altered the Tc of titanium ∼ 30nm thick nanowires.

We used boron doped <100> P-type silicon as substrate for the structures.

It has noticeable conductivity at room temperature, while already at liquid ni-

trogen temperature (77 K) can be considered as good insulator. Utilization of a

conducting substrate has twomajor advantages. First, it helps to avoid charge ac-

cumulation during the ion beam processing which would have otherwise created

problems with homogeneous ion milling. Secondly, conducting substrate serves

as shunting platform for a fragile nanostructure. This significantly aides the ex-

periment since the same nanostucture has to survive several measurement/ion

milling cycles and sustain inevitable static charge accumulation.

3.1 Lithography process

Sampleswere fabricated utilizing standard lift-off electron beam lithography tech-

nique. Either thin single layer PMMA resist (Microchem 950k PMMA in anisole),

or two layer resist with co-polymer (Microchem MMA(8.5)MAA in ethyl lactate)

as the bottom layer and PMMA on top were used. The total thickness of the resist

layer varied between 100 nm and 700 nm. The resist composition and thicknesses

were altered depending on the complexity of the structure, the required size of

undercut region or the alignment accuracy between the process steps. Better res-

olution can be obtained with thinner resist, but the thicker multilayer mask en-

ables fabrication of more complex structures employing shadow (multiple) angle

evaporation technique.

The patterning was made with Raith e-LiNE electron beam writer with res-

olution below 20 nm feature size. Typical linewidth obtained for long geomet-

rically homogeneous nanowires varied between 25 to 45 nm depending on the

resist thickness. The narrowest samples fabricated had width of about 15 nm but

geometrical homogeneity of such structures was significantly worse than of the

wider samples. Fabrication of slightly larger diameter nanowires also allows use

of two layer resist (Copolymer - PMMA) with undercut region which based on

limited sample number seemed to improve evaporated material quality. The un-

dercut region reduces the direct physical contact between the evaporatedmaterial

and the resist and also allows less evasive lift-off.

After patterning samples the PMMAmask was developed with 1:3 MIBK to

IPA developer and cleaned in reactive ion etching (RIE) chamber using low ener-

getic oxygen plasma. The cleaning step appeared to have high impact on super-

conducting properties of the nanostructures. Presumably without plasma clean-

ing certain amount of resist residues were left on surface of the substrate. Samples

fabricated without RIE cleaning (or with too low power cleaning) showed clear
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signs of contamination: e.g. the titanium nanowires were not superconducting

down to T = 20 mK.

3.2 Metal deposition and lift-off

Metal deposition wasmade in UHV electron beam evaporator with residual pres-

sure about 1 to 5 ∗ 10−9 mbar. The superconducting material utilized for the

’body’ of all structures was titanium. Even at these clean conditions, ultra high

vacuum pumped with cryopumping and the residual gas mainly consisting of

hydrogen and helium, evaporation of good quality titanium is challenging. High

angle slow rate evaporated titanium or titanium that was evaporated at high

angles into the undercut regions of the PMMA/co-polymer mask didn’t show

any signs of superconductivity down to 20 mK. The slow evaporation rate al-

lows more impurities to be introduced to the metal during the deposition. When

the evaporation goes to underneath the resist mask the partial pressure might be

higher due to desorption of gases from the PMMA/co-polymer mask. Also the

surface cleaning with RIE is not efficient for the undercut area.

With proper substrate cleaning, relatively high evaporation rate 1 Å/s and
small angle evaporation(so that the nanowire was aligned along the pattern in
the PMMA/co-polymer mask), the titanium nanostructures had critical tempera-
tures between 350 to 400mKwhich is comparable to the one of bulk titanium. The
resistivity of deposited metal could be varied to some extent without dramatic
reduction of Tc and leading to higher QPS-rates (eq. 24). The superconducting
energy gap of titanium nanowires fabricated under similar conditions measured
with tunneling spectroscopy was found to be 60± 10 µeV.

Variation of the evaporation parameters allowed us to utilize titanium in
two ways: as the ’body’ of superconducting nanostructures and as highly re-
sistive normal metal. The sheet resistances of the wires varied between 300 to
1000 Ω/�. That property was used in hybrid nanostructures requiring on-chip
high-ohmic electrodes.

Lift-off was typically done in heated acetone and occasionally supported
by ultrasonic cleaner. Typical time for the lift-off varied between one minute to
several minutes. Lift-off with ultrasonic seemed to produces better results: no
metal residues are left on the substrate and the lift-off is always complete. Sam-
ples with tunnel barriers or with materials with poor adhesion were treated more
gently during the lift-off. Yet no differences between the samples having lift-off
process in room temperature acetone and the typical ones in heated acetone were
noticed.
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3.3 Ion beam milling

As it has been explained in previous sections, our e-beam lithographic equip-

ment does not allow reproducible fabrication of sub-20 nm nanowires. Hence, to

study gradual development of a size dependent phenomenon a complementary

approach should be used. The lithographically fabricated structures were further

processed using ion beam milling. This allows gradual and highly controllable

way to reduce sample dimensions.[7] Low energetic ions collide with the sample.

Momentum exchange between the incident ions and the sample atoms results in

slow etching of the sample. If the kinetic energy of the colliding ions is small, the

penetration depth into the target is small. For example typical penetration depth

of 1 keV Ar+ ion into titanium is about 1.5 nm, being comparable to the thickness

of the native oxide layer.

The flux of the ions is kept small. This limits the etching rate. Typically

utilized etching rate was about few nanometers per hour. The accuracy of sput-

tering can be made as small as one nanometer. The sputtering rate depends on

the intensity of the ion beam, the sputtering yield and the redeposition rate. The

sputtering yield gives the amount of ejected atoms per incident ion and can be

estimated with Monte Carlo simulations: for example, using SRIM software by

James Ziegler.[76] After the calculation of the sputtering yield, derivation of the

sputtering rate is trivial:

S =
I

e
Y, (76)

where I is the ion current per unit area, e is the elementary charge, Y is the sput-

tering yield. The equation gives the sputtering rate in units of atoms per unit

area per second, which can be directly converted into "nm/s" if the density of the

sputtered material is known.

The calculated etching rate typically has high error margin and can only be

used as a guideline because it lacks corrections for re-deposition of the sputtered

material and electron cascades generated by the incident ions. In practice accu-

rate calibration of the milling rate can be obtained by comparing AFM measure-

ments before and after the etching giving a system dependent correction factor

for expression (76). The shape of the cross section of a typical nanowire can be

approximated with a trapezoid. The phenomenological expression for evolution

of a nanowire cross section σ has been found [8]:

σ = σ0(1−
φ

φ0
)2, (77)

where σ0 is the initial cross section, φ0 the fluence needed to sputter away the

whole structure and φ is the applied fluence.
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3.4 Low temperature experiment

When measuring electron transport properties of nanoscale superconductors at

ultra-low tempratures a good electromagnetic shielding and filtering is manda-

tory. Interference of external noise coming from either the external electromag-

netic radiation or from the measuring electronics itself can cause noisy signal at

the sample. That noise is almost temperature independent and as such can be

erroneously misinterpreted as contribution of quantum fluctuations.

The samples were measured in a electromagnetically shielded room. The

connections to/from the room were made through low pass filters, the “noisy”

ground was disconnected, and the sensitive electronics were connected to the

"clean" ground. Inside the shielded room solely battery powered analogue pre-

amplifiers were used.

Two different cryostats were employed. Self-made dilution refrigerator(PDR)

was designed and built locally in the NSC of university of Jyväskylä.[77] The re-

frigerator is capable of reaching the base temperature 60± 5 mK and has an op-

tion to be inserted into a vacuum can with a superconducting solenoid. The mea-

suring lines contain Amobead inductive filtering from room temperature down

to liquid helium temperature. Low-pass T-filtering, stabilized at 4 K (fig. 13a)

capacitively shunt the probe pairs. At the mixing chamber, just before the sam-

ple, either microstrip meanders with large capacitance to ground or inductive

filters were used (fig. 13c). In addition the filter chamber was filled with cop-

per powder. The filtering was designed exclusively for dc-measurements or low

frequency ac-measurements.

The samples were glued using conductive (at low temperatures) varnish

on a copper sample holder (fig. 13d) and contacted with aluminum wires using

ultrasonic bonder. A copper cap was tightened over the sample (fig. 13b) to

shield the sample from radiation coming from the vacuum can walls which are at

contact with 4.2 K liquid helium bath.

Another cryogenic system used in the experiment is a more powerful com-

mercial dilution refrigerator Kelvinox-100 from Oxford Instruments. Three stage

filtering system was custom built. The base temperature of the cryostat with all

experimental connections (24 dc-lines, 3 rf-lines and diagnostic lines) was about

20 mK. At the base temperature the electron temperature determined from the

V-I dependence of a NIS junction could be as small as 30 mK. [78]

For the RF-measurements three co-axial lines were installed in the cryostat.

The RF-lines were first thermalised to 4 K using an 20 dB attenuator to reduce

the noise coming from room temperature. At 1 K stage the RF-lines were again

thermalised using 3 dB attenuators.
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FIGURE 13 The cryostat hardware. a) T-filters thermalised to 4K-plate(in KNOX 1K-

plate). The T-filters capacitively couple each of pair of dc lines shunting

ac-signals. b) Image of the sampleholder, sample insert and a copper cap

protecting the sample from external radiation coming from the vacuum can

walls which are at 4 K temperature (in KNOX 1 K). c) The sample holder

and the microstrip filter located inside the insert. d) The sample stage with

sample attached.
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3.5 Measurement methods

Typically for R(T)-measurements small low frequency ac-bias current was used.

The current was chosen to be so small that its increase/reduction by factor of ten

didn’t affect the shape of the R(T) transition. Normally currents below 50 pA

were used. The temperature in both cryostats was measured with pre-calibrated

RuO-crystal using AVS-4-probe resistance bridge.

The dc-measurements were made utilizing either current or voltage bias.

The voltage/current sources used in the experiments were mainly Keithly 238

analogue current/voltage source or Keithly 6221 current source. For current bi-

asing a room temperature 10 or 100 MΩ resistor, connected in series with the

sample, was used to stabilize the current. The 1/RC of the system depended

on the sample (and the bias point) and the pre-resistor varying between 0.1 s

to several minutes leading to relatively long measurement times for the high-

impedance samples. Battery powered analogue amplifiers Itacho 1211 current

amplifier and Itacho 1201 voltage amplifier or Femto DDPCA-300 current ampli-

fier and Femto DLPVA-100 voltage amplifier were used at the first amplification

stage. The Femto voltage amplifier has input impedance 1 TΩ enabling measure-

ment of the high-impedance samples.

In addition to dc-measurements, while recording I-V characteristics, nor-

mally the derivative dV/dI or dI/dV was also measured using modulation tech-

nique. A small ac-signal, with amplitude much smaller than the step of the dc

sweep, was mixed with dc bias. The signal was measured with lock-in ampli-

fiers. Typical values for the ac-modulation frequency and amplitude were few

Hz and 0.1 to 1 pA.



4 RESULTS AND ANALYSIS

4.1 Material quality and sample homogeneity
analysis

Critically oriented reader might always argue that any deviation from ’conven-

tional’ superconductivity, e.g. broadening of R(T) transition, is the result of sam-

ple inhomogeneity. Thus homogeneity is important issue in interpretation of

data. In addition, existing QPS models are designed for homogeneous super-

conducting wires with uniform cross section σ.

In our experiments at all fabrication stages special care has been taken to ob-

tain the best possible quality of titanium nanostructure. After patterning and de-

velopment samples were cleaned with low-poweredO2 plasma before the evapo-

ration to remove PMMA residues left from the development stage. Titanium was

deposited at a typical rate ∼ 0.1 nm/s in cryopumped UHV e-beam evaporator

at residual pressure∼ 5 ∗ 10−9 mbar. The described procedure should ensure low

concentration of foreign impurities.

To reveal the issue of geometrical constrictions the samples were carefully

analyzed with first with SEM and then with AFM. Combination of these two

methods enables determination of variations of the wire diameter with accuracy

2 nm. Figure 14 shows a typical AFM image of ion milled titanium nanowire

which has very smooth surface with roughness being about ± 1 nm. Note that

the error ± 3 nm in definition of the effective diameter of ion milled samples

originates not from the physical roughness, which can measured with AFM with

accuracy ± 1 nm, but from the uncertainty in definition of the interface between

the metal and the substrate.(fig. 14 and 16b)

The structural inhomogeneity of a ∼ 30 nm nanowire is rather demanding

to be measured. Obviously all real samples do have a certain level of structural

inhomogeneity originating from various sources: grain boundaries, finite size of

the sample, proximity effect at the interface with wider parts of the structure,

etc. All the samples, including the thinnest wires, demonstrated sheet resistance

R = 200− 1000 Ω/�, and are still comfortably on the metal side of the metal-
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FIGURE 14 Typical AFM-image of a titanium nanowire showing no obvious defects

and very smooth surface. Horizontal plane indicates the interface between

the metal and the sputtered Si substrate. Inset shows profile of the top part

of the wire.[71] (A. I)
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FIGURE 15 ToF-ERDA analysis and Monte Carlo simulations to determine concentra-

tion of oxygen in Ti matrix. The best fit is obtained with about 0.3 at. %

concentration of oxygen. In the inset the depth profile of oxygen concen-

tration shows that oxygen impurities are mainly localized at the interfaces

Ti/vacuum and Ti/Si.[71] (A. I)

insulator transition. Formation of arrays of JJs in titanium has been observed in

deliberately anodized thin films with noticeably higher sheet resistivity.[79]

To characterize elemental homogeneity of our titanium nanostructures the

co-evaporated filmswere analyzedwith time of flight elastic recoil detection anal-

ysis (ToF-ERDA) [80] and the results were analyzedwithMonte Carlo simulations.[81]

The method enables quantitative determination of impurities of impurities with

0.1% at. accuracy. The ToF-ERDA analysis was done in Physics department of

University of Jyväskylä by Dr. T. Sajavaara.

The ToF-ERDA analysis revealed that the highest concentration of impuri-

ties can be attributed to oxygen to be about 0.3% at. If to assume that the oxygen

impurities are equally distributed inside the Ti-matrix, this would mean that for

each titanium grain with characteristics size 2-3 nm, there is only 1 to 2 oxygen

atoms. With this low concentration it is obvious that there is not enough oxygen

to form insulating barriers between the grains capable to form a JJ blocking the su-

percurrent between metal grains. The depth profile of the oxygen concentration

(fig. 15) makes the conclusion even more convincing. Excluding the interfaces

Ti/vacuum and Ti/Si, oxygen appears to be equally distributed in the Ti-matrix.

To obtain information about crystallinity of Ti-matrix TEM analyses were

made byDr. AVasiliev in Kurchatov Institute, Moscow. The TEM studies showed

that the wires are polycrystalline with crystal size between 2 to 3 nmwhich nicely

correlates with the information obtained with SEM and AFM analyses, and the

values determined for the mean free path from resistance measurements in nor-

mal state utilizing the ρl product for titanium known from literature. The TEM

studies of Ti films revealed compactly packed and highly uniform metal matrix

showing no obvious defects.
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FIGURE 16 Transmission electronmicroscope image of titanium nanowires, a) high res-

olution TEM image showing the crystallinity of the Ti-matrix and b) cross-

section of heavily ion-milled nanowire.[71] (A. I)

The TEM imageswere also taken from a nanowire that had been ionmilled.(fig.

16b) The ion flux during the sputtering is so small that no gas bubbles or charg-

ing effects are possible. The TEM images confirm the hypothesis. No structural

damage was found after ion milling.

Even if there would be some unknown hypothetical mechanism affecting

the wire homogeneity it would be reasonable to assume that the mechanism

should manifest itself individually for each particular sample leading to a unique

fingerprint on R(T) and the I-V dependencies. However, the large statistics ob-

tained on multiple samples states the opposite: The shape of the broadened R(T)

transitions is universal and reproducible for different samples of the same ef-

fective diameter. Moreover the V(I) characteristics of neighboring parts of the

same multiterminal nanostructure are quantitatively indistinguishable (fig. 17).

The shape of the R(T) dependencies is also the same for all sections of the same

nanostructure. All samples above the critical temperature demonstrate I-V de-

pendencies without any nonlinearities, which otherwise might indicate the exis-

tence of weak links. At low temperatures T ∼ 50 mK≪ Tc the IV-dependencies,

measured at high magnetic field suppressing superconductivity, also reveal no

nonlinearities, which might otherwise originate of single electron effects if tunnel

barriers have been unintentionally formed.

To summarize, the extensive structural and elemental analyses reveal no ob-

vious inhomogeneities. The studied titanium nanostructures can be considered

as decent quality dirty limit superconductors l ≪ ξ. The inevitable imperfections

are quite moderate and cannot account for deviations from ’conventional’ super-

conductor behavior to be associated with low quality of the studied structures.
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FIGURE 17 V(I) characteristics of the three neighboring parts with equal lengths

L = 20 µm of the same nanowire with the effective diameter
√

σ = 38 ±
2 nm. Above the critical temperature Tc ≥ 300 mK within the scale of the

image the Ohmic V(I) characteristics (open circles) are quantitatively indis-

tinguishable between the different parts. Below the critical temperature the

V(I) dependencies are also very similar (filled squares, circles, and trian-

gles). Note the absence of the true zero resistance state manifesting itself as

a finite slope below the residual critical current ∼ 1.2 nA. Inset shows the

layout of the sample and the measurement.
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4.2 Titanium nanowires in low-ohmic environment

The QPS has been observed in a rather limited number of experiments study-

ing the transport properties of ultranarrow nanowires made of various super-

conducting materials, amorphous MoGe[20, 5, 21], In and In-Pb[4, 22, 23], and

Al[9, 10, 24]. In Pb[25] and InOx[26] nanowires broad R(T) have been observed,

while no clear claims about the link with QPS were made. The material selection

has an important role in the QPS-experiments. The characteristic diameters of

the nanowire where the QPS related broadening of the transition have been ob-

served in the above experiments is about 10 nm. At these scales reliable analysis

of the sample homogeneity is difficult. The uncertainty leaves room to attribute

the broadening of the transition to structural or geometrical inhomogeneities.

Following equation (31) one may conclude that proper material selection

is crucial for observation of QPS phenomena.[82] In clean superconductors with

Tc ≥ 4 K the QPS effects can be observed only at wire diameters of few nanome-

ters. Consideration of a realistically achievable superconducting nanostructures

in dirty limit l ≪ ξ, the QPS rate (eq. 24) reduces to a form Γ ∼ exp(−A∗
√

Tcσ/ρn),
where A∗ is a constant of proper dimensionality, Tc is the critical temperature, ρn

normal metal state resistivity and σ is nanowire cross section. Hence, materials

with low Tc and high resistivity in normal metal state are of advantage, given

that fabrication of structures with minimal feature size σ1/2 is limited by avail-

able nanotechnology hardware. For majority of our experiments titanium has

been selected as the most suitable material. The Tc of bulk Ti is about 400 mK, it

is high-ohmic metal which is easy to deposit on various substrates using e-beam

UHV evaporation.

4.2.1 R(T) and I-V characteristics

The R(T)-measurements were made with 50 pA 7 Hz AC current at zero DC-bias

utilizing lock-in technique and four-probe measurements configuration in a dilu-

tion refrigerator with base temperature down to 17 mK and extensive filtering of

EM noise. SEM image of a typical sample for the R(T)-measurements is presented

in the figure 18.

To study the dependence of the QPS rate on the nanowire cross section we

used method of low energy ion milling.[6, 7] capable to reduce the effective di-

ameter σ1/2 in ∼ 1 nm steps. In the figure 19 R(T)-measurements of a same

nanowire that have been progressively ion milled between the measurements

are presented. To compare the results to the existing models the correspond-

ing fittings for thermal and quantum phase slips were made. The fits were made

utilizing equations (8) and (13) for thermally activated and (31) for the quantum

phase slips. For thermal phase slips the only fitting parameter, that wasn’t ob-

tained directly from the experiment was the critical magnetic field Hc. The larger

the Hc, the sharper the slope. The fits have been made assuming the Ginzburg-

Landau enhancement of the parallel critical field Hc|| ∼ HBulk
c λ/d, where λ is the
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FIGURE 18 SEM-image of a typical sample for R(T)-measurements. Inner probes are

used for voltage sensing and the outer probes are used for current biasing

of the nanowire.

field penetration depth, and d is the film thickness. In our estimations we con-

sidered d = σ1/2. No set of realistic parameters of the TAPS model can provide a

reasonable fit to broad experimental R(T) dependencies.

In the Golubev and Zaikin QPS-model[30] the only fitting parameter is the

numeric constant A, which should be of the order of unit. The mean free path for

the wires can be evaluated within reasonable accuracy from the material constant

lρN ≈ 10 ∗ 10−16 Ωm2 for bulk titanium, which slightly varies between different

literature sources.[83] This approach gives for our samples the mean free path

around 1 nm. The result agrees well with TEM measured grain size of roughly

2 - 3 nm. Within the dirty limit, coherence length for the superconductor can

be calculated ξ ≃
√

lξ0(T), where ξ0 ≃ h̄vF/∆(T) is the coherence length in the

clean limit ξ0 >> l and vF = 1.79 ∗ 106m/s is the Fermi velocity for bulk titanium.

The normal state resistance RN can be obtained directly from the measurement

data.

For titanium the superconducting critical temperature decreases with the

decrease of the cross-section. The origin of the effect, typical for several ma-

terials, is still unclear. For some materials, for example aluminum, the effect

is reverse: the critical temperature increases with the decrease of cross-section.

Definition of a critical temperature Tc from a R(T) transition with finite width

is always a question of a convention. For example, one may define Tc from

R(Tc) = RN/2 ≡ R(T ≫ Tc)/2. For extremely narrow nanowires, where the

QPS effect dramatically flattens the R(T) transition (fig. 20a), only a rough esti-

mation for the TC can be obtained from the data. In the fits (fig. 19 and 20) the

critical temperature affects mainly only the shift of the fit in temperature scale,

not the slope of the R(T) transition at T ≪ Tc. It should be noted that QPS-fits

are only valid when T << Tc, or formally where the QPS action SQPS (eq. 20) is
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FIGURE 19 Resistance vs temperature for the same titanium nanowires with length L

= 20 µm and progressively reduced effective diameter
√

σ indicated in the

plot and specifiedwith accuracy±2 nm. Themeasuring currents were from

50 to 200 pA for the thinnest and the thickest samples, respectively. Fits

using the QPS model are shown with solid lines; TAPS estimates for 33

nm and 58 nm samples are shown with dashed lines. The variable fitting

parameters are indicated in the inset. For all samples the mean free path is

of the order l = 1 nm.[71] (A. I)
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FIGURE 20 Left panel demonstrates typical temperature dependence of the resistance

R(T) of four titanium nanowires with length L = 10 µm. Calculations based

on equation (31) using the realistic model parameters l = 1 nm, vF = 1.79 *

106 m/s, A = 0.098 and the critical temperature Tc = 200 mK and 115 mK

for the 37 nm and 32 nm samples, respectively, are plotted with dashed

lines. Best fit Tc’s are indicated with arrows. In the limit R(T) ≪ RN , the

G-Z QPSmodel fails to provide any acceptable fits for the thinnest samples.

Right panel shows the dV/dI(I) dependencies of the same nanowires as in

the left panel. For clarity the curve are vertically shifted and the value of

the normal states resistance RN is indicated with the bar. [72] (A.II)

much larger than one.

In figure 20a the sub-40 nm nanowires reach the limit of the applicability

of the model.[30] Below diameter 37± 2 nm the theory [30] cannot be applied to

the transitions. It should be noted that the resistivity of titanium nanostuctures

vary greatly depending on the deposition rate. Thus the observable impact of

QPS in titanium varies between 30 to 40 nm depending on the resistivity of par-

ticular sample. In the narrowest samples the zero resistivity state R(T ≪ Tc)→ 0

conventional for superconductor is not observed (fig. 19 and 20).

At temperatures well below the critical temperature the I-V dependencies

of the same nanowires as in figure 20a are presented in figure 20b. The thickest

sample demonstrates the conventional characteristics: The zero resistance state

quenched by application of current exceeding the critical value Ic. The double

shape of the transitions (two values of critical current) is presumably due to the

node regions where the diameter of the wire is slightly larger. With decrease of

the cross-section the zero-resistance state disappears and only peculiarities asso-

ciated with residual critical current are observed. In thinner samples the differ-

ential resistance does not vary with bias current: dV/dI = RN. In the thinnest

structures at I→ 0 slight increase of differential resistance is observed associated

with weak Coulomb blockade. Observation of pronounced Coulomb blockade

requires high-impedance environment described in the following section.

Tunneling spectroscopy of nanowires with small diameters, well within the

regime of quantum fluctuations, reveals that the mean value of the modulus of

the superconducting order parameter |∆̃| doesn’t change significantly as the wire
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diameter is reduced. This is an important fact to realize, the ‘superconductivity’

doesn’t disappear due to phase slips though R(T→ 0) does not tend to zero. BCS

model predicts linear correspondence between critical temperature and the mag-

nitude of the order parameter Tc ≈ 3.52kB∆(0). Our recent results, where R(T)

and tunneling I-V characteristics (Al-AlOx-Ti(nanowire)) have been measured on

same nanowires.[84] In figure 21 four different sets of nanowires with various ef-

fective diameters have been measured: the superconducting energy gap |∆̃| is
determined at temperature 20 mK with tunneling spectroscopy utilizing S-I-S

tunnel junction, and the R(T) transition of the same nanowire is measured in a

separate experiment. The |∆̃| of titanium nanowires varies slightly between dif-

ferent samples, but even for the thinnest samples remains finite. The Tc’s of the

same set (identical fabrication conditions) nanowires are heavily suppressed by

reduction of the wire diameter just by few nanometers.

FIGURE 21 Left panel: schematics of the sample enabling simultaneous determination

of |∆̃| and Tc. Right panel: same symbol and color indicate that the wires

have been co-fabricated and have comparable properties, resistivity, impu-

rity concentration, etc. The plot contains data for twelve nanowires where

both the mean value of the superconducting energy gap ∆(T = 20 mK) and

the transition temperature, defined as the point where the drop of resis-

tance is noticeable R(TC)/RN = 0.9, are indicated with solid and open sym-

bols respectively. The length of the wires is 4 µm for the squares and circles,

and 20 µm for the face-up/down triangles. The error in definition of the

energy gap is ± 3 µeV and for the transition temperature ± 10 mK.

Though the variation of the wire diameter doesn’t affect significantly the or-

der parameter mean value |∆̃|, it affects the magnitude of fluctuations.[84] In suf-

ficiently narrow nanowires, with the same diameters when the quantum phase

slips are observed, the fluctuations of the order parameter amplitude δ|∆|
|∆| can

reach 50%,[32] which should be easily detectable experimentally. Analysis of the

shape of the I-V dependence provides the direct information about the ‘smear-

ing’ of the energy gap δ|∆| associated with the quantum fluctuations. Note that

these fluctuations should be distinguished from the phase slip process when the

phase changes by 2π and the magnitude of the order parameter momentary nulls
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|∆| → 0.

4.2.2 Negative magnetoresistance

Transport measurements of our nanowires in low-ohmic environment revealed

unusual effect: negative magnetoresistance (nMR). The phenomenon was mostly

pronounced in thin samples with clear QPS contribution (fig. 22). The effect

increases with lowering the temperature. Similar phenomenon has been reported

in aluminum[10], MoGe and niobium[85] and lead[86] nanowires. The origin of

the nMR in these quasi-1D channels is still under debates. In case of niobium and

MoGe it was conjected that some rogue magnetic moments might be present, and

their pair breaking contribution, active at lower magnetic fields, is suppressed

by higher fields leading to the observed nMR.[85] It is a well-known fact that

hypothetic magnetic impurities can have a non-negligible magnetic moment in

aluminum (likely also in titanium) matrix only at relatively high concentrations

[87] and thus this explanation is not likely in our case. Our titanium nanowire

samples were carefully characterized in ToF-ERDA experiments, and it is highly

improbable that high enough concentration of rogue magnetic impurities could

be left undetected.

More likely explanation for the phenomenon is that the magnetic field sup-

presses the charge imbalance accompanying each phase slip event.[88] The sup-

pression of the charge imbalance by magnetic field would result in shorter re-

laxation time and thus, decrease the effective resistance associated with quasi-

normal region within the locus of each PS at low magnetic fields. Another pos-

sibility, also capable to explain the nMR, is that magnetic field more effectively

suppresses superconductivity in wider superconducting electrodes, compared to

thinner ’QPS-body’ of a nanowire. This affects the phase slip formation in the

nanowire [89] or the heat escape from the nanowire: it is known fact that a super-

conductor (=electrodes) are ideal thermal insulators compared to normal metals

[8, 90]. However, applicability of model [89] to our structures studied at T ≪ Tc

is not clear.
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FIGURE 22 Temperature dependence of resistance of titanium nanowire with length

L = 30 µm and the effective diameter 39 ± 3 nm measured at zero mag-

netic field (filled triangles) and in perpendicular magnetic field B = 5.6 mT

(open circles). Both data were obtained while the same slow temperature

sweep just by switching on and off the magnetic field. The inset shows the

representative region with the negative magnetoresistance, measured at a

constant temperature T = 100 mK.[72] (A. II])

4.3 Titanium nanowires in high-ohmic environment

Previous section refers to a conventional casewhen transport through amesoscopic-

scale superconductor is studied utilizing low-ohmic probes: typically consisting

of the same superconductor, but with wider line-width. In this section we’ll deal

with the limit, when charge is the relevant quantum variable. Electronic charge

passing through the system per unit time should be constant: charge fluctuations

are suppressed. To enable realization of this limit, the system should be current

biased.

In section 2.3 we have outlined that a QPS process in a superconducting

nanowire is qualitatively similar to a Josephson tunneling. The corresponding

system, current biased small JJ with Ec ≫ EJ , exhibits essentially periodic elec-

tron transport process: Bloch oscillations. Given that the characteristic frequency

of Bloch oscillations is of the order of 3 GHz, "true" current biasing should be

applicable in this high frequency regime. The current biasing circuit should have

relatively low capacitance not to shunt the RF signal. The characteristic scale,

which the system "sees", the electromagnetic horizon, can be roughly estimated
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FIGURE 23 SEM image of a typical nanostructure with high-impedance electrodes

of ‘dirty’ non-superconducting titanium and 1D arrays of Al-AlOx-Al

SQUIDs. The right panel shows the zooms of the structure: upper image

shows a section of the nanowire and lower image shows the central island.

as the wavelength of the Mooij-Schön mode at characteristics frequency. Esti-

mation gives for our case the scale of the order 100 µm. Hence, to enable reliable

current biasing (at high frequency!) one should fabricate on-chip high impedance

probes with low cross-capacitance and low capacitance to ground.

4.3.1 QPS transistor

Coherent superposition of QPS leads to charge localization.[60] Hence, in a full

analogy with a conventional single electron transistor (or Cooper pair transistor),

where tunnel barriers from both sides of a central island enable charge localiza-

tion at the island, two QPS nanowires, connecting the island to external circuit,

should provide charge localization acting as dynamic equivalent of a conven-

tional tunnel (Josephson) junctions.[60, 62]

Several versions of QPS transistors were studied in this work. All the sam-

ples had possibility for four probemeasurement. In the first demonstration show-

ing the transistor effect we used rather high-ohmic bismuth electrodes in cur-

rent biasing circuit. In the next sample generation the high-impedance probes

providing current bias, consisted of metallic resistors and arrays of Al-AlOx-Al

SQUIDs. In figure 23 is the SEM image of such QPS transistor. In later de-

sign voltage probes consisted of only normal metal resistors to eliminate non-

linearities in voltage sensing circuit. All sufficiently narrow titaniun nanowires

in high enough impedance environment demonstrated the Coulomb blockade.

The blockade width varied between few µV to few mV depending on the diame-

ter of the measured sample and the impedance of the environment.

Utilization of dissipationless elements SQUIDSs[52] in the high impedance

environment has an advantage compared to dissipative high-ohmicmetallic contacts[62]

as it eliminates the Joule heating of the latter and reduces the associated Johnson

noise.[63]
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FIGURE 24 V(I)-measurement of the SQUID array and metallic resistor at T = 20 mK.

The dynamic resistance of the high-ohmic environment depends the bias-

point (inset). At higher biases the dynamic resistance saturates at∼ 300 kΩ.
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FIGURE 25 of a 40 µm long titanium nanowire with progressively reduced ef-

fective diameter σ1/2 at temperatures T ≪ Tc. Note that the high bias resis-

tance of the SQUID array and serially connected metallic resistors increases

after each sputtering cycle Renv ≡ R|resistor + dV/dI(|I| ≫ 0)|SQUID. The ef-

fect should be small at the limit I → 0 because the array dimensions should

not significantly affect the differential resistance within the Coulomb block-

ade region. Note that the reduction of the diameter just by 2 nm (∼ 5%

from the effective diameter) increases the blockade dramatically. The arrow

indicates the data recording direction.[91] (A. IV)

SQUID-based high-impedance environment utilizes the concept of dynamic

resistance of a JJ (or a SQUID) at zero bias RDYN
JJ = dV/dI(V → 0) and the

Josephson inductance LK = (d2EJ/φ2)−1. Typical V(I)-characteristics of the high-
impedance probe is presented in figure 24. In the inset is the dynamic resistance

of the SQUID array. At small biases the dynamic resistance is about 104 times

higher than the normal state resistance of the array. Hereafter, we define RENV ≡
RPROBES + dV/dI(I ≫ 0)SQUID−array. In figure 25 the V(I) characteristics of the

same nanowire that has been ion milled to reduce the cross section, is presented

between the sessions of ion milling. It is clear that the width of the Coulomb

blockade VCB strongly depends on the nanowire diameter. At temperature T ≪
TC the width of the Coulomb gap δVCB indeed should exponentially depend on

the nanowire cross section following the expectation δVCB ∼ EQPS (eq. 45 and 74).

The asymmetry of the IV curves observable in figure 25 has been typical

for the studied high-impedance samples. The shape of the back-bending region

varies depending on the sweep direction and even sweeps performed in the same

direction are not dot-to-dot reproducible when entering or leaving the blockade
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region. The asymmetry seems not to be significantly altered between cool downs

which to some extent would rule out the association of the effect solely to random

access charges. Even if there could be some physics behind the asymmetry, there

is an instrumental effect contribution which originates from the high RC-constant

of the measurement circuit near the blockade region (several minutes). The effec-

tive resistance of the blockade region combined with the high capacitance of the

RC filters in dc-lines require the desired sweep rate to be much more slower than

is possible realistically. To clarify the issue the RC filters should have been re-

moved from the cryostat which would have dramatically degrade the immunity

of the system to environmental EM noise.

The asymmetry of the IV curves observable in figure 25 has been typical

for the studied high-impedance samples. The shape of the back-bending region

varies depending on the sweep direction and even sweeps performed to same

direction are not dot-to-dot reproducible when entering or leaving the blockade

region. The asymmetry seems not to be significantly altered between cool downs

which to some extent would rule out the effect to be contributed solely to ran-

dom access charges. Even as there could be physics behind the asymmetry, there

is a possibility of instrumental effect originating from the high RC-constant of

the measurement circuit near the blockade region (several minutes). The effec-

tive resistance of the blockade region combined with the filtered high capacitance

dc-lines make the required sweep times longer than realistically is possible. To

clarify the issue the RC filters should have been removed from the cryostat which

was not possible during the time.

Figure 26 shows the magnetic field dependence of the VCB. The Coulomb

gap is suppressed by strong magnetic field at T ≪ TC. This supports the pre-

sumption that the effect is related to superconductivity. It is well-known that

Coulomb phenomena in single-electron systems are immune tomagnetic field.[92]

Note also the increase of the Coulomb gap at small magnetic field. The observa-

tion could be linked to the negative magnetoresistance effect observed in the QPS

nanowires (section 4.1.2). Still the origin of the phenomenon is not clear.

Evolution of the Coulomb Blockade with temperature is presented in fig-

ure 27. At the lowest temperatures T ≪ Tc the Coulomb blockade is very pro-

nounced. The blockade decreases with increase of temperature and completely

disappears above the critical temperature of titanium ∼ 400 mK. We have dis-

cussed the dependence of the Coulomb gap on QPS nanowire cross section (fig.

25), magnetic field dependence (fig. 26) and temperature (fig. 27). The transis-

tor effect can be observed using the gate electrode that is capacitively coupled to

the superconducting island. As in case of normal SET or Cooper pair transistor

the supercurrent through the transistor can be modulated by changing the gate

potential Vg = q
Cg
, where q = e for a SET and q = 2e for a Cooper pair transis-

tor. For geometry similar to figure 23 estimated Cg ≈ 1.5 ∗ 10−17F corresponds to

Vg ≈ 20mV when q = 2e. The effective resistance of the QPS transistor at constant

bias current as function of the gate voltage is shown in figure 29. The measured

period δVg ∼ 16.6 mV is in a reasonable agreement with the estimated period.

At T = 20 mK the depth of the gate modulation is about 50%.
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FIGURE 26 Coulomb blockade width VCB of titanium nanowire as function of perpen-

dicular magnetic field B at temperature 100 mK. Increase of the Coulomb

gap at small fields may be linked to negative magnetoresistance effect ob-

served in the QPS nanowires, but the origin of the phenomenon is not clear.

At high field B & 3.85 T the oulomb gap is suppressed. The

Coulomb blockade width is determined as region where the current is

below noise level (< 0.1 pA) and the error bars correspond to cumulative

experimental uncertainty of the voltage measurement. [91] (A. IV)
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FIGURE 27 Zoom of V(I) dependencies close to the blockade region of a same nanowire

at various temperatures. The RENV is the high bias resistance of the envi-

ronment (for typical low bias characteristics see figure 24). Arrows indicate

direction of the data recording.[91] (A. IV)

FIGURE 28 Temperature dependence of zero bias dynamic resistance dV/dI(I = 0) nor-

malized by the normal state resistance RN for several titanium nanowires

as function of temperature. The listed high impedance probe resistances

RENV are for high bias limit. Typical low bias characteristics are presented

in figure 24. [91] (A. IV)
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FIGURE 29 Effective resistance of the QPS transistor measured at constant current I = 75

pA as function of the gate voltage. The solid vertical lines are the guides for

marking the 2e periodicity.

On some samples single electron contribution is observable even at tem-

perature T = 20mK.(fig. 29) With increase of temperature the contribution of

single electron tunneling becomes stronger and pronounced 1e periodicity is ob-

served. The overall magnitude of oscillations drops as the temperature increases

and completely disappear between 400 mK and 500 mK, ie. above the supercon-

ducting transition temperature of titanium. Note also that the oscillation period

doesn’t change between the samples with identical gate electrode configuration

(fig. 29 and 30).

The 2e transistor effect can be destroyed by relatively small magnetic fields

B & 60mT, presumably corresponding to the critical field of the superconducting

island. The SET effect retains finite amplitude even when the superconductivity

of the island is completely suppressed by magnetic field. It should be also noted

that although the Coulomb gap δVc increases at small fields (fig. 25 inset), the ef-

fective resistance Rac decreases. The blockade width δVc is larger, but the current

at a given voltage is also larger, presumably due to more pronounced contribu-

tion of single electron tunneling.
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FIGURE 30 Temperature dependency of the effective resistance of the QPS transistor

at zero dc bias as function of the gate potential. The effective resistance

is measured with Iac = 70 pA peak-to-peak modulation with frequency 7

Hz utilizing four-probe configuration and lock-in technique. At T = 20 mK

the Cooper pair tunneling dominates, but 1e-periodicity is also measurable.

At higher temperatures the 1e-periodicity becomes more pronounced. The

modulation disappears between 400 mK and 500 mK. The arrow indicates

the direction of the Vgate sweep and solid vertical lines mark the 2e-periods

and dashed lines the e-periods.
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FIGURE 31 Effective resistance Rac of the transistor at Idc → 0 as function of gate poten-

tial at various magnetic fields applied perpendicular to the structure. The

absolute value of Rac drops already at small fields(∼ 25 mT) but relative

amplitude of 2e oscillations have higher magnitude compared to B = 0. At

higher magnetic fields (B & 60 mT) the 2e-periodicity is completely sup-

pressed and only weak e-periodicity is left. This is most likely due to the

suppression of superconductivity in the island.
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4.3.2 Synchronization of the Bloch oscillations

As it has been discussed in section 2.4.4, synchronization of internal Bloch oscil-

lations with external RF drive should lead to formation of current singularities at

values I = n(2e) fRF, opening a possibility to use the effect as quantum standard

of electric current.(QSC) Illustrating the viability of the QSC to be built based on

the QPSJ has been one of the main motivations of the work. The requirements

for the standard of metrological quality are strict: at current of about 1 nA the

relative accuracy should be of the order of 10−8. We’ve developed several struc-

tures in attempts to realize the standard. The first samples gave promising results

with accuracy about 10−2 at 1 nA current. In this section I’m going to present the

experimental results of two QSC structures we’ve realized and propose a new

structure in which more accurate results should be possible to obtain.

The first generation of samples had high-ohmic environment consisting of

normal metal resistors. The metallic resistors were made out of either dirty ti-

tanium (few tens of kΩ) or from bismuth (from MΩ to tens of MΩ). In all our

titanium structures the resistivity of both the nanowire ρQPS
N ≤ 300Ω/� and the

electrodes ρPROBES
N ≤ 1kΩ/� are still on the metal side of the metal-to-insulator

transition. In deliberately oxidized nanowires with noticeably higher resistivity

Coulomb effects have been observed.[79]. Typical structure is presented in figure

32.

At low temperatures even relatively thick samples d = 40nm with dirty

titanium electrodes RENV = 30 kΩ show slight increase of resistance at small

bias currents compared to the normal state resistance. With RF-irradiation no-

ticeable traces of the steps were observed in the dynamic resistance dV/dI at po-

sitions corresponding to the I = n(2e) f .(fig. 33) The first step demonstrates only

very slight increase of the dynamic resistance presumably due to overlap with

’́stronger’́ superconducting region, but second and third steps, closer to the crit-

ical current, and correspondingly having higher fluctuation rate, show already

measurable traces of the dynamic resistance.
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FIGURE 32 SEM image of the nanostructure: high-impedance Bi-probes and supercon-
ducting titanium nanowire. The sample consists of three separately mea-

surable titanium nanowires each length of 20 µm and all measurable in

four probe configuration. The separate sections allow comparison be-tween

characteristics of identical nanowires to clarify the possibility of in-

homogeneity related effects. The capacitively coupled antenna below the

nanowire is used for the RF irradiation. The same antenna can be used as a

dc gate.[69] (A. III)
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FIGURE 33 dV/dI(I) in the presence of external rf irradiation fr f = 1.06 GHz for all-

titanium structure: superconducting titanium nanowire σ1/2 = 40± 2 nm,

L = 20 µm and metallic ’dirty’ titanium probes RPROBE = 15 kΩ. Expected

positions for current singularities In = n(2e) fr f are indicated with arrows.

Note also the slight increase of the dynamic resistance at I → 0.[69] (A. III)
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Thinner nanowires, d = 24 nm, exhibit pronounced Coulomb blockade (fig.

34). The Coulomb gap decreases with temperature and disappears at the criti-

cal temperature of bulk titanium.(see section 4.3.1) In the multiterminal structure

all the neighboring parts have similar V(I)-characteristics yet the blockade width

only slightly increases when several structures are measured in series. By apply-

ing dc-voltage to the RF antenna the blockademagnitude δVCB can bemodulated.

As there is no qualitative difference between electrodynamics of a JJ and

a superconducting wire governed by quantum fluctuations, the results should

be analyzed from the point of view if the same data can be quantitatively (and

qualitatively) explained by ’conventional’ system a JJ, before making the claim

of QPS-based phenomenon. Support of the QPS scenario is based on four points.

Firstly, the wires show no obvious geometric weak links and the material analysis

confirms the high quality of the evaporated titanium as discussed in section 4.1.

Secondly, even if there would be some unnoticed breaks or oxide layer blocking

the metal-to-metal supercurrent along the nanowire, the charging energy corre-

sponding to JJ formation by 1 nm thick oxide barrier and the area ∼ 24 x 24 nm2

would result in capacitive energy Ec ∼ 50 meVwhich is almost two orders higher

than the observed blockade (fig. 34). Note that the estimation corresponds to the

largest capacitor to be formed in the nanowire providing the lowest charging en-

ergy Ec = (2e)2 / 2C. Third, if to consider that in the nanowire still exists a hypo-

thetical tunnelbarrier with smaller charging energy of the order of the experimen-

tally observed Coulomb gap VCB ∼ 0.4 to 1 meV, then the normal state blockade

should be noticeable up to temperatures T ≈ 4.6 to 11.6 K. On the contrary, in all

the samples the Coulomb blockade disappears at temperatures, which correlate

well with critical temperature of bulk titanium T = 400 to 500 mK. Fourth, the

blockade can be suppressed by magnetic field, which wouldn’t be possible with

traditional SET as the Coulomb phenomena in single-electron systems are almost

immune to magnetic fields[92]. Summarizing, the interpretation of the observed

Coulomb phenomena in terms of ’conventional’ (static in space and time) JJs, un-

intentionally formed in out titanium nanowires, is rather improbable.
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FIGURE 34 Multiterminal titanium nanostructure with three adjacent nanowires each

with length L = 20 µm and effective diameter d = 24 ± 2 nm. All bismuth

probes have identical parameters RPROBE ≈ 10 MΩ and length L = 22 µm.

The V(I)s demonstrate the Coulomb blockade for all three neighboring

parts of the same nanostructure. Arrows indicate the direction of the cur-

rent sweep. Inset shows the temperature dependence of the Coulomb

gap. δVCB decreases with increase of the temperature and disappears above

∼ 450 mK.[69] (A. III)
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FIGURE 35 Titanium nanowires, effective diameter d = 24± 2 nm and length L = 20 µm

(red circles) or L = 60 µm (blue triangles), in high-ohmic environment

RPROBE ∼ 10 MΩ irradiated with frequency fRF. The synchronization of

the Bloch oscillations is observed at I = n(2e) fRF. The maximum ’width’

of the Bloch steps δVC
(n

B
)
is observed for sample #123 (blue triangles) at fre-

quency fRF≈ 1.5 GHz, which corresponds I1= 0.48 nA and for sample #1

(red circles) fRF≈ 0.5 GHz, which corresponds I1= 0.16 nA.[69] (A. III)
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Typical V(I)-characteristics of our samples irradiatedwith external RF-radiation

are shown in figure 35. The external radiation should generate resonances at posi-

tions In = n(2e) fRF which are observed at the V(I)s as broad plateaus. At higher

frequencies the plateaus become even broader. Presumably, the extra broaden-

ing originates from he Joule heating of the high-resistive normal metal probes.

The impact of Joule heating is mostly pronounced at ultra-low temperatures, and

might easily lead to overheating of the current-biasing probes well above the

critical temperature of titanium Tc ∼ 450 mK (eq. 75). Presence of ’hot’ elec-

trodes, contacting the QPS nanowire, is undesirable from two points of view.

First is the trivial overheating of the nanowire itself, resulting in thermal broad-

ening of the Bloch steps.[93] Second, presence of a ’hot’ resistor in the circuit

inevitably leads to increase of Johnson noise, which might completely smear the

Bloch singularities.[63]

Modulation technique enabling the measurement of the dynamic resistance

reveals relatively sharp Bloch singularities up to eighth harmonic (fig. 36). In fig-

ure 36 the RF frequency has been selected to be low (and hence the corresponding

current In = n(2e) f ) in order to observe multiple harmonics avoiding the heating

effects.
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FIGURE 36 Fist derivative of the V(I) characteristics (=dynamic resistance) of titanium

nanowire, d = 24± 2 nm and length L = 20 µm, in high-ohmic environment

biased with current I and irradiated with RF. At drive frequency fRF =

350 MHz steps up to eighth harmonic are observed. [69] (A. III)
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FIGURE 37 Dynamic resistance of current biased titanium nanowire (σ1/2 = 15±2 nm
and L = 20 µm) in high-ohmic environment irratiated with fRF = 3.12 GHz

(I = 2ef ≈ 1 nA). Weak single electron peaks and strong 2e peaks are ob-

served. In the inset is the Gaussian fit for the first (n = 1) 2e step. The

FWHM of the Gaussian fit is about 20 pA, leading to relative uncertainty of

the position of the current singularity ∼ 10−2.
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In figure 38 the positions of the singularities at In,m are plotted as function

of the RF drive frequency. The occurrence of the steps and the harmonics n and

m are explained in the section 2.3.9. Both single electron and Cooper pair steps

and their harmonics are observed. The frequencies vary from tens of MHz up to

several GHz showing the linear dependence of the current - frequency relation

for broad frequency range. The amplitude dependence is illustrated in the fig.

39 for the fSET, n=2, m=1 = fBloch, n=1, m=1. The dependency follows the Bessel-

function dependency(eq. 68) supporting the early model derived for the dual

system: small current biased JJ.[93]

The realization of the current standard for practical metrological applica-

tions requires accuracy of 10−8 at 1 nA current. Typical results obtained by us so

far are still lacking in the desired accuracy (fig. 37). Even as the accuracy is far

from the required value, it should be remembered that these are the first genera-

tion devices and further development should be possible with reasonable efforts.

In our opinion, at the moment the most limiting factor in improving the accuracy

has been the overheating of the samples which probably should be possible to

overcome with the approach suggested in the next section.
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FIGURE 38 The positions of the current singularities at In,m as function of the fre-
quency (multiplied by 2e). The error bars indicate uncertainty

defining the step positions. We believe that the main contribution to

the undesired broadening of the plateaus comes from the Joule heating of

the high-resistive leads and the associated Johnson noise. Notations of the

series are discussed in section 2.3.9.[93]
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FIGURE 39 The width of the ’principal’ Bloch 2/1 step for charge 2e, n = 1 and m = 1 as

function of the RF amplitude. The amplitude dependency qualitatively cor-

responds to the theoretical dependency shown in the inset and derived for

the dual system: small current biased JJ. Heating of the high-ohmic contacts

with finite measurement current broadens the plateaus causing uncertainty

in determination of the Bloch steps (marked with error bars).[93]
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4.3.3 Improving the structure

As the most limiting factor of the performance so far obtained for the accuracy of

the current standard structure has been the electron heating in the high ohmic re-

sistors, the resistive elements were replaced by superconducting SQUID-arrays,

similar to the QPS transistor structure (fig. 23). The solution should have elim-

inated the heating problems to large extent, however no distinct Bloch singular-

ities were observed, only weak peculiarities. This is presumably due to the fact

that the essentially non-linear SQUID-based elements provide high impedance

environment only at small currents (fig. 24 inset). The dynamic resistance of the

SQUID arrays is essentially current dependent, and is higher than 107 Ω only

within the range of bias current I < 10−11 A, while the current standard would

require currents of the order of 1 nA.

The next improvement used in this work was to utilize resonant LC-tank as

the high-impedance environment. Two types of structures were studied. In the

first set the LC-resonator was made to supply the high-impedance environment

for a certain frequency, i.e. to act as a band-reject filter. The high dc resistance

was provided by serially connected dirty titanium resistor with LC-tank. For

each probe the dc resistance was about 500k Ω to 1 MΩ. Simulated impedances

for the LC-tank at the resonance frequency were of the order 107 Ω. The structure

is presented in figure 40. Voltage was measured either with normal metal or su-

perconducting probes. The LC-tank consists of a long superconducting nanowire

with kinetic inductance LK ≈ 700 nH and a ’comb-type’ capacitor with capaci-

tance C ≈ 20 fF in parallel. One side of the LC-resonator is capacitively coupled

to the ground (to prevent damping of the oscillator) and other side is connected

to the RF-line and the nanowire (fig. 40a).

The structure has multiple desired properties. At the resonance frequency

f = 1/(2π
√

LC) the RF-drive is forced to go through the nanowire. Simulation

made with 5Spice software for ac-current through the nanowire Iac( f ) with con-

stant rf drive demonstrates the performance (fig. 40b). The equivalent ac-circuit

used for the simulation is presented in figure 40c. Parasitic capacitances are ne-

glected as the effects would be negligible. For other frequencies the impedance

to the ground is small through the tank. From the dc-probe side the structure

functions as RC-filter: dc is biased through resistors R1 and R2 forming RC-filters

with capacitances C4 and C3 with cut-off frequency 1/RC ≈ 1 kHz. This helps to

’shield’ the QPS-nanowire from the external noise coming from the (overheated)

high-ohmic normal electrodes by reducing the bandwidth of Johnson noise.

The other LC-structure works in the opposite way: the resonance enhances

the drive impact of the RF. At certain frequency (corresponding to the optimal

RF-drive) the whole circuit should “ring”. The elements of the structure are the

same as above but are arranged in different way. The parallel capacitor to the

inductance is interchanged to be parallel capacitance to the high-ohmic probe.

Unfortunately in both types of structures with RLC-circuit only very weak

Coulomb blockade of about few µV has been observed though the diameter of

the QPS nanowire ∼ 30 nm corresponds to the scales where in earlier studies
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FIGURE 40 a) SEM images of the LC-structure. The structure consist of dirty titanium

normal metal resistor current-biasing probes L = 85 µm and R = 500 kΩ

to 1 MΩ in series with LC-tank. The LC-circuit consists of long supercon-

ducting nanowire with kinetic inductance L = 700 nH and ’finger’ capacitor

with capacitance C = 20 fF. In the middle, between the LC-tanks, is the

QPS-nanowire. Voltage is measured either with normal metal or supercon-

ducting probes. b) Simulated Iac( f ) through the nanowire. At resonance

frequency, the rf-drive is forced to go through the nanowire. c) The equiva-

lent circuit used for the simulation.



78

pronounced signature of the QPS effect has been observed. Given that for such

high-ohmic samples the experimental noise is ∼ 100 nV, no definite conclusions

on existence/non-existence of Bloch steps could be made.

Several explanations might explain this experimentally unsatisfactory re-

sult. First is that the environment is too low ohmic: the dirty normal metal tita-

nium probes have 20 - 100x lower dc resistance than previously used Bi-probes.

Second is that the QPS-nanowire might not be within the horizon of the high-

impedance environment. The estimations for the scale of the horizon[94, 95, 96]

are from tens of µm to hundreds µm. In our earlier structures the high-impedance

environment was within ∼ 25 µm from the QPS-nanowire. In the LC-designs the

length of the high-impedance environment is about 300 µmand it is likely that the

QPS-nanowire is not anymore affected by the environment as desired. We cannot

also exclude the possibility, that due to some uncontrolled factors in these latest

generation samples, we unintentionally managed to fabricate cleaner titanium

nanowires. Given the exponential dependence on the resistivity of the sample

(eq. 24) σ1/2 ≡ 30 nm might appear insufficient to provide decent QPS rate.

Third reason might be related to undesired Zener tunneling. As discussed

in section 2.3.6, the effect of Zener tunneling strongly depends on dissipation in

the system. With decrease of dissipation the Zener tunneling starts to dominate

the system behavior at smaller currents, effectively reducing the range of cur-

rents, where Bloch oscillations can be observed (fig. 9). Hence, the substitution

of purely dissipative elements from earlier design (fig. 32) with LC-tank (fig. 40

and 41) might shrink the range of observability of Bloch oscillations.

Unfortunately, the ideas about incorporation of LC resonance tanks in the

current biasing circuit came just few months before the expiration of the Ph.D.

studies. Due to time limitations we had not much time to solve the mentioned

problems.

4.3.4 Suggestions for an improved design

The RLC-structure could be improved by making compact resistor and capacitor

elements from tunnel junctions(fig. 41). The structure consists of parallel arrays

of tunnel junctions, long superconducting titanium nanowire acting as kinetic

inductor and high-ohmic dirty titanium probes each 1 MΩ isolating the ac-circuit

from the dc-bias and dc-voltage measurement circuits.

The QPSJ is biased through the tunnel junction array with dc-impedance

>10 MΩ up to current 1 nA . With small currents the impedance is even higher

about 108 to 109 Ω derived from the results obtained from the tunnel junction ar-

rays on previous samples (fig. 24 inset). To obtain dynamic resistance of the order

of 107Ω, enabling effective current biasing, the critical current through each probe

should be at maximum 10 pA. This means that there should be ∼ 100 parallel

junctions for the 1 nA current. If the distance between each chain is 300 nm, this

would require ∼35 µm wide array. If each of the tunnel junction chain contains

5 junctions, the length of the each probe is about 1 to 2 µm. For sharp resonance

the superconducting kinetic inductor should be placed before the array.
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FIGURE 41 Qualitative schematics of improved design for the QSC. The structure con-

sists of long superconducting nanowire acting as inductor, tunnel junction

array providing the high impedance (ac and dc) and also the capacitance

for the LC-resonator, high-ohmic resistors isolating the structure from the

parasitic capacitances of the pads and the measurement lines, and QPSJ: a

thin superconducting nanowire with high QPS rate.
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FIGURE 42 Kirchhoff equivalent circuit for structure presented in figure 41. For sim-
ulating the circuit capacitance to ground, the effective ground plate, has

been added under the structure at distance of 550 µm corresponding

typical thickness of a silicon wafer. The resistors RI1, RI2 and RV1, RV2

isolate the QPSJ from the parasitic (pad) capacitances Cp2, Cp3, and Cp4 of

the dc-biasing and dc-voltage measurement circuits, but not from the

inductor’s parasitic capacitance Cp1. Component parameters that have

negligible impact when determining the overall characteristics in the

simulation have been neglected.

If the tunnel junctions have thickness 20 nm and width 50 nm the capac-

itance of 5 junction chain would be of the order 10−17 to 10−18 F. The cross ca-
pacitance between the parallel chains would be of the same order. Thus the total

capacitance could be estimated to be at the range Cprobe = 100 ∗ 10−17 = 10−15F.
The parasitic capacitance to the ground should be negligible in comparison. For

the GHz range this would mean impedance of the order of a MΩ.

Let us select the resonance frequency of the oscillator adjusted for obtaining

the Bloch step at 1 nA, ie. 3.12 GHz. Then inductance of the oscillator should be

LK = 1
4π2 f 2C

= 2.6 µH. The kinetic inductance of a superconducting nanowire

can be evaluated LK,T=0 = h̄RN/π∆0. To have high kinetic inductance super-

conducting wire needs to have high normal state resistance and small supercon-

ducting gap. Typical normal states resistivity of evaporated titanium nanowire is

about ρ = 2 ∗ 10−6 Ωm and the superconducting energy gap ∆0 = 60 µeV. The

wire cross-section needs to be high enough to have negligible quantum phase

slip rate at low temperatures. For obtaining the kinetic inductance 2.6 µH with

σ1/2 ∼= 50 nm superconducting titanium nanowire the length of the wire should

be
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FIGURE 43 Admittance Iac/Vac of the circuit presented in figure 42 as function of fre-

quency of external RF drive fac. The RF signal can be introduced through

capacitive coupling with the on-chip inductor. At the resonance frequency

1/
√

LC = 3.12 GHz the admittance has maximum.

l =
πσLK∆0

h̄ρ
≈ 370µm. (78)

The long superconducting nanowire acting as the element with high inductance

can be incorporated within the RF-antenna structure.

Figure 42 the Kirchhoff equivalent circuit used to simulate the ac-performance

of the structure. The circuit has parasitic capacitances from the inductors, con-

nection pads and the measurement lines incorporated. When the parasitic ca-

pacitances were calculated, it was assumed that the structure is made on Si-chip

that has thickness 550 µm and the chip has been glued on the ground-plate. The

capacitances and inductances of the resistors and the QPSJ and also the cross-

capacitance (∼few aF, depends on the geometry) between left and right parts of

the circuit are neglected. The result of the simulation, done with 5Spice software,

for the ac-impedance of the structure is presented in figure 43.

The circuit filters well the frequencies below 1 GHz and above 10 GHz. For

MHz range the ac-impedance is & 10 MΩ. At the resonance of the LC-circuit

the impedance is about 100 kΩ. Small external drive at the resonance frequency

should make the system “ring”.

Realization of the circuit depicted in figure 41 with proper parameters is

feasible and is compatible with the processes and materials used in our earlier

structures. The resonance frequency of an LC-resonator has a square root depen-
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dency of the capacitance and inductance and thus even relatively large changes in

either parameter should result in only minor tuning of the resonance frequency.

Certain technological efforts would be necessary to realize the optimized circuit.

Note that the suggested circuit is designed not to perform an extended ’academic’

study of the QPS phenomenon. The circuit is optimized to solve exclusively the

applied problem: to obtain sharp current singularities (Bloch steps) In = n(2e) fRF

at the pre-defined frequency fRF corresponding to the resonant frequency of the

LC-tank.



5 CONCLUSIONS

Wehave studied superconducting highly uniform polycrystalline titaniumnanowires

with progressively reduced cross sections using low energy ion milling. All sam-

ples are in the quasi-1-dimensional limit l ≪ σ1/2
< ξ ≪ L, where σ is the

nanowire cross section, l is the mean free path, ξ is the dirty limit coherence

length, and L is the wire length. For nanowires with diameters<50 nm the width

of the R(T) transition broadens well above the limits which can be explained by

the TAPS model[15, 16] with a realistic set of parameters. On the other hand the

G-Z QPS-model[30] gives good agreement for the shape of R(T) transitions for

samples with diameters between 30 to 50 nm. For thinner samples with diam-

eters .30 nm the experimentally measured R(T) dependency is weak, and for

the thinnest samples we’ve observed complete flattening of the superconducting

transition R(T ≪ Tc) ≈ R(Tc) = RN. The observation of the size-dependent

broadening of the R(T) dependencies in superconducting titanium supports the

conjecture about the universality of the QPS effect earlier observed in other ma-

terials to be present in a quasi-one-dimensional superconductor of sufficiently

small cross section.

To verify the high quality of the evaporated material and to address to the

skepticism related to sample homogeneity the extensive microscopy and elemen-

tal analyses were performed. The analyses revealed no obvious structural or geo-

metrical imperfections. The transport properties of ’conventional’ structures with

low-ohmic probes, neither in normal, nor in superconducting state, revealed any

signature of a non-ohmic behavior, which could be associated with hidden struc-

tural defects.

The configuration enabling current biasing of a QPS superconducting nanowire

through on-chip high-impedance electrodes demonstrates intuitively controver-

sial effect: the insulating state of a 1D superconductor. The phenomenon origi-

nates from the fundamental quantum duality between a Josephson junction and a

superconducting nanowire governed by quantum fluctuations – quantum phase

slips junction. The magnitude of the Coulomb gap increases with decrease of the

nanowire cross section, and disappears above certain temperature and/or mag-

netic field supporting the relation of the effect to superconductivity.
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The insulating state of the quantum phase slip junction can be utilized to

realize a quantum phase slip transistor: a transistor without any dielectric barri-

ers. The QPS effect provides the dynamic equivalent of a conventional (static in

space and time) JJ. The charge of the island can be monitored by application of a

static potential by capacitively coupled gate electrode. The dynamic resistance of

the transistor at small bias dV/dI(I→ 0) oscillates periodically with gate voltage.

Application of small magnetic field, much smaller than the critical, increases the

value of the Coulomb gap. Note that in superconducting QPS nanowires with

low-ohmic probes application of small magnetic field also leads to observation of

negative magnetoresistance. The origins of both effects are not clear, but likely

are linked.

The I-V characteristics of a QPS nanowire in high-ohmic environment demon-
strates at small biases the insulating states (Coulomb blockade), while with in-
crease of the bias the specific back-bending (’Bloch nose’) is observed. This pecu-
liar region of the I-V dependence is characterized by transition from the insulat-
ing state to current-carrying state. Electron transport at this region with negative
differential resistance is maintained by coherent motion of Cooper pairs, similar

to the well-know single electron effect. Coherent superposition of± 2π quantum

phase slips enables periodic charging/discharging by 2e happening at a Bloch

frequency fBloch = I/2e.
With application of external RF drive the Bloch oscillations of a QPSJ can be

synchronized leading to formation of current singularities at values In = n(2e) fRF,

n = 1,2,3,... The effect could be utilized to build the quantum standard of electric
current (QSC). Our realization for the QSC structure demonstrated clear signa-
ture of Bloch oscillations, and we’ve been first to report in QPSJ the observation
of synchronization of the Bloch oscillations with the external RF drive. Compared
to conventional small JJs, a QPSJ (with proper parameters enabling observation
of Bloch oscillations) should sustain much higher currents, being of clear advan-
tage for practical metrology. In our experiments the relative accuracy in positions

of the Bloch steps δIn/I ≈ 10−2 presumably limited by the undesired Joule
heating of the high-ohmic current biasing electrodes. However, the high absolute
value reaching the nA range of the current is very encouraging. Further improve-
ments aimed at solving the heating problem and optimizing the high-impedance
environment of the QSC-structure were tested.

In addition to the importance for the basic knowledge about of nanoscale

superconductivity, the subject of quantum fluctuations has lead to a new class

of devices: QPS flux qubit[12], quantum standard of electric current[69, 63], and

QPS-transistor[62]. The absence of conventional tunnel barriers formed of di-

electrics, undesired for such applications as quantum computing, open new hori-

zons for corresponding utilization of QPS-based devices. The exponential depen-

dence of the QPS rate on diameter enables realization of almost arbitrary ratio

between the characteristic energies(EQPS, EC and EL), compared to conventional

JJs, where EJ and EC are somehow entangled by the geometry of the junction.

It would be very desirable if the studies of the QPS phenomenon will be

continued. The topic is interesting offering numerous intriguing applications.
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