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ABSTRACT

Anjam, Immanuel
A posteriori error control for Maxwell and elliptic type problems
Jyväskylä: University of Jyväskylä, 2014, 74 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 190)
ISBN 978-951-39-5730-8 (nid.)
ISBN 978-951-39-5731-5 (PDF)
Finnish summary
Diss.

In the included papers of this thesis we research functional type a posteriori error
estimates and indicators for the eddy-current problem, Stokes problem, and the
diffusion problem. The summary of this thesis concerns only the eddy-current
problem. This is a second order partial differential equation derived from the
Maxwell equations. We derive and numerically test the classical functional a pos-
teriori error estimates, and a new error equality for mixed approximations. All
presented error estimates in this thesis hold for all conforming approximations,
and only contain global constants. The error equality does not even contain any
constants. We also study the radiuses of the solution sets generated by inde-
terminate right hand side, and indeterminate material parameters. Computable
quantities for practical simulations are presented and numerically tested. The ef-
fect of indeterminate material parameters on error indication is also investigated
by computational means.

Keywords: functional a posteriori error control, error estimate, error indicator,
error equality, elliptic problem, Maxwell type problem, eddy-current
problem
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1 INTRODUCTION

The equations governing various phenomena in nature are partial differential
equations (PDEs). Also various problems arising in industrial optimization in-
clude systems of PDEs. For example, the behavior of fluids, the distribution of
heat in some material, and the behavior of electromagnetic fields are modeled us-
ing partial differential equations. Even calculating weather forecasts is a problem
where solving a complicated system of PDEs plays an essential part.

Solutions of partial differential equations can be calculated exactly only in
some special cases. These special cases are usually artificial and non-realistic.
Typically, solutions of PDEs have to be calculated numerically with computers.
Popular numerical methods include, i.e., the finite element method (FEM) [6, 8,
26, 29], the finite difference method (FDM) [27] and the finite volume method
(FVM) [10]. Solving a PDE numerically results in an approximate solution. In some
cases these approximate solutions might coincide with the corresponding exact
solutions, but in general this is hardly the case. Usually approximate solutions
always include some amount of error. In order for a numerical method to be
verified as reliable, there must be a way to measure the error of the approximate
solutions it produces.

There are two different ways to approach the problem of error measure-
ment. One can measure the error a priori, before the approximate solutions are
computed. A priori methods justify the applied numerical method, and often
provide some information over the efficiency of the method. However, they do
not say anything specific about the error of a particular approximate solution.

The second way of measuring the error is called a posteriori, where the error
is measured after the approximate solutions are computed. The goal of a poste-
riori error control is to measure the error between the approximate solution and
the exact solution. An a posteriori error estimate approximates the total error of
the numerical solution, and an error indicator approximates the error distribution
in the domain where the PDE is solved. Because the exact solution is unknown,
the values given by some error measurement method are usually approximations
of the error. Just like the approximation of a PDE can coincide with the exact so-
lution, in some rare cases the approximation of the error might coincide with the
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exact error. However, this is not something that can not be expected with classical
error measurement methods. That being said, a new result exposed in this thesis
shows that for a certain class of PDEs the exact error is known even though the
exact solution is not known.

There are several types of a posteriori error estimates and indicators: the
residual method [3–5,25,26], equilibration based methods [7], and gradient aver-
aging type methods [47, 48]. In this thesis, we research the functional type a pos-
teriori error estimates and indicators invented by Prof. Sergey Repin [22, 31, 41].
These type estimates have several good properties. They are independent of the
method which is used to produce approximate solutions. The only restriction
is that the solution must belong to the correct function space, and satisfy the
given boundary conditions exactly. In mathematical terms one would say that
the approximation must be conforming. Also, these estimates contain only global
constants. This means that the constants are not related to any function in the
PDE, or the mesh used to discretize the domain. In comparison, for example the
residual method is in many cases based in a very strong Galerkin orthogonal-
ity assumption, and also contains constants which are dependent on the mesh
discretization.

The Maxwell equations is a first order system of four partial differential
equations which govern the theory of electromagnetism. These equations have
numerous practical applications [15, 26]. These include designing adapters, laser
resonators, dynamos, radars, optics, etc. The Maxwell equations are rather rele-
vant also in information and telecommunication technology: antennas are widely
used electromagnetic applications.

In the summary of this thesis, we consider a second order PDE closely re-
lated to the Maxwell equations. In literature, this problem is often referred to as
the eddy-current problem. In Chapter 2, we list notation and mathematical results
used in the thesis. We also expose the model problem in this chapter, deriving it
from the Maxwell equations. Chapter 3 is concentrated in functional a posteriori
error estimates for the approximations of eddy-current equations. Also an error
equality for combined error of mixed approximations is exposed in this chapter.
In Chapter 4 we do an analysis of the effects of indeterminacy in the problem
data.

Many of the topics of this thesis were suggested by the two supervisors Prof.
Pekka Neittaanmäki and Prof. Sergey Repin, and are based on their previous
research on the subject of a posteriori error control. The error equality of Section
3.4, and its use in analyzing indeterminate data in Sections 4.1 and 4.2 is original
work of the author.

Of the included papers [PI] and [PIII] are directly related to this thesis, and
the post-processing technique presented in the conference paper [PIV] is also de-
rived and numerically tested in the context of the model problem of this thesis.
The conference papers [PV] and [PVI] consider the reliability of error indication,
and part of this analysis is repeated for the model problem of this thesis. The
paper [PII] considers the generalized Stokes problem in its classical formulation,
and is out of the main line of this thesis. However, the contents of this paper is
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A posteriori error control

Maxwell type problem
[PI], Sec. 3.1, 3.2, 3.3

Stokes + Uzawa [PII]

Error equality
[PIII], Sec. 3.4

Guaranteed
error estimates

Error indication
Effect of

indeterminate data

Post-processing
[PIV], Subsec. 3.5.2, 3.5.3

Accuracy of indicators
[PVI] Indeterminacy + indicators

[PV], Sec. 4.3

Estimates of the radius
of the solution set

Sec. 4.1, 4.2

FIGURE 1 Structure of the thesis.

related to this thesis by the fact that the so-called vorticity-velocity-pressure for-
mulation of the Stokes problem is very close to the model problem considered in
this thesis.

Different parts of the summary of this thesis are related to the included pa-
pers according to the diagram in Figure 1. Results which are exposed in the in-
cluded papers, or in other publications, will be highlighted accordingly.

Author’s contribution to the included articles

[PI]: The estimates were already derived in earlier publications of the super-
visors in [30, 43] and separately by A. Hannukainen in [12]. The author did the
numerical results. The implementation of finite element solvers was done in close
collaboration with co-author O. Mali. Co-author A. Muzalevsky also provided an
implementation for comparison and verification of results.

[PII]: In this paper we exposed new type functional a posteriori error estimates
specifically meant for approximations generated by the Uzawa algorithm. The
mathematical results were done in close collaboration with co-authors M. Nokka
and S. Repin. No numerical results were exposed in this article.

[PIII]: The equality presented in this paper is original research of the author.
D. Pauly helped in writing the general section of the paper. The author did the
numerical results.

[PIV]: The idea of edge-averaging and post-processing using the functional error
majorants came from numerous discussions with the supervisors. The author
carried out the necessary computations and did the numerical results.
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[PV,PVI]: Comparing various error indication methods in the case of indetermi-
nacy was done in close collaboration with the supervisors. For these articles the
author implemented all the different error indication methods, and came up with
an efficient way to test the effect of indeterminacy on error indication.

The author used solely MATLAB [23] for all numerical results, doing all the
implementations of, i.e., finite elements by himself in order to have complete con-
trol over simulations. The meshes in 2d were handled by the functions provided
by the toolbox PDEtool, but meshes in 3d were handled by code created by the
author. In some cases some BASH code was used to help with running big simu-
lations on computer clusters running on Unix-based operating systems.

The finite element implementations (for the primal and dual problems of the
diffusion, reaction-diffusion, eddy-current, and Stokes problems) programmed
by the author during the course of PhD studies include

– linear Courant element in 2d and 3d
– quadratic Courant element in 2d
– linear Raviart-Thomas element in 2d and 3d
– linear tensor-valued Raviart-Thomas element in 2d
– linear Nédélec element of the first family in 2d and 3d
– linear tensor-valued Nédélec element of the first family in 2d
– the scalar and vector valued MINI-element in 2d

In the majority of the finite-element solvers the for-loop over elements was re-
placed by vectorized operations creating surprisingly readable and fast solvers.
The vectorization was done in the way presented in [39]. Also various averaging
and post-processing techniques were implemented in both 2d and 3d for compu-
tationally cheap ways to obtain approximations of the dual variables. In addition
to implementing functional type a posteriori error estimates, the author also im-
plemented various other error indicators for the diffusion problem in order to
compare their performance in the articles [PV, PVI].



2 MATHEMATICAL BACKGROUND AND THE
MODEL PROBLEM

In this chapter we shortly describe the notation and several important results we
will be using throughout this document. We also derive our model problem from
the Maxwell equations.

We denote by R
d the space of d-dimensional real valued vectors, and by

M
d×d the space of real valued second order tensors (d ≥ 2). The inner products

of a, b ∈ R
d and A, B ∈ M

d×d are defined as

a · b :=
d

∑
i=1

aibi and A : B :=
d

∑
i=1

d

∑
j=1

AijBij.

These inner products define the norms

‖a‖
Rd := (a · a)

1/2 and ‖A‖M := (A : A)
1/2 .

Throughout this thesis, Ω ∈ R
d denotes a bounded domain with Lipschitz

continuous boundary ∂Ω. Let ΓD be a relative open subset of the boundary ∂Ω,
and ΓN := ∂Ω\ΓD. A point in the domain Ω is denoted by x = (x1, x2, . . . , xd)

T,
where T denotes the transpose.

In the scope of numerical results, we will also assume Ω to be a polyhedral
domain in order for the mesh discretization to be exact at the boundary ∂Ω. The
reason for this is that the presented estimates require the approximation to be
conforming, i.e., it must belong to the correct Sobolev space, and the boundary
conditions must be satisfied exactly.

These requirements for Ω will not be repeated, and additional requirements
will be separately emphasized if needed.
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Spaces of square integrable functions

We define the following inner product and norm for the functions f , g : Ω → R:

( f , g)L2(Ω) :=
∫

Ω
f g dx,

‖ f‖2
L2(Ω) := ( f , f )L2(Ω) =

∫
Ω
| f |2 dx.

We refer to this inner product and norm as L2-inner product and -norm, respec-
tively. The space of real valued L2-functions is then defined as

L2(Ω) := { f : Ω → R | ‖ f‖L2(Ω) < ∞},

which is a Hilbert space. A vector function v : Ω → R
d is said to belong to

L2(Ω, R
d), if all its components vi ∈ L2(Ω) for all i. More formally, we define the

following inner product and norm for vector functions v and w:

(v, w)L2(Ω,Rd) :=
∫

Ω
v · w dx,

‖v‖2
L2(Ω,Rd)

:= (v, v)L2(Ω,Rd) =
∫

Ω
|v|2 dx.

With this inner product and corresponding norm, we define the L2-space

L2(Ω, R
d) := {v : Ω → R

d | ‖v‖L2(Ω,Rd) < ∞}.

For the rest of the thesis we will drop the subindices denoting spaces, and de-
note by (·, ·)ω and ‖ · ‖ω the L2-inner products and -norms of scalar and vector
functions in ω ⊂ Ω. If ω = Ω, we will omit the domain from the subindex.

From now on, the subindex will be used for denoting weighed inner products
and norms. For example, for vector valued functions v and w, we denote the δ-
weighed L2-inner product and -norm by

(v, w)ω,δ :=
∫

ω
δv · w dx, (2.1)

‖v‖2
ω,δ := (v, v)ω,δ =

∫
ω

δv · v dx, (2.2)

where δ ∈ L∞(Ω, M
d×d) is uniformly positive definite, real, and symmetric.

L∞ denotes the space of essentially bounded functions. For a scalar function f ,
the L∞-norm is defined as

‖ f‖L∞(Ω) := ess sup
x∈Ω

| f (x)| .

The space of scalar L∞-functions is then

L∞(Ω) := { f : Ω → R | ‖ f‖L∞(Ω) < ∞}.

We say that a vector function v belongs to L∞(Ω, R
d) if all of its components

belong to L∞(Ω).
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Useful inequalities

We will use the following inequalities (see, e.g., [18]). The Cauchy-Schwarz in-
equality (a special case of the Hölder inequality) in its integral form reads

( f , g) ≤ ‖ f‖ ‖g‖ (2.3)

for scalar functions f , g ∈ L2(Ω). The discrete inequality reads

|a · b| ≤ ‖a‖
Rd‖b‖

Rd (2.4)

for a, b ∈ R
d. The triangle inequality for scalar functions f and g is called the

Minkowski inequality, and it reads

‖ f + g‖ ≤ ‖ f‖+ ‖g‖. (2.5)

The Young’s inequality for scalars a and b reads

ab ≤
1
2δ

a2 +
δ

2
b2, (2.6)

and it holds for all δ > 0. Inequalities like (2.3) and (2.5) hold also for vector
functions from L2(Ω, R

d).

Differential operators

Let f and v be smooth scalar and vector valued functions, respectively. For a
scalar function f we define the gradient by

∇ f :=

⎛⎜⎜⎜⎝
∂1 f
∂2 f

...
∂d f

⎞⎟⎟⎟⎠ ∈ R
d.

The divergence of v is defined as

div v :=
d

∑
i=1

∂ivi ∈ R.

Note that the Laplace operator Δ can be represented as div∇.
The rotation operators differ depending on the dimension. If d = 3, the

rotation is defined by

curl v :=

⎛⎝∂2v3 − ∂3v2,
∂3v1 − ∂1v3,
∂1v2 − ∂2v1

⎞⎠ ∈ R
3.

If d = 2, we have two operators describing rotation, one for a scalar function f
and one for a vector function v:

curl f :=
(

∂2 f
−∂1 f

)
∈ R

2,

curl v := ∂1v2 − ∂2v1 ∈ R.
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The rotation operator curl is often called "the co-gradient", and denoted by ∇⊥ in
literature, since

curl f = R∇ f , where R :=
(

0 1
−1 0

)
.

Also, if d = 2, we have curl v = div Rv and curl Rv = −div v. Moreover,
curl curl = curl R∇ = −div∇ = −Δ.

Sobolev spaces

From now on, differentials will be considered in the weak sense. In this thesis we
use the following Sobolev spaces:

H1(Ω) := { f ∈ L2(Ω) | ∇ f ∈ L2(Ω, R
d)},

H(div, Ω) := {v ∈ L2(Ω, R
d) | div v ∈ L2(Ω)},

H(curl, Ω) :=
{

{v ∈ L2(Ω, R
3) | curl v ∈ L2(Ω, R

3)} if d = 3
{v ∈ L2(Ω, R

2) | curl v ∈ L2(Ω)} if d = 2
.

Note that the definition of H(curl, Ω) depends on the dimension. These spaces
are equipped with the following inner products:

( f , g)H1 := ( f , g) + (∇ f ,∇g),

(v, w)H(div) := (v, w) + (div v, div w),

(v, w)H(curl) := (v, w) + (curl v, curl w),

and the corresponding norms ‖ · ‖H1 , ‖ · ‖H(div), and ‖ · ‖H(curl).
For convenience, we also define the space of divergence-free functions

H(div0, Ω) := {v ∈ H(div, Ω) | div v = 0}.

We define the spaces with homogenous boundary conditions as closures of in-
finitely differentiable functions:

C∞
0,Γ := {φ ∈ C∞

0 (Rd) | dist(supp φ, Γ) > 0},

H1
0,Γ(Ω) := C∞

0,Γ(Ω)
H1(Ω)

, (2.7)

H0,Γ(div, Ω) := C∞
0,Γ(Ω)

H(div,Ω)
, (2.8)

H0,Γ(curl, Ω) := C∞
0,Γ(Ω)

H(curl,Ω)
, (2.9)

where Γ ⊂ ∂Ω. If the boundary condition is set on the whole boundary, we will
omit the boundary segment form the subindex, i.e., H1

0,∂Ω
(Ω) = H1

0(Ω).
We also note that if f and v are smooth functions, and ∂Ω is smooth, we

have

f ∈ H1
0,Γ(Ω) ⇔ f = 0 on Γ,

v ∈ H0,Γ(div, Ω) ⇔ v · n = 0 on Γ,

v ∈ H0,Γ(curl, Ω) ⇔ v × n = 0 on Γ,

where n = (n1, n2, . . . , nd)
T ∈ R

d denotes the outward unit normal to the bound-
ary ∂Ω.
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Useful identities

We have for all v ∈ H0,ΓN(div, Ω) and f ∈ H1
0,ΓD

(Ω)

(div v, f ) = −(v,∇ f ). (2.10)

Similar identities exist also for the rotation operators (see, e.g., [16]). If d = 3, we
have for all v ∈ H0,ΓD(curl, Ω) and w ∈ H0,ΓN(curl, Ω)

(v, curl w) = (curl v, w), (2.11)

and if d = 2, we have for v ∈ H0,ΓD(curl, Ω) and f ∈ H1
0,ΓN

(Ω)

(curl v, f ) = (v, curl f ). (2.12)

We also note that, for smooth f , v, and ∂Ω, the identity (2.10) comes from the
Gauß’ theorem

(div v, f ) = −(v,∇ f ) + (v · n, f )∂Ω .

Constants in embedding inequalities

First of all we recall the following inequality for scalar functions f , often called
the Friedrichs inequality:

‖ f‖ ≤ CF‖∇ f‖ ∀ f ∈ H1
0(Ω), (2.13)

where 0 < CF := λ−1/2
1 < ∞. Here λ1 is the first Dirichlet eigenvalue of the

Laplacian. The Poincaré inequality reads as

‖ f‖ ≤ CP‖∇ f‖ ∀ f ∈

{
g ∈ H1(Ω)

∣∣∣ ∫
Ω

g dx = 0
}

, (2.14)

where 0 < CP := μ−1/2
2 < ∞. Here μ2 is the second Neumann eigenvalue of the

Laplacian. These inequalities hold for bounded Lipschitz domains by the Rel-
lich’s selection theorem. It is well known that CF < CP holds for d ∈ {2, 3} (see,
e.g., [11]). In [38] it was proven that for convex domains the following estimate
holds:

CP ≤
lΩ

π
, (2.15)

where lΩ is the diameter of Ω.
For simple bounded domains, some analytically obtained upper bounds for

CF sharper than (2.15) are known. For a domain in R
d which is encompassed

inside a rectangle with edge lengths l1, l2, . . . , ld, we have

CF ≤

(
1

π2(l−2
1 + l−2

2 + · · ·+ l−2
d )

)1/2

. (2.16)

This result can be found in [24].
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These constants can also be approximated computationally. A "brute force"
approach to obtain lower bounds for CF is used for example in [46]. As the size
of used meshes increase, the closer the lower bound gets to the exact value. In
[17, 42] the authors expose two different ways to computationally obtain bounds
of these constants.

It is easy to show that inequalities similar to (2.13) and (2.14) hold also for
all vector functions v:

‖v‖ ≤ CF‖∇v‖ ∀v ∈ H1
0(Ω, R

d),

‖v‖ ≤ CP‖∇v‖ ∀v ∈

{
w ∈ H1(Ω, R

d)
∣∣∣ ∫

Ω
wi dx = 0, i ∈ {1, 2, . . . , d}

}
.

A similar result holds for the operator curl in bounded domains. Assuming
that ∂Ω is connected we have

‖v‖ ≤ CM‖curl v‖ ∀v ∈ H0(curl, Ω) ∩ H(div0, Ω), (2.17)

where 0 < CM < ∞.
If d = 2, the constant CM can be replaced by the constant CP in (2.17). This

is easily proven by using a so-called "stream function", a rotation of a potential
function. We take v ∈ H0(curl, Ω) ∩ H(div0, Ω), and represent it by v = curl ϕ,
where ϕ ∈ H1(Ω) is such that

∫
Ω

ϕ dx = 0. By (2.12) and the Cauchy-Schwarz
inequality (2.3) we can write

‖v‖2 = (v, curl ϕ) = (curl v, ϕ) ≤ ‖curl v‖‖ϕ‖ ≤ CP‖curl v‖‖∇ϕ‖,

where in the last step we used (2.14). Since ‖v‖ = ‖curl ϕ‖ = ‖∇ϕ‖ we obtain

‖v‖ ≤ CP‖curl v‖. (2.18)

A recent result by D. Pauly shows that if d = 3 and Ω is convex, the constant
CM is bounded by the Poincaré constant, i.e., we have CM ≤ CP (see [33–35]).

Meshes and finite elements

In this thesis we will use Nédélec elements of the first family [29] to discretize our
model problem. Edge based elements include also the Nédélec elements of the
second family [28] and the Raviart-Thomas elements [40].

We denote by Th the partition of Ω to the union of non-overlapping tetrahe-
dras if d = 3, and triangles if d = 2. An element in Th is denoted by T. For any
T ∈ Th, the sets E(T) and N (T) denote the edges and nodes of T, respectively. The
sets

Eh :=
⋃

T∈Th

E(T) and Nh :=
⋃

T∈Th

N (T)

contain all edges and all nodes of Th, respectively. The sets

ωE :=
⋃

E∈E(T′)

T′ and ωN :=
⋃

N∈N (T′)

T′



21

N
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FIGURE 2 The element patches ωE and ωN when d = 2.

define patches of elements associated with a given edge E ∈ Eh and node N ∈ Nh,
respectively. These element patches are visualized in Figure 2 when d = 2.

For every E ∈ Eh, we assign a vector tE of unitary length, which is tangent
to E. We use | · | to denote area of a domain or length of an edge. The number of
elements in a set is denoted by #(·).

2.1 A Maxwell type problem: the eddy-current problem

In classical settings the Maxwell problem is defined by E, D (electric field and
induction), H and B (magnetic field and induction) satisfying

∂tD − curl H = −J, Ampère’s law (2.19)

∂tB + curl E = 0, Faraday’s law (2.20)

div D = ρ, Gauss’ law (2.21)

div B = 0, Gauss’ law of magnetism (2.22)

for all (t, x) in (0, T)× Ω. Here the variable t ∈ (0, T) denotes time, T > 0, and ∂t

is the differential with respect to time. There are two sources in these equations: J
is the electric current density, and ρ is the electric charge density. In linear media
the constituent relations are

D = εE, (2.23)

B = μH, (2.24)

where the electric permittivity ε and the magnetic permeability μ are bounded,
uniformly positive definite, real, and symmetric. We also assume them to be time-
independent. By using the constituent relations (2.23) and (2.24) we can rewrite
the Maxwell equations (2.19)–(2.22) in terms of E and H only:

ε∂tE − curl H = −J,

μ∂tH + curl E = 0.

These equations must be accompanied by initial conditions and suitable bound-
ary conditions. By using the backward-Euler scheme for the time-derivatives, we
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have

ε

�t

(
Ei − Ei−1

)
− curl Hi = −Ji,

μ

�t

(
Hi − Hi−1

)
+ curl Ei = 0, i = 1, . . . , N, N =

T
�t

,

where �t is the size of the time step. By eliminating Hi and transferring Ei−1 and
Hi−1 to the right hand side, we obtain

curl
(

μ−1curl Ei
)
+

ε

(�t)2 Ei =
1
�t

(
−Ji +

ε

�t
Ei−1 + curl Hi−1

)
.

We denote the right hand side by F, set κ = ε(�t)−2, omit the superscript i, and
arrive at the following coercive problem: find the electric field E such that

curl μ−1curl E + κE = F in Ω, (2.25)

E × n = 0 on ΓD, (2.26)

μ−1curl E × n = 0 on ΓN . (2.27)

Here we have also added mixed boundary conditions: n denotes the outward
unit normal to the boundary ∂Ω. The boundary condition (2.26) is of the Dirich-
let type (in literature this boundary condition is often referred to as the "perfect
electric conductor" boundary condition, or shortly, the PEC boundary condition).
The boundary condition (2.27) is of the Neumann type. In literature the equation
(2.25) is often referred to as the eddy current equation.

For the rest of the thesis, the problem (2.25)–(2.27) is considered as it is,
without the original time-dependence, and without considering F ∈ L2(Ω) to
depend on other functions. We will still call μ the magnetic permeability, and we
will refer to κ as the electric permittivity, since it essentially depends only on ε.
We assume these scalar material parameters belong to L∞(Ω), and that

0 < μ ≤ μ(x) ≤ μ < ∞,

0 < κ ≤ κ(x) ≤ κ < ∞,

for a.e. x ∈ Ω.
In mixed form, the model problem (2.25)–(2.27) reads: find the electric and

magnetic fields E, H ∈ H(curl, Ω) such that

curl H + κE = F in Ω, (2.28)

H = μ−1curl E in Ω, (2.29)

E × n = 0 on ΓD, (2.30)

H × n = 0 on ΓN . (2.31)

The exact solution pair (E, H) belongs then to H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω).
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Generalized solutions

By multiplying (2.25)–(2.27) with a test function v ∈ H0,ΓD(curl, Ω), and integrat-
ing over Ω, we obtain

(curl μ−1curl E, v) + (κE, v) = (F, v) ∀v ∈ H0,ΓD(curl, Ω).

By applying (2.11) to the first term on the left hand side, and taking into account
(2.1)–(2.2), we obtain the corresponding weak formulation

(curl E, curl v)μ−1 + (E, v)κ = (F, v) ∀v ∈ H0,ΓD(curl, Ω). (2.32)

We call (2.32) the primal problem. The dual problem for the dual variable, the
magnetic field H, is obtained by multiplying (2.28)–(2.31) with κ−1curl q for any
q ∈ H0,ΓN(curl, Ω):

(curl H, κ−1curl q) + (κE, κ−1curl q) = (F, κ−1curl q) ∀q ∈ H0,ΓN(curl, Ω).

By applying (2.11) to the second term on the left hand side, and noting that indeed
E ∈ H0,ΓD(curl, Ω), we obtain the weak formulation

(curl H, curl q)κ−1 + (H, q)μ = (F, curl q)κ−1 ∀q ∈ H0,ΓN(curl, Ω). (2.33)

It is well known that the solutions of the primal and dual problems exist and are
unique, and moreover, coincide with the solution pair of the strong problem (see,
e.g., [PIII, Section 2]). By defining

a(u, w) := (curl u, curl w)μ−1 + (u, w)κ ,

l(w) := ( f , w),

â(u, w) := (curl u, curl w)κ−1 + (u, w)μ,

l̂(w) := ( f , curl w)κ−1 ,

the problems (2.32) and (2.33) can be written concisely as

a(E, v) = l(v) and â(H, q) = l̂(q),

respectively. The bilinear forms a(·, ·) and â(·, ·) define the energy norms

|||v |||2 := a(v, v) = ‖curl v‖2
μ−1 + ‖v‖2

κ ,

||[ q ]||2 := â(q, q) = ‖curl q‖2
κ−1 + ‖q‖2

μ,

both of which are equivalent to the norm ‖ · ‖H(curl). The functional type a pos-
teriori error estimates estimate the error in these type weighed norms. We also
define the following combined norm

|[v, q]|2 = |||v |||2 + ||[ q ]||2

for the purpose of measuring the error in both primal and dual variables simul-
taneously.
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The problems (2.32) and (2.33) can also be expressed by the minimization of
the following energy functionals

J (v) :=
1
2

a(v, v)− l(v) and Ĵ (q) :=
1
2

â(q, q)− l̂(q) (2.34)

with respect to v ∈ H0,ΓD(curl, Ω) and q ∈ H0,ΓN(curl, Ω). It is well known that
this minimization (see, e.g., [9]) leads to the exact solutions:

min
v

J (v) = J (E) and min
q

Ĵ (q) = Ĵ (H).

Remark 2.1. By adding the weak forms (2.32) and (2.33) together, and choosing v = E
and q = H, we see that

|||E |||2 + ||[ H ]||2 = (F, E) + (F, curl H)κ−1 = (F, κE + curl H)κ−1 ,

and by (2.28) we have

|[E, H]|2 = (F, F)κ−1 = ‖F‖2
κ−1 ,

so the solution mapping S : L2 → H0,ΓD(curl, Ω) × H0,ΓN(curl, Ω) is an isometry
under the combined energy norm, i.e., |S| = 1. This property of the solution mapping is
fulfilled in all problems of this type (see [PIII, Remark 3.18]).

Remark 2.2. If d = 2, the double curl in (2.25) should be understood as curl curl, i.e.,
in two dimensions, the mixed problem (2.28)–(2.31) would read: find the electric field
E ∈ H(curl, Ω) and the magnetic field H ∈ H1(Ω) such that

curl H + κE = F in Ω,

H = μ−1curl E in Ω,

E × n = 0 on ΓD ,

H = 0 on ΓN .

The exact solution pair (E, H) belongs then to H0,ΓD(curl, Ω)× H1
0,ΓN

(Ω).



3 FUNCTIONAL A POSTERIORI ERROR CONTROL

Research on a posteriori error control for Maxwell type problems has been mainly
done in the context of the residual approach. Residual type error estimates and
indicators were studied in [5, 25, 26], and an equilibrated residual approach was
presented in [7]. A posteriori estimates for non-conforming approximations were
studied in [14]. A Zienkiewicz-Zhu type error estimate was introduced in [32].

In this thesis we will concentrate in the functional type a posteriori error
estimates developed by S. Repin. A consequent exposition of the corresponding
theory is given in the books [22, 31, 41]. The functional type estimates do not rely
on any properties of the numerical method used to compute approximate solu-
tions. This means that a posteriori estimates of the functional type are valid for
any conforming approximation. A conforming approximation of the electric field
E of the system (2.25)–(2.27) would be a function which belongs to H(curl, Ω)
and satisfies the Dirichlet boundary condition (2.26) exactly. Another important
property of these estimates is that they do not contain mesh dependent constants.
The constants appearing in these estimates are global constants arising from em-
bedding inequalities. In this thesis, the presented estimates either contain no
constants, or contain the constants from (2.13) and (2.17).

Functional type estimates for conforming approximations of the eddy cur-
rent problem (2.25)–(2.26) with ΓD = ∂Ω were originally derived in [30, 43] by
S. Repin and P. Neittaanmäki, and in [12] by A. Hannukainen. Functional type
estimates for approximations of the static and time-dependent Maxwell problem
were derived in [36] by D. Pauly and S. Repin, and in [37] by D. Pauly, S. Repin,
and T. Rossi.

In this thesis we concentrate only in the case of conforming approximations
for the eddy-current problem. In the following sections we present all essential
results citing the original works where they were derived in.
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3.1 Classical lower bounds

In literature, the functional type lower bounds are often called minorants, and
they answer the question "how much error the approximation contains at least?"

Theorem 3.1. Let E ∈ H0,ΓD(curl, Ω) be the exact electric field of the system (2.28)–
(2.31). Then, for an arbitrary Ẽ ∈ H0,ΓD(curl, Ω) we have

|||E − Ẽ |||2 ≥ mE(Ẽ, Z) ∀Z ∈ H0,ΓD(curl, Ω),

where
mE(Ẽ, Z) := 2(J (Ẽ)−J (Z)).

Proof. We have

|||E − Ẽ |||2 = a(E − Ẽ, E − Ẽ)

= a(E, E) + a(Ẽ, Ẽ)− 2a(E, Ẽ)

= a(E, E) + a(Ẽ, Ẽ)− 2l(Ẽ).

By adding 2(−a(E, E) + l(E)) = 0 to the right hand side, we obtain

|||E − Ẽ |||2 = a(Ẽ, Ẽ)− 2l(Ẽ)− a(E, E) + 2l(E)

= 2(J (Ẽ)−J (E)).

Since by definition J(E) ≤ J(Z) for any Z ∈ H0,ΓD(curl, Ω), we obtain the result.
�

Theorem 3.2. Let H ∈ H0,ΓN(curl, Ω) be the exact magnetic field of the system (2.28)–
(2.31). Then, for an arbitrary H̃ ∈ H0,ΓN(curl, Ω) we have

||[ H − H̃ ]||2 ≥ mH(H̃, Ẑ) ∀Ẑ ∈ H0,ΓN(curl, Ω),

where
mH(H̃, Ẑ) := 2(Ĵ (H̃)− Ĵ (Ẑ)).

Proof. The proof is identical to the proof of Theorem 3.1.
�

Both of the minorants are sharp, i.e., they do not contain a gap between the exact
errors and the estimates:

max
Z

mE(Ẽ, Z) = mE(Ẽ, E) = |||E − Ẽ |||2,

max
Ẑ

mH(H̃, Ẑ) = mH(H̃, H) = ||[ H − H̃ ]||2 .

Finally, we note that the functional a posteriori error minorants mE and mH are
both fully computable: they contain only the problem data, conforming numeri-
cal approximations Ẽ and H̃, and the arbitrary functions Z and Ẑ.

A lower bound of the error in the primal variable was originally derived
in [43, Chapter 2]. This lower bound can also be found in [30, Section 3.2], the
included paper [PI, Proposition 2.2], and the book [22, Section 4.3]. In all of these
papers the lower bound is derived in a different way than in Theorem 3.1, but
they are nevertheless equivalent.
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3.2 Classical upper bounds

In a posteriori error estimation one is often more interested in upper bounds of
errors, in order to obtain information of the feasibility of an approximation. An
upper bound, or a majorant, answers the question "how much error the approx-
imation contains at most?" The derivation of functional type a posteriori error
estimates directly utilize the weak formulations of the problems at hand.

Theorem 3.3. Let E ∈ H0,ΓD(curl, Ω) be the exact electric field of the system (2.28)–
(2.31). Then, for an arbitrary Ẽ ∈ H0,ΓD(curl, Ω) we have

|||E − Ẽ |||2 ≤ ME(Ẽ, Y) ∀Y ∈ H0,ΓN(curl, Ω),

where
ME(Ẽ, Y) := ‖F − κẼ − curl Y‖2

κ−1 + ‖Y − μ−1curl Ẽ‖2
μ. (3.1)

Proof. First, we add (curl Ẽ, curl v)μ−1 + (Ẽ, v)κ to the both sides of the weak form
(2.32), and obtain

(curl(E − Ẽ), curl v)μ−1 + (E − Ẽ, v)κ = (F − κẼ, v)− (μ−1curl Ẽ, curl v). (3.2)

By (2.11) we see that for an arbitrary function Y ∈ H0,ΓN(curl, Ω) and any function
v ∈ H0,ΓD(curl, Ω), we have (Y, curl v) − (curl Y, v) = 0. By adding this to the
right hand side of (3.2) it becomes

(F − κẼ − curl Y, v) + (Y − μ−1curl Ẽ, curl v) (3.3)

= (κ−
1/2[F − κẼ − curl Y], κ

1/2v) + (μ
1/2[Y − μ−1curl Ẽ], μ−1/2curl v)

(2.3) ≤ ‖F − κẼ − curl Y‖κ−1‖v‖κ + ‖Y − μ−1curl Ẽ‖μ‖curl v‖μ−1

(2.4) ≤
(
‖F − κẼ − curl Y‖2

κ−1 + ‖Y − μ−1curl Ẽ‖2
μ

)1/2
|||v ||| . (3.4)

By choosing v = E − Ẽ ∈ H0,ΓD(curl, Ω) in (3.2) and (3.4) (and squaring both
sides) we obtain the estimate

|||E − Ẽ |||2 ≤ ‖F − κẼ − curl Y‖2
κ−1 + ‖Y − μ−1curl Ẽ‖2

μ = ME(Ẽ, Y)

for an arbitrary Y.
�

It is easy to see that this majorant is sharp:

min
Y

ME(Ẽ, Y) = ME(Ẽ, H) = |||E − Ẽ |||2 .

This immediately shows us that (3.1) provides us the means to obtain approxi-
mations for the exact magnetic field H. By globally minimizing ME(Ẽ, Y) with
respect to Y we obtain the following problem: Find Y ∈ H0,ΓN(curl, Ω) such that

(curl Y, curl q)κ−1 + (Y, q)μ = (F, curl q)κ−1 ∀q ∈ H0,ΓN(curl, Ω).
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Indeed, this problem is exactly the dual problem (2.33). Global minimization of
functional majorants is discussed in detail in Subsection 3.5.1.

Using the same arguments as in proving Theorem 3.3, we can derive an
upper bound for the dual problem (2.33).

Theorem 3.4. Let H ∈ H0,ΓN(curl, Ω) be the exact magnetic field of the system (2.28)–
(2.31). Then, for an arbitrary H̃ ∈ H0,ΓN(curl, Ω) we have

||[ H − H̃ ]||2 ≤ MH(H̃, X) ∀X ∈ H0,ΓD(curl, Ω),

where
MH(H̃, X) := ‖F − κX − curl H̃‖2

κ−1 + ‖H̃ − μ−1curl X‖2
μ. (3.5)

Proof. The proof is nearly identical to the proof of Theorem 3.3. First, we add
(curl H̃, curl q)κ−1 + (H̃, q)μ to the both sides of the weak form (2.33), and obtain

(curl(H − H̃), curl q)κ−1 + (H − H̃, q)μ = (F − curl H̃, curl q)κ−1 − (H̃, q)μ. (3.6)

By (2.11) we see that for any q ∈ H0,ΓN(curl, Ω) and X ∈ H0,ΓD(curl, Ω), we
have (q, curl X)− (curl q, X) = 0. By adding this to the right hand side of (3.6) it
becomes

(F − κX − curl H̃, curl q)κ−1 − (H̃ − μ−1curl X, q)μ (3.7)
(2.3) ≤ ‖F − κX − curl H̃‖κ−1‖curl q‖κ−1 + ‖H̃ − μ−1curl X‖μ‖q‖μ

(2.4) ≤
(
‖F − κX − curl H̃‖2

κ−1 + ‖H̃ − μ−1curl X‖2
μ

)1/2
||[ q ]|| . (3.8)

By choosing q = H − H̃ ∈ H0,ΓN(curl, Ω) in (3.6) and (3.8) (and squaring both
sides) we obtain the estimate

|||H − H̃ |||2 ≤ ‖F − κX − curl H̃‖2
κ−1 + ‖H̃ − μ−1curl X‖2

μ = MH(H̃, X)

for an arbitrary X.
�

It is easy to see that the majorant (3.5) is sharp:

min
X

MH(H̃, X) = MH(H̃, E) = ||[ H − H̃ ]||2 .

As before, this means that (3.5) provides us the means to obtain approximations
to the electric field E. In fact, global minimization of MH(H̃, X) with respect
to X would lead to the weak form (2.32). Finally, we note that the functional a
posteriori error majorants ME and MH are both fully computable: they contain
only the problem data, conforming numerical approximations Ẽ and H̃, and the
arbitrary functions Y and X.

The upper bound for the primal variable in Theorem 3.3 was originally de-
rived in [43, Chapter 2] and [12, Theorem 1]. This upper bound can be found also
in [30, Proposition 1]. The upper bound of the error in the dual variable can be
found in a more general form in [31, Section 7.2].
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3.3 An advanced upper bound

The upper bound ME from Theorem 3.3 is sensitive with respect to small values
of κ (or, more precisely, if κ obtains considerably smaller values than μ). With
some additional assumptions there is a way to overcome this effect.

For this Section we will assume there is no Neumann boundary condition.
Our model problem is then the following system:

curl μ−1curl E + κE = F in Ω, (3.9)

E × n = 0 on ∂Ω, (3.10)

where the magnetic permeability μ ∈ L∞(Ω). By assuming that the electric per-
mittivity κ is a constant, and that the source F ∈ H(div0, Ω), we see (by taking
the divergence of (3.9)) that div F = div κE = 0, so div E = 0. The weak formula-
tion for this problem is derived in the same way as for the more general problem
(2.25)–(2.27), and it is

(curl E, curl v)μ−1 + (E, v)κ = (F, v) ∀v ∈ H0(curl, Ω). (3.11)

In the following proof we need that the approximation Ẽ has global diver-
gence, i.e., it needs to belong to H0(curl, Ω)∩H(div, Ω). In proving the advanced
form of the majorant the inequality (2.17) is used, so we also need to assume that
∂Ω is connected.

Theorem 3.5. Let ∂Ω be connected, and E ∈ H(curl, Ω) ∩ H(div0, Ω) be the exact
solution of the system (3.9)–(3.10). Then, for an arbitrary Ẽ ∈ H0(curl, Ω)∩H(div, Ω)
we have

|||E − Ẽ |||2 ≤ M(λ)
E (Ẽ, Y) ∀Y ∈ H(curl, Ω),

where

M
(λ)
E (Ẽ, Y) := 2CF‖(1 − λ)r(Ẽ, Y)‖ ‖div Ẽ‖+ ‖λr(Ẽ, Y)‖2

κ−1 +

+
(

CMμ
1/2‖(1 − λ)r(Ẽ, Y)‖+ ‖d(Ẽ, Y)‖μ

)2
, (3.12)

and

r(Ẽ, Y) := F − κẼ − curl Y, (3.13)

d(Ẽ, Y) := Y − μ−1curl Ẽ. (3.14)

Here λ ∈ [0, 1].

Proof. See [PI, Proposition 2.1 and Corollary 2.1] for the proof in the case d = 2.1

The proof in the case of d = 3 is almost identical, but we present it here for the

1 We note that in [PI, equation (2.2)] we incorrectly use the constant CF (denoted in this
paper by CΩ). This constant should be CM, which in the case d = 2 can be replaced by CP,
as stated in Remark 3.2.
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convenience of the reader. First, we add (curl Ẽ, curl v)μ−1 + (Ẽ, v)κ to the both
sides of the weak form (3.11), and obtain

(curl(E − Ẽ), curl v)μ−1 + (E − Ẽ, v)κ = (F − κẼ, v)− (μ−1curl Ẽ, curl v). (3.15)

By (2.11) we see that for an arbitrary function Y ∈ H(curl, Ω) and any function
v ∈ H0(curl, Ω), we have (Y, curl v)− (curl Y, v) = 0. By adding this to the right
hand side of (3.15) it becomes

(curl(E − Ẽ), curl v)μ−1 + (E − Ẽ, v)κ =

= (F − κẼ − curl Y, v) + (Y − μ−1curl Ẽ, curl v)

= (λr(Ẽ, Y), v) + ((λ − 1)r(Ẽ, Y), v) + (d(Ẽ, Y), curl v), (3.16)

where we have used (3.13)–(3.14) and λ ∈ [0, 1]. We estimate the first term of
(3.16) by

(λr(Ẽ, Y), v) = (λκ−
1/2r(Ẽ, Y), κ

1/2v)
(2.3) ≤ ‖λr(Ẽ, Y)‖κ−1‖v‖κ (3.17)

Since v belongs to H0(curl, Ω), its Helmholtz decomposition is v = v0 + ∇φ

where v0 ∈ H(div0, Ω) and φ ∈ H1
0(Ω). Using (2.10) we see that φ satisfies

(∇φ,∇ϕ) = −(div∇φ, ϕ) = −(div v, ϕ) for all ϕ ∈ H1
0(Ω), which implies the

estimate ‖∇φ‖ ≤ CF‖div v‖, where CF is the constant from the Friedrichs in-
equality (2.13). By using this, the second term of (3.16) can be estimated by

((λ − 1)r(Ẽ, Y), v) =

= ((λ − 1)r(Ẽ, Y), v0) + ((λ − 1)r(Ẽ, Y),∇φ)
(2.3) ≤ ‖(λ − 1)r(Ẽ, Y)‖ ‖v0‖+ ‖(λ − 1)r(Ẽ, Y)‖ ‖∇φ‖

(2.17) ≤ CMμ
1/2‖(λ − 1)r(Ẽ, Y)‖ ‖curl v‖μ−1 + CF‖(λ − 1)r(Ẽ, Y)‖ ‖div v‖ (3.18)

where we have also noted that curl v0 = curl v. The third term in (3.16) can be
estimated by

(d(Ẽ, Y), curl v) = (μ
1/2d(Ẽ, Y), μ−1/2curl v)

(2.3) ≤ ‖d(Ẽ, Y)‖μ‖curl v‖μ−1 (3.19)

By choosing v = E − Ẽ ∈ H0(curl, Ω) in (3.16)–(3.19) we have

|||E − Ẽ |||2 ≤
(

CMμ
1/2‖(λ − 1)r(Ẽ, Y)‖+ ‖d(Ẽ, Y)‖μ

)
‖curl(E − Ẽ)‖μ−1+

+ ‖λr(Ẽ, Y)‖κ−1‖E − Ẽ‖κ + CF‖(λ − 1)r(Ẽ, Y)‖ ‖div Ẽ‖

(2.6) ≤
1
2

(
CMμ

1/2‖(λ − 1)r(Ẽ, Y)‖+ ‖d(Ẽ, Y)‖μ

)2
+

1
2
‖curl(E − Ẽ)‖2

μ−1+

+
1
2
‖λr(Ẽ, Y)‖2

κ−1 +
1
2
‖E − Ẽ‖2

κ + CF‖(λ − 1)r(Ẽ, Y)‖ ‖div Ẽ‖.
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Transferring the terms including the exact solution E to the left hand side, and by
multiplying the inequality by 2, we obtain

|||E − Ẽ |||2 ≤
(

CMμ
1/2‖(λ − 1)r(Ẽ, Y)‖+ ‖d(Ẽ, Y)‖μ

)2
+

+ ‖λr(Ẽ, Y)‖2
κ−1 + 2CF‖(λ − 1)r(Ẽ, Y)‖ ‖div Ẽ‖ = M

(λ)
E (Ẽ, Y).

�

It is easy to see that the majorant (3.12) is sharp:

min
Y,λ

M
(λ)
E (Ẽ, Y) = M

(1)
E (Ẽ, H) = |||E − Ẽ |||2 .

Remark 3.1. By choosing λ = 1, we obtain the classical majorant of Theorem 3.3

M
(1)
E (Ẽ, Y) := ‖r(Ẽ, Y)‖2

κ−1 + ‖d(Ẽ, Y)‖2
μ = ME(Ẽ, Y),

which is suited best for large values of κ. Using this majorant with small values of κ

will lead to considerable over-estimation of the error |||E − Ẽ |||. However, as was shown
before, this majorant is sharp. We also note, that the majorant of Theorem 3.3 is more
general compared to M

(1)
E (Ẽ, Y), since it does not require additional regularity of the

approximation Ẽ, or the connectedness of ∂Ω. On the other hand, by choosing λ = 0, we
obtain the majorant

M
(0)
E (Ẽ, Y) := 2CF‖r(Ẽ, Y)‖ ‖div Ẽ‖+

(
CMμ

1/2‖r(Ẽ, Y)‖+ ‖d(Ẽ, Y)‖μ

)2
,

which is suited best for small values of κ. However, using this majorant with big values of
κ will lead to considerable over-estimation of |||E − Ẽ |||. Also, sharpness of this majorant
can unfortunately not be proven.

Remark 3.2. As stated in Chapter 2, if d = 3, and we additionally assume that the
domain is convex, the constant CM can be estimated from above by CP. On the other
hand, if d = 2, the inequality (2.18) can be used instead of (2.17). In practice this means
that the constant CM appearing in the error majorant of Theorem 3.5 is simply replaced
by CP. However, in order to use the calculable upper bound (2.15) for CP we need to
assume also in this case that Ω is convex.

Finally, we note that the functional a posteriori error majorant M(λ)
E is fully

computable: it contains only the problem data, a conforming numerical approxi-
mation Ẽ, and the arbitrary function Y.

The contents of this Section is based on the included paper [PI] where The-
orem 3.5 was derived for d = 2 and also numerically tested. However, the upper
bound of Theorem 3.5 was originally derived in [30, Proposition 4], and can also
be found in [22, Section 4.3].
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3.4 An error equality for mixed approximations

In this section, we will understand the pair

(Ẽ, H̃) ∈ H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω)

to be an conforming approximation of the exact solution

(E, H) ∈ H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω)

of the system (2.28)–(2.31). We have the following error equality:

Theorem 3.6. For an arbitrary pair (Ẽ, H̃) ∈ H0,ΓD(curl, Ω)×H0,ΓN(curl, Ω) we have

|[(E, H)− (Ẽ, H̃)]|2 = M(Ẽ, H̃), (3.20)

and its normalized counterpart

|[(E, H)− (Ẽ, H̃)]|2

|[E, H]|2
=

M(Ẽ, H̃)

‖F‖2
κ−1

, (3.21)

where
M(Ẽ, H̃) := ‖F − κẼ − curl H̃‖2

κ−1 + ‖H̃ − μ−1curl Ẽ‖2
μ. (3.22)

Proof. As the first step, we simply use (2.28) on the first term of (3.22), and insert
zero in the form of H − μ−1curlE = 0 into the second term:

M(Ẽ, H̃) = ‖F − κẼ − curlH̃‖2
κ−1 + ‖H̃ − μ−1curlẼ‖2

μ

= ‖κE − κẼ + curlH − curlH̃‖2
κ−1 + ‖H̃ − H + μ−1curlE − μ−1curlẼ‖2

μ

= ‖E − Ẽ‖2
κ + ‖curl(H − H̃)‖2

κ−1 + 2(κ(E − Ẽ), curl(H − H̃))κ−1+

+ ‖H̃ − H‖2
μ + ‖curl(E − Ẽ)‖2

μ−1 + 2(H̃ − H, μ−1curl(E − Ẽ))μ

= |||E − Ẽ |||2 + ||[ H − H̃ ]||2

+ 2
[
(E − Ẽ, curl(H − H̃)) + (H̃ − H, curl(E − Ẽ))

]
. (3.23)

Due to (2.11) the term inside the square bracets is zero. The remaining terms
simply constitute the exact error in the combined norm, and we have proven the
main result (3.20). Then, by Remark 2.1, or by setting Ẽ = H̃ = 0 in the equality
(3.20), we have (3.21).
�

Remark 3.3. The result of Theorem 3.6 holds also for non-homogenous boundary con-
ditions, since due to the conformity of the approximation (Ẽ, H̃) the term inside square
bracts in (3.23) is zero. An equality can also be obtained for Robin type boundary condi-
tions (see [PIII, Section 4] for details).
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Remark 3.4. Note the similarity of the error majorants in Theorems 3.3, 3.4 and 3.6: by
setting Y = H̃ in (3.1) and X = Ẽ in (3.5), we see that

M(Ẽ, H̃) = ME(Ẽ, H̃) = MH(H̃, Ẽ).

In fact, the error equality (3.20) directly leads to the error estimates of Theorems 3.3 and
3.4.

Remark 3.5. Theorem 3.6 can also be deduced as a special case of the equation [31,
(7.2.14)] in the book of Neittaamäki and Repin. For the convenience of the reader we
present this proof also here. We have (see the proof of Theorem 3.1)

|||E − Ẽ |||2 = 2(J (Ẽ)−J (E)),

||[ H − H̃ ]||2 = 2(Ĵ (H̃)− Ĵ (H)).

By summing these two equations together, we obtain

|[(E, H)− (Ẽ, H̃)]|2 = 2(J (Ẽ) + Ĵ (H̃))− 2(J (E) + Ĵ (H)).

Since
J (E) = −

1
2
|||E |||2 and Ĵ (H) = −

1
2
||[ H ]||2,

we obtain by Remark 2.1 the following:

|[(E, H)− (Ẽ, H̃)]|2 = 2(J (Ẽ) + Ĵ (H̃)) + ‖F‖2
κ−1 =: M2(Ẽ, H̃).

It is clear that M2(Ẽ, H̃) = M(Ẽ, H̃). We could say that M2 and M can be regarded as
positive energy functionals whose minimization will result in the exact solution (E, H),
and at this point the energy will be zero.

Remark 3.6. Note that the equality can also be shown by using the classical way of
deriving functional majorants. By (3.2) and (3.3) from the proof of Theorem 3.3 we obtain

(curl(E − Ẽ), curl v)μ−1 + (E − Ẽ, v)κ =

(F − κẼ − curl Y, κv)κ−1 + (Y − μ−1curl Ẽ, μ−1curl v)μ (3.24)

for any v ∈ H0,ΓD(curl, Ω). On the other hand, by (3.6) and (3.7) from the proof of
Theorem 3.4 we obtain

(curl(H − H̃), curl q)κ−1 + (H − H̃, q)μ =

(F − κX − curl H̃, curl q)κ−1 − (H̃ − μ−1curl X, q)μ (3.25)

for any q ∈ H0,ΓN(curl, Ω). By setting X = Ẽ and Y = H̃ and taking the sum of (3.24)
and (3.25) we obtain

(curl(E− Ẽ), curl v)μ−1 +(E− Ẽ, v)κ +(curl(H − H̃), curl q)κ−1 +(H − H̃, q)μ =

(F − κẼ − curl H̃, curl q + κv)κ−1 + (H̃ − μ−1curl Ẽ, μ−1curl v − q)μ. (3.26)



34

By choosing v = E− Ẽ and q = H − H̃, the left hand side of (3.26) becomes the combined
norm or the error of the approximation (Ẽ, H̃). Since we have

curl q + κv = curl H − curl H̃ + κE − κẼ = F − κẼ − curlH̃,

μ−1curl v − q = μ−1curl E − μ−1curl Ẽ − H + H̃ = H̃ − μ−1curl Ẽ,

the equation (3.26) becomes

|[(E, H)− (Ẽ, H̃)]|2 = ‖F − κẼ − curl H̃‖2
κ−1 + ‖H̃ − μ−1curl Ẽ‖2

μ = M(Ẽ, H̃).

Finally, we note that the functional a posteriori error majorant M is fully
computable: it contains only the problem data and a conforming numerical ap-
proximation (Ẽ, H̃). No additional computations are needed.

The contents of this Section is original work of the author, and was origi-
nally published in the included paper [PIII], where the error equality is first de-
rived in an abstract setting, and then several different applications are discussed
and numerically tested. Functional a posteriori error estimates for mixed approx-
imations of static problems were exposed in [44].

3.5 Computation of the majorants

This Section is dedicated to exposing several different methods to calculate the
free functions in the functional majorants. It is clear from the structure of the ma-
jorants that the free functions should be chosen as close to the dual variable H as
possible. We will first explain in detail the process of global minimization of the
majorants. Then we will show computationally cheaper ways to obtain approxi-
mations to H, namely, averaging type methods, and post-processing methods.

3.5.1 Global minimization of majorants

Global minimization of a quadratic function f (Y) with respect to Y consists of
calculating

{∂t f (Y + tq)}t=0 = 0, (3.27)

where t ∈ R, ∂t is the partial derivative with respect to t, and q is a function form
the same space as Y. This technique of obtaining sharp values for functional
majorants is widely used, and is exposed in detail in [22] (see also [46]). In the
following, we will perform this calculation for all majorants presented in this
thesis.
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The majorant ME and M
(1)
E

Globally minimizing the majorant in Theorem 3.3 with respect to the arbitrary
function Y ∈ H0,ΓN(curl, Ω) is straightforward since the majorant ME is already
in a quadratic form. By performing the calculation (3.27) on ME, and rearranging
the terms such that terms related to Y are on the left hand side, one obtains

(curl Y, curl q)κ−1 + (Y, q)μ = (F, curl q)κ−1 − (Ẽ, curl q) + (curl Ẽ, q).

By (2.11) the two last terms cancel each other, and we obtain

(curl Y, curl q)κ−1 + (Y, q)μ = (F, curl q)κ−1 . (3.28)

Obtaining a value of the majorant of Theorem 3.3 by global minimization consists
then of the two steps

1. Calculate an approximation Ỹ of Y by discretizing (3.28).
2. Calculate the upper bound ME(Ẽ, Ỹ).

Note that (3.28) is the weak dual problem (2.33), so by using this procedure Ỹ is
effectively an approximation of the dual variable H, and we could denote Ỹ by H̃.
Then, by Remark 3.4 we see that we are actually also calculating the exact error
of the approximation pair (Ẽ, H̃) in the combined norm.

The majorant M(λ)
E

As a reminder, in the derivation of the majorant of Theorem 3.5 it is assumed that
κ is a positive constant. First we transform M(λ)

E into a quadratic form by using
the Young inequality (2.6) on the first and third terms of (3.12):

M
(λ)
E (Ẽ, Y) ≤ αC2

F‖(1 − λ)r(Ẽ, Y)‖2 +
1
α
‖div Ẽ‖2 + ‖λr(Ẽ, Y)‖2

κ−1 +

+ (1 + β)C2
Mμ‖(1 − λ)r(Ẽ, Y)‖2 +

(
1 +

1
β

)
‖d(Ẽ, Y)‖2

μ

=
∫

Ω

(
(1 − λ)2C1 + λ2κ−1

)
r(Ẽ, Y)2 dx+

+

(
1 +

1
β

)
‖d(Ẽ, Y)‖2

μ +
1
α
‖div Ẽ‖2,

where α, β > 0 arise from the Young inequality, and

C1 := αC2
F + (1 + β)C2

Mμ. (3.29)

It is easy to verify that the optimal form of λ is

C2 :=
C1

C1 + κ−1 ∈ (0, 1).

By denoting

C3 :=
(

1 +
1
β

)
(3.30)
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we finally obtain the estimate

|||E − Ẽ |||2 ≤ C2‖r(Ẽ, Y)‖2
κ−1 + C3‖d(Ẽ, Y)‖2

μ +
1
α
‖div Ẽ‖2

=: M(λ)
E (Ẽ, Y, α, β). (3.31)

Globally minimizing the quadratic upper bound (3.31) with respect to Y ∈ H(curl)
results in the following problem:

C2(curl Y, curl q)κ−1 + C3(Y, q)μ =

= C2(F, curl q)κ−1 − C2(Ẽ, curl q) + C3(curl Ẽ, q), (3.32)

where q ∈ H(curl). Let Ỹ be an approximation of Y calculated by discretizing
(3.32). Then, for given Ẽ and Ỹ, and for the optimal form of λ, we can easily
calculate the optimal values for α and β:

αopt(Ẽ, Ỹ) =
‖div Ẽ‖

CF‖(1 − C2)r(Ẽ, Ỹ)‖
, (3.33)

βopt(Ẽ, Ỹ) =
‖d(Ẽ, Ỹ)‖μ

CMμ
1/2‖(1 − C2)r(Ẽ, Ỹ)‖

. (3.34)

Note that in (3.33) and (3.34) the constant C2 depends on C1 which in turn de-
pends on the old values of α and β. Obtaining a value for the majorant of Theorem
3.5 consists then of the following steps:

1. Set α = β = 1.
2. Calculate an approximation Ỹ of Y by discretizing (3.32).
3. Update the values of α and β by using (3.33) and (3.34), respectively.

4. Calculate a value for the upper bound M(λ)
E (Ẽ, Ỹ, α, β) by (3.31).

This process is monotone, i.e., repeating the steps 2–4 certain times (or until some
stopping criterion is met) produces lower values for the upper bound on every
iteration.

The majorant M(0)
E

The global minimization of the majorant M(0)
E (see Remark 3.1) is very similar to

the global minimization of M(λ)
E . By transforming M

(0)
E into quadratic form one

obtains

|||E − Ẽ |||2 ≤ C1‖r(Ẽ, Y)‖2 + C3‖d(Ẽ, Y)‖2
μ +

1
α
‖div Ẽ‖2

=: M(0)
E (Ẽ, Y, α, β), (3.35)

where the constants C1 and C3 are defined in (3.29) and (3.30). Again, the con-
stants α, β > 0 arise from the Young inequality. Globally minimizing the quadratic
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upper bound (3.35) with respect to Y ∈ H(curl) results in

C1(curl Y, curl q) + C3(Y, q)μ =

= C1(F, curl q)− C1(Ẽ, curl q)κ + C3(curl Ẽ, q), (3.36)

where q ∈ H(curl). Let Ỹ be an approximation of Y calculated by discretizing
(3.36). Then, for given Ẽ and Ỹ we can easily calculate the optimal values for α

and β:

αopt(Ẽ, Ỹ) =
‖div Ẽ‖

CF‖r(Ẽ, Ỹ)‖
, (3.37)

βopt(Ẽ, Ỹ) =
‖d(Ẽ, Ỹ)‖μ

CMμ
1/2‖r(Ẽ, Ỹ)‖

. (3.38)

So, obtaining a value for the majorant M(0)
E consists of the following steps:

1. Set α = β = 1.
2. Calculate an approximation Ỹ of Y by discretizing (3.36).
3. Update the values of α and β by using (3.37) and (3.38), respectively.

4. Calculate a value for the upper bound M
(0)
E (Ẽ, Ỹ, α, β) by (3.35).

As before, this process is monotone, i.e., repeating the steps 2–4 certain times (or
until some stopping criterion is met) produces lower values for the upper bound
on every iteration.

3.5.2 Averaging type methods

The so-called gradient averaging type methods originate from [47] and [48]. These
type methods are also called gradient recovery methods, and error indicators
arising from these methods are commonly called Zienkiewicz-Zhu (ZZ) error es-
timators. For the eddy current problem, a recovery procedure and a ZZ type error
estimator was presented in [32].

The advantage of averaging procedures is that they provide a computation-
ally cheap way to obtain approximations to the dual variable H. The disadvan-
tage is the fact that they are relatively inaccurate. We define here two different
averaging operators. For this we will assume that the approximation to the pri-
mal problem (2.32) is calculated by linear Nédélec elements of the first family
introduced in [29]. We will denote this finite element solution by Eh. Then, the
curl of Eh is constant in each element. The following averaging procedures are
done with respect to the patches ωN and ωE (see Figure 2).

The nodal averaging operator GN is defined by

GNEh(N) =

{
0 if N ∈ ΓN

∑T∈ωN

|T|
|ωN|

(
{{μ}}−1

T curl Eh

) ∣∣∣
T

otherwise
, (3.39)

which defines the value of GNEh at the node N. Then, the averaged function GNEh
is defined by piecewise affine extension on the whole domain. Here {{μ}}T is the
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average of μ on the element T. The recovery procedure proposed in [32] is very
similar to (3.39).

Nodal averaging is a natural choice if d = 2, since the dual variable belongs
to H1

0,ΓN
(Ω). However, if d = 3, the dual variable belongs to H0,ΓN(curl, Ω), but

using (3.39) produces functions from H1
0,ΓN

(Ω, R
3). Therefore, we propose the

following edge averaging operator GE by

GEEh(E) =

{
0 if N ∈ ΓN
|E|

#ωE
tE · ∑T∈ωE

(
{{μ}}−1

E curl Eh

) ∣∣∣
T

otherwise
, (3.40)

which defines the value of GEEh at the edge E. Then, the averaged function GEuh
is defined by an extension with the help of the linear Nédélec elements. Here
{{μ}}E is the average of μ on E, and tE is the tangential unit vector to E.

3.5.3 Post-processing

If d = 2 a function defined by (3.39) can be represented by

Yh = ∑
N∈Nh

cNφN, (3.41)

where cN = GNEh(N) and φN is the global linear Courant basis function related to
the node N (see, e.g., [8]). Since φN is nonzero only in the patch ωN, we can easily
derive a local optimization routine to obtain more accurate approximations of the
dual variable H. This involves minimizing the majorant (3.1) in all patches ωN:
for all N we update the degree of freedom cN by minimizing

MN := ME(Eh, Yh)
∣∣
ωN

=

∥∥∥∥F − κEh − ∑
N′∈Nh(ωN)

cN′curl φN′

∥∥∥∥2

ωN,κ−1
+

∥∥∥∥ ∑
N′∈Nh(ωN)

cN′φN′ − μ−1curl Eh

∥∥∥∥2

ωN,μ
,

where Nh(ωN) denotes all the nodes in the element contained in the patch ωN.
By calculating ∂cN MN = 0 we obtain a new value c∗N:

PNYh(N) = c∗N =

{
0 if N ∈ ΓN
AN/BN otherwise

, (3.42)

where

AN = −

(
F − κEh − ∑

N′∈Nh(ωN)\N

cN′curl φN′ , curl φN

)
ωN,κ−1

+

+

(
∑

N′∈Nh(ωN)\N

cN′φN′ − μ−1curl Eh, φN

)
ωN,μ

and
BN = −(curl φN, curl φN)ωN,κ−1 − (φN, φN)ωN,μ.
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The function whose degrees of freedom are updated for all nodes by (3.42) is
again in the form of (3.41), so the procedure PN can be applied to itself multiple
times.

Similarly, if d = 3, a function defined by (3.40) can be represented by the
sum Yh = ∑E∈Eh

cEφE, where cE = GEEh(E) and φE is the global linear Nédélec ba-
sis function related to the edge E (see, e.g., [26,29]). By minimizing ME(Eh, Yh)

∣∣
ωE

we obtain a new value c∗E:

PEYh(E) = c∗E =

{
0 if E ∈ ΓN
AE/BE otherwise

, (3.43)

where

AE = −

(
F − κEh − ∑

E′∈Eh(ωE)\E

cE′curl φE′ , curl φE

)
ωE,κ−1

+

+

(
∑

E′∈Eh(ωE)\E

cE′φE′ − μ−1curl Eh, φE

)
ωE,μ

and
BE = −(curl φE, curl φE)ωE,κ−1 − (φE, φE)ωE,μ.

Similarly as for the post-processing operator PN, the operator PE can be applied
to itself multiple times.

It should be noted that parallelization of the operators PN and PE has to be
done with care. Parallel calculations of (3.42) and (3.43) have to be done in patches
which do not overlap each other.

This type post-processing techniques for fluxes were exposed in the included
article [PIV] (and also in the conference article [2]).

3.6 Numerical examples

In this section we test, with some simple academic test examples, all the estimates
and the equality derived in this chapter. We will use the following data:

Data 1. We choose the unit square Ω := (0, 1)2 with κ = 10−1 and μ = 1. The
continuous exact solution and the right hand side are

E :=
[

sin(πx2)
sin(πx1)

]
, F := (π2 + κ)

[
sin(πx2)
sin(πx1)

]
.

Obviously E satisfies zero Dirichlet boundary conditions on the whole boundary,
i.e., ΓN = ∅ and ΓD = ∂Ω. It is clear that E belongs to H0(curl, Ω), and it even
belongs to H1

0(Ω, R
2). Moreover, H := curl E = π(cos(πx1)− cos(πx2)) belongs

to H1(Ω). The exact solution is visualized in Figure 3.
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Data 2. We choose the unit square Ω := (0, 1)2 with κ = μ = 1. We split the
domain in two parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 := Ω\Ω1 in order to define
the following discontinuous exact solution:

E
∣∣
Ω1
(x) :=

[
sin(2πx1) + 2π cos(2πx1)(x1 − x2)

sin
(
(x1 − x2)

2(x1 − 1)2x2
)
− sin(2πx1)

]
, E

∣∣
Ω2
(x) := 0.

Since on Γ/ := {x ∈ Ω | x1 = x2} we have

E
∣∣
Ω1

× n =
1

21/2

(
2π cos(2πx1)(x1 − x2) + sin

(
(x1 − x2)

2(x1 − 1)2x2
))

,

E
∣∣
Ω2

× n = 0,

we see that E
∣∣
Ω1

× n = 0 on Γ/. We conclude that the tangential component is
continuous on Γ/, so E belongs to H(curl, Ω). Moreover,

curl E
∣∣
Ω1

= 2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos
(

x2(x1 − x2)
2(x1 − 1)2),

curl E
∣∣
Ω2

= 0,

and clearly curl E
∣∣
Ω1

= 0 on Γ/, i.e., curl E is continuous on Γ/. Also, it is easy to

see that curl E vanishes on the whole boundary, so H := curl E ∈ H1
0(Ω). Thus,

the exact solution satisfies zero Neumann boundary conditions on the whole
boundary, i.e., ΓD = ∅ and ΓN = ∂Ω. The exact solution is visualized in Fig-
ure 4.

Data 3. We choose the L-shaped domain Ω := (0, 1)2\
(
[1/2, 1]× [0, 1/2]

)
with

κ = 1, μ = 103 and F =

[
1
0

]
.

We set zero Dirichlet boundary conditions on the whole boundary, i.e., ΓN = ∅

and ΓD = ∂Ω. The exact solution of this problem is unknown.

Data 4. We choose the unit cube Ω := (0, 1)3 with κ = μ = 1. We split the domain
in two parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 = Ω\Ω1 in order to define the
following discontinuous exact solution:

E(x) := χΩ1(x)

⎡⎣ sin(2πx1) + 2π cos(2πx1)(x1 − x2)
sin

(
(x1 − x2)

2(x1 − 1)2x2
)
− sin(2πx1)

0

⎤⎦+ E(1)

⎡⎣0
0
1

⎤⎦ ,

where χ denotes the characteristic function, and E(1) := ∏
3
i=1 x2

i (1 − xi)
2. Thus,

we extended the discontinuous vector field of Data 2 by zero in the third com-
ponent, and added a smooth bubble in the third component. Since on the plane
Γ/ := {x ∈ Ω | x1 = x2} we have

E
∣∣
Ω1

× n =
1

21/2

⎡⎣ E(1)

E(1)

2π cos(2πx1)(x1 − x2) + sin
(
(x1 − x2)

2(x1 − 1)2x2
)
⎤⎦ ,

E
∣∣
Ω2

× n =
1

21/2

⎡⎣E(1)

E(1)

0

⎤⎦ ,



41

we see that E
∣∣
Ω1

× n = 1
21/2 (E

(1) , E(1), 0)T on Γ/. We conclude that the tangential
component is continuous on Γ/, so E belongs to H(curl, Ω). Moreover,

curl E = χΩ1(x)

⎡⎣ 0
0

E(2)(x)

⎤⎦+

⎡⎣ ∂2E(1)(x)
−∂1E(1)(x)

0

⎤⎦ ,

where

E(2)(x) := 2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos
(

x2(x1 − x2)
2(x1 − 1)2).

On Γ/ we have

curl E
∣∣
Ω1

× n =
1

21/2

⎡⎣ E(2)(x)
E(2)(x)

∂1E(1)(x)− ∂2E(1)(x)

⎤⎦ ,

curl E
∣∣
Ω2

× n =
1

21/2

⎡⎣ 0
0

∂1E(1)(x)− ∂2E(1)(x)

⎤⎦ .

Since E(2)(x) = 0 on Γ/, we see that the tangential component of curl E is contin-
uous on Γ/. It is also easy to verify that curl E × n = 0 on the whole boundary,
so H := curl E ∈ H0(curl, Ω). Thus, the exact solution satisfies zero Neumann
boundary conditions on the whole boundary, i.e., ΓD = ∅ and ΓN = ∂Ω.

Data 5. We choose the L-shaped domain Ω := (0, 1)3\[1/2, 1]3. We define for
i = 1, 2, 3 the subdomains Ωi := {x ∈ Ω | xi > 1/2} in order to define the
following discontinuous data:

κ
∣∣
Ω1

= μ
∣∣
Ω2

= 1, κ
∣∣
Ω\Ω1

= μ
∣∣
Ω\Ω2

= 102,

F
∣∣
Ω3

= [1, 0, 0]T, F
∣∣
Ω\Ω3

= [0, 0, 1]T.

We set zero Neumann boundary conditions on the whole boundary, i.e., ΓD = ∅

and ΓN = ∂Ω. The exact solution of this problem is unknown.

The right hand sides generated by the exact solutions of Data 2 and 4 are not
printed here since they are simply too long. In fact, the right hand sides for these
problems were automatically calculated from the exact solutions by code created
by the author. This code utilizes the Symbolic Math Toolbox for MATLAB.

In all the numerical examples we solve the primal problem (2.32) with linear
Nédélec elements of the first family (see, e.g., [26, 29]) for d ≥ 2. If d = 3 we will
solve also the dual problem (2.33), and the problems resulting from global min-
imization of the majorant (see Section 3.5), with linear Nédélec elements of the
first family. If d = 2, we will solve those problems with the linear Courant ele-
ments (see, e.g., [8]). A finite element discretization will be denoted by lowercase
h, i.e., (Eh, Hh). If not otherwise stated, the resulting linear systems are solved by
a direct method.
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FIGURE 3 The exact solution (E, H) of Data 1.
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FIGURE 4 The exact solution (E, H) of Data 2.

We will not test the majorants of Theorems 3.3 and 3.4 separately, since we
would in any case choose Y = Hh and X = Eh, and by Remark 3.4 the majorants
then give the exact error in the combined norm.

In the case of the advanced form of the majorant of Theorem 3.5 we will
post-process the finite element approximation Eh ∈ H0(curl, Ω) into H1

0(Ω) by a
simple node averaging procedure which we will denote by Q.

In all the tables presented here, the values are cut-offs from the values re-
ported by MATLAB. No rounding is done.

We will include in some of the numerical results also values of the so-called
efficiency indexes. For the minorants we denote

IE,� =
mE(Eh, Z)1/2

|||E − Eh |||
≤ 1, IH,� =

mH(Hh, Ẑ)1/2

||[ H − Hh ]||
≤ 1,

and for the advanced form of the majorant we denote

I(λ)E,⊕ =

(
M

(λ)
E (Q(Eh), Y)

)1/2

|||E − Q(Eh) |||
≥ 1.

The closer these values are to 1, the better estimates we have. For the error equal-
ity of Theorem 3.6 the efficiency index is always 1 (aside from possible errors
arising from using integration quadratures, or the machine precision of floating
point arithmetic).
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Example 1. We will test the minorants. In order to obtain a value for mE(Ẽ, Z) we
need to essentially choose Z such that it is a better approximation to the primal
variable E than Ẽ. The same holds for the minorant mH. In practice we will com-
pute approximations in subsequently refined meshes Th1

, Th2 , . . . and obtain the
corresponding approximations Eh1 , Eh2 , . . . and Hh1, Hh2, . . .. The values of the mi-
norants for Ehi

and Hhi
are then obtained with a "one step delay" by mE(Ehi

, Ehi+1
)

and mH(Hhi
, Hhi+1), respectively. In this example in each refinement step we re-

fine the whole mesh. Tables 1 and 2 contain the results for Data 1 and 4 respec-
tively. The efficiency indexes vary between 0.76 and 0.86, which indicates good
performance.

TABLE 1 Example 1 (d = 2, Data 1) The values of the minorants.

#Thi
|||E − Ehi

||| mE(Ehi
, Ehi+1)

1/2 IE,� ||[ H − Hhi
]|| mH(Hhi

, Hhi+1)
1/2 IH,�

200 0.18110 0.15671 0.86 2.80850 2.42780 0.86
800 0.09076 0.07859 0.86 1.41190 1.22210 0.86

3200 0.04541 0.03932 0.86 0.70714 0.61230 0.86
12800 0.02278 0.01966 0.86 0.35374 0.30633 0.86
51200 0.01135 0.00983 0.86 0.17690 0.15319 0.86

204800 0.00567 - - 0.08845 - -

TABLE 2 Example 1 (d = 3, Data 4) The values of the minorants.

#Thi
|||E − Ehi

||| mE(Ehi
, Ehi+1)

1/2 IE,� ||[ H − Hhi
]|| mH(Hhi

, Hhi+1)
1/2 IH,�

384 0.72000 0.55085 0.76 0.063734 0.052376 0.82
3072 0.46365 0.37490 0.80 0.036315 0.031014 0.85

24576 0.27280 0.22879 0.83 0.018891 0.016311 0.86
196608 0.14856 - - 0.009528 - -
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Example 2. We test the advanced form of the majorant M(λ)
E (Q(Eh), Y) with var-

ious values of κ for Data 1 on a mesh with 3200 elements. We compare the per-
formance also with the special cases of Remark 3.1, i.e., we choose λ = 1 and
λ = 0. In Table 3 are results where the free functions Y were chosen by globally
minimizing the corresponding majorants. In Table 4 are results where the free
functions Y were all chosen as the averaged function GNEh (see Subsection 3.5.2).
The special case λ = 1 is sensitive for small values of κ, and the special case λ = 0
is sensitive for big values of κ. It can be concluded that the advanced form of the
majorant gives a good error bound with all values of κ.2

TABLE 3 Example 2 (d = 2, Data 1) The efficiency index values of the majorants with
various values of κ on a mesh with 3200 elements. The Y were chosen by
global minimization.

κ I(1)E,⊕ I(0)E,⊕ I(λ)E,⊕
10−4 248.61 2.63 2.63
10−3 78.62 2.63 2.63
10−2 24.88 2.63 2.62
10−1 7.92 2.63 2.59
100 2.67 2.62 2.30
101 1.26 2.62 1.26
102 1.02 3.54 1.02
103 1.00 10.1 1.00
104 1.00 31.81 1.00

TABLE 4 Example 2 (d = 2, Data 1) The efficiency index values of the majorants with
various values of κ on a mesh with 3200 elements. All Y were chosen as the
averaged function GNEh.

κ I(1)E,⊕ I(0)E,⊕ I(λ)E,⊕
10−4 1778.86 8.39 8.39
10−3 562.52 8.39 8.39
10−2 177.88 8.39 8.39
10−1 56.25 8.39 8.34
100 17.79 8.38 7.93
101 5.65 8.31 5.41
102 1.89 7.82 1.89
103 1.05 10.81 1.05
104 1.00 31.92 1.00

2 This test is also done in [PI] with a smaller mesh. We note that in [PI, equation (2.2)] we
incorrectly use the Friedrichs constant CF. This constant should be the Poincaré constant
CP. In the numerical results of this paper the bound (2.16) is then incorrectly used for both
of the constants, so the values in [PI, Tables 1 and 3] are slightly optimistic.
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Example 3. We will test the averaging and post-processing operators of Subsec-
tions 3.5.2 and 3.5.3 for calculating approximations of the dual variable. The ap-
proximation Eh was solved with linear Nédélec elements. For Data 1 and 2 (d = 2)
we will test the nodal operators GN and PN, and for Data 4 (d = 3) we will test the
edge operators GE and PE. For comparison we also calculated an finite element
approximation Hh to the dual variable. Results for Data 1, 2, and 4 are in Tables 5,
6, and 7, respectively. In all cases only a few post-processing iterations are needed
to get relatively close to Hh.

TABLE 5 Example 3 (d = 2, Data 1) Errors ||[ H − H̃ ]|| / ||[ H ]|| for various approxima-
tions H̃ on three meshes.

#Th 200 3200 51200
GNEh 0.1148 0.0472 0.0220

P1
NGNEh 0.0825 0.0241 0.0086

P2
NGNEh 0.0795 0.0213 0.0064

P3
NGNEh 0.0787 0.0205 0.0058

P4
NGNEh 0.0784 0.0202 0.0054

P5
NGNEh 0.0782 0.0200 0.0053

Hh 0.0779 0.0196 0.0049

TABLE 6 Example 3 (d = 2, Data 2) Errors ||[ H − H̃ ]|| / ||[ H ]|| for various approxima-
tions H̃ on three meshes.

#Th 200 3200 51200
GNEh 0.4743 0.1679 0.0730

P1
NGNEh 0.3547 0.0968 0.0291

P2
NGNEh 0.3411 0.0885 0.0229

P3
NGNEh 0.3379 0.0868 0.0219

P4
NGNEh 0.3363 0.0862 0.0217

P5
NGNEh 0.3354 0.0858 0.0215

Hh 0.3328 0.0845 0.0211

TABLE 7 Example 3 (d = 3, Data 4) Errors ||[ H − H̃ ]|| / ||[ H ]|| for various approxima-
tions H̃ on three meshes.

#Th 384 3072 24576
GEEh 1.5495 0.8770 0.4668

P1
E GEEh 0.9977 0.5644 0.2880

P2
E GEEh 0.8784 0.5001 0.2518

P3
E GEEh 0.8231 0.4681 0.2369

P4
E GEEh 0.7911 0.4484 0.2285

P5
E GEEh 0.7712 0.4351 0.2229

Hh 0.7127 0.3833 0.1945
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Example 4. We will numerically verify the equality of Theorem 3.6 for Data 4.
In this test the main quantity of interest is the difference ε between the exact
error and the value given by the majorant for some approximation (Ẽ, H̃), i.e.,

ε :=
∣∣∣|[(E, H)− (Ẽ, H̃)]| −M(Ẽ, H̃)1/2

∣∣∣. In Table 8 we have calculated approx-

imations (Eh, Hh) by solving the linear systems directly. In Table 9 the linear
systems were solved by an iterative method where the stopping tolerance was
set to the crude value of 10−6. These approximations are denoted by (Eiter, Hiter).
With this setting the iterative method did not converge, and the errors of the
approximations actually grow as the mesh size was increased. This was done
in purpose to obtain approximations which are relatively far from having the
Galerkin orthogonality property. In Table 10 the approximation Eh for the primal
variable was calculated by solving the linear system directly. The approximation
for the dual variable was calculated by GEEh, i.e., by averaging curl Eh to edges
(see Subsection 3.5.2). In the numerical results performed non-zero values of the
difference ε was between 10−16–10−15, which is in the limit of machine precision.
Thus these values are considered zero.

TABLE 8 Example 4 (d = 3, Data 4) Linear systems solved directly.

#Th |[(E, H)− (Eh, Hh)]| M(Eh, Hh)
1/2 difference ε

384 0.7228185218 0.7228185218 3.330669074e-16
3072 0.3717887807 0.3717887807 6.106226635e-16

24576 0.1883612515 0.1883612515 2.775557562e-16
196608 0.0945757836 0.0945757836 8.604228441e-16

TABLE 9 Example 4 (d = 3, Data 4) Linear systems solved with an iterative method.

#Th |[(E, H)− (Eiter, Hiter)]| M(Eiter, Hiter)
1/2 difference ε

384 0.909324998 0.909324998 1.110223025e-16
3072 1.368867273 1.368867273 2.220446049e-16

24576 2.319303789 2.319303789 8.437694987e-15
196608 3.586832702 3.586832702 8.881784197e-16

TABLE 10 Example 4 (d = 3, Data 4) Approximation for the dual variable obtained by
averaging.

#Th |[(E, H)− (Eh, GEEh)]| M(Eh, GEEh)
1/2 difference ε

384 0.7332143085 0.7332143085 2.220446049e-16
3072 0.3784213896 0.3784213896 1.165734176e-15

24576 0.1921457906 0.1921457906 1.276756478e-15
196608 0.0972059791 0.0972059791 6.661338148e-16
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The equality was verified with various other test data in both dimensions
d = 2 and d = 3. In all cases the values of ε were within the limit of machine
precision. In [PIII] we numerically verify the equality also in the context of the
reaction diffusion problem.

Next we will concentrate on investigating the error indication properties of
the majorant. We have already established that the majorant gives the global error
value of a given approximation (Ẽ, H̃). In order to perform adaptive refinement
of element meshes, one needs to be able to approximate the error distribution in
the domain. In the next examples we compare optimal refinement achieved by
using the exact error distribution eT to the refinement provided by the distribution
of the majorant ηT, where

e2
T := |[(E, H)− (Ẽ, H̃)]|2T := |||E − Ẽ |||2T + ||[ H − H̃ ]||2T,

η2
T := M(Ẽ, H̃)

∣∣∣
T

:= ‖F − κẼ − curl H̃‖2
T,κ−1 + ‖H̃ − μ−1curl Ẽ‖2

T,μ, (3.44)

and T ∈ Th denotes an element of the mesh discretization.
In order to measure the accuracy of the error indication process, we define

the following strong measure (see [22, Section 2.1.2]): the indicator ηT is said to be
ε-accurate if

Θstrong(ηT) :=
‖eT − ηT‖Rd

‖eT‖Rd
≤ ε.

If ε is small, we can say (in some strong sense) that, the error indicator ηT is accu-
rate.

In the following examples we will in each step refine 30% of elements with
the highest amount of error. The refinement of element meshes is done by regu-
lar refinement such that the resulting mesh does not contain hanging nodes. This
marking of elements will be denoted by �. The marker � produces a vector con-
taining ones for elements to be refined, and zeros for elements not to be refined.
We define the following weak measure (see [22, Section 2.1.2]): the indicator ηT is
said to be ε-accurate with respect to the marker � if

Θweak(ηT,�) := 1 − ∑(�(eT) ∧ �(ηT))

0.3 · #Th
≤ ε,

where ∧ is the logical AND operator. Again, if ε is small, we can say (in some weak
sense) that, the error indicator ηT is accurate. The measure Θweak(ηT,�) has been
normalized in such a way that it obtains a value 0 when the markers are identical
and 1 if they are completely different.

It is clear that a considerably larger class of error indicators may be accurate
in the weak sense, while not being accurate in the strong sense.
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Example 5. We solve the primal and dual problem pair (Eh, Hh) in adaptively re-
fined meshes for Data 1. We compare optimal refinement achieved by using the
exact error distribution eT to the refinement provided by the distribution of the
majorant ηT. We start from a regular mesh with 200 elements, and perform nine
refinement iterations, where on each iteration 30% of elements with the highest
amount of error are refined. The converge histories are depicted in Figure 5. In
Figure 6 we have depicted the meshes after the fourth refinement. Figure 7 de-
picts one of the finest parts of the final meshes. We see from Table 11 that the
number of elements in the optimal meshes and the meshes produced using ηT
are very close to each other. In fact, adaptive refinement using ηT is very close
to optimal in each step, and the resulting approximation after the last refinement
is practically the same. In the last mesh the combined error of the approxima-
tion pair was 0.1253981450 in the optimal mesh, and 0.1255987478 in the mesh
generated by ηT. Table 12 shows the error indicator measures with respect to the
optimal meshes. Both the strong and weak measures of the accuracy of the error
indicator are very good.
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FIGURE 5 Example 5 (d = 2, Data 1) Adaptive computation where the error is mea-
sured in the combined norm.
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FIGURE 6 Example 5 (d = 2, Data 1) Adaptive mesh after the fourth refinement.
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FIGURE 7 Example 5 (d = 2, Data 1) One of the most fine parts in the final adaptive
mesh.

TABLE 11 Example 5 (d = 2, Data 1) The number of elements in the optimal meshes
and the meshes generated by the help of ηT.

Ref. #Th optimal #Th with ηT difference difference %
0 200 200 0 0
1 461 461 0 0
2 950 950 0 0
3 1926 1926 0 0
4 3937 3935 2 0.05
5 7963 7940 23 0.28
6 16111 16072 39 0.24
7 32012 31926 86 0.26
8 64321 64110 211 0.32
9 125525 125192 333 0.26

TABLE 12 Example 5 (d = 2, Data 1) The strong and weak ε-accuracies of the error
indicator ηT.

Ref. #Th optimal Θstrong(ηT) Θweak(ηT,�)
0 200 0.00037 0
1 461 0.00112 0
2 950 0.00061 0
3 1926 0.00079 0.00518
4 3937 0.00046 0.00253
5 7963 0.00065 0.00125
6 16111 0.00041 0.00062
7 32012 0.00052 0.00010
8 64321 0.00035 0.00015
9 125525 0.00042 0.00013
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Example 6. We solve the primal and dual problem pair (Eh, Hh) in adaptively
refined meshes for Data 2. We compare optimal refinement achieved by using
the exact error distribution eT to the refinement provided by the distribution of
the majorant ηT. Again, we start from a regular mesh with 200 elements, and
perform nine refinement iterations, where on each iteration 30% of elements with
the highest amount of error are refined. The converge histories are depicted in
Figure 8. In Figure 9 we have depicted the meshes after the fourth refinement.
Figure 10 depicts one of the finest parts of the final meshes. We see from Table
13 that the number of elements in the optimal meshes and the meshes produced
using ηT are very close to each other. In fact, adaptive refinement using ηT is
very close to optimal in each step, and the resulting approximation after the last
refinement is practically the same. In the last mesh the combined error of the
approximation pair was 0.0081176429 in the optimal mesh, and 0.0081095927 in
the mesh generated by ηT. Table 14 shows the error indicator measures with
respect to the optimal meshes. Both the strong and weak measures of the accuracy
of the error indicator are very good.3
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FIGURE 8 Example 6 (d = 2, Data 2) Adaptive computation where the error is mea-
sured in the combined norm.
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FIGURE 9 Example 6 (d = 2, Data 2) Adaptive mesh after the fourth refinement.

3 This test was done also in [PIII, Example 6.6].
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FIGURE 10 Example 6 (d = 2, Data 2) One of the most fine parts in the final adaptive
mesh.

TABLE 13 Example 6 (d = 2, Data 2) The number of elements in the optimal meshes
and the meshes generated by the help of ηT.

Ref. optimal with ηT difference difference %

- 200 200 0 0
1 434 434 0 0
2 998 1002 4 0.40
3 2240 2252 12 0.53
4 4823 4878 55 1.14
5 10378 10446 68 0.65
6 22116 22337 221 0.99
7 46388 46768 380 0.81
8 96859 97832 973 1.00
9 198704 200970 2266 1.14

TABLE 14 Example 6 (d = 2, Data 2) The strong and weak ε-accuracies of the error
indicator ηT.

Ref. #Th optimal Θstrong(ηT) Θweak(ηT,�)
0 200 0.0062 0
1 434 0.0120 0.00757
2 998 0.0166 0.00664
3 2240 0.0137 0.01040
4 4823 0.0143 0.00552
5 10378 0.0126 0.00545
6 22116 0.0123 0.00587
7 46388 0.0101 0.00459
8 96859 0.0105 0.00430
9 198704 0.0089 0.00394
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Thus, we have established that in addition to providing the exact global er-
ror in the combined norm, it also serves as a reliable error indicator providing
nearly optimal meshes in the adaptive solution process. In the following exam-
ples we will now take problems where we do not know the exact solution, i.e., we
take Data 3 and 5. Since the majorant gives indeed the exact error in the combined
norm, we will use this information in the following tables and figures.

Example 7. We solve the primal and dual problem pair (Eh, Hh) in adaptively
refined and uniformly refined meshes for Data 3. We compare refining the whole
mesh on each iteration to refining 30% of elements on each iteration using the
indicator ηT. Again, we start from a regular mesh with 200 elements. We stop the
adaptive solution process when

|[(E, H)− (Eh, Hh)]|

|[E, H]|
=

M(Eh, Hh)
1/2

‖F‖κ−1
≤ 0.007.

We see from Figure 11 that the adaptive procedure is beneficial in this example.
From Table 15 we see that the desired accuracy was obtained on a mesh with
134205 elements. We have also depicted the approximation in Figure 12 and the
mesh in Figure 13 after the fifth refinement. 4
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FIGURE 11 Example 7 (d = 2, Data 3) Adaptive computation where the error is mea-
sured in the combined norm.

4 This test was done also in [PIII, Example 6.7]. Another similar test can be found in [PIII,
Example 6.8].
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TABLE 15 Example 7 (d = 2, Data 3) Errors in the combined norm for adaptively refined
meshes.

#Th M(Eh, Hh)
1/2 M(Eh, Hh)

1/2/‖F‖κ−1

96 0.2534 0.2926
230 0.1534 0.1771
541 0.0842 0.0973

1204 0.0467 0.0539
2623 0.0309 0.0357
6082 0.0203 0.0234

13514 0.0135 0.0155
29530 0.0093 0.0107
63363 0.0062 0.0072

134205 0.0043 0.0050

Eh,1 Eh,2 Hh

FIGURE 12 Example 7 (d = 2, Data 3) The two components of the approximate primal
variable Eh and the dual variable Hh.
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FIGURE 13 Example 7 (d = 2, Data 3) Adaptive mesh after the fifth refinement.
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Example 8. We solve the primal and dual problem pair (Eh, Hh) in uniformly
refined meshes for Data 5. We start from a regular mesh with 336 elements. We
stop the solution process when

|[(E, H)− (Eh, Hh)]|

|[E, H]|
=

M(Eh, Hh)
1/2

‖F‖κ−1
≤ 0.06.

From Table 16 we see that the desired accuracy was obtained on a mesh after the
fifth refinement with over one million elements. In Table 17 we have listed the
times it took to assemble the finite element matrices of the primal problem, and
how long it took to solve the linear system directly (Eh is the set of edges in the
mesh). These runtimes do not include the time used to gather data related to the
mesh (i.e., the affine transformations, etc.) These calculations were performed
on a 64 processor SMP server with 1 TB of RAM. The vectorized FEM assembly
routine (implemented in the way presented in [39]) starts to perform faster than
the linear system solvers as the mesh size increases.

TABLE 16 Example 8 (d = 3, Data 5) Errors in the combined norm for uniformly refined
meshes.

#Th M(Eh, Hh)
1/2 M(Eh, Hh)

1/2/‖F‖κ−1

42 0.3844 0.6235
336 0.2656 0.4308

2688 0.1706 0.2769
21504 0.1043 0.1691

172032 0.0619 0.1004
1376256 0.0353 0.0574

TABLE 17 Example 8 (d = 3, Data 5) Times (seconds) used to assemble finite element
matrices for the primal variable, and to solve the linear systems directly.

#Th #Eh assembly (s) linear system (s)
42 91 0.0373 0.0006

336 548 0.0483 0.0026
2688 3736 0.168 0.030

21504 27440 2.996 0.578
172032 210016 14.883 13.598

1376256 1642688 111.336 508.290

We tested all the derived estimates and the equality. In addition to verifying
the equality, we also demonstrated that the majorant serves as a nearly optimal
error indicator. According to the tests made, it can be concluded that the equality
provides computationally cheap both the global error, and a reliable error indica-
tor.



4 EFFECT OF INDETERMINATE DATA

In problems related to partial differential equations it is usually assumed that the
data of the problem is exactly known. However, quite often the data at hand is
not complete. In many cases the data is uncertain within some intervals. Material
functions, geometry, and boundary conditions may all contain uncertainty, which
must be taken into account.

Studying the effects of indeterminate data gained the attention of researchers
later than fully determined problems. The probabilistic approach is based in
studying stochastic partial differential equations (see e.g. [45]). In [13], the au-
thors study the so-called ”worst case scenario method”.

In this thesis we study indeterminacy by using the functional type a poste-
riori error equality presented in Section 3.4. First, we study the case where the
right hand side F is not fully known. Then we concentrate in studying the effects
of indeterminacy in the material functions μ and κ. We assume that they belong
to a set of "admissible" data. This set will generate a set of solutions, and we are
interested in measuring the magnitude of this set. In the last section we study the
effect of indeterminate material data on error indication.

4.1 Indeterminate right hand side F

We assume that the material data (μ, κ) is known, but the right hand side F be-
longs to the indeterminacy set

DF := {F ∈ L2(Ω) | F = F0 + Fosc, ‖Fosc‖κ−1 ≤ δF‖F0‖κ−1},

where F0 ∈ L2(Ω) denotes the known mean data, and δF denotes the magnitude
of indeterminacy of the right hand side. We have a unique solution (E, H) for all
right hand sides F ∈ DF, so the solution mapping

S : DF → H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω)

is well defined. The solution set generated by the indeterminate data will be
referred to as the set S(DF). We denote the mean solution generated by F0 with
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rF
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F0
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H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω)

S(DF)

FIGURE 14 Set of right hand sides DF and the solution set S(DF).

(E0, H0). Due to the linearity of the problem all solutions can be then represented
as the sum (E, H) = (E0, H0) + (Eosc, Hosc). Since by Remark 2.1 the solution
operator is an isometry, we have

|[(E, H)− (E0, H0)]| = |[Eosc, Hosc]| = ‖Fosc‖κ−1 ≤ δF‖F0‖κ−1 .

Then, the distance between the mean solution and the most distant member of
the solution set, the radius of the solution set, is given by

rF := sup
(E,H)∈S(DF)

|[(E, H)− (E0, H0)]| = δF‖F0‖κ−1 , (4.1)

and its normalized counterpart is, again by the isometry property, given by

r̂F :=
sup(E,H)∈S(DF)

|[(E, H)− (E0, H0)]|

|[E0, H0]|
= δF.

The quantities rF and r̂F are then known and fully computable. Due to the isom-
etry property of the solution mapping the radius of the solution set is exactly
the same as the magnitude of variations in the right hand side. This setting is
visualized in Figure 14.

Practical application and an example

An important thing to consider is the distance of a numerical approximation to
the solution set S(DF). Let (Ẽ, H̃) ∈ H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω) be an arbi-
trary approximation. We define

φF :=
sup(E,H)∈S(DF)

|[(E, H)− (E0, H0)]|

|[(E0, H0)− (Ẽ, H̃)]|
=

δF‖F0‖κ−1

M(Ẽ, H̃)1/2
∈ [0, ∞],

where we have used (4.1) and the equality of Theorem 3.6. φF is fully computable
and gives us exact information on weather or not the approximation is inside
S(DF).

If the value of φF is close to 0, the distance to the mean solution is much big-
ger than the radius rF, and we are very far from S(DF). The closer the value of φF
is to 1, the closer we are to S(DF). Finally, if the value is over 1, we know for sure
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that we are inside S(DF), and further computational expenditures to improve the
approximation may not be useful anymore, and, i.e., adaptive processes can be
stopped.

Example 9. We take Data 3 as the mean data, and assume that δF = 0.01. We
calculate the approximation (Eh, Hh) with the mean data in subsequently refined
meshes untli φF > 1, i.e., when we are inside the solution set S(DF). In Table
18 are results for uniform refinement. In Table 19 we expose results for adaptive
refinement using the indicator ηT defined in (3.44). On each step 30% of elements
were refined. By using the adaptive procedure, the solution was inside the so-
lution set already with 63363 elements, whereas with uniform refinement this
happened with 393216 elements.

TABLE 18 Example 9 (d = 2, Data 3) Values of φF in the case of uniform refinement.

#Th M(Eh, Hh)
1/2 M(Eh, Hh)

1/2/‖F0‖κ−1 φF
96 0.25344 0.29265 0.034

384 0.15183 0.17532 0.057
1536 0.08235 0.09508 0.105
6144 0.04282 0.04945 0.202

24576 0.02214 0.02556 0.391
98304 0.01155 0.01333 0.749

393216 0.00612 0.00707 1.413

TABLE 19 Example 9 (d = 2, Data 3) Values of φF in the case of adaptive refinement.

#Th M(Eh, Hh)
1/2 M(Eh, Hh)

1/2/‖F0‖κ−1 φF
96 0.25344 0.29265 0.034

230 0.15336 0.17709 0.056
541 0.08422 0.09725 0.102

1204 0.04667 0.05389 0.185
2623 0.03089 0.03567 0.280
6082 0.02029 0.02343 0.426

13514 0.01345 0.01554 0.643
29530 0.00930 0.01074 0.930
63363 0.00623 0.00720 1.388
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4.2 Indeterminate material data μ and κ

Two-sided estimates of the radius of the solution set in the case of indeterminate
material data were first studied in [19–21] in the context of reaction-diffusion type
problems. In the extended abstract [1] a similar result for a magnetostatics prob-
lem was presented. In this section we use same techniques to derive estimates of
the radius of the solution set for the model problem considered in this thesis.

We assume that the right hand side F is known, but the material functions
μ and κ belong to the indeterminacy sets

D1 := {μ ∈ L∞(Ω) | μ = μ0 + ϕ1, −δ1 ≤ ϕ1(x) ≤ δ1 for a.e. x ∈ Ω},

D2 := {κ ∈ L∞(Ω) | κ = κ0 + ϕ2, −δ2 ≤ ϕ2(x) ≤ δ2 for a.e. x ∈ Ω},

where μ0, κ0 ∈ L∞(Ω) is the mean data, and δ1 and δ2 are magnitudes of variation
in the material data. We assume that

0 < c1 ≤ μ0(x) ≤ c1 < ∞,

0 < c2 ≤ κ0(x) ≤ c2 < ∞,

for a.e. x ∈ Ω. With

0 ≤ δ1 < c1, (4.2)

0 ≤ δ2 < c2, (4.3)

we have a unique solution (E, H) for all (μ, κ) ∈ D := D1 ×D2, and the solution
mapping S : D → H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω) is well defined. The solution
set generated by the indeterminate data will be referred to as the set S(D). Each
pair of material functions (μ, κ) ∈ D generate the norms

|||v |||2
�

:= a�(v, v) := ‖curl v‖2
μ−1 + ‖v‖2

κ ,

||[ q ]||2
�

:= â�(q, q) := ‖curl q‖2
κ−1 + ‖q‖2

μ,

|[v, q]|2
�

:= |||v |||2
�
+ ||[ q ]||2

�
.

The norms generated by the mean data (μ0, κ0) are denoted by ||| · |||0, ||[ · ]||0 and
| [ · ] |0. The mean solution generated by this data is denoted by (E0, H0). Also
in the case of other quantities, we will always associate the subindex � to the
indeterminate data, and the subindex 0 to the mean data.

Two important quantities governing the radius of the solution set are the
ratios between the magnitudes of variation and the lowest values of the mean
data:

θ1 :=
δ1

c1
and θ2 :=

δ2

c2
.

It is clear that 0 ≤ θ1, θ2 < 1. Also, we define the ratios between the largest and
lowest values of mean data:

γ1 :=
c1

c1
and γ2 :=

c2

c2
.
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FIGURE 15 Set of material data D and the solution set S(D).

We have γ1, γ2 ≥ 1.
We are interested in the distance between the mean solution and the most

distant member of the solution set. We call this quantity the radius of the solution
set, and we measure it in the combined norm:

r := sup
(E,H)∈S(D)

|[(E, H)− (E0, H0)]|0 . (4.4)

The mean solution and the radius define the ball B := B((E0, H0), r) in the sense
of the mean combined norm. It is clear that this ball contains the solution set:
S(D) ⊂ B. This situation is illustrated in Figure 15.

Proposition 4.1. Under the above made assumptions, for any v, q we have

KE |||v |||2
�
≤ |||v |||20 ≤ KE |||v |||2

�
, (4.5)

KH ||[ q ]||2
�
≤ ||[ q ]||20 ≤ KH ||[ q ]||2

�
, (4.6)

K |[v, q]|2
�
≤ |[v, q]|20 ≤ K |[v, q]|2

�
, (4.7)

where

KE := min
(

1 − θ1,
1

1 + θ2

)
, KE := max

(
1 + θ1,

1
1 − θ2

)
,

KH := min
(

1 − θ2,
1

1 + θ1

)
, KH := max

(
1 + θ2,

1
1 − θ1

)
,

K := min (1 − θ1, 1 − θ2) , K := max
(

1
1 − θ1

,
1

1 − θ2

)
.

Proof. First we note that

μ−1
0

(
1

1 + θ1

)
=

1
μ0

⎛⎝ 1

1 + δ1
c1

⎞⎠ ≤
1

μ0

⎛⎝ 1

1 + δ1
μ0

⎞⎠ =
1

μ0

(
μ0

μ0 + δ1

)
≤

≤ μ−1 =
1

μ0 + ϕ
=

1
μ0

(
μ0

μ0 + ϕ

)
≤

≤
1

μ0

(
μ0

μ0 − δ1

)
=

1
μ0

⎛⎝ 1

1 − δ1
μ0

⎞⎠ ≤
1

μ0

⎛⎝ 1

1 − δ1
c1

⎞⎠ = μ−1
0

(
1

1 − θ1

)
, (4.8)
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and similarly

κ0 (1 − θ2) = κ0

(
1 −

δ2

c2

)
≤ κ0

(
1 −

δ2

κ0

)
≤

≤ κ = κ0 + φ2 = κ0

(
1 +

φ2

κ0

)
≤

≤ κ0

(
1 +

δ2

κ0

)
≤ κ0

(
1 +

δ2

c2

)
= κ0 (1 + θ2) . (4.9)

With (4.8) and (4.9) we have

min
(

1
1 + θ1

, 1− θ2

)
|||v |||20 ≤ |||v |||2

�
≤ max

(
1

1 − θ1
, 1 + θ2

)
|||v |||20,

which implies (4.5). By performing the calculation (4.8) for κ−1, and the calcula-
tion (4.9) for μ, we obtain

min
(

1
1 + θ2

, 1 − θ1

)
||[ q ]||20 ≤ ||[ q ]||2

�
≤ max

(
1

1 − θ2
, 1 + θ1

)
||[ q ]||20,

which implies (4.6). The final norm equivalence (4.7) is a direct consequence of
(4.5) and (4.6).
�

By using the equality of Theorem 3.6 we can now estimate the radius (4.4)
from above by

r2 ≤ sup
(E,H)∈S(D)

K |[(E, H)− (E0, H0)]|
2
�
= K sup

(μ,κ)∈D
M�(E0, H0) (4.10)

and from below by

r2 ≥ sup
(E,H)∈S(D)

K |[(E, H)− (E0, H0)]|
2
�
= K sup

(μ,κ)∈D
M�(E0, H0). (4.11)

Theorem 4.1. Let E0 be the exact mean electric field. The radius of the solution set is
subject to the two-sided estimate

r2 ≤ K

[(
θ2

2
1 − θ2

)
‖E0‖

2
κ0
+

(
θ2

1
1 − θ1

)
‖curl E0‖

2
μ−1

0

]
, (4.12)

r2 ≥ K

[(
θ2

2
γ2(γ2 − θ2)

)
‖E0‖

2
κ0
+

(
θ2

1
γ1(γ1 − θ1)

)
‖curl E0‖

2
μ−1

0

]
. (4.13)

Proof. In order to estimate (4.10) and (4.11) we first note that

sup
(μ,κ)∈D

M�(E0, H0) = sup
(μ,κ)∈D

[
‖F − κE0 − curl H0‖

2
κ−1 + ‖H0 − μ−1curl E0‖

2
μ

]
= sup

(μ,κ)∈D

[
‖κ0E0 − κE0‖

2
κ−1 + ‖μ−1

0 curl E0 − μ−1curl E0‖
2
μ

]
= sup

κ∈D2

∫
Ω

κ−1(κ0 − κ)2 |E0|
2 dx +

+ sup
μ∈D1

∫
Ω

μ(μ−1
0 − μ−1)2 |curl E0|

2 dx. (4.14)
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Since

κ−1(κ0 − κ)2 =
ϕ2

2
κ0 + ϕ2

= κ0

(
ϕ2

2
κ0(κ0 + ϕ2)

)
and

μ(μ−1
0 − μ−1)2 = (μ0 + ϕ1)

(
1

μ0
−

1
μ0 + ϕ1

)2

=

= (μ0 + ϕ1)

(
ϕ1

μ0(μ0 + ϕ1)

)2

=
ϕ2

1

μ2
0(μ0 + ϕ1)

= μ−1
0

(
ϕ2

1
μ0(μ0 + ϕ1)

)
,

we can write (4.14) as

sup
(μ,κ)∈D

M�(E0, H0) =
∫

Ω
κ0

(
δ2

2
κ0(κ0 − δ2)

)
|E0|

2 dx+

+
∫

Ω
μ−1

0

(
δ2

1
μ0(μ0 − δ1)

)
|curl E0|

2 dx. (4.15)

Then we estimate (4.15) from above by

sup
(μ,κ)∈D

M�(E0, H0) ≤

(
δ2

2
c2(c2 − δ2)

)
‖E0‖

2
κ0
+

(
δ2

1
c1(c1 − δ1)

)
‖curl E0‖

2
μ−1

0

and we have proven (4.12). Similarly, we estimate (4.15) from below by

sup
(μ,κ)∈D

M�(E0, H0) ≥

(
δ2

2
c2(c2 − δ2)

)
‖E0‖

2
κ0
+

(
δ2

1
c1(c1 − δ1)

)
‖curl E0‖

2
μ−1

0

and we have proven (4.13).
�

Theorem 4.2. Let E0 be the exact mean electric field, and δ1, δ2 > 0. We then have the
estimate

R |||E0 |||
2
0 ≤ r2 ≤ R |||E0 |||

2
0, (4.16)

where

R := K min

(
θ2

1
γ1(γ1 − θ1)

,
θ2

2
γ2(γ2 − θ2)

)
, (4.17)

R := max
(

θ1

1 − θ1
,

θ2

1 − θ2

)2

. (4.18)
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FIGURE 16 The two-sided estimate (4.19) of the normalized radius of the solution set
r

|||E0|||0
with different γ.

Proof. Without additional assumptions we can estimate the upper bound (4.12)
further from above by

r2 ≤ K max

(
θ2

1
1 − θ1

,
θ2

2
1 − θ2

)
|||E0 |||

2
0 = max

(
θ1

1 − θ1
,

θ2

1 − θ2

)2

|||E0 |||
2
0 .

By assuming that δ1, δ2 > 0 the lower bound (4.13) can be estimated by

r2 ≥ K min

(
θ2

1
γ1(γ1 − θ1)

,
θ2

2
γ2(γ2 − θ2)

)
|||E0 |||

2
0 .

�

Let us assume that material data is indeterminate such that δ := δ1 = δ2 > 0,
c := c1 = c2, and c := c1 = c2. Then, by Theorem 4.2, and by normalizing the
radius r by |||E0 |||0 we see that

R= :=
(
(1 − θ)θ2

γ(γ − θ)

)1/2

≤
r

|||E0 |||0
≤

θ

1 − θ
=: R=, (4.19)

where θ := δ
c and γ := c

c . In Figure 16 we have visualized the bounds R= and R=.
Since the lower bound depends on the ratio of the biggest and smallest values of
the mean data, it becomes very small as this ratio grows.
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Practical application and an example

An important thing to consider is the distance of a numerical approximation to
the solution set S(D). However, it is easier to obtain computable quantities with
respect to the ball B which contains the solution set.

Let (Ẽ, H̃) ∈ H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω) be an arbitrary approximation.
Our quantity of interest is

φ :=
sup(E,H)∈S(D) |[(E, H)− (E0, H0)]|0

|[(E0, H0)− (Ẽ, H̃)]|0
=

r

M0(Ẽ, H̃)1/2
∈ [0, ∞). (4.20)

Here we again used the equality of Theorem 3.6. If the value of φ is close to 0, the
distance to the mean solution is much bigger than the radius r, and we are very
far from B. The closer the value of φ is to 1, the closer we are to B. Finally, if the
value is over 1, we know for sure that we are inside B, and we are in the range of
S(D). The greater the value of φ, the closer we are to the mean solution (E0, H0),
and the bigger the probability that the approximation is inside the S(D). The
situation illustrated in Figure 17.

The quantity φ is not directly computable. However, we are able to derive
the following computable bounds for this quantity.

Theorem 4.3. Let δ1, δ2 > 0. For any (Ẽ, H̃) ∈ H0,ΓD(curl, Ω)× H0,ΓN(curl, Ω) we
have

φ�(Ẽ, H̃) ≤ φ ≤ φ⊕(Ẽ, H̃),

where

φ�(Ẽ, H̃) :=

(
R
−2J0(Ẽ)

M0(Ẽ, H̃)

)1/2

, φ⊕(Ẽ, H̃) := R
1/2 ||| Ẽ |||0 +M0(Ẽ, H̃)1/2

M0(Ẽ, H̃)1/2
.

The constants R and R are defined in (4.17)–(4.18), J0 is the energy functional (2.34)
with the mean data, and M0 is the majorant defined in Theorem 3.6 with the mean data.

Proof. By using the Minkowski inequality (2.5) we have

|||E0 |||0 = |||E0 − Ẽ + Ẽ |||0 = ||| Ẽ |||0 + |||E0 − Ẽ |||0 ≤ ||| Ẽ |||0 +M0(Ẽ, H̃)
1/2,

and together with (4.16) and (4.20) we have the upper bound φ⊕. To prove the
lower bound we first note that

J0(E0) = −
1
2
|||E0 |||

2
0 .

Then, since by definition J0(E0) ≤ J0(Ẽ), we have

|||E0 |||
2 ≥ −2J0(Ẽ),

and together with (4.16) and (4.20) we have the lower bound φ�.
�
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(Ẽ, H̃)

B

e
r

(E0, H0)

S(D)

FIGURE 17 The distance to the mean solution e = |[(E0, H0)− (Ẽ, H̃)]| versus the radius
of the solution set r.
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FIGURE 18 Configurations of the solution set S(D) inside the ball B.

The bounds φ� and φ⊕ are fully computable: they contain only the problem
data and a conforming numerical approximation (Ẽ, H̃). No additional compu-
tations are needed. These bounds can be used to estimate weather or not the
approximation (Ẽ, H̃) is close enough, or inside the ball B. If φ⊕ > 1, there is
a possibility that the solution is inside B. Improving the approximation should
be continued at least to this point. However, to be sure that the approximation is
inside B, we must have φ� > 1.

However, it should be noted that even when the approximation is inside
B, the approximation may still be relatively far from the solution set S(D). This
depends greatly on the topology of the solution set (see Figure 18).

Example 10. We test the bounds of Theorem 4.3. We take Data 3 as the mean data,
and assume that δ1 = 100 and δ2 = 0.1. Then θ1 = θ2 = 0.1. Note than we also
have γ1 = γ2 = 1, so the constants R and R are relatively close to each other. We
calculate the approximation (Eh, Hh) with the mean data in subsequently refined
meshes untli φ� > 1, i.e., when we are sure that the approximation is inside the
ball B. In Table 20 are results for uniform refinement. In Table 21 we expose
results for adaptive refinement using the indicator ηT defined in (3.44). On each
step 30% of elements were refined. By using the adaptive procedure, the solution
was inside the solution set already with 63363 elements, whereas with uniform
refinement this happened with 393216 elements.
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TABLE 20 Example 10 (d = 2, Data 3) Bounds of φ in the case of uniform refinement.

#Th M0(Eh, Hh)
1/2 M0(Eh, Hh)

1/2/‖F‖κ−1
0

φ� φ⊕

96 0.25344 0.29265 0.159 0.288
384 0.15183 0.17532 0.210 0.344

1536 0.08235 0.09508 0.287 0.431
6144 0.04282 0.04945 0.400 0.555

24576 0.02214 0.02556 0.556 0.729
98304 0.01155 0.01333 0.771 0.968

393216 0.00612 0.00707 1.059 1.287

TABLE 21 Example 10 (d = 2, Data 3) Bounds of φ in the case of adaptive refinement.

#Th M0(Eh, Hh)
1/2 M0(Eh, Hh)

1/2/‖F‖κ−1
0

φ� φ⊕

96 0.25344 0.29265 0.159 0.288
230 0.15336 0.17709 0.209 0.343
541 0.08422 0.09725 0.284 0.427

1204 0.04667 0.05389 0.383 0.537
2623 0.03089 0.03567 0.471 0.634
6082 0.02029 0.02343 0.581 0.757

13514 0.01345 0.01554 0.714 0.904
29530 0.00930 0.01074 0.859 1.066
63363 0.00623 0.00720 1.049 1.277
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4.3 Indeterminate material data and error indication

Studying the effects of indeterminate data in the context of error indication is a
very relevant question since mesh adaptive numerical methods are widely used.
To the best of our knowledge, the first study into this direction was done in the
included conference article [PV]. In this article we studied the two-dimensional
diffusion problem with indeterminate diffusion matrix. In this section we will
repeat this analysis to the eddy-current problem. We adapt the notation used in
Section 4.2.

We assume that we calculate our approximations and error indicators in a
regular mesh Th. In our analysis, we consider small disturbances of the material
data of the form

μ = μ0 + δ1μ±,

κ = κ0 + δ2κ±,

where the magnitude of variations δ1 and δ2 satisfiy the conditions given in (4.2)–
(4.3). For each element T, the elements of μ± and κ± are chosen as follows:

μ±
∣∣

T
∈ {−1, 0, 1}, κ±

∣∣
T
∈ {−1, 0, 1}, ∀T ∈ Th.

In other words, we generate a constant perturbation of magnitudes δ1 and δ2 in
each element T. In our computations we choose a very particular type of pertur-
bation where each element T having a value 1 is surrounded by elements having
values −1. This sign distribution is illustrated in the Figure 19 for d = 2. We
denote this distribution by ϕ. A perturbation generated in this way is clearly
an extreme one. It suits our purposes, since we are trying to find a worst case
situation that can occur with different material data from the indeterminacy set
D. A set of 8 perturbed material data (μi, κi) is displayed in Table 22. We also
generated another set of perturbations using a distribution ϕ0 which is otherwise
same as ϕ, but it contains 0 for those elements, which were marked to be refined
by the indicator calculated with the mean data (μ0, κ0). So the total number of
perturbed material data used in the computations is 16. In the case where only
one of the material parameters contain indeterminacy, we obtain with the same
principle 4 different perturbations.

+ +

+ +

− −

− −

FIGURE 19 An extreme sign distribution for a regular mesh when d = 2.
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TABLE 22 Different material data (μi, κi) used in computations.

j 1 2 3 4 5 6 7 8
μ± +ϕ −ϕ 0 0 +ϕ +ϕ −ϕ −ϕ

κ± 0 0 +ϕ −ϕ +ϕ −ϕ +ϕ −ϕ

We will test the indicator ηT motivated by the error equality of Theorem 3.6
and defined in (3.44). We test ηT with respect to the marker � which refines 30%
of the elements which contain the highet amount of error.

Our analysis of effects caused by data indeterminacy is based on the fol-
lowing method. We select a mesh Th and select the functions (μi, κi) (generated
in the way described before) for some given δ1 and δ2. For each exact solution
(Ei, Hi) = S(μi, κi), we compute the corresponding approximations (Ei,h, Hi,h)
on the mesh Th. Then, for each (Ei,h, Hi,h), we calculate the error indicator

ηT,i := M(Ei,h, Hi,h)
∣∣

T
:= ‖F − κiEi,h − curl Hi,h‖

2
T,κ−1

i
+ ‖Hi,h − μ−1

i curl Ei,h‖
2
T,μi

,

and the corresponding markings �(ηT,i).
The difference of two markings is given by the boolean measure

Θpair(�, ηT,i, ηT,j) := 1 −
∑(�(ηT,i) ∧ �(ηT,j))

0.3 · #Th
∈ [0, 1],

where ∧ is the logical AND operator. If Θind(�, ηT,i, ηT,j) = 0, then variations of the
data do not affect the process of marking. In opposite, if Θind(�, ηT,i, ηT,j) is close
to one, then the lists of elements selected for refinement by ηT,i and ηT,j are quite
different. The maximal difference between all markings is given by the quantity

Θmax := max
i,j

{Θpair(�, ηT,i, ηT,j)},

which shows the maximal difference produced by an error indicator with differ-
ent material data from the set D generated in the way described earlier in this
section.

In the numerical results we will choose the magnitudes of variation δ1 and
δ2 in such a way that their normalized counterparts

θ1 =
δ1

c1
and θ2 =

δ2

c2

obtain values from the set {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1}.
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Example 11. We test the effect of indeterminacy for Data 1. In Table 23 and Table
24 are results where μ and κ contain indeterminacy separately. In Table 25 are re-
sults where both material parameters contain indeterminacy simultaneously. Our
choice of perturbations result in very small values of Θmax if only μ is assumed to
be indeterminate. If κ, or both of the material parameters are indeterminate, then
error indication starts to get affected. However, for this particular data, even the
highest values of Θmax are relatively small.

TABLE 23 Example 11 (d = 2, Data 1) Values of Θmax for indeterminate μ.

θ1 > 0 (θ2 = 0)
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
800 0.00414 0.00414 0.00414 0.00414 0.00414 0.00414 0.00414

3200 0.00104 0.00104 0.00104 0.00104 0.00104 0.00104 0.00312
12800 0.00026 0.00026 0.00078 0.00078 0.00078 0.00182 0.00182
51200 0.00006 0.00019 0.00032 0.00032 0.00045 0.00058 0.00149

115200 0.00002 0.00014 0.00026 0.00037 0.00054 0.00066 0.00164

TABLE 24 Example 11 (d = 2, Data 1) Values of Θmax for indeterminate κ.

θ2 > 0 (θ1 = 0)
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
800 0.0041 0.0124 0.0290 0.0456 0.0580 0.0705 0.1203

3200 0.0052 0.0093 0.0124 0.0218 0.0280 0.0447 0.0884
12800 0.0070 0.0137 0.0242 0.0356 0.0439 0.0518 0.1116
51200 0.0099 0.0188 0.0380 0.0572 0.0772 0.0964 0.1934

115200 0.0134 0.0274 0.0563 0.0843 0.1117 0.1405 0.2861

TABLE 25 Example 11 (d = 2, Data 1) Values of Θmax for indeterminate μ and κ.

θ1 = θ2 > 0
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
800 0.0041 0.0124 0.0290 0.0456 0.0580 0.0705 0.1203

3200 0.0052 0.0093 0.0124 0.0239 0.0280 0.0468 0.0884
12800 0.0070 0.0137 0.0247 0.0356 0.0445 0.0528 0.1116
51200 0.0102 0.0190 0.0382 0.0576 0.0774 0.0964 0.1934

115200 0.0135 0.0274 0.0563 0.0844 0.1119 0.1408 0.2861

The effect of indeterminate μ was insignificant for other test data as well, so
those results are excluded. In the following tests we will report only the effect of
indeterminate κ.
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Example 12. We test the effect of indeterminate κ. Results for Data 2, 3, and 5
are in Tables 26, 27, and 28, respectively. For these examples indeterminacy of κ

results in very big values of Θmax for larger meshes.

TABLE 26 Example 12 (d = 2, Data 2) Values of Θmax for indeterminate κ.

θ2 > 0 (θ1 = 0)
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
800 0.029 0.066 0.128 0.153 0.178 0.219 0.319

3200 0.047 0.101 0.201 0.249 0.269 0.337 0.578
12800 0.106 0.194 0.277 0.412 0.502 0.594 0.663
51200 0.193 0.280 0.505 0.634 0.660 0.664 0.666

115200 0.243 0.419 0.635 0.664 0.666 0.666 0.666

TABLE 27 Example 12 (d = 2, Data 3) Values of Θmax for indeterminate κ.

θ2 > 0 (θ1 = 0)
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
384 0.111 0.119 0.153 0.153 0.153 0.153 0.435

1536 0.006 0.142 0.151 0.287 0.430 0.432 0.710
6144 0.138 0.229 0.423 0.497 0.571 0.642 0.854

24576 0.242 0.408 0.569 0.710 0.782 0.820 0.995
98304 0.393 0.587 0.765 0.854 0.924 0.962 0.999

TABLE 28 Example 12 (d = 3, Data 5) Values of Θmax for indeterminate κ.

θ2 > 0 (θ1 = 0)
#Th 0.005 0.01 0.02 0.03 0.04 0.05 0.1
336 0.009 0.019 0.029 0.039 0.058 0.068 0.147

2688 0.016 0.025 0.053 0.074 0.096 0.118 0.215
21504 0.025 0.049 0.099 0.154 0.192 0.206 0.378

172032 0.050 0.101 0.194 0.236 0.306 0.393 0.544

We conclude that if only μ contains indeterminacy, error indication is not
affected much. However, if κ contains indeterminacy, error indication is affected.
Especially on large meshes even small magnitudes of variation in κ may corrupt
the process of error indication.



5 CONCLUSIONS

In the summary of this thesis we studied functional a posteriori error control in
the context of the eddy-current problem.

In Section 3 we derived the classical functional minorants and majorants,
and also derived an error equality for mixed approximations. All the presented
estimates, and the equality, were tested numerically with several different exam-
ples in both two and three dimensions. We note that the error equality is com-
putationally very cheap, since no auxiliary data needs to be computed. Further-
more, no constants are present either. Aside from giving the exact error we also
showed with numerical examples that it also serves as a reliable error indicator
which works nearly optimally.

In Section 4 we performed analysis on the effect of indeterminacy of the
right hand side, and the material parameters. Computable quantities for practi-
cal simulations were presented and numerically tested. We emphasize that we
were able to show that the indeterminacy of the right hand side can be exactly
controlled. We also investigated by computational means how error indication is
affected by indeterminacy of the material parameters. If only μ is indeterminate,
error indication is not affected greatly. However, if κ is indeterminate, error indi-
cation is affected. Especially for large meshes even small amounts of variation in
κ may corrupt the process of error indication.

Future research will concentrate on the error equality. As was already noted
in [PIII, Section 2.1], the main application of the error equality may be in time-
dependent static problems. Using, i.e., an implicit time-stepping scheme, one
needs to solve at each time-step a problem where the error equality can be used.
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YHTEENVETO (FINNISH SUMMARY)

Matemaattiset mallit tarjoavat korvaamattoman näkökulman luonnon ilmiöiden
tulkitsemisessa, sekä myös teollisten tuotteiden ja prosessien optimoinnissa. Nä-
mä matemaattiset mallit ovat usein osittaisdifferentiaaliyhtälöitä (ODY). Tällaisia
yhtälöitä voidaan ratkaista tarkasti ainoastaan hyvin pelkistetyissä akateemisis-
sa tapauksissa, joten realistisessa simulaatiossa ODY täytyy ratkaista laskennal-
lisesti jollain numeerisella menetelmällä. Numeerinen ratkaisu on arvio tarkasta
ratkaisusta, ja on olennaista tietää kuinka kaukana ne ovat toisistaan, eli kuinka
paljon virhettä numeerinen ratkaisu sisältää. Numeerisen virheen arvioimiseen
keskittyvää tieteenalaa kutsutaan a posteriori virhe-estimoinnin alaksi.

Tämä väitöskirja keskittyy tutkimaan Prof. Sergey Repinin kehittämiä funk-
tionaalisia a posteriori virhe-estimaatteja. Väitöskirjaan liitetyissä artikkeleissa
tutkitaan funktionaalisia estimaatteja pyörrevirtausyhtälölle, Stokesin yhtälölle,
sekä diffuusioyhtälölle. Tämän väitöskirjan johdannossa käsitellään pyörrevir-
tausyhtälöä. Tämä yhtälö on toisen asteen ODY, joka on johdettu Maxwellin yh-
tälöistä. Maxwellin yhtälöillä ja pyörrevirtausyhtälöillä voidaan mallintaa elekt-
romagneettisia ilmiöitä. Näillä yhtälöillä voidaan siis optimoida esimerkiksi an-
tennin rakenne.

Luvussa 3 johdimme klassiset funktionaaliset ala- ja ylärajat joiden toimi-
vuus todettiin myös numeerisilla testeillä. Tässä luvussa johdettiin myös uusi tu-
los, joka mahdollistaa tarkan virheen tuntemisen vaikka tarkkaa ratkaisua ei tun-
nettaisikaan. Näytimme että klassinen funktionaalinen yläraja antaa tarkan vir-
heen ns. yhdistetyssä normissa. Varmistimme tuloksen toimivuuden myös nu-
meerisilla testeillä, ja sitä kutsutaankin tässä työssä nimellä virheyhtäsuuruus.
Sen lisäksi että klassinen yläraja antaa tarkan virheen, osoitimme myös että se
toimii lähes optimaalisena virheindikaattorina yhdistetyssä normissa.

Luvussa 4 keskityimme tutkimaan sitä miten epävarma informaatio vaikut-
taa numeeriseen simulointiin. Esimerkiksi jos simulaatiossa käytetty materiaali-
data on saatu mittaamalla tätä materiaalia jollain työkalulla, se sisältää vähin-
täänkin tämän työkalun käytön takia syntyvän mittausvirheen verran virhettä.
Epävarman datan vaikutus simulaatioihin on siten hyvin relevanttia. Käytännös-
sä epävarma data generoi ratkaisujoukon, ja tutkimuksessa estimoidaan tämän
ratkaisujoukon säteen suuruutta. Esitämme luvussa 4 kaksi käytännön simulaa-
tioissa hyödyllistä työkalua, jotka myös testasimme numeerisesti. Tutkimme täs-
sä luvussa myös epävarman materiaalidatan vaikutusta virheen indikointiin. Nu-
meeristen testien perusteella vain toisella materiaaliparametrilla oli vaikutusta
virheen indikointiin.
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A posteriori error estimates for a Maxwell type problem

I. ANJAM � , O. MALI � , A. MUZALEVSKY†, P. NEITTAANMÄKI � ,
and S. REPIN‡

Abstract — In this paper, we discuss a posteriori estimates for the Maxwell type boundary-value
problem. The estimates are derived by transformations of integral identities that define the generalized
solution and are valid for any conforming approximation of the exact solution. It is proved analytically
and confirmed numerically that the estimates indeed provide a computable and guaranteed bound of
approximation errors. Also, it is shown that the estimates imply robust error indicators that represent
the distribution of local (inter-element) errors measured in terms of different norms.

1. Introduction

In classical settings the Maxwell problem is defined by E, D (electric field and
induction), H and B (magnetic field and induction) satisfying

∂D
∂ t � curlH � � J

∂B
∂ t

�
curlE � 0

for all � t � x � in � 0 � T �	
 Ω. HereΩ is a bounded and connected domain in � d with the
Lipschitz boundary ∂Ω, and J is the applied current. Using the constituent relations

D � εE
B � μH

where ε � x ��
 0 is the dielectric permittivity and μ � x ��
 0 is the magnetic per-
meability (both μ and ε are assumed to be positive constants or positive bounded
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396 I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, and S. Repin

functions), we can rewrite the Maxwell equations in terms of E and H only:

ε
∂E
∂ t � curlH � � J

μ
∂H
∂ t

�
curlE � 0 �

These equations must be accompanied by initial conditions and suitable boundary
conditions. In this paper, we assume that E satisfies the so-called PEC (perfect elec-
tric conductor) boundary condition

E � n � 0 on ∂Ω

where n denotes the unit outward normal to ∂Ω. Usually the time derivatives are
replaced by incremental relations. Using the backward-Euler scheme we have

ε�
t

�
En � En � 1 	 � curlHn � � J

μ�
t

�
Hn � Hn � 1 	 � curlEn � 0 
 n � 1 
�������
 N 
 N � T�

t

where
�
t is the timestep. By eliminating Hn and transferring En � 1 and Hn � 1 to the

right-hand side, we have

curl
�
μ � 1curlEn 	 � ε
 � t � 2En � 1�

t

�
� J � ε�

t
En � 1 � curlHn � 1 � �

We denote the right-hand side by f � L2 
 Ω 
�� d � , set ��� ε 
 � t � � 2 and arrive at the
model problem

curl
�
μ � 1curlE 	 � � E � f inΩ (1.1)

E � n � 0 on ∂Ω (1.2)

in which the superscript n is omitted.
Below, we study (1.1)–(1.2) in the 2D case, so that the double curl is understood

as curl curl, where

curlw : � ∂1w2 � ∂2w1 
 curlϕ : � �
∂2ϕ� ∂1ϕ

� �
We denote by V 
 Ω � the space H 
 curl;Ω � . This is a Hilbert space endowed with

the norm �
w
�
curl � � �

w
�
2 � �
curlw

�
2 	 1 � 2 �
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A posteriori error estimates 397

Here ��������� is the L2-norm of scalar- and vector-valued functions. ByV0 � Ω � we denote
a subspace ofV � Ω � that consists of all the functions from V which satisfy boundary
condition (1.2), i.e.,

V0 : �	
 w � V � w � n � 0 on ∂Ω 
��
The generalized solution E � V0 of (1.1)–(1.2) is then defined by the integral relation�

Ω

�
μ � 1curlEcurlw � � E � w � dx � �

Ω
f � wdx � w � V0 � (1.3)

Also, we assume that f is a divergence-free function, so that�
Ω
f � ∇φ dx � 0 � φ ���H1 � Ω �

and
0 � μ ��� μ � x ��� μ ���

Our goal is to obtain computable bounds of the difference between E and any
function  E � V0 measured in terms of the weighted (energy) norm

�!"w #$�%& γ ' δ ( : � �
Ω

�
γ � curlw � 2 � δ �w � 2 � dx �

A posteriori error estimation for the Maxwell’s equations is a relatively new field
of study. Most of the results that have been earlier obtained are based on the residual
approach. In particular, residual type error estimates were studied in [1, 6, 7] and an
equilibrated residual approach was presented in [2]. A posteriori estimates for non-
conforming approximations for H � curl � -elliptic partial differential equations were
studied in [4]. A Zienkiewicz–Zhu type error estimate equivalent to the residual
estimate in [1] was introduced in [5].
A posteriori estimates of the functional type present an efficient approach to the

problem (a consequent exposition of the corresponding theory is given in [10, 11]).
These estimates do not rely on any properties of the numerical method used to com-
pute approximate solutions. This means that a posteriori estimates of the functional
type are valid for any conforming approximation. Another important property of
such estimates is that they do not contain mesh-dependent constants.
Functional type estimates for the Maxwell problem were derived in [3, 9, 12].

The equation (1.1) with �)* 0 and �+� 0 is considered in [12]. The upper bound
for the case �)* 0 does not contain a gap between the estimate and the true error
(the estimate is sharp), but is sensitive with respect to small values of � . For the case�,� 0 the sharpness of the presented upper bound cannot be proven. The same upper
bound for the case �-* 0 is presented in [3]. In addition, in [3] an upper bound for
the case of complex � , ./���0��1 0 is presented. The sharpness of this upper bound
cannot be proven. In [9] a sharp lower bound for �-* 0 and two new upper bounds
are presented. The first new upper bound is for �21 0 and it is insensitive with

BBrought to you by | Jyvaskylan Yliopisto / JyvÃ¤skylÃ¤ University Library (Jyvaskylan Yliopisto / JyvÃ¤skylÃ¤ University Library)
Authenticated | 172.16.1.226

Download Date | 3/3/12 8:27 PM



398 I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, and S. Repin

respect to small values of � . However, this estimate is sensitive with respect to large
values of � and the sharpness of this estimate cannot be proven. The second upper
bound is derived in a more sophisticated way and provides a more general upper
bound. Also, it behaves well with respect to small and large values of � .
In this paper, we derive functional a posteriori estimates for a model 2D prob-

lem that can be viewed as a simplified version of the Maxwell problem. As in [9],
the derivation of estimates is based upon transformations of the corresponding inte-
gral identity. We prove that the estimates provide guaranteed and computable error

bounds for the difference E � �E, where �E � V0 is an approximation to the exactsolution E. In the last section, these theoretical results are confirmed by numerical
experiments.

2. Error estimates

2.1. Upper bound of the error

First, we present some auxiliary results that are further used in the derivation of the
upper bound.
By the Helmholtz decomposition of a vector-valued function, we represent the

exact solution E as follows:
E � E0 � ∇ψ

where E0 is a solenoidal vector-valued function and ψ � �H1 � Ω 	 . Since curl∇ψ � 0,
we rewrite (1.3) as follows:


Ω
μ � 1curlE0 curlw � ��� E0 � ∇ψ 	
� wdx � 


Ω
f � w dx �

Next, we make the same decomposition for the trial function and set w � w0 � ∇φ .
Since 


Ω
f � ∇φ dx � 


Ω
E0 � ∇φ dx � 


Ω
w0 � ∇ψ dx � 0

we observe that

Ω

�
μ � 1curlE0 curlw0 � � E0 � w0 � � ∇ψ � ∇φ � dx � 


Ω
f � w0 dx �

By setting w0 � 0 and φ � ψ , we find that
�
∇ψ
� � 0. Hence, E is a divergence-free

function.
Note that φ satisfies the relation


Ω
∇φ � ∇ξ dx � 


Ω
w � ∇ξ dx � �



Ω
� divw 	 ξ dx � ξ ���H1 � Ω 	

which implies the estimate �
∇φ
� � CΩ

�
divw

�
(2.1)
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A posteriori error estimates 399

whereCΩ is the constant in the Friedrichs inequality for the domainΩ. For solenoidal
fields we also have the estimate (see, e.g., [7, 13])�

w0
� � CΩ

�
curlw0

� � CΩ

�
curlw

� � (2.2)

Green’s formula in a 2D setting states that for any y � H 1 � Ω � and any w �
H � curl;Ω � �

Ω
ycurlwdx � �

Ω
curly 	 wdx 
 �

∂Ω
y � w � n � ds

so we find that �
Ω
� curly 	 w � ycurlw � dx � 0 
 w � V0 � (2.3)

Proposition 2.1. Let �E � V0 � H � div;Ω � be an approximation of E. For any
y � H1 � Ω � the following estimate holds:

���E � �E��� 2γ � δ ��� 2� � λ � α1 � α2 � �E � y � (2.4)

with

� 2� � λ � α1 � α2 � �E � y � : � R1 � λ � �E � y � 
 α1
4
R22 � λ � �E � y � 
 α2

4
R23 � λ � �E � y �

where α1 and α2 are arbitrary numbers in � 1 � 
 ∞ � and � is a positive constant,
γ � � 1 � 1α1 � μ � 1 � δ � � 1 � 1α2 � �

λ � I � 0 � 1 � : � ! λ � L∞ � Ω �"� λ � x �#�$� 0 � 1 � for a.e. x � Ω %
and Ri, i � 1 � 2 � 3 � are defined by (2.9)–(2.11).
Proof. From (1.3) it follows that�
Ω & μ � 1curl � E � �E � curlw 
 �'� E � �E �(	 w ) dx� �

Ω & f 	 w � μ � 1curl �Ecurlw � �*�E 	 w ) dx � (2.5)

By (2.3) and (2.5) we obtain�
Ω & μ � 1curl � E � �E � curlw 
 �'� E � �E �(	 w ) dx� �

Ω
r � �E � y �+	 wdx 
 �

Ω
d � �E � y � curlwdx (2.6)
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400 I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, and S. Repin

where

r ���E � y � : � f � curly � �	�E
d � �E � y � : � y � μ 
 1curl �E �

With the help of λ we decompose integral identity (2.6) as follows:�
Ω 
 μ 
 1curl � E � �E � curlw � ��� E � �E ��� w � dx� �

Ω
λr ���E � y ��� wdx � �

Ω
� 1 � λ � r ���E � y ��� wdx � �

Ω
d ���E � y � curlwdx (2.7)

where λ � I � 0 � 1 � . Since�
Ω

λr ���E � y ����� E � �E � dx ������
λ� 1 � 2 r ���E � y ������

� � 1 � 2 � E � �E � �
and by inequalities (2.1) and (2.2)�

Ω
� 1 � λ � r � �E � y ����� E � �E � dx� � � 1 � λ � r � �E � y � � 
 CΩ

�
div �E � � CΩμ1 � 2 �

μ 
 1 � 2curl � E � �E � � ���
By setting w � E � �E equation (2.7) becomes�

Ω 
 μ 
 1 ! curl � E � �E ��! 2 � �"!E � �E ! 2 � dx� R1 � R2 � μ 
 1 � 2curl � E � �E � � � R3 � � 1 � 2 � E � �E � � (2.8)
where

R1 � λ � �E � y �#� CΩ

� � 1 � λ � r � �E � y � �$� div �E � (2.9)

R2 � λ � �E � y �#� CΩμ1 � 2 � � 1 � λ � r � �E � y � � � �
μ1 � 2d � �E � y � � (2.10)

R3 � λ � �E � y �#� ����
λ� 1 � 2 r � �E � y � ���� � (2.11)

By applying Young’s inequality to the right-hand side of (2.8), we obtain�
Ω

%
1 � 1α1 & μ 
 1 ! curl � E � �E ��! 2 dx � �

Ω

%
1 � 1α2 & �"!E � �E ! 2 dx� R1 � α1

4
R22

� α2
4
R23 (2.12)

which implies (2.4).
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A posteriori error estimates 401

Remark 2.1. A form of λ which is optimal (from the theoretical point of view)
is obtained in [9], where similar estimates are considered for a 3D problem.

Corollary 2.1. If α1 � α2 � 2 then (2.4) comes in the form
���E � �E��� 2	 μ 
 1 � �
� ��� 	 λ �� (2.13)

where

� 	 λ �� : ��� 2� � λ � �E � y ��� 2R1 � λ � �E � y � � R22 � λ � �E � y � � R23 � λ � �E � y �
and this estimate is sharp.

Proof. It holds that

inf
λ � I � 0 � 1 �
y � H1 	 Ω �

� 	 λ �� ���E � y ��� inf
y � H1 	 Ω � � 	 1 �� ���E � y ����� 	 1 �� ���E � p �

where p � μ � 1curlE. We have
� 	 1 �� � �E � p ���  

μ � 1 ! 2curl � E � �E �
 
2 �  " 1 ! 2 � E � �E �

 
2 �#���E � �E��� 2	 μ 
 1 � �$� %

It means that the estimate is sharp.

Remark 2.2. By setting λ � 1 and λ � 0 we arrive at two particular forms of
the error bound, which we call � 	 1 �� and � 	 0 �� respectively. They are as follows:

� 	 1 �� �  " � 1 ! 2r ���E � y �  2 �  
μ1 ! 2d ���E � y �  2 (2.14)

and

� 	 0 �� � 2CΩ

 
r � �E � y �  & div �E  � ' CΩμ1 ! 2�  

r � �E � y �  �  
μ1 ! 2d � �E � y �  ( 2 % (2.15)

It should be noted that � 	 0 �� is well adapted to the case, in which " is small (or
even zero) and may lead to a considerable overestimation if " is large. Conversely,� 	 1 �� is sensitive with respect to small " and is well adapted to large values of this
parameter. The combined majorant � 	 λ �� is applicable to both cases. This property
is due to the presence of the function λ , which allows us to compensate small values
of " .
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2.2. Lower bound of the error

Proposition 2.2. Assume that ��� 0 and �E � V0 is an approximation of E. For
any w � V0 the following estimate holds:���E 	 �E 
�� 2� μ 
 1 � ��� ��� 2� ���E � w � (2.16)

where

� 2� � �E � w � : � �
Ω � 2f � w 	 μ � 1 � curlw � 2

	 ���w � 2 	 2μ � 1curl �Ecurlw 	 2 � �E � w  dx !
Proof. First, we note that

sup
w " V0

�
Ω � μ � 1curl � E 	 �E � curlw # � w �$� E 	 �E�
	 12 � μ � 1curlwcurlw # � w � w �% dx

& sup
τ " H1 � Ω � '(�
w " L2 � Ω � ' 2 �

�
Ω � μ � 1curl � E 	 �E � τ 	 12μ � 1ττ

# � w �$� E 	 �E � 	 12 � w � w  dx � 12 ���E 	 �E
�� 2� μ 
 1 � �)� !
On the other hand,

sup
w " V0

�
Ω � μ � 1curl � E 	 �E � curlw # � w �$� E 	 �E �
	 12 � μ � 1curlwcurlw # � w � w �* dx

� �
Ω � μ � 1curl � E 	 �E � curl � E 	 �E � # �+� E 	 �E �(�$� E 	 �E �
	 12 � μ � 1 � curl � E 	 �E �$� 2 # ���E 	 �E � 2  , dx � 1

2
���E 	 �E 
�� 2� μ 
 1 � ��� !

Thus, we conclude that

1

2
���E 	 �E 
�� 2� μ 
 1 � ��� � sup

w " V0
�

Ω � μ � 1curl � E 	 �E � curlw
# � w �-� E 	 �E � 	 12 � μ � 1curlwcurlw # � w � w �  dx !

Using equation (1.3), we obtain (2.16).
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A posteriori error estimates 403

Corollary 2.2. The sharpest bound is given by the quantity� 2� ���E ��� sup
w 	 V0 � 2� ���E 
 w ���

By setting w � E 
 �E, we find that� 2� ���E �������E 
 �E��� 2� μ � 1 � ���
so the lower bound is sharp.

3. Numerical results

Estimates derived in the previous section have been verified in a series of numerical
tests, which are discussed in this section. Approximations for the model problem
were calculated with lowest-order Nédélec’s elements of the first type (e.g., see
[7, 8]). It should be noted that in the derivation of the upper bound we used the
Helmholtz decomposition for the numerical approximation of the exact solution.
Because of this, we are assuming that the numerical approximation belongs not
only to H � curl � but also to H � div � . With the lowest-order Nédélec’s elements the
normal component is not continuous across the element edges, so the divergence of
approximate solutions is not square summable. To overcome this problem we chose
to force the normal continuity by post-processing the numerical solution. Alterna-
tively, one could use the nodal Courant elements to obtain approximate solutions,

which belong to H1 � H1. This problem does not arise with the upper bound � � 1 �� ,
because it can be derived separately without using Helmholtz decomposition (see
[3, 9, 12]). Also the lower bound does not require the square summability of the
divergence of the numerical approximation.
The free parameter y was obtained by globally minimizing the upper bounds

with respect to y. Global minimization results in a finite element problem for y,
which can be solved with standard nodal finite elements. Increasing the order of
elements or using a more refined mesh than the mesh on which the approximate
solution was computed results in better values for the upper bounds.
The performance of the upper bounds is measured by the so-called efficiency

index

Ieff ���� � � λ �����E 
 �E ��� 2� μ � 1 � ���
 ! 1 " 2 �

To get sensible values for the lower bound, the free parameter w should be a
better approximate solution to the problem than the original approximate solution v.
A better solution can be computed by simply refining the mesh and computing a new
solution on this mesh. The finer the mesh, the better values for the lower bound we
get.
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Table 1.
Problem (3.3): Efficiency index values for different values of � .

linear y quadratic y

� ��� 1 �� ��� 0 �� ��� λ �� ��� 1 �� ��� 0 �� ��� λ ��
10 � 3 103.79 1.98 1.98 6.35 1.07 1.07
10 � 1 10.42 1.98 1.98 1.18 1.07 1.06
100 3.42 1.98 1.91 1.02 1.08 1.02
101 1.42 1.96 1.42 1.00 1.18 1.00
103 1.00 7.14 1.00 1.00 7.05 1.00

Table 2.
Problem (3.3) with �	
 10 � 3: The sharpness of the upper bound ��� 1 �� and
the lower bound ��� .

linear y quadratic y

# elem 
��E ���E ��
 2 � 2� ��� 1 �� Ieff ��� 1 �� Ieff

82 0.11908 1897.90 126.25 7.04419 7.69
328 0.11908 0.08914 486.837 63.94 0.55972 2.17
1312 0.11908 0.11158 123.000 32.14 0.14689 1.11
5248 0.11908 0.11721 30.9403 16.12 0.12083 1.01

We are also interested in indicating the error distribution in different norms. The

upper bound � � 1 �� is the most suitable for this purpose, because it does not contain
any constants. Using the two terms in � � 1 �� separately we define the following error
indicators

Ir � �E � y ���
�
 ! 1 " 2r � �E � y �

�
(3.1)

Id � �E � y ���
�
μ1 " 2d � �E � y �

�
# (3.2)

By setting y � μ ! 1curlE we see that if the free parameter y is chosen properly,
indicator (3.1) should give a good error distribution for the weighed L2-norm of the
error �

 1 " 2 � E $ �E �
�
#

Respectively, indicator (3.2) should give a good error distribution for the weighed
H � curl � -seminorm of the error �

μ ! 1 " 2curl � E $ �E �
�
#

For indicators (3.1) and (3.2) we also used a gradient averaging technique to com-
pute y. It works as follows: for each node we calculate the approximate solution’s
curl values on the surrounding elements and weigh them by the sizes of respective
elements. Then average the values to obtain a value for the node.
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A posteriori error estimates 405

Table 3.
Problem (3.4): Efficiency index values
with different mesh-sizes.

# elems ��� 1 �� ��� 0 �� ��� λ ��
72 1.00 1.05 1.00
246 1.00 1.04 1.00
980 1.00 1.02 1.00

For the first test example we take

Ω ��� 0 	 1 
 2 	 μ � 1 	�
�� 0 	 f ��� π2 � 
�� � sin � πx2 �
sin � πx1 � � � (3.3)

For this problem we know the exact solution

u � � sin � πx2 �
sin � πx1 � �

which is the same for all 
�� 0. Table 1 shows the behaviour of the error majo-
rants � � 1 �� , � � 0 �� , and � � λ �� for different 
 . For each 
 the approximate solution
is calculated on a mesh with 82 elements and post-processed so that the divergence
of the approximate solution becomes square summable. In the left-hand part of the
table, the results correspond to the case in which y is computed by minimizing
of majorants on the same mesh as for the approximate solution, using piecewise
affine continuous approximation. The right-hand part exposes the results obtained
by piece-wise quadratic approximations. It is not surprising that the efficiency in-
dexes in the quadratic case are lower. The number of the degrees of freedom for
quadratic approximation of y is roughly 4 times more than for the linear case. An-
other observation, which follows from Table 1 is that the majorants � � 1 �� and � � 0 ��
may essentially overestimate the error, while � � λ �� keeps small values of the effi-
ciency index for all 
 . The dependence of upper bounds with respect to 
 can also
be seen in Fig. 1. The left picture corresponds to the linear approximation of y and
the right picture corresponds to the quadratic approximation of y. From these re-
sults we also see that � � 1 �� significantly benefits from using quadratic elements to
approximate y.
Even though � � 1 �� seriously overestimates the error with small values of 
 , the

theory says that it is sharp. In principle, with � � 1 �� one should be able to get as
low efficiency index values as with � � λ �� . To verify this theory, we took the case
�� 10 � 3 and calculated the numerical approximation in a mesh with 82 elements.
For this test we did not post-process the numerical approximation, because this ma-
jorant does not require that the approximate solution belongs to H � div � . To test the
sharpness of this majorant, we calculated the free parameter y on subsequently re-
fined meshes. The results in Table 2 agree with the theory. The convergence of the
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Figure 1. Problem (3.3): Efficiency indexes of the majorants ��� 1 �� , ��� 0 �� , and ��� λ �� for different � .

Ir(yavg)Ir(yglo)‖κ1/2(E-Ẽ)‖

Id(yavg)Id(yglo)‖μ-1/2curl(E- ˜E)‖

Figure 2. Problem (3.3): Performance of error indicators.
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Ir(yavg)Ir(yglo)‖κ1/2(E- ˜E)‖

Id(yavg)Id(yglo)‖μ-1/2curl(E- ˜E)‖

Figure 3. Problem (3.4): Performance of error indicators.

linear y is slow, but using quadratic elements for y we clearly see that the upper
bound converges to the exact error. Also, calculating the free parameter in the lower
bound � � in the refined meshes shows that the lower bound is also sharp. From
these results we can conclude that one can achieve arbitrary accuracy for the bounds
if one is willing to use some time to compute the free parameters in the bounds.
For the second test example we take

Ω ��� 0 � 1 � 2 � 	 � 1
2
� 1 �
��� 0 � 1

2
� 
 � μ � 1 ����� 1 � f � 	 1

0

 � (3.4)

For this problem we do not know the exact solution. A reference solution was cal-
culated in a mesh with 286114 elements. Table 3 gives the efficiency index values
for the three upper bounds with some mesh sizes. An approximate solution was
computed for each mesh and post-processed so that its divergence becomes square
summable. The free parameter y was calculated with linear elements in the same
mesh.
Figures 2 and 3 present the error indication results for indicators (3.1) and (3.2).

Here, the function y was selected in two different ways: yglo denotes the function
obtained by global minimization of the majorant � � 1 �� , and yavg denotes the function
obtained by the simple averaging procedure described earlier. The free parameter
yglo was calculated with linear elements in the same mesh in which the approximate
solution was calculated. In Figs. 1–3 we have marked with black color all elements
with an error greater than the average error. The top rows present the results for
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408 I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, and S. Repin

indicator (3.1) and the bottom rows for indicator (3.2). In each row the first picture
shows the exact error distribution that the indicators are supposed to indicate. The
second picture shows the result of the indicator with yglo, and the last picture shows
the result for the same indicator with yavg. Generally we observe good performance
with yglo. With yavg the indicators do not perform so well.
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On a posteriori error bounds for approximations
of the generalized Stokes problem generated
by the Uzawa algorithm

I. ANJAM∗, M. NOKKA†, and S. I. REPIN‡

Abstract — In this paper, we derive computable a posteriori error bounds for approximations com-
puted by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa
iteration both the velocity error and the pressure error are bounded from above by a constant multi-
plied by the L2-norm of the divergence of the velocity. The derivation of the estimates essentially uses
a posteriori estimates of the functional type for the Stokes problem.

1. Introduction

Let Ω ∈ R
n be a bounded connected domain with a Lipschitz continuous boundary

∂Ω. Henceforth, we use the space of vector valued functions

V (Ω,Rn) := W 1
2 (Ω,Rn)

and two spaces of tensor-valued functions

Σ(Ω) := L2(Ω,Mn×n)
Σ(Div,Ω) := {w ∈ Σ(Ω) | Divw ∈ L2(Ω,Rn)}

where Mn×n is the space of symmetric n×n-matrices (tensors). The scalar product
of tensors is denoted by two dots (:), and the L2 norm of Σ is denoted by ‖ ·‖Σ. The
L2 norm of scalar and vector valued functions is denoted by ‖ ·‖.

By S̊(Ω) we denote the closure of smooth solenoidal functions w with compact
supports in Ω with respect to the norm ‖∇w‖Σ. Let V0(Ω,Rn) denote the subspace
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322 I. Anjam, M. Nokka, and S. I. Repin

of V (Ω,Rn) that consists of functions with zero traces on ∂Ω. The space of scalar
valued square summable functions with zero mean is denoted by L̃2(Ω,R).

The classical statement of the generalized Stokes problem consists of finding a
velocity field u ∈ S̊(Ω)+uD and pressure p ∈ L̃2(Ω) which satisfy the relations

−Div(ν∇u)+ μu+ ∇p= f in Ω (1.1)
divu = 0 in Ω (1.2)

u = uD on ∂Ω (1.3)

where f ∈ L2(Ω,Rn), and ∫
∂Ω

uD ·n dx = 0.

Here and later on n denotes the outward unit normal vector to ∂Ω, and we assume
that the material parameters ν and μ belong to the space L∞(Ω,R), and

0 < ν � ν(x) � ν , ∀x ∈ Ω
0 � μ � μ(x) � μ , ∀x ∈ Ω.

The generalized solution of (1.1)–(1.3) is a function u ∈ S̊(Ω)+uD such that∫
Ω

(ν∇u : ∇w+ μu ·w)dx =
∫

Ω
f ·w dx ∀w ∈ S̊(Ω). (1.4)

It is well known that u can be defined as the first component of the saddle point
problem generated by any of the Lagrangians

L(v,q) :=
∫

Ω

(
1
2

ν |∇v|2 +
1
2

μ |v|2−qdivv− f · v
)
dx

LA(v,q) :=
∫

Ω

(
1
2

ν |∇v|2 +
1
2

μ |v|2 +
1
2

λ |divv|2−qdivv− f · v
)
dx.

The quantity in LA is called the augmented Lagrangian (in which λ ∈R+).We have

L(v, p) � L(u, p) � L(u,q) ∀v ∈V0 +uD, q ∈ L2
LA(v, p) � LA(u, p) � LA(u,q) ∀v ∈V0 +uD, q ∈ L2.

From the right-hand side inequalities we see that
∫

Ω(p− q)divu dx = 0 for all
q ∈ L2, from which we conclude that divu = 0. From the left-hand side inequali-
ties it follows that for any solenoidal v we have J(v) > J(u), where

J(v) :=
∫

Ω

(
1
2

ν |∇v|2 +
1
2

μ |v|2− f · v
)
dx.
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Indeed, the exact solution of the problems

inf
v∈V0+uD

sup
q∈L2
L(v,q), inf

v∈V0+uD
sup
q∈L2
LA(v,q)

is (u, p). For a detailed exposition of this subject, we refer to [4].
Finding approximations of (u, p) can be performed by the Uzawa algorithm

presented below.

Algorithm 1.1 (Uzawa algorithm).

1: Set k=0 and ρ ∈R+.Make initial guess for pk ∈ L̃2.
2: Find uk by minimizing the Lagrangian L(v, pk) or LA(v, pk) w.r.t. v, i.e., by solv-

ing either (1.5) or (1.6), respectively.

For the Lagrangian L, we have the problem: Find uk ∈V0 +uD such that:∫
Ω

(
ν∇uk : ∇w+ μuk ·w

)
dx =

∫
Ω

(
f ·w+ pkdivw

)
dx ∀w ∈V0. (1.5)

For the Lagrangian LA, we have the problem: Find uk ∈V0 +uD such that:∫
Ω

(
ν∇uk : ∇w+ μuk ·w+ λdivuk divw

)
dx

=
∫

Ω

(
f ·w+ pkdivw

)
dx ∀w ∈V0. (1.6)

3: Find
pk+1 = (pk−ρdivuk) ∈ L̃2. (1.7)

4: Set k = k+1 and go to step 2.

Our goal is to deduce computable bounds of the difference between uk and the
exact solution u in terms of the energy norms

||| w |||2 :=
∫

Ω

(
ν |∇w|2 + μ |w|2)dx

and
]|| w ||[2λ :=

∫
Ω

(
ν |∇w|2 + μ |w|2+ λ |divw|2)dx.

Theorem 1.1. The Uzawa algorithm (Algorithm 1.1) converges, i.e.,

uk
k→∞−→ u strongly in V (Ω,Rn)

pk
k→∞−→ p weakly in L2(Ω)

provided that
0 < ρ < 2min(ν ,μ) (1.8)

and p0 ∈ L̃2(Ω). If μ ≡ 0, the condition is 0 < ρ < 2ν . These conditions are the
same for both (1.5) and (1.6).
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Proof. The proof is based on well known arguments (see, e.g., [13]). However,
for the convenience of the reader, we present the proof for the generalized Stokes
problem, in the case of (1.5).

The exact solution of the generalized Stokes problem satisfies the relation∫
Ω

(ν∇u : ∇w+ μu ·w)dx =
∫

Ω
( f ·w+ pdivw)dx ∀w ∈V0(Ω). (1.9)

We set w = uk−u and subtract (1.9) from (1.5), which gives

||| uk−u |||2=
∫

Ω
(pk− p)div(uk−u)dx.

Let vk := uk−u and qk := pk− p. Then we rewrite this relation in the form

||| vk |||2=
∫

Ω
qkdivvk dx. (1.10)

On the other hand, (1.7) is equivalent to∫
Ω
(pk+1− pk)φ dx+ ρ

∫
Ω
divukφ dx = 0 ∀φ ∈ L2(Ω).

By setting φ = pk+1− p we obtain∫
Ω
(pk+1− pk)(pk+1− p)dx+ ρ

∫
Ω
divuk(pk+1− p)dx = 0

which is equivalent to∫
Ω
(qk+1−qk)qk+1 dx+ ρ

∫
Ω
divvkqk+1 dx = 0

and
‖qk+1‖2−‖qk‖2 +‖qk+1−qk‖2 = −2ρ

∫
Ω
divvkqk+1 dx. (1.11)

By combining (1.10) and (1.11), we obtain

‖qk+1‖2−‖qk‖2+‖qk+1−qk‖2 +2ρ ||| vk |||
= −2ρ

∫
Ω
divvk(qk+1−qk)dx

� 2ρ‖divvk‖ ‖qk+1−qk‖
� δ−1ρ2‖divvk‖2 +δ‖qk+1−qk‖2

� δ−1ρ2
(
‖∇vk‖2Σ +‖vk‖2

)
+δ‖qk+1−qk‖2 (1.12)
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where δ ∈ (0,1). Note that

||| vk |||2 � ν‖∇vk‖2Σ + μ‖vk‖2 � min(ν ,μ)
(
‖∇vk‖2Σ +‖vk‖2

)
and, therefore, (1.12) implies the estimates

‖qk+1‖2−‖qk‖2 + (1−δ )‖qk+1−qk‖2

+ ρ
(
2min(ν ,μ)−δ−1ρ

)(
‖∇vk‖2Σ +‖vk‖2

)
� 0. (1.13)

Now, we sum inequalities (1.13) for k = 0, . . . ,N and find that

‖qN+1‖2 + (1−δ )
N

∑
k=0

‖qk+1−qk‖2

+ ρ
(
2min(ν ,μ)−δ−1ρ

) N

∑
k=0

(
‖∇vk‖2Σ +‖vk‖2

)
� ‖q0‖. (1.14)

Because of condition (1.8), there exists a δ∗ ∈ (0,1) such that

2min(ν ,μ)−δ−1
∗ ρ > 0.

We set δ = δ∗ in (1.14), and see that

‖∇vk‖2Σ +‖vk‖2 = ‖∇(uk−u)‖2Σ +‖uk−u‖2 k→∞−→ 0.

Also, we see that ‖qk‖ = ‖pk − p‖ is bounded in L2(Ω), so ‖pk‖ is bounded in
L2(Ω).We also observe from (1.14), that

‖qk+1−qk‖2 = ‖pk+1− pk‖2 k→∞−→ 0

so we can extract from pk a subsequence pk
′
, which converges to some element p∗

weakly in L2(Ω). The equation (1.5) gives in the limit∫
Ω

(ν∇u : ∇w+ μu ·w)dx =
∫

Ω
( f ·w+ p∗divw)dx ∀w ∈V0

and by comparison to (1.9) we find that∫
Ω
(p− p∗)divw dx = 0 ∀w ∈V0

which means that p∗ = p+ c, where c ∈ R. In other words, the sequence pk
′
con-

verges weakly to p in L̃2(Ω) However, if p0 ∈ L̃2, then it is easy to see from (1.7)
that pk ∈ L̃2 with all k. From this we make the conclusion that the sequence pk

′

converges weakly to p in L2(Ω).
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2. Error estimates for exact solutions generated
by the Uzawa algorithm

In this section, we show that the errors of approximations generated by the Uzawa
algorithm are controlled by the L2-norm of the divergence of the velocity. First, we
compare approximations computed on two consequent iterations and establish the
following result.

Theorem 2.1. Let (uk, pk) and (uk+1, pk+1) be the solutions of two consecutive
iterations of the Uzawa algorithm. Then, for both (1.5) and (1.6) we have

||| uk+1−uk ||| �
√

ν−1ρ‖divuk‖ (2.1)

‖pk+1− pk‖ = ρ‖divuk‖. (2.2)

In addition, for (1.6) we also have

]|| uk+1−uk ||[λ �
√

ν−1ρ‖divuk‖. (2.3)

Proof. The equation for pressure (2.2) follows directly from (1.7). By subtract-
ing the kth equation (1.5) from the (k+1)th equation, we obtain∫

Ω
ν∇(uk+1−uk) : ∇w+ μ(uk+1−uk) ·w dx =

∫
Ω
(pk+1− pk)divw dx.

Since
‖divw‖ � ‖∇w‖Σ �

√
ν−1‖√ν∇w‖Σ �

√
ν−1 ||| w |||

we can estimate the right-hand side with∫
Ω
(pk+1− pk)divw dx � ‖pk+1− pk‖ ‖divw‖

�
√

ν−1‖pk+1− pk‖ ||| w ||| .

By choosing w = uk+1−uk, we obtain

||| uk+1−uk |||2 �
√

ν−1‖pk+1− pk‖ ||| uk+1−uk ||| .
By (2.2) we obtain the estimate for velocity (2.1). The estimate (2.3) is obtained
with exactly the same arguments applied for the augmented form (1.6). Since
||| w ||| � ]|| w ||[λ for all λ ∈ R+, we see by (2.3), that the estimate (2.1) holds also
for approximations calculated by (1.6).

Henceforth, we will use functional a posteriori error estimates for the Stokes
problem derived in [11,12]. For a consequent exposition of the theory of functional
a posteriori error estimates we refer the reader to [8, 10].

The following lemma is essential in deriving our main results.
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Lemma 2.1. Let Ω be a bounded domain with Lipschitz continuous boundary
∂Ω. Then there exists a positive constant CLBB depending on the domain Ω such
that for any function g ∈ L̃2(Ω) there is a function v ∈ V0 satisfying the condition
divv = g, and

‖∇v‖Σ � C−1
LBB‖g‖.

Here CLBB is the constant in the well-known Ladyzhenskaya-Babuška-Brezzi (LBB)
condition (see, e.g., [1, 2]). See proof in [6, 7].

For some simple domains the constant CLBB, or the bounds for it, are known
(see, e.g., [3, 5, 9]).
Lemma 2.1 implies an important corollary. Let v ∈V0, and divv= g. Then there

exists a function vg ∈V0 such that div(v− vg) = 0, and

‖∇vg‖Σ � C−1
LBB‖g‖ = C−1

LBB‖divv‖.
This means that there exists a solenoidal field v0 = (v− vg) ∈ S̊(Ω) such that

‖∇(v− v0)‖Σ � C−1
LBB‖divv‖.

A similar estimate holds for v ∈V0+uD. Indeed, for v−uD we can find a solenoidal
field v0 ∈ S̊(Ω) such that

‖∇(v−uD− v0)‖Σ � C−1
LBB‖div(v−uD)‖ � C−1

LBB‖divv‖.
Thus, we can find a function w0 ∈ S̊(Ω)+uD such that

‖∇(v−w0)‖Σ � C−1
LBB‖divv‖. (2.4)

With the help of (2.4) we can now derive our main results. We show that the
errors of uk and pk generated on the iteration k of the Uzawa algorithm are both
estimated from above by the L2-norm of the divergence of uk multiplied by a con-
stant depending on CLBB. The proofs are based on the derivation of functional a
posteriori error estimates for the generalized Stokes problem as they are presented
in [12].

Theorem 2.2. Let uk be the exact solution computed on the iteration k of the
Uzawa algorithm. Then, for solutions calculated by (1.5) or (1.6), we have

||| u−uk ||| � 2C‖divuk‖ (2.5)

where

C :=C−1
LBB

√
C2
Fμ + ν . (2.6)

Here CF is the constant in the Friedrichs inequality

‖w‖ � CF‖∇w‖Σ

and CLBB is the constant in the LBB-condition.
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Proof. Let u0 ∈ S̊(Ω)+uD be such that, by using (2.4), we have

‖∇(uk−u0)‖Σ � C−1
LBB‖divuk‖. (2.7)

Let the pair (uk, pk) be an approximation of the saddle point computed on the itera-
tion k.We can now write

||| u−uk ||| � ||| u−u0 ||| + ||| u0−uk ||| . (2.8)

First, we estimate from above the first term on the right-hand side of (2.8). Let w∈ S̊.
By subtracting the integral

∫
Ω (ν∇u0 : ∇w+ μu0 ·w)dx from both sides of (1.4) we

obtain∫
Ω

(ν∇(u−u0) : ∇w+ μ(u−u0) ·w)dx

=
∫

Ω
(( f −μu0) ·w−ν∇u0 : ∇w)dx. (2.9)

It is easy to see that∫
Ω

(Divτ ·w+ τ : ∇w)dx = 0 ∀τ ∈ Σ(Div,Ω), w ∈V0(Ω) (2.10)

and ∫
Ω

(∇q ·w+qdivw)dx = 0 ∀q ∈W 1
2 (Ω,R), w ∈V0(Ω).. (2.11)

By adding (2.10) and (2.11) to the right-hand side of (2.9), we rewrite it in the form∫
Ω

(( f −μu0 +Divτ−∇q) ·w+ (τ−ν∇u0) : ∇w)dx (2.12)

which is equivalent to∫
Ω

((
f −μuk +Divτ−∇q

)
·w+

(
τ−ν∇uk

)
: ∇w

)
dx

+
∫

Ω

(
ν∇(uk−u0) : ∇w+ μ(uk−u0) ·w

)
dx. (2.13)

Let us choose τ = ν∇uk and q = pk. In view of (1.5), we see that that the first
integral of (2.13) vanishes. Indeed,∫

Ω

((
f −μuk +Divν∇uk−∇pk

)
·w +

(
ν∇uk−ν∇uk

)
: ∇w

)
dx

=
∫

Ω

(
f ·w+ pk divw−ν∇uk : ∇w−μuk ·w

)
dx = 0. (2.14)
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Since w is a function from S̊, the same conclusion is also true if uk has been calcu-
lated by (1.6).We combine (2.9) with (2.12)–(2.14), and arrive at the relation∫

Ω
(ν∇(u−u0) : ∇w+ ν(u−u0) ·w)dx

=
∫

Ω

(
ν∇(uk−u0) : ∇w+ μ(uk−u0) ·w

)
dx. (2.15)

The right-hand side of (2.15) can be estimated from above as follows:∫
Ω

(
ν∇(uk−u0) : ∇w+ μ(uk−u0) ·w

)
dx

=
∫

Ω

(√
ν∇(uk−u0) :

√
ν∇w+

√
μ(uk−u0) ·√μw

)
dx

� ‖√ν∇(uk−u0)‖Σ‖
√

ν∇w‖Σ +‖√μ(uk−u0)‖ ‖√μw‖
� ||| uk−u0 ||| ||| w ||| (2.16)

where we have used the Cauchy–Schwarz inequality. We set w = u− u0, and find
that

||| u−u0 ||| � ||| uk−u0 ||| . (2.17)

Note that for all w ∈V we have

||| w |||2 = ‖√ν∇w‖2Σ +‖√μw‖2
� ν‖∇w‖2Σ + μ‖w‖2
� ν‖∇w‖2Σ +C2

Fμ‖∇w‖2Σ
�
(
C2
Fμ + ν

)‖∇w‖2Σ. (2.18)

We substitute (2.17) into (2.8), and use (2.18) with w = u−u0, and obtain

||| u−uk ||| � 2 ||| u0−uk |||
� 2

√
C2
Fμ + ν‖∇(u0−uk)‖Σ. (2.19)

Now, (2.7) and (2.19) imply the estimate

||| u−uk ||| � 2C−1
LBB

√
C2
Fμ + ν‖divuk‖ = 2C‖divuk‖

where C is defined in (2.6).

In order to prove a similar estimate for the pressure, we also need Lemma 2.1.
Let q ∈ L̃2 be an approximation of the exact pressure p. Then (p−q)∈ L̃2 and there
exists a function w ∈V0 such that

div(w) = p−q (2.20)
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and
‖∇w‖Σ �C−1

LBB‖p−q‖. (2.21)

Theorem 2.3. Let pk be the function computed on the iteration k of the Uzawa
algorithm. Then,

‖p− pk‖ � C‖divuk‖ (2.22)

where C = 2C2 for (1.5), and C = 2C2 + λ for (1.6).

Proof. We use (2.20) for q = pk and obtain

‖p− pk‖2 =
∫

Ω
divw(p− pk)dx =

∫
Ω
divw p+ ∇pk ·w dx.

Multiplying (1.1) by w and integrating over Ω, we obtain∫
Ω
divw p dx =

∫
Ω

(ν∇u : ∇w+ μu ·w− f ·w)dx.

In view of this relation, we have

‖p− pk‖2 =
∫

Ω

(
ν∇u : ∇w+ μu ·w− f ·w+ ∇pk ·w

)
dx.

We use (2.10) with w = w, and arrive at the relation

‖p− pk‖2 =
∫

Ω

((
− f + μuk−Divτ + ∇pk

)
·w+

(
ν∇uk− τ

)
: ∇w

)
dx

+
∫

Ω

(
ν∇(u−uk) : ∇w+ μ(u−uk) ·w

)
dx. (2.23)

As before, we choose τ = ν∇uk, and observe that the first integral is zero. By esti-
mating the latter integral with the help of the same arguments as in (2.16), we find
that

‖p− pk‖2 � ||| u−uk ||| ||| w ||| . (2.24)

By (2.18) and (2.21), we obtain

||| w |||2 �
(
C2
Fμ + ν

)‖∇w‖2Σ
� C−2

LBB

(
C2
Fμ + ν

)‖p− pk‖2
= C2‖p− pk‖2 (2.25)

where C is defined in (2.6). Substituting (2.25) into (2.24) results in the estimate

‖p− pk‖ � C ||| u−uk ||| .
Now, we apply Theorem 2.2 and deduce (2.22).
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In the case of (1.6), we add∫
Ω

λdiv(uk−uk)divw dx = 0

to (2.23) and obtain

‖p− pk‖2 =
∫

Ω

((
− f + μuk−Divτ + ∇pk

)
·w+ λdivuk divw

)
dx

+
∫

Ω

(
ν∇uk− τ

)
: ∇w dx

+
∫

Ω

(
ν∇(u−uk) : ∇w+ μ(u−uk) ·w−λdivuk divw

)
dx.

Again, we choose τ = ν∇uk, and see from (1.6) that the first and second integrals are
zero. By estimating the latter integral with same arguments as in (2.16), we obtain

‖p− pk‖2 � ||| u−uk ||| ||| w ||| + λ‖divuk‖ ‖divw‖. (2.26)

Recall that divw = p− pk. Now, (2.25) and (2.26) imply the estimate

‖p− pk‖ � C ||| u−uk ||| + λ‖divuk‖.
Applying Theorem 2.2 results in (2.22).

By Theorems 2.2 and 2.3, we easily conclude the following statement.

Remark 2.1. The classical Stokes problem corresponds to the case where μ ≡ 0
and ν is a constant. Let (uk, pk) be the exact solution computed on the iteration k of
the Uzawa algorithm, for the Stokes problem. Then, for velocity we have (for both
cases (1.5) and (1.6))

‖∇(u−uk)‖ � 2C−1
LBB‖divuk‖.

For the pressure we have
‖p− pk‖ � C̃‖divuk‖

where C̃ = 2C−2
LBBν for (1.5) and C̃ = 2C−2

LBBν + λ for (1.6).

3. Computable error estimates for approximations
generated by the Uzawa algorithm

Let Th be a mesh having the characteristic size h, and let the spaces V0h(Ω,Rn) and
Qh(Ω) be finite dimensional subspaces of V0(Ω,Rn) and L̃2(Ω), respectively. We
assume that for all vh ∈V0h + uD it holds that divvh ∈ Qh.We also assume that the
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spaces are constructed so that they satisfy the discrete LBB-condition, i.e, for any
qh ∈ Qh with zero mean, there exists vh ∈V0h such that

divvh = qh

and
‖∇vh‖Σ � c‖qh‖

where the positive constant c does not depend on h.
Let ukh ∈ V0h + uD be an approximation of uk calculated on the mesh Th. We

need to combine the error of the pure Uzawa algorithm with the approximation
error. Below we present the corresponding results, where we set pk = pkh ∈Qh on
the iteration k, and understand uk as satisfying (1.5), or (1.6), with the chosen pkh.
Then, the pair (uk, pkh) can be viewed as the exact pair associated with the Uzawa
algorithm on iteration k.

Our first goal is to derive fully computable error majorants Mk⊕ and Mk,λ
⊕ for

approximate solutions (e.g., ukh) of the problems generated at the first step of Uzawa
algorithm by the Lagrangians L and LA, respectively. In order to make the quality of
the majorants robust with respect to small or large values of the material functions
ν or μ , we apply the same method that was suggested in [12] for the generalized
Stokes problem.
Later we combine these estimates with the estimates of the difference between

u and uk and obtain estimates applicable for approximate solutions computed within
the framework of finite dimensional approximations.

First, we prove the following result for the problem generated by the La-
grangian L.

Theorem 3.1. Let (uk, pkh) be the exact solution on the iteration k of the Uzawa
algorithm. Then, for the solutions calculated by (1.5), and for an approximation
ukh ∈V0h +uD we have

||| uk−ukh |||2 � Mk
⊕(ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈R+

where

Mk
⊕(ukh, p

k
h,τ ,β ) :=

∫
Ω
H1(ν ,μ ,β )r2(ukh,τ)dx+ H2(β )‖√ν−1

d(ukh, p
k
h,τ)‖2Σ

and

H1(ν ,μ ,β ) :=
C2
F(1+ β )

ν +C2
F(1+ β )μ

(3.1)

H2(β ) := 1+ β−1 (3.2)

r(ukh,τ) := f −μukh +Divτ (3.3)

d(ukh, p
k
h,τ) := τ−ν∇ukh + Ipkh. (3.4)

Here I denotes the unit tensor.
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Proof. By equation (1.5) we have∫
Ω

(
ν∇uk : ∇w+ μuk ·w

)
dx =

∫
Ω

(
f ·w+ pkhdivw

)
dx.

We subtract the integral
∫

Ω
(
ν∇ukh : ∇w+ μukh ·w

)
dx from both sides of the above

equation, and obtain∫
Ω

ν∇(uk−ukh) : ∇w+ μ(uk−ukh) ·w dx

=
∫

Ω

(
( f −μukh) ·w−ν∇ukh : ∇w+ pkhdivw

)
dx. (3.5)

By adding (2.10) to the right-hand side of (3.5) we have∫
Ω

(
ν∇(uk−ukh) : ∇w+ μ(uk−ukh) ·w

)
dx

=
∫

Ω

(
( f −μukh +Divτ) ·w+ (τ−ν∇ukh + Ipkh) : ∇w

)
dx

=
∫

Ω

(
r(ukh,τ) ·w+d(ukh, p

k
h,τ) : ∇w

)
dx (3.6)

where we have used the notation (3.3) and (3.4). Note that∫
Ω
r ·w dx =

∫
Ω

(√
μ−1αr ·√μw+ (1−α)r ·w

)
dx

� ‖√μ−1αr‖ ‖√μw‖+‖(1−α)r‖ ‖w‖
� ‖√μ−1αr‖ ‖√μw‖+CF

√
ν−1‖(1−α)r‖ ‖√ν∇w‖Σ (3.7)

where 0 � α(x) � 1. Also, we have∫
Ω
d : ∇w dx � ‖√ν−1

d‖Σ‖
√

ν∇w‖Σ. (3.8)

By (3.7) and (3.8) the right-hand side of (3.6) becomes(
CF

√
ν−1‖(1−α)r‖+‖√ν−1

d‖Σ

)
‖√ν∇w‖Σ +‖√μ−1αr‖ ‖√μw‖

�

√(
CF

√
ν−1‖(1−α)r‖+‖√ν−1

d‖Σ

)2
+‖√μ−1αr‖2 ||| w ||| . (3.9)

We set w = uk−ukh, use (3.6) and (3.9), and obtain

||| uk−ukh |||2 �

(
CF

√
ν−1‖(1−α)r‖+‖√ν−1

d‖Σ

)2
+‖√μ−1αr‖2

� (1+ β )C2
Fν−1‖(1−α)r‖2

+ (1+ β−1)‖√ν−1
d‖2Σ + ‖√μ−1αr‖2. (3.10)
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It is easy to see that the optimal value of α is defined by the relation

α =
C2
F(1+ β )μ

ν +C2
F(1+ β )μ

(3.11)

so that (3.10) implies the estimate

||| uk−ukh |||2 �

∫
Ω

C2
F(1+ β )

ν +C2
F(1+ β )μ

r2 dx+ (1+ β−1)‖√ν−1
d‖2Σ

=
∫

Ω
H1r

2 dx+H2‖
√

ν−1
d‖2Σ

where we have used the notation (3.1) and (3.2).

Remark 3.1. It is easy to see that the upper boundMk⊕ is sharp. Indeed, by setting
τ = ν∇uk− Ipkh, and letting β tend to infinity, we get the exact error in the energy
norm ||| · |||.

A similar estimate can be derived for the problem generated by the augmented
Lagrangian LA.

Theorem 3.2. Let (uk, pkh) be the exact solution on the iteration k of the Uzawa
algorithm. Then, for the solutions calculated by (1.6), and for an approximation
ukh ∈V0h +uD we have

||| uk−ukh |||2 � ]|| uk−ukh ||[2λ � Mk,λ
⊕ (ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈R+

where

Mk,λ
⊕ (ukh, p

k
h,τ ,β ) :=

∫
Ω
H1(ν ,μ ,β )r2(ukh,τ)dx+ H2(β )‖√ν−1

dλ (ukh, p
k
h,τ)‖2Σ.

The quantities H1,H2, and r are defined in (3.1)–(3.3), and

dλ (ukh, p
k
h,τ) := τ−ν∇ukh+ I(pkh−λdivukh). (3.12)

Proof. By (1.6), we have∫
Ω

(
ν∇uk : ∇w+ μuk ·w+ λdivuk divw

)
dx =

∫
Ω

(
f ·w+ pkhdivw

)
dx.

We subtract the integral
∫

Ω
(
ν∇ukh : ∇w+ μukh ·w+ λdivukh divw

)
dx from both sides
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of the above equation, and use (2.10), and obtain∫
Ω

(
ν∇(uk−ukh) : ∇w+ μ(uk−ukh) ·w+ λdiv(uk−ukh)divw

)
dx

=
∫

Ω

(
( f −μukh) ·w−ν∇ukh : ∇w+ (pkh−λdivukh)divw

)
dx

=
∫

Ω

(
( f −μukh+Divτ) ·w+

(
τ−ν∇ukh+ I(pkh−λdivukh)

)
: ∇w

)
dx

=
∫

Ω

(
r(ukh,τ) ·w+dλ(ukh, p

k
h,τ) : ∇w

)
dx (3.13)

where we have used the notation (3.3) and (3.12). By the same arguments as in (3.7)
and (3.8), we represent the right-hand side of (3.13) in the form(

CF
√

ν−1‖(1−α)r‖+‖√ν−1
dλ‖Σ

)
‖√ν∇w‖Σ +‖√μ−1αr‖ ‖√μw‖

�

√(
CF

√
ν−1‖(1−α)r‖+‖√ν−1

dλ‖Σ

)2
+‖√μ−1αr‖2 ]|| w ||[λ (3.14)

since ||| w |||� ]|| w ||[λ . By choosing w = uk−ukh, (3.13) and (3.14) give

]|| uk−ukh ||[2λ �

(
CF

√
ν−1‖(1−α)r‖+‖√ν−1

dλ‖Σ

)2
+‖√μ−1αr‖2

� (1+ β )C2
Fν−1‖(1−α)r‖2

+ (1+ β−1)‖√ν−1
dλ‖2Σ + ‖√μ−1αr‖2.

Again, we see that the optimal value of α is given by the relation (3.11), and obtain

]|| uk−ukh ||[2λ �

∫
Ω

C2
F(1+ β )

ν +C2
F(1+ β )μ

r2 dx+ (1+ β−1)‖√ν−1
dλ‖2Σ

=
∫

Ω
H1r

2 dx+H2‖
√

ν−1
dλ‖2Σ

where we have used the notation (3.1) and (3.2).

Finally, by using Theorems 2.2, 3.1, and 3.2 we obtain the final result.

Theorem 3.3. Let u be the exact velocity, (uk, pkh) be the exact solution calcu-
lated on the iteration k of the Uzawa algorithm, and ukh ∈V0h + uD be an approxi-
mation of the velocity calculated on this iteration. For (1.5) we have

||| u−ukh ||| � Mk
⊕(ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

and for (1.6) we have

||| u−ukh ||| � Mk,λ
⊕ (ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+
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where

Mk
⊕(ukh, p

k
h,τ ,β ) := 2C‖divukh‖+ (2C

√
ν−1 +1)

√
Mk⊕(ukh, p

k
h,τ ,β )

Mk,λ
⊕ (ukh, p

k
h,τ ,β ) := 2C‖divukh‖+ (2C

√
ν−1 +1)

√
Mk,λ

⊕ (ukh, p
k
h,τ ,β )

with C defined in (2.6).

Proof. It is clear that

||| u−ukh ||| � ||| u−uk ||| + ||| uk−ukh ||| .
By Theorem 2.2 we have

||| u−ukh ||| � 2C‖divuk‖+ ||| uk−ukh |||
� 2C‖divukh‖+2C‖div(uk−ukh)‖+ ||| uk−ukh |||
� 2C‖divukh‖+2C

√
ν−1‖√ν∇(uk−ukh)‖+ ||| uk−ukh |||

� 2C‖divukh‖+ (2C
√

ν−1 +1) ||| uk−ukh ||| .
Using the upper bounds presented in Theorems 3.1 and 3.2 for the two cases (1.5)
and (1.6), respectively, we arrive at the result.

Finally, we note that estimates for the pressure follows from the above derived
estimates. The exact pressure in the Uzawa algorithm is calculated by (1.7), i.e.,

pk+1 = (pkh−ρdivuk) ∈ L̃2(Ω) (3.15)

and an approximation of it is calculated within the framework of the selected finite
dimensional subspaces, i.e.,

pk+1
h = (pkh−ρdivukh) ∈ Qh(Ω). (3.16)

Theorem 3.4. Let (uk, pkh) be the exact solution calculated on the iteration k
of the Uzawa algorithm, and ukh ∈ V0h + uD be an approximation of the velocity
calculated on this iteration. Now, we apply the estimates presented in Theorems 3.1
and 3.2, and obtain for (1.5):

‖pk+1− pk+1
h ‖ � ρ

√
ν−1

√
Mk⊕(ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

and for (1.6)

‖pk+1− pk+1
h ‖ � ρ

√
ν−1

√
Mk,λ

⊕ (ukh, p
k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈R+.
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Proof. Indeed, from (3.15) and (3.16) we find that

‖pk+1− pk+1
h ‖ = ρ‖div(uk−ukh)‖

� ρ
√

ν−1‖√ν∇(uk−ukh)‖
� ρ

√
ν−1 ||| uk−ukh ||| .

Applying the error bounds presented in Theorems 3.1 and 3.2 completes the proof.

This paper is focused on theoretical analysis of a posteriori error bounds for ap-
proximations computed by the Uzawa algorithm. However, it is worth adding some
comments on the practical applications of the above derived error majorants. The
majorants contain the function τ ∈ H(Div,Ω) and a positive parameter β , which in
general can be taken arbitrary. Getting sharp estimates requires a proper selection
of them. Finding an optimal β leads to a one-dimensional optimization problem
which is easy solvable. The reconstruction of the stress tensor τ based upon com-
puted functions ukh and pkh provides a reasonable first guess. A better selection can be
performed by methods that have been developed and tested for various elliptic prob-
lems (see, e.g., [8, 10, 14] and the references cited therein). A systematical study of
computational questions in the context of above derived estimates will be exposed
in a separate paper, which is now in preparation.
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Abstract

In this paper we show how to find the exact error (not just an estimate of the
error) of a conforming mixed approximation by using the functional type a pos-
teriori error estimates in the spirit of Repin [14]. The error is measured in a
mixed norm which takes into account both the primal and dual variables. We
derive this result for all elliptic partial differential equations of the class

A∗A x+ x = f,

where A is a linear, densely defined and closed (usually a differential) operator
and A∗ its adjoint. We first derive a special version of our main result by using
a simplified reaction-diffusion problem to demonstrate the strong connection to
the classical functional a posteriori error estimates of Repin [14]. After this we
derive the main result in an abstract setting. Our main result states that in order
to obtain the exact global error value of a conforming mixed approximation with
primal variable x and dual variable y, i.e.,

A∗ y + x = f, Ax = y,

one only needs the problem data and the approximation (x̃, ỹ) ∈ D(A)×D(A∗)
of the exact solution (x, y) ∈ D(A)× (

D(A∗) ∩R(A)
)
, i.e., the equality

|x− x̃|2 + |A(x− x̃)|2 + |y − ỹ|2 + |A∗(y − ỹ)|2 = |f − x̃−A∗ ỹ|2 + |ỹ −A x̃|2

holds. There is no need for calculating any auxiliary data. The calculation of the
exact error consists of simply calculating two (usually integral) quantities where
all the quantities are known after the approximate solution has been obtained
by any conforming method guaranteeing (x̃, ỹ) ∈ D(A)×D(A∗). We also show
some numerical computations to confirm the results.
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1 Introduction

The results presented in this paper are based on the conception of functional type
a posteriori error estimates. These type estimates are valid for any conforming ap-
proximation and contain only global constants. We note that estimates for noncon-
forming approximations are known as well but will not be discussed in this paper.
In the case of the class of PDEs studied in this paper, the estimates do not contain
even global constants. For a detailed exposition of the theory see the books [14] by
Repin and [9] by Repin and Neittaanmäki or for a more computational point of view
[8] by Mali, Repin, and Neittaanmäki.

We will measure the error of our approximations in a combined norm, which
includes the error of both, the primal and the dual variable. This is especially useful
for mixed methods where one calculates an approximation for both the primal and
dual variables, see e.g. the book of Brezzi and Fortin [2].

In this paper, we study the linear equation

(A∗ α2 A+α1)x = f

presented in the mixed form

A∗ y + α1x = f, α2 A = y,

where α1, α2 are linear and self adjoint topological isomorphisms on two Hilbert
spaces H1 and H2 and A : D(A) ⊂ H1 → H2 is a linear, densely defined and closed
operator with adjoint operator A∗ : D(A∗) ⊂ H2 → H1. Our main result is Theorem
3.4 and it shortly reads as the functional a posterior error equality

|x− x̃|2H1,α1
+ |A(x− x̃)|2H2,α2

+ |y − ỹ|2
H2,α

−1
2

+ |A∗(y − ỹ)|2
H1,α

−1
1

= |f − α1x̃− A∗ ỹ|2
H1,α

−1
1

+ |ỹ − α2 A x̃|2
H2,α

−1
2

(1.1)

being valid for any conforming mixed approximation (x̃, ỹ) ∈ D(A) ×D(A∗) of the
exact solution (x, y) ∈ D(A)×D(A∗).

Functional a posteriori error estimates for combined norms were first exposed in
the paper [16], where the authors present two-sided estimates bounding the error by
the same quantity from below and from above aside from multiplicative constants.
Unlike in other estimates, these constants are 1 and

√
3. In [16] the authors studied

problems of the type

A∗ αAx = f, (1.2)

i.e., the case α = α2, α1 = 0.
The paper is organized as follows. In Section 2 we prove our main results for

a simple model problem and show the strong connection to the classical functional
a posteriori error estimates. In Section 3 we derive our main results in an abstract
Hilbert space setting and in Section 4 we show applications of the general results to
several classical problems. Section 5 is devoted to inhomogeneous boundary con-
ditions and finally in Section 6 we present some numerical experiments to confirm
our theoretical results.
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2 Results for a Model Problem

Let Ω ⊂ R
d, d ≥ 1, be open and without loss of generality connected, so let Ω

be a domain with boundary Γ := ∂Ω. We emphasize that Ω may be bounded or
unbounded, like an exterior domain, or non of both. Moreover, Γ does not need to
have any smoothness. We denote by 〈 · , · 〉L2 and | · |L2 the inner product and the
norm in L2 for scalar-, vector- and matrix-valued functions. Throughout the paper
we will not indicate the dependence on Ω in our notations of the functional spaces.
Moreover, we define the usual Sobolev spaces

H1 := {ϕ ∈ L2 | ∇ϕ ∈ L2}, D := {ψ ∈ L2 | divψ ∈ L2}
and as the closure of smooth and compactly supported test functions1

H1
Γ := C∞

Γ

H1

.

These are Hilbert spaces equipped with the respective graph norms denoted by
| · |H1 , | · |D .

Our simple model reaction-diffusion problem reads as follows: Find the potential
u ∈ H1

Γ, i.e., the primal variable, such that

−Δu+ u = − div∇u+ u = f, (2.1)

where f ∈ L2 is the source term. The variational formulation of this problem consists
of finding u ∈ H1

Γ such that

∀ϕ ∈ H1
Γ 〈∇u,∇ϕ〉L2 + 〈u, ϕ〉L2 = 〈f, ϕ〉L2 . (2.2)

The natural energy norm for this problem is | · |H1 . Of course, by the Lax-Milgram
lemma or Riesz’ representation theorem (2.2) has a unique solution u ∈ H1

Γ satisfying

|u|H1 ≤ |f |L2 .
Often, a variable of interest is also the flux, i.e., the dual variable,

p := ∇u ∈ D,

leading to the mixed formulation

− div p+ u = f, ∇u = p.

We note that indeed by (2.2) the flux p belongs to D and div p = u − f holds. Let us
further emphasize that even

p ∈ D ∩∇H1
Γ

holds, this is, p is also irrotational, has got vanishing tangential trace and is L2-
perpendicular to the so-called Dirichlet fields.

We will understand a pair (ũ, p̃) ∈ H1
Γ ×D without further requirements as an

approximation of the exact solution pair (u, p) ∈ H1
Γ ×D. For the convenience of

the reader, we first present the classical functional error upper bounds, frequently
called error majorants, for the approximations of u and p.

1The spaces C∞
Γ and H1

Γ are often denoted by C∞
◦ and H1

◦.
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Theorem 2.1. For any approximation ũ ∈ H1
Γ of the exact potential u

|u− ũ|2H1 = min
ψ∈D

M∇(ũ, ψ) = M∇(ũ, p), (2.3)

holds, where

M∇(ũ, ψ) := |f − ũ+ divψ|2L2 + |ψ −∇ũ|2L2 . (2.4)

Proof. To derive the upper bound, we subtract 〈∇ũ,∇ϕ〉L2 + 〈ũ, ϕ〉L2 from both sides
of the generalized form (2.2), and obtain for all ϕ ∈ H1

Γ

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 = 〈f − ũ, ϕ〉L2 − 〈∇ũ,∇ϕ〉L2 . (2.5)

For an arbitrary function ψ ∈ D and any ϕ ∈ H1
Γ we have 〈divψ, ϕ〉L2+〈ψ,∇ϕ〉L2 = 0.

By adding this to the right hand side of (2.5) it becomes

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 = 〈f − ũ+ divψ, ϕ〉L2 + 〈ψ −∇ũ,∇ϕ〉L2
≤ |f − ũ+ divψ|L2 |ϕ|L2 + |ψ −∇ũ|L2 |∇ϕ|L2 (2.6)

≤ M∇(ũ, ψ)
1/2|ϕ|H1 .

By choosing ϕ := u − ũ ∈ H1
Γ we obtain |u − ũ|2

H1 ≤ M∇(ũ, ψ). Since p ∈ D, we see
that M∇(ũ, p) = |u− ũ|2

H1 .

As the majorant M∇ is sharp, it immediately provides a technique to obtain ap-
proximations for the exact flux p. Minimizing M∇(ψ) := M∇(ũ, ψ) with respect to ψ
yields by differentiation for all ψ ∈ D

0
!
= M ′

∇(p)ψ = 2〈f − ũ+ div p, divψ〉L2 + 2〈p−∇ũ, ψ〉L2
= 2〈f + div p, divψ〉L2 + 2〈p, ψ〉L2

since 〈ũ, divψ〉L2 = −〈∇ũ, ψ〉L2 because ũ ∈ H1
Γ. Hence the following problem occurs:

Find p ∈ D such that

∀ψ ∈ D 〈div p, divψ〉L2 + 〈p, ψ〉L2 = −〈f, divψ〉L2 . (2.7)

Note that ũ is not present here and the natural energy norm for this problem is | · |D .
Once again, by the Lax-Milgram lemma (2.7) has a unique solution p ∈ D satisfying

|p|D ≤ |f |L2 .

Since ∇u ∈ D solves (2.7), i.e., with (2.1)

〈div∇u, divψ〉L2 = 〈u, divψ〉L2 − 〈f, divψ〉L2 = −〈∇u, ψ〉L2 − 〈f, divψ〉L2 ,

we get indeed p = ∇u.
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Remark 2.2.

(i) The variational formulation (2.7) for p can also be achieved by testing (2.1)
with divψ for all ψ ∈ D since

−〈f, divψ〉L2 = 〈div∇u, divψ〉L2 − 〈u, divψ〉L2
= 〈div∇u, divψ〉L2 + 〈∇u, ψ〉L2 = 〈div p, divψ〉L2 + 〈p, ψ〉L2 .

(ii) By (2.7)
p⊥ D0 := {v ∈ D | div v = 0}

holds. Thus, by the Helmholtz decomposition, i.e., L2 = ∇H1
Γ ⊕ D0, we get

p ∈ ∇H1
Γ. Here, ⊥ and ⊕ denote orthogonality and the orthogonal sum in L2.

(iii) (2.7) is the dual problem to (2.2) and its strong formulation in duality to (2.1)
is

−∇ div p+ p = ∇f (2.8)

with mixed formulation

∇v + p = ∇f, − div p = v.

We note that in general div p does not belong to H1
Γ, not even to H1. On the

other hand, by (2.7) we see div p+f ∈ H1
Γ with ∇(div p+f) = p and the natural

Neumann boundary condition div p + f = 0 at Γ appears. Hence f belongs to
H1

Γ, if and only if v := − div p ∈ H1
Γ, and f ∈ H1, if and only if v ∈ H1. In both

cases (2.8) holds and moreover for all ϕ ∈ H1
Γ

〈∇v,∇ϕ〉L2 + 〈v, ϕ〉L2 = −〈p,∇ϕ〉L2 + 〈v, ϕ〉L2 + 〈∇f,∇ϕ〉L2 = 〈∇f,∇ϕ〉L2 ,

thus v ∈ H1 solves in the strong sense −Δv + v = −Δf and v = f at Γ if
Δf ∈ L2.

Theorem 2.3. For any approximation p̃ ∈ D of the exact flux p

|p− p̃|2D = min
ϕ∈H1

Γ

Mdiv(p̃, ϕ) = Mdiv(p̃, u), (2.9)

holds, where

Mdiv(p̃, ϕ) := |f − ϕ+ div p̃|2L2 + |p̃−∇ϕ|2L2 . (2.10)

Proof. We add −〈div p̃, divψ〉L2 − 〈p̃, ψ〉L2 to the both sides of the variational formu-
lation (2.7) and obtain for all ψ ∈ D

〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2 = −〈f + div p̃, divψ〉L2 − 〈p̃, ψ〉L2 . (2.11)
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For any ϕ ∈ H1
Γ we have again 〈∇ϕ, ψ〉L2 + 〈ϕ, divψ〉L2 = 0. By adding this to the

right hand side of (2.11) it becomes

〈div(p− p̃), divψ〉L2+〈p− p̃, ψ〉L2 = −〈f − ϕ+ div p̃, divψ〉L2 − 〈p̃−∇ϕ, ψ〉L2
≤ |f − ϕ+ div p̃|L2 | divψ|L2 + |p̃−∇ϕ|L2 |ψ|L2 (2.12)

≤ Mdiv(p̃, ϕ)
1/2|ψ|D .

Choosing ψ = p − p̃ ∈ D yields |p − p̃|2D ≤ Mdiv(p̃, ϕ). Finally Mdiv(p̃, u) = |p − p̃|2D
follows by u ∈ H1

Γ.

As before, the sharpness of the majorant Mdiv gives us a technique to obtain ap-
proximations of the potential u. In fact, global minimization of Mdiv(ϕ) := Mdiv(p̃, ϕ)
with respect to ϕ would lead to the variational formulation (2.2) for finding u, since
for all ϕ ∈ H1

Γ

0
!
= M ′

div(u)ϕ = −2〈f − u+ div p̃, ϕ〉L2 − 2〈p̃−∇u,∇ϕ〉L2
= 2〈u− f, ϕ〉L2 + 2〈∇u,∇ϕ〉L2

since 〈div p̃, ϕ〉L2 = −〈p̃,∇ϕ〉L2 by p̃ ∈ D.
Finally, we note that the functional a posteriori error majorants M∇ and Mdiv

contain only the problem data, conforming numerical approximations and the free
functions ψ and ϕ.

We define the combined norm for the reaction-diffusion problem in a canonical
way as the sum of the energy norms for the potential and the flux:

‖(ϕ, ψ)‖2 := |ϕ|2H1 + |ψ|2D = |ϕ|2L2 + |∇ϕ|2L2 + |ψ|2L2 + | divψ|2L2

Remark 2.4. We know |u|H1 ≤ |f |L2 and |p|D ≤ |f |L2 . It is indeed notable that

‖(u, p)‖ = |f |L2

holds, which follows immediately by f = − div p+ u and p = ∇u since

|f |2L2 = | div p|2L2 + |u|2L2 − 2〈div p, u〉L2 = | div p|2L2 + |u|2L2 + 2|p|2L2 = ‖(u, p)‖2.

Hence the solution operator

L : L2 → H1
Γ ×D; f �→ (u, p)

has norm |L| = 1, i.e., L is an isometry.

Our main result for this simple reaction-diffusion problem basically combines
Theorems 2.1 and 2.3. However, we outline that the resulting right hand side does
not contain u or p anymore and is even an equality.
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Theorem 2.5. For any approximation (ũ, p̃) ∈ H1
Γ ×D of the exact solution (u, p)

‖(u, p)− (ũ, p̃)‖2 = Mmix(ũ, p̃) (2.13)

and the normalized counterpart

‖(u, p)− (ũ, p̃)‖2
‖(u, p)‖2 =

Mmix(ũ, p̃)

|f |2
L2

(2.14)

hold, where

Mmix(ũ, p̃) := M∇(ũ, p̃) = Mdiv(p̃, ũ) = |f − ũ+ div p̃|2L2 + |p̃−∇ũ|2L2 . (2.15)

The error in the combined norm can thus be exactly computed by quantities we
already know: the given problem data f and the conforming approximation (ũ, p̃).

Proof. Set ψ = p̃ in (2.6) and ϕ = ũ in (2.12). Then, for any ϕ ∈ H1
Γ and any ψ ∈ D we

have

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 =〈f − ũ+ div p̃, ϕ〉L2 + 〈p̃−∇ũ,∇ϕ〉L2 , (2.16)

〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2 =−〈f − ũ+ div p̃, divψ〉L2− 〈p̃−∇ũ, ψ〉L2 . (2.17)

Adding (2.16) and (2.17) we obtain

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 + 〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2
= 〈f − ũ+ div p̃, ϕ− divψ〉L2 + 〈p̃−∇ũ,∇ϕ− ψ〉L2 .

(2.18)

By choosing ϕ := u− ũ ∈ H1
Γ and ψ := p− p̃ ∈ D, the left hand side of (2.18) turns to

the combined norm of the error of the approximation. Since we have

ϕ− divψ = u− ũ− div p+ div p̃ = f − ũ+ div p̃,

∇ϕ− ψ = ∇u−∇ũ− p+ p̃ = p̃−∇ũ,

(2.18) becomes (2.13). Putting ũ = 0, p̃ = 0 in (2.13) shows ‖(u, p)‖ = |f |L2 and thus
(2.14).

Remark 2.6.

(i) We note the similarity of the error majorants in Theorems 2.1, 2.3 and 2.5.

(ii) It is clear that Theorem 2.5 generalizes Theorems 2.1 and 2.3 since these two
can be recovered from Theorem 2.5. We just estimate

M∇(ũ, p) = |u− ũ|2H1 ≤ ‖(u, p)− (ũ, p̃)‖2 = Mmix(ũ, p̃) = M∇(ũ, p̃)

and note that the left hand side does not depend on ψ := p̃ ∈ D. Analogously
we estimate

Mdiv(p̃, u) = |p− p̃|2D ≤ ‖(u, p)− (ũ, p̃)‖2 = Mmix(ũ, p̃) = Mdiv(p̃, ũ)

and note that the left hand side does not depend on ϕ := ũ ∈ H1
Γ.
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Remark 2.7. There is a simple proof of Theorem 2.5 using just (2.1) and p = ∇u:

Mmix(ũ, p̃) = |f − ũ+ div p̃|2L2 + |p̃−∇ũ|2L2
= |u− ũ+ div p̃− div p|2L2 + |p̃− p+∇u−∇ũ|2L2
= |u− ũ|2L2 + | div(p̃− p)|2L2 + 2〈u− ũ, div(p̃− p)〉L2

+ |p̃− p|2L2 + |∇(u− ũ)|2L2 + 2〈p̃− p,∇(u− ũ)〉L2
= ‖(u, p)− (ũ, p̃)‖2

In the last line we have used as before 〈u − ũ, div(p̃ − p)〉L2 = −〈∇(u − ũ), p̃ − p〉L2
since u− ũ ∈ H1

Γ. This shows immediately, that Theorem 2.5 extends to more general
situations as well. E.g. inhomogeneous boundary conditions can be treated since
only u− ũ ∈ H1

Γ is needed.

3 Results for the General Case

In this section we derive our main result in an abstract setting which allows for
mixed boundary conditions as well as coefficients for the PDEs. We will prove the
main result by using the simple approach presented in Remark 2.7.

Let H1 and H2 be two Hilbert spaces with inner products 〈 · , · 〉H1 and 〈 · , · 〉H2 ,
respectively. Moreover, let A : D(A) ⊂ H1 → H2 be a densely defined and closed
linear operator and A∗ : D(A∗) ⊂ H2 → H1 its adjoint. We note A∗∗ = Ā = A and

∀ϕ ∈ D(A) ∀ψ ∈ D(A∗) 〈Aϕ, ψ〉H2 = 〈ϕ,A∗ ψ〉H1 . (3.1)

Equipped with the natural graph norms D(A) and D(A∗) are Hilbert spaces. Fur-
thermore, we introduce two linear, self adjoint and positive topological isomor-
phisms α1 : H1 → H1 and α2 : H2 → H2. Especially we have

∃ c > 0 ∀ϕ ∈ H1 c−1|ϕ|2H1
≤ 〈α1ϕ, ϕ〉H1 ≤ c|ϕ|2H1

and the corresponding holds for α2. For any inner product and corresponding norm
we introduce weighted counterparts with sub-index notation. For example, for ele-
ments from H1 we define a new inner product 〈 · , · 〉H1,α1 := 〈α1 · , · 〉H1 and a new in-
duced norm | · |H1,α1 . Using this notation we can define for ϕ ∈ D(A) and ψ ∈ D(A∗)
new weighted norms on D(A), D(A∗) as well as on the product space D(A)×D(A∗)
by

|ϕ|2D(A),α1,α2
:= |ϕ|2H1,α1

+ |Aϕ|2H2,α2
,

|ψ|2
D(A∗),α−1

1 ,α−1
2

:= |ψ|2
H2,α

−1
2

+ |A∗ ψ|2
H1,α

−1
1
,

‖(ϕ, ψ)‖2 := |ϕ|2D(A),α1,α2
+ |ψ|2

D(A∗),α−1
1 ,α−1

2
.

Let f ∈ H1. By the Lax-Milgram lemma (or by Riesz’ representation theorem) we
get immediately:
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Lemma 3.1. The (primal) variational problem

∀ϕ ∈ D(A) 〈Ax,Aϕ〉H2,α2 + 〈x, ϕ〉H1,α1 = 〈f, ϕ〉H1 (3.2)

admits a unique solution x ∈ D(A) satisfying |x|D(A),α1,α2 ≤ |f |H1,α
−1
1

. Also, yx := α2 Ax

belongs to D(A∗) and A∗ yx = f − α1x. Hence, the strong and mixed formulations

A∗ α2 Ax+ α1x = f, (3.3)
A∗ yx + α1x = f, α2 Ax = yx (3.4)

hold with (x, yx) ∈ D(A)× (
D(A∗)× α2R(A)

)
.

To get the dual problem, we multiply the first equation of (3.4) by A∗ ψ with
ψ ∈ D(A∗) taking the right weighted scalar product and use yx = α2 Ax ∈ D(A∗).
We obtain

〈A∗ yx,A∗ ψ〉H1,α
−1
1

+ 〈α1x,A
∗ ψ〉H1,α

−1
1

= 〈f,A∗ ψ〉H1,α
−1
1
.

Since x ∈ D(A)

〈α1x,A
∗ ψ〉H1,α

−1
1

= 〈x,A∗ ψ〉H1 = 〈Ax, ψ〉H2 = 〈yx, ψ〉H2,α
−1
2

holds, we get again by the Lax-Milgram’s lemma

Lemma 3.2. The (dual) variational problem

∀ψ ∈ D(A∗) 〈A∗ y,A∗ ψ〉H1,α
−1
1

+ 〈y, ψ〉H2,α
−1
2

= 〈f,A∗ ψ〉H1,α
−1
1

(3.5)

admits a unique solution y ∈ D(A∗) satisfying |y|D(A∗),α−1
1 ,α−1

2
≤ |f |H1,α

−1
1

. Moreover,
y = yx holds and thus y even belongs to D(A∗) ∩ α2R(A) with x and yx from Lemma 3.1.
Furthermore, α−1

1 (A∗ y − f) ∈ D(A) with Aα−1
1 (A∗ y − f) = −α−1

2 y.

Proof. We just have to show that yx ∈ D(A∗) solves (3.5). But this follows directly
since for all ψ ∈ D(A∗)

〈A∗ yx,A∗ ψ〉H1,α
−1
1

= −〈x,A∗ ψ〉H1 + 〈f,A∗ ψ〉H1,α
−1
1

= −〈Ax, ψ〉H2 + 〈f,A∗ ψ〉H1,α
−1
1

= −〈yx, ψ〉H2,α
−1
2

+ 〈f,A∗ ψ〉H1,α
−1
1
.

Hence yx = y and A∗∗ = A completes the proof.

Remark 3.3. We know |x|D(A),α1,α2 ≤ |f |H1,α
−1
1

and |y|D(A∗),α−1
1 ,α−1

2
≤ |f |H1,α

−1
1

. It is
indeed notable that

‖(x, y)‖ = |f |H1,α
−1
1

holds, which follows immediately by y = α2 Ax and

|f |2
H1,α

−1
1

= |A∗ α2 Ax+ α1x|2H1,α
−1
1

= |A∗ y|2
H1,α

−1
1

+ |α1x|2H1,α
−1
1

+ 2 〈A∗ α2 Ax, α1x〉H1,α
−1
1︸ ︷︷ ︸

= 〈A∗ α2 Ax, x〉H1

= |A∗ y|2
H1,α

−1
1

+ |x|2H1,α1
+ 2 〈α2 Ax,Ax〉H2︸ ︷︷ ︸

= |Ax|2H2,α2

= ‖(x, y)‖2.
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Thus the solution operator

L : H1 → D(A)×D(A∗); f �→ (x, y)

(equipped with the proper weighted norms) has norm |L| = 1, i.e., L is an isometry.

By the latter remark the mixed norm on D(A) × D(A∗) yields an isomtery. This
motivates to use the mixed norm also for error estimates. As it turns out, we even
obtain an error equality. We present our main result of the paper.

Theorem 3.4. Let (x, y), (x̃, ỹ) ∈ D(A) × D(A∗) be the exact solution of (3.4) and any
conforming approximation, respectively. Then

‖(x, y)− (x̃, ỹ)‖2 = M(x̃, ỹ) (3.6)

and the normalized counterpart

‖(x, y)− (x̃, ỹ)‖2
‖(x, y)‖2 =

M(x̃, ỹ)

|f |2
H1,α

−1
1

(3.7)

hold, where

M(x̃, ỹ) := |f − α1x̃− A∗ ỹ|2
H1,α

−1
1

+ |ỹ − α2 A x̃|2
H2,α

−1
2
. (3.8)

Proof. Using (3.3) and inserting 0 = α2 Ax− y we get by (3.1)

M(x̃, ỹ) = |α1x− α1x̃+A∗ y − A∗ ỹ|2
H1,α

−1
1

+ |ỹ − y + α2 Ax− α2 A x̃|2
H2,α

−1
2

= |x− x̃|2H1,α1
+ |A∗(y − ỹ)|2

H1,α
−1
1

+ 2〈α1(x− x̃),A∗(y − ỹ)〉H1,α
−1
1

+ |ỹ − y|2
H2,α

−1
2

+ |A(x− x̃)|2H2,α2
+ 2〈ỹ − y, α2 A(x− x̃)〉H2,α

−1
2

= |x− x̃|2D(A),α1,α2
+ |y − ỹ|2

D(A∗),α−1
1 ,α−1

2

+ 2〈x− x̃,A∗(y − ỹ)〉H1 − 2〈A(x− x̃), y − ỹ〉H2

= ‖(x, y)− (x̃, ỹ)‖2.
(3.7) follows by the isometry property in Remark 3.3, completing the proof.

We note that the isometry property, i.e., ‖(x, y)‖ = |f |H1,α
−1
1

, can be seen by insert-
ing (x̃, ỹ) = (0, 0) into (3.6) as well.

Remark 3.5. Theorem 3.4 can also be deduced as a special case of the equation [9,
(7.2.14)] in the book of Neittaamäki and Repin.

Remark 3.6. Of course, the majorant M is continuous. Especially we have

M(x̃, ỹ)
x̃→x in D(A)−−−−−−−→|y − ỹ|2

D(A∗),α−1
1 ,α−1

2
= M(x, ỹ),

M(x̃, ỹ)
ỹ→y in D(A∗)−−−−−−−−→|x− x̃|2D(A),α1,α2

= M(x̃, y)

and M(x̃, ỹ) → M(x, y) = 0 if (x̃, ỹ) → (x, y) in D(A) × D(A∗). This suggests that
the majorant M can also be used as an error indicator for adaptive computations,
even though the equality (3.6) is global.
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Corollary 3.7. Theorem 3.4 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any x̃ ∈ D(A) it holds |x− x̃|2D(A),α1,α2
= min

ψ∈D(A∗)
M(x̃, ψ) = M(x̃, y).

(ii) For any ỹ ∈ D(A∗) it holds |y − ỹ|2
D(A∗),α−1

1 ,α−1
2

= min
ϕ∈D(A)

M(ϕ, ỹ) = M(x, ỹ).

Proof. We just have to estimate

|x− x̃|2D(A),α1,α2
≤ ‖(x, y)− (x̃, ỹ)‖2 = M(x̃, ỹ)

and note that the left hand side does not depend on ỹ ∈ D(A∗). By setting
ψ := ỹ ∈ D(A∗) we get

|x− x̃|2D(A),α1,α2
≤ inf

ψ∈D(A∗)
M(x̃, ψ).

But for ψ = y ∈ D(A∗) we see M(x̃, y) = |x − x̃|2D(A),α1,α2
, which proves (i). Analo-

gously, we estimate

|y − ỹ|2
D(A∗),α−1

1 ,α−1
2

≤ ‖(x, y)− (x̃, ỹ)‖2 = M(x̃, ỹ)

and note that the left hand side does not depend on x̃ ∈ D(A). Setting ϕ := x̃ ∈ D(A)
we get

|y − ỹ|2
D(A∗),α−1

1 ,α−1
2

≤ inf
ϕ∈D(A)

M(ϕ, ỹ).

But for ϕ = x ∈ D(A) we see M(x, ỹ) = |y − ỹ|2
D(A∗),α−1

1 ,α−1
2

, which shows (ii).

Remark 3.8.

(i) Since y⊥α−1
2

N(A∗) by (3.5) we get immediately y ∈ α2R(A) by the Helmholtz
decomposition H2 = N(A∗)⊕α−1

2
α2R(A).

(ii) If α−1
1 f ∈ D(A) we have z := α−1

1 A∗ y ∈ D(A) and the strong and mixed
formulations of (3.5) read

Aα−1
1 A∗ y + α−1

2 y = Aα−1
1 f,

A z + α−1
2 y = Aα−1

1 f, α−1
1 A∗ y = z.

Then for all ϕ ∈ D(A) we have

〈A z,Aϕ〉H2,α2 + 〈z, ϕ〉H1,α1 = −〈y,Aϕ〉H2 + 〈z, ϕ〉H1,α1 + 〈Aα−1
1 f, Aϕ〉H2,α2

= 〈Aα−1
1 f, Aϕ〉H2,α2

and hence z ∈ (
D(A) ∩ α−1

1 R(A∗)
) ⊂ D(A) is the unique solution of this

variational problem. Moreover, we have α2(A z − Aα−1
1 f) ∈ D(A∗) and also

A∗ α2(A z − Aα−1
1 f) = −α1z. If α2 Aα−1

1 f belongs to D(A∗) then this yields
α2 A z ∈ D(A∗) and the strong equation

A∗ α2 A z + α1z = A∗ α2 Aα−1
1 f.
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Our error equalities may also be used to compute the radius of the indeterminacy
set of solutions in terms of the radius of the indeterminacy set of right hand sides.
Often the right hand f of a problem is not known exactly but known to belong to an
indeterminacy ball around some known mean data f̂ . Let us write f = f̂+fosc. Since
the solution operator L from Remark 3.3 is an isometry, we have for the solutions
(x, y) = (x̂, ŷ) + (xosc, yosc)

‖(xosc, yosc)‖ = ‖Lfosc‖ = |fosc|H1,α
−1
1
.

Hence, the solutions belong to a ball of the same radius as the data. In other words,
any modeling error is mapped to an error of same size. If the magnitude of the oscil-
lating part fosc is known, we also know the magnitude of variations of the solution
set.

3.1 Application to Time Discretization

One main application of our error equalities might be that equations of the type

A∗ α2 Ax+ α1x = f (3.9)

naturally occur in many types of time discretizations for plenty of linear wave prop-
agation models. A large class of wave propagation models, like electro-magnetics,
acoustics or elasticity, have the structure

(∂tΛ
−1 +M)

[
x
y

]
=

[
g
h

]
, M =

[
0 −A∗

A 0

]
, Λ =

[
λ1 0
0 λ2

]
or

∂tλ
−1
1 x− A∗ y = g, ∂tλ

−1
2 y +A x = h (3.10)

with initial condition (x, y)(0) = (x0, y0). Often the material is assumed to be time-
independent, i.e., Λ does not depend on time. In this case iΛM is selfadjoint in the
proper Hilbert spaces and the solution theory follows immediately by the spectral
theorem. We note that formally the second order wave equation(

∂2
t − (ΛM)2

) [x
y

]
= (∂t − ΛM)Λ

[
g
h

]
, (ΛM)2 =

[−λ1 A
∗ λ2 A 0
0 −λ2 Aλ1A

∗

]
holds. A standard implizit time discretization for (3.10) is e.g. the backward Euler
scheme, i.e.,

δ−1
n λ−1

1 (xn − xn−1)−A∗ yn = gn, δ−1
n (yn − yn−1) + λ2 Axn = λ2hn, δn := tn − tn−1.

Hence, we obtain e.g. for xn

A∗ λ2Axn + δ−2
n λ−1

1 xn = fn := A∗(λ2hn + δ−1
n yn−1) + δ−2

n λ−1
1 xn−1 + δ−1

n gn

provided that λ2hn ∈ D(A∗). Therefore (3.9) holds for xn with e.g. α1 = δ−2
n λ−1

1

and α2 = λ2. Of course, a similar equation holds for yn as well. We note that our
arguments extend to ‘all’ practically used time discretizations.

Functional a posteriori error estimates for wave equations can be found in [15,
12].
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4 Applications

We will discuss some standard applications. Let Ω ⊂ R
d, d ≥ 1. Since we want to

handle mixed boundary conditions, let us assume for simplicity, that Ω is a bounded
or an exterior domain with (compact) Lipschitz continuous boundary Γ. Moreover,
let ΓD be an open subset of Γ and ΓN := Γ \ ΓD its complement. We will denote by n
the outward unit normal of the boundary. The results presented in this section are
direct consequences of Theorem 3.4 and, of course, Lemmas 3.1, 3.2 and Remarks
3.6, 3.3 as well as Corollary 3.7 hold for all special applications.

4.1 Reaction-Diffusion

Find the scalar potential u ∈ H1, such that

− divα∇u+ ρ u = f in Ω,

u = 0 on ΓD, (4.1)
n · α∇u = 0 on ΓN.

The quadratic diffusion matrix α ∈ L∞ is symmetric, real valued and uniformly
positive definite. The reaction coefficient ρ ≥ ρ0 > 0 belongs to L∞ and the source
f to L2. The dual variable for this problem is the flux p = α∇u ∈ D. We need more
Sobolev spaces

H1
ΓD

:= C∞
ΓD

H1

, DΓN
:= C∞

ΓN

D
, DΓN,0 := {ψ ∈ DΓN

| divψ = 0},
where C∞

ΓD
resp. C∞

ΓN
are smooth test functions resp. vector fields having supports

bounded away from ΓD resp. ΓN. In the following we show the relation to the nota-
tion of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)
ρ α ∇ − div L2 L2 H1

ΓD
DΓN

We note that indeed D(A∗) = DΓN
holds for Lipschitz domains, see e.g. [5], which is

not trivial at all. The relation (3.1) reads now

∀ϕ ∈ H1
ΓD

∀ψ ∈ DΓN
〈∇ϕ, ψ〉L2 = −〈ϕ, divψ〉L2 .

Considering the norms we have

|u|2H1,ρ,α = |u|2L2,ρ + |∇u|2L2,α,
|p|2D,ρ−1,α−1 = |p|2L2,α−1 + | div p|2L2,ρ−1 ,

‖(u, p)‖2 = |u|2H1,ρ,α + |p|2D,ρ−1,α−1 .

Now (4.1) reads: Find u ∈ H1
ΓD

with α∇u ∈ DΓN
such that

− divα∇u+ ρ u = f. (4.2)
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Equivalently, in mixed formulation we have: Find (u, p) ∈ H1
ΓD
×DΓN

such that

− div p+ ρ u = f, α∇u = p. (4.3)

The primal and dual variational problems are: Find (u, p) ∈ H1
ΓD
×DΓN

such that

∀ϕ ∈ H1
ΓD

〈∇u,∇ϕ〉L2,α + 〈u, ϕ〉L2,ρ = 〈f, ϕ〉L2 ,
∀ψ ∈ DΓN

〈div p, divψ〉L2,ρ−1 + 〈p, ψ〉L2,α−1 = −〈f, divψ〉L2,ρ−1 .

Theorem 4.1. Let (u, p), (ũ, p̃) ∈ H1
ΓD
×DΓN

be the exact solution of (4.3) and any approxi-
mation, respectively. Then

‖(u, p)− (ũ, p̃)‖2 = Mrd(ũ, p̃),
‖(u, p)− (ũ, p̃)‖2

‖(u, p)‖2 =
Mrd(ũ, p̃)

|f |2
L2,ρ−1

hold, where Mrd(ũ, p̃) = |f − ρũ+ div p̃|2
L2,ρ−1 + |p̃− α∇ũ|2

L2,α−1 .

Remark 4.2. We note |u|H1,ρ,α ≤ |f |L2,ρ−1 and |p|D,ρ−1,α−1 ≤ |f |L2,ρ−1 and indeed

‖(u, p)‖ = |f |L2,ρ−1 .

The solution operator L : L2 → H1
ΓD
×DΓN

; f �→ (u, p) is an isometry, i.e. |L| = 1.

Corollary 4.3. Theorem 4.1 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any ũ ∈ H1
ΓD

it holds |u− ũ|2H1,ρ,α = min
ψ∈DΓN

Mrd(ũ, ψ) = Mrd(ũ, p).

(ii) For any p̃ ∈ DΓN
it holds |p− p̃|2D,ρ−1,α−1 = min

ϕ∈H1
ΓD

Mrd(ϕ, p̃) = Mrd(u, p̃).

Remark 4.4. We have p = α∇u ∈ DΓN
∩α∇H1

ΓD
and u and (u, p) solve (4.2) and (4.3),

respectively. Moreover, div p+ f ∈ ρH1
ΓD

with

∇ρ−1(div p+ f) = α−1p ∈ ∇H1
ΓD

= RΓD,0 ∩H⊥
ΓD,ΓN

.

Hence, for f ∈ ρH1 we have div p ∈ ρH1 and therefore the strong and mixed formu-
lations of the dual problem

−∇ρ−1 div p+ α−1p = ∇ρ−1f in Ω,

∇v + α−1p = ∇ρ−1f, −ρ−1 div p = v in Ω

hold, which are completed by the equations

div p+ f = 0 on ΓD,

n · p = 0 on ΓN,

rotα−1p = 0 in Ω,

n× α−1p = 0 on ΓD,

α−1p ⊥ HΓD,ΓN
.

Here the Dirichlet-Neumann fields HΓD,ΓN
and the space RΓD,0 will be defined in Sec-

tion 4.2. Of course, ρv = f on ΓD and by ρv ∈ divDΓN
we also have ρv⊥R if Γ = ΓN.

For related results and numerical tests for exterior domains see e.g. [10, 7].
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4.2 Eddy-Current (3D)

Let d = 3. The problem reads: Find the electric field E ∈ R such that

rotμ−1 rotE + εE = J in Ω,

n× E = 0 on ΓD, (4.4)
n× μ−1 rotE = 0 on ΓN,

where
R := {Φ ∈ L2 | rot Φ ∈ L2}, R0 := {Φ ∈ R | rot Φ = 0}.

We assume that the magnetic permeability μ and the electric permittivity ε are sym-
metric, real valued and uniformly positive definite matrices from L∞. Of course,
the extension to complex valued matrices is straight forward. The electric current J
belongs to L2. The dual variable for this problem is the magnetic field H = μ−1 rotE
which belongs to R. We define the Sobolev spaces

RΓD
:= C∞

ΓD

R
, RΓD,0 := {Φ ∈ RΓD

| rot Φ = 0}
and analogously RΓN

and RΓN,0. Moreover, we introduce the co-called Dirichlet-
Neumann and Neumann-Dirichlet fields by

HΓD,ΓN
:= RΓD,0 ∩DΓN,0 = {Ψ ∈ RΓD

∩DΓN
| rotΨ = 0 ∧ divΨ = 0},

HΓN,ΓD
:= RΓN,0 ∩DΓD,0 = {Ψ ∈ RΓN

∩DΓD
| rotΨ = 0 ∧ divΨ = 0},

respectively. In the following we show the relation to the notation of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)
ε μ−1 rot rot L2 L2 RΓD

RΓN

We note that indeed D(A∗) = RΓN
holds for Lipschitz domains, see e.g. [5], which is

not trivial at all. The relation (3.1) reads now

∀Φ ∈ RΓD
∀Ψ ∈ RΓN

〈rot Φ,Ψ〉L2 = 〈Φ, rotΨ〉L2 .
Considering the norms we have

|E|2R,ε,μ−1 = |E|2L2,ε + | rotE|2L2,μ−1 ,

|H|2R,ε−1,μ = |H|2L2,μ + | rotH|2L2,ε−1 ,

‖(E,H)‖2 = |E|2R,ε,μ−1 + |H|2R,ε−1,μ.

Now (4.4) reads: Find E ∈ RΓD
with μ−1 rotE ∈ RΓN

such that

rotμ−1 rotE + εE = J.

In mixed formulation we have: Find (E,H) ∈ RΓD
×RΓN

such that

rotH + εE = J, μ−1 rotE = H.

The primal and dual variational problems are: Find (E,H) ∈ RΓD
×RΓN

such that

∀Φ ∈ RΓD
〈rotE, rot Φ〉L2,μ−1 + 〈E,Φ〉L2,ε = 〈J,Φ〉L2 ,

∀Ψ ∈ RΓN
〈rotH, rotΨ〉L2,ε−1 + 〈H,Ψ〉L2,μ = 〈J, rotΨ〉L2,ε−1 .
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Theorem 4.5. For any approximation (Ẽ, H̃) ∈ RΓD
×RΓN

‖(E,H)− (Ẽ, H̃)‖2 = Mec(Ẽ, H̃),
‖(E,H)− (Ẽ, H̃)‖2

‖(E,H)‖2 =
Mec(Ẽ, H̃)

|J |2
L2,ε−1

hold, where Mec(Ẽ, H̃) = |J − εẼ − rot H̃|2
L2,ε−1 + |H̃ − μ−1 rot Ẽ|2

L2,μ
.

Remark 4.6. We note |E|R,ε,μ−1 ≤ |J |L2,ε−1 and |H|R,ε−1,μ ≤ |J |L2,ε−1 and indeed

‖(E,H)‖ = |J |L2,ε−1 .

The solution operator L : L2 → RΓD
×RΓN

; f �→ (E,H) is an isometry, i.e. |L| = 1.

Corollary 4.7. Theorem 4.5 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any Ẽ ∈ RΓD
it holds |E − Ẽ|2R,ε,μ−1 = min

Ψ∈RΓN

Mec(Ẽ,Ψ) = Mec(Ẽ,H).

(ii) For any H̃ ∈ RΓN
it holds |H − H̃|2R,ε−1,μ = min

Φ∈RΓD

Mec(Φ, H̃) = Mec(E, H̃).

Remark 4.8. We have H = μ−1 rotE ∈ RΓN
∩μ−1 rotRΓD

and E and (E,H) solve the
strong and mixed formulation, respectively. Moreover, we have rotH − J ∈ εRΓD

with rot ε−1(rotH − J) = −μH belonging to rotRΓD
= DΓD,0 ∩H⊥

ΓN,ΓD
. Hence, for

J ∈ εR we have rotH ∈ εR and therefore the strong and mixed formulations of the
dual problem

rot ε−1 rotH + μH = rot ε−1J in Ω,

rotD + μH = rot ε−1J, ε−1 rotH = D in Ω

hold, which are completed by the equations

n× ε−1(rotH − J) = 0 on ΓD,

n×H = 0 on ΓN,

div μH = 0 in Ω,

n · μH = 0 on ΓD,

μH ⊥ HΓN,ΓD
.

Of course, n×D = n× ε−1J on ΓD and by εD ∈ rotRΓN
we also have div εD = 0 in Ω

and n · εD = 0 on ΓN as well as εD⊥HΓD,ΓN
.

Earlier results for eddy current and static Maxwell problems can be found in
[1, 11].

16



4.3 Eddy-Current (2D)

Let d = 2. We just indicate the changes compared to the latter section. First, we have
to understand the double rot as ∇⊥ rot, where

rotE := divQE = ∂1E2 − ∂2E1, ∇⊥H := Q∇H =

[
∂2H
−∂1H

]
, Q :=

[
0 1
−1 0

]
and E ∈ R is a vector field and H ∈ H1 a scalar function. In the literature, the
operator ∇⊥ is often called co-gradient or vector rotation 
rot as well. Also μ is scalar.
(4.4) reads: Find the electric field E ∈ R such that

∇⊥μ−1 rotE + εE = J in Ω,

n× E = 0 on ΓD,

μ−1 rotE = 0 on ΓN.

We have:

α1 α2 A A∗ H1 H2 D(A) D(A∗)
ε μ−1 rot ∇⊥ L2 L2 RΓD

H1
ΓN

and (3.1) turns to

∀Φ ∈ RΓD
∀ψ ∈ H1

ΓN
〈rot Φ, ψ〉L2 = 〈Φ,∇⊥ψ〉L2 .

The norm for H is
|H|2H1,ε−1,μ = |H|2L2,μ + |∇⊥H|2L2,ε−1 .

The strong formulation of the problem is: Find E ∈ RΓD
with μ−1 rotE ∈ H1

ΓN
such

that
∇⊥μ−1 rotE + εE = J.

The mixed formulation is: Find (E,H) ∈ RΓD
×H1

ΓN
such that

∇⊥H + εE = J, μ−1 rotE = H.

The primal and dual variational problems are: Find (E,H) ∈ RΓD
×H1

ΓN
such that

∀Φ ∈ RΓD
〈rotE, rot Φ〉L2,μ−1 + 〈E,Φ〉L2,ε = 〈J,Φ〉L2 ,

∀ψ ∈ H1
ΓN

〈∇⊥H,∇⊥ψ〉L2,ε−1 + 〈H,ψ〉L2,μ = 〈J,∇⊥ψ〉L2,ε−1 .

Theorem 4.5 reads:

Theorem 4.9. For any approximation (Ẽ, H̃) ∈ RΓD
×H1

ΓN

‖(E,H)− (Ẽ, H̃)‖2 = Mec(Ẽ, H̃),
‖(E,H)− (Ẽ, H̃)‖2

‖(E,H)‖2 =
Mec(Ẽ, H̃)

|J |2
L2,ε−1

hold, where Mec(Ẽ, H̃) = |J − εẼ −∇⊥H̃|2
L2,ε−1 + |H̃ − μ−1 rot Ẽ|2

L2,μ
.
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Remark 4.10. We note |E|R,ε,μ−1 ≤ |J |L2,ε−1 and |H|H1,ε−1,μ ≤ |J |L2,ε−1 and indeed

‖(E,H)‖ = |J |L2,ε−1 .

The solution operator L : L2 → RΓD
×H1

ΓN
; f �→ (E,H) is an isometry, i.e. |L| = 1.

Corollary 4.11. Theorem 4.5 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any Ẽ ∈ RΓD
it holds |E − Ẽ|2R,ε,μ−1 = min

ψ∈H1
ΓN

Mec(Ẽ, ψ) = Mec(Ẽ,H).

(ii) For any H̃ ∈ H1
ΓN

it holds |H − H̃|2H1,ε−1,μ = min
Φ∈RΓD

Mec(Φ, H̃) = Mec(E, H̃).

Remark 4.12. We have again H = μ−1 rotE ∈ H1
ΓN
∩μ−1 rotRΓD

and as in the 3D
case E and (E,H) solve the strong and mixed formulation, respectively. Moreover,
∇⊥H − J ∈ εRΓD

with rot ε−1(∇⊥H − J) = −μH . Hence, for J ∈ εR we have
∇⊥H ∈ εR and therefore the strong and mixed formulations of the dual problem

rot ε−1∇⊥H + μH = rot ε−1J in Ω,

rotD + μH = rot ε−1J, ε−1∇⊥H = D in Ω

hold, which are completed by the equations

n× ε−1(∇⊥H − J) = 0 on ΓD,

H = 0 on ΓN,

μH ⊥ R (if ΓD = Γ).

Of course, n ×D = n × ε−1J on ΓD and by εD ∈ ∇⊥ H1
ΓN

we also have div εD = 0 in
Ω and n · εD = 0 on ΓN as well as εD⊥HΓD,ΓN

.

4.4 Linear Elasticity

Find the displacement vector field u ∈ H1 such that

−Div Λ∇s u+ ρ u = f in Ω,

u = 0 on ΓD, (4.5)
n · Λ∇s u = 0 on ΓN.

Here ∇s is the symmetric part of the gradient2

∇s u := sym∇u =
1

2

(∇u+ (∇u)	
)
,

2Here, as usual in elasticity the gradient ∇u is to be understood as the Jacobian of the vector field
u.
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where 	 denotes the transpose. ∇s u, often denoted by ε(u), is also called the in-
finitesimal strain tensor. The fourth order stiffness tensor of elastic moduli Λ ∈ L∞,
mapping symmetric matrices to symmetric matrices point-wise, and the second or-
der tensor (quadratic matrix) of reaction ρ are assumed to be symmetric, real valued
and uniformly positive definite. The vector field f (body force) belongs to L2 and
the dual variable for this problem is the Cauchy stress tensor σ = Λ∇s u ∈ D, where
the application of Div to σ and the notation σ ∈ D is to be understood row-wise as
the usual divergence div. We note that the first equation can also be written as

−Divs Λ∇s u+ ρ u = f, Divs := Div sym .

We have:
α1 α2 A A∗ H1 H2 D(A) D(A∗)
ρ Λ ∇s −Divs L2 L2 H1

ΓD
sym−1 DΓN

The notation σ ∈ sym−1 DΓN
means sym σ ∈ DΓN

. More precisely, ψ ∈ D(A∗) if and
only if

∀ϕ ∈ D(A) = H1
ΓD

〈∇s ϕ, ψ〉L2 = 〈ϕ,A∗ ψ〉L2 .
Since 〈∇s ϕ, ψ〉L2 = 〈∇ϕ, symψ〉L2 we see that this holds if and only if symψ ∈ DΓN

and A∗ ψ = −Div symψ. Equation (3.1) turns into

∀ϕ ∈ H1
ΓD

∀ψ ∈ sym−1 DΓN
〈∇s ϕ, ψ〉L2 = −〈ϕ,Divs ψ〉L2 .

For the norms we have

|u|2H1,ρ,Λ = |u|2L2,ρ + |∇s u|2L2,Λ,
|σ|2sym−1 D,ρ−1,Λ−1 = |σ|2L2,Λ−1 + |Divs σ|2L2,ρ−1 ,

‖(u, σ)‖2 = |u|2H1,ρ,Λ + |σ|2sym−1 D,ρ−1,Λ−1 .

Now (4.5) reads: Find u ∈ H1
ΓD

with symΛ∇s u = Λ∇s u ∈ DΓN
such that

−Div Λ∇s u+ ρ u = f.

In mixed formulation we have: Find (u, σ) ∈ H1
ΓD
×DΓN

such that

−Div σ + ρ u = f, Λ∇s u = σ.

Note that then σ is automatically symmetric. The primal and dual variational prob-
lems are: Find (u, σ) ∈ H1

ΓD
× sym−1 DΓN

such that

∀ϕ ∈ H1
ΓD

〈∇s u,∇s ϕ〉L2,Λ + 〈u, ϕ〉L2,ρ = 〈f, ϕ〉L2 ,
∀ψ ∈ sym−1 DΓN

〈Divs σ,Divs ψ〉L2,ρ−1 + 〈σ, ψ〉L2,Λ−1 = −〈f,Divs ψ〉L2,ρ−1 .

Since σ ∈ DΓN
must be symmetric, we can formulate the dual problem also as

∀ψ ∈ DΓN
, ψ symmetric 〈Div σ,Divψ〉L2,ρ−1 + 〈σ, ψ〉L2,Λ−1 = −〈f,Divψ〉L2,ρ−1 .

Then, the norms reduce to

‖(u, σ)‖2 = |u|2H1,ρ,Λ + |σ|2D,ρ−1,Λ−1 , |σ|2D,ρ−1,Λ−1 = |σ|2L2,Λ−1 + |Div σ|2L2,ρ−1 .
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Theorem 4.13. For any approximation (ũ, σ̃) ∈ H1
ΓD
× sym−1 DΓN

‖(u, σ)− (ũ, σ̃)‖2 = Mle(ũ, σ̃),
‖(u, σ)− (ũ, σ̃)‖2

‖(u, σ)‖2 =
Mle(ũ, σ̃)

|f |2
L2,ρ−1

(4.6)

hold, where Mle(ũ, σ̃) = |f − ρũ+Divs σ̃|2L2,ρ−1 + |σ̃ − Λ∇s ũ|2L2,Λ−1 . Moreover, since σ is
automatically symmetric we have (4.6) for all (ũ, σ̃) ∈ H1

ΓD
×DΓN

with σ̃ symmetric and the
right hand side simplifies to Mle(ũ, σ̃) = |f − ρũ+Div σ̃|2

L2,ρ−1 + |σ̃ − Λ∇s ũ|2L2,Λ−1 .

Remark 4.14. We note |u|H1,ρ,Λ ≤ |f |L2,ρ−1 and |σ|D,ρ−1,Λ−1 ≤ |f |L2,ρ−1 and indeed

‖(u, σ)‖ = |f |L2,ρ−1 .

The solution operator L : L2 → H1
ΓD
×DΓN

; f �→ (u, σ) is an isometry, i.e. |L| = 1.

Corollary 4.15. Theorem 4.13 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any ũ ∈ H1
ΓD

it holds |u− ũ|2H1,ρ,α = min
ψ∈sym−1 DΓN

Mle(ũ, ψ) = Mle(ũ, σ).

(ii) For any σ̃ ∈ sym−1 DΓN
it holds |σ−σ̃|2sym−1 D,ρ−1,α−1 = min

ϕ∈H1
ΓD

Mle(ϕ, σ̃) = Mle(u, σ̃).

If σ̃ and ψ are already symmetric we can skip the sym−1 and replace Divs by Div.

Remark 4.16. We have σ = Λ∇s u ∈ DΓN
∩Λ∇s H

1
ΓD

is symmetric with Divs σ = Div σ
and u and (u, σ) solve the strong and mixed formulation, respectively. Moreover,
Div σ + f ∈ ρH1

ΓD
with ∇s ρ

−1(Div σ + f) = Λ−1σ ∈ ∇s H
1
ΓD

. Hence, for f ∈ ρH1 we
have Div σ ∈ ρH1 and therefore strong and mixed formulations of the dual problem
hold, i.e.,

−∇s ρ
−1 Div σ + Λ−1σ = ∇s ρ

−1f in Ω,

∇s v + Λ−1σ = ∇s ρ
−1f, −ρ−1Div σ = v in Ω.

4.5 Generalized Reaction-Diffusion, Linear Accoustics and Eddy-

Current

Let Ω be a d-dimensional smooth Riemannian manifold with compact Lipschitz
boundary Γ. If Ω is unbounded, we assume that outside of some compact set, Ω
is isomorphic to the exterior unit domain {x ∈ R

d | |x| > 1}. Moreover, let ΓD be an
open subset of Γ and ΓN := Γ \ ΓD its complement. The problem reads: For f ∈ L2,q

find the differential form potential (q-form) u ∈ Dq, such that

− δ α d u+ ρ u = f in Ω,

τΓD
u = 0 on ΓD, (4.7)

νΓN
α d u = 0 on ΓN.
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Here, d denotes exterior derivative, δ = ±∗d ∗ the co-derivative and τΓD
resp. νΓN

the
restrictions of the tangential resp. normal traces τΓ resp. νΓ to the proper subspaces.
We also introduce the Sobolev spaces

Dq := {ϕ ∈ L2,q | dϕ ∈ L2,q+1}, Δq := {ψ ∈ L2,q | δ ψ ∈ L2,q−1}

and Dq
ΓD

:= C∞,q
ΓD

Dq

, Δq
ΓN

:= C∞,q
ΓN

Δq

, where C∞,q
ΓD

resp. C∞,q
ΓN

are smooth test q-forms hav-
ing supports bounded away from ΓD resp. ΓN. Moreover, L2,q denotes the Lebesgue
space of all square integrable q-forms on Ω equipped with the inner or scalar product

〈u, ϕ〉L2,q :=
∫
Ω

u ∧ ∗ϕ

and corresponding norm | · |L2,q . Of course, Dq and Δq are equipped with the re-
spective graph norms, making them Hilbert spaces. Finally, ρ and α denote linear,
symmetric, real valued, bounded and uniformly positive definite transformations
on q- resp. (q + 1)-forms. It is again straight forward to discuss complex valued
transformations. We also need the spaces

Dq
0 := {ϕ ∈ Dq | dϕ = 0}, Dq

ΓD,0
:= {ϕ ∈ Dq

ΓD
| dϕ = 0}

and the corresponding spaces for the co-derivative as well as the space of harmonic
Dirichlet-Neumann forms

Hq
ΓD,ΓN

:= Dq
ΓD,0

∩Δq
ΓN,0

.

The dual variable for this problem is the ‘flux’ p = α d u ∈ Δq+1. In the following we
show the relation to the notations of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)
ρ α d − δ L2,q L2,q+1 Dq

ΓD
Δq+1

ΓN

Also here indeed D(A∗) = Δq+1
ΓN

holds, see e.g. [3, 4, 6]. The relation (3.1) turns into

∀ϕ ∈ Dq
ΓD

∀ψ ∈ Δq+1
ΓN

〈dϕ, ψ〉L2,q+1 = −〈ϕ, δ ψ〉L2,q .
Considering the norms we have

|u|2Dq ,ρ,α = |u|2L2,q ,ρ + | d u|2L2,q+1,α,

|p|2Δq+1,ρ−1,α−1 = |p|2L2,q+1,α−1 + | δ p|2L2,q ,ρ−1 ,

‖(u, p)‖2 = |u|2Dq ,ρ,α + |p|2Δq+1,ρ−1,α−1 .

Now (4.7) reads: Find u ∈ Dq
ΓD

with α d u ∈ Δq+1
ΓN

such that

− δ α d u+ ρ u = f.

In mixed formulation we have: Find (u, p) ∈ Dq
ΓD
×Δq+1

ΓN
such that

− δ p+ ρ u = f, α d u = p.
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The primal and dual variational problems are: Find (u, p) ∈ Dq
ΓD
×Δq+1

ΓN
such that

∀ϕ ∈ Dq
ΓD

〈d u, dϕ〉L2,q+1,α + 〈u, ϕ〉L2,q ,ρ = 〈f, ϕ〉L2,q ,
∀ψ ∈ Δq+1

ΓN
〈δ p, δ ψ〉L2,q ,ρ−1 + 〈p, ψ〉L2,q+1,α−1 = −〈f, δ ψ〉L2,q ,ρ−1 .

Theorem 4.17. For any approximation (ũ, p̃) ∈ Dq
ΓD
×Δq+1

ΓN

‖(u, p)− (ũ, p̃)‖2 = Mdiff(ũ, p̃),
‖(u, p)− (ũ, p̃)‖2

‖(u, p)‖2 =
Mdiff(ũ, p̃)

|f |2
L2,q ,ρ−1

hold, where Mdiff(ũ, p̃) = |f − ρũ+ δ p̃|2
L2,q ,ρ−1 + |p̃− α d ũ|2

L2,q+1,α−1 .

Remark 4.18. We note |u|Dq ,ρ,α ≤ |f |L2,q ,ρ−1 and |p|Δq+1,ρ−1,α−1 ≤ |f |L2,q ,ρ−1 and indeed

‖(u, p)‖ = |f |L2,q ,ρ−1 .

The solution operator L : L2,q → Dq
ΓD
×Δq+1

ΓN
; f �→ (u, p) is an isometry, i.e. |L| = 1.

Corollary 4.19. Theorem 4.17 provides the a posteriori error estimates for the primal and
dual problems.

(i) For any ũ ∈ Dq
ΓD

it holds |u− ũ|2Dq ,ρ,α = min
ψ∈Δq+1

ΓN

Mdiff(ũ, ψ) = Mdiff(ũ, p).

(ii) For any p̃ ∈ Δq+1
ΓN

it holds |p− p̃|2Δq+1,ρ−1,α−1 = min
ϕ∈Dq

ΓD

Mdiff(ϕ, p̃) = Mdiff(u, p̃).

We note that for q = 0 we get back the reaction-diffusion problem from Section
4.1 and for d = 3 or d = 2 and q = 1 we obtain the eddy-current problems from
Sections 4.2 and 4.3, identifying Ω ⊂ R

d with a proper domain and 0-forms with
functions and 1- and 2-forms with vector fields by Riesz’ representation theorem
and Hodge’s star operator.

Remark 4.20. It holds p = α d u ∈ Δq+1
ΓN

∩α dDq
ΓD

and u and (u, p) solve the strong
and mixed formulations, respectively. Moreover, δ p+ f belongs to ρDq

ΓD
and we see

immediately d ρ−1(δ p + f) = α−1p ∈ dDq
ΓD

= Dq+1
ΓD,0

∩ (Hq+1
ΓD,ΓN

)⊥. Hence, for f ∈ ρDq

we have δ p ∈ ρDq and therefore the strong and mixed formulations of the dual
problem

− d ρ−1 δ p+ α−1p = d ρ−1f in Ω,

d v + α−1p = d ρ−1f, −ρ−1 δ p = v in Ω

hold, which are completed by the equations

τΓD
ρ−1(δ p+ f) = 0 on ΓD,

τΓN
p = 0 on ΓN,

dα−1p = 0 in Ω,

τΓD
α−1p = 0 on ΓD,

α−1p ⊥ Hq+1
ΓD,ΓN

.

There are also more equations for v following from ρv ∈ ρDq ∩ δΔq+1
ΓN

, e.g. δ ρv = 0,
which we will not list here explicitly.
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5 Inhomogeneous and More Boundary Conditions

In this section we will demonstrate that our error equalities also hold for Robin type
boundary conditions, which means that our error equalities are true for many com-
monly used boundary conditions. Moreover, we emphasize that we can also handle
inhomogeneous boundary conditions. Since it is clear that this method works in the
general setting as well we will discuss it here just for the simple reaction-diffusion
model problem from the introduction.

Let Ω be as in the latter section and now the boundary Γ be decomposed into
three disjoint parts ΓD, ΓN and ΓR. The model problem is: Find the scalar potential
u ∈ H1 such that

− div∇u+ u = f in Ω,

u = g1 on ΓD,

n · ∇u = g2 on ΓN,

n · ∇u+ γu = g3 on ΓR

hold. Hence, on ΓD,ΓN and ΓR we impose Dirichlet, Neumann and Robin type
boundary conditions, respectively. In the Robin boundary condition, we assume
that the coefficient γ ≥ γ0 > 0 belongs to L∞. The dual variable for this problem is
the flux p := ∇u ∈ D. Furthermore, as long as ΓR �= ∅ and to avoid tricky discus-
sions about traces and the corresponding H−1/2-spaces of Γ, ΓD,ΓN and ΓR, which can
be quite complicated, we assume for simplicity that u ∈ H2. Then, p ∈ H1 and all gi
belong to L2 even to H

1/2 of Γ. For the norms we simply have

‖(u, p)‖2 = |u|2H1 + |p|2D .

Theorem 5.1. For any approximation (ũ, p̃) ∈ H2 ×H1 with u− ũ ∈ H1
ΓD

and p− p̃ ∈ DΓN

as well as n · (p− p̃) + γ(u− ũ) = 0 on ΓR

‖(u, p)− (ũ, p̃)‖2 + |u− ũ|2L2(ΓR),γ
+ |n · (p− p̃)|2L2(ΓR),γ−1 = Mmix(ũ, p̃)

holds with Mmix from Theorem 2.5. Moreover, |u− ũ|L2(ΓR),γ = |n · (p− p̃)|L2(ΓR),γ−1 .

Proof. Following Remark 2.7 we have

Mmix(ũ, p̃) = |u− ũ|2H1 + |p− p̃|2D︸ ︷︷ ︸
= ‖(u, p)− (ũ, p̃)‖2

+2〈∇(u− ũ), p̃− p〉L2 + 2〈u− ũ, div(p̃− p)〉L2 .

Moreover, since n · (p̃− p) and u− ũ belong to L2(Γ) we have

〈∇(u− ũ), p̃− p〉L2 + 〈u− ũ, div(p̃− p)〉L2
= 〈n · (p̃− p), u− ũ〉L2(Γ) = 〈n · (p̃− p), u− ũ〉L2(ΓR) = 〈γ(u− ũ), u− ũ〉L2(ΓR).

As 〈γ(u− ũ), u− ũ〉L2(ΓR) = 〈γ−1n · (p− p̃), n · (p− p̃)〉L2(ΓR) we get the assertion.
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Remark 5.2. If all gi = 0, we can set (ũ, p̃) = (0, 0) and get

‖(u, p)‖2 + |u|2L2(ΓR),γ
+ |n · p|2L2(ΓR),γ−1 = |f |2L2 ,

which follows also directly from Remark 2.6 (ii’), p = ∇u and n · p = −γu on ΓR as
well as

|f |2L2 = | div p|2L2 + |u|2L2 − 2〈div∇u, u〉L2
= | div p|2L2 + |u|2L2 + 2|∇u|L2 − 2〈n · ∇u, u〉L2(Γ)
= | div p|2L2 + |u|2L2 + 2|∇u|L2 − 2 〈n · ∇u, u〉L2(ΓR)︸ ︷︷ ︸

= −|u|2L2(ΓR),γ

.

Thus, in this case the assertion of Theorem 5.1 has a normalized counterpart as well.

If ΓR = ∅ we have a pure mixed Dirichlet and Neumann boundary.

Theorem 5.3. Let ΓR = ∅. For any approximation (ũ, p̃) ∈ H1 ×D with u − ũ ∈ H1
ΓD

and
p− p̃ ∈ DΓN

‖(u, p)− (ũ, p̃)‖2 = Mmix(ũ, p̃)

holds with Mmix from Theorem 2.5.

Corollary 5.4. Let ΓR = ∅. Theorem 5.3 provides the well known a posteriori error estimates
for the primal and dual problems.

(i) For any ũ ∈ H1 with u−ũ ∈ H1
ΓD

it holds |u−ũ|2H1 = min
ψ∈D

p−ψ∈DΓN

Mmix(ũ, ψ) = Mmix(ũ, p).

(ii) For any p̃ ∈ D with p−p̃ ∈ DΓN
it holds |p−p̃|2D = min

ϕ∈H1

u−ϕ∈H1
ΓD

Mmix(ϕ, p̃) = Mmix(u, p̃).

6 Numerical Examples

In this section we show by some academic test cases the numerical performance
of our error equalities. All the calculations have been done using MATLAB, and
the reported values in the tables have not been rounded, but are simply cut-offs of
values reported by MATLAB. The main quantity of interest is the difference between
the exact error and the value given by the majorant for a certain approximation
(ũ, p̃), i.e.,

δ :=
∣∣‖(u, p)− (ũ, p̃)‖ −M···(ũ, p̃)

1/2
∣∣,

where the test problems are either from the reaction-diffusion problems from Sec-
tion 4.1 or from the eddy-current problems from Sections 4.2 and 4.3. Where the
finite element method (FEM) has been used, we have employed only linear triangu-
lar elements in 2D and linear tetrahedral elements in 3D. In all the examples below
we calculated the approximations ũ and p̃ (or Ẽ and H̃) in the same mesh only for
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the sake of convenience. Using different meshes for the primal and dual approxi-
mations is allowed. We also used only regular meshes, but irregular meshes can be
used as well. The only requirement is that the approximations must be conforming,
meaning that they belong to the appropriate Sobolev spaces and fulfill the boundary
conditions exactly. All finite element solvers were implemented in the vectorized
manner explained in [13].

Example 6.1. We take the 3D-reaction-diffusion problem from Section 4.1 and choose
the unit cube Ω := (0, 1)3 with exact solution

u(x) :=
3∏

i=1

xi(1− xi),

where u satisfies the zero Dirichlet boundary conditions on the whole boundary, i.e.,
ΓD = Γ and ΓN = ∅, and the following data

α(x) := α :=

⎡⎣1 0 0
0 5 0
0 0 10

⎤⎦ , ρ(x) :=

⎧⎪⎨⎪⎩
1 if 0 < x1 < 1/4

10 if 1/4 < x1 < 3/4

25 if 3/4 < x1 < 1

.

This means that the approximation of the dual variable does not have any bound-
ary condition. We calculated the approximation globally by solving the primal and
dual problem with standard linear Courant elements and linear Raviart-Thomas
elements, respectively. We will denote this finite element approximation pair by
(uh, ph). The resulting linear systems were solved directly in MATLAB. The approx-
imations were calculated in uniformly refined regular meshes, where the jumps in
the reaction coefficient ρ coincide with element boundaries. For each mesh we com-
puted the exact combined error and the majorant Mrd(uh, ph). The results are dis-
played in Table 6.1. The first column shows the number of elements Nelem of the
mesh. The second and third column show the exact error and the value given by the
majorant. The fourth column shows the difference δ between the exact error and the
value given by the majorant.

Table 6.1: Example 6.1 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uh, ph)‖ Mrd(uh, ph)
1/2 difference δ

384 0.12803218100 0.12803218100 5.551115123e-17
3072 0.06736516349 0.06736516349 4.163336342e-17

24576 0.03433600867 0.03433600867 9.714451465e-17
196608 0.01728806289 0.01728806289 3.469446952e-18
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Example 6.2. This test is similar to the Example 1 except that the linear systems re-
sulting from the finite element computations were not solved directly, but with an
iterative method, where the stopping tolerance was set to the crude value of 10−4.
The approximation pair obtained by this method is denoted by (uiter, piter). No pre-
conditioning was done. The iterative solver of the linear system of the dual problem
converged only for the smallest mesh, and the error actually grows between the
two last meshes. With this stopping tolerance this is expected and was purpose-
fully done so in order to obtain approximations which are relatively far from having
the Galerkin orthogonality property. We did this test simply to demonstrate that
Galerkin orthogonality is not a requirement for the equality to hold. The results are
displayed in Table 6.2.

Table 6.2: Example 6.2 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uiter, piter)‖ Mrd(uiter, piter)
1/2 difference δ

384 0.12803483290 0.12803483290 2.775557562e-17
3072 0.06868358511 0.06868358511 6.938893904e-17

24576 0.05294561599 0.05294561599 6.245004514e-17
196608 0.09166231565 0.09166231565 9.714451465e-17

Example 6.3. We ran the problem data of Example 6.1 with subsequently refined
regular meshes, where the approximation of the primal variable uh was again ob-
tained by the linear Courant finite elements. The resulting linear system was solved
directly. The approximation of the dual variable was calculated by averaging the
values α∇uh to the nodes of the mesh. This procedure is often called the gradient
averaging method and we will denote the resulting function by pavg. The results can
be seen in Table 6.3.

Table 6.3: Example 6.3 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uh, pavg)‖ Mrd(uh, pavg)
1/2 difference δ

384 0.2698605861 0.2698605861 0
3072 0.2285323585 0.2285323585 0

24576 0.1831121412 0.1831121412 6.106226635e-16
196608 0.1333268308 0.1333268308 1.693090113e-15
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Example 6.4. We take the 2D-eddy-current problem from Section 4.3 and choose the
unit square Ω := (0, 1)2 with ε = id and μ = 1. We split the domain in the two
parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 = Ω \ Ω1 in order to define the following
discontinuous solution

E|Ω1(x) :=

[
sin(2πx1) + 2π cos(2πx1)(x1 − x2)

sin
(
(x1 − x2)

2(x1 − 1)2x2

)− sin(2πx1)

]
, E|Ω2(x) := 0.

Note that indeed E ∈ R \H1 and rotE ∈ H1 with

rotE|Ω1(x) = 2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos(2πx1).

We set zero Neumann boundary conditions on the whole boundary, i.e., ΓD = ∅
and ΓN = Γ. The exact solution and its rotation is visualized in Figure 6.1. We cal-
culated the approximation globally by solving the primal and dual problem with
linear Nédélec elements and linear Courant elements, respectively. This finite ele-
ment approximation pair will be denoted by (Eh, Hh). The resulting linear systems
were solved directly. The approximations were calculated in uniformly refined reg-
ular meshes, where the jumps in the exact solution and in the right hand side J
coincide with element boundaries. For each mesh we calculated the exact combined
error and the majorant Mec(Eh, Hh). The results are displayed in Table 6.4.
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Figure 6.1: The two components of the exact solution E and its rotation H of Exam-
ple 6.4.

Table 6.4: Example 6.4 (2D-eddy-current)

Nelem ‖(E,H)− (Eh, Hh)‖ Mec(Eh, Hh)
1/2 difference δ

800 0.151485078300 0.151485078300 2.220446049e-16
3200 0.075877018950 0.075877018950 0

12800 0.037956449900 0.037956449900 7.632783294e-17
51200 0.018980590110 0.018980590110 6.938893904e-17

204800 0.009490605462 0.009490605462 2.602085214e-17

27



Example 6.5. We take the 3D-eddy-current problem from Section 4.2 and choose
the unit cube Ω := (0, 1)3 with ε = μ = id. Again we split the domain in the two
parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 = Ω \ Ω1 in order to define the following
discontinuous solution

E(x) := χΩ1(x)

⎡⎣ sin(2πx1) + 2π cos(2πx1)(x1 − x2)
sin

(
(x1 − x2)

2(x1 − 1)2x2

)− sin(2πx1)
0

⎤⎦+ ξ(x)

⎡⎣00
1

⎤⎦ ,

where ξ(x) :=
∏3

i=1 x
2
i (1− xi)

2. Thus, we extended the discontinuous vector field of
Example 6.4 by zero in the third component and added a smooth bubble in the third
component. Hence, E ∈ R \H1 and rotE ∈ R with

rotE(x) = χΩ1(x)
(
2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos(2πx1)

)⎡⎣00
1

⎤⎦+

⎡⎣ ∂2ξ
−∂1ξ
0

⎤⎦ (x).

Note that even rotE ∈ H1 holds. We set zero Neumann boundary conditions on the
whole boundary, i.e., ΓD = ∅ and ΓN = Γ. We calculated the approximation globally
by solving the primal and dual problem with linear Nédélec elements. This finite
element approximation pair will be denoted by (Eh, Hh). The resulting linear sys-
tems were solved directly. The approximations were calculated in uniformly refined
regular meshes, where the jumps in the exact solution and in the right hand side J
coincide with element boundaries. For each mesh we calculated the exact combined
error and the majorant Mec(Eh, Hh). The results are displayed in Table 6.5.

Table 6.5: Example 6.5 (3D-eddy-current)

Nelem ‖(E,H)− (Eh, Hh)‖ Mec(Eh, Hh)
1/2 difference δ

384 0.7228185218 0.7228185218 3.330669074e-16
3072 0.3717887807 0.3717887807 6.106226635e-16

24576 0.1883612515 0.1883612515 2.775557562e-16
196608 0.0945757836 0.0945757836 8.604228441e-16

Example 6.6. We take the problem data of Example 6.4 and solve the primal and
dual problems in adaptively refined meshes with linear Nédélec elements and lin-
ear Courant elements, respectively. This finite element approximation pair will be
denoted by (Eh, Hh) and the linear systems are solved directly. We compare opti-
mal refinement achieved by using the exact error distribution eT to the refinement
provided by the distribution of the majorant ηT , where

e2T := ‖(E,H)− (Eh, Hh)‖2T := |E − Eh|2R(T ) + |H −Hh|2H1(T ),

η2T := Mec(Eh, Hh)T := |J − Eh −∇⊥Hh|2L2(T ) + |Hh − rotEh|2L2(T )
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and T denotes an element (triangle) of the mesh discretization. We start from a reg-
ular mesh with 200 elements, and perform nine refinement iterations, where on each
iteration 30% of elements with the highest amount of error are refined. The refine-
ment of element meshes is done by regular refinement such that the resulting mesh
does not contain hanging nodes. The results of Figure 6.2 show that even though the
equality is global, the majorant can still be used to perform reliable adaptive compu-
tations. We see from Table 6.6 that the number of elements in the optimal meshes
and the meshes produced using ηT are very close to each other. In Figure 6.3 we
have depicted the meshes after the fourth refinement. Figure 6.4 depicts one of the
finest parts of the final meshes. In fact, the adaptive refinement using ηT is very close
to optimal in each step, and the resulting approximation after the last refinement is
practically the same.
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Figure 6.2: Adaptive computation of Example 6.6, where the error is measured in
the combined norm.
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Figure 6.3: Adaptive mesh after the fourth refinement in Example 6.6. There are
4823 elements in the optimal mesh, and 4878 elements in the mesh calculated with
the help of ηT .
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Figure 6.4: One of the most fine parts in the final adaptive mesh in Example 6.6.

Table 6.6: Adaptive computation of Example 6.6. The number of elements in the
optimal meshes and the meshes generated by the help of ηT .

Ref. optimal with ηT difference difference %
- 200 200 0 0
1 434 434 0 0
2 998 1002 4 0.40
3 2240 2252 12 0.53
4 4823 4878 55 1.14
5 10378 10446 68 0.65
6 22116 22337 221 0.99
7 46388 46768 380 0.81
8 96859 97832 973 1.00
9 198704 200970 2266 1.14

Example 6.7. We take the 2D-eddy-current problem of Section 4.3 in the L-shaped
domain Ω := (0, 1)2 \ ([1/2, 1] × [0, 1/2]

)
with ε = id, μ = 1000 and J = [1, 0]	. We set

zero Dirichlet boundary conditions on the whole boundary, i.e., ΓD = Γ and ΓN = ∅.
The exact solution of this problem is unknown. However, since the majorant gives
indeed the exact error in the combined norm, we will use this information in this
example. Therefore, all the error values in Figure 6.5 and Table 6.7 are values of the
majorant. We compare uniform refinement and adaptive refinement using ηT with

η2T = Mec(Eh, Hh)T = |J − Eh −∇⊥Hh|2L2(T ) + |Hh − μ−1 rotEh|2L2(T ),μ,

refining 30% of elements on each refinement iteration as before. We solve the primal
and dual problems with linear Nédélec elements and linear Courant elements, re-
spectively. The resulting linear systems are solved directly. We see from Figure 6.5
that the adaptive procedure is beneficial in this example. We have also depicted the
approximation in Figure 6.6 and the mesh in Figure 6.7 after the fifth refinement.
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Figure 6.5: Adaptive computation of Example 6.7.

Table 6.7: Example 6.7 (2D-eddy-current) Adaptively refined meshes.

Nelem Mec(Eh, Hh)
1/2 Mec(Eh, Hh)

1/2/|J |L2
96 0.2534 0.2926

230 0.1534 0.1771
541 0.0842 0.0973

1204 0.0467 0.0539
2623 0.0309 0.0357
6082 0.0203 0.0234

13514 0.0135 0.0155
29530 0.0093 0.0107
63363 0.0062 0.0072

134205 0.0043 0.0050

Eh,1 Eh,2 Hh

Figure 6.6: The two components of the approximate primal variable Eh and the dual
variable Hh of Example 6.7 after the third adaptive refinement.

31



0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 6.7: Adaptive mesh after the fifth adaptive refinement in Example 6.7.

Example 6.8. We take the 2D-eddy-current problem of Section 4.3 in Ω := (0, 1)2. In
order to define discontinuous data, we define with ξ(x) := ln(2 + x2) and

Ω1 :=
(
(0, 1)× (0.4, 0.6)

) ∪ ((0.3, 0.5)× (0, 1)
)
, ε|Ω1 := id, ε|Ω\Ω1

:= 100 · id,
μ|Ω1 := 1000, μ|Ω\Ω1

:= 1,

Ω2 := (0, 1)× (0.35, 0.65), J |Ω2 := ξ

[
1
0

]
, J |Ω\Ω2

:= −ξ

[
0
1

]
.

We set zero Dirichlet boundary conditions on the right side of the boundary and zero
Neumann boundary condition on the remaining part, i.e., ΓD = {x ∈ Ω | x1 = 1}. As
in Example 6.7, the exact solution of this problem is unknown, so the error values
in Figure 6.8 and Table 6.8 are the values of the majorant. We compare uniform
refinement and adaptive refinement using ηT with

η2T = Mec(Eh, Hh)T = |J − εEh −∇⊥Hh|2L2(T ),ε−1 + |Hh − μ−1 rotEh|2L2(T ),μ,

refining 30% of elements on each refinement iteration as before. We solve the pri-
mal and dual problems with linear Nédélec elements and linear Courant elements,
respectively. The resulting linear systems are solved directly. Again, we see from
Figure 6.8 that the adaptive procedure is beneficial in this example. We have also
depicted the approximation in Figure 6.9 and the mesh in Figure 6.10 after the third
refinement.

To conclude, in all the tests performed, nonzero values of δ were of magnitude
10−18-10−15. This is within the limit of machine precision, so numerically these num-
bers are considered zero. In addition to verifying the equality, we also performed
three simple examples to show that the majorant can be used to perform refinement
of element meshes without any additional computational expenditures.
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Figure 6.8: Adaptive computation of Example 6.8.

Table 6.8: Example 6.8 (2D-eddy-current) Adaptively refined meshes.

Nelem Mec(Eh, Hh)
1/2 Mec(Eh, Hh)

1/2/|J |L2,ε−1

800 0.1632 0.2941
1827 0.0921 0.1659
4367 0.0513 0.0924

10214 0.0307 0.0554
23657 0.0199 0.0359
51429 0.0128 0.0231

113073 0.0085 0.0153

Eh,1 Eh,2 Hh

Figure 6.9: The two components of the approximate primal variable Eh and the dual
variable Hh of Example 6.8 after the third adaptive refinement.
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Figure 6.10: Adaptive mesh after the third adaptive refinement in Example 6.8.
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Foundation and Väisälä Foundation of the Finnish Academy of Science and Letters.

This contribution has been worked out mainly while the first author was visiting
the Fakultät für Mathematik of the Universität Duisburg-Essen during 2013.

References

[1] I. Anjam, O. Mali, A. Muzalevskiy, P. Neittaanmäki, and S. Repin. A posteri-
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Abstract. In this paper we present a new error indicator for approximate solutions of

elliptic problems. We discuss error indication with the paradigm of the diffusion problem,

however the techniques are easily adaptable to more complicated elliptic problems, for

example to linear elasticity, viscous flow models and electromagnetic models. The proposed

indicator does not contain mesh dependent constants and it admits parallelization.
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1 INTRODUCTION

Various a posteriori indicators of approximation errors are widely used in computer
simulation. Error indicators for finite element approximations are usually based either on
evaluation of a weak residual norm or on post-processing (e.g., gradient averaging) and are
applicable only to Galerkin approximations. In this paper, we discuss a different class of
error indicators that follow from a posteriori estimates of the functional type (a consequent
exposition of the corresponding theory is given in the books5,7). These estimates do not
contain mesh dependent constants, do not exploit specific properties of the numerical
method or approximations used and are valid for any conforming approximation.

In this paper, we modify some ideas of the functional approach and derive error in-
dicators of a new type. The indicators contain the corresponding numerical solution v,
problem data and an arbitary function y, which is to be selected in a suitable way. For
this task, we apply two different methods (global and local) and compare their efficiency.

Let Ω be a bounded and connected domain in R
d with Lipschitz boundary ∂Ω. Consider

the the following problem: find a scalar function u such that

−divA∇u = f in Ω, (1)

u = 0 on ∂Ω, (2)

where A is a symmetric d × d matrix with coefficients in L∞(Ω) and f ∈ L2(Ω). The

generalized solution to this problem is a function u ∈
◦

H1(Ω) that satisfies the relation∫
Ω

A∇u · ∇w dx =

∫
Ω

fw dx, ∀w ∈
◦

H
1(Ω), (3)

where
◦

H1(Ω) is the space of functions from H1(Ω) which vanish on ∂Ω. For this problem
the natural energy norm is defined as

||| u |||2:= ‖∇u‖2
A
:=

∫
Ω

A∇u · ∇u dx.

We denote by ‖ · ‖ the L2 norm of scalar- and vector-valued functions.

2 ERROR MAJORANT AND INDICATOR

Guaranteed error bounds for the problem (1)-(2) are derived by transformations of the
integral identity (3), which lead to the following result5,7.

Proposition 2.1. Let u be the exact solution and v ∈
◦

H1(Ω) a numerical solution to the

problem (1)-(2). Then

||| u− v |||≤ M⊕(v, y) , ∀y ∈ H(div,Ω),

2
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where

M⊕(v, y) := CΩ‖f + div y‖ + ‖y −A∇v‖A−1 . (4)

Here CΩ is the constant in the Friedrichs inequality and y ∈ H(div,Ω) is an arbitary

function.

The quality of the majorant (4) depends on how well the arbitary function y represents
the exact flux p = A∇u. This estimate does not contain a gap between the exact error
and the estimate. This fact is easy to establish by replacing y with the exact flux. The
first term vanishes and the majorant becomes

M⊕(v, p) = ‖∇(u− v)‖A =||| u− v ||| .

Indeed, if the free function y is chosen properly, the first term of majorant (4) is small.
Therefore it is reasonable to assume that we can define the following error indicator from
the latter term of the majorant.

Proposition 2.2. Let u be the exact solution and v ∈
◦

H1(Ω) a numerical solution to the

problem (1)-(2). We define the error indicator

I(v, y) := ‖y −A∇v‖2, (5)

where y ∈ H(div,Ω) is an arbitary function. The indicator I estimates the distribution

of ||| u− v |||2 in the domain Ω.

3 OBTAINING THE ARBITARY FUNCTION y

The majorant and the indicator contain the arbitary function y, which we call the
flux. In this section we show several ways how to obtain this parameter for the diffusion
problem. These same methods can be used also for other elliptic problems.

The problem of finding y for the diffusion problem burns down to approximating the
exact flux p = A∇u. There are several ways to obtain estimates to the exact flux.
First we discuss the global minimization technique, and then we propose a (new) local
minimization procedure.

3.1 Global minimization

One way to obtain good approximations for the exact flux is to minimize the majorant
M⊕ defined by (4) globally with respect to y. For this we transform the majorant to a
quadratic form. This is done by squaring the majorant and using the algebraic inequality
(a+ b)2 ≤ (1 + β)a2 + (1 + 1

β
)b2 which holds for all β > 0. The estimate proposed in 2.1

becomes

||| u− v |||2≤ M(v, y, β) := (1 + β)C2
Ω‖f + div y‖2 +

(
1 +

1

β

)
‖y −A∇v‖2

A
−1 . (6)
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Minimizing (6) globally results in the following finite element problem for y ∈ H(div,Ω):

(1 + β)C2
Ω

∫
Ω

div y div φ dx+

(
1 +

1

β

)∫
Ω

A−1y · φ dx =

= −(1 + β)C2
Ω

∫
Ω

fdiv φ dx+

(
1 +

1

β

)∫
Ω

φ · ∇v dx. ∀φ ∈ H(div,Ω).

A natural choise to solve this problem is to use Raviart-Thomas elements4,6. This method
produces good approximations for the exact flux, but is relatively time-consuming. For
error indication purposes less expensive methods are preferrable.

3.2 Averaging procedures

A very popular method to approximate the exact flux is to post-process the approxi-
mate flux A∇v1,3,8. If v belongs to the space H1(Ω), then its gradient ∇v is constant in
each element. If also the matrix A is constant in each element, we can apply very simple
averaging procedures to the approximate flux.

A common way is to average the approximate flux to nodes: for each node, calculate
A∇v in each related element and average the values weighted by the areas of respective
elements. We denote this procedure by GN .

It is also possible to average the normal components of the approximate flux. In 2D
these values are averaged to edges of elements. Let cnl denote the unknown degree of
freedom related to edge enl with edge length |enl|. Here the subindex letters n and l

denote the numbers of the nodes which define the edge. We denote by Tknl, Tnml the
elements related to this edge and by nknl, nnml their respective unit outward normals on
the boundary. This setting is visualized in Figure 1. The following equation averages the
normal component of A∇v to the edge enl:

cnl =
|enl| (A∇v|Tknl

· nknl −A∇v|Tnml
· nnml)

2
(7)

In 3D the normal components are averaged in a similiar way. The only difference is
that now we average the values to faces instead of edges. Let cnlm denote the unknown
degree of freedom related to face fnlm whose area is |fnlm|. We denote by Tknlm, Tomln the
elements related to this face and by nknlm, nomln their respective unit outward normals on
the boundary, see Figure 1. The following equation averages the normal component of
A∇v to the face fnlm:

cnlm =
|fnlm| (A∇v|Tknlm

· nknlm −A∇v|Tomln
· nomln)

2
(8)

We denote by GRT the procedure, which calculates the values of (7) for all edges or
(8) for all faces in a given mesh. It should be noted that the operator GRT essentially
produces functions from linear Raviart-Thomas finite element space.

4
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edge enl

k m

n

l

dof cnl

Tknl Tnml

nknl

Tomln

m

l

n

nknlm

dof cnlm
face fnlm

k

o

Tknlm

Figure 1: Two neighboring elements in 2D and 3D.

3.3 A post-processing method

In this section we present a post-processing method which gives even better approxi-
mations for the exact flux A∇u. Assume that the initial approximation is obained by the
averaging operator GRT defined in the previous section. In our previous paper2 we made
further post-processing of the approximate flux (for the poisson problem) by minimizing
only a part of the majorant. In this paper we take this same idea further and choose
to post-process y = GRT (A∇v) by minimizing the whole majorant M⊕ on every pair of
neghboring triangular elements. Next we show how to do this in 3D (the 2D case is very
similar).

Since y is computed by the averaging operator GRT , it can be represented as

y =
NF∑
α=1

cαφα,

where NF is the number of faces, cα are the degrees of freedom computed by GRT , and
φα are the global basis functions for linear Raviart-Thomas finite element space. To
conveniently mark local basis functions related to two particular elements (see Figure 1)
we introduce the index-sets

I1 = {nlm,mlk, kln, nmk}, indices to faces of element Tknlm,

I2 = {mln, nlo, olm,mno}, indices to faces of element Tomln.

Our goal is to minimize the quantity

J (y) :=

∫
Tknlm∪Tomln

(
C(f + div y)2 + (y −A∇v) · (A−1y −∇v)

)
dx

by optimizing the degree of freedom cnlm (= cmln) shared by the two elments. Here

5
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C = (1 + β)CΩ(1 +
1
β
)−1. This one-parametric problem is easily solved:

∂J

∂cnlm
= 2

∫
Tknlm

(
C
(
f +

∑
α∈I1

cαdiv φα

)
div φnlm − φnlm · ∇v +

∑
α∈I1

cαφα ·A−1φnlm

)
dx+

+ 2

∫
Tomln

(
C
(
f +

∑
α∈I2

cαdiv φα

)
div φmln − φmln · ∇v +

∑
α∈I2

cαφα ·A−1φmln

)
dx = 0.

From the above we can solve a new value for the degree of freedom cnlm:

cnlm =
A

B
, (9)

where

A =∫
Tknlm

(
C
(
f +

∑
α∈I1\{nlm}

cαdiv φα

)
div φnlm − φnlm · ∇v +

∑
α∈I1\{nlm}

cαφα ·A−1φnlm

)
dx+

+

∫
Tomln

(
C
(
f +

∑
α∈I2\{mln}

cαdiv φα

)
div φmln − φmln · ∇v+

∑
α∈I2\{mln}

cαφα ·A
−1φmln

)
dx,

and

B = −

∫
Tknlm

(
C(div φnlm)

2+φnlm·A
−1φnlm

)
dx−

∫
Tomln

(
C(div φmln)

2+φmln·A
−1φmln

)
dx.

We denote by P the procedure, which calculates the values of (9) for all degrees of freedom
in a given mesh.

It should be noted, that the operator P can be applied to y as many times as wanted,
and each time the value of J (y) decreases. In other words, the process is monotone. This
post-processing method is also practical since it easily adapts parallelization.

4 NUMERICAL EXAMPLES

In this section, we test the performance of the error majorant M⊕ and indicator I

with various methods of selecting y, which were derived in the previous section. For the
purpose of measuring the performance of the majorant, we define the efficiency index

Ieff =
M⊕

||| u− v |||
.

The performance of the error indicator is tested by comparing the error distribution
provided by the indicator to the exact error distribution.

6
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To solve the model problem (1)-(2) we use the linear H1 finite element. For the
arbitary function y we use both the post-processing operators GN , GRT , and P and the
global minimization method. For global minimization, we use the linear Raviart-Thomas
finite element. In all numerical examples, the arbitary function y is computed on the
same mesh on which the original numerical approximation v was computed.

Example 1:

Ω = [0, 1]2, f = 2(x1(1− x1) + x2(1− x2)),

A = {a11 = a22 = 1, a12 = a21 = 0}.

For this problem the exact solution is known. Table 1 shows how the integral J (y) and
the efficiency indexes Ieff for the upper bound M⊕(v, y) behave with different y and
different mesh-sizes. Post-processing methods GN and GRT fail to produce a flux that
would satisfy the equilibrium condition, div y+f = 0. For this reason, they do not provide
a very accurate upper bound, and the values of Ieff are relatively large. By further post-
processing, the value of the efficiency index can be decreased close to the one obtained by
globally solved yglo. According to numerical experiments, five iteration rounds are enough
independent of the mesh size.

Example 2:

Ω = [0, 1]2, f = 2(10x1(1− x1) + x2(1− x2)),

A = {a11 = 1, a22 = 10, a12 = a21 = 0}.

Also for this problem the exact solution is known. Figure 2 shows how the indicator I

performs with different y in the second test example. Those elements, on which the error
is greater than the average error, are marked with black color. In the top row, the leftmost
picture is the exact error distribution. Here again yglo denotes the function obtained by
global minimization. As expected, global minimization of the upper bound gives good
results. By using the operators GN and GRT we obtain good representations of error
distributions. Moreover, further equilibration of GRT (A∇v) by using the operator P does
clearly improve the performance of I.

Example 3:

Ω = [0, 2]2,

f =

{
1 for x1 ∈ (0.5, 1.5)
0 otherwise

,

A =

{
{a11 = 1, a22 = 1, a12 = a21 = 0} for x1 ∈ (0.5, 1.5)
{a11 = 10, a22 = 1, a12 = a21 = 0} otherwise

.

For this problem we do not know the exact solution. A reference solution was calculated
in a very fine mesh to obtain a reference error distribution. From Figure 3 we see that
this example is much more difficult compared to the previous example.

7
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||| u - v |||2 I : y = yg l o I : y = GN (A∇v )

I : y = GR T(A∇v ) I : y = P 1GR T(A∇v ) I : y = P 15GR T(A∇v )

Figure 2: Performance of the post-processing operator P and the indicator I for Example 2.

||| u - v |||2 I : y = yg l o I : y = GN (A∇v )

I : y = GR T(A∇v ) I : y = P 1GR T(A∇v ) I : y = P 15GR T(A∇v )

Figure 3: Performance of the post-processing operator P and the indicator I for Example 3.
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82 elems 1342 elems 8562 elems
function y J Ieff J Ieff J Ieff
GN (A∇v) 2.36e-3 2.46 2.48e-4 4.02 6.09e-5 6.53
GRT (A∇v) 3.24e-3 2.88 6.42e-4 8.35 2.00e-4 16.81
P 1GRT (A∇v) 2.40e-3 2.06 3.04e-4 3.80 8.10e-5 6.59
P 2GRT (A∇v) 2.17e-3 1.85 1.80e-4 2.25 3.93e-5 3.21
P 5GRT (A∇v) 2.07e-3 1.77 1.44e-4 1.79 2.34e-5 1.91
yglo 2.00e-3 1.75 1.34e-4 1.72 2.06e-5 1.72

Table 1: Integral J (y) and efficiency index Ieff values with different mesh sizes and y for Example 1.

5 CONCLUSIONS

We conclude that in order to compute an efficient upper bound for the approximation
error, the main problem is to obtain well enough equilibrated flux (minimizer of J (y)).
This task can be done with feasible computational effort using the presented new post-
processing technique, which admits parallel processing.

For the purpose of obtaining the error distribution, the examples computed here do
demonstrate some difference between the various post-processing methods tested. The av-
eraging operators alone were able to represent the approximate flux well, but the proposed
post-processing operator P was clearly shown to improve the quality of the approximate
flux. As a natural consequence also the quality of error distributions was better after
applying the post-processing operator P .

Acknowledgement. This research was supported by the grant N 40234 and N 40277 of
the MASI Tekes Technology Programme and grant N 116895 of the Academy of Finland.
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Finland, (2009).
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On the reliability of error indication methods for
problems with uncertain data

Immanuel Anjam, Olli Mali, Pekka Neittaanmäki, and Sergey Repin

Abstract This paper is concerned with studying the effects of uncertain data in
the context of error indicators, which are often used in mesh adaptive numerical
methods. We consider the diffusion equation and assume that the coef cients of the
diffusion matrix are known not exactly, but within some margins (intervals). Our
goal is to study the relationship between the magnitude of uncertainty and reliability
of different error indication methods. Our results show that even small values of
uncertainty may seriously affect the performance of all error indicators.

Acknowledgements This work was supported by the Finnish foundations Emil Aaltosen säätiö
and KAUTE-säätiö, and the COMAS graduate school.

1 Introduction

In problems related to partial differential equations, it is usually assumed that data
of the problem are known exactly. However, quite often the data at hand is not com-
plete. In many problems, the data is uncertain within some intervals. Material func-
tions, geometrical data, and boundary conditions may include uncertainties, which
arise due to incomplete knowledge on the model.

Studying the effects caused by uncertain data gained the attention of researchers
later than analysis of fully determined problems. The probabilistic approach is based
in studying stochastic partial differential equations (see, e.g., [12]). Another ap-
proach (the so-called ”worst case scenario method”) has been analyzed in [5].
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In [6–8], two-sided estimates of the radius of the solution set were obtained
for the reaction-diffusion problem. These estimates provide information on the ac-
curacy limit generated by the uncertainty. These estimates are derived with the
help of functional a posteriori estimates (for a consequent exposition of the theory
see [9, 11]).

In this paper, we study the diffusion equation with uncertainty in the diffusion
matrix. We assume that the uncertainty is of the formmean value±variation, which
is typical for engineering measurements.

Our goal is to study how incomplete knowledge about the coef cients of diffu-
sion (physical parameters) impact the reliability of error indication. We have tested
several commonly used indicators with the paradigm of a simple elliptic problem.
The results show that the reliability of error indicators seriously depend on the rank
of uncertainty encompassed in the diffusion matrix.

2 Problem de nition and notation

Let Ω ∈ R
d be a bounded and connected domain with Lipschitz continuous bound-

ary ∂Ω . By H1(Ω) we denote the Sobolev space of scalar valued functions with
square summable generalized derivatives. H1

0 (Ω) is the subspace of H1(Ω) con-
taining the functions vanishing on ∂Ω . For vector valued functions, we also de ne
the space H(div,Ω) := {w ∈ L2(Ω ,R

d) | divw ∈ L2(Ω)}.
We consider the simplest elliptic problem: nd u ∈H1

0 (Ω) such that

−divA∇u= f in Ω , (1)
u= 0 on ∂Ω , (2)

where f ∈ L2(Ω). Assume that the coef cients are not fully known, i.e., the infor-
mation that we really possess is that A ∈ D , where

D := {A ∈ L∞(Ω ,M
d×d) | A= A0 + δΨ , ‖Ψ‖L∞(Ω ,Md×d) ≤ 1},

where M
d×d is the space of symmetric matrices, A0 ∈ L∞(Ω ,M

d×d) is the known
”mean” matrix, and δ ≥ 0 is the magnitude of variations. In other words, we assume
that A belongs to a set generated by limited perturbations of the ”mean” data.

The generalized statement of (1)–(2) consists of nding u ∈ H1
0 (Ω) such that∫

Ω
A∇u ·∇wdx=

∫
Ω
f wdx, ∀w ∈ H1

0 (Ω).

We assume that
c|ξ |2 ≤ A0ξ ·ξ ≤ c|ξ |2,

where 0 < c≤ c. Thus, the ”mean” problem is elliptic and has a unique solution u0.
The condition

0 ≤ δ < c (3)
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guarantees that the perturbed problem remains elliptic, and possesses a unique so-
lution u with any A ∈ D . With this condition the ”solution mapping” S : D → H1

0
is well de ned. The solution set generated by the uncertain data will be referred to
as the set S (D)⊂ H1

0 .
The standard L2-norm ‖v‖2;Ω is denoted by ‖v‖Ω . We also introduce the weighed

L2-norm for vector valued functions w:

‖w‖2,μ;Ω = ‖w‖μ;Ω :=
∫

Ω
μw ·wdx.

Using this notation, for each A ∈ D we have the energy norm ‖∇v‖A;Ω .
By Th we denote the partition of the domain Ω to the union of non-overlapping

triangles. An element in Th is denoted by T . For any T ∈ Th, E (T ) denotes edges
of T , and N (T ) the nodes. The sets

Eh :=
⋃
T∈Th

E (T ) and Nh :=
⋃
T∈Th

N (T )

contain all edges and all nodes of Th, respectively. For the sake of convenience,
we also de ne the set of edges which approximate the boundary of the domain by
Eh,∂Ω := {E ∈ Eh | E ⊂̃ ∂Ω}. The sets

ωE :=
⋃

E∈E (T ′)
T ′ and ωX :=

⋃
X∈N (T ′)

T ′

de ne patches of elements associated with a given edge E ∈ Eh and node X ∈ Nh,
respectively.

For every E ∈ Eh, we assign a unit vector nE , which it is orthogonal to E .
Henceforth, the symbol | · | is used to denote area of a domain or length of an

edge. The number of elements in a set is denoted by #(·) and the diameter of T ∈Th
is denoted by hT .

3 Error indication

In our analysis, we consider small disturbances of the matrix A of the form

A= A0 + δB,

where the magnitude of variations δ satis es the condition (3), and B is a symmetric
2× 2 -matrix. We note that since the amount of matrixes contained in D is much
larger than those representable in such a form, the sensitivity of error indicators with
respect to data uncertainty is even higher than indicated on Table 1 and Fig. 1.

For each element T ∈ Th, the elements of B are chosen as follows:

B
∣∣
T =

(
b1 b3
b3 b2

)
, b1,b2,b3 ∈ {−1,0,1}, ∀T ∈ Th.
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In other words, we generate a constant perturbation of magnitude δ in each element
T . A perturbation generated in this way is clearly an extreme one. It suits our pur-
poses, since we are trying to nd a worst case situation that can occur with different
diffusion matrices A which belong to the set D .

Let EI denote an error indicator computed on the mesh Th, which generates a set
of non-negative numbers associated with elements, i.e.,

EI(A,uh) := {EIT}, EIT ≥ 0, ∀T ∈ Th.

Its input typically consists of the material data A, and a numerical solution uh. The
output is the vector {EIT}, which contains an approximated error value EIT for each
element T .

In computational practice, error indicators are used together with a marker �
that marks elements (or other subdomains) where errors are excessively high. The
function � takes as its input the vector produced by an error indicator EI , and returns
a boolean function indicating by 1 the elements which are to be re ned, and by 0
all other elements. The output of �(EI ) is essentially the list of those elements T ,
which contain the majority of the error (according to the indicator used). We refer
to the boolean output of � as a marking. The marker can, for example, choose to
mark some percentage of the elements (”bulk criterion”), or to mark those elements
whose indicator value is greater than the average of all the values. In this short note
we con ne ourselves to the case where �marks a certain amount (Nre f ) of elements,
where the highest values of errors have been indicated.

Our analysis of effects caused by data uncertainty is based on the following
method. Let EI be the indicator to test. We select a mesh Th and select a certain
amount of matrices Aj = A0 + δBj for some given δ (uncertainty parameter). For
each exact solution u j =S (Aj), we compute the corresponding approximations u jh
on the mesh Th. Then, for each u jh, we calculate the error indicator EI j = EI (Aj,u jh),
and the corresponding markings �(EI j).

The difference of two markings is given by the boolean measure

diff(�,EI i,EI j) := 1− ∑(�(EI i)∧�(EI j))

Nre f
∈ [0,1],

where ∧ is the logical multiplication operator. If diff(�,EI i,EI j) = 0, then small vari-
ations of the data do not affect the process of marking. In opposite, if diff(�,EI i,EI j)
is close to one, then the lists of elements selected for re nement by EI i and EI j are
quite different.

The maximal difference between all markings is given by the quantity

Θ := max
i, j

{diff(�,EI i,EI j)},

which shows the maximal difference produced by an error indicator with different
diffusion matrices from the set D .

From now on, we will denote by uh an approximation of (1)–(2) calculated with
the help of standard linear Courant elements.
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We have tested the following six most commonly used error indicators.

Indicators based on averaging. The well known node averaging indicator (see,
e.g., [13, 14]) reads

EIX ,T := ‖GXuh−A∇uh‖A−1;T , (4)

and a similar indicator (we call the edge averaging indicator, see, e.g., [11]) reads

EIE,T := ‖Pp(GEuh)−A∇uh‖A−1;T . (5)

The averaging operators GX and GE are de ned by the relations

GXuh(X) = ∑
T∈ωX

|T |
|ωX |

(A∇uh)
∣∣
T and GEuh(E) =

|E|
#ωE ∑

T∈ωE
(A∇uh)

∣∣
T ·nE ,

which de ne the values of GXuh and GEuh at the node X and edge E , respectively.
Then, the averaged function GXuh is de ned by piecewise af ne extension, and
GEuh by extension with the help of linear Raviart-Thomas elements (see, e.g., [10]).
In (5), the operator P is a post-processing operator, which produces more accurate
approximations for the exact ux A∇u by minimizing the residual ‖ f + divy‖2

ωE on
all subdomains ωE (see, e.g., [1,11]). Here y∈H(div,Ω) is a vector valued function
generated by the averaging operatorGE (we assume that P0(GEuh) = GEuh).

Residual based indicators. Residual based error indicators form the class of
mostly used error indicators (see, e.g., [2, 13]). We consider the standard residual
error indicator

EIRF,T =

(
h2
T‖ fT‖

2
T +

1
2 ∑
E∈Eh(T)\Eh,∂ Ω

|E|‖[nE ·A∇uh]E‖2
E

)1/2
, (6)

and the indicator containing only jump terms

EIRJ,T =

(
1
2 ∑
E∈Eh(T )\Eh,∂ Ω

|E|‖[nE ·A∇uh]E‖2
E

)1/2
. (7)

Here fT denotes the mean value of f on T , i.e., fT := 1
|T |
∫
T f dx.

Global averaging indicator. The global averaging indicator (see, e.g., [3,4]) reads

EIGA,T := ‖yGA−A∇uh‖A−1;T , (8)

where yGA is calculated by global minimization of ‖yGA−A∇uh‖2
A−1;Ω . This mini-

mization procedure results in the problem: nd yGA ∈ H(div,Ω) such that∫
Ω
A−1yGA ·wdx=

∫
Ω

∇uh ·wdx, ∀w ∈ H(div,Ω).

In our tests we used linear Raviart-Thomas nite elements (see, e.g., [10]) in order
to nd globally averaged indicator on the mesh Th.



6 I. Anjam, O. Mali, P. Neittaanmäki, and S. Repin

Error indicator generated by the functional type error majorant. The differ-
ence between the exact solution u and an approximation uh is bounded from above
by the functional error majorantM⊕ (see, e.g., [9, 11]):

‖∇(u− uh)‖2
A;Ω ≤C1‖ f + divyF‖2

Ω +C2‖yF −A∇uh‖2
A−1

,Ω :=M⊕(A,uh,yF),

where C1 = (1+α)C2
Ωc

−1 and C2 = (1+α−1). The constant CΩ is the Friedrich’s
constant. The above inequality holds for all yF ∈ H(div,Ω) and α ∈ R+. The latter
term in the upper bound M⊕ can be used as an error indicator (see [11] for the
mathematical justi cation of this indicator):

EIF,T := ‖yF −A∇uh‖A−1;T . (9)

The function yF is calculated by minimization ofM⊕. This minimization procedure
results in a problem for yF ∈H(div,Ω) and α ∈ R+:∫

Ω

(
C1divyF divw+C2A−1yF ·w

)
dx=

∫
Ω
(C2∇uh ·w−C1 f divw)dx, ∀w∈H(div,Ω).

This problem was also solved with the help of linear Raviart-Thomas nite ele-
ments.

4 Numerical results and conclusions

Approximate solutions of the problem (1)–(2) have been computed using standard
Courant type nite element approximations. Indicators (8) and (9) were calculated
with the help of linear Raviart-Thomas nite elements. All the problems were
calculated on same regular meshes, and systems of linear simultaneous equations
were solved by exact methods. In view of this fact, approximate solutions possess
Galerkin orthogonality property, and, therefore, the residual error indicator (6) can
be used. For the edge averaging indicator (5), we set p = 5 (the amount of times P
is applied). All calculations were performed with the MATLAB computing environ-
ment on a 64 processor SMP server with 1 TB of RAM.

In total, a mesh contains Nelem := #Th elements. Since in this paper we calculate
approximations of (1)–(2) using linear Courant elements, the amount of degrees of
freedom Ndo f of an approximation equals the number of nodes #Nh. We chose to
mark 30% of elements of a mesh to be re ned, i.e., Nre f = 0.3×Nelem.

We studied how the magnitude of variations δ affects error indicators, and dis-
cuss typical results with the paradigm of a simple problem where

Ω = [0,1]2, A0 =

(
1 0
0 1

)
, and f = 2(x1(1− x1)+ x2(1− x2)). (10)

The exact solution of this problem is u0 = x1(1− x1)x2(1− x2).
Using the procedure explained in Sect. 3, we have tested six different indicators

for six different meshes. The results are exposed on Table 1 and Fig. 1. It is worth to
outline again, that the actual sensitivity of error indicators with respect to data un-
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certainty is even higher than in the results reported below (which should be viewed
as lower bounds of the true sensitivity).

Table 1 shows how the values of Θ (associated with the indicators (4)–(9)) de-
pend on the amount of elements Nelem (or amount of degrees of freedom Ndo f ) and
the parameter δ . It is easy to see that suf ciently small values of Θ (which corre-
spond to relatively stable performance of an error indicator) are obtained only for
small δ (such as 0.005 or 0.01) and rather moderate amount of elements. If values
of δ are not very small (e.g., 0.04) then all indicators may generate quite different
markings. We recall that Θ = 1 if indicators computed for different elements of the
solution set D may generate completely opposite markings.

A selection of these numbers are presented on Fig. 1 in a graphical way, which
allows us to compare different indicators with each other. We conclude that even
in this very simple problem small uncertainties in the matrix coef cients may seri-
ously corrupt the process of error indication. This phenomenon does not depend on
a particular error indicator. Actually, it shows that in real life computations error in-
dication procedures (and subsequent mesh re nement) cannot be performed without
an adequate analysis of data uncertainty.

Table 1 The values of Θ with two digit accuracy (example (10)).

(a) EIX node averaging (4)

Nelem Ndo f δ
0.005 0.01 0.02 0.03 0.04 0.05

800 441 0.15 0.28 0.52 0.68 0.80 0.85
3200 1681 0.30 0.53 0.80 0.89 0.88 0.98
12800 6561 0.53 0.80 0.88 1 1 1
51200 25921 0.80 0.88 1 1 1 1
115200 58081 0.89 1 1 1 1 1

(b) EIE edge averaging (5)

δ
0.005 0.01 0.02 0.03 0.04 0.05
0.16 0.27 0.50 0.67 0.75 0.84
0.28 0.51 0.77 0.87 0.89 0.87
0.51 0.77 0.89 0.95 1 1
0.77 0.89 1 1 1 1
0.88 0.96 1 1 1 1

(c) EIRF residual, full (6)

Nelem Ndo f δ
0.005 0.01 0.02 0.03 0.04 0.05

800 441 0.28 0.41 0.65 0.80 0.90 0.94
3200 1681 0.42 0.64 0.89 0.95 0.96 0.96
12800 6561 0.65 0.89 0.96 0.97 1 1
51200 25921 0.89 0.96 1 1 1 1
115200 58081 0.95 0.97 1 1 1 1

(d) EIRJ residual, jump (7)

δ
0.005 0.01 0.02 0.03 0.04 0.05
0.16 0.26 0.50 0.68 0.73 0.88
0.28 0.51 0.77 0.90 0.91 0.89
0.50 0.77 0.90 0.89 0.99 1
0.76 0.90 0.99 1 1 1
0.89 0.88 1 1 1 1

(e) EIGA global averaging (8)

Nelem Ndo f δ
0.005 0.01 0.02 0.03 0.04 0.05

800 441 0.15 0.25 0.51 0.66 0.77 0.84
3200 1681 0.29 0.51 0.78 0.89 0.91 0.88
12800 6561 0.51 0.77 0.90 0.96 1 1
51200 25921 0.77 0.89 1 1 1 1
115200 58081 0.88 0.96 1 1 1 1

(f) EIF functional maj. (9)

δ
0.005 0.01 0.02 0.03 0.04 0.05
0.15 0.26 0.51 0.66 0.76 0.84
0.28 0.51 0.78 0.89 0.89 0.87
0.51 0.77 0.89 0.96 1 1
0.77 0.89 1 1 1 1
0.88 0.96 1 1 1 1
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Fig. 1 The values of Θ plotted against the magnitudes of variation δ , for three meshes
(example (10)).
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Chapter 1
A Unified Approach to Measuring Accuracy of
Error Indicators

Immanuel Anjam, Olli Mali, Pekka Neittaanmäki, and Sergey Repin

Abstract In this paper, we present a unified approach to error indication for elliptic

boundary value problems. We introduce two different definitions of the accuracy

(weak and strong) and show that various indicators result from one principal re-

lation. In particular, this relation generates all the main types of error indicators,

which have already gained high popularity in numerical practice. Also, we discuss

some new forms of indicators that follow from a posteriori error majorants of the

functional type and compare them with other indicators. Finally, we discuss an-

other question related to accuracy of error indicators for problems with incompletely

known data.

1.1 Introduction

Error indicators play an important role in mesh-adaptive numerical algorithms,

which currently dominate in mathematical and numerical modelling of various mod-

els in physics, chemistry, biology, economics, and other sciences. Their goal is to

present a comparative measure of errors related to different parts of the compu-

tational domain, which could suggest a reasonable way of improving the finite–

dimensional space used to compute the approximate solution. An “ideal” error indi-

cator must possess several properties: efficiency, computability, and universality. In
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other words, it must correctly reproduce the distribution of errors, be indeed com-

putable, and be applicable to a wide set of approximations. In practice, it is very

difficult to satisfy all these requirements simultaneously so that different error in-

dicators are focused on different aims and stress some properties at the sacrifice of

others. We discuss the mathematical origins and algorithmic implementation of the

most frequently used error indicators. The literature devoted to this subject is vast.

Indicators based upon post–processing (e.g., averaging) of numerical solutions

are among the most widely used. Among first publications in this direction we men-

tion [54, 52], which generated an interest in gradient recovery methods. Similar

methods were investigated in numerous publications (see, e.g., [2, 8, 7, 11, 27, 47,

49, 50, 51, 53]). Mathematical justifications of the error indicators obtained in this

way follow from the superconvergence phenomenon (see, e.g., [32, 48, 30]). Post–

processing based on global averaging procedures can be performed under weaker

assumptions, which makes them applicable to a wider class of problems (see, e.g.,

[18, 19, 27]). Another class of post–processing methods generate equilibrated (or

almost equilibrated) fluxes (see, e.g., [3, 16, 33]).

Residual type error indicators is another wide class of indicators. They origi-

nate from the papers [5, 6]. Various modifications and advanced forms have been

discussed in numerous publications (see, e.g., [2, 3, 8, 9, 17, 20, 26, 29, 47, 24]).

Runge type indicators are based on the solutions on an enriched set of basis

functions. A special class are the hierarchical error indicators, which are constructed

with the help of auxiliary problems on enriched finite-dimensional subspaces (local

or global) (see, e.g., [1, 22, 25, 23] and the references therein).

Evaluation of approximation errors in terms of special “goal-oriented” quantities

is very popular in engineering computations. A consequent exposition can be found

in [10] and in numerous publications devoted to goal-oriented a posteriori error

estimates and applications of them to various problems (see, e.g, [13, 14, 28, 35, 31,

36, 37, 39, 40, 45, 46]).

The outline of the paper is as follows. In Sect. 1.2 we define strong and weak

accuracy measures for error indicators. Section 1.3 presents a unified conception of

error indicators which contains all main types of error indicators used in practice.

Section 1.4 contains numerical tests, which show the performance of various error

indicators applied to finite element approximations of boundary value problem in a

domain with reentrant corners and jumping coefficients. We come to the conclusion

that error indication of some zones containing excessively high errors is properly

done by all error indicators. However, quantitative results are quite different and

some indicators seriously overestimate true values of the error. In Sect. 1.5 we dis-

cuss the effects that the incompletely known data has on the applicability of error

indicators and present related numerical examples.
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1.2 Error Indicators for FEM Solutions

Let Ts, s = 1,2, ...,N, be elements (subdomains) associated with the mesh Th (with

characteristic size h), and let uh be an approximate solution computed on this mesh.

Henceforth, the corresponding finite dimensional space is denoted by Vh, so that

uh ∈ Vh. Then, the true error is e = u− uh. Denote by ms(e) the value of the error

measure m associated with Ts. Usually, the error measure ms(e) is defined as a cer-

tain integral of u−uh related to Ts. For example, local error measures of approximate

solutions to linear elliptic problems are often presented by the integrals

(∫
Ts

|u−uh|2dx
) 1

2
or

(∫
Ts

|∇(u−uh)|2dx
) 1

2
.

The components of the vector

m(e) = {m1(e),m2(e), ...,mN(e)}

are nonnegative numbers, which may be rather different.

If the overall error encompassed in uh is too big, then a new approximate solu-

tion should be computed on a new (refined) mesh Thref
. Comparative analysis of

ms(e) suggests an idea where to add new degrees of freedom (new trial functions).

However, in real life computations the vector m(e) is not known and, therefore, an

error indicator E(uh) is used. The corresponding approximate values of errors Es
associated with the elements form the vector

E(uh) = {E1,E2, ...,EN},

which is used instead of m(e).
If the vector E(uh) is close to m(e), i.e.,

m(e) ≈ E(uh), (1.1)

then a new mesh Thref
can be efficiently constructed on the basis of comparative

analysis of Es. However, the fact that the adaptive procedure is efficient depends on

how accurately the condition (1.1) is satisfied and how efficiently the information

encompassed in E(uh) is used to improve approximations.

Certainly, the condition (1.1) looks vague unless a formal definition of the sign

≈ is given. Despite the huge amount of publications focused on error indication,

to the best of our knowledge no commonly used definition has yet been accepted.

Different authors may claim (explicitly or implicitly) different things, so the words

“good error indicator” may take on a variety of meanings.

Below we suggest definitions, which can be used for a reasonable qualification

of error indicators. They define “strong” and “weak” meanings of ≈, respectively.

Definition 1.1. The indicator E(uh) is ε-accurate on the mesh Th if
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M (E(uh)) :=
|m(e)−E(uh)|

|m(e)| ≤ ε. (1.2)

The value of M (E(uh)) is the strongest quantitative measure of the accuracy of

E(uh).

This definition imposes strong requirements on E(uh). Indeed, (1.2) guarantees that

inaccuracies in the error distribution computed by E(uh) are much smaller (provided

that ε is a small number) than the overall error. Therefore, an indicator should be

regarded as “accurate”, if it meets (1.2) with relatively coarse ε .

From (1.2) it follows that the so-called efficiency index

Ieff(E(uh)) :=
|E(uh)|
|m(e)| ≤ 1+M (E(uh)) (1.3)

is close to 1, which means that |E(uh)| provides a good evaluation of the overall

error |m(e)|.
The efficiency of E(uh) may be different for different meshes and approximate

solutions. It is desirable that the indicator is accurate for a sufficiently wide class

of approximations and meshes. The wider class of approximations served by an

indicator, the better it is from the computational point of view.

The majority of indicators suggested for finite element approximations are ap-

plicable only to Galerkin approximations (or to approximations that are very close

to Galerkin solutions). Properties of the mesh used are also very important, and

theoretical estimates of the quality of error indicators usually involve constants de-

pendent on the aspect ratio of finite elements.

In adaptive finite element schemes, subsequent approximations are often con-

structed on nested meshes, where a refined mesh is obtained by “splitting” ele-

ments (h-refinement) or by increasing the amount and order of basis functions (p-

refinement) of the current mesh.

A detailed discussion on refinement methods can be found in, e.g., [4, 21].

Typical adaptive schemes consists of solving the problem several times on a se-

quence of improving subspaces. In this type of practice, error indicators are used

together with a marker that marks elements (subdomains) where errors are exces-

sively high. A new subspace Vhref
is constructed in such a way that these errors are

diminished.

Let B denote the Boolean set {0,1} (we can assign the meaning “NO” to 0 and

“YES” to 1). By BN we denote the set of Boolean valued arrays (associated with

one-, two- or multidimensional meshes) of total length N. If b = {�1, �2, ..., �N} ∈ BN ,

then �s ∈ B for any s = 1,2, ...N. It is assumed that in the new mesh the elements

(subdomains) marked by 1 should be refined, while those marked by 0 should be

preserved (see Fig. 1.1). Note that the refined mesh in Fig. 1.1 contains the so-

called “hanging nodes”. In order to avoid them it is often necessary to refine also

some neighboring subdomains marked by 0.

Remark 1.1. Modern mesh adaptation algorithms often make coarsening of a mesh

in subdomains where local errors are insignificant (see, e.g., [15, 43, 44, 38, 12,
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31, 42] and the references cited therein). In this case, elements of BN may attain

three values: {−1,0,1}. The elements marked by −1 should be further aggregated

in larger blocks.

From the mathematical point of view, marking is an operation performed by a

special operator.

Definition 1.2. Marker M is a mapping (operator) acting from the set RN
+ (which

contains estimated values of local errors) to the set BN .

Different markers generate different selection procedures, which are applied to

the array of errors evaluated by an indicator E(uh) in order to obtain a boolean array

b. Further refinement is performed with the help of data encompassed in b. To com-

pare different error indicators in the context of elementwise marking, we introduce

two operations with Boolean valued arrays. Let a = {ai} and b = {bi} be elements

of BN . By �a� we denote the sum ∑N
i=1 ai and ≡ denotes the componentwise logical

equivalence rule, i.e.,

{a ≡ b}i =

{
1 if ai = bi

0 if ai �= bi.

Definition 1.3. An indicator E(uh) is ε-accurate on the mesh Th with respect to the

marker M if

M (E(uh),M) := 1− �M(m(e))≡M(E(uh))�

N
≤ ε . (1.4)

It is easy to see that the accuracy measure M (E(uh),M) is much weaker than

the measure introduced in Definition 1.1.

1.3 General Scheme for Deriving Error Indicators

Practically all known error indicators can be suggested within the framework of a

unified scheme suggested in [34], where it is discussed with the paradigm of the

Poisson equation. In this section, we present a generalized version of this scheme,

which is applicable to a wide spectrum of elliptic type problems. Namely, we con-

sider the class of boundary value problems

Λ ∗A Λu+Bu = f in Ω , f ∈ V , (1.5)

u = u0 on Γ , (1.6)
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where Ω is an open bounded connected subset in R
d with Lipschitz continuous

boundary Γ . Here, V and U are two Hilbert spaces with the inner products by

(·, ·)V and (·, ·)U respectively. These products generate the norms ‖ · ‖V and ‖ · ‖U .

The operator A : U → U and B : V → V are linear, self-adjoint, and positive

definite operators. Λ : V → U is a bounded linear operator, V ⊂ V is a Hilbert

space generated by the inner product (w,v)V :=(w,v)V +(Λw,Λv)U . Henceforth, V0

denotes a convex, closed and non-empty subspace of V such that V0 ⊂V ⊂ V ⊂V ∗
0 .

Typically, V is a Sobolev space associated with the differential operator Λ and V0

contains the functions, which satisfy homogeneous Dirichlet boundary conditions

on a part of the boundary. We consider boundary value problems associated with

energy functionals of the form:

J(w) := 1
2 (A Λw,Λw)U + 1

2 (Bw,w)V − ( f ,w)V , (1.7)

where f ∈ V . We assume that

(A y,y)U ≥ c1‖y‖2
U ∀y ∈U, (1.8)

and

‖w‖V ≤CF‖Λw‖U , ∀w ∈V0. (1.9)

The adjoint operator Λ ∗ : U →V ∗
0 is defined by the relation

〈Λ ∗y,w〉= (y,Λw)U , ∀y ∈U, w ∈V0, (1.10)

where 〈·, ·〉 denotes the pairing of V0 and its conjugate V ∗
0 and 〈Λ ∗y,w〉 is the value

of the functional Λ ∗y ∈V ∗
0 at w ∈V0.

Let a : V0 ×V0 → R denote the symmetric bilinear form

a(u,w) := (A Λu,Λw)U +(Bu,w)V . (1.11)

Under the above made assumptions, the form a is V -elliptic and defines the energy

norm �w� :=
√

a(w,w). We define additional equivalent norms in U

‖y‖2
A := (A y,y)U and ‖y‖2

A −1 := (A −1y,y)U .

Now

J(w) :=
1

2
a(w,w)− ( f ,w)V (1.12)

and the (generalized) solution u is the minimizer of the variational problem

J(u) = min
w∈V0

J(w). (1.13)

By standard arguments, it is easy to prove that the minimizer exists and is unique.

Moreover, it satisfies the relation

a(u,w) = ( f ,w)V , ∀w ∈V0, (1.14)
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which presents a generalized solution of (1.5)–(1.6).

Note that

sup
w∈V0

{
(A Λ(u− v),Λw)U +(B(u− v),w)V − 1

2
a(w,w)

}
≤

≤ sup
τ∈U

{
(A Λ(u− v),τ)U − 1

2
(A τ,τ)U

}
+ sup

η∈V

{
(B(u− v),η)V − 1

2
(Bη ,η)V

}
=

=
1

2
�u− v�2 .

On the other hand,

sup
w∈V0

{
a(u− v,w)− 1

2
�w�2

}
≥ 1

2
� e�2 .

Thus,

�e�2 = sup
w∈V0

{−�w�2 −2�v(w)
}
, (1.15)

where �v(w) := (A Λv,Λw)U + (Bv,w)V − ( f ,w)V is the residual functional. It

is easy to show that the variational problem on the right-hand side of (1.15) has a

unique solution and this solution is w = u− v. Indeed,

�v(u− v) = (A Λv,Λ(u− v)−A Λu,Λ(u− v))U +(Bv,u− v)V − (Bu,u− v)V

=−� e�2,

and we see that the right-hand side coincides with the left-hand one. Hence, (1.15)

implies the relation

|�v(e)|= �e�2 .

We can use (1.15) to deduce computable error indicators in the following three prin-

cipal ways:

1. Assume that we can estimate the residual functional from above as follows:

�v(w)≤ M(v)�w�, (1.16)

where M(v) is a computable functional (usually it is presented by a certain

integral over the domain Ω or by a collection of local quantities associated with

finite elements). Then,

sup
w∈V0

{−�w�2 −2�v(w)
}≤ sup

w∈V0

{−�w�2 +2M(v)�w�
}
= M(v).

Thus,

�e�2 ≤ M(v) (1.17)
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and we have a guaranteed upper bound of the error. It may happen that this

bound is rather coarse. Then, the integrand of M(v) does not present a good error

indicator (in the sense of Definition 1.1). For example, in residual type estimates

M(v) =Cη(v), where η(v) is a computable quantity (which is defined element

wise) and C is an unknown (or known but highly overestimated constant). On

the other hand, in the sense of Definition 1.3, the quantity η may be acceptable

because

M(m(e))≈M(η(v)). (1.18)

We note that only this method leads to guaranteed error bounds and fully reli-

able error indicators.

2. Another method is to replace �v in (1.15) by a close functional, which leads to

a directly computable estimator, i.e., instead of (1.16) we use

�v(w)≈ G(v)(v)�w� (1.19)

and the corresponding relation (which follows from (1.15))

�e�2 ≈ G(v). (1.20)

This way is typical for error indicators based on post processing. The most

used version is known as the gradient averaging indicator. Efficiency of this

indicator can be justified provided that approximations possess some sort of

superconvergence.

3. Another alternative is to solve the variational problem in the right-hand side

of (1.15) numerically. In this case, V0 is replaced by a sufficiently reach finite

dimensional subspace V0h. In fact, this leads to a version of the well-known

Runge method. The most efficient versions of it lead to hierarchically based

error indicators.

Below we compare several error indicators with respect to Definitions 1.1 and

1.3.

1.4 Accuracy of Error Indicators

Consider the problem

−div(A∇u) = f in Ω ⊂ R
2, (1.21)

u = 0 on ∂Ω , (1.22)

where f = 1 and the coefficients are strongly discontinuous, namely,

A =

[
1 0

0 10

]
in Ω1 and A =

[
5 0

0 1

]
in Ω2.
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Fig. 1.2 Domain Ω

Ω1

Ω2

The subdomains Ω1 and Ω2 are depicted in Fig. 1.2. The problem belongs to

the aforementioned class, where L2(Ω ,R), L2(Ω ,R2), H1
0 (Ω), ∇, A, and div are

analogs of V , U , V0, Λ , A , and Λ ∗, respectively.

Approximate solutions uh were computed by the linear Courant-type elements. In

order to compare errors obtained by different error indicators with the true error, we

precomputed the corresponding reference solutions using the second order Courant-

type elements on a very fine mesh with 196 608 elements.

For this particular problem, among typical error indicators is

η(y)T :=
∫

T
(A∇uh − y) · (∇uh −A−1y

)
dx , (1.23)

where y is an approximation of the flux obtained by some numerical method. Dif-

ferent methods generate various error indicators. We consider

• E(yG), where yG is obtained by a commonly used gradient-averaging procedure.

A∇uh is a piecewise constant and we can compute the value of yG at node xk as

follows:

yG =
1

|ωk| ∑
j∈Iωk

1

|Tj| (A∇uh)|Tj
,

where ωk is a patch associated with the node xk, Iωk is the set of indices of ele-

ments on the patch ω j, and |ωk| and |Tj| are areas of ωk and Tj, respectively.

• E(y0
RT), where y0

RT is obtained by edge-wise averaging of normal fluxes on patches

related to edges.

• E(y j
RT), where y j

RT is obtained from y0
RT by applying the iterative quasi-equilibration

procedure j times (equilibration with respect to all edges is considered one equi-

libration), where ‖divy+ f‖ is minimized on patches related to edges. These

procedures are local and for linear elements (and elementwise constant A and f )

can be explicitly computed.

• E(yglo), where yglo is obtained by global minimization of the majorant

min
y∈RT0

M(v,y) := ‖A∇uh−y‖A−1 +C‖ f+divuh‖,



10 I. Anjam et al.

where RT0 is a space generated by the lowest order Raviart-Thomas elements

[41] on a same mesh that was used to compute the approximation uh. C denotes

the Friedrich constant of the domain Ω .

Moreover, we consider two residual type error indicators (see [47])

• E(ηRF) is a residual type indicator, where element-wise error contribution is

ηRF,T :=

(
h2

T‖ fT‖2
T +

1

2
∑

E∈Eh(T )/Eh,∂Ω

|E|‖[nE ·A∇uh]E‖2
E

) 1
2
, (1.24)

where E ∈ Eh(T )/Eh,∂Ω denotes the edges of the element T excluding the edges

related to the boundary of Ω and [·] is the “jump” over the edge.

• E(ηRJ) is a residual type indicator containing only jump terms,

ηRJ,T :=

(
1

2
∑

E∈Eh(T )/Eh,∂Ω

|E|‖[nE ·A∇uh]E‖2
E

) 1
2
. (1.25)

In Fig. 1.3, the true error distribution and indicated element-wise error distribu-

tions are depicted for a finite element approximation computed on a regular mesh

with N = 3072 elements. We see that all indicators manage to locate errors asso-

ciated with corner singularities and the points where the line of discontinuity of

diffusion coefficients intersects with the boundary (we note that the necessity of

mesh adaptation in this area is clear a priori). However, the values of E(ηRF) and

E(ηRJ) are substantially larger. This is also seen on histograms in Fig. 1.4, which

provide another view on these results. Here, all element-wise errors are ranked in

the decreasing order in accordance with the true error distribution. Thus, the very

first (left) vertical bar corresponds to the element with the largest error (the num-

ber of which is 1) and the very last one to the element with the smallest error (the

number of which is N). Then, the order of elements exposed along the horizontal

axis is fixed and all other distributions are presented in the same order. It is clear

that if E is accurate in the strong sense (and can be called fully reliable, see Defini-

tion 1.1), then the corresponding histogram must resemble the histogram generated

by the true error. We see that not all indicators meet this condition. Similar tests

have been made using finer meshes with 12 288 and 49 152 elements. They generate

approximations with 7% and 4% of relative error, respectively. The corresponding

histograms of the indicated errors on meshes are depicted in Figs. 1.5 and 1.6.

In Tables 1.1, 1.2, and 1.3, we measure accuracy of indicators. We use the accu-

racy measure in Definition 1.1. Also, the accuracy of error indicators in the sense

of Definition 1.3 is evaluated with respect to three different markings: based on the

average error value (M1), selection of 30% elements with the highest error (M2),

and bulk criterium, where 40% of the “error mass” is selected (M3). Additionally,

we compute the efficiency index of the majorant for computed approximations of

the flux, i.e.,
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e E(yglo)

E(yG) E(y0
RT)

E(y5
RT) E(y10

RT)

E(ηRF) E(ηRJ)

Fig. 1.3 Contour lines of true and indicated error distributions for the approximation computed on
a regular mesh with 3 072 elements

Table 1.1 Comparison of indicators on a regular mesh with 3 072 elements

Indicator M (E) M (E,M1) M (E,M2) M (E,M3) Ieff

E(yglo) 0.4988 0.1204 0.0703 0.0654 1.4220
E(yG) 0.6877 0.1156 0.1029 0.1110 16.351

E(y0
RT) 0.5534 0.1243 0.0957 0.0846 24.443

E(y5
RT) 0.5487 0.1234 0.0755 0.0700 2.3728

E(y10
RT) 0.5643 0.1250 0.0742 0.0687 2.0144

E(ηRF) 6.9200 0.2692 0.2617 0.1634 –
E(ηRJ) 5.5587 0.2767 0.2617 0.1104 –

Ieff :=
M(uh,y)

‖∇(u−uh)‖A
.

We see that an indicator can be accurate in a weak sense with respect to a certain

marker but inaccurate in the strong sense. However, in this case it might be much

less accurate with respect to another marker.
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Fig. 1.4 Histograms of true and indicated error distributions for the approximation computed on a
regular mesh with 3 072 elements

1.5 Accuracy of Error Indicators for Problems with Uncertain
Data

Error indicators used in numerical analysis of partial differential equations usually

assume that data of the problem are known exactly. In this case, a good error indica-

tor can suggest efficient reconstructions of meshes, which lead to accurate numerical

solutions. In this section, we discuss how this process may be affected by incom-

pletely known data. Certainly this discussion is based upon rather simple examples.

However, to the best of our knowledge, such type studies are quite new and our goal
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Fig. 1.5 Histograms of true and indicated error distributions for the approximation computed on a
regular mesh with 12 288 elements

is to show some principal difficulties arising if error indicators are applied to prob-

lems with uncertain data. It is clear that similar difficulties will arise in many other

problems.

We begin with observations motivated by Fig. 1.7 where we depict two different

“error indication directions” E1 and E2. These directions are computed by means of

the indicator E with the data D1 and D2, which lead to two different exact solutions

u1 and u2, respectively. If our approximate solution vh is far from S (D), then the

directions are close (in other words if we have a coarse approximation, then good

error indicators are robust with respect to small variations of data). However, this

may be not true for accurate approximations. This fact does not depend on the qual-
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Fig. 1.6 Histograms of true and indicated error distributions for approximation computed on a
regular mesh with 49 152 elements

ity of on error indicator and takes place even for the best one based on comparison

of approximations and exact solutions. In practice, arrows depicted in Fig. 1.7 mean

certain reconstructions of meshes. It is easy to see that if the approximate solution

lies in the vicinity of S (D), then error indicators provide very different results if

the data a varied within admissible bounds. Therefore, the process of sensible mesh

adaptation has a limit beyond which further refinements become unreliable. Below

we demonstrate this fact on a simple example. Our goal is to study how incomplete

knowledge of the coefficients of diffusion coefficients impact the reliability of error

indication.
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Table 1.2 Comparison of indicators on a regular mesh with 12 288 elements

Indicator M (E) M (E,M1) M (E,M2) M (E,M3) Ieff

E(yglo) 0.4994 0.1281 0.0672 0.0545 1.4275
E(yG) 1.0027 0.1192 0.0685 0.0987 32.556

E(y0
RT) 0.5617 0.1245 0.0788 0.0692 48.364

E(y5
RT) 0.5650 0.1303 0.0675 0.0601 3.4817

E(y10
RT) 0.5833 0.1305 0.0669 0.0595 2.6653

E(ηRF) 6.9584 0.2636 0.2614 0.1515 –
E(ηRJ) 5.8981 0.2719 0.2614 0.0977 –

Table 1.3 Comparison of indicators on a regular mesh with 49 152 elements

Indicator M (E) M (E,M1) M (E,M2) M (E,M3) Ieff

E(yglo) 0.5208 0.1313 0.0653 0.0525 1.4501
E(yG) 1.3685 0.1337 0.0406 0.1000 68.656

E(y0
RT) 0.5807 0.1251 0.0671 0.0610 102.01

E(y5
RT) 0.6059 0.1285 0.0622 0.0550 5.9855

E(y10
RT) 0.6280 0.1295 0.0620 0.0544 4.1468

E(ηRF) 7.0463 0.2581 0.2623 0.1465 –
E(ηRJ) 6.2373 0.2665 0.2623 0.0925 –

u1

u2

S (D)

vhaccurate

vhcoarse

E2

E1

E2

E1

Fig. 1.7 Error indications E1 and E2 oriented towards two different solutions u1 and u2 in the
solution set S (D)

1.5.1 Numerical Experiments

In our numerical experiments, we again consider the stationary diffusion equation

divA∇u+ f = 0 with small disturbances of the diffusion matrix A = A◦+δB, where

the magnitude of variations δ satisfies A◦ξ · ξ ≥ c > δ , for all |ξ | = 1. For each

element T ∈ Th, the matrix B (which defines disturbances) is symmetric and its

coefficients may attain one of three values: {−1,0,1}. A perturbation generated in

this way is clearly an extreme one. It suits our purposes, since we are trying to find

perturbations generating the worst case situation which may occur with different

diffusion matrices A that belong to the set D.

We note that since the amount of matrices contained in D is much larger than

those representable in such a form, the sensitivity of error indicators with respect to

data uncertainty is even higher than it was detected in our experiments.

Let E denote an error indicator computed on the set of elements Th for an ap-

proximation uh. The output of E is a vector {E(uh)} that contains approximate er-
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rors value for each element in T . In computational practice, error indicators are used

together with a marker M. In this series of numerical experiments, we confine our-

selves to the marker M, which marks a certain predefined amount of elements with

highest errors (denoted by Nref).

Our analysis of effects caused by data uncertainty is based on the following strat-

egy. We select a mesh Th and a certain amount of matrices A j = A◦+δB j for some

given δ . For each set of data associated with the exact solution u j = §(A j), we

compute the corresponding approximations u jh on the mesh Th. Then, for each u jh,

we calculate the error indicator E j = E(A j,u jh) and the corresponding markings

M(E j).
The difference of two markings is natural to evaluate by means of the boolean

measure analogous to that we used in (1.4). We define the quantity

diff(M,Ei,E j) := 1− �M(Ei)≡M(E j)�

N
∈ [0,1]. (1.26)

The quantity

Θ := max
i, j

{diff(M,Ei,E j)} (1.27)

shows the maximal difference produced by an error indicator with different diffu-

sion matrices from the set D. We have tested the following commonly used error

indicators.

We test the error indicators applied in the previous example, i.e., E(yG), E(y
j
RT),

E(yglo), E(ηRF) and E(ηRJ), respectively. Additionally, we introduce E(yGglo) gen-

erated by substituting “globally averaged” yGglo in (1.23). It is calculated by glob-

ally minimizing ‖yGglo −A∇uh‖2
A−1 (see, e.g., [18, 11]) using the Raviart-Thomas

elements.

Approximate solutions of the model problem have been computed by using

the standard Courant-type finite element approximations. Indicators E(yglo) and

E(yGglo) were computed with the help of the linear Raviart-Thomas finite elements.

All the problems were solved on same regular meshes, and arising systems of linear

simultaneous equations were exactly solved by direct methods. In view of this fact,

approximate solutions possess the Galerkin orthogonality property, and, therefore,

the residual error indicator E(ηRF) can be used. For the edge averaging indicator

E(uh,y
j
RT), we set j = 5 (the amount of times the quasi-equilibration cycle PRM is

applied).

Nelem denotes the overall amount of elements. The marker M used selects 30%

of elements to be refined, i.e., Nre f = 0.3Nelem. Note that the maximal value of

Θ for this marker is 0.6. Even if markings generated by two different indicators

select completely different elements, then for 40% of all elements the marked value

coincides (it is zero).

We studied how the magnitude of variations δ affects error indicators and discuss

typical results with the example of a simple problem where Ω = (0,1)2, A◦ = I,

and f = 2(x1(1− x1)+ x2(1− x2)). The exact solution of this “mean” problem is

u◦ = x1(1− x1)x2(1− x2).
The results are exposed in Table 1.4 and Fig. 1.8. They show the performance
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Table 1.4 The values of Θ
(a) E(v,yG), patch-wise averaging

Nelem δ
0.005 0.01 0.02 0.03 0.04 0.05

800 0.09 0.16 0.31 0.40 0.48 0.51
3200 0.18 0.31 0.47 0.53 0.52 0.58
12800 0.32 0.48 0.52 0.59 0.60 0.60
51200 0.48 0.52 0.60 0.60 0.60 0.60
115200 0.53 0.59 0.60 0.60 0.60 0.60

(b) E(v,y0
RT) edge averaging

δ
0.005 0.01 0.02 0.03 0.04 0.05

0.09 0.16 0.30 0.40 0.45 0.50
0.16 0.30 0.46 0.52 0.53 0.52
0.30 0.46 0.53 0.56 0.59 0.59
0.46 0.53 0.59 0.60 0.60 0.60
0.52 0.57 0.59 0.60 0.60 0.60

(c) E(ηRF ) residual, full

Nelem δ
0.005 0.01 0.02 0.03 0.04 0.05

800 0.16 0.24 0.39 0.48 0.54 0.56
3200 0.25 0.38 0.53 0.57 0.57 0.57
12800 0.38 0.53 0.57 0.58 0.59 0.59
51200 0.53 0.57 0.59 0.60 0.60 0.60
115200 0.56 0.58 0.60 0.60 0.60 0.60

(d) E(ηRJ) residual, jumps

δ
0.005 0.01 0.02 0.03 0.04 0.05

0.09 0.15 0.30 0.40 0.44 0.52
0.16 0.30 0.46 0.53 0.54 0.53
0.30 0.45 0.54 0.53 0.59 0.59
0.45 0.54 0.59 0.60 0.60 0.60
0.53 0.53 0.60 0.60 0.60 0.60

(e) E(v,yGglo), global averaging

Nelem δ
0.005 0.01 0.02 0.03 0.04 0.05

800 0.08 0.15 0.30 0.39 0.46 0.50
3200 0.17 0.30 0.46 0.53 0.54 0.52
12800 0.30 0.46 0.54 0.57 0.60 0.60
51200 0.46 0.53 0.59 0.60 0.60 0.60
115200 0.52 0.57 0.60 0.60 0.60 0.60

(f) E(v,yglo), majorant min

δ
0.005 0.01 0.02 0.03 0.04 0.05

0.08 0.15 0.30 0.39 0.45 0.50
0.16 0.30 0.46 0.53 0.53 0.52
0.30 0.46 0.53 0.57 0.60 0.60
0.46 0.53 0.60 0.60 0.60 0.60
0.52 0.57 0.60 0.60 0.60 0.60

of indicators on six different meshes. It is worth outlining that the actual sensitivity

of error indicators with respect to the data uncertainty is even higher than in these

results, because we do not consider all problems with admissible data.

Table 1.4 shows how the values of Θ (associated with the indicators) depend on

the amount of elements Nelem and the parameter δ . It is easy to see that sufficiently

small values of Θ (which correspond to relatively stable performance of an error

indicator) are obtained only for small δ (such as 0.005 or 0.01) and a rather mod-

erate amount of elements. If the values of δ are not very small (e.g., 0.04), then

all the indicators may generate quite different markings. We recall that Θ = 0.6 if

the indicators computed for different elements of the solution set D may generate

completely opposite markings. Obviously, this situation arises if the corresponding

approximate solution lies inside (or is very close) the set S (D).
Curves in Fig. 1.8 represent these results graphically. We see that for δ > 0.01

all indicators lose the reliability. We observe that if the indeterminacy is significant
compared with the approximation error, uncertainties in the matrix entries may se-
riously corrupt the process of error indication. This phenomenon does not depend
on a particular error indicator.
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Fig. 1.8 Values of Θ for different δ for three meshes

Finally, we note that in this simple test problem the effect of indicator deteri-

oration is easy to discover even for relatively coarse meshes. However, upon our

experience, similar effects will eventually arise in all problems if more and more re-

fined meshes are used. In other words, indeterminacy of data limits efficiency (and

applicability) of error indicators.

1.6 Summary and Conclusions

We presented a classification for the error indication methods and defined unified

methodology to measures to evaluate and compare performance of error indicators.

The application of these measures to was presented in a numerical example, where a

group of established error indicators were compared. Moreover, we extended these

measures to study the effects of uncertain data to error indication reliability. It was
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shown by a simple numerical experiment that the incomplete knowledge of the data

has serious implications to the error indication, if the approximate solution is close

to the accuracy limit.
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5. Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. In-
ternat. J. Numer. Meth. Engrg. 12(10), 1597–1615 (1978)
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33. Ladevéze, P., Leguillon, D.: Error estimate procedure in the finite element method and appli-
cations. SIAM J. Numer. Anal. 20(3), 485–509 (1983)
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