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Abstract

In this thesis, electron transport in two dimensions with perpendicular mag-
netic field is studied in three different nanodevices. The devices of interest are
quantum rings, Fabry-Perót interferometers in the integer quantum Hall regime,
and a stadium-shaped quantum dot. The method used in this thesis combines
time-dependent dynamics, realistic modeling of the sample geometry, and the
electron-electron interactions. The combination forms a more realistic numerical
simulation for the magnetoconductance than what has been previously achieved.
Understanding interference effects and the related phenomena might be useful
in designing future computer architectures, for example.

Electron dynamics is examined by solving the time-dependent Schrödinger
equation numerically in a real-space grid and, in the presence of electron-electron
interactions, with the use of time-dependent density-functional theory. The
simulations are carried out with the OCTOPUS code that allows the construction
of arbitrary model potentials for experimental nanostructures.

The first study is the time-dependent discharge simulation of a quantum
ring. We find clear Aharonov-Bohm oscillations with a single transport loop but
also oscillations that arise from multiple transport loops. The effect of electron-
electron interactions in Aharonov-Bohm oscillation is relatively weak, but the
oscillation visibility strongly depends on the ring width. Our results suggest that
the current flows through thin conduction channels and is dominated by only a
few electrons when the Aharonov-Bohm oscillation is successfully measured.

The second study examines transport characteristics of a realistic quantum
Hall-based Aharonov-Bohm interferometer. First, the electron density is solved
self-consistently for the given experimental structure. The resulting electron
density is used to determine the distribution of the current-carrying incompress-
ible strips which are used as a base for the transport model. The transport
simulations show clear Aharonov-Bohm oscillations whose amplitude has an op-
timal value when the distance between the channels and the channel width are
chosen suitably. The electron-electron interactions do not suppress the visibility
of the Aharonov-Bohm oscillations, but induce a channel separation dependent
phase shift. Our results indicate that Aharonov-Bohm interferometers can, in
principle, be used as a controllable current switches.
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Finally, we examine the magnetoconductance fluctuations of a stadium-
shaped, classically chaotic quantum dot. We find self-similar conductance fluc-
tuations in more than two orders of magnitude. The detrended fluctuation
analysis and variance method are used to calculate the fractal dimension of the
conductance fluctuations. Our results are in good qualitative agreement with
experimental results.
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Chapter 1

Introduction

The first recorded observations of electricity date back to 2750 BC in ancient
Egypt, where people were aware of shocks from the Thunderer of the Nile, alias
the electric catfish [1]. For hundreds of years, electricity was only an intellectual
curiosity and did not play any major role in society. The interest in researching
electricity ignited during the 17th century leading to the major inventions of the
19th century, i.e., the telephone, the incandescent lamp, and the discovery of
the dynamo and its applicability as a generator for electric power. The latter
was the key part of the second industrial revolution before the First World War.

The main carrier of electric current, the electron, was observed in 1897 by J.
J. Thomson and it became the first elementary particle to be discovered [2]. The
conducted experiment showed that cathode rays were particles instead of waves,
atoms or molecules, and the electron charge-to-mass ratio e/m was determined
with good accuracy. When the properties of electrons were investigated even
further, it accelerated the formulation of quantum mechanics during the first
half of the 20th century.

The first quantum theories considered the quantization of energy and light.
In 1901, Max Planck explained the light emitted by the black-body radiation by
proposing that the energy is quantized, i.e., can only be transfered in discrete
amounts [3]. In 1919, he was awarded the physics Nobel Prize of 1918 for the
discovery of the energy quanta. Four years after Planck’s discovery, Albert Ein-
stein explained the photoelectric effect by postulating that all electromagnetic
radiation can be viewed as particles of energy, which were later given the name
photon. Modern quantum theory was initiated by de Broglie in 1925, when
he postulated that all matter could behave like waves [4]. De Broglie’s ideas
were used as a starting point when Erwin Schrödinger formulated wave mechan-
ics and the non-relativistic Schrödinger equation in 1926 [5]. In 1927, Werner
Heisenberg stated that there is a relation for the theoretical maximum accuracy
of the simultaneous measurement for complementary physical quantities [6]. In
addition to the uncertainty principle, Heisenberg participated in the formulation
of the linear algebra of quantum mechanics.

The wave nature of the electron was measured in 1927 by Davisson and
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Germer [7], and the electron spin was observed to be half-integer in 1925 by
Goudsmit and Uhlenbeck [8]. The statistical properties of electrons and their
relativistic theory were determined in 1925 by Pauli [9], and Fermi [10], and in
1928 by Dirac [11]. A distinctive macroscopic phenomenon arising from quantum
effects is superconductivity discovered by H. K. Onnes already in 1911. He
measured the resistance of solid mercury at the temperature of 4.2 K and noticed
that the resistance of the sample disappeared completely when the sample was
cooled below its critical temperature [12]. The microscopic theory of this peculiar
phenomenon followed much later in 1957, when Bardeen, Cooper, and Schrieffer
explained the superconducting current through boson-like Cooper pairs formed
by two separated electrons via the electron-phonon interaction [13]. Both the
discovery and the thoery were awarded with physics Nobel Prizes in 1913 and
1972, respectively.

Nowadays, the majority of applied electronic devices are based on semicon-
ducting materials, e.g. silicon and gallium arsenide. The reason why semicon-
ductors are widely used in electronics industry is that their conductance can
be easily varied by even several orders of magnitude. This is usually done by
controlled inclusion of disorder atoms to add or remove conduction electrons,
i.e., by doping, or by varying the voltage of certain control electrodes near the
conduction channel, i.e., by gating. The most widely used semiconductor device
is the transistor which is used to amplify and switch electric signals, and it is the
main building block of computer processors and other integrated circuits. The
point contact transistor was developed by John Bardeen and Walter Brattain
who were studying the metal-semiconductor interface effects in 1947. They were
awarded the Nobel Prize in physics in 1956 "for their researches on semiconduc-
tors and their discovery of the transistor effect", together with William Shockley
who had developed a junction transistor.

The recent development of electronics industry has mostly been due to the in-
creased ability to miniaturize the size of the components as predicted by Moore’s
law. The law states that the number of transistors on integrated circuits dou-
bles in approximately every two years [14], and has predicted the evolution of
integrated circuits for almost 50 years. The trend is expected to continue in
the near future, but the lithography techniques used to fabricate the devices
are approaching their intrinsic physical limits. Thus, the miniaturization can-
not continue much further by using the current designs unless new ideas are
developed.

One way to explore new electron transport phenomena is to restrict the move-
ment of electrons. For example, by combining two layers of different semicon-
ducting materials a thin layer of conduction electrons is formed at the interface
of the materials. In this way, the movement of the electrons is effectively con-
fined in two dimensions. The two-dimensional electron gas can also be formed
on a sheet structure like graphene [15] or on the surface of a suitable material,
e.g., topological insulators [16].

The most notable effect arising from the confinement of the electron move-
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ment is the quantum Hall effect measured in 1980 by Klaus von Klitzing et al.
[17]. In the quantum Hall effect, the perpendicular voltage across the Hall bar
has a step-like behavior with extremely precise values on plateaus characterized
by integers as a function of the magnetic field. In addition, the longitudinal re-
sistance vanishes whenever the magnetic-field value corresponds to the plateau.
It was later found out by Laughlin, Tsui, and Störmer [18, 19] that there are
more plateaus corresponding to fractional indices at higher magnetic fields. The
discoveries of the integer and fractional quantum Hall effects led to two No-
bel Prizes in physics given to von Klitzing in 1985 and to Laughlin, Tsui, and
Störmer in 1998.

When the movement of electrons is restricted even further by adding gate
electrodes to confine the two-dimensional electron gas, a structure called a quan-
tum dot is formed. Its size is typically in the range between 10 nm and 500 nm
and the dot contains a tunable number of electrons from one up to thousands.
Due to the advances in the semiconductor research during 1980s, sufficiently
high mobilities to produce samples with the elastic mean free path exceeding
the sample size can be fabricated. In these samples electron transport is ballis-
tic, i.e., not affected by scattering from impurities but only the sample geometry
which can be varied by tuning the gate voltages. In addition, the gate voltages
can be used to vary the number of electrons in the quantum dot and its cou-
pling to the leads. If the point contacts are squeezed away by adjusting the gate
voltages, the spectrum of the quantum dot becomes discrete and the dot can be
viewed as an artificial atom. Quantum dots display many features seen in other
systems such as small metallic nanoparticles and carbon fullerene molecules, so
they can be used as a general model for coherent quantum structures. Etching,
molecular-beam epitaxy, electron lithography, and self-assembly techniques are
used to fabricate the quantum-dot structures [20, 21].

This thesis focuses on electron transport properties in quantum dots confined
in the two-dimensional electron gas in magnetic fields. The structures of interest
are quantum rings, Fabry-Pérot interferometers, and stadium-shaped quantum
dots. The simulations are carried out by numerically solving the time-dependent
Schrödinger equation and by the use of the time-dependent density-functional
theory. The introduction part of the thesis is divided in two parts. The first part,
Chapter 2, focuses on explaining the theoretical background and the physical
phenomena. The second part, Chapter 3, displays the simulation results and a
comparison to previous experimental and theoretical data. Finally, a summary
and a short outlook are given in Chapter 4.
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Chapter 2

Theory

2.1 Identical particles
In classical mechanics, we can give a unique name for each identical particle
and follow their dynamics while keeping track of which particle is which. On
the contrary, in quantum mechanics this labeling procedure is not possible and
there is no way to distinguish identical particles from each other. This leads
to different statistical distributions compared to the classical ones. It turns out
that there are two different kinds of particles that can be characterized by the
symmetry properties of quantum mechanical state vectors. The two particle
families are called bosons, for which the state vector is symmetric with respect
to the particle exchange,

|n,m〉 = |m,n〉, (2.1)

and fermions, for which the state vector is antisymmetric,

|n,m〉 = −|m,n〉. (2.2)

The antisymmetricity of the fermionic state vector gives an important result if
two particles occupy the same quantum mechanical state:

|n, n〉 = −|n, n〉 ⇒ |n, n〉 = 0. (2.3)

This means that two identical particles cannot occupy the same state. The
result is called the Pauli exclusion principle. In this thesis we examine the
quantum mechanical transport properties of electrons that belong to the family
of fermions.
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2.2 Many-body Hamiltonian
The backbone of the nonrelativistic quantum mechanical modeling is the time-
dependent Schrödinger equation (TDSE) given in atomic units (a.u., see section
2.8) as

Ĥ|Ψ〉 = i
∂

∂t
|Ψ〉, (2.4)

where Ĥ is Hamiltonian operator, i.e., the total energy operator and |Ψ〉 is
the state vector that contains all the information about the system. For an
N -electron system, the Hamiltonian can be split as

Ĥ = T̂ + V̂ + Ŵ , (2.5)

where T̂ , V̂ , and Ŵ are the kinetic energy, external potential, and interaction
operators, respectively. In the position representation, these three operators can
be written as

T̂ = −1

2

N∑
j=1

∇2
j ; (2.6)

V̂ =
N∑
j=1

v(rj); (2.7)

Ŵ =
1

2

∑
j 6=k

w(rj, rk), (2.8)

where v(r) is the external potential and w(rj, rk) is the interaction potential
between electrons j and k. From now on, the position representation will be
used unless stated otherwise.

The solution of the TDSE is generally, i.e., with more than a few particles,
complex and must be obtained numerically. In two dimensions, the wave func-
tion for N particles contains 2N position coordinates. For example, calculations
for six interacting particles in a real-space grid of 500 points per coordinate axis
require roughly 50012 ∼ 1032 grid points, which is way beyond the memory ca-
pacity of any modern computer hardware. Luckily, there are some clever ways
to rewrite the many-particle problem and reduce the memory requirements.

2.3 Density-functional theory
Density-functional theory (DFT) is one of the most popular methods to refor-
mulate the many-particle problem to a more easily calculable form. It is built on
the result stating that through a one-to-one mapping between the ground-state
wave functions and densities (see below), all the ground-state properties can be
deduced from the density only. This reduces the required position coordinates
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from D×N to D (where D is the dimension) which in turn lowers the computa-
tional cost dramatically. The theorems behind this result were proved by Pierre
Hohenberg and Walter Kohn in 1964 [22] and, together with several further con-
tributions, led to the 1998 Nobel Prize in chemistry awarded to Walter Kohn
together with John Pople for their development of the DFT and computational
methods in quantum chemistry, respectively.

Nowadays, DFT calculations are done by the use of the Kohn-Sham con-
struction [23] (see Sec. 2.3.2), where the system of interest is replaced by a
non-interacting system in an effective potential. The effective potential adjusts
the non-interacting system in such a way that the orbitals from the noninteract-
ing system produce the same density as in the interacting system of interest. In
principle, the theory is exact but in practice some approximations are required.

Conventionally, DFT has been used heavily in the field of quantum chemistry
but since 1990s it has gained increasing popularity in material science and solid-
state physics. The number of published DFT articles in 2011 was over 8000 and
the yearly number is expected to reach 10000 in the next few years. Applications
of DFT range from the prediction of new catalysts to new Li battery materials
and protein folding [24].

2.3.1 Hohenberg-Kohn theorem

The proof of the Hohenberg-Kohn theorem proceeds in two parts. First, it is
proven that there is a one-to-one correspondence between the external potential
and the ground-state wave function. Potentials and wave functions are consid-
ered different if they differ by more than a constant V̂1 6= V̂2 + C,C ∈ R or a
constant phase factor Ψ1 6= eiφΨ2, φ ∈ R, respectively. The proof proceeds by
reductio ad absurdum. Suppose that there are two different potentials V̂1 and V̂2
that produce the same ground state |Ψ〉. We get

Ĥ1Ψ = (T̂ + V̂1 + Ŵ )Ψ = E1Ψ;

Ĥ2Ψ = (T̂ + V̂2 + Ŵ )Ψ = E2Ψ.

If we substract both equations we get

(V̂1 − V̂2)Ψ = (E1 − E2)Ψ = CΨ, (2.9)

where C ∈ R is a constant. For non-zero wave functions and only position
dependent potential operators, we can divide Ψ out and get V̂1 = V̂2 +C, which
is in contradiction with our assumption. Therefore our assumption must be
wrong and there is one-to-one correspondence between potentials and ground
state wave functions.

The second part of the proof shows that there is a one-to-one correspondence
between the ground-state densities and ground-state wave functions. The proof
is constructed again with reductio ad absurdum. Suppose that there are at least
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two different quantum mechanical states with corresponding Hamiltonians that
produce the same ground state density. Then we get

E1 = 〈Ψ1|Ĥ1|Ψ1〉 = 〈Ψ1|Ĥ2 + V̂1 − V̂2|Ψ1〉

= 〈Ψ1|Ĥ2|Ψ1〉+

∫
dr n(r)[v1(r)− v2(r)]

> E2 +

∫
dr n(r)[v1(r)− v2(r)],

where we have used 〈ψ|Ĥ2|ψ〉 > E2 if |Ψ〉 is not the ground state of Ĥ2. A
similar expression can be derived for E2 by interchanging the indices:

E2 > E1 +

∫
dr n(r)[v2(r)− v1(r)]. (2.10)

If we sum these equations we get E1 + E2 > E1 + E2 which is false. Therefore,
our initial assumption must have been wrong. Combining these two results we
find the one-to-one correspondence between ground state densities and external
potentials.

2.3.2 Kohn-Sham construction

Since there is a one-to-one correspondence between the external potential, ground-
state wave function and the density, any expectation value calculated from the
ground state must be a functional of the density. For the ground state energy
we have

Ev0 [n] = 〈Ψ[n]|Ĥv0|Ψ[n]〉

= 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉+

∫
dr n(r)v0(r)

= FHK[n] +

∫
dr n(r)v0(r),

where FHK[n] is a called the Hohenberg-Kohn functional and it is the same for all
systems containing the same interaction (here Coulombic, i.e., Ŵ = 1/|r̂ − r̂′|)
between particles. An expression for FHK[n] can be found by examining the
auxilary non-interacting Kohn-Sham (KS) system, with the Hamiltonian

Ĥs = T̂ + V̂s[n], (2.11)

where V̂s[n] is the effective potential chosen in such a way that the eigenstates
of the auxiliary non-interacting Hamiltonian produce the same density as the
interacting system. The ground-state wave function Φs of the auxiliary system
is called the KS wave function and can be written as a Slater determinant

Φs[n](r1σ1, ..., rNσN) =
∑
S

(−1)Sϕ1(rS1σS1)...ϕN(rSNσSN ), (2.12)
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where the sum goes through all permutations of N indices, (−1)S yields 1 and
−1 for even and odd permutations, respectively. In this work, we consider spin-
compensated (total spin zero) systems and the wave function attains the form

Φs[n](r1σ1, ..., rNσN) =
∑
S

(−1)Sφ1(rS1)δσS1 ,↑φ1(rS2)δσS2 ,↓...φN/2(rSN )δσSN ,↓.

(2.13)
The single-particle states φi are called the KS orbitals and they can be used to
obtain the total density of the system as

n(r) = 2

N/2∑
i=1

|φi(r)|2. (2.14)

The total energy of the KS system is

Es[n] = 〈Φs[n]|T̂ + V̂s[n]|Φs[n]〉 = Ts[n] +

∫
dr vs(r)n(r), (2.15)

where the KS kinetic energy functional is

Ts[n] =

N/2∑
i=1

∫
dr |∇φi(r)|2, (2.16)

and it is a functional of the density because the KS orbitals depend on the total
density via the effective potential. The KS kinetic energy functional can be used
to define the exchange-correlation energy as

Exc[n] = FHK[n]− Ts[n]− EH [n], (2.17)

where EH [n] is the Hartree potential energy, i.e., the classical electrostatic enery
defined as

EH [n] =
1

2

∫
dr dr′ n(r)n(r′)w(r, r′). (2.18)

The exchange-correlation energy contains all the nontrivial parts of the energy
functional and it can be divided into two parts

Exc[n] = Ex[n] + Ec[n]; (2.19)
Ex[n] = 〈Φs[n]|Ŵ |Φs[n]〉 − EH [n], (2.20)

where the exchange energy can be written for a spin-compensated system as a
Fock integral for the KS states

Ex[n] = −
N/2∑
i,j=1

∫
dr dr′ φ∗i (r)φ

∗
j(r
′)w(r, r′)φi(r

′)φj(r). (2.21)

Ex[n] is thus the energy related to the particle exchange in the KS system and
the correlation energy Ec[n] is all that is left after subtracting Ex from Exc. The
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exchange energy is negative, because it takes the Pauli exclusion principle into
account and prohibits electrons occupying the same orbitals, thus reducing the
interaction energy from the Hartree approximation. In practice, Exc needs to be
approximated as discussed in the next section.

The next step in solving the many-body ground-state problem is to require
that the ground-state density minimizes the total energy functional. This is
done by setting the functional derivative of E[n] to be zero for the all density
variations which conserve the particle number,

δEv0 [n]

δn(r)
= 0. (2.22)

This leads to a defining equation for the effective potential,

vs[n](r) = v0(r) + vH [n](r) + vxc[n](r), (2.23)

where the Hartree and exchange-correlation potentials are defined as

vH [n](r) =
δEH [n]

δn(r)
=

∫
dr′ n(r′)w(r, r′), (2.24)

and
vxc[n](r) =

δExc[n]

δn(r)
, (2.25)

respectively. Now that we have an expression for the effective potential vs[n](r),
we can, in principle, obtain the ground-state density and energy by solving the
Kohn-Sham equations self-consistently:[

−1

2
∇2 + vs[n](r)

]
φi(r) = εiφi(r); (2.26)

n(r) = 2

N/2∑
i=1

|φi(r)|2; (2.27)

vs[n](r) = v0(r) + vH [n](r) + vxc[n](r). (2.28)

Here Eq. (2.26) is the Schrödinger equation for the KS Hamiltonian (2.11).
The challenge in using DFT is to find a good approximation for the exchange-
correlation, which is generally unknown except for specific systems such as the
homogeneous electron gas.

2.3.3 Pair density and the exchange-correlation hole

The pair density, which gives the probability per unit area squared to find par-
ticles at positions r and r′, is defined as

Γ(r, r′) =
1

(N − 2)!

∑
σ,σ′,σ3,...,σN

∫
dr3...drN |Ψ(rσ, r′σ′, r3σ3, ..., rNσN)|2. (2.29)
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With the pair density we can write the conditional probability density ρ(r|r′) to
find a particle at r when there is another particle at r′ as

ρ(r|r′) =
Γ(r, r′)

n(r′)
. (2.30)

If the particles are completely uncorrelated we have ρ(r|r′) = n(r). The exchange-
correlation hole is defined as

ρxc(r|r′) = ρ(r|r′)− n(r) =
Γ(r, r′)

n(r′)
− n(r), (2.31)

that satisfies the sum rule∫
dr ρxc(r|r′) =

1

n(r′)

∫
dr Γ(r, r′)−

∫
dr n(r)

=
1

n(r′)
(N − 1)n(r′)−N = −1. (2.32)

For correlated electrons, the probability to find an electron near the refer-
ence electron is reduced compared to the uncorrelated electron density; thus
the exchange-correlation hole integrates exactly to minus one electron. The
exchange-correlation hole can be split into two parts as

ρxc(r|r′) = ρx(r|r′) + ρc(r|r′), (2.33)

where ρc(r, r′) is the correlation hole, and the exchange hole is defined as

ρx(r|r′) =
Γs(r, r

′)

n(r′)
− n(r), (2.34)

where Γs(r, r
′) is the pair density of the KS system. The exchange and correla-

tion parts satisfy respective sum rules:∫
dr ρx(r|r′) = −1; (2.35)∫
dr ρc(r|r′) = 0. (2.36)

Many approximations of the exchange-correlation effects focus on the exchange
part because it is simpler and it also yields higher contributions to the total
energy in most systems. The exchange part can be calculated exactly through
the Fock term [Eq. (2.21)], but this is computationally heavy and thus Ex is
approximated in most of the functionals.
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2.3.4 Exchange-correlation functionals

The simplest way to tackle the problem of the exchange-correlation energy and
potential is to assume that they depend on local density values only and that
the reference values of the homogeneous electron gas can be used. The result-
ing approximation is called the local-density approximation (LDA). It was first
proposed in the original papers by Hohenberg, Kohn, and Sham [22, 23], and be-
came the weapon of choice in DFT calculations in the 1970s and 1980s. It is still
used today, because the results it provides are often surprisingly good, mostly
because it satisfies the sum rule (2.32) for exchange and correlation, leading to
error cancellation in the exchange and correlation part.

Usually LDA does not work well for highly localized systems and it tends to
overestimate the chemical binding. A natural extension to LDA is to assume that
in addition to the local density, the exchange-correlation energy also depends on
the gradients of the density. The resulting approximation is made by doing a
functional Taylor expansion to the exchange-correlation hole with respect to the
density gradients. This is called the gradient expansion approximation (GEA)
and it is valid for slowly varying densities [22, 23].

Unfortunately, the GEA does not satisfy the nonpositivity requirement of
the exchange energy, nor the sum rule (2.35). The next step in approximat-
ing the exchange and correlation effects is to allow a more liberal choice of the
expansion than the truncated Taylor polynomial, while retaining the local func-
tional dependence on the density and density gradients. Such approximations
are called generalized gradient approximations (GGAs) and there are different
strategies in constructing them. The first wat, is to develop functionals based
on the exact properties of the electron gas. This can be done by introducing
real-space cutoffs to the GEA of the exchange hole

ρx(r|r + R) ≈ −1

2
n(r)yΘ(y)Θ

(
Rc(r)−R

)
, (2.37)

where y = y[n,∇n] is some functional of density and density gradients. The first
Heaviside function is used to ensure the nonpositivity requirement of ρx, and the
second one is used to force the sum rule (2.35) via the use of the cutoff radius
Rc(r) [25]. An equivalent treatment of the correlation energy is troublesome, so
that is often approximated with the LDA [23] or random phase approximation
[26]. Applications can be tackled with, e.g., the PBE functional, which is a
commonly used simplified version of the GGA introduced in 1996 by Perdew et
al. [27].

GGAs can be constructed also through models that satisfy important theo-
retical requirements and may have one or several fitting parameters. The fitting
parameters can be obtained from, e.g., Hartree-Fock calculations [28] or from
experimental data [29].

GGAs can also be combined with other functionals like the exact exchange or
LDA. The resulting approximations are called hybrids. One of the most popular
hybrids used by chemists today, B3LYP, is based on fitting parameters and was
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introduced in early 1990s by building on Becke’s exchange functional [29–31].
B3LYP replaces a small part of the GGA exchange with the exact-exchange
energy.

Possible extensions to GGAs include semilocal or nonlocal terms in addi-
tion to the density and density gradients. Meta-GGAs can be constructed by
adding the Laplacian of the density ∇2nσ or/and the kinetic energy density
τ =

∑
i |∇φi|2/2, with KS orbitals φi, to the exchange-correlation functional

[32, 33]. In general, the KS orbitals can be explicitly used to construct so-called
orbital functionals for the exchange and correlation [34]. A typical example of
such a functional is the exact exchange (EXX), where the exact expression for
the exchange energy (2.21) is used. The main challenge in developing orbital de-
pendent functionals for Exc is the fact that the KS potential (2.28) requires the
calculation of calculating the functional derivatives of energy expressions. This
can be done by using the chain rule of the functional derivatives, perturbation
theory, and the response function χs of noninteracting electrons [34]. Within
EXX this leads to the optimized-effective-potential scheme [35].

2.3.5 Local-density approximation

In LDA, the exchange-correlation energy and potential are locally approximated
with the corresponding results for the homogeneous electron gas. We begin
here by solving the 2D-KS system for N noninteracting electrons confined in an
infinitely large area A. Because the electron density is assumed to be a constant,
the effective potential v0[n](r) cannot have any variations and can be set to zero,
so we get

− 1

2
∇2φi(r) = εiφi(r). (2.38)

This has solutions of the form

φk(r) =
1√
A
eik · r (2.39)

with periodic boundary conditions, where

k =
2π

L
(n1, n2) (2.40)

is the wave vector, ni is an integer, L2 = A, and the KS eigenvalues are given by
εk = |k|2/2. Next, we consider a spin-compensated system where all the levels
below the Fermi energy εF = k2F/2 are occupied. In such a system, the total
number of electrons is given by

N =
∑
σ

∑
|k|≤kF

1 = 2 · L2

(2π)2

∫
B(0;kF )

dk =
L2

2π2
πk2F =

Ak2F
2π

, (2.41)
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where we have replaced the sum over k vectors with an integral and the density
of states. The previous expression leads to the electron density

N

A
= n =

k2F
2π
. (2.42)

Next, we calculate the exchange energy from Eq. (2.21) as

Ex[n] = −
∑
|k|≤kF

∑
|q|≤kF

∫
dr dr′ φ∗k(r)φ∗q(r′)φk(r′)φq(r)w(r, r′)

= −
∫

dr dr′

 ∑
|k|≤kF

φ∗k(r)φk(r′)

 ∑
|q|≤kF

φ∗q(r)φq(r′)

∗w(r, r′)

= −1

4

∫
dr dr′ |γs(r, r′)|2w(r, r′), (2.43)

where γs(r, r′) is the one-particle density matrix of the KS system. If we plug
in the plane-wave solutions to the one-particle density matrix we get

γs(r, r
′) = 2

∑
|k|≤kF

φ∗k(r)φk(r′) = 2
∑
|k|≤kF

1

A
eik · (r′−r)

=
2

A

A

(2π)2

∫
B(0;kF )

dk eik · (r′−r) =
1

2π2

kF∫
0

dkk

2π∫
0

dθ eiku cos(θ)

=
1

π

kF∫
0

dk kJ0(ku) =
1

π

kFJ1(kFu)

u
, (2.44)

where u = |r−r′| and Ji is the Bessel function of the first kind. With this result
and the Coulomb potential w(r, r′) = |r′ − r|−1 we can calculate the exchange
energy as

Ex[n] = −1

4

∫
dr dr′ |γ(r, r′)|2w(r, r′)

= −1

3

∫
dr

∫
du

[
kFJ1(kFu)

πu

]2
1

u

= −
∫

dr
2k3F
3π2

=

∫
dr

(
−4

3

√
2

π

)
n3/2. (2.45)

The exchange potential is calculated by functional-derivation
δEx
δn(r0)

= lim
η→0

Ex[n+ ηδ(r− r0)]− Ex[n]

η

= −4

3

√
2

π

∫
dr

3

2
n1/2δ(r− r0)

= −2

√
2

π
n1/2. (2.46)
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To move from the result of the homogeneous 2D electron gas (2DEG) to the
LDA expression for the exchange potential, the constant density is replaced by
the density at point r, so we get

vx,LDA[n](r) = −2

√
2

π
n1/2(r), (2.47)

and the total exchange energy in LDA attains the form:

Ex,LDA[n] = −4

3

√
2

π

∫
dr n3/2(r). (2.48)

To conclude, in the LDA results for the homogeneous electron gas are used for
each space-point with the local electron density.

While the exchange energy is rather straightforward to calculate, the correla-
tion energy is more complicated and requires numerical methods. In this thesis
we use the parametrization of Attaccalite et al. [36] for the correlation energy
and potential based on quantum Monte Carlo simulations of the 2DEG.

The performance of the LDA has been examined in detail in a review article
by von Barth [37]. It is expected that the LDA works well mostly in situations
where the electron density does not contain any steep density variations because
then the assumption of the electron density being locally constant is better
justified. However, surprisingly accurate results have been obtained with the
LDA in comparison with more exact schemes such as exact diagonalization and
quantum Monte Carlo for various quantum-dot systems [38–40]. The 2D-LDA
functional for the exchange and correlation is used throughout this thesis unless
otherwise stated.

2.3.6 Time-dependent density-functional theory

Time-dependent density-functional theory (TDDFT) was originally formulated
by Runge and Gross in 1984 and applies the principles of DFT to time-dependent
systems (see below). The applications of TDDFT include electronic excitations,
ionization, optical response of solids, transport through single molecules, bond
breaking, high-harmonic generation, multiphoton ionization, and quantum con-
trol [41].

Runge-Gross theorem

The basis of TDDFT is the Runge-Gross theorem [42], which states that there
is a one-to-one correspondence between the time-dependent external potential
vext(r, t), apart from a purely time-dependent function C(t), and the density
n(r, t) for a given initial state Ψ0. The idea of the proof is to show that if the
external potentials differ more than a time-dependent constant, the resulting
current densities are different and, thus, the time-evolution of the particle density
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is different. The proof proceeds as follows: First, it is assumed that the time-
dependent external potentials are Taylor expandable around the initial time:

v(r, t) =
∞∑
k=0

1

k!
vk(r)(t− t0)k. (2.49)

The condition for two potentials having more difference than a time-dependent
constant is equivalent to having the smallest integer k0 ≥ 0 such that

vk0(r)− v′k0(r) 6= const. (2.50)

Next, the difference of the current densities emerging from different external po-
tentials is calculated with the use of the equation of motion for time-independent
operators Ô(r)

i
d

dt
〈Ô〉 = 〈Ψ(t)|[Ô(r), Ĥ(t)]|Ψ(t)〉, (2.51)

and density and current density operators given by

n̂(r) =
∑
l

δ(r− rl); (2.52)

ĵ(r) =
1

2i

∑
l

[
∇lδ(r− rl) + δ(r− rl)∇l

]
. (2.53)

The continuity equation reads

∂

∂t
n(r, t) = −∇ · j(r, t), (2.54)

where n(r, t) and j(r, t) are the density and the corresponding current density,
which can be calculated as the expectation values of the density and the current
density operators, respectively. When we proceed with the calculation we get

∂

∂t

[
j(r, t)− j′(r, t)

]∣∣∣∣
t=t0

= −i〈Ψ0|[ ĵ(r), Ĥ(t0)− Ĥ ′(t0)]|Ψ0〉

= −n(r, t0)∇
[
v(r, t0)− v′(r, t0)

]
, (2.55)

which implies that the current densities are different if the potentials differ at
t = t0. A similar result can be obtained for the (k + 1)st time derivative of the
current density difference with the use of Eq. (2.51):

∂k+1

∂tk+1

[
j(r, t)− j′(r, t)

]∣∣∣∣
t=t0

= −n(r, t0)∇
[
vk(r)− v′k(r)

]
. (2.56)

Next, we calculate the (k + 1)st time derivative of the difference of continuity
equations and get

∂k+2

∂tk+2

[
n(r, t)− n′(r, t)

]∣∣∣∣
t=t0

= −∇ · ∂
k+1

∂tk+1

[
j(r, t)− j′(r, t)

]∣∣∣∣
t=t0

= ∇ ·
[
n0(r)∇wk(r)

]
, (2.57)
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where n0(r) = n(r, t0) and wk(r) = vk(r) − v′k(r). The final part of the proof
is to show that the last term of Eq. (2.57) vanishes only if wk(r) = 0 for all k.
This can be shown by considering the following integral∫

dr n0(r)
[
∇wk(r)

]2
= −

∫
dr wk(r)∇ ·

[
n0(r)∇wk(r)

]
+

∮
dS ·

[
(n0(r)wk(r)∇wk(r)

]
. (2.58)

The left-hand side of the integral equation vanishes only if wk(r) = 0 for all k
because n0(r) ≥ 0 and (∇wk(r))2 ≥ 0. The surface integral on the right-hand
side vanishes for all physically realistic potentials, which are assumed to go to
zero as 1/r or faster. The remaining integral on the right-hand side does not go
to zero if wk(r) 6= 0, which implies ∇ · (n0(r)∇wk(r)) 6= 0 and that the (k+2)nd
time derivative of the density difference is not zero according to Eq. (2.57). Thus
the densities will be different immediately after t = t0. This means that there is
a one-to-one correspondence with time-dependent potentials and densities for a
given initial state Ψ0 [43].

Generalizations

Now that we know there is a one-to-one correspondence between the time-
dependent potentials and densities, we would like to be able to build a similar
construction as in the time-independent DFT. In 1999, it was proven by van
Leeuwen [44] that it is possible to replace the interacting system with an aux-
iliary non-interacting system which produces exactly the same electron density
as the interacting system. This requires that the initial states for the systems
are chosen in a way that yields the same density and its time derivative at the
initial time. This result makes it formally possible to use the time-dependent
KS system which is introduced in the next section.

The requirement of the Taylor expandability for time-dependent potentials
was removed by Ruggenthaler and van Leeuwen [45] in 2011. The proof is based
on restating the one-to-one correspondence between densities and potentials as a
fixed point question, and requiring that the response function of the divergence
of the internal forces is bounded.

Time-dependent Kohn-Sham scheme

In the most general case, the effective potential in the KS system depends on
the initial states of the noninteracting and interacting systems and the time-
dependent density,

vs(r, t) = vs [n,Ψ0,Φ0] (r, t). (2.59)

The systems of interest are often in the ground state at the initial time t0 and
then begin to evolve under the time-dependent potential that is switched on at
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time t0. The time-dependent potential describing the evolution can be written
as

v(r, t) = v0(r) + v1(r, t)Θ(t− t0), (2.60)

where Θ(t − t0) is the Heaviside step function. In these situations, the initial
state can be solved with (static) DFT – thus Ψ0 and Φ0 are both functionals
of the ground-state density n0(r). This leads to the time-dependent effective
potential which is only a functional of the (time-dependent) density, vs[n](r, t).

In practice, the calculation proceeds as follows. First, the initial state is
calculated with the static DFT. Then, the TDSE for the KS system[

−1

2
∇2 + vs[n](r, t)

]
φj(r, t) = i

∂

∂t
φj(r, t) (2.61)

is solved with the initial condition φj(r, t0) = φ0
j(r), where φ0

j(r) is the jth orbital
of the KS wave function of the ground-state. The density is again obtained from
the orbitals as

n(r, t) = 2

N/2∑
j=1

|φj(r, t)|2 (2.62)

and the effective potential is given by

vs[n](r, t) = v(r, t) +

∫
dr′n(r′, t)w(r, r′) + vxc[n](r, t). (2.63)

One of the requirements for the exchange-correlation potential vxc[n](r, t) is
that it needs to be a continuous function of time. In the most general case,
the exchange-correlation potential vxc[n](r, t) depends on the whole history of
the system, i.e., the density n(r, t′) at every time t′ ≤ t. In the adiabatic ap-
proximation, which is used in this thesis, the static DFT is used to define the
exchange-correlation potential as

vAxc(r, t) = v0xc[n0](r)
∣∣
n0(r)=n(r,t)

, (2.64)

where v0xc[n](r) is the ground-state exchange-correlation potential. Here, the
only time-dependence comes from the density and the history of the system in
the functional is omitted. This automatically satisfies the continuity requirement
of the exchange-correlation potential. The adiabatic LDA is used in this work.

2.3.7 Current-density-functional theory

The previous formulation does not allow electromagnetic fields via the use of the
vector potential A(r), since the proper description of magnetic-field effects needs
to take orbital currents into account. In 1987, Vignale et al. reformulated DFT
to include vector potentials and paramagnetic current densities, and showed
that a set of equations similar to the KS equations can be used to solve the
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ground state system [46]. The theory is called current-density-functional theory
(CDFT), and in addition to the exchange-correlation potential it introduces the
exchange-correlation vector potential Axc(r) as a new functional for the correct
description of the paramagnetic current density.

In this thesis the CDFT is not used but, instead, the DFT Hamiltonian is
coupled to the external vector potential by the momentum operator

p̂ = −i∇ → −i∇+ A(r). (2.65)

This approximation was tested by Helbig et al. and found out to be very accurate
compared to the full-fledged CDFT for confined 2D systems [40]. We apply the
same method also in the time-dependent case and omit the time-dependent
effects of the exchange-correlation vector potential Axc.

2.4 Aharonov-Bohm effect
One of the most peculiar features in quantum mechanics is the fact that the
states describing particles can obtain a certain phase. The phase itself does not
have any direct physical realization but the phase differences between encoun-
tering particles can cause measurable effects. One of the most distinct physical
phenomena which portrays the effects of these phase differences is the Aharonov-
Bohm (AB) effect [47, 48]. In the AB effect, a charged particle acquires a phase
shift

φ =
2πq

h

∫
γ

A(r) · dr (2.66)

(in SI units) from the vector potential A(r) while traveling along the path γ,
where q and h are the charge of the particle and Planck’s constant, respectively.
The effect of this phase shift can be measured by splitting an electron beam in
the vicinity of the magnetic field and merging it together after a short distance.
A schematic image of the electron beam splitting can be seen in Fig. 2.1. The
total phase difference between paths γr and γl is

φr − φl =
2πe

h

∫
γr

A(r) · dr−
∫
γl

A(r) · dr


=

2πe

h

∮
γr∨←−γ l

A(r) · dr,

where the difference between path integrals forms an integral over a closed loop.
With Stokes’ theorem and ∇×A = B we get

2πe

h

∫
S

B · ds = 2πΦ/Φ0, (2.67)
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Figure 2.1: Schematic image of a formation of an Aharonov-Bohm loop with an
enclosed area S in an idealized quantum ring. The electron beam moves upwards
and is split in to two parts traveling through paths γl and γr. The paths are
merged after a short distance and enclose the area S.

where S is the area enclosed by paths γr and γl, B is the magnetic field, Φ is the
magnetic flux through the area S, and Φ0 = h/e is the magnetic flux quantum.
The result implies that the electrons acquire a phase difference even if they are
not explicitly exposed to the magnetic field. It is enough if the magnetic field
is enclosed by a current loop. The first experimental observation of the AB
effect was achieved in 1960 by Chambers [49]. Electron interferometry based
on the AB effect is expected to have applications in many industrial areas such
as future computer technologies, physical random number generators, electron
phase microscopy, and holography [50].

2.5 Quantum Hall effect
In the quantum Hall effect (QHE), the voltage VH across the transverse direc-
tion of the 2D semiconductor device has a step-like behavior as a function of
the magnetic field instead of the linear dependence obtained in the classical Hall
effect (see Fig. 2.2). The step-like increase of the Hall voltage becomes visible
in two-dimensional samples when the temperature is in a few-Kelvin range and
the perpendicular magnetic field is sufficiently high. The longitudinal voltage Vx
vanishes when VH has a constant value and sharply peaked resistance between
the steps in VH . These oscillations in Vx are called Shubnikov-de Haas oscilla-
tions. The Hall voltage plateaus have a resistance RH = h/(e2M), where M is
an integer.

The QHE was first measured in 1980 by von Klitzing et al. [17] who was
awarded the Nobel Prize in physics in 1985. In addition to the integer quantum
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Figure 2.2: Schematic image of the voltage data in a quantum Hall measurement
[51]. The Hall voltage VH is measured in the transverse direction across the Hall
bar, and the longitudinal voltage Vx is proportional to the resistance of the
sample. The classical Hall effect can be seen in the lower-left part of the image
where VH increases linearly.

Hall effect (IQHE), where M is an integer, it has also been shown that M can
obtain fractional values as well, leading to the fractional quantum Hall effect
(FQHE). The FQHE was first measured by Tsui et al. [18] and explained by
Laughlin [19]. The discovery and explanation of the FQHE lead to the 1998
Nobel Prize in physics being awarded to Laughlin, Tsui and Störmer. In this
thesis, the transport simulations are carried out in the IQHE regime as explained
in detail in the following two sections.

2.5.1 Single-electron picture

The static single-electron Schrödinger equation (SE) can be used to explain the
value of the Hall resistance RH . Let us consider the SE for conduction band
electrons in the effective mass approximation (see Sec. 2.8):{

Ec +
[p̂− qA(r)]2

2m∗
+ U(r)

}
Ψ(r) = EΨ(r), (2.68)

where Ec is the conduction band energy and U(r) is the external confinement
potential that does not include the lattice potential of the system. The external
potential can be usually split in two parts as

U(r) = U(x, y) + U0(z), (2.69)
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which allows the separation of the single-electron SE in the z-direction as{
Es +

[(p̂x, p̂y, 0) + A(r)]2

2m∗
+ U(x, y)

}
ψ(x, y) = Eψ(x, y), (2.70)

where Es = Ec+εm, and εm is the energy contribution from the z-direction. The
confinement potential is normally such that it is enough to study the first m = 1
state in the z-direction. Next, we assume that our system is a rectangular
conductor that is uniform in the x-direction, U(x, y) = U(y), and the static
magnetic field points in the z-direction B = (0, 0, B). It can be expressed in
the Landau gauge through a vector potential A(r) = (−By, 0, 0). After these
substitutions Eq. (2.70) becomes[

Es +
(p̂x −By)2

2m∗
+

p̂2y
2m∗

+ U(y)

]
ψ(x, y) = Eψ(x, y), (2.71)

which has a solution of the form

ψ(x, y) =
1√
L
eikxφ(y). (2.72)

After substituting the given solution and rearranging the terms, we get a differ-
ential equation for φ(y):[

Es +
p̂2y

2m∗
+

1

2
m∗ω2

c (y − yk)2 + U(y)

]
φ(y) = Eφ(y), (2.73)

where ωc = B/m∗ and yk = k/B. For U(y) = 0, Eq. (2.73) is the SE for
a one-dimensional harmonic oscillator with wave functions centered at yk and
energies E = Es + (n+ 1/2)ωc. Therefore, the wave function in the xy-plane for
U(y) = 0 is

ψ(x, y) =
1√
L
eikxun(q − qk) = 〈x, y|n, k〉, (2.74)

where q =
√
ωc y and qk =

√
ωc yk, and

un(q − qk) =
1√
2nn!

(ωc
π

)1/4
e−

(q−qk)
2

2 Hn(q − qk), (2.75)

where Hn is the nth Hermite polynomial.
If the magnetic field is so high that the potential U(y) can be assumed

to be a constant over the extent of the wave function (1/
√
ωc), the first-order

perturbation theory gives

E(n, k)− Es ≈
(
n+

1

2

)
ωc + 〈n, k|U(y)|n, k〉

=

(
n+

1

2

)
ωc + U(yk). (2.76)
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Figure 2.3: (a) Band structure, i.e., the Landau levels of the 2DEG in a static
magnetic field. All the levels below the fermi energy EF are occupied. (b)
Schematic image of the confining potential U(y) in a quantum Hall bar. (c)
Band structure of confined 2DEG in a static magnetic field.

Now if we combine the Landau levels [Fig. 2.3(a)] to the external potential [Fig.
2.3(b)] we get a new dispersion relation. This relation contains states with non-
zero derivatives with respect to the wave number k [see Fig. 2.3(c)], because
the position of the wave function yk is proportional to k. These states are called
edge states and they are the current-carrying states in the quantum Hall system.
This can be seen by calculating the group velocity from the dispersion relation
(2.76):

v(n, k) =
∂E(n, k)

∂k
=
∂U(yk)

∂k
=

1

B

∂U(y)

∂y
. (2.77)

From this expression we find that the direction of the current flow depends
on the sign of the derivative of the potential for a static magnetic field, and
that the forward and backward currents are flowing in opposite sides of the
slab. A constant current I is imposed through the Hall bar when the Hall
voltage is measured. This requires input and output leads to have different
electrochemical potentials µL and µR, as depicted in Fig. 2.4, and the edge
states are occupied unevenly. Measuring the increased resistance in a quantum
Hall measurement requires that some of the electrons jump across the Hall bar to
the other edge channel. If the semiconductor slab is sufficiently wide, and there
are no unoccupied states in the middle of the sample between the energy interval
[µR, µL], the backscattering becomes prohibited and perfectly ballistic transport
is observed with vanishing longitudinal resistance Rx = Vx/I. The number of
unoccupied states within the given energy interval can be varied by tuning the
strength of the magnetic field, which changes the Landau level spacing.

Next, let us calculate an expression for the ballistic current through the
channel carrying electrons in equilibrium with µL (> µR),
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I =
∑
n

kL∫
kR

dk
Lx
2π
f =

∑
n

kL∫
kR

dk
1

2π

∂E(n, k)

∂k

=
1

2π

∑
n

µR∫
µR

dE =
1

2π
M (µL − µR) =

M

2π
VH , (2.78)

where vx = Lxf is the group velocity of electron wave packets and M is the
number of occupied edge states which quantizes the Hall voltage. From this
expression we can calculate the Hall resistance RH = VH/I = 2π/M . In SI units
we have

RH =
2π

M

~
e2

=
h

e2M
, (2.79)

where the coefficient RK = h/e2 ≈ 25812.807557 Ω is called the von Klitzing
constant. It can be measured with an extreme precision and thus it is nowadays
used as the standard of resistance [52]. The spin degeneracy is omitted because
the Zeeman effect separates different spin states. The Zeeman energy for spins
parallel to the magnetic field in atomic units is

EZ = −gsµBB
2

= −gs
B

4
, (2.80)

where gs ≈ −0.44 is the gyromagnetic ratio of electrons in GaAs [53] and µB =
1/2 in atomic units. The ratio of the Zeeman splitting and the Landau level
spacing is

|2Ez|
ωc

=
|gs|B/2
B/m∗

=
|gs|m∗

2
≈ 0.015, (2.81)

where m∗ is the effective mass in atomic units (see Sec. 2.8). Thus, the Zeeman
splitting is small compared to the Landau level spacing.

2.5.2 Screening theory

Even though the single-electron edge channel picture works surprisingly well
when the difference between electrochemical potentials is small compared to the
Landau level spacing, there is still no commonly accepted theory of the micro-
scopic nature of the IQHE. The experimental problems of the single-electron
picture include too small relaxation rates between the edge channels and equi-
libration lengths that significally exceed feasible sample sizes. In addition, the
single-electron picture does not take the screening and its modification in a
strong magnetic field into account [54].

There are currently two different views on the subject. The bulk picture [55,
56] assumes that the electron transport occurs in the bulk and the localization
effects are the reason for the quantization of current. The second view is the
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Figure 2.4: Schematic image of a quantum Hall bar. The Hall voltage and the
longitudinal voltage are defined as VH = V1− V2 and Vx = V2− V3, respectively.

edge channel picture [54, 57], where the effect of disorder is neglected and one-
dimensional ballistic transport is assumed to occur at the sample edges leading
to the quantization of current.

Filling factor

One of the key quantities in characterizing the QHE is called the filling factor
and it is defined as the number of occupied Landau levels per unit area. For
that we need the number of states in one Landau level, which can be calculated
by considering the Landau level spacing in SI units ~ωc, i.e., the energy interval
that is used by one Landau level. The number of states in one Landau level per
unit area is

~ωcD(E) =
~eB
m∗

m∗

2π~2
=
eB

h
, (2.82)

where D(E) is the density of states without the spin degeneracy in the 2DEG.
The quantity eB/h can also be viewed as the areal density of magnetic flux
quanta Φ0 = h/e. The filling factor is now defined as

ν =
n

eB/h
=
hn

eB
, (2.83)

where n is the electron density. The regions where the Fermi energy resides
between Landau levels and the local filling factor is an integer are called in-
compressible. In incompressible regions the Landau levels are fully filled, thus
restricting the rearrangement of electron distribution and keeping the electron
density constant. If the Landau level is pinned to the Fermi energy, the region
is called compressible and the corresponding Landau level is partially occupied.
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It is commonly believed that in the edge-channel transport the current flows
ballistically within the incompressible strips, which form on the edges of the
semiconductor slab due to the quantizing magnetic field and direct Coulomb
interactions under the correct boundary conditions. This view is supported by
simulations [58, 59] and experimental evidence [60, 61].

Self-consistent Thomas-Fermi-Poisson method

The self-consistent Thomas-Fermi-Poisson approach by Güven et al. [58] was
used to calculate the incompressible strip distribution used in this work. In this
method, it is assumed that the total potential function consists of two parts,

Vtot(r) = Vconf(r) + VH(r), (2.84)

where Vconf(r) and VH(r) are the confinement and the Hartree potentials, re-
spectively. The Hartree potential is obtained by solving the Poisson equation

∇2VH(r) = −nel(r)

εr
, (2.85)

for a given electron distribution n(r), permittivity εr, and boundary conditions.
When the total potential is obtained, a new charge distribution can be calculated
from the expression

nel(r) =

∫
dE D(E)f(E + V (r)− µ), (2.86)

whereD(E) is the broadened Landau density of states, f(x) = (1+exp(x/kbT ))−1

is the Fermi function, and µ is the electrochemical potential.
The self-consistent calculation proceeds by iterating equations (2.85-2.86).

An initial density profile is substituted into the Poisson equation (2.85), which
is then used to solve the Hartree potential VH . In turn, this is substituted into
Eq. (2.86) with (2.84) to get the new electron density. The scheme is repeated
until convergence is reached. The value of the electrochemical potential µ is
chosen such that it produces the desired average electron density 〈nel〉.

2.6 Quantum chaos
The word chaos is understood as disorder and randomness, but in physics, chaos
is something that appears to be random but is deterministic in nature. A good
example of such a phenomenon affecting our lives is weather: It is fully determin-
istic but exceedingly nonlinear and highly dependent on the initial conditions
which cannot be precisely determined. For this reason, long-term weather fore-
casts will remain impossible (regardless of the measuring grid and computing
power). The atmospheric study Deterministic Nonperiodic Flow by Edward
Lorenz [62] is commonly considered to be the start of the modern chaos theory.
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Nonlinear systems where chaos theory is applied can be found in almost every
field of science, e.g., geology, biology, computer science, economics, physics,
politics, and medicine. More specific applications include, e.g., encoding private
communications [63], controlling cardiac arrhythmia [64], and epileptic brain
seizures [65].

Even though there is no universally accepted definition of chaos, there is one
that most would agree with by Strogatz [66]:

”Chaos is aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions.”

Here, aperiodic long-term behavior means that phase space trajectories of the
system do not settle down to fixed points, periodic orbits, or quasi-periodic
orbits as t→∞. Being deterministic means that the system’s irregular behavior
arises from its nonlinearity instead of noisy driving forces. In chaotic systems,
nearby trajectories separate exponentially fast so that they are sensitive to initial
conditions. This sensitivity is characterized by a positive Liapunov exponent λ
defined as

||δ(t)|| ∼ ||δ0||eλt, (2.87)

where δ0 and δ(t) are the distances of the two trajectories in the phase space
initially and after time t, respectively.

In quantum mechanics, all the information of the system is included in the
time-dependent state vector |ψ(t)〉 that can be considered as the trajectory in
the phase space. The squared distance between two states |Ψ(t)〉 and |Φ(t)〉 is

|||Ψ(t)〉 − |Φ(t)〉||2 = 〈Ψ(t)|Ψ(t)〉 − 2Re(〈Ψ(t)|Φ(t)〉) + 〈Φ(t)|Φ(t)〉, (2.88)

where all inner products turn out to be constants of motion because of the
linearity of the Schrödinger equation

〈ψ(t0)|φ(t0)〉 = 〈ψ(t0)|Û †(t, t0)Û(t, t0)|φ(t0)〉 = 〈ψ(t)|φ(t)〉. (2.89)

Thus, chaos as it is defined in classical mechanics does not exist in quantum
mechanics. Today the term quantum chaos essentially means the quantum me-
chanical behavior of classically chaotic systems. One of the most interesting
aspects of chaos is the correspondence principle which states that the proper-
ties of a given quantum mechanical system should converge to the results from
classical theory when the de Broglie wavelength is much smaller than the length
scale of the system. So in principle, there should be something that could be
used to distinguish chaotic systems quantum mechanically as well.

One of the methods that is used to distinguish different systems is to examine
the distribution of eigenenergy level spacings. The number of energy levels dN
with neighbouring levels within interval [s, s+ ds] is

dN = P (s)ds, (2.90)

where P (s) is the distribution function. According to the Bohigas-Giannoni-
Schmit conjecture [67], systems can be divided into three groups:
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1. Systems that are classically integrable (not chaotic) follow the Poisson
distribution function,

P (s) = A exp(−λs). (2.91)

2. Systems that are classically chaotic and have time-reversal symmetry fol-
low the eigenvalue distribution of a Gaussian orthogonal ensemble of ran-
dom matrices (GOE) [68], which is approximately

P (s) ≈ As exp(−λs2). (2.92)

3. Systems that are classically chaotic and do not have time-reversal symme-
try follow the eigenvalue distribution of a Gaussian unitary ensemble of
random matrices (GUE) [68], which is approximately

P (s) ≈ As2 exp(−λs2). (2.93)

Other methods to study energy level statistics include, e.g., spectral rigidity,
number variance [69], as well as detrended fluctuation analysis [70] applied in
different context below.

In this work, instead of energy level statistics, we focus on transport phe-
nomena and fractal characteristics found in chaotic systems. These issues are
explained in the following section.

2.7 Fractal analysis
Many fields of modern science deal with phenomena which can be analyzed
by examining the self-similarity and the nature of fluctuations and correlations
within. A few examples of such phenomena are fluctuations in stock prices,
shapes of different surfaces and coastlines, magnetoconductance oscillations [71],
heartbeat analysis [72, 73] and even human-produced music [74–77] and gait
[73, 78]. Qualifying the scaling properties of the fluctuations can help in the
understanding and predict the dynamics of the system of interest. For example
some heart diseases can be predicted by measuring patient’s heart beat intervals
[72, 73].

2.7.1 Exact self-similarity

The most typical examples of self-similarity are fractal curves that look the same
in various length scales. Ideally, they are constructed from one generator block
which is copied, rotated and/or mirrored, and scaled down/up infinitely many
times to form the finished curve. In real world these scaling properties naturally
do not hold for infinitely many scales.
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Figure 2.5: Typical example of a fractal curve is the Koch curve. The generator
block (a) is scaled down with a factor of three and copied four times to generate
the next level of the curve (b). The Koch curve is formed when this process is
carried out repeatedly (c), in principle infinitely many times

A common way to characterize the fractality of a given curve is to calculate
its fractal dimension that measures the space-filling capacity of the curve. If the
curve generator can be easily obtained, the fractal dimension D is defined by

N = ε−D, (2.94)

where N is the number of down-scaled generators used for the next step of
construction and ε is the scaling factor. In the case of the Koch curve (Fig.
2.5), N = 4 and ε = 1/3 leading to the fractal dimension D = log 4/ log 3 ≈
1.262. The fractal dimension that exceeds the topological dimension of a given
curve means that the curve fills the two-dimensional space more densely than
an ordinary curve with equal topological and fractal dimensions.

Usually, the generator is not known or it does not even exist. This is the
case, in e.g., time series analyzed below. In these situations, the previous, simple
scheme to obtain the fractal dimension needs to be replaced with a more general
method. The method used in this thesis, the variation method [79], is based
on finding a suitable cover built from small sets for the graph of the function
f(x), and examining how the area of the cover changes when the size of the
small sets is changed. Equation (2.94) needs to be modified slightly so it can
be used with the covers. The area of the cover is proportional to the number
of small pieces needed to construct the fractal multiplied with the area of one
small two-dimensional piece of width ε, i.e., A(ε) ∝ Nε2. When this is plugged
into Eq. (2.94) we obtain the general definition for the fractal dimension [79] as

D = inf{η : εη−2A(ε) −−→
ε→0

0}. (2.95)

In practice, the fractal dimension D is solved by assuming that εη−2A(ε) is
constant when η = D. With this assumption, the fractal dimension can be
obtained from the slope of the linear-fit calculation of ln[A(ε)/ε2] as a function
of ln(1/ε). In the variation method, the area of the cover A(ε) is called the ε
variation (see Fig. 2.6) and its area is defined by

V (ε, f) =

x1∫
x0

dx v(x, ε), (2.96)
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Figure 2.6: Example of a cover with ε = 20 constructed by using the variation
method with a point-wise interval shifting

where [x0, x1] is the domain of the function f(x), and v(x, ε) is the ε oscillation
of the function f(x) defined by

v(x, ε) = sup
x′∈Rε(x)

f(x′)− inf
x′∈Rε(x)

f(x′), (2.97)

where Rε(x) = {s : |x−s| < ε and s ∈ [x0, x1]}. A mathematically more rigorous
proof and benchmarks of the variation method can be found in Ref. [79] and
references therein.

Note that when integrating the ε variation it is assumed that the intervals
Rε(x) overlap, i.e., they are shifted point-wise. Intervals can also be shifted
interval-wise which produces slightly coarser cover but yields roughly the same
fractal dimension. The coarser method, the modified box-counting, is used in the
analysis of some experimental results [71].

2.7.2 Statistical self-similarity

In addition to the exact self-similarity discussed in previous section, many ob-
jects in real world are statistically self-similar. This means that their statistical
properties obey similar scaling relations as the exact self-similar curves.

The definition of the statistical self-similarity in data y(i) is

y(Is)
d≡ bαy(Is/b), (2.98)
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where Is is a set of s indices i, b is a scaling factor, and α is a scaling exponent,
i.e., a self-similarity parameter. The notation

d≡ means that the probability
distribution of the self-similar process y(Is) with scaling exponent α is the same
as the properly rescaled process bαy(Is/b). The proper rescaling is done by
selecting s/b data points and multiplying them with a vertical scaling factor
bα.

This strict criterion requires the two processes of interest to have identical
distribution functions, e.g., the same mean, variance, and higher moments as
well. In practice, this is usually replaced by a weaker criterion and only the
variances are examined.

Detrended fluctuation analysis

In this thesis, the method used to analyze statistical self-similarity in magneto-
conductance curves is detrended fluctuation analysis (DFA) which was first used
to study the organization of DNA nucleotides by Peng et al. [80]. Nowadays
DFA is the standard method to study the so-called 1/f noise and long-range
correlations. DFA has proven to be very reliable particularly in dealing with
non-stationary time-series and trends in the data such as the heartbeat analysis
[72, 73]. It deals efficiently with two typical problems observed in real world
data explained in the next few paragraphs.

For an ideal self-similar process the fluctuations grow exponentially when the
number of data points is increased and the process is unbounded. For real world
data, this is not necessarily the case since some of the interesting processes, like
the heart rate and gait, have natural upper limits. This means that after some
threshold number of data points, the vertical axis does not need rescaling and
the resulting self-similarity parameter α is zero.

On the other hand, the sequential order of bound data can be randomized to
generate completely uncorrelated control series. For this randomized data, the
resulting value for α is zero, even though the data is obviously different compared
to the original bound data. This problem can be bypassed by examining the
self-similarity properties of the accumulated (integrated) series instead of the
original data. The integration removes the upper bound from the original series
and makes it possible to differentiate it from the randomized data.

The most typical one-dimensional example of the integration is random walk.
The individual steps are bound but the trajectory as an integrated series (the
sum of the steps) is not and exhibits fractal scaling that can be quantified by
the self-similarity parameter.

The other problem in examining the self-similarity in the fluctuations is the
presence of a trend which can mask or emphasize parts of the fluctuations incor-
rectly. The trend can be even more pronounced when the data is integrated. For
example, such a trend can be found in heart beat interval data if the physical
activity varies over the measurement period. If the interest of the study is only
the correlation of the heart beat timings regardless of the physical activity, the
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local trends need to be removed.
The standard procedure of DFA consists of the following four steps: (1)

Integrating the deviation of the time series from the mean (y(j)− 〈y〉) as

f(n) =
n∑
j=1

[y(j)− 〈y〉] ; (2.99)

(2) dividing integrated series into windows Is of size s; (3) fitting with a polyno-
mial fms (i) of a degree m = 1...4 that represents the trend in the window; and
(4) calculating the standard deviation with respect to the local trend fms (i) from

σ(Is) =
√
〈(f(i)− fms (i))2〉Is

=

√
1

s

∑
i∈Is

[f(i)− fms (i)]2 ∝ sα, (2.100)

where Is is a set of indices i in windows of size s. This result σ(s) is then
obtained by averaging σ(Is) over all sets Is.

The obtained value of α classifies the nature of correlations in the self-similar
data [72] in the following way.

• Noise with alternating high and low values: 0 < α < 0.5

• Uncorrelated data: α = 0.5

• Long-range correlations: 0.5 < α < 1

• 1/f noise: α = 1

• Random-walk-type correlations: α = 1.5

Algorithms for fractal analysis contain internal errors analyzed in detail by Pil-
gram and Kaplan [81]. DFA results for the fractal exponent are expected to
have a standard deviation of ∼ 15% for data sets that are of the same size as
ours in this thesis.

2.8 Effective atomic units
Conventional atomic units form a system of natural units used to simplify ex-
pressions and formulae in atomic and molecular calculations. The lengths and
energies are expressed with the Bohr radius a0 = 4πε0~/(mee

2) ≈ 0.053 nm
and the Hartree energy EH = mee

4/(4πε0~)2 ≈ 27.2 eV. The magnetic field
unit BH = ~/(ea20) ≈ 2.35 · 105 T is obtained by setting the magnetic energy
µBBH = EH/2, where µB = e~/(2me) is the Bohr magneton. Equations are
translated to conventional atomic units by setting me = 1, e = 1, ~ = 1 and
1/(4πε0) = 1.
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All the models considered in this thesis are constructed for two-dimensional
nanodevices in AlGaAs/GaAs structures. We follow the standard scheme in
modeling conduction electrons in the semiconductor heterostructure and apply
the effective-mass approximation [82] with GaAs parameters, i.e., the effective
mass m∗ = 0.067me and the dielectric constant εr = 12.7ε0. Hence, the energies,
lengths, times, and magnetic fields scale as

E∗H =
0.067

12.72
EH ≈ 11meV

a∗0 =
12.7

0.067
a0 ≈ 10 nm

t∗0 =
~
E∗H
≈ 60 fs

B∗H =

(
0.067

12.7

)2

BH ≈ 6.55T.

We use these effective atomic units in the results unless stated otherwise.

2.9 OCTOPUS code
The majority of the calculations presented in this thesis are done with the
OCTOPUS [83–85] code package published under General Public License. The code
has been built on the real-space grid discretization method which allows realistic
modeling of two-dimensional nanostructures. The discretized static Schrödinger
equation is solved with the conjugated-gradient algorithm.

The time-propagation is carried out by making the enforced time-reversal
symmetry (ETRS) approximation for the time-evolution operator Û(t, t0). The
ETRS approximation can be made after the time-evolution operator is dis-
cretized while assuming the time-dependent Hamiltonian to be constant within
the time interval of interest, i.e.,

Û(t, t0) ≈ exp
[
−i(t− t0)Ĥ(t)

]
. (2.101)

The starting point in ETRS is the property that the forward-propagation within
the time interval δt/2 of state ψj(t) results in the same state as the backward-
propagation within the same interval of the state ψj(t+ δt):

exp
[
i
∆t

2
Ĥ(t+ ∆t)

]
ψj(t+ δt) = exp

[
−i∆t

2
Ĥ(t)

]
ψj(t)

⇒ UETRS(t+ ∆t, t) = exp
[
−i∆t

2
Ĥ(t+ ∆t)

]
exp
[
−i∆t

2
Ĥ(t)

]
, (2.102)

where Ĥ(t+ ∆t) is built from the density which is calculated from

ψ′j(t+ ∆t) = exp
[
−i∆tĤ(t)

]
ψj(t). (2.103)
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The exponentials of the operators are expressed in Taylor series

exp(Â) =
∞∑
n=0

1

n!
Ân, (2.104)

which is calculated to the fourth order in this thesis [86].

2.10 Transport scheme
The transport calculations presented in this thesis are numerical real-space simu-
lations for the transmission factor, i.e., the probability for the electrons to travel
across the device. The calculations start by calculating the initial state with the
ground-state DFT. This is done with OCTOPUS by cutting a small portion of the
input lead of the model potential. This state is then propagated through the
external potential representing the device of interest. The initial velocity for the
initial state is given by adding an accelerating part (linear ramp) to the external
potential.

The transmission factor T , i.e., the relative number of transferred electrons, is
obtained by integrating the electron density in the desired part of the calculation
grid A for different time steps

T ({ai}, t) =
1

N

∫
A

dr n({ai}, r, t), (2.105)

where N is the number of electrons in the system and {ai} is a set of external
parameters. The transmission factor is assumed to be proportional to the trans-
mission coefficient available in the conventional transport theory. We repeat the
calculation for all desired values for the external parameters {ai} to get, e.g.,
the magnetoconductance that can be compared with experimental data. We
point out that the present scheme does not resemble the standard equilibrium
transport approach in, e.g., the Landauer-Büttiker fashion [87], but it works as
a qualitative tool to assess the relative conductance as a function of an external
parameter, i.e., the magnetic field.

The calculation box is set sufficiently large so that the transmission factor
has time to develop without interference caused by the reflections from the box
boundaries. The density is monitored to make sure that the backscattering
effects from the box boundaries do not become visible.
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Chapter 3

Results

3.1 Transport in quantum rings

3.1.1 Background

Ring-shaped quantum dots, i.e., quantum rings (QRs) represent excellent ex-
amples to study the realization of the Aharonov-Bohm (AB) affect (see Fig.
3.1). The first experimental results in QR systems were obtained in submicron-
diameter Au rings by Webb et al. in 1985 [88]. This was followed by AB
measurements in semiconducting GaAs QRs in 1987 by Timp et al. [89]. Theo-
retical studies of QRs have been carried out analytically and numerically. The
analytic models for QRs tend to focus on one-dimensional systems, when the
width and the height of the wire-like conduction channels are zero [90–92]. This
leads to electron paths which cannot be directly affected by the magnetic field
in contrast with experiments [88, 89, 93, 94]. Numerical simulations include 2D
tight-binding calculations [95, 96] and single-electron wave packet simulations
in 2D [97–99] which, in addition to AB phase shift, are able to take the Lorentz
force into account. The aim of our study [100] is to combine real-time dynamics
and electron-electron interactions with the use of the time-dependent density-
functional theory. The calculations are done in a 2D real-space grid which allows
us to examine the role of the finite ring width (2D character) as well.

3.1.2 Model

We build a model for a single-terminal QR represented by the external poten-
tial vext(r) (see Fig. 3.2). The potential consists of the QR confinement and
the output terminal which both have a Gaussian cross section vext,cross(x) ∼
exp(−x2/a2), where a determines the width of the channel. In addition, we
have a linear potential across the whole device representing the source-drain
voltage, and a rectangular potential well in the other end of the output terminal
acting as a sink (or drain) for the electrons. The initial state for the simulation
is calculated for a quantum well located in the back part of the QR (see the
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Figure 3.1: Left panel: Atomic force microscope image of QR device. Right
panel: Current measurement data of the QR device with a constant source-
drain voltage. (a) Gate voltage scan at a constant magnetic field. (b) Addi-
tion spectrum. (c) Magnetic field scan at a constant gate voltage shows clear
AB oscillations. Experimental device and measurement data by Fuhrer et al.
Reprinted by permission from Macmillan Publishers Ltd: Nature [93], copyright
2001.

inset of Fig. 3.2). A single-terminal device is used to minimize the undesired
effects of electron backscattering at the input lead.

We calculate the transmission factor Nr as a function of time t and the
magnetic flux Φ through the QR,

Nr(Φ, t) = 1− N(Φ, t)

N
, (3.1)

where N is the total number of electrons in the system and N(Φ, t) is the number
of electrons inside the QR at time t. In this study, Nr(Φ, t) is used to assess the
conductivity of the device (see Sec. 2.10).

3.1.3 Transport results

We start by propagating single-electron wave packets through the QR. As an ex-
ample of the dynamics, the electron density at different times with magnetic flux
Φ = 3Φ0 is visualized in Fig. 3.2. The single-electron conductivity of the device
for three different channel widths at times t = 1 and t = 2 is plotted in Figs.
3.3(a) and (b), respectively. Smooth and regular AB oscillations with period Φ0

are found at time t = 1. The conduction minima and maxima are positioned at
magnetic flux values corresponding to phase shifts π and 2π, respectively.

The AB oscillation amplitude is considerably reduced and a phase shift of π
appears when the conduction channel has its widest value a = 1.0. The strong
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Figure 3.2: Left: External potential describing the QR. The rectangular poten-
tial well used as a sink for electrons is longer than the output lead and is not
fully visible. Inset: Schematic image of the QR potential, where the potential
for the initial state is outlined by the dotted line. Right: Electron density in a
QR at different times with magnetic flux Φ = 3Φ0 through the QR. The electron
density distribution is not symmetrical due to the Lorentz force.

reduction in the AB oscillation amplitude as a function of the channel width is
due to the suppression of the interference effects at the output lead. This occurs
as a result of reduced overlap between the wave functions coming from different
arms of the QR. Increasing the channel width even further eventually leads to
the vanishment of AB oscillations. A similar effect due to the increasing QR
width has been reported by Pichugin et al. [95]. The phase shift occurs due
to larger transverse density variations along the conduction channels and the
increased backscattering effects from the channel boundaries.

When the wave packet is propagated further in time to t = 2, the regular AB
oscillation with the period Φ0 is distorted by oscillations with larger frequencies.
The presence of the oscillations can be verified by Fourier transforming the data
in Figs. 3.3(a) and (b) which is presented in Figs. 3.3(c) and (d), respectively.
At t = 1, the Fourier spectrum clearly shows that the oscillations contain only
the component with the period Φ0 for all channel widths. At t = 2, components
corresponding to periods Φ0/2 and Φ0/3 appear. The oscillations with period
Φ0/n, where n is an integer, appear when parts of the electron wave packet
circle the ring structure multiple times before interfering at the output lead.
Similar results have been obtained in recent tight-binding [96] and wave packet
[98] calculations as well as in an experimental study by Chang et al. [94]. The
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Figure 3.3: Single-electron conductivity of the QR as a function of the nor-
malized magnetic flux Φ/Φ0 at times (a) t = 1 and (b) t = 2. The Fourier
transform of situations in (a) and (b) are depicted in (c) and (d), respectively.
Larger values of a correspond to wider channels.

effect of the Lorentz force can be seen as an asymmetric density distribution
along the quantum ring arms in Fig. 3.2. The other arm is slightly favored by
the perpendicular magnetic field but the effect is not visible in the conductance.
In a two-terminal device the conductance would be affected by the Lorentz
force as the magnetic field enhances the transmission in the input lead contact
by deflecting the electron density in one of the quantum ring arms, and thus
suppressing the backscattering to the input lead [97].

Next we examine many-electron transport with and without electron-electron
interactions, where in the interacting case, the exchange and correlation effects
are handled with the local-density approximation (LDA). AB oscillations are
still present but the system becomes more sensitive to the width of the chan-
nels, i.e., increasing the channel width reduces the AB oscillation amplitude
faster than in the one-electron case. In addition, the thinnest ring shows an
oscillation component with a phase difference of π producing local conductance
minima at integer number of flux quanta [100]. This phase shift arises from the
interference of the electron density scattered along the transport channels and
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Figure 3.4: Transferred relative number of electrons for different QRs with
(dashed lines) and without (solid lines) interactions at t = 3.0. The width
of the QRs is the same a = 0.5 for different radii. (a) N = 6 and r0 = 1. (b)
N = 6 and r0 = 2. (c) N = 10 and r0 = 2.

the unscattered electron density.
To test the effect of the electron-electron interactions we repeat the conduc-

tance calculations for six and ten electrons with and without interactions. The
many-electron conductance with two different ring diameters is plotted in Fig.
3.4. Increasing the ring diameter makes the system relatively more strongly in-
teracting as the Coulomb energy scales as r−1, whilst the kinetic energy scales as
r−2. For r = 1, the interacting and noninteracting cases produce similar magne-
toconductance. Doubling the radius to r = 2 induces some changes in the overal
shape of the magnetoconductance curve, but the qualitative difference between
the noninteracting and interacting cases remains small, i.e., the AB oscillations
are preserved with and without interactions. Increasing the electron number N
decreases the AB oscillation amplitude as shown in six- and ten-electron QRs
in Figs. 3.4(b) and (c). In addition, the π-shifted component (see the previous
section) is reduced when the interactions are made stronger or when the electron
number is increased.

Our results indicate the the visibility of the AB oscillations is sensitive to
both the width of the QR as well as to the number of electrons confined in the
ring. We conclude that only the few highest energy states along a narrow path
are occupied in a successful AB transport measurement.
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3.2 Transport in Aharonov-Bohm interferometers

3.2.1 Background

Combining quantum Hall effect (QHE) with the Aharonov-Bohm (AB) effect
makes it possible to design interferometry devices that can be controlled by the
external magnetic field alone. Recent low-temperature measurements in Fabry-
Pérot [101–105] and Mach-Zehnder [106, 107] interferometers have utilized the
QHE via current channel formation in high magnetic fields and the AB effect to
control the electron dynamics. The magnetotransport studies in quantum Hall
(QH) systems are partly motivated by the possibility of topological quantum
computing [108] as well as interesting fractional statistics in two-dimensional
systems [103]. In QH interferometers the electron paths depend on the magnetic
field in contrast to original AB experiments. This interesting feature and the
effect of the channel widths are not taken into account in the common single-
particle edge-state approach [109].

The aim of our study [110, 111] is to model the formation of the current-
carrying incompressible strips for a given heterostructure and apply time-depen-
dent density-functional theory to examine its transport characteristics. This
allows us to determine the effect of the incompressible strip width and position
to electron transport in addition to the magnetic field.

3.2.2 Device and electrostatics

Our study proceeds in two parts. First, we follow the method presented in Sec.
2.5 and apply the 3D Poisson equation and the Thomas-Fermi approximation to
the sample geometry obtained from Goldman et al. [101] (see Fig. 3.5). Now we
can obtain the electron density and potential distribution under QH conditions.
The semiclassical approximation used in this part is valid because the number
of electrons is very large (of the order of 103).

The resulting filling factor (density) distribution is shown in Fig. 3.5. We can
see that the distance between the incompressible strips, i.e., the region where
ν = 2 decreases, while the strip width becomes larger as the magnetic field is
increased. Since the AB effect requires tunneling between the current channels,
it is expected that the AB oscillations are weaker or not present at all when
the magnetic field is smaller and the electrons remain in the incoming channel.
The visibility of the AB oscillations is also reduced when the magnetic field is
increased too much. This occurs because the incompressible strips overlap and
all electrons are transfered to the other channel. Clear AB interference requires
even splitting of the current between the two channels.

According to the single-electron picture, the current flows through chiral
edge states, i.e., the direction of the current is different at the opposite sides
of the sample. This is true for the equilibrium transport, but if an external
current is imposed, as it is done in experiments, the situation changes. The
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external current leads to a position-dependent electrochemical potential and the
formation of the potential differences with the same slope to the opposite sides
of the sample. The potential drops at the incompressible strips, which confines
the currents flowing to the same direction in those regions [58, 60]. This picture
is used in the transport calculations presented in the following section.

3.2.3 Transport model

Next, we construct a model potential describing the positions of the current-
carrying incompressible strips. The cross section of the model potential is ap-
proximately Gaussian, vext,cross(x) ∼ exp(−x2/a2), where x is a coordinate per-
pendicular to the channel and a controls the channel width. The Gaussian cross
section is used because it is a good approximation for the parabolic magnetic
confinement at the bottom of the channel, while it allows "leaking" of the elec-
tron flow between the channels. In addition to the variable channel width, the
distance between the current channels can also be changed in a way that the po-
tential minima at the encountering points are separated by a distance d ∈ [0, 1].
A schematic image describing the model potential and showing the encountering
points is presented in Fig. 3.5.

The initial state is calculated by selecting a small portion of the current
channel from the lower-left part of the potential and using it for the many-
electron ground-state calculation. The resulting wave packet, which is used to
model the excess electron density on top of the Fermi background, is accelerated
through the system using a linear potential along the channel at the lower-left
side of the potential. We continue the time propagation of the system until
the backscattering effects from the upper left and right corners of our finite
simulation box are observed. This makes sure that the current direction is
correct during the time-propagation.

The conductance as a function of the magnetic flux Φ through the loop
formed by the current channels and encounter points (see Fig. 3.5), the channel
separation d, and the channel width w is estimated by the transmission factor
Nr(Φ, d, w, t). It is calculated by integrating the electron density at top right
corner of the device (see Sec. 2.10).

In contrast to a real interferometer, the channel width and separation are
considered here to be independent of the magnetic field. This is justified by
noting that according to the electrostatic calculation presented in the previous
section, notable changes in the spatial distribution of incompressible strips can
be seen when the magnetic field change is about ∆B ∼ 0.1...0.4 T (see Fig.
3.5). In typical samples in the micrometer scale this corresponds about change
of 100...400 flux quanta in magnetic flux. Since we consider changes within only
three flux quanta, the shape of the channels can be assumed to be approximately
constant. Here Φ is the magnetic flux added to the background flux which
induces the incompressible current channels.
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Figure 3.5: Top: Atomic force microscope image of the experimental device
by Camino et al. The device consists of AlGaAs/GaAs heterojunction with
Au/Ti gate structure. Reprinted figure with permission from [101]. Copyright
(2005) by the American Physical Society. Lower-left: Spatial distribution of the
incompressible strips (black, ν = 2) calculated with different magnetic fields.
(a) B = 7.6 T, (b) B = 8.0 T, (c) B = 8.4 T, (d) B = 8.8 T. Lower-right:
Schematic image of the transport setup. The upper mesh represents the cross
sction of the channel along the blue thick lines. The lower mesh shows the
initial state for the time-propagation. The magnetic flux is calculated for the
perpendicular uniform magnetic field and the area restricted by the channel
minima and encounter points. With kind permission from Springer Science and
Business Media, originally published in European Physical Journal B 86, 155
(2013).
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3.2.4 Transport results

We start by examining the effect of the channel width and separation in the
one-electron case. The resulting AB oscillation amplitude is visualized in Fig.
3.6, where a clear region of the maximum amplitude can be seen. The maximum
appears when the splitting of the electron wave packet is equal after the first
encounter point. If the distance between the channels is too small, more than
a half of the density tunnels to the right-hand channel in the first encounter
point and the amplitude is smaller. Similarly, if the channel separation is too
large, less than a half of the density is tunneled and the amplitude is smaller.
The channel width can be used to modulate this effect, e.g., if the channel
separation is too large, the channels need to be wider. The secondary maximum
occurs when a part of the wave packet is reflected back and forth across the
first encounter point resulting in an even distribution between the channels. We
note that the amplitude of the secondary maximum is partly affected by the
undesired back-scattering at the first encounter point.

Next, we examine the transport of a single-electron wave packet with a non-
zero magnetic field. The evolution of the electron density with Φ/Φ0 = 0 and
Φ/Φ0 = 0.5 is visualized with density snapshots in Fig. 3.7. The distribution
of the electron density is similar during the first three frames. The difference

Figure 3.6: Estimated AB oscillation amplitude as a function of the channel
width and separation in zero magnetic field. The AB oscillation amplitude has
a maximum (red) when the wave packet distribution is even in the first encounter
point.
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Figure 3.7: Snapshots of the electron density in a model for the AB interferom-
eter. The two lowermost rows correspond to zero flux and half a flux quantum,
respectively.

becomes drastic after the second encounter point when zero flux (second row)
leads to complete transport to the top-right corner while the half-flux quantum
case (third row) directs the electron density to the upper-left side. Thus, we are
able to tune the transport direction by utilizing the AB effect.

We start examining the effect of interactions by simulating the transmission
of a two-electron wave packet through the interferometer device with channel
width a = 0.3 (see Figs. 2 and 3 of Ref. [111]). We can find distinctive AB
oscillations with all channel separations d for noninteracting electrons. Turning
on the interactions preserves the AB oscillation period but induces a small phase
shift that depends on the channel separation. We also see that the visibility of
the AB oscillation strongly depends on the channel separation with and without
interactions, and the maximum visibility is always found at d ≈ 0.4. A detailed
examination of the electron densities reveals that the maximum visibility is
obtained when the partition is equal at the first encounter point, just like in
the one-electron case. Consequently, the interference at the second point of the
encounter is as complete as possible. The relative amount of the correlation
energy Ec depends on the density parameter rs defined as the area occupied by
one electron,

πr2sn = 1 → rs =
1√
πn

. (3.2)

For GaAs samples in ∼ 10...50 nm size scale with N = 1...10 electrons the
correlation energy is much smaller than the exchange energy, i.e., |Ec| << |Ex|
[9]. Hence, the observed similarity between the EXX and LDA results can be
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regarded as the validation of the LDA calculation in this case.
For ten electrons the effect of the interactions becomes more pronounced (see

Figs. 4 and 5 of Ref. [111]). The maximum amplitude is still obtained with
the similar channel separation d ≈ 0.4 as in the two-electron case. The optimal
visibility of AB oscillations is not reduced as a function of the electron number
N , but the oscillation amplitude is reduced by interactions when the channel
distance is not optimal. This is shown in Fig. 3.8, where the maximum ampli-
tude in the whole range Φ/Φ0 = 0...3 is plotted as a function of the interchannel
distance. We find that the noninteracting ten-electron system has approximately
twice the oscillation visibility compared to the interacting system at d = 0.6.

The phase shift found in the two-electron simulation is more pronounced
when the number of electrons is increased. In the ten-electron case the EXX
is unstable and is replaced by a more stable Hartree approximation, where the
exchange and correlation are omitted. The results in the high-visibility regime
are similar and generally the deviations are modest. Overall, the high-visibility
region is not affected by the electron-electron interactions and therefore, we
expect the AB oscillations to be always visible if the location of the incompress-
ible strips – controlled by the magnetic field – is optimal for the partitioning.
However, the phase shift becomes visible only at the price of suppressing the
visibility. The summary of the AB oscillation visibility and the phase shift for
two, six, and ten electrons is presented in Fig. 3.9.
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Figure 3.8: Maximum amplitude of the AB oscillation (from minimum to max-
imum transmission) in the range Φ/Φ0 = 0...3 in the case of N = 1 (solid line),
N = 10 calulated with the adiabatic LDA (dashed line) and without interac-
tions (circles). With kind permission from Springer Science and Business Media,
originally published in European Physical Journal B 86, 155 (2013).
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Figure 3.9: Aharonov-Bohm oscillations (color scale) for one-, six-, and ten-
electron systems, respectively. Clear phase shifts can be seen in many-electron
systems treated here within adiabatic LDA. With kind permission from Springer
Science and Business Media, originally published in European Physical Journal
B 86, 155 (2013).
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3.3 Fractal dynamics in chaotic quantum trans-
port

3.3.1 Background

In the final part of the thesis, we consider transport characteristics of a stadium-
shaped quantum billiard. A stadium billiard is a standard example of a classi-
cally chaotic system [69]. When a perpendicular magnetic field is applied, its
phase space is mixed, i.e., it contains chaotic and non-chaotic trajectories.

Interestingly, stadium-shaped quantum dots have been experimentally re-
alized already since 1990’s [112]. The experimental setup consists of the 2D
electron gas (2DEG) in a semiconductor heterostructure, where the quantum
dot itself is defined by the use of metallic gates [71, 112–114]. The magneto-
conductance of a stadium quantum dot displays fluctuations that have fractal
scaling properties. Systems having a mixed phase space display probability dis-
tributions P (A) ∼ A−γ for areas A enclosed by trajectories. It was proposed
by Ketzmerick [115], that a power law for the area distribution leads to fractal
characteristics in the conductance.

Dynamics in chaotic cavities has been studied with a broad selection of theo-
retical methods. There are semiclassical trajectory-based studies [115, 116] and
tight-binding calculations [117, 118] of conductance, just to name a few. The aim
of this study is to determine fractal scaling properties of magnetoconductance
in an open quantum stadium billiard treated with a full 2D model in real space
and time. We numerically solve the time-dependent Schrödinger equation on
a grid for the desired geometry, which allows more realistic modeling of quan-
tum transport compared to the semiclassical treatment and the tight-binding
calculations.

Conventionally, transport problems such as this can be handled by calculat-
ing the coupling matrix between the eigenstates of the quantum dot and the
leads. The major challenge in this method is to solve the 2D eigenvalue problem
efficiently for the chaotic quantum dot in a static magnetic field. Novel methods
in solving the single-particle Schrödinger equation in magnetic fields [119] may
extend the previously described conventional transport scheme accordingly. In
any case, here we use the same scheme as in previous chapters to estimate the
conductance.

3.3.2 Model

We construct a model for a two-terminal stadium quantum dot similar to the
experimental setup in Ref. [71]. The potential (see Fig. 3.10) has hard walls and
consists of a stadium with radius r = 1.0 and width d = 0.7, input and output
leads of width w = 0.56, and a linear potential that is used to emulate the source-
drain voltage. A small part of the input lead is used to calculate the initial state
for the time-propagation, and the transmission factor T (Φ, t) is calculated by
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Figure 3.10: Snapshots of the electron density in the model stadium system (see
the text) during a transport simulation with the magnetic flux Φ/Φ0 = 20. The
input and output leads extend further to the left and right.

integrating the electron density in the output lead (see Sec. 2.10). The fractal
characteristics of the magnetoconductance is analyzed with the variation method
(VM) and the detrended fluctuation analysis (DFA) introduced in Sec. 2.7.

3.3.3 Transport results

An example of electron dynamics in the stadium is shown in Fig. 3.10. Ap-
proximately a half of the electron density is transmitted through and the other
half is either backscattered to the input lead or confined in the stadium. The
momentum of the wave packet determines the size of the density bumps during
the scattering process, where the higher eigenstates are probed with higher mo-
mentum. The initial momentum of the wave packet is chosen in such a way that
the used grid spacing is sufficient to describe the dynamics inside the quantum
dot.

The transmission factor as a function of the magnetic flux and time is pre-
sented in Fig. 3.11. A complex magnetoconductance pattern is formed after
time t = 1.0. We are not able to reach the equilibrium current due to the finite
system size and must discard the results where undesired backscattering effects
become visible. One of such effects can be seen in Fig. 3.11 at zero flux and
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Figure 3.11: Transmission factor as a function of time and magnetic flux through
the stadium quantum dot. The curve in Fig. 3.12 represents a cut along the
dashed line, which turns out to be a fractal.

time t = 1.5, where the step is a consequence of electron backscattering between
the quantum dot and the accelerating linear potential. A cross section of the
transmission factor at t = 1.4 is shown in Fig. 3.12. The general trend of the
transmission builds up as follows: First, the increasing magnetic field depopu-
lates trajectories directly coupling the input and output leads. After reaching
the minimum, the transmission factor starts to rise due to an increased number
of skipping orbits which propagate along the device boundaries. Finer details in
the magnetoconductance are formed due to the chaotic behavior of the system
through the whole range of the magnetic flux considered here.

Next, fractal properties of the obtained conductance are analyzed with the
VM and a slightly modified version of DFA. When studying conductance fluc-
tuations, the DFA exponent α needs to be related to the fractal dimension D.
It is known that D = 2− γ/2 with 〈(∆G)2〉 ∝ (∆B)γ [71, 115] where the latter
is exactly Step (4) of DFA squared (see section 2.7.2). We therefore omit Step
(1), identify α = γ, and get

D = 2− α

2
(3.3)

for the fractal dimension.
We apply the quadratic DFA (m = 2) to our data in Fig. 3.12. The fitting

of the data at t = 1.4 is shown in inset. The obtained result α = 1.46 is in good
qualitative agreement with the experimental result γ = α = 1.38 of Sachrajda
et al. [71]. The experimental fractal dimension is D = 1.25, which agrees very
well with our DFA (D = 1.27) and VM (D = 1.32) results.
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Figure 3.12: Transmission factor as a function of the magnetic field at t = 1.4.
The inset shows the scaling exponent α = 1.46 obtained from the DFA analysis.

The fractal dimensions obtained with the DFA and the VM are shown as
a function of time in Fig. 3.13(a). The fitting errors η = 1 − R2, where R is
the pearson product-moment correlation coefficient of log-log data, are shown
in Fig. 3.13(b). The error parameter η measures the fit quality such that η = 0
corresponds to exact linear behavior. A visual inspection of Fig. 3.11 suggests
that clear signatures of a fractal structure develop only after t = 1.0. This can
be seen in the convergence of the fractal dimension D and the minimization of
the fitting error in Fig. 3.13. At times larger than t = 1.4 the fitting error
increases due to backscattering effects resulting from the finite simulation box
(see above). In this way we are able to determine the range of validity in our
scheme to calculate the fractal dimension.

Finally, we point out that various experiments in chaotic quantum-dot sys-
tems have produced qualitatively similar fractal dimensions [120, 121]. In addi-
tion, it has been recently found out that the disorder has a considerable role in
the magnetoconductance of modulation-doped quantum dots. The magnetocon-
ductance can be modified by thermal cycling which changes the position of the
donor atoms, i.e., the source of the disorder potential. On the other hand, the
thermal cycling yields reproducible properties in electrostatically doped samples
[114].

The transport model presented in this thesis is straightforward to be adjusted
for different geometries and potential shapes. Future prospects include more
realistic modeling of quantum dot boundaries by varying their softness [71, 115,
121, 122], by testing different shapes for the contacts, and by the inclusion of
arbitrary impurity potentials [114].
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Figure 3.13: (a) Fractal dimension D calculated from DFA with the relation
D = 2 − α/2 and from the VM during the time propagation. Note that the
fractal structure is developed only at t & 1. (b) Time development of the error
in the fitting procedure at t = 0.7...1.4 (see text).
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Chapter 4

Summary

In this thesis, electronic transport properties of 2D quantum dots in perpen-
dicular magnetic fields have been examined by numerically solving the time-
dependent Schrödinger equation on a real-space grid and the time-dependent
density functional theory (TDDFT). With our scheme we can simultaneously
examine real-time dynamics as well as the role of electron-electron interactions
and the 2D character of the system with realistic conduction channels.

The first study (Article I) focuses on investigating the Aharonov-Bohm (AB)
effect in many-electron quantum rings. We have modeled the electron transport
by considering the discharge of a one-terminal quantum ring and by calculat-
ing the relative number of escaped electrons. AB oscillations with a period
Φ0/n = h/(en) are found, where n = 1 and n > 1 correspond to regular AB
oscillations and oscillations that arise when the electron density travels multiple
times around the quantum ring, respectively. Increasing the width of conduction
channel dramatically decreases the visibility of the AB oscillations, i.e., the os-
cillation amplitude. On the other hand, we have found that the electron-electron
interactions have a relatively small effect on the oscillation visibility. Our sim-
ulations suggest that the transport is dominated by a few electrons traveling
in a thin conduction channel near the Fermi level whenever AB oscillations are
visible in quantum-ring experiments.

The second study (Articles II and III) considers quantum transport in AB
interferometers. We have solved the electron density and the spatial distribution
of the incompressible strips in the experimental geometry. Next, the obtained
distribution of the current-carrying incompressible strips has been used as a base
to build a model potential for the electron transport simulation. We have found
that the transport across the device is highly dependent on the channel width
and the interchannel distance. The transmission through the device displays
clear AB oscillations whose visibility is maximised when the electron density
distribution is even between the current carrying channels. In addition, the
magnetic field can be used to switch the current between the two outgoing
leads. Increasing the number of noninteracting electrons does not affect the
relative transport characteristics but adding interactions induces a phase shift
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in AB oscillation as a function of the interchannel distance. The strength of
the phase-shift is proportional to the number of electrons, while the maximum
visibility is not affected by the interactions.

Finally, the fractal characteristics of a transport through a classically chaotic
quantum dot has been studied (Article IV). We have propagated a single-electron
wave packet through the stadium-shaped quantum dot and obtained a complete
picture of the magnetoconductance. The magnetoconductance has been ana-
lyzed with the use of the detrended fluctuation analysis, a widely-used method
in time-series analysis, and its results have been compared to the variation analy-
sis. Both methods produce similar results and show clear signs of fractal scaling.
Excellent qualitative agreement with previous experiments in a similar system
has been obtained.

The transport scheme introduced in this thesis can be easily applied to dif-
ferent geometries in one, two, and three dimensions. One of the possible future
applications is the inclusion of the arbitrary disorder potential in the system of
interest to examine the central role of impurities in quantum transport. These
studies could clarify the ongoing discussion on the characteristics of quantum
transport in semiconductor structures, especially with respect to diffusive vs.
ballistic features.
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