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1 Abstract

Conventional electron-beam lithography and shadow evaporation techniques
in ultra high vacuum were used to fabricate high-ohmic Al-AlO,-Ti SIS-junctions.
Quantum fluctuations of the energy gap Ar; of titanium nanowires were stud-
ied by measuring R(T)- and I(V)-characteristics of these junctions. Measure-
ments were done in electromagnetically shielded cryostat at base temperature
of T = 26 mK. Results show that the thinnest wires do not demonstrate pro-
nounced superconducting R(T) transition. QPS phenomenon explains well
broadening of the R(T) transition curves. Differential conductance data (ob-
tained along I(V)) shows qualitatively the broadening of energy gap Ar; as a
function of diameter ¢ of the nanowire. From these results it can be concluded
that QF phenomenon is most likely responsible for the broadening of the en-
ergy gap. More study is needed to understand the differences between mea-
sured samples which all exhibit large difference in their I(V)-characteristics
and A(c) dependence. Fluctuations of the energy gap and QPS phenomenon
are both universal and should happen in all superconductors. Rate of QPS (and
thus fluctuations of the gap) can be affected a lot by choosing the correct mate-
rial, titanium being a convenient one, and that possibility should be explored.

In future studies other materials, for example, zirkonium, could be studied.



2  Introduction

Superconductivity was discovered already in 1911 by K. Onnes, but theory of
it was not understood in several decades. In 1957 J. Bardeen, L. N. Cooper and
J. R. Schieffer developed the microscopic theory, often called BCS-theory, that
revolutionized our understanding of superconductivity. Theory introduces two
mutually linked parameters related to superconductors: energy gap A and crit-
ical temperature T.. Parameter A corresponds to the energy required to break
a current carrying quasiparticle, a Cooper pair, in a superconductor. It has a
complex value A = |Ale'?, where |A| is the amplitude and ¢ is the phase.
Critical temperature is a temperature limit above which the superconducting
state is destroyed. Both parameters are material dependent and can be said
to be constant in a bulk superconductor. However, in a 1-dimensional super-
conducting nanowire both parameters vary as a function of the diameter of
the wire. Variation of A is due to quantum fluctuations, also known as Quan-
tum Phase Slips (QPS). This means that there is no longer a single value for
A, but both the amplitude and the phase have a Gaussian distribution around
an expectation value (which again varies as a function of diameter). Thermally
activated phase slips (TAPS) can also affect A, and to prevent this the measure-
ments are done in ultra low temperatures where QPS is dominant and TAPS
is insignificant. Main objective in this thesis is to systematically study the size
dependence of the variable A(T¢,p) and fluctuations of A. An important point
here is to understand that there are two kinds of fluctuations of the order
parameter: small continuous fluctuations around the expectation value, and
‘large’ fluctuations, QPS events, that momentarily destroy superconductivity
completely. Main interest in this thesis lie in the smaller fluctuations. Research
is done by studying R(T)- and I(V')-characteristics of S11S,-junctions, where
SIS stands for ‘Superconductor 1 - Insulator - Superconductor 2’. I(V) mea-
surements give direct information about the size dependence and ‘smearing’
of the energy gap A. R(T) on the other hand gives more information how QPS
affects the superconducting transition and about the variations of T,. Main re-
sults from I(V) measurements showed that the fluctuations of the energy gap

A increase as the diameter rho is decreased. Variation of the expectation value



of the energy gap as a function of the diameter is minimal. R(T) measurements
showed that the superconducting R(T) transition disappears completely in the
smallest nanowires, and the diameter has significant relation to critical temper-

ature: smaller the wire, smaller the T..

First I will go through the related theory. This part consists of the BCS theory,
superconductivity in 1-dimensional nanowires and the concept of phase slips
(both thermal and quantum). After that I will explain the measurements in
detail: how samples were fabricated and measured, and results analysed. The

last chapters are dedicated to the results.



3  Theory
3.1 Superconductivity
3.1.1 BCS theory and the energy gap A

In the superconducting state electrons of the material have attractive net po-
tential, and they form so called Cooper pairs which do not scatter inside the
superconductor. This leads to zero electrical resistivity inside the supercon-
ductor. This is the most well known property of superconductivity but many
more do exist. Microscopic theory was developed in 1957 by J. Bardeen, L.
N. Cooper and J. R. Schieffer and because of it we today understand many
of these phenomena. In this thesis, we are particularly interested in supercon-
ducting energy gap A and critical temperature T,. Both A and T. are material
dependent parameters, and within the ‘orthodox” BCS theory are related as
A(T = 0) = 1.764kgT., where kg is the Boltzmann constant. Next I show how
the bound state that arises from the attractive net potential between the elec-
trons leads to a definition of the energy gap A.

With the 2nd quantization notes the pairing Hamiltonian takes form (using
standard notations)

N tot
H= Ze%n@ +) VIR C R €7\ Oy (1)
ke

where k and [ are wavevectors, V;; is the interaction potential, 7 is spin and
Ny = C%CE is the total particle number on state k. By including the term — 1Ny,
where p is the chemical potential and N, is the particle number operator, it
is possible to regulate the mean number of particles. Next step is to minimize
expectation value of the energy of the sum as a function of k by setting

8 (A — uNoplyc) = 0. 2)
Result of this operation takes form

8 (o|H — pNoplpc) = 2) G702 + Y Vepuigopuor. (3)
: 7



Here |vk|2 is the probability of the pair (k1 ,k1) being occupied and |u~|2
the probability of it not being occupied. § = €; — y is a single particle energy
relative to the Fermi energy. It should be noted that the ¢ here should not be
confused with the coherence length of superconductor, usually also noted by
¢. By setting the condition

|u%| + |v%\ =1

and choosing

ME = sin(@E)
)

it is possible to reform the equation by trigonometric identities. Then differen-

(4)

v = cos(0

=

tiating the expectation value with respect to 6; we get

Vzrsin (207
tan(20;) = Zkl—(l) )
T %%
From this form we can now define the energy gap to be

*:_ZVET”* vy = ZV sin(26;) (6)
T

and the excitation energy of a quasi-particle with a momentum hk

L 2, 22
B = \/A2+ 22 (7)

These definitions lead to

A-
tan(20;) = —g—f
k
: Ay
sin(20;) = 7 8)
k
cos(20;) = i
k



By substituting Eq. (8) into (6) and applying Cooper approximation for Vo = V
we get
A for |G| < hewc

A= )
0 for [&;| > hwc

where fiw, is the cut-off energy. In this approximation A is independent of k.
This approximation really justifies the name ‘energy gap’, as it is now the min-
imum excitation energy of a quasi-particle. We get a self-consistency equation

from Eq. (5) . )
k

This can be calculated by changing the summation to an integration from 0 to
hiwe and using the weak-coupling limit. This results in a simple equation for

the gap:
A = Lcl ~ 2hwce_7N<é)V. (11)
smh(N(O)V

It is also possible to compute the two coefficients u; and vy

2 Ly Y _1 (S
AN A2+ 22
k
1 Gy
2 _ - k) —1 -2
uE_2<1+EE> 1 (5

It should be kept in mind that this above result does not hold for strongly

(12)

coupled superconductors where N(0)V > 1. However, it is not a concern
in this thesis because superconductors used in the measurements, aluminum
and titanium, are both in weak coupling limit. More detailed derivation of the

energy gap A can be found in [1].

3.1.2 Ginzburg-Landau Theory

Short overview of the Ginzburg-Landau (GL) theory is required before ex-

plaining 1-dimensional superconductivity, as some of the parameters and con-

6



cepts come straight from the GL theory. The model is very intuitive and it is a
powerful tool when dealing with spatially inhomogeneous superconductors.
It should be kept in mind that in the derivation of the GL theory it is assumed
that the temperature T is close to critical temperature T;. This leads to the fact
that the GL theory does not give good results when going significantly lower
temperatures, as is the case in this thesis.

GL theory was developed by V. L. Ginzburg and L. D. Landau [2] in 1950. It
can be derived from the BCS theory as a limiting case where temperature T
is close to T, and the wavefunction and vector potential A vary sufficiently
slowly. It was done by Gor’kov [3] in 1959. The starting point of the GL theory
is a pseudowavefunction ¢(x) which is known as a complex order parame-
ter. Then |i(x)|? describes a local density of superconducting electrons 71 (7).
In light of this definition it is easy to think that GL theory describes a macro-
scopic wavefunction of a superconductor. GL theory also introduces another
important parameter (a length scale), Ginzburg-Landau coherence length ¢, in
which the order parameter §(x) is approximately constant. Dimensionality of
the supercondcutor is defined by this material dependent value ¢. ¢ is defined
to be

2 n?
= ()] (13
where
_ 2 peme 7
a=-— 3 c(T)Agsp(T). (14)

Here Hc is the critical magnetic field and A,¢f an effective London penetra-
tion depth. Hc is a value of the magnetic field which is powerful enough to
destroy superconductivity (i.e. it has enough energy to destory Cooper pairs),
and effective London penetration depth is attained from

m*c?

Aopp= —— .
eff 47T|1P|2e*2

Aerr gives the value how deep the magnetic field can penetrate in to the super-
conductor.

Because we are now dealing with temperatures near T, thermal fluctuations

7



become an issue. Fluctuations are discussed in chapter 3.2 of this thesis, and
it is worth mentioning that GL theory is a tool of choice when dealing with
thermal fluctuations. Analysis of fluctuations using a microscopic model (e.g.
BCS) is much more complicated.

3.1.3 1-dimensional superconductivity

Dimensionality of a superconductor can be determined by comparing its size
to its coherence length ¢. If condition d < ¢ is satisfied, then the superconduc-
tor can be said to be one dimensional. Condition d < ¢ says that the wavefunc-
tion || cannot vary across the wire. One can also assume condition d < A,
which allows to neglect the magnetic energies compared to kinetic energies.
A critical difference between a one-dimensional and a bulk superconductor is
that in the one-dimensional case resistivity can appear even below the critical
temperature T.. Close to critical temperature the finite resistance is caused by
thermal fluctuations, or thermal phase slips, which can effectively destroy su-
perconductivity for a short period of time in volume A¢, where A is the cross-
section of the wire. This leads to finite voltage and thus, finite resistivity. Prob-

AFy :
max{kaTEp T ) , where AF is energy

necessary to create a single phase slip, while kg T is the contribution of thermal

ability of a phase slip event is Pys ~ exp (—

bath, and Eys is the contribution of all other sources. In the temperature region
T < T, thermal fluctuations die out and quantum fluctuations, usually called
quantum phase slips, become dominant. Simply put, in an infinitely long wire
there is always a finite probability that some part of the superconductor be-
comes normal for a short period of time due to fluctuations. These properties
of one-dimensional superconductors are essential for this study. In 2- and 3-
dimensional superconductors the fluctuations are undetectable in transport
measurements since there is always another superconducting channel if one
is destroyed. This prevents us from observing the phase slips, and thus fluc-
tuations of the order parameter A. In sufficiently short nanowires it can be
assumed that these phase slips are rare enough so that only one of them can
be present at any given time. To study one-dimensional superconductors and
phase slip processes, a wavefunction of the form
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Figure 1: Complex current-carrying wavefunction. Picture from [4].

P(x) = |p(x) [0 (15)

is needed. One needs to consider this in polar form in a plane perpendicular

to x-axis. Solutions of this kind of functions are

Pp(x) = oe'™

and are represented by helices of pitch 277/4 and radius ¢, see Fig. 1.

These are stationary solutions, which represent supercurrent flow and zero
voltage (and with zero resistivity). If a voltage appears between the ends of the

wire, the relative phase of the wavefunction changes by the Josephson relation

dq)u 2eV
e _ =7 1
dt n’ (16)
where ¢y, is a relative phase (of the two ends of the nanowire), e elementary
charge, i reduced Planck constant and V' voltage between the two ends of the
wire. The total phase difference ¢1, = gL, where L is the length of the wire,
satisfies the Josephson relation. In uniform solution, the wavefunction looks

like a helix moving along the x-axis with a radius of || and phase being the
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Figure 2: Schematic of phase slip event. Picture from [1].

same at every 27/4. In a non-uniform solution the helix tightens up until its
radius reaches zero at some point, a phase slip occurs and the radius returns
to |¢|. This is demonstrated in Fig. 2

Locally Eq. (16) is equivalent to

dvs eE
dt  m,

(17)

where v; is the velocity of the supercurrent, E is electrical field inside the wire
and m, is a mass of an electron. This solution is steady even when V > 0 and
vs < U, Uc being the critical velocity of the quasi-particles. Higher velocity
than v, would yield enough kinetic energy for the Cooper pairs to break up. By
demanding conservation of current, neglecting normal current and assuming
that wavefunction has a form

Pp(x) = [p(x)]e?),

then 4
\gb(x)|2d—f = constant « 1. (18)

From Eq. (18) is it easy to see that if || becomes small, 3—;’; must become large.
Figs. 1 and 2 demonstrate this observation.
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Langer and Ambegaokar [5] found a path in function space between two uni-
form solutions with different number of turns in the helix shown in Fig. 1 with
lowest free-energy barrier to overcome. They showed that the saddle-point
free-energy increment AFj has a form
V20
AFy = ——H¢ - AG. 19

0=5He - AS (19)
This is the case when no voltage is biased through the wire, meaning that the
energy difference between the stationary states after a phase slip is zero. If a
finite voltage is applied through the wire, phase slips to one direction (let’s
say +277) become energetically favoured and they outnumber the —27 phase
slips. In view of Eq. (16) (Josephson relation), energy difference between the
state before and after a phase slip of magnitude 27 is

h

OF = o1, (20)

which is valid when a constant current source is used in an experimental setup.
Picture 3 demonstrates the difference between applied voltage and zero volt-
age situations.

It is still necessary to introduce a so called attempt frequency () for a phase-
slip event. If thermal fluctuations are only to be considered, then for mean a

net phase-slip rate it can be derived to be

depn AR OF
Tl 20 exp { kBT] sinh (2k3T> , (21)

where () is an still an unknown prefactor. By substituting Eq.(20) to Eq.(21)

and equating it to the Josephson frequency, we get

V= hTQexp {—%} sinh (L) . (22)

11
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Figure 3: Phase slip events demonstrated. Green line represents the situation
without a bias voltage, a case where JF = 0. Blue line represents the situation
where finite bias voltage is applied. This is also known as ‘tilted washboard
potential’. Due to finite voltage, the phase slips to one direction become ener-
getically favoured (6F > 0), and phase slips to that direction outnumber the
ones to opposite direction. Orange lines represent a quantum tunneling (QPS)
and red arrows represent a thermal phase slip (TAPS).

Applying Ohm’s law and solving it for resistance, the result is

20 2R
Vv th=() o it (23)

1 2e%kgT

This result applies only for very small currents (where sinh(x) ~ x). The value
of () is expected to be proportional to the length of the nanowire. The prob-
lem can also be examined by time-dependent Ginzburg-Landau theory (tdGL
theory) and by it D. E. McCumber and B. I. Halperin [6] got a solution for the

12



unknown factor (), result being

L [AF 1
NT) ==/ ——,
(T) ¢V kT =
where 7;7! = 8k(T. — T)7th is the characteristic relaxation rate of the supercon-
ductor in the GL theory. Indeed the initial guess about (2 « L ended up being

true.

3.2 Phase slips

Phase slips can occur via two different mechanisms. First one is caused by
the traditional thermal fluctuations which are dominant when the tempera-
ture of the superconductor is close to T, (Egs. (21),(22),(23)), and latter one is
quantum mechanical, which is dominant far below the T; region. To analyse
this phenomenon in Josephson junction, usually one introduces a so called
RCSJ (Resistively and Capacitively Shunted Junction) model, see Fig.4. I will
go through the main points of this model, as it is important to understand it
before going in to the details of a phase slip event. More detailed explanation
can be found in [1]. An essential part of the RCS] model is a so called ‘tilted
washboard potential’, see Fig. 3. In this potential, phase slips happen when
an electron moves from one potential minimum to another. When an electron
does this by jumping over the potential barrier by acquiring enough thermal
energy, it is called thermally activated phase slip, or TAPS in short. Another
way is to tunnel through the barrier quantum mechanically. In this case we
say that a quantum phase slip, or QPS, occurred. Schematics of this is shown
in Fig. 3. It should be noted that in a conventional Josephson system formed
of a static in space and time junction, schematics in Fig. 3 corresponds to the
junction. In a homogeneous long nanowire a QPS is delocalized in space and
time. However, if to simplify the discussion and consider short and narrow
constriction, the probability of a QPS is higher in that location. Hence, the lo-
cal description (Fig. 3) can be applied. Next I will go through the necessary
details about RCSJ model, TAPS and QPS.

13
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Figure 4: Circuit diagram of RCS] model.

3.2.1 RCSJ model

The main reason to study RCS] model is to gain information about the ac
Josephson effect. The famous formula

Is = I.sin(7y),

where [, is supercurrent, I. is critical current and 7y is gauge-invariant phase

difference of the two superconducting leads of the Josephson junction

is only sufficient when studying zero voltage dc properties of the junction. In
the RCSJ model the physical Josephson junction is modeled by an ideal Joseph-
son junction shunted by capacitance C and resistance R. It is worth noticing
that C is capacitance between the electrodes, as capacitance to the ground can

usually be ignored (Cjunction < Cground S0 C = Cjunction)- At very low temper-

atures R ~ RNe"BAT where Ry is normal state resistance of the junction. This
expression takes into account the dominant exponential temperature depen-
dence arising from the freeze-out of quasi-particles at low temperature but not
the weaker effect of the singular density of states at the gap edge in BCS the-
ory [1]. In RCS] model the time-dependence of the phase -y in the presence of

bias current can be derived by equating the bias current with all three channels

14



of the RCS]J as usually with Kirchhoff’s rules

. v dv

Here I, is considered as a coefficient of sin(+y). It still describes a critical cur-
rent, but it is not the observable critical current I that is measured. Usually
I, > I. due to thermal fluctuations. Thermal fluctuations are usually added
to the equation by inserting I = (I) + I(t) where 61(t) describes the small
fluctuations. Eliminating V' from the above equation one gets second order
differential equation for < in the form of

d?y  1dy

I
— — — 1 = — 2
dr? + Q dr + Sln(’)/) ICQ’ ( 5)

where T = wyt is a dimensionless time variable, w, = \/% is the plasma
frequency and Q = wpRC is known as the quality factor. Eq. 25 describes
a particle moving in a tilted washboard potential mentioned above (Fig. 3).
Tilted washboard potential is a mechanical analog based on equation of mo-
tion, Eq.(25). We end up in a similar motion when particle of mass

<(3)

n\* 1dy
2e R dt

moves along the < axis in an effective potential

subjected to a drag force

hl

U(y) = —Ejcos(y) — 5 . (26)

From Fig. 3 it is easy to see that a characteristic energy scale of the model is
the Josephson coupling energy E; = /2el. In the tilted washboard model,
I, has an easily understandable geometrical meaning. When I = I.,, wash-

board no longer has minima, but instead it becomes a downward slope that

15



has horizontal inflection points where the minima used to be. If the current is
still increased, no stable points exist anymore. Noise, or thermal fluctuations,
can now shift the energy of the system up or down by order kgT. These fluc-
tuations allow the particles to escape from the local minima that exists for I
slightly smaller than I . In this event the phase of the wavefunction changes
by 27tn or —27tn depending on the direction where the particle is moving in
the washboard potential. Hence the name is “Thermally Activated Phase Slip’.
Phase slip events are assumed to be relatively rare when the energy needed to
create a single phase slip, AF, is larger than the “driving force” ~ A. Then the
probability of changing the phase by 277 is

n-AFE
Py_ps ~ exp (— A 0) ,

hence cases with n > 1 are exponentially less probable compared to n = 1
phase slips.

3.2.2 Thermally activated phase slips (TAPS)

Theory describing TAPS was developed by J. Langer, V. Ambegaokar (1967),
D. McCumber and B. Halperin (1970) [5, 6]. Langer-Ambegaokar-McCumber-
Halperin theory, also known as LAMH theory, describes how finite resistance
appears in thin nanowires due to thermally activated phase slips. Before going
to details, we immediately conclude that LAMH theory is expected to break
down when temperature T becomes really close to T; as then the phase slip at-
tempt frequency goes to zero. On the other hand, thermally activated phase
slips die out at really low temperatures. Because we are dealing with one-
dimensional superconductors the wavefunction ¢ can vary only in x-direction.
As mention before, tool of choice in LAMH theory is the time-dependent Ginzburg-
Landau theory. One of the reasons being that in one dimension GL equation is
analytically solvable.

As the main focus in this thesis does not lie in thermal phase slips, I will not
go through the derivations. A More detailed explanation can be found in [5, 6]

and main results can be recalled from chapter 3.1.3: TAPS attempt rate has a

16



form AF
oten(-£5)

where () is an attempt frequency

L [AR 1

and AF is free energy barrier for a (single) phase slip

2
V2HZ

AFy =
0 3

AE.

3.2.3 Quantum phase slips (QPS)

While TAPS is responsible for non-zero resistivity in temperatures slightly
lower than T¢, the attempt frequency dies away in an exponential rate when
the temperature is lowered. In the mK range, quantum phase slips become
dominant over thermal phase slips and non-zero resistance still exists in the
nanowire. In QPS procedure a macroscopis wavefunction tunnels through the
free-energy barrier instead of hopping over it by thermal excitation. In short,
in the mathematical derivation of QPS one starts with a partition function that
explains statistical phenomena in the system and then assumes that quantum
fluctuations exist in the system. Quantum phase slip events are then saddle
point solutions of the effective action of this partition function (similar to TAPS
model). Detailed derivation of QPS theory can be found in [7]. Next we go
through the important results of this theory related to the thesis topic.

Assume the usual GL wavefunction form

P(x) = [p(x)]e ). 27)

As we are dealing with effectively one dimensional wires, the wavefunction is
restricted in y and z-direction and ¢ (7) = (x).

Since exponential function is never zero and the phase is considered to be a

17
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Figure 5: Schematic of fluctuations. Upper graph: Ag (red line) denotes the
bulk value of an energy gap. Blue line represents fluctuations of the gap. QPS
causes superconductivity to break down momentarily, and this is shown in
the picture as A dropping to zero for a short period of time. In addition to
these QPSs, quantum fluctuations of the order parameter occur around the
bulk value Ag. Lower graph: Blue line represents fluctuations of the phase ¢.
Phase is shifted +27t or —271 when phase slip occurs. If voltage is not applied
through the junction, + and — phase slips average out resulting to zero net
change in phase.

continuous variable, then amplitude |(x)| = 0 at some point. In other words,
superconductivity is destroyed momentarily in the part where the phase slip
occurs. See Fig. 5 for a schematic view of the process. Minimum volume of
the fluctuating domain is ¢(T) - A, where ¢(T) is the temperature dependent
GL coherence length and A is the cross-sectional area of the nanowire. ¢(T) is
defined as

o =¢0) (1-7) o 28)

18



where

£(0) = ¢o clean limit, [ > & (29)

0.85+/8o! dirty limit, I < ¢o,

where [/ is the normal state mean free path of an electron in the nanowire and

fo=w }?vi where v is the Fermi velocity and w ~ 1 is a constant, is Pippard’s
C

coherence length. From Josephson relation (16) we can then say that there is
a voltage drop due to a phase change and this leads to a finite resistance. If
the junction is not biased, then —27r and 27t phase slips have equal probability
to occur. When a finite voltage over the junction is applied, phase slips to one
direction become energetically favored and they no longer average to zero.

From LAMH theory we know that the resistance related to thermal phase slips
is exponentially dependent on the height of the potential barrier

R(T) o exp (—g—f})

where Vj, is the height of the barrier. In QPS, the same barrier is overcome by

tunneling, and a similar type of relation is achieved

V X exp (—%) (30)

where v is the attempt rate of tunneling and 7 is characteristic time scale re-
lated to dynamics of tunneling. It should be of the same range as the time scale
in superconductivity, so it is assumed to be T ~ /A, reflecting just the un-
certainty principle. If we have a finitely long nanowire, the QPS rate I'gps is
then

T'gps = Be 5ers (31)

19



where
1[5 ()

Ro (32)
T
Sqps = & (—iﬁ_N)) ,

L

where Spps is the effective QPS action, L is the length of the nanowire, Rg =
h/(20)? ~ 6.4k() resistance quantum, Ry effective shunting resistance coming
from the wires and a,8 ~ 1 are constants. Remembering that each phase slip
creates a voltage, averaging it and defining effective resistance as R,y = (V)/1,

we get
\% 1 I-Ry-¢(T) I PS T
Reff=<T>=§VQPS'T'FQPS'T: NL 6(T) . ? :RNy'TFQPS-
V) %
AVQPS
(33)
Contribution of QPS only in the effective resistance is
A(T)S%psL
R(T) = b— - 3P5 " o~ 250ps (34)
W=

where b ~ 1 is a constant with a suitable dimensions. For a “dirty limit” super-
conductor | < ¢, typical for lift-off fabricated nanostructures, which was the
method in fabricating the measured samples. . Probability of QPS event has
the same leading exponential dependence as I'gps (Eq. (31)), and for a dirty
limit superconductor can be reduced to a simple form:

Pops o« exp (

where ¢ is the effective diameter of the nanowire, T? is the critical temperature
of a bulk SC, py is the usual normal state resistivity of the material and <y is a
coefficient of proper dimensionality. From this formula we can already say that
if a high QPS probability is wanted, nanowires should be as thin as possible,

20



chosen material should have low T? and high normal state resistivity. In this
thesis, titanium is chosen as the material due to its relatively good properties
in this regard. Idea is to maximize the amount of QPS events in the nanowires
of different effective diameters o so that behaviour of A(T,,0) can be studied.

3.3 Tunneling in SIS-junction

In 1962 B. D. Josephson made a prediction about a phenomenon which is today
known as tunneling of Cooper pairs. In his famous papers [8,9] he stated that
supercurrent can flow between two superconducting electrodes separated by
a thin insulating layer. Supercurrent has a form

Iy = I.sin(Ag), (36)

where [, is a critical current (the maximum current through the insulating layer
without the presence of a voltage) and Ag is a difference in the phase of the
GL wavefunction in the two electrodes. If a voltage difference is maintained
between the electrodes (voltage biased measurement setup), the phase differ-

ence changes by

d(Ag)  2e
dt  n v 57)

which is identical to Eq.16. This results to an ac current of amplitude I with a

frequency of f = % The energy hf then equals the amount of energy trans-
terred by a Cooper pair from an electrode to another. This tunneling effect
can happen in several cases, which are normally denoted by S-1-S (or SIS) and
S-N-S (or SNS), N being ‘normal metal’, I ‘insulator” and S stands for “super-
conductor’. In this thesis, the focus is on SIS-junctions. From Egs. (36) and (37)
it is possible to solve the coupling free energy stored in the junction. The result
is

F=C—Ejcos(Ag), (38)
where C is a constant, E; = 7lc/2. It is easily seen that an energy minimum
occurs when Agp = 0, i.e. the phases of the wavefunctions are the same on
both electrodes. The magnitude of a critical current tells us how strongly the

phases are coupled through the insulating barrier, usually called a ‘weak link’.
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It is dependent on the chosen material and the thickness of the layer. The most
common material for the insulating layer is aluminum oxide (AlOy) due to its

practicality.

Derivation of current-voltage characteristics of an SIS tunnel junction is here
done with second quantization notations and for that new quasiparticle oper-

ators are introduced. These are defined as follows:

t "
¢ =uy +oi

..l.
1 = Uy + vy

.l.

Cp = UrYy + 0, Yr

* 1
C;/ — ur,)/r + vr/-)/r.

Here y operators are creation- and annihilation operators of quasiparticles that
tunnel through the barrier, r and I indexes denote which side of the barrier
particle is tunneling. ¢ operators are the regular electron creation- and annihi-
lation operators. Hamiltonian for the problem has a form H=H, +HAy+HAr
where H; describes the quasiparticles on the left component of the junction,
Hg on the right component and Hr is the so called tunneling Hamiltonian. Hr
transfers quasiparticles between the electrodes. Tunneling Hamiltonian has a
form

Ar=) = (Tlrc;rcl = Tf;c;rcr> (40)

Lk,s

where T}, is a phenomenological tunneling matrix element and s spin. T}, gives
the probability of a tunneling between the electrodes and details of the insu-
lating barrier (material, thickness etc.) are absorbed to these matrix elements.
Substituting Eq. (39) to the tunneling Hamiltonian gives

Hr =Y T, (uruz’ﬁ T+ wory Y + oy + vrvz%’ﬁ) + herm. conj. (41)

Lr

Superconducting ground state is known to be citetinkham

o) =TT (wp+vees,cz, ) 19o) @)

-

=K1, K
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where |¢p) is the vacuum state with no particles present. We now denote the
ground state on left electode as |¢; ) and |¢pr) on the right. Excited states are de-
noted by |I) = 7|¢r) and |r) = 7 |¢r) respectively. Now the matrix element
options that lead to transfer of one Cooper pair across the junction are.

Tiputyuy <¢LJ|’Y:71|1/4’R> + Tjopo, <4’li|717:|l/¢1<> , AE=E —(E +eV)
(43)
can be identified to be a simple quasiparticle tunneling (qp),

Tyrurvy <Z/T!ﬂﬁ|4’L¢R> + Thom <l,f|7;r7ﬂ¢L4’R>/ AE =eV — (E + E)
(44)
as a Cooper pair breaking current (pb),

oy (GLpr|vevi|Lr) + Thuro (pLr|vivellr), AE = (E;+E;) —eV (45)

as a recombination current (r) and By applying
E _].
o\ o

(1) =1-F,

we can solve thermal average for all currents individually

and

27
e = 712|T1r|2f1(1 —fr) - 0(E; —E, —eV)
7

M = TP A~ fi)-6(E — B+ eV)

Lr
o (46)
=5 YT P =)A= fr) - 6(eV — (E; + Ey))

Lr

27
I === YT Pfifr - 0(E + Er —eV).
Lr

b

Here §(x) is the regular Dirac delta function. Notice that the coherence factors
u,uy,01,0, drop out due to electron-hole symmetry. Result for total quasiparti-
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cle current is then
ot =e(T]", g —TH,.) +e (pr - Fr)

= %Z|Tzr|2(fz — fr)6(E; —E- —eV) + ?Zmrﬁu — fi— £)0(E; + E, — V).

Lr Lr
NG >y >
NV VT

L I

(47)

This can be calculated by changing sums to integrals and adding related DOS
to the function. Superconducting density of states can be obtained as follows.
As there is one-to-one correspondence between 7y and c operators, we must
have

N(E)dE = N(§)dz. (48)

We are interested in energies ¢ (not to be confused with the coherence length)
that are just above Fermi energy, we can make approximate the normal state
density of states N(¢) to be constant, N(¢) = N(0). Recalling Eq. (7) this ap-
proximation leads to a very simple result

Er
E > A)
Ns(E) _ dé; d 2 E2—A2 (
=2k - — JR2_pA2={ VE (49)
~ VR
N(0)  dE; dE 0 (E < )

and same for quasiholes if %. From above formula it is easy to see that the
k

superconducting DOS diverges as E = A. Schematic of the DOS is shown in

Fig. 6

Now that we have superconducting DOS introduced, it is possible to calculate

the current through SIS-junction. Changing sums to integrals

¥~ [ dEE N ONR O NN (B )

Lr

we get
Is;s =h+1 (51)
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le —eV| le|
Vie—eV)2— A2 /e2 -

h = =T <m2/duf@—an—f@»

eV — €] €]
VeV —e)2 — A2 /e2 —

L= TN /®UG+W)ﬂ»

(52)
Noticing that 1 — f(—x) = f(x) we get
47te b c—eV €
fsis = =5 ITIN( )Z/deme—ew_f(g)] N l V)z| A2.\/2| | A2
00 €—e — A7 €= — A3
(53)
N(E)
N(0)
1 | Superconducting
1 i
i Normal
| E
| —
1 A

Figure 6: Schematics of the density of states of the normal metal and a super-
conductor. Blue line represents the normal metal DOS, and the orange curve
represents superconducting DOS. Superconducting DOS diverges at % and ap-
proaches normal metal DOS as the energy of the quasiparticles increase.
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Figure 7: I(V')-characteristics of an SIS-junction. Picture from [1].

I(V)-characteristics of an SIS-junction is shown in Fig. 7. This is a general
formula for junctions in which the weak-coupling approximation applies. If
SC materials are not the same, i.e. A} # A, an extra feature appears around

= |A1 — Az] when T > 0. This happens because the bias voltage provides
just enough energy for the quasi-particles in the peak of the density of states
at, for example A1, to tunnel to peak of DOS of A,. If A; = 0, then the solution

reduces to current for NISjunction

B
Ve-%

When studying the energy gap A, it is usually advisable to study an SIS-

47Te

Inis = | TN / de[f(e—eV) ~ fle)] —mae.  (54)

junction. This is due to the two distinct features observed in an SIS-junction
which makes it simple and more accurate method compared to studying an
NIS-junction, because in a real measurement setup T > 0 condition always
applies, causing the peak to appear in the measured I(V)-characteristics. This
way one can observe 2 features and we have two 2 unknown variables, lead-

ing to an easily solvable group of equations. This does not necessarily apply in
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one dimensional case, as will be seen in the upcoming chapters of this thesis.

4  Experiments

Objective of the experimental part is to fabricate the appropriate samples en-
abling experimental determination of the impact of quantum fluctuations on
the amplitude of the superconducting order parameter. SISjunctions were stud-
ied in this thesis. Each sample had the same basic structure, but many param-
eters were varied throughout the fabrication process to get the best possible
quality for the junctions. Each sample has a relatively wide (150-200nm de-
pending on sample) aluminum wire connecting the six smaller nanowires per-

pendicular to the wider wire, see Fig. 8.

= 1 D 24 Jul 2013
Tﬂzgm TR0k EHT=1000kV GunVacuum = 285e-010mBar  Signal A =InLens e s,

ag Range = 2

WD= 6mm Systern Vacuum = 8 44e-007 mBar  User Name = JANNE e I

Figure 8: Scanning Electron Microscope (SEM) image of the measured SIS-
structure. 6 titanium nanowires are overlapping the aluminum wire through
SIS-junctions.
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At crossings of these wires there is an SIS-junction. Notable differences in fab-
rication process were in material evaporation. Regular and shadow evapora-
tion methods were used. Another highly varied parameter was the insulating
layer: amount of aluminum, pressure and time used in oxidizing it. Goal was
to get highly ohmic junctions to get rid of Josephson current. Two samples
were fabricated with Al-AlO,-Ti junctions and in one sample there is 2 nm of
palladium evaporated on top of AlO;.

Mag= 75.00 K X
100nm

|—| Mag Range = 3 WD= &mm Systemn Vacuum = 4.16e-007 mBar  User Mame = JANNE e ! ’

Date :2 Aug 2013
Time :11:47.03

EHT=10.00 k¥ Gun Vacuum = 2 60e-010 mBar Signal A = InLens

Figure 9: SEM image of a typical Al-AlO,-Ti SISqunction. Horizontal wire is
the aluminium wire, and vertical wire is the titanium one.

41 Sample fabrication

Samples were fabricated using a conventional e-beam lithography method.

Samples were cleaned by reactive ion etching using low energetic oxygen plasma.
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Narrow mask down to sub 25 nm width were drawn and materials were de-
posited in ultra high vacuum (UHV) chamber at 10~ mbar pressure. Sev-
eral different types of structures were patterned to test which way would give
the best quality for the junctions. conventional shadow evaporation technique
gave satisfying quality for the nanowires and the insulating layer. Over 100 k(2
ohmic resistance was obtained, which is already enough to suppress undesired
Josephson current at low bias eV < A.

One can also use different angles to successfully evaporate metals to form a
junction. Downside in this method is that titanium has to be evaporated from
non-zero angle, which degrades the quality of the deposited material. This is
because in undercut of the photoresist layer there is always some residuals left
on the silicon surface which adds defects to the titanium layer. Another prob-
lem is that residual moisture is harder to clean in the undercut section. In the
worst case scenario, titanium will not exhibit a superconducting transition. On
the other hand, if there are no shadows to prevent aluminum deposition, in-
sulating layer is easier to fabricate since aluminum is evaporated everywhere
and oxidized, removing the chance of a metal-metal contact.
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4.2 Measurement setup
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Figure 10: Four-probe measurement setup used in the measurements.

All samples were measured in a He/*He dilution refrigerator with a stable
base temperature of T = 26 mK. Cryostat was placed in an electromagneti-
cally shielded room along with analog current and voltage amplifiers. RF fil-
tering and lock-in techniques were used in the measurements. All R(T)- and
I(V)-measurements were done by standard dc measurement methods with ac
modulation. 4-probe measurement setup was used in I(V)-measurements to
eliminate the contribution of probes. R(T)-measurements were done with the
(traditional) 2-probe setup. The contribution of the measuring probes (includ-

ing high resistive RF filters) was subtracted from the data afterwards.

4.3 Analysis
4.3.1 R(T)-measurements

Total of 6 junctions and 8 wires were studied in these measurements. R(T)-
measurements of the nanowires tell us directly about the T,(c) dependence.
Results are shown in Figs. 11,12,14. The transition at T, ~ 400 mK related to the
contribution of the thicker sections of the structure becoming superconducting
is removed. The R(T) data agrees well with earlier experiments on QPS effect

in titanium nanowires [10,11]
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Figure 11: R(T)-dependance of several nanowires of sample 72 with different
effective diameters ¢. Blue and cyan solid lines correspond to QPS fittings (Eq.

(34)).
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Figure 12: R(T)-dependence of several nanowires of sample 74 with different
effective diameters ¢. Blue and cyan solid lines correspond to QPS fittings (Eq.

(34)).
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In Figs. 11 and 12 the trend is clear. Thinner wires have higher resistance and
in both plots the thinnest wire does not show superconducting transition at
all. One should pay attention to the values of o and R in the first two samples.
In the first one the wire with effective diameter ¢ = 38 nm does not exhibit
a superconducting transition, but wires with ¢ = 41 nm and ¢ = 42 nm do
show at least some trend. In the second sample the wire with ¢ = 28 nm does
not have a transition while wires with ¢ = 30 nm and ¢ = 38 nm do. One
explanation for this could be the evaporation process, as the quality of the
titanium can differ in each evaporation. Evaporation rate and quality of the
vacuum highly affect the outcome of this process. If this is the case, it indicates
that in the first evaporation the material itself had a poor quality compared
to the second evaporation. This again can come from several reasons: material
itself, vacuum level, evaporation rate, how well the plasma cleaning succeeded
and how well the aluminum was oxidized. Parameters used in the evaporation

process are shown in Table 1.

Table 1: Parameters of the material deposition in the UHV chamber

Sample Material Thickness (nm) p (mbar) deposition rate (A>

s

72 Al 24 4.10°8 1.0
72 Ti 35 5.107? 0.8
74 Al 30 2.10°8 1.0
74 Ti 30 6-10~° 1.0

Values for both samples look quite similar, so the reason for this difference lies
somewhere else. Sadly, cleanliness of the silicon surface under the deposited
material cannot be analysed. Calculating the resistivity of each nanowire gives

information about the quality of the material. Results are shown in Table 2.

Clearly wires in sample 72 have a lot higher resistivities compared to sample 74
(and 82). Combining the information from Tables 1 and 2 several conclusions

can be made: the cleaning of the silicon surface was more successful in sample
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Table 2: Resistivities of nanowires
Sample Wire p(Q)-nm)

72 2 2796
72 4 2576
72 5 2463
74 2 1410
74 3 1255
74 5 923
82 2 1653
82 4 1411

74 than on 72, there was some moisture left on the surface of the silicon or the
grain-size is just smaller in sample 72 causing more scattering of electrons at
the boundaries of the grains. These are most probable reasons that could cause
the resistivity difference.

Effect of the QPS phenomenon related to the broadening of the R(T) super-
conducting transition in nanowires was also studied. Figures 11 and 12 show
QPS fittings for the two wires in each sample that exhibit a clear transition.

Formula used for fitting has a form similar to Eq. (34)

Rops(T)  (A(T)\ L-Shps g ps
e = (So) e o
where
_ 4. Rol gy
“ors = A Remy ST T-E °o
and 1 1.04
A(T) = 1.76 - A(0) (1 — %) i (%) 4 (57)

and (o is Pippard’s coherence length, | is the mean free path and A ~ 0.3 is
numerical constant. The parameters of the fits are shown in Table 3 and Eq. 57
is plotted in Fig. 13. There are several limitations to this model: It works only
in temperatures well below T, and the QPS rate should be small compared to
the energy gap |A|, i.e. 5(51135 < 1. QPS rate of each of the wires are listed in the
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Table 4.

5/3 A
sL approximation
Niodiﬁet! BCS a_cplroximatic}n
4/3 A, e - BCS-theory
Ay - X
2/3 A,
1/3 A,
0 . I L [ y
14T 12T, 34T T

Temperature

Figure 13: Different approximations for the temperature dependence of the
energy gap A. Modified BCS approximation Eq. (57 (blue dots) is used in QPS
tits (Eq. (34)). Fig. taken from [12]

Wire 5 of sample 74 (Fig.12) clearly has the best correspondence between the
theory [7] and experiment. This can be accounted to the fact that wire 5 has
highest value of Sgps, thus satisfying the condition Sé},s < 1 better than
the other wires. In practice this means that the wires with small relative resis-
tance drop exhibit a lot of phase slips which destroy superconductivity. This
again violates the assumption of QPS events being fairly rare, thus violating
the model applicability in those cases. For the same reason QPS fit was not

done for the wires which do not have a clear transition at all.
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Table 3: Parameters of QPS fits
Sample Wire T,(mK) A

72 2
72 4 300 0.378
72 5 350 0.330
74 2
74 3 300 0.249
74 5 250 0.470

Table 4: QPS rate in each of the fits in Figs. 11 and 12
Sample Wire Sgps(T =0)

72 2 3.16
72 4 2.54
72 5 2.67
74 2 3.06
74 3 2.90
74 5 4.63

R(T) measurements of sample 82 can be seen in Fig. 14. Addition of 2 nm
layer of palladium greatly decreases the critical current of the wires. Only one
transition is seen which indicates that the wider parts of the sample become
superconducting around T ~ 200 mK, while pure titanium has a T, ~ 400
mK. Nanowire itself presumably stays in the normal state. From these results
two things can be stated immediately. Firstly ohmic resistance of the nanowire
increased greatly due to the palladium layer. That was made to prevent tita-
nium of reacting with aluminum oxide, and seemingly it works in that part.
The second conclusion is that it lowers the T, of titanium drastically.
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Figure 14: R(T)-dependence of several nanowires of sample 82 with different
effective diameters. 2 nm layer of palladium is evaporated between AlO, and

Ti nanowire

4.3.2 I(V)-measurements

In this section we study I(V) and g—‘I,(V) dependencies of the SIS junctions
between Ti nanowires, and the aluminum (common) electrode (see Figs. 8

and 9). Notation “junction X” corresponds to a SIS junction between wire

X and the aluminum wire. Figure 15 shows the I(V)-characteristics of the
same SIS-junction at different temperatures. Corresponding differential con-
ductance $& (V) of the same junction is shown in Fig. 16. Wire 4 (¢ = 41nm)
exhibits a weak resistance drop in R(T) data. The I(V) and g—‘l/( V) character-
istics demonstrate the appearance of Josephson current, and a distinct feature

at point eV = |A 4 — Agi| = 0.05 mV. Results can be seen in Figs. 17 and 18.
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Figure 15: I(V)-characteristics of the SISjunction of sample 72, between wire 2
and the aluminum electrode, at various temperatures. No measurable Joseph-
son current is detected
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Figure 16: C‘Ii—‘l/ (V)-characteristics of the SISjunction of sample 72, between wire
2 and the aluminum electrode at various temperatures. No measurable Joseph-
son current is detected
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Figure 17: I(V)-characteristics of SIS-junction in sample 72, between wire 4
and the aluminum electrode at temperature T = 26 mK. Measurably high
Josephson current is detected at low biaseV =7 u V
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Figure 18: %(V)-characteristics of SISjunction in sample 72, between wire
4 and the aluminum electrode at temperature T = 26 mK. Measurably high
Josephson current is detected.
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Figure 19: I(V)-characteristics of an SIS-junction of sample 72, between wire 5
and the aluminum electrode. Notice the scale difference compared to Fig. 17

The same phenomenon happens in junction 5 (Fig. 19). Difference in the Joseph-

son current comes from the difference in the tunnel resistance (Rt = (g-{,) -
when V > %) of SISqunctions 2 and 3, Rt, ~ 83 k() < R, ~ 143 k().

SIS junctions of sample 74 exhibit similar behaviour as expected from the R(T)
data (Fig. 12). I(V)-characteristics of all three junctions as plotted in Fig. 20.
Wire 2 does not exhibit a superconducting R(T) transition and thicker wires
do (Fig. 20): wire 3 shows a really small Josephson current, 5 has a noticeable
one. Notice the significant feature at eV = |Ay — Ar| = 50 uV regime in
junction 5, which is much larger than the one observed in the wire 5 of sample

72 . Reason for this feature is not known.

For further analysis of I(V)-characteristics and especially fluctuations of A,
one should study and compare 3—{/ data. After initial measurements sample 72
was sputtered, i.e. the diameter of the nanowires was reduced by low-energetic
ion milling, and measured again. Results are plotted in Figs. 21, 22 and 23. Dif-

ferences in asymptotic values of %(V > (Ap + Ari)) in the same sample
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Figure 20: I(V)-characteristics of SIS-junctions of sample 74. Junctions are
formed between the aluminum electrode and the titanium wires 2, 3 and 5.

arise from the difference in the tunneling resistance Rt and the difference in
resistivity p between the samples (see Table 2). In sample 72 a large difference
in the width of the peak can be noticed in wire 2 compared to wires 4 and
5 which are of almost of the same shape. The rate of quantum fluctuations
exponentially increases as the diameter of the wire decreases. Comparison of
the sample 72 before and after sputtering supports this observation. The ex-
pectation value of the energy gap in titanium nanowires (Ar;) are determined
from the position of the |Ar; + A 4| peculiarity of the experimental I(V)’s. The
corresponding values of (Ar;) in different nanowires are plotted in Fig. 24
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Figure 21: %-eharacteristics of SIS-junctions of sample 72. Peak marks the
point of Ay + Ar; feature of the junction (denoted by arrow). It should be
noted that wire 2 did not exhibit a superconducting R(T) transition, so it is
possible that Ar; = 0 in that wire. Notice the broadening of the peak as ¢ is
decreased.
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Figure 22: g—{,—characteristics of SISqjunctions of the sample 72 after sputtering.
Peak marks the point of A 4; + A; feature of the junction (denoted by arrow).
Notice the broadening compared to Fig. 21 as diameter ¢ of the wires is de-
creased.
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Figure 23: %—charaeteristics of SIS-junctions of the sample 74. Peak marks the

point of A 4; + Ar; feature of the junction (denoted by arrow).

Same trends can be seen in sample 74 (Fig. 23). No visible change of the expec-
tation value of the energy gap (Ar;)is noticed when the diameter is reduced.

These values of (Ar;) in different nanowires are plotted in Fig. 24.

Best fit (A7) values are unusually high, whereas A 4; are somehow smaller
than the expected % ~ 190 uV. It should be noted that if it is assumed that
aluminum has a constant energy gap Ay (as is done in this thesis), it will
automatically imply that we have the finite energy gap for titanium (Ar;) in
all wires despite the fact that R(T)-curves do not show pronounced resistance
vs. temperature drop for the thinnest wires. This could possibly arise from
high amount of QPS events which destroy the superconductivity rapidly in
some parts of the wire, resulting in weak R(T) dependence, but the energy

gap is still finite. Fig. 24 does not show any clear relation between (Ar;) and
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Figure 24: Values of the average energy gap (Ar;) (solid symbols, left axis)
and the critical temperature T, (open symbols, right axis) for four different
nanowires with progressively reduced effective diameter (horizontal axis).
Values of the average energy gap (Ar;) were obtained through measuring
of the I(V)-dependencies of the tunnel SIS junctions, while the critical tem-
perature T, has been determined from R(T) measurements of individual
nanowires.

o, but from differential conductance plots (Figs. 21 and 23) one can notice that
broadening of Ar; correlates with the nanowire diameter o.

Another feature at eV = |Ay — Aqy| is not clearly pronounced in thinnest
wires. The observation is expected. Sharp feature ateV = |A4; = Ar;| would be
expected if in both materials the edge of the gap is very well defined. In prac-
tice, finite broadening of |A1 + A, | features typically is accounted for, so called,
Dynes broadening of the DOS (see next chapter) in both SC materials. In our
case this, relatively small effect, is present. However, much stronger broaden-
ing originates from non-single-valued order parameter in titanium nanowires
due to quantum fluctuations. This behaviour can also be seen from the simu-
lations (next chapter).

43



4.4 Numerical analysis

From the I(V)-characteristics of an S1IS,-junctions values of the gap parameter
A1 can be deduced. Starting point here is the thickest titanium wire with ef-
fective diameter ¢ = v/d - h = v/51 nm - 35 nm = 42 nm. Here, so called, bulk

approximation is made, assuming that Ar; and DOS of the titanium nanowire

are almost the same as in bulk. DOS used in numerical calculations has a form

€ +il’
o= v (mm) Y

which leads to tunnel current of an 51IS; junction

Gun [ e+eV+il e+l
Isis, = 2 [ delfle) ~ fle+eV)] R Y | L2
€ \/(e+eV+zF1)2—A% \/ €2+ il — A2
(59)

where I'; is a so called Dynes parameter, not to be confused with the attempt
rate mentioned in the theory. Parameter I' characterises the smearing of the
DOS. Finite values of T are typically associated with finite quasiparticle life-
times. Clearly this reduces to formula (53) if I'1 = I'; = 0. Using previous own
experimental data we start from g—i ~ 0.01 i =1,2. From the best fit, the final
value of Z—;}ZI = 0.04 were chosen for the further calculations. For the rest of
samples A 4; and I' 4; were kept as constants. Example simulations are shown
in Figs. 25 and 26

Now that other parameters are fixed, we can concentrate on Ar; which is the
subject of this study. The simulations are compared to measured data to find
best possible fits for the parameter A7;. As noticed before, value of Ar; varies
so it should be taken into account when simulating the ‘spread” of the value
of the energy gap Ar; = (Ari) & 6Ar;. For thicker nanowires fluctuations are
expected to be small or even negligible. Smaller the diameter, higher the fluc-
tuations and thus the smearing of the energy gap. Fig. 28 demonstrates how
simulated I(V) at eV =~ |Aj; — Ag;| smears out as the fluctuations of Ar; in-
crease. Simulations with different temperature T were also done, see Fig. 27
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Figure 25: Theoretical fits and experimental %—characteristics for sample 72,

junction 5. Simulation calculated with formula 59. Parameters used: TaL
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Figure 26: Theoretical fits and experimental Cﬁl—{,—charac’ceristics for sample 72,
junction 5. Distribution of Ar; centered around 55u V. For §A1; we used Gaus-

sian distribution shown in Fig. 29. Here g—f"l =0.2, <£?> =0.01
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Figure 27: Theoretical fits in different temperatures T and experimental %—
characteristics for sample 72, junction 5.

Similar smearing can be observed at eV = |A4; — Ar;| peak. However, this
feature is much less dependent on wire diameter ¢. Similar Gaussian distribu-
tions (see Fig.29) were used here to obtain best possible correspondence with
the data. Difference between the fits using the least and the most broadened
energy gap is small at eV = |A4 — Ar;| compared to the eV = |Ay + Ay
tfeature, but definitely visible. Larger broadening of energy gap has better cor-

respondence with measured data.
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Figure 28: Simulated I(V) dependence assuming distribution of % centered
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Figure 29: Model distributions of Ar; in a nanowire. Distributions are centered
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4.5 Summary

Goal of this thesis is to study the impact of quantum fluctuations of the energy
gap A in titanium nanowires. This phenomenon is assumed to rise from quan-
tum fluctuations, also contributing to fluctuations of the phase of the com-
plex order parameter A = |Ale'?. Three different samples with multiple tita-
nium nanowires were studied. R(T)-, I(V)- and {.-data were measured for
all nanowires and S11S;-junctions. Two of the samples, 72 and 74, have three
measurable nanowires each and in both samples the thinnest wire does not
exhibit R(T) superconducting transition. Superconducting wires do show cor-
relation between diameter of the wire ¢ and critical temperature T.. Lack of
pronounced R(T) transition in thinnest wires is related to quantum phase slips
(QPS), which destroy the superconductivity in one dimensional channels. QPS
effect on transition was studied and results can be seen in Figs. 11 and 12. Good
correspondence was obtained especially on the thicker wires where the appli-
cability of the model [7] is mostly valid. In sample 82 there is a few nanometer
layer of palladium deposited on top of aluminum oxide (under titanium). In
this sample nanowires do not exhibit superconducting transition, but wider

parts of the structure do.

I(V)-dependencies were measured and from those the value of the energy
gap Ar; was deduced. Results show that in quasi-one dimensional titanium
nanowires the value of Ar; is not longer a constant, but it’s value has a statis-
tical distribution which is a consequence of QFs. This has several impacts on
I(V)-characteristics of an S11S,-junction: the feature around point |A 4; + Ay| is
not a sharp peak anymore, but it broadens due to smearing of the DOS edge.
Because of this, the feature can disappear almost completely in the thinnest
wires (Fig. 20). Another possibility is that Dynes parameter I' also varies as a
function of ¢, but that has not been studied in this thesis. The origin of the
Dynes parameter is the finite quasiparticle lifetime, we assumed that this ef-
tect should be not size-dependent, unless the smallest dimension of the sam-
ple starts to be comparable with the grain size: ~ 2 nm in titanium films and
nanowires studied in this work. Mean values of (A7;) were significantly dif-

ferent from what was expected: typically in titanium nanostructures (Ar;) =
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(50 — 70) eV, but in our samples the best-fit values here are around 45 1V, as
seen in Figs. 26,28 and 29. In earlier measurements values of (Ar;) were with
in the expected range (Fig. 30). Reason for the difference is not known, and
further study is needed for that.
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Figure 30: c‘f—{,-characteristics of SIS-junctions of the sample 31.

Simulations were done by using formula (59) to interpret the effects of spread-
ing of the energy gap of titanium Ap; = (Ar;) &+ dA7;. Thickest wire was se-
lected first to fix other parameters than Ar;. After that Ar; was varied through
large energy range and statistical distributions to simulate quantum fluctua-
tions of the energy gap. Simulations show that QFs can smear out the char-
acteristic feature of S;IS;-junction, the sharp rise of current Ig s, at eV =
|A 41 + Ari|. Fluctuations cause the free energy states at eV = |Ay — Apil to
spread to a wide energy range (as A; is no longer a constant), thus giving small
current at that energy range. This is demonstrated in Fig. 28. Good quantita-
tive correspondence with measured data and simulations was not obtained.
Qualitatively it can be stated that a statistically distributed Ar; gives better re-
sults than the single valued Ar;. Simulated peak at eV = |A4; 4+ Ar;| has too
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high values compared to the experiment. More study is needed for this. Pre-
sumably size-dependent variation of the Dynes parameter I'r; should be also

taken into consideration.

50



Publications

T. Rantala, K. Yu. Arutyunov “Quantum Fluctuations of the supercon-
ducting energy gap in 1D superconductors”, poster at Physics Days -
2012, Helsinki, March 2012.

T. Rantala, J. S. Lehtinen, K. Yu. Arutyunov, “Quantum Fluctuations of

the superconducting energy gap in 1D superconductors”, poster at the
Eighth International Conference in School format on Vortex Matter in
Nanostructured Supercondcutors VORTEX-III, Rhodes-Greece, 21-26 Septem-
ber, 2013, abstract booklet p. 45.

J. S. Lehtinen, T. Rantala, K. Yu. Arutyunov, “Quantum fluctuations in
1D supercondcutors: physics and applications”, oral talk at the Eighth
International Conference in School format on Vortex Matter in Nanos-
tructured Supercondcutors VORTEX-III, Rhodes-Greece, 21-26 Septem-
ber, 2013, abstract booklet p. 169.

T. Rantala, K. Yu. Arutyunov, “Quantum Fluctuations of the supercon-
ducting energy gap in 1D superconductors”, poster at NanoScience days,
23-240ctober 2013.

J. S. Lehtinen, T. Rantala and K. Yu. Arutyunov, Insulating State of a
Quasi-1-Dimensional Superconductor, Submitted to PRL, October 2013

51



References

[1] Michael Tinkham. Introduction to Superconductivity: Second edition.
Dover Books, 2004.

[2] V.L.Ginzburg and L. D. Landau. On the theory of superconductivity. Zh.
Eksperim. i. Teor. Fiz., 20:1064-1082, 1950.

[3] L. P. Gor’kov. Microscopic derivation of the ginzburg-landau equation in
the theory of superconductivity. Zh. Eksperim. i. Teor. Fiz., 9:1364-1367,
1959.

[4] A. M. Hriscu. PhD Thesis: Theoretical proposals of quantum phase-slip
devices. Oct 2012.

[5] J. S. Langer and Vinay Ambegaokar. Intrinsic resistive transition in nar-
row superconducting channels. Phys. Rev., 164:498-510, Dec 1967.

[6] D. E. McCumber and B. I. Halperin. Time scale of intrinsic resistive fluc-
tuations in thin superconducting wires. Phys. Rev. B, 1:1054-1070, Feb
1970.

[7] K. Yu. Arutyunov, A. D. Zaikin, and Golubev D. S. Superconductivity in
one dimension. Physics Reports, 464:1-70, Jul 2008.

[8] B. D. Josephson. Possible new effects in superconductive tunnelling.
Phys. Lett., 1:251-253, Jul 1962.

[9] B. D. Josephson. Supercurrents through barriers. Adv. Phys., 14:419-451,
1965.

[10] J.S. Lehtinen, T. Sajavaara, K. Yu. Arutyunov, M. Yu. Presnjakov, and A. L.
Vasiliev. Evidence of quantum phase slip effect in titanium nanowires.
Phys. Rev. B, 85:094508, Mar 2012.

[11] J. S. Lehtinen and K. Yu. Arutyunov. The quantum phase slip phe-
nomenon in superconducting nanowires with a low-ohmic environment.
Supercond. Sci. Technol., 25:124007, Nov 2012.

[12] J. Lehtinen. MsC Thesis: Experimental study of quantum fluctuations in

titanium nanowires in highly resistive environment. Dec 2009.

52



