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ABSTRACT

Paavolainen, Lassi
Algorithms and Software for Biological Multiscale Image Analysis
Jyväskylä: University of Jyväskylä, 2013, 112 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 176)
ISBN 978-951-39-5494-9 (nid.)
ISBN 978-951-39-5495-6 (PDF)
Finnish summary
Diss.

Microscopy imaging is essential for studying dynamic cellular processes, viruses
and the organization ofmacromolecular complexes in nanometer andmicrometer-
scale. Recent developments in imaging techniques have increased the complexity
of the imaging data in biological experiment. This has created a need for software
and automatic image analysis methods that function in high-throughput fash-
ion. In this work, an open-source BioImageXD software for bioimage processing,
analysis and visualization is presented. The software was shown to fulfill general
criteria for scientific image analysis software. Two novel image analysis methods
were developed to fluorescence microscopy imaging data. A feature-based par-
ticle tracking method was developed and applied in the α2β1 integrin clustering
study. It was shown to give more accurate results in highly clustering dataset
than a state-of-the-art single-particle trackingmethod. In addition, a novel object-
based association method used to analyze interconnection of particles was devel-
oped. The studies showed the association method to be robust with different as-
sociation ratios, and to give more accurate results than other tested object-based
and pixelwise methods. Two new methods for structural studies were devel-
oped. Effects of the missing wedge in electron tomography was studied. Also,
a new reconstruction method for biological limited-angle electron tomography
was tested. The method improved the resolution and reduced the artifacts, as
compared to the traditional reconstruction methods used in electron tomogra-
phy. In another structural study, a novel framework for segmenting particles in
extremely noisy cryo-electron microscopy imaging data was developed to reduce
manual workload and to improve accuracy. The method showed high recall and
low false detection rate in the study of segmenting Simian virus 40 particles.

Keywords: BioImageXD, bioimage analysis, bioimage informatics, single-particle
tracking, colocalization, single-particle reconstruction, electron tomog-
raphy, segmentation, simulated data, method validation, fluorescence
microscopy, electron microscopy
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1 INTRODUCTION

The size scale of biological populations, organisms and structures is huge. Macro-
scopic imaging modalities are used to study macroscopic objects, such as giant
redwood forests, animals and human organs, in kilometer to millimeter-scale.
Other imaging modalities are used to study microscopic objects, such as cells
and viruses, visible only with microscopy imaging methods in micrometer and
nanometer-scale. The scale in microscopy is a million-fold from structural stud-
ies measured in Ångströms (1Å = 0.1 nm) to cell populations of hundreds of mi-
crometers. In this work, research on algorithms and software for biological im-
age analysis is done in multiple microscopic scales, from tens of micrometers to
Ångströms, in cellular biology and in structural biology.

Imaging is an essential part of modern molecular and cellular biology re-
search. Imaging offers great tools to understand dynamic cellular processes (Eils
and Athale, 2003), such as material uptake and cell signaling, as well as overall
organization of macromolecular structures in cells. Live cellular imaging enables
research on the mechanisms of cellular functions (Stephens and Allan, 2003). This
knowledge can be used in a wide variety of medical applications such as devel-
opment of new drugs and treatments (Kitano, 2002).

Recent developments on microscopy imaging techniques, computer tech-
nology, and image analysis methods have turned bioimaging from qualitative to
quantitative science. Quantitative bioimaging is an essential part of modern cel-
lular biology research. However, turning images to quantitative measures still
holds many challenges. Modern microscopes produce vast amounts of multi-
dimensional image data, which is unfeasible for a human observer to analyze.
Need for automatic and robust image analysis methods is clear in all areas of
bioimaging, and especially in high-throughput applications (Pepperkok and El-
lenberg, 2006; Zhou and Wong, 2006). Lack of a priori information of imaged cel-
lular structure and large variance between images separate cell biological image
analysis from many macroscale and medical image analysis applications. Low
image quality and the fact that the resolution of diffraction-limited optical micro-
scope is much worse than the size of many imaged particles make applications
such as localization and tracking of particles challenging.
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Bioimage informatics software has long been a limiting factor in quantita-
tive bioimaging (Wilt et al., 2009). Over the years, analysis methods have been
described in methodological sections of biological publications without release
of the method implementation (Cardona and Tomancak, 2012). Reasons for this
have been several. Often closed commercial products have been used or repro-
ducibility of the image analysis results have not been considered as important as
reproducibility of the biological experiment described thoroughly. Recently, atti-
tude in the field has been changing towards more open and reproducible imaging
also in the requirements of many top journals (Ince et al., 2012). Development of
open-source general-purpose bioimage informatics software (Eliceiri et al., 2012)
readily able to solve many bioimage analyses tasks have had its positive impact
on change towards reproducible quantitative bioimaging.

1.1 Objectives of the research

The first goal is to develop a general-purpose bioimage informatics software for
cellular and molecular biology research. The main requirements for the software
are scientific accuracy, openness and applicability to a wide range of multidi-
mensional bioimaging applications in different scales. The aim is that the soft-
ware offers a framework to include new image analysis methods usable in high-
throughput fashion. Also, the software is used in the research of all other objec-
tives.

The second objective is to develop a particle tracking method, as a solu-
tion to the problem of tracking clustering particles. The main application of the
method is on tracking clustering α2β1 integrin clusters in multidimensional flu-
orescence microscopy image time series. For the application, the method has
to enable tracking of clustering particles. In addition, the aim is to develop a
general-purpose particle tracking algorithm that can be configured for the needs
of the application.

The third goal is to study methods to analyze interconnection between par-
ticles in different imaging channels in fluorescence microscopy image data. Cur-
rently, no commonly used method exist to analyze particle association. Colocal-
ization methods (Manders et al., 1992, 1993) are designed to analyze direct signal
overlap. However, these methods are also used to analyze interaction between
particles (Comeau et al., 2006). The aim is also to study the applicability of colo-
calization methods for association analysis.

The fourth objective is to study the effects of the missing wedge in widely
used electron tomography (ET) methods and in a newmethod applied to ET. The
aim is to develop ET reconstruction method to minimize the effects of the missing
wedge.

The fifth objective is to develop a reference-free automatic segmentation
method for particle selection problem in single-particle reconstruction (SPR). The
aim of the method is to minimize false particle detections to make labor-intensive
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and biasedmanual post-selection pruning of the particles unnecessary. Themethod
should be applicable for a wide range of particles.

1.2 Structure of the thesis

In this work, software and algorithms for multiscale bioimage analysis are pre-
sented. The structure of the thesis is as follows. After introduction in Chapter
1, basics of fluorescence and electron microscopy imaging techniques in cellular
biology are presented in Chapter 2. Two most common fluorescence microscopy
techniques, widefield microscopy and confocal microscopy, are introduced and
their strengths and weaknesses are compared in three-dimensional (3D) and live
optical imaging. Next, a two-dimensional (2D) transmission electron microscopy
(TEM) is described, followed by ET, an application of TEM to high resolution 3D
imaging.

Chapter 3 elaborates on quantitative bioimage analysis with focus on au-
tomatic methods for fluorescence microscopy. First, description of image seg-
mentation, which has a considerable role in many image analysis methods, is
given. Segmentation methods for different scales from sub-resolution particles to
whole cells are reviewed. The section about segmentation is concluded in Sub-
section 3.1.2 with descriptions of segmentation methods used in Publications PI–
PIII. Next, widely used colocalization analysis is presented. Some weaknesses of
existing pixelwise methods are described, followed by introduction and the main
results of object-based particle association method of Publication PIII also usable
for colocalization analysis is presented in Subsection 3.2.4. Next, the idea of track-
ing particles in live specimen is explainedwith literature review on single-particle
tracking (SPT). Lastly, a general feature-based tracking method with the main re-
sults of Publication PII is presented in Subsection 3.3.3. Chapter 3 is concluded
with discussion on method validation, which is an important part of automatic
image analysis.

A SPR technique used to solve structures of macromolecular complexes is
introduced in Chapter 4. Manual or semi-automatic particle selection is the most
labor-intensive part of SPR. Next, published methods for particle selection are
reviewed. The chapter ends with a presentation of novel particle selection frame-
work and its application to simulated and experimental data of Simian virus 40
particles.

Chapter 5 discusses bioimage informatics software which has been the lim-
iting factor in bioimage analysis and visualization. Common requirements and
challenges of bioimage informatics software are discussed. An overview of BioIm-
ageXD software published in Publication PI is presented in Section 5.1 with a
design criteria for BioImageXD development. The chapter is concluded with
a review on research articles citing BioImageXD and a brief overview of other
bioimage informatics software. Finally, the thesis is concluded in Chapter 6 with
conclusions and consideration of future work.
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1.3 Main contribution

I was responsible for the development of BioImageXD software presented in Pub-
lication PI. Since the beginning of year 2009, I have been the lead software engi-
neer in the BioImageXD project being responsible for all software engineering
activities. I developed new algorithms used in Publication PI, and together with
Pasi Kankaanpää, defined analysis protocols and did most of the analyses. I cre-
ated simulated data used to validate analysis methods in the publication. I did
half of the software comparisons. I took part on designing the publication, and
wrote the sections in supplementary materials and methods about the BioIm-
ageXD development, simulated data, and analysis methods.

I was responsible for designing the study in Publication PII. I wrote the arti-
cle and was the main developer of the method. I also created the simulated data
used to validate the method, and did analysis for simulated and experimental
data.

I took part on designing the study in Publication PIII. I designed and created
simulated data used to validate the method. I was responsible for designing and
doing colocalization analyses with pixelwise methods. I also extracted the point-
sets from the experimental data used to analyze association with the presented
and compared methods. In addition, I took part on writing the sections of my
work in the manuscript.

I took part on designing the study in Publication PIV. I wrote themanuscript,
except the parts about the developed and compared tomography methods. I de-
signed and created simulated data to test the methods. I did all analyses from the
reconstructed volumes.

In addition to the Publications PI–PIV, a novel method for particle selection
in SPR is presented with the results in Section 4.3. I was responsible for designing
the study and developed the method. I also created all simulated data to validate
the method, and did all analyses.

In addition to the publications included in this work, the author has used
the presented methods and software in following publications: Björkbom et al.
(2011); Rintanen et al. (2012); Wu et al. (2013); Kaakinen et al. (2014). These
methods and software were also presented by the author at the international
conferences of Annual Conference of the Nordic Microscopy Society (Copen-
hagen, Denmark, 2013) and Annual Conference of the Nordic Microscopy So-
ciety (Bergen, Norway, 2012), 9th IEEE International Symposium on Biomedical
Imaging (Barcelona, Spain, 2012), Annual Conference of the Nordic Microscopy
Society (Oulu, Finland, 2011), 3rd Annual Conference of the Nordic Network on
Imaging in Biology and Medicine (Gothenburg, 2010), Annual Conference of the
Nordic Microscopy Society (Reykjavik, Iceland, 2009), 8th European Light Mi-
croscopy Initiative meeting (Davos, Switzerland, 2008), and at the national meet-
ings of Virus-Cell Interactions meeting (Konnevesi, 2012) and Workshop on In-
dustrial Image Processing (Jyväskylä, 2008), and at the seminars in the Depart-
ment of Biological and Environmental Science (University of Jyväskylä, Finland,
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2009–2012) and the Department of Mathematical Information Technology (Uni-
versity of Jyväskylä, Finland, 2011–2012).



2 MICROSCOPY IMAGING TECHNIQUES AND
3-DIMENSIONAL RECONSTRUCTION

People tend to think of a basic optical transmission microscope with bright field
illumination when they hear the word microscope. Even though the principles of
optical microscope used in modern cell biological research are similar, the equip-
ment is farmore complexwith advanced illumination techniques, optics and elec-
tronics. Instead of visible light, the specimen can also be interacted with electron
beam, with other electromagnetic radiation such as X-rays, or with a probe. Alto-
gether tens of imaging methods are available that all produce images in different
contrast and resolution. All methods have their strengths and weaknesses, which
are taken into account while considering the best possible, and available, imaging
method for an application. In this work, optical, mainly fluorescence, and elec-
tron microscopy are used. These are the most used imaging modalities in cellular
biology.

Cell biological samples are imaged either live or after fixation. In live imag-
ing, cells are kept alive during imaging while damage to the sample is prevented
by all means possible. Fixation means that the sample is killed by stopping its
metabolism while preserving microstructures larger than the size defined by the
fixation process (Bacallao et al., 2006). Fixation can be done in many ways, but
careful consideration of the method is needed as a wrong method can create arti-
facts in interesting parts of the sample.

Image formation in microscope is a convolution of the object function f (x),
defining the imaged specimen, and the point spread function (PSF) h(x) of the
microscope. Imaging of each point-like subvolume of the specimen can be mod-
eled as (van Kempen et al., 1997; Verveer et al., 1999):

g(x) = N
(∫

X
h(x− χ) f (χ)dχ

)
, (1)

where x ∈ X is a coordinate in n-dimensional space X, g(x) is the formed image
and N(·) the noise function. An ideal imaging system forms an infinitely small
symmetrical spot in the image from an infinitely small symmetrical spot in the
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specimen. In practice, the spot is blurred by the PSF of the imaging device, and
final image is impacted by the specimen and different sources of noise.

In this chapter, two common imaging modalities, optical fluorescence mi-
croscopy and TEM, are introduced. First, both 2D and 3D fluorescencemicroscopy
methods for studying fixed and live cellular structures and events (Yuste, 2005)
are presented. Second, 2D TEM for studying fixed cellular structures in greater
detail is presented. Third, introduction to ET (Lučić et al., 2005) for reconstructing
a 3D volume frommany TEM images is given, followed by preliminary results of
Publication PIV.

2.1 Fluorescence microscopy

Fluorescence microscopy is a general term used for optical (light) microscopy
methods where fluorophores are used to selectively mark interesting components
for imaging. In cell biology, fluorophores are used as contrast agents to practically
transparent cells and subcellular structures, and to make visible particles smaller
than the resolution of the optical microscope (Vonesch et al., 2006). Nowadays,
fluorescence microscopy is a fundamental part of modern biomedical research.

Physically, a fluorophore is a molecule that can absorb a photon of excitation
light and almost instantly emits a photon (in nanoseconds) (Johnson and Spence,
2010). The event is generated as the particle raises into higher energy level by
excitation. When the particle returns to the initial lower energy level, it emits a
photon. During this process, energy is usually lost as heat vibration. According
to Planck’s relation E = hc/λ, where h is Planck constant, c and λ are the speed
and the wavelength of light in vacuum (Lichtman and Conchello, 2005), emis-
sion wavelength is longer than excitation wavelength when energy is lost in fluo-
rophore. Each fluorophore has characteristic excitation and emission spectra that
defines the range of usable wavelengths to illuminate the sample and to detect
the emission signal from fluorophores. Typically, an excitation light wavelength
is selected to be the peak of excitation spectrum and wavelengths close to emis-
sion spectrum peak are collected to form an image. The difference in excitation
and emission spectra peaks, called Stokes shift, makes simultaneous illumination
and imaging of fluorophores possible. Even though excitation and emission spec-
tra overlap, excitation light can be blocked from reaching the detector by correct
selection of optics.

Common fluorophores used in cell biology are proteins, such as the fa-
mous green fluorescence protein (Chalfie et al., 1994), used in several ways to
highlight specific subcellular components. Often, a specific target is labeled di-
rectly or by using immunofluorescence (Buchwalow and Böcker, 2010). In im-
munofluorescence, either a primary antibody of target protein is labeled with a
fluorophore or the primary antibody is conjugated with a secondary antibody
that is labeled (Buchwalow and Böcker, 2010). With these methods, subcellular
structures of interest, such as nucleic acids, cell cytoplasm or integrin proteins,



22

can be selectively labeled for imaging.
It is common to label more than a single target in cell. For instance, two dif-

ferent markers to label endosomes and viruses are used in (Rintanen et al., 2012),
and two different target proteins and the cell cytoplasm are labeled in Publica-
tion PI. Basically, it is possible to use as many different fluorophores as needed.
However, in practice, rarely more than three or four different fluorophores are
used in fluorescence microscopy experiment for several reasons. First, fluores-
cent microscope components, explained in Subsections 2.1.1 and 2.1.2, have re-
strictions on the number of different excitation wavelengths used in experiment.
Second, imaging multiple fluorophores increases imaging time, as each channel
needs to be imaged separately, which can be especially harmful in live speci-
men imaging (Stephens and Allan, 2003). Third, different fluorophores can and
usually have overlapping excitation and emission spectra that may cause over-
lapping in image channels. Imaging two fluorophores with distinct emission
spectra is usually a simple task, unless only specific fluorophores can be used
in the experiment. When using three or more fluorophores in a specimen, careful
selection of imaging components and fluorophores is needed to avoid spectral
overlapping. Often, there is at least some emission spectra overlap that can be
minimized with linear unmixing methods (Tsurui et al., 2000).

Both live and fixed samples can be imaged with fluorescence microscopy. In
live experiment, preventing photobleaching by all means possible is an important
aspect (Stephens and Allan, 2003). Photobleaching of the dyes causes damage to
the sample and fades emission signal, which is undesirable for image analysis.
Typically, fixation is done chemically with formaldehyde or glutaraldehyde (Ba-
callao et al., 2006). Fixed samples can also be used to study dynamic processes
by statistical analyses. This is achieved by fixing samples at different time points
from the start of the biological process.

Next, a traditional fluorescence microscopy technique, widefield microscopy,
and more advanced confocal laser scanning microscopy (CLSM) are presented. Both
methods can be used to image a 3D stack of optical sections of sample. However,
computational methods are needed for signal restoration inwidefieldmicroscopy
to improve image quality.

2.1.1 Widefield microscopy

A diagram of basic components of widefield microscope is presented in Figure 1
A. Different arc lamps and light-emitting diodes (LED) are typically used as light
sources in widefield microscopes. The excitation filter is used to select excita-
tion wavelengths from usually broad spectrum of wavelengths excited by light
source. Next, a dichroic mirror is used to reflect excitation light to the objective.
Dichroic mirrors are filters that pass some range of wavelengths while reflecting
others. The objective is the last component, before the sample, used to define the
magnification and resolution (Abramowitz et al., 2002). After some of the excita-
tion light is absorbed by the fluorophores in the specimen, the fluorophores emit
photons with a longer wavelength. Some emitted light goes through the objective
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FIGURE 1 Diagram of the basic components of widefield (A) and confocal (B) micro-
scopes. A. (1) light source, (2) excitation filter, (3) dichroic mirror, (4) ob-
jective, (5) specimen, (6) emission (barrier) filter, (7) detector (typically CCD
camera). B. (1) light source (laser), (2) light source pinhole, (3) excitation
filter, (4) dichroic mirror, (5) objective, (6) specimen, (7) focal plane, (8) emis-
sion (barrier) filter, (9) detector pinhole, (10) detector (photomultiplier tube).
Edited from (Conchello and Lichtman, 2005; Stephens and Allan, 2003)

and passes the dichroic mirror. Finally, an emission filter is used to block any ex-
citation light that has passed the dichroic mirror before detecting the fluorophore
emission signal with a detector, usually a CCD camera (Lichtman and Conchello,
2005).

Resolution, the shortest distance between two distinguishable points, of
a diffraction-limited microscope is defined by the objective, the wavelength of
emission light λ (in fluorescence microscopy, excitation in general), and refrac-
tive index of immersion medium (Vonesch et al., 2006). Lateral resolution Rl is
defined by Rayleigh limit as the radius of first airy disk formed in image of a
point-like object (Inoué, 2006; Wallace et al., 2001):

Rl =
0.61λ

NA
(2)

where NA is the numerical aperture of the objective. The diffraction pattern
of a point source in axial direction is not disk shaped, but instead hourglass
shaped. Axial resolution is thus defined as the distance from maximum inten-
sity of diffraction pattern to the first minimum intensity to axial direction (Inoué,
2006; Wallace et al., 2001):

Ra =
2λη

(NA)2
(3)

where η is the refractive index of immersion medium.
Every objective has characteristic numerical aperture NA = ηsinθ, where

θ is half of the angular aperture of the objective (Abramowitz et al., 2002). As
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sinθ cannot be larger than 1.0, and is less in practice, the refractive index of the
imaging medium defines the maximum numerical aperture. The numerical aper-
ture of a dry (air) objective is less than 1.0. However, common oil immersion
objectives (refractive index approximately 1.515) can have numerical aperture of
1.4 (Abramowitz et al., 2002).

With common nucleic acid stain DAPI, which has its emission spectra peak
in blue color wavelength (λ = 455 nm), and a high numerical aperture objective
(NA = 1.4), themaximum theoretical lateral resolution is Rl = 0.61 · 455 nm/1.4 ≈
200 nm, and the axial resolution is Ra = 2 · 455 nm · 1.515/(1.4)2 ≈ 700 nm. In
practice, the depth of a sample also has an effect on resolution as scattering of
photons is directly proportional to the depth of the sample (Ntziachristos, 2010).
Resolution of widefieldmicroscopy can be increasedwith special superresolution
methods such as structured illumination microscopy (Gustafsson, 2000). As su-
perresolution widefield microscopy techniques are not yet widely available and
as they are less easily applicable than traditional methods, they were not used in
this work. Interested readers are pointed to the review by Huang et al. (2009).

Physical pixel and voxel size of image is set using the Nyquist sampling
theorem. It specifies that at least two samples must be taken for each resolu-
tion unit (Bolte and Cordelières, 2006; Wallace et al., 2001) to prevent undersam-
pling. In principle, the sampling rate can be anything larger than the Nyquist
sampling rate. Typically, factor 2.3 is used in microscopy (Bolte and Cordelières,
2006). Oversampling more than that will increase the size of the data with-
out adding any information. Using factor 2.3, suitable voxel dimensions for
previous theoretical resolution example are dx,y = 200 nm/2.3 ≈ 87 nm and
dz = 700 nm/2.3 ≈ 304 nm. From Equations 2 and 3, and previously presented
voxel dimensions, it can be seen that voxel is anisotropic in optical microscopy.
Depending on the objective and used fluorophores, axial resolution is approxi-
mately 3.5–4 times worse than lateral resolution.

Widefield microscopy imaging is fast since the whole 3D sample is illumi-
nated and the 2D image of a specified focus level is captured at one go. Also,
imaging multiple channels is fast, as an automatic switch of excitation wave-
length takes only milliseconds. The biggest restriction on image acquisition time
for single channel imaging is the frame rate of the detector. Common CCD cam-
eras used in widefield microscopy can image around 10 to 15 frames per second
with the maximum field of view. However, the frame rate can be increased when
imaging a smaller region of interest. For this reason, widefield microscopy is of-
ten preferred over CLSM, presented in Subsection 2.1.2, in live cell imaging of
rapid processes (Stephens and Allan, 2003).

While imaging in widefield microscope, a single focus level in the sample is
selected. As widefield microscope does not have any means to block out-of-focus
light, typically as much as 90% of the signal in the image is blurry out-of-focus
light (Conchello and Lichtman, 2005). As a result of this inherently 2D way to
form an image of the whole sample, widefield microscopy is at its best for thin
specimen (30 μm) (Swedlow et al., 2002). Widefield microscopy can be used also
for 3D imaging by taking images with different focus levels through the sample.
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This kind of volume is practically unusable as such because of the out-of-focus
light in every slice. However, computational methods can be used to restore or
remove the out-of-focus blur (Sarder and Nehorai, 2006).

Deconvolution is a computational method to solve the inverse of f (x) from
Equation 1. In theory, the deconvolution method removes, from the image, blur
and out-of-focus signal caused by the microscope PSF as well as noise generated
during imaging. In practice, solving f (x) is an ill-posed problem (van Kempen et
al., 1997) since the noise function is not known, and the PSF can only be approx-
imated. In Equation 1, g(x) is known, and traditional deconvolution methods
expect that also the PSF h(x) is known. PSF convolution kernel for deconvolu-
tion can be generated using a theoretical model or an experimental measurement.
Theoretical diffraction-based models for PSF computations are presented by Gib-
son and Lanni (1991); Sarder and Nehorai (2006). As no optical system is perfect,
deconvolution with the theoretical PSF model can fail badly. To model the PSF
of a specific microscope, sub-diffraction beads can be imaged. From this image,
beads are extracted and averaged to form the PSF model. It is important to image
beads with same microscope settings as original specimen to get as good model
of PSF of real experiment as possible (McNally et al., 1999), as the beads usu-
ally cannot be included in the actual specimen. Other issue with both theoretical
and imaged PSF is that imaging conditions are not identical everywhere in the
sample. To solve this issue, and to remove the need for a PSF model, blind decon-
volution methods have been developed. These methods estimate also PSF during
the deconvolution process (McNally et al., 1999). Both, a theoretically computed
and an experimentally measured PSF are shown in Figure 2.

Deconvolution can be applied to a 2D single-focus level image or stack of
images of different focus levels. It is to be noted that the risk of creating arti-
facts with deconvolution methods exists, which is avoidable with true optical 3D
microscopy. Reviews and comparisons of deconvolution methods are presented
in (McNally et al., 1999; Verveer et al., 1999; Sarder and Nehorai, 2006). Figure 2
presents an example image from a widefield microscope before and after decon-
volution.

2.1.2 Confocal laser scanning microscopy

Many components of the confocal laser scanning microscope, presented in Fig-
ure 1 B, are used for the same purpose as in the widefield microscope. The ex-
citation filter, dichroic mirror, objective and emission filter, respectively, have the
same functionality as explained in Subsection 2.1.1. However, there are some
fundamental differences between confocal and widefield microscopes. The main
difference is that the confocal microscope has a detector pinhole to block most of
out-of-focus and scattered light (Conchello and Lichtman, 2005). With the aid of
this pinhole, the confocal microscope is used to image optical sections (slices) of
the specimen to create a 3D volume without the need of a deconvolution method.
Additionally, most confocal scanning microscopes exploit laser light sources to
get point-like coherent excitation light. A photomultiplier tube is mostly used as
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FIGURE 2 Examples of widefield (A), deconvolved widefield (B), and confocal images
(C) with experimental widefield (D) and confocal (E), and theoretical PSF
(F). The original widefield image (A) was deconvolved (B) with the Huy-
gens software (Scientific Volume Imaging) using measured PSF (D). A slice
from the confocal image stack (C) does not suffer from out-of-focus signal,
as widefield image (A). PSF images (D, E, F) were measured with widefield
(D), measured with confocal (E), and theoretically computed (F). Central x-y
and x-z slices are shown of PSF images. Contrast is increased in images A–C
for improved visualization. Scale bars in the example images A–C are 10 nm.
Scale bars in the PSF images D–F are 1.5 nm.
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a detector in the confocal laser scanning microscope.
The confocal laser scanningmicroscope forms an image by scanning through

each focal plane of specimen pixel-by-pixel while recording the emission signal
of each pixel with the photomultiplier tube. Scanning can be done either by mov-
ing the specimen stage or by moving the scanning spot. Since moving the stage
has an effect on biological samples, it is more common to move the scanning
spot by using two oscillating mirrors. One of the mirrors is used to move the
scanning spot in horizontal direction while the other moves the spot in vertical
direction (Conchello and Lichtman, 2005).

In addition to blocking out-of-focus light, a detector pinhole can be used to
improve resolution. The resolution achievable with CLSM is reported to be ap-
proximately 1.4 times better than in widefield microscopy (Conchello and Licht-
man, 2005; Inoué, 2006; Bolte and Cordelières, 2006). This is possible only by
setting the detector pinhole diameter smaller than the diameter of the central
airy disk (Conchello and Lichtman, 2005). The downside is that a smaller detec-
tor pinhole also causes a weaker signal and decreases signal-to-noise ratio (SNR).
Using Equations 2, 3, the setup used in example in Subsection 2.1.1, and factor
1.4, the theoretical lateral resolution of CLSM is approximately 140 nm and axial
resolution 500 nm. In practice, this is never achieved as a result of low SNR.

The resolution of CLSM can be slightly improved with deconvolution, but
not to the extent of the resolution in widefield microscopy. To further improve
resolution, a few super-resolution confocal techniques have been proposed. Re-
centlymethods such as stimulated emission depletionmicroscopy (Hell andWich-
mann, 1994) and 4Pimicroscopy (Hell et al., 1994) have gainedmomentum. These
techniques were combined by Schmidt et al. (2008) who reported almost isotropic
resolution of 40 nm. So far super-resolution CLSM has been available only to a
few and limited to specific applications. However, in the near future, as meth-
ods mature and prices of devices decrease, it is expected that super-resolution
techniques will become more widely used (Huang et al., 2009).

The biggest disadvantage of CLSM is its slow speed of image acquisition
in live sample imaging. Scanning a single slice takes typically 1–2 seconds (In-
oué, 2006). When imaging a typical stack of 30 slices with two channels, the
imaging time is close to a minute. The same stack can be imaged in just a few
seconds with widefield microscopy. However, post-processing deconvolution
needed takes fromminutes to hours. Speed of image acquisition can be improved
by decreasing pixel time, which is the time spent to scan each pixel. However, a
shorter pixel time also decreases SNR, which is already low in live imaging with
low laser power to prevent photobleaching. Other means to improve acquisition
time is to reduce resolution or to image a smaller region of interest. All of these
have to be optimized to the needs of biological application when using CLSM
in live imaging. Acquisition time and photobleaching are not significant issues
when imaging fixed samples. With fixed samples, resolution and SNR can be
maximized by long pixel time, high laser power, and even taking multiple scans
over the sample and averaging the results with the Kalman filter (Conchello and
Lichtman, 2005).
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2.2 Transmission electron microscopy

The common transmission electron microscope works with same principle as the
transmission optical brightfield microscope. Instead of light, transmission elec-
tron microscope uses electron beam to illuminate the sample and electromagnetic
coils as lenses. Generally, illumination is generated with a field-emission gun and
a CCD camera used as a detector (Lučić et al., 2005). The image is formed bymea-
suring the amplitude of signal generated by electrons transmitted through the
sample without elastic or inelastic scattering (Reimer and Kohl, 2008). Scatter-
ing of electrons is caused by dense matter that decreases the amount of electrons
passing through the sample directly. A typical TEM image has an extremely low
SNR. Contrast can be increased using contrast agents, such as gold particles, or
by using scattered electrons to form a phase contrast image (Frank, 2006b).

TEM can be used to image only thin samples to prevent scattering of too
many electrons. Usable thickness of the sample is dependent on the acceleration
energy used in imaging. Generally, samples thinner than 100 nm can be imaged
with 100 keV acceleration (Reimer and Kohl, 2008). If the sample depth is more
than 200 nm, blurring is strong, even with high acceleration energy (Lučić et al.,
2005). Changes in acceleration voltage change also the contrast transfer function
(Fourier transformed equivalent of PSF), which defines the resolution of TEM.
Atomic resolution of 3Å is achievable with 100 keV equipment, and with 1 MeV,
even resolution of 1Å can be achieved (Reimer and Kohl, 2008). Contrast of a
TEM image is defined by the defocus level used. Best resolution is reached when
the focus level is close to so called Scherzer defocus (van Heel et al., 2000). With
a small defocus, high frequency information is included in the image. However,
the contrast is too low to detect any structures (Lučić et al., 2005; van Heel et al.,
2000). Usually a larger defocus is used to improve the contrast at the expense of
resolution (van Heel et al., 2000).

TEM can be used only to image fixed specimen, as no living structure would
survive sample preparation, electron beam or near vacuum conditions (van Heel
et al., 2000). Many sample preparation methods have been used (Afzelius and
Maunsbach, 2004). Regardless of the fixation, radiation damage is an important
question to consider in electron microscopy. The electron dosage needed to gain
a good SNR is so high that serious damage is induced to the sample. With cryo-
electron microscopy (cryoEM) (van Heel et al., 2000), the dosage can be increased
10-fold, but still the maximum density of only 10e/Å2 can be used to keep the
atomic scale structures unharmed (van Heel et al., 2000). In cryoEM, samples
are rapidly frozen in liquid methane and preserved in liquid nitrogen to form a
snapshot of the sample in vitreous ice.
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2.3 Electron tomography

ET is a technique for 3D imaging in great detail where many TEM projection
images are used. ET is used from macromolecular to cellular structures to gather
information of the organization of these structures (Koster et al., 1997). With the
resolution approximated between 3 to 10 nanometers (McIntosh et al., 2005; Jonić
et al., 2008), ET fills the gap between optical microscopy and structural methods
such as SPR (Lučić et al., 2005). However, ET is also a much more complicated
method for 3D reconstruction than, for instance, CLSM.

In tomography, either specimen or the illumination source and detector are
tilted while transillumination images of the specimen are taken. These 2D pro-
jections are used to reconstruct a 3D volume of the sample with inverse tomo-
graphic reconstruction methods. To collect information from the whole sample,
a full 180° tilt range should be used with small intervals. Typically 1–5 degree
interval (Koster et al., 1997) is used. However, in ET, electron dosage should be
kept to minimum to prevent damage to the sample. Additionally, in most cases,
a sample cannot be imaged in the full 180° tilt range.

The maximum tilt angle in ET is typically restricted to ±60◦–70◦ (Frank,
2006a) as the specimen holder blocks the electron beamwith higher angles. How-
ever, with a regular slab-shaped sample, images with higher tilt angles become
almost useless as the electron beam passes many times more material than with
low-tilt angles (Koster et al., 1997). With a specially-shaped specimen and a
holder, even a larger tilt angle can be achieved (Kawase et al., 2007). However, the
special-shaped holder and sample are designed for material science applications
rather than for biological ET. The information gap between the minimum and
maximum tilt angle is called the missing wedge (Figure 3) when single tilt direc-
tion is used. The missing wedge can be decreased to a missing pyramid by using
two perpendicular tilt directions (Penczek et al., 1995). However, while missing
information is reduced using two tilt series, reconstruction process becomes more
complicated and the electron dosage is doubled if the same dosage level is used
for each projection.

One of the requirements for good quality tomographic reconstruction is that
projection images are aligned. However, TEM images of a tilted sample can in-
clude large misalignments as no equipment is stable enough for extremely small
scale TEM imaging (Jonić et al., 2008). Alignment step is performed before recon-
struction to correct any misalignment. Alignment can be done manually, which
is both time-consuming and inaccurate (Brandt et al., 2001). Both manual and
automatic alignment are often based on landmarks (Lučić et al., 2005), such as
colloidal gold particles. Automatic alignment methods using landmarks are of-
ten based on the least squares minimization (Winkler and Taylor, 2006). Brandt
et al. (2001) presents method based on epipolar geometry. When distinguishable
landmarks are not used, alignment can be done with a marker-free method (Win-
kler and Taylor, 2006).
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FIGURE 3 ET with the missing wedge. The sample is tilted and imaged in the trans-
mission electron microscope to collect information for reconstructing a 3D
structure of the sample. The regions between dark lines on both sides of the
sample present the missing wedge.

2.3.1 Common reconstruction methods for electron tomography

Common reconstruction methods can be loosely grouped into three classes (Jonić
et al., 2008): backprojection (Harauz and van Heel, 1986; Radermacher, 2006), direct
Fourier inversion (Penczek et al., 2004; Sandberg et al., 2003), and iterative and al-
gebraic reconstruction methods (Gilbert, 1972; Andersen and Kak, 1984; Marabini
et al., 1998). The basic backprojection method is an inverse of a projection oper-
ation as it casts a ”ray” from each pixel of every projection image to a volume in
real space. The method is simple and computationally efficient as well as easy to
use without the need for parameter adjustment (Penczek, 2010). The downside
of simple backprojection is that it blurs objects and emphasizes the center of the
volume (Frank, 2006b).

To find a solution for issues with the simple backprojection method, filtered
and weighted backprojection methods (Harauz and van Heel, 1986; Raderma-
cher, 2006) have been developed. Filtered backprojection (FBP) has a pre-filtering
step with weighting function in Fourier space: p2 = F−1 (wF (p1)), where p1,
p2, w, F, and F−1 are imaged tomogram, filtered tomogram, weighting func-
tion, Fourier transform, and inverse Fourier transform, respectively. A ramp
filter is used as weighting function. WBP does weighting in real space, where
weighting function is derived from the simple backprojection result (Raderma-
cher, 2006; Penczek, 2010). Both, FBP and WBP, can provide a solution for blur-
ring and non-uniform distribution of density. However, all backprojection meth-
ods are sensitive to the missing wedge showing as artifacts and elongation of
structures (Frank, 2006b). Elongation of structures in axial direction can be theo-
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retically calculated by (Plitzko and Baumeister, 2007):

ezy = ezx =

√
θ + sin θ cos θ

θ − sin θ cos θ
, (4)

where θ is the maximum tilt angle, and ezy, ezx is the elongation of the structure
in axial direction. Using Equation 4, it can be calculated that with 60° maximum
tilt angle, theoretical elongation is approximately 1.55.

Direct Fourier inversion methods are based on the central slice theorem.
In the theory, projection images are Fourier transformed and organized in 3D
Fourier space (Jonić et al., 2008). The reconstruction is the result of inverse Fourier
transform. Unfortunately, an inverse 3D fast Fourier transform cannot be em-
ployed for non-uniform grid which is the result of a set of Fourier transformed
projections (Frank, 2006b; Penczek, 2010). Generally, interpolation methods have
been used to form a uniform grid. Currently the most accurate methods are
gridding-based and use non-uniform Fourier transform (Penczek, 2010). The
gridding-based method by Penczek et al. (2004) has been reported to produce
as good results as algebraic reconstruction methods and as fast as weighted back-
projection methods (WBP) (Frank, 2006b). A method by Sandberg et al. (2003)
has been reported to take only half of the time required by WBP.

The simultaneous iterative reconstruction technique (SIRT) (Gilbert, 1972)
is widely used method in SPR reconstruction (Penczek, 2010). The method im-
proves the reconstruction estimate iteratively by minimizing the difference be-
tween measured and re-projected projection images. Iterative algebraic recon-
struction methods solve the reconstruction problem by forming a set of linear
equations of basis functions. Linear combination of these basis functions deter-
mines the reconstructed volume (Marabini et al., 1998). Approximation of the re-
constructed volume is solved iteratively by minimizing the squared difference of
projections of the reconstructed volume and the measured tomograms (Penczek,
2010). Projections of the reconstructed volume are formed using a weighted pro-
jection matrix which can be also used to incorporate constraints of a priori knowl-
edge to the reconstructed sample. Amathematical theory of algebraic reconstruc-
tion methods is presented in Penczek (2010). Voxels are often used as basis func-
tions (Andersen and Kak, 1984), but Marabini et al. (1998) use spherical blobs
as basis functions to smooth borders and reduce artifacts in the reconstruction.
In SPR, algebraic reconstruction methods outperformWBP (Sorzano et al., 2001).
However, in ET, algebraic methods do not function as well due to the variation of
the depth of the sample in different tilt angles (Penczek, 2010; Lučić et al., 2005).

2.3.2 Sequential statistical reconstruction method

A new reconstruction method for biological ET is studied in Publication PIV.
The aim is to decrease artifacts due to missing wedge. The tested reconstruction
method is a sequential statistical maximum a posterior expectation maximization
(sMAP-EM) (Tuna et al., 2013). The method is compared to widely used WBP
and SIRT reconstruction methods. All of these methods are directly applicable to
biological ET, as none require prior knowledge of the objects in the sample.
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All methods are tested with simulated and experimental data. Simulated
data including small spherical gold particles and large spherical viruses is used to
enable evaluation of the resolution of the reconstructed volumes. Experimental
data is evaluated using elongation of manually selected gold particles from a
sample including subcellular vesicle. In addition, the contrast ratio between a
gold particle and the volume surrounding it, is evaluated to measure how well
structures can be detected.

The preliminary results show (Publication PIV) that the sMAP-EM recon-
struction method decreases elongation, as compared to the WBP and the SIRT
reconstructions. Also, the resolution is better in the sMAP-EM reconstructions.
No visible artifacts are present in the sMAP-EM reconstruction, as are in the
WBP and SIRT reconstructions. The WBP reconstruction show smaller elonga-
tion than SIRT reconstruction in all datasets. However, the WBP reconstructions
show deformation in lateral direction also in simulated data. The contrast ratio
is similar in the WBP and the SIRT reconstructions of all datasets. The sMAP-EM
method improves the contrast ratio approximately 2.5–4.5 times depending on
the dataset.



3 BIOIMAGE ANALYSIS

Quantitative bioimaging has become an essential part of modern cellular and
molecular biology research. Multidimensional bioimaging data embody struc-
tures and processes impossible to measure reliably by human observer. To quan-
titate these structures and events, advanced analysis methods are needed. The
amount of bioimaging data is continuously growing, and with recent success in
high-throughput imaging (Pepperkok and Ellenberg, 2006), need for effective au-
tomatic analysis methods is enormous. In this chapter, bioimage analysis meth-
ods used in light, mainly fluorescence, microscopy are presented, with methods
used and presented in Publications PI, PII, and PIII.

An overview of segmentation methods commonly used in bioimage analy-
sis is presented first. Segmentation is significant for bioimage analysis as it can be
used as is to analyze objects or as a part of many other analysis methods. The seg-
mentation methods used in this work are also briefly described. Next, pixelwise
and object-based colocalization methods, used in the field to analyze closeness of
different types of particles, are presented. After the introduction to colocalization,
an object-based algorithm (Publication PIII), which is able to analyze association
between particles, is introduced. Next, tracking methods used to analyze cellu-
lar dynamics are surveyed, followed by the presentation of a tracking method of
Publication PII. Finally, an important subject on method validation completes the
chapter.

3.1 Segmentation

Segmentation is a process that separates regions of interest from the background
of an image. In a simple form, a segmentation method takes one image as input
and produces output as binary image Ib:

Ib(x) =

{
1, if x in foreground

0, if x in background,
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Preprocessing Segmentation Labeling

FIGURE 4 Common segmentation-based bioimage analysis pipeline. Raw image data
is first preprocessed to make subsequent segmentation simpler and more
accurate. After segmentation, individual objects are labeled unless identified
in the segmentation process. Finally, the labeled and raw image data are
passed on to analysis methods.

where x ∈ N
n and n ∈ {2, 3}. In case the segmentation method is able to detect

individual objects, it produces label image Il as output:

Il(x) =

{
k, if x in object labeled k

0, if x in background,

where k ∈ N
+.

Segmentation is used in some form in almost all bioimage analysis tasks.
It can be used as is to study individual objects or to draw statistical conclusions
from a collection of objects. In addition, segmentation is used as a part of bioim-
age analysis methods such as tracking methods or object-based colocalization
methods.

It is common to combine image processing methods into pipeline to solve
segmentation problem. A general segmentation pipeline in bioimage analysis
includes a few steps with a broad range of methods selected to fit the application.
Different steps are hard to categorize from the wide spectrum of methods and
applications. However, the common segmentation pipeline (Figure 4) includes
at least preprocessing before actual segmentation (binarization/labeling of the
image), and labeling of individual objects if not done in the segmentation method
and needed in the application.

Preprocessing of images is done to prepare images for segmentation. Typi-
cal activities are to reduce noise, compensate non-uniform illumination, smooth
variance inside objects, and to enhance features of interest. Noise in fluorescence
microscopy is mostly Poisson noise with additive Gaussian noise coming from
the electronics (Vonesch et al., 2006; Smal et al., 2010). In addition, images are
blurred with approximately Gaussian modeled point-spread function (Thomann
et al., 2002). For this reason, often-used Gaussian smoothing, which is known to
reduce resolution (Thomann et al., 2002) and to blur edges, is not the best op-
tion to reduce noise from sub-resolution particles. However, for larger objects,
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Gaussian smoothing is useful to smooth intensity variation. Median filtering is
a suitable noise reduction method for Poisson noise, and is commonly used with
other edge-preserving methods such as anisotropic diffusion (Perona and Malik,
1990) and bilateral filtering (Tomasi and Manduchi, 1998).

Prior to the segmentation method, image features can be enhanced to im-
prove segmentation accuracy. Common enhancement methods for spot-like par-
ticles are Laplacian of Gaussian (LoG) (Sage et al., 2005; Smal et al., 2010) and
Difference of Gaussians (DoG) (Lowe, 2004), which can be used to approximate
LoG (Lindeberg, 1994). Calculating gradient magnitude can be used to enhance
edges for larger particles such as nuclei. However, objects rarely embody contin-
uous edges in fluorescence microscopy.

3.1.1 Common segmentation methods for optical microscopy

Thresholding is the most simple segmentation method. In its basic form, a binary
threshold method T is defined as:

T(x) =

{
1, if I(x) ≥ t

0, if I(x) < t,

where t is user defined threshold value for scalar image I. Although global man-
ual threshold is often the first thing to try on the segmentation of new images, it
is not considered useful for image analysis on cell biological research. First, the
threshold level set by a researcher may be biased or inconsistent. Second, a sin-
gle threshold value is rarely usable for a batch of images in the same experiment,
as intensity levels between images vary due to biological variation in samples.
Also, image background can have non-uniform illumination, especially in wide-
field and electron microscopy.

User-defined parameters are often the only solution to configure a method.
However, when applicable, automatic methods should be favored. Many meth-
ods have been developed for automatic selection of threshold level and, surveyed
and tested for instance in Trier and Jain (1995) and Sezgin and Bülent (2004). It
is fairly safe to say that the Otsu method (Otsu, 1979) is the most used of these
methods as is and as built-in other methods (Trier and Jain, 1995; Ruusuvuori et
al., 2010). The method defines optimal threshold to be the one that maximizes
between class variance. Another widely used threshold selection method max-
imizes class entropies (Kapur et al., 1985), and another minimizes entropy be-
tween original and thresholded images (Li and Lee, 1993). Automatic threshold-
ing eliminates problems with user bias and intensity level variation between im-
ages. However, global threshold is not usable with non-uniform background nor
with images having large variance in intensity between objects. To solve these
issues, adaptive thresholding is applied where threshold level is computed for
each pixel from a pre-defined kernel size. However, adaptive thresholding can
create new problems by giving emphasis to anything that points out from the
background.

It is clear that thresholding used alone is not a very sophisticated solution
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to the common segmentation problem. More advanced methods are often tuned
to fit a specific application. Spot detection methods, reviewed recently by Ru-
usuvuori et al. (2010) and Smal et al. (2010), are used to segment sub-resolution
particles. In Smal et al. (2010), the h-dome detection method (Smal et al., 2010,
2008b) was found to be the most accurate spot detection method. Similar results
were presented in Ruusuvuori et al. (2010) for object detection measures. How-
ever, they reported h-dome detection not to be very accurate when comparing
segmented pixels to ground-truth. This applied to other spot detection method
also. The h-dome detection method starts by enhancing the image with the LoG
filter (Gaussian smoothing is used in Smal et al. (2008b)) and then uses morpho-
logical h-dome transform (Vincent, 1993). After transformation, the image is sam-
pled, divided into clusters with the mean shift algorithm (Comaniciu and Meer,
2002), and finally clusters are divided into foreground and background objects
by their intensity features and size. Simpler and more common methods for spot
detection include enhancement with LoG (or DoG) followed by manual or au-
tomatic thresholding, top-hat filtering (Bright and Steel, 1987; Soille, 2003), and
wavelets (Olivo-Marin, 2002). These methods were found to give equally good
or better results than many other methods in Ruusuvuori et al. (2010). Results of
top-hat filtering and wavelets were not encouraging with synthetic images with
SNR of 2 (Smal et al., 2010).

Other methods are used to segment larger structures such as nuclei. While
combination of noise reduction, thresholding andmorphological operations does
work for binarization of DAPI-stained nuclei, methods are needed to separate
touching nuclei. Watershed transform (Vincent and Soille, 1991; Soille, 2003) is
a common approach to both to separate touching nuclei (Malpica et al., 1997)
and to directly segment nuclei image. Touching nuclei in a binary image are tra-
ditionally separated by computing distance transform, inverting the result, and
selecting local minima as markers for watershed transform. Maximally stable ex-
tremal regions (Matas et al., 2004) was recently used in Kaakinen et al. (2014) to
segment cells in phase contrast microscopy. The method generates a set of max-
imally stable connected regions by going through all threshold levels (typically
from 0 to 255 in 8-bit grayscale image), and selecting regions that are stable with
more threshold levels than defined by the Δ parameter.

Active contours are used in many bioimage analysis problems to detect of-
ten complex and even irregular boundaries. Large objects do not typically exhibit
continuous edge in fluorescence microscopy, making detection of object bound-
ary by popular edge detection methods (Canny, 1986) impractical. Active con-
tours provide a clean solution with the continuous deformable boundary model.
These methods are based on energy minimization often defined by a contour in-
ternal force such as smoothness and an external force such as image gradients.
The original parametric active contour model by Kass et al. (1988) was able to
evolve only an initial contour without possibility to merge or split the contour.
Inclusion of level sets (Malladi et al., 1995) made active contour model topology
changes simple. Level set is a function that presents contour as zero level, the
inside of the contour as negative (positive), and the outside of the contour as
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FIGURE 5 Tracking evolution of boundary in a wound healing assay with geodesic ac-
tive contours (Caselles et al., 1997) from Pajari et al. (2013). Raw phase con-
trast image data courtesy of Anne-Maria Pajari.

positive (negative) values. This was used by Caselles et al. (1997) in geodesic ac-
tive contours widely used in medical and bioimage analysis (Figure 5). Geodesic
active contours are able to propagate only to a single direction and as is drawn
by the gradient of the image. Chan and Vese (2001) developed an active contours
method which can propagate in any direction without dependency on image gra-
dients. Dufour et al. (2005) combined the edge force in Caselles et al. (1997) into
the model of Chan and Vese (2001), and used the method to track cells in live flu-
orescence microscopy. Active contours provide built-in solution for tracking cells
with deformable shape, and they have been recently used also by Dzyubachyk et
al. (2010) and Maska et al. (2013).

After preprocessing and segmentation, individual objects are identified and
labeled (Figure 4) to be used for analysis. This step is optional since many seg-
mentation methods, such as the watershed segmentation and active contours,
result directly in labeled image data. Connected component labeling is used to
identify objects from binary image data. However, it is common that separate
objects touch each other, especially when segmenting image of an nuclei or cells.
For convex objects, such as nuclei, the previously presentedmethod based on dis-
tance and watershed transforms (Malpica et al., 1997) works as long as the objects
are not overlapping too much. For complex and oddly-shaped objects, it is often
better to use another segmentation method.

3.1.2 Overview of the segmentation methods used in Publications

Various segmentation protocols for fluorescence image data are used in Publica-
tions PI, PII, and PIII to analyze particles, or as a part of another image analysis
method. All segmentation protocols were created and ran in the BioImageXD
software (Section 5.1, Publication PI). Both fixed and live cells are segmented in
Publication PI. Cell membrane and α2β1 integrin clusters were segmented from
the fixed cells to analyze change in integrin cluster features (size, intensity, lo-
cation) and to analyze internalization of α2β1 integrins. Background offset was
removed from images by subtracting the value of the highest peak of the image
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intensity histogram. As the signal in the stained cell cytoplasm channel was ex-
tremely low after background subtraction, data was smoothed with a Gaussian
filter, and all voxels having any signal were set as foreground voxels. The cell
model was made whole with morphological operations followed by membrane
extraction with the marching cubes algorithm (Lorensen and Cline, 1987).

Integrin clusters were segmented using adaptive thresholding in form:

T(x) =

{
1, if I(x) >= M(x) + c

0, otherwise,

where M(x) is the median value from the neighborhood of radius of 5 pixel
sizes and c is the constant value set larger than background variance. These
choices were balanced between thousand image stacks, as the same segmenta-
tion method and parameters were used to segment integrin clusters in every time
point and in every dataset with different treatments. Segmented integrin clusters
were labeled with a previously defined watershed-based method. Live cell sam-
ples of α2β1 integrin clusters for tracking analyses were segmented using global
thresholding after median filtering of the data.

Spots are detected in Publications PII and PIII using DoG filtering to en-
hance signal followed by Otsu thresholding (Otsu, 1979). Background is also
subtracted, as in Publication PI, before DoG filtering in Publication PIII, where
images are from a widefield microscope with high background signal.

3.2 Colocalization and particle association

Colocalization is defined as overlapping signal in different imaging channels
(Comeau et al., 2006). Biologically, this is generated by differently labeled closely
located particles, which usually locate in the same structure (Costes et al., 2004).
Thus the term co-localize. To study colocalization, at least two different types of
particles in the sample are dyed with fluorophores and imaged as different chan-
nels in a fluorescence microscope. Colocalization is measured from these images
either by analyzing signal colocalization with traditional pixelwise methods or
by first segmenting the interesting objects from the images and then using object-
based colocalization techniques.

By definition, colocalization analysis is inherently dependent on the resolu-
tion of the images. With a theoretical imaging device able to resolve atoms and
to take images in infinite frequency, no colocalization would ever be measured as
two particles cannot exist in the same location at the same time. However, in cell
biology, colocalization is used to detect whether different particles are located in
the same structure or in close structures (North, 2006). Size of these structures in
cell biology vary from tens to hundreds of nanometers, which justifies the use of
the existing fluorescence microscopy imaging techniques.

As pixelwise colocalization methods measure signal overlap or correlation
between two images, pixel by pixel, it is clear that in addition to resolution, mea-
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suring colocalization with pixelwise methods is dependent on the quality of the
images (Zinchuk and Grossenbacher-Zinchuk, 2009). To remove the possibility of
superimposition of axially separated particles, colocalization should bemeasured
with 3D imaging techniques (Bolte and Cordelières, 2006) whenever possible.
In addition, colocalization analysis is sensitive to noise, background offset, and
overlap of excitation or emission spectra of fluorophores (Bolte and Cordelières,
2006; Zinchuk and Grossenbacher-Zinchuk, 2009). Spectral overlapping can be
prevented with careful consideration of the fluorophores used. A problem with
background offset can often be solved with post-processing by subtracting back-
ground before the colocalization analysis. However, subtracting the background
offset does not improve image quality.

Deconvolution and super-resolution techniques may be used to improve
image quality. Deconvolution has been shown to improve accuracy of the colo-
calization analysis (Landmann, 2002) by reducing noise and improving the res-
olution. However, deconvolution can create artifacts, which may have impact
to the colocalization analysis. Also, deconvolution is burdensome task to ap-
ply for hundreds of images typically used in statistical colocalization analysis.
Super-resolution imaging techniques can be used to improve the accuracy of
colocalization analysis. However, not all available super-resolution techniques
are easily usable for colocalization experiments, as they require special fluores-
cent probes instead of common fluorescent proteins (Huang et al., 2009). Also,
super-resolution techniques might not yield overlapping signal from closely lo-
cated particles typically considered as colocalizing (Lagache et al., 2013).

Taking all inaccuracies in sample preparation, imaging, and colocalization
analysis into account, it must be noted that in a general case, colocalization analy-
sis measurements should not be reported with absolute values (North, 2006). The
same applies to many bioimage analysis problems, but in colocalization analysis,
it is fairly simple to get measurements of high colocalization from noisy images
with low levels of colocalization. Instead, results should be compared to a control
sample, other samples, or to other time points of the same sample in the experi-
ment.

Colocalization analysis is sensitive to alignment error in laser lines and on
imaging delay in live experiment. Alignment error in the microscope causes sys-
tematic shift between channels and results in unreliable colocalization measure-
ments (Waters (2009), Publication PIII). This affects all the samples imaged in the
microscope, and to correct this, at least an additional registration step is needed
before the colocalization analysis. Misalignment can be fixed also in hardware.
However, this task requires special service. Live sample experiments are also
prone to errors caused by imaging delay between channels. This is especially
problematic when imaging samples, including vibrant particles in a confocal mi-
croscope where the delay between channels can be tens of seconds.
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3.2.1 Pixelwise colocalization

Traditional pixelwise methods are the most used colocalization measurements.
These include calculation of the percentage of overlapping pixels and intensity,
the Pearson correlation coefficient (introduced to colocalization analyses byMan-
ders et al. (1992)), and Manders colocalization coefficients (Manders et al., 1993)
derived from the Pearson correlation coefficient.

Pixelwise colocalization is calculated between two 2/3D image channels,
C1 and C2. Let i ∈ {1, 2}, X be a set of pixels in image Ci, and ti a threshold for
channel Ci. The basic pixel and intensity overlap colocalization measurements
for both channels are defined as:

Pi,coloc =
|B|
|Ti|

(5)

Ii,coloc =
∑x∈B Ci(x)
∑y∈Ti Ci(y)

, (6)

where Ti ⊆ X, Ti = {x|x ∈ X,Ci(x) > ti}, and B = T1 ∩ T2. The value range of
both of the measurements is Pi,coloc, Ii,coloc ∈ [0, 1].

The Pearson correlation coefficient is used to measure correlation between
channels. Let Ci be the average intensity of the image Ci. Pearson’s correlation
coefficient is defined as (Manders et al., 1992):

rp =
∑x∈X

(
C1(x)− C1

) (
C2(x)− C2

)
√

∑x∈X
(
C1(x)− C1

)2
∑x∈X

(
C2(x)− C2

)2 . (7)

The value range of the Pearson correlation coefficient is rp ∈ [−1, 1], where 1
means perfect correlation, 0 no correlation, -1 perfect negative correlation, and
values between either some level of positive or negative correlation (Bolte and
Cordelières, 2006).

The Pearson correlation coefficient is an unbiased statistical measurement,
as it does not need any parameters to calculate. However, Pearson correlation can
be used to measure correlation also from the pixels above defined thresholds to
remove the effect of the background noise and offset. The criticism towards Pear-
son correlation targets its inability to show colocalization for individual channels
that can be considerably different (Comeau et al., 2006). Manders et al. (1993) de-
rived new colocalization coefficients from the Pearson correlation coefficient by
removing the averages and separating the channels. The original and modified
Manders’ colocalization coefficients (Manders et al., 1993) are defined as:

Mi =
∑x∈X Ci,coloc(x)

∑x∈X Ci(x)
(8)

M′
i =

∑x∈X C′
i,coloc(x)

∑x∈X Ci(x)
(9)
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where Ci,coloc and C′
i,coloc are defined as:

Ci,coloc(x) =

{
Ci(x) if Cj(x) > 0

0 if Cj(x) = 0

C′
i,coloc(x) =

{
Ci(x) if Cj(x) > tj
0 if Cj(x) ≤ tj,

where i, j ∈ {1, 2}, i �= j. From the above equations, it can be seen that Mi,M′
i ∈

[0, 1] and that both measure the ratio of intensity inside a mask defined by the
other channel to whole intensity of the channel. The original Manders’ colocal-
ization coefficients M1 and M2 (Equation 8) differ from the modified Manders’
colocalization coefficients M′

1 and M′
2 (Equation 9) in that they define all voxels

x ∈ X colocalized where Ci(x) and Cj(x) has any signal. The modified Manders’
colocalization coefficients include only voxels x ∈ X where the other channel
Cj(x) > tj. These coefficients are essentially the same if both image channels
have been preprocessed by setting all the values below threshold values to zero.
M′

i and Ii,coloc differ in that M′
i does not take threshold ti into account, and only

uses tj to define the mask from image Cj.
Computation of colocalization measurements is simple. However, defin-

ing the threshold values, t1 and t2 manually is complicated and requires expert
biological knowledge of the experiment. While it is possible to set the thresh-
olds manually using same principle for all images in the experiment, defining the
thresholds automatically is unbiased and much more applicable for large-scale
and high-throughput applications (Pepperkok and Ellenberg, 2006). Costes et al.
(2004) present a method to define thresholds objectively by ruling out uncorre-
lated low intensity pixels. First, the method calculates a least-squares fit in the
form of C2 = aC1 + b by orthogonal regression. Then the threshold t1 for C1 is
set to the maximum value and decreased until Pearson correlation (Equation 7)
in pixels below the thresholds t1 and t2 = at1 + b is approximately zero.

Both the Pearson’s correlation coefficient and Manders’ colocalization coef-
ficients are widely used for colocalization analysis. The advantage of the Pear-
son’s coefficient is in its objectivity. The original Manders’ colocalization coeffi-
cients are also parameter free. However, without any pre-processing, the original
Manders’ colocalization coefficients will always result in values close to 1 as a re-
sult of noise and background offset in the image. The advantage of the Manders’
colocalization coefficients over the Pearson’s correlation coefficient is in their abil-
ity to present colocalization for both channels separately. This is especially im-
portant when the amount of signal differs largely. Villalta et al. (2011) presented
recently a method that combines the Manders overlap coefficient (Manders et
al., 1993) and the Pearson correlation coefficient (Equation 7) with improved ac-
curacy over individual methods. However, this combined measurement is not
channel specific.

Adler et al. (2008) raise an important question about the image quality in
pixelwise colocalization analysis, as the saying ”garbage in, garbage out” is espe-
cially suitable for colocalization quantification (North, 2006). Adler et al. (2008)
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use a correction term on correlation calculation to remove the effect of Poisson
noise from colocalization analysis. The correction term is formed by taking du-
plicates of all images and calculating a Pearson correlation between the dupli-
cates. Correlation should equal to 1, but as a result of Poisson noise, a correction
term is needed to achieve this. The correction terms for both of the channels are
finally combined into a single correction term used in correlation-based colocal-
ization analysis. The biggest problemwith the method is additional imaging time
needed to take the duplicates. Also in live imaging, taking duplicates increases
the chance for photobleaching.

Statistical significance tests are employed to evaluate the trustworthiness
of the colocalization analyses. Often used methods are the Costes (Costes et al.,
2004) and the van Steensel (van Steensel et al., 1996) statistical significance tests.
Costes et al. (2004) tests the statistical significance by randomizing one of the in-
put images, calculating the Pearson correlation with randomized image and the
other input image, and then comparing whether this correlation is higher than
with the original input images. The test is iterated hundreds of times (Costes
uses 200 iterations) to measure if colocalization is real or generated by random
processes. Costes sets the P-value of null hypothesis of colocalization being ran-
dom to 0.05, meaning that if more than 10 iterations of total 200 generate larger
correlation than the correlation between input images, the colocalization is not
statistically significant. Randomization is performed by mixing small regions in
the image. Regions are used instead of pixels since the neighboring pixels are not
independent as a result of the PSF of the imaging setup (Costes et al., 2004). The
statistical significance test of van Steensel et al. (1996) is simpler than the Costes
test. It tests the statistical significance using the Pearson correlation by cross-
correlation in a one-dimensional space. Cross-correlation generates the random-
ization by shifting one of the images in x-direction pixel-by-pixel. Because of the
simplicity of the test, it is applicable only to isotropic particles (van Steensel et al.,
1996).

3.2.2 Effects of preprocessing to pixelwise colocalization analysis and pixel-
wise colocalization used in Publications

An extreme example of the effect of low-quality images on colocalization analysis
was created from the experiment that should not include much of colocalization.
Instead of overlapping, particles are locating in close structures. In this example,
two channels from a widefield microscope of live experiment having much out-
of-focus signal were used. The costes automatic threshold method (Costes et al.,
2004) has been designed for good-quality images. It can be seen that the thresh-
olds set by the Costes method are too low when the background signal is high
(Figure 6). The scatterplot of the original images shows a clear correlation that
is mostly caused by the out-of-focus background signal. Thus the background
should be removed before applying the Costes method.

Background subtraction, deconvolution, and segmentation-based approaches
(Subsection 3.2.3) can be used to reduce the effect of noise and background sig-
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FIGURE 6 Effects of preprocessing on colocalization analysis. Top row: Unprocessed
widefield images of two channels, the colocalization map after applying
Costes automatic thresholding to unprocessed images, and scatterplot show-
ing correlation between the channels (x-axis: green, y-axis: red). Middle
row: Same widefield images after deconvolution with background subtrac-
tion, the colocalization map after applying Costes automatic thresholding
for deconvoluted images, and scatterplot showing no correlation between
the channels. Bottom row: The segmentation-based approach used in pub-
lication PIII showing the masks of the channels and the colocalization map.
Results of the different cases are shown in Table 1. Scale bars are 5 μm

TABLE 1 Example showing the sensitivity of the pixelwise colocalization analysis.
Colocalization statistics were calculated from the original two-channel images
without any preprocessing, from images deconvoluted and background sub-
tracted inHuygens software (Scientific Volume Imaging), andwithin region of
interest masks explained in Publication PIII. Thresholds used for unprocessed
and deconvoluted images were calculated with the Costes method (Costes et
al., 2004). This live biological experiment was made so that the images should
not include much of colocalization. M′

i , rp, Pi,coloc, Ii,coloc, Cp−v, and Sp−v are
Manders’ colocalization coefficients, Pearson correlation, ratio of colocalizing
pixels, ratio of colocalizing intensity, Costes P-value, and van Steensel P-value
for true colocalization, respectively. P-value calculations are not applicable to
segmentation-based preprocessing in Publication PIII.

Preproc. M′
1 M′

2 rp P1,coloc P2,coloc I1,coloc I2,coloc Cp−v Sp−v

None 0.83 0.94 0.86 0.91 0.90 0.92 0.97 0.21 0.00

Deconv. 0.29 0.52 0.17 0.26 0.52 0.34 0.56 1.00 1.00

Pub PIII 0.27 0.05 -0.36 0.28 0.04 0.27 0.05



44

nal to colocalization analyses, and can significantly improve the reliability of the
results (Table 1). The results presented in Table 1 show that the two preprocess-
ing approaches, deconvolution and segmentation-based, produce almost similar
results for the first channel. The Costes method still sets a bit too low thresh-
old value for the first channel, which can be seen from high colocalization of
measurements on the second channel (M′

2, P2,coloc, and I2,coloc). However, the
segmentation-based preprocessingmight underestimate the pixelwise colocaliza-
tion, as all particles smaller than 8 pixels have been removed from the analysis.
The particle size threshold was determined experimentally to remove particles
generated by noise in the image. Most likely, the truth is somewhere between
the two preprocessing approaches, showing only minor colocalization for both
of the channels, as expected from the biological setup. The example shows the
importance of performing colocalization analysis relatively, as relative changes
in colocalization are often more meaningful than individual colocalization mea-
surements, which are highly dependent on the selection of preprocessing and the
thresholds (North, 2006).

In Publication PI, α2β1 integrin colocalization with caveolin-1 is studied
with the Manders colocalization coefficients (Equation 9). Colocalization changes
are tracked relatively through the time points of integrin internalization on a fixed
experiment. It is found that internalization of α2β1 integrin involves caveolin-1
as suggested earlier by Karjalainen et al. (2008), showing as increase in colocal-
ization as the internalization moves on. In Publication PIII, the Manders colo-
calization coefficients (Equation 9), pixelwise overlap (Equation 5), and the Pear-
son correlation (Equation 7) are compared to the proposed particle association
method with experimental fixed and live imaging data as well as to simulated
data expressing fixed and live samples with and without misalignment between
the imaging channels. The method and the experiments are presented in next
section.

3.2.3 Object-based colocalization and association

Object-based colocalization and association analysis are preceded with segmen-
tation and labeling of individual objects from the input images. The difference
between the two methods is that direct overlap of the objects is analyzed with
colocalization methods whereas association methods are used to analyze inter-
connection of the objects. The difference is subtle, as some object-based colo-
calization methods consider objects colocalizing even though direct overlap be-
tween the objects does not exist. For instance, Lachmanovich et al. (2003) consider
that the center of the masses of two objects can be separated at most the distance
of the resolution of the image to be measured as colocalizing. However, when the
objects have any larger displacement or local matching of the particles is applied,
the occurrence should be called association.

Three commonmeasurements to analyze the object-based colocalization used
are: (1) colocalization of center of masses (COM) or centroids of the objects (Lach-
manovich et al., 2003); (2) the ratio of COMs or centroids that locate inside the
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objects of the other channel (Lachmanovich et al., 2003); (3) the ratio of pixels or
intensity inside the objects of one channel that locate inside the objects of the other
channel (Publication PIII). In addition, object-based colocalization measurements
are often designed for specific application (Chessel et al., 2012). Wörz et al. (2010)
define altogether six different object-based colocalization measurements for their
application, including (1) defined above. Other measurements in their model-
based method relate to studying whether a whole object is inside other bigger
object, or whether there is a partial overlap.

Through the rest of the section, the center of mass and acronym COM are
used to mean the center of mass, centroid or any other point used to define an
individual object. Let i, j ∈ {1, 2}, i �= j. Let also X be a set of pixels in image
channels Ci. After segmentation and labeling of the objects, let Oi,pix be a set of
all pixels inside any object in segmented and labeled image Ci. Also letOi,com be a
set of COMs of the objects in image Ci. The object-based colocalization of COMs
Ci,comc (1) (Lachmanovich et al., 2003), the COMoverlap Ci,como (2) (Lachmanovich
et al., 2003), and the object-based pixel overlap Ci,pixo (3) (Publication PIII) are
defined as:

Ci,comc =
∑x∈Oi,com

N(x,Oj,com)

|Oi,com|
(10)

Ci,como =
|Oi,com ∩Oj,pix|

|Oi,com|
(11)

Ci,pixo =
|Oi,pix ∩Oj,pix|

|Oi,pix|
, (12)

where N(x,Oj,com) is defined as

N(x,Oj,com) =

{
1 if ∃y ∈ Oj,com : ||x− y|| ≤ R

0 otherwise,
(13)

where R is the resolution of the image. It must be noted that in common 3D
fluorescence microscopy techniques, voxels are anisotropic, making the resolu-
tion definition more complicated. Lachmanovich et al. (2003) defined R = 200 nm
that is approximately the maximum lateral resolution of fluorescence microscopy.
Even though the above equations are for the calculation of global object-based
colocalization measurements, all measurements can be calculated for each indi-
vidual object as well.

Studying association of small particles accurately is practically impossible
with pixelwise colocalization methods (Figure 7). Also, object-based colocaliza-
tion methods often fail to produce reliable results on particle association, as these
particles do not necessarily overlap at all and are often separated by a distance
larger than the resolution of the images. Special methods are needed to measure
the correspondence of associating particles. Not many methods able to measure
association have been presented. Recently, Lagache et al. (2013), using Ripley’s
K function, presented a statistical method to measure whether two point-sets are
spatially close to each other.
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3.2.4 Point-pattern matching association method

In Publication PIII, we present an association method based on point-pattern
matching (PPM). The association method includes a global transform (transla-
tion in this case) searched by PPM to compensate possible misalignment between
the image channels and a local matching step to define association. In live exper-
iment, local matching is also able to compensate the movement of the particles
during an imaging lag between separate channels. Next, the association method
and related concepts are presented briefly. A complete presentation of themethod
can be found in Publication PIII.

Let O1,com, |O1,com| = n and O2,com, |O2,com| = m be sets of COMs of the
objects in the channels C1 and C2, respectively. Let M ⊂ O1,com × O2,com be a
matching between the point sets, M = {(o1,1, o2,1), . . . , (o1,|M|, o2,|M|)}, with the
following constraints:

∀s ∈ {1, . . . , |M|} : ||oi,s − f (oj,s)|| ≤ δ

∀p ∈ {1, . . . , |M|}, ∀ q ∈ {1, . . . , |M|}\{p} : oi,p �= oi,q,

where i, j ∈ {1, 2}, i �= j, δ ∈ R, δ ≥ 0, is a user-defined maximum matching
distance, and f is translation transformation, f (x) = x+ t, where t ∈ R

d is global
translation. Only translation transform is allowed, as translation is the main mis-
alignment betweenmicroscopy images. Small rotations can be compensated with
δ parameter. By restricting only to translations, the performance of the method
is greatly improved. The association ratio, αi ∈ R, αi ∈ [0, 1], is the ratio of the
number of objects in the matching to the number of objects in the channel. For
channel C1, α1 = |M|/n and for channel C2, α2 = |M|/m.

The PPM association algorithm, presented in detail in Publication PIII, is
described shortly in Algorithm 1. The PPM algorithm is a global non-linear opti-
mization method that searches the maximum matching between input point sets
and returns this matching.

Algorithm 1 The point-pattern matching association algorithm (Publication PIII)

Input: Images C1 and C2
Segment and label images C1 and C2
O1,com = extract a set of COMs from C1 labels
O2,com = extract a set of COMs from C2 labels
n = |O1,com|
m = |O2,com|
M = PPM_association_algorithm(O1,com,O2,com)
α1 = |M|/n
α2 = |M|/m
return (α1, α2)

Value range of association ratio α1, α2 ∈ [0, 1] is the same as in the Manders
colocalization coefficients and object-based colocalizationmeasurements presented
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TABLE 2 Ground-truth values of particle association simulations.

Level α1 α2

High 83/111 ≈ 0.748 83/97 ≈ 0.856

Intermediate 58/111 ≈ 0.523 58/123 ≈ 0.472

Low 23/111 ≈ 0.207 23/82 ≈ 0.280

in this work. These are all comparable, as they measure ratio of colocalizing (as-
sociating) intensity or objects to intensity or objects of whole channel. With fixed
cells, and without alignment error between channels, the association ratio mea-
surement is similar to the object-based colocalization in Equation 10, with a differ-
ence in the allowed object distance. However, in the PPM association algorithm,
the match between point sets is a bijection, a constraint not included in the object-
based colocalization measurement. Association ratio can be used to approximate
colocalization with a small distance parameter in fixed cells, as long as the parti-
cles are small. This is shown in the fixed cell experiment in Publication PIII that
includes a high level of colocalization. It is clear that the presented association
method does not fit for studies where both of the channels contain only large
objects, as is the case with the object-based colocalization measurement of Equa-
tion 10. It is also shown in Publication PIII that the association method is able
to detect association ratios where traditional colocalization methods fail in live
experiment including closely located particles without much of overlap.

To validate the association method, simulated data including both colocal-
ization and association was generated in Publication PIII. Three different levels
of ground-truth association are generated to test different levels of association as
exist in experimental data: high, intermediate, and low. The ground-truth asso-
ciation ratios for both of the channels are presented in Table 2. Using the gener-
ated simulated data, we compare the association method to traditional pixelwise
colocalization methods. In addition, the PPM association method is also com-
pared to another point-set matching method. The chosen matching method is the
Iterative Closest Point (ICP) (Besl and McKay, 1992; Chen and Medioni, 1991),
which is modified to include the matching distance parameter of the association
method. From the various variants of ICP methods (Rusinkiewicz and Levoy,
2001), a recent method, showing accurate results, called the Biunique Correspon-
dence ICP (Zhang et al., 2011) is tested. ICP is a local non-linear optimization
method that iteratively improves the transformation to improve matching of the
point sets. For comparison, only translations were allowed, as in PPM algorithm,
and the same maximum distance of the objects was used to define association.

Altogether 111 objects were created in the first channel. The number, the
volume, and the average intensity of the particles were extracted from the exper-
imental data used in Publication PIII. As initialization, the same set of objects is
set in both channels. To simulate association between the object sets, a predefined
number of objects are removed from the second channel and new objects are cre-
ated to get the association level defined in Table 2. To simulate misalignment be-
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tween the channels, four levels of global translation are introduced to the objects
in the second channel. The length of the global translation l is set to l ∈ {0, . . . , 3}
of lateral pixel size, and the direction is randomized for every simulation. In
addition, to simulate imaging lag, each object is moved in random direction of
a distance d selected for each object from the normal distribution N(0, σ) of lat-
eral pixel size. Simulations of six levels of object movements are applied having
σ ∈ {0, . . . , 5}. For each (l, d) parameter combinations, 10 simulations are cre-
ated, making the total number of simulations 720.

The simulated data is analysed with the PPM (Publication PIII) and ICP
(Zhang et al., 2011) association methods, and with the Manders colocalization co-
efficient (Manders et al., 1993) (Equation 8). For the PPM and ICP methods, im-
ages are first segmented as described in Publication PIII and in Subsection 3.1.2,
and the centroids of the objects are used for point-set matching. To be able to
compare the association methods and the traditional colocalization method, seg-
mented regions are used as masks for the colocalization method as presented in
Figure 6.

Results from the intermediate association level show (Figure 7), as expected,
that the Manders colocalization coefficient (as well as other traditional colocaliza-
tion methods) is not usable on association studies. It is clear that colocalization
methods are sensitive to even a small misalignment and imaging lag between
channels seeable in global and particle translation association error plots. Both,
the PPM and ICP association methods, are able to compensate the channel mis-
alignment tested. Results similar to global translationweremeasuredwith amax-
imum of 3 pixel global translation.

The PPM method gives a more accurate translation between the point-sets
than the ICP method, which can be seen in all the plots in Figure 7. This can be
seen especially from the simulations without any particle translation. With per-
fect align error compensation, the methods should give an association error close
to zero. However, ICP gives an association error of approximately 0.06. Interest-
ingly, the association error is practically the same with both matching distances.
The PPM method shows worse results with increased matching distance when
there is no particle translation applied. However, the difference is subtle. More
clear is the close-to linear increase in association error when particles move dur-
ing imaging more than the matching distance is able to handle. A larger match-
ing distance gives better results, having an association error less than 0.04 with
δ = 8 in all simulations in the PPM association method. However, it should be
noted that matching distance is application dependent, and should be based on
the maximum distance on which particles can still be assumed to associate with
each other. Overall, the PPM association method produces more accurate results
than the ICP association method in all parameter combinations. The results are
similar with high and low association level simulations, with increased accuracy
on the high association and decreased on low association level.

As the ground-truth point correspondences in the simulated datasets are
known, the PPM and ICP methods can be compared by true positive, false posi-
tive, and false negativematches. Using these, F-measurewas calculated for all pa-
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FIGURE 7 Absolute association error of intermediate association-level simulated data
analyses with the PPM method (solid line), the ICP method (dashed line),
and the Manders colocalization coefficient (dash-dot line). The presented
results are averages of association or colocalization absolute error, includ-
ing standard error, of all intermediate association level simulations for both
channels as a function of either global translation (120 simulations for each
step) or local particle translation (80 simulations for each step). The results
of two different matching distances, σ = 4 and σ = 8, for the PPM and ICP
methods are shown.
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rameter combinations for both the PPM and ICP association results. The results,
using matching distance δ = 6 (approximately 1200 nm) are presented in Publi-
cation PIII, showing that the PPM association method outperforms ICP with all
association levels and parameter combinations. An interesting detail not seeable
in the association results is that ICP failed completely to produce any true pos-
itive matches on some low level association simulations. This makes F-measure
undefined, which can be seen as missing ICP low-level F-measure plots. The re-
sult shows the sensitivity of the local ICP matching method, which can end up in
a wrong local minimum, at least when the samples have a low association level.
The same effect can be seen with matching distances δ = 4 and δ = 8. Only with
matching distance δ = 10, ICP is able to find at least one true positive match in all
low association level simulations (Publication PIII, Supplementary figures). The
global PPM association method is able to produce true positive matches in all 720
simulations.

3.3 Tracking

Studying living cells in their natural state is essential for understanding dynamic
cellular processes. These processes can be analyzed statistically by drawing con-
clusions from average changes for instance in size, intensity, location, and shape
of the particles detected during an experiment. However, the possibility to ana-
lyze individual particles, such as viruses or proteins involved in cell signaling, in
living cells opens many new possibilities to understand cell functionalities. Cell
dynamics at the single-particle level can be analyzed with tracking methods.

Tracking can be applied from small proteins to whole cells. The term SPT is
used when tracking small particles (often smaller than the resolution limit of the
imaging device) such as proteins and viruses in fluorescence microscopy (Meijer-
ing et al., 2006). Resulting trajectories of individual particles are used to study
cell membrane dynamics (Saxton and Jacobson, 1997; Alcor et al., 2009), virus en-
try (Godinez et al., 2009; Ruthardt et al., 2011; Godinez et al., 2012), and different
intra-cellular events (Sage et al. (2005), Publication PII, Publication PI). Tracking
whole cells or nuclei is called cell tracking (Zimmer et al., 2006). Though the same
tracking principles can be applied to solve both problems, the distinctive factor is
that in SPT each particle can be approximated by a single point in space whereas
a whole, large, and possibly complex object needs to be taken into account in
cell tracking. For this reason, many cell tracking methods bind segmentation
and tracking together, using evolutive models (Dufour et al., 2005; Dzyubachyk
et al., 2010; Maska et al., 2013). It is more common in SPT methods to separate
segmentation and tracking as is done in the method included in this work (Sub-
section 3.3.3).
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3.3.1 Single-particle tracking

Meijering et al. (2006) defined the whole SPT process to include at least four steps:
preprocessing of image data, segmentation and identification of individual parti-
cles, linking particles through time series, and analyzing the results. The prepro-
cessing needed is dependent on the experiment and the quality of the images. In
some cases that only includes denoising the image data when it can be consid-
ered as part of segmentation. However, it is common that a living cell or even
the whole sample move during a live experiment. This needs to be compensated
before it is possible to link the corresponding particles. For instance, in Publica-
tion PI (Supplementary Figure 11), we needed to use registration to compensate
for the drifting of the whole sample, which was caused by changes in heat condi-
tions in the microscope. This drift, many micrometers between some time points,
would have made particle linking impossible without compensation. For SPT,
segmentation is often done with spot detection methods (Ruusuvuori et al., 2010;
Smal et al., 2010). However, segmentation and identification of individual par-
ticles, as well as analyzing the results, is dependent on the experiment. Various
segmentation methods are presented in Section 3.1. Through the rest of the sec-
tion, the focus is on linking corresponding particles through time series, which
can be considered to be the core of the SPT process.

The SPT method tries to find the best possible trajectories of particles in
time series by linking particles in consecutive time points together. Particle loca-
tions and features, extracted from the segmentation results, are given as input to
the tracking method, which then tries to create links between the particles (Fig-
ure 8). Tracking a dense set of fluorescent particles is far from being a trivial task.
Common problems are created already in imaging and in particle detection. Cor-
rect detection of particles is an extremely hard task, as SNR is especially low in
live fluorescence microscopy. As a result, some particles are often missed. Also
resolution of the images complicates identifying individual particles, as particles
closer than the resolution are in general case unresolvable. Some methods such
as Gaussian fitting have been used to detect location of particles of sub-resolution
size in greater detail (Cheezum et al., 2001). However, applicability of these meth-
ods is dependent on the SNR.

Four common events can be identified while linking particles (Jaqaman et
al., 2008): merge, split, appear, and disappear. Merging of two or more particles can
be caused by real clustering of the particles (Karjalainen et al., 2011). However, a
typical case is that the distance of the merging particles is unresolvable to identify
individual particles. Merging is an even bigger problem in 2D microscopy where
particles might be overlapping in an image but still be separated by microme-
ters in real space. Merge is often followed by a split event where two or more
particles, identified as a single particle in an earlier time point, are separated.
Appearing and disappearing of particles are often caused by problems in particle
detection making the events consecutive. However, in living samples, physiolog-
ical changes can make a particle to gain or lose fluorescence, and as such to be
detected or undetected by the segmentation method during time series. Particles
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FIGURE 8 Basics of particle tracking between two time points. Six particles in time
point t are visualized with filled objects of different size and intensity. There
are five particles in time point t + 1 visualized with unfilled objects. The
task of the particle tracking method is to create a link between each corre-
sponding particle in both sets. A common maximum distance constraint is
drawn around every particle in time point t in the left image. Particles 1, 4
and 6 have only one particle of time point t+ 1 in the search range whereas
particles 2 and 5 have two particles. Particle 3 does not have any particles
in the search range, and cannot be linked at all. Correct link assignment is
presented in the right image. Particles 1 and 2 are both competing over the
same particle in time point t + 1. If particle 2 is linked wrongly, particle 1
cannot be linked at all. The same applies to particles 4 and 5. In this case,
particles 5 and 6 are clustering into a single particle in time point t+ 1.
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can also appear in the field of view from outer regions of the sample as well as go
out from the field of view.

3.3.2 Existing methods for single-particle tracking

The general SPT problem is NP-hard (Shafique and Shah, 2005). Without any con-
straints or assumptions, a problem with a few tens of particles and time points is
unsolvable (Jaqaman et al., 2008). A typical SPT problem includes hundreds or
even thousands of particles in tens or hundreds of time points. To find a solu-
tion to the problem, some constraints need to be introduced. The most common
constraint is search range dmax (Figure 8). With the search range constraint, corre-
spondences for particle pk are searched only from particles in the next time point
that fulfills ||pk+1 − pk|| ≤ dmax. With this constraint, most of the particles can be
ruled out without risking losing correct particle correspondence, as long as dmax

is set using a priori knowledge of the application. Other similar constraints are
also used, such as change in particle features, in methods that use also other than
location information of the particle. Instead of finding a global solution to the
problem directly, many methods (Veenman et al., 2001; Shafique and Shah, 2005)
solve the problem with local greedy methods. These methods take many local
optimal steps and combine these to a global solution. Jaqaman et al. (2008) also
include a second global step to optimize the results from the first local step.

Tracking methods rely on different amounts of a priori knowledge. Some
methods (Chenouard et al., 2013; Shafique and Shah, 2005; Veenman et al., 2001)
assume no information about sub-resolution particles is known, and use only
motion models to find point correspondence. Chenouard et al. (2013) raise an
important question of whether intensity of a sub-resolution particle, measured
with a process with random nature, can be used as a feature at all. However,
when SNR is not too low, particle intensity can be assumed to be at a similar level,
and thus be used as a feature in search for correspondence by methods (Jaqaman
et al., 2008; Sage et al., 2005; Tvarusko et al., 1999). Also, as merge and split
events have effects on the intensity level of a particle, Jaqaman et al. (2008) used
particle intensity to identify these events. For larger particles, other features such
as size (Tvarusko et al., 1999) and shape (Smal et al., 2008a) are used.

Particle motion modeling is a key element in tracking a dense population of
sub-resolution particles. A simple nearest-neighbor correspondence assignment
works only when the particle set is sparse and its particles are moving slowly. Of-
ten that does not apply in an SPT application. Veenman et al. (2001) and Shafique
and Shah (2005) present methods to solve point correspondence based on motion
models that emphasize constant velocity and smooth trajectory. These motion
models designed for macro-world tracking problems rarely produce satisfactory
results at a cellular level, as particles exhibit Brownian motion when diffusing
freely and directed motion with small fluctuation when being actively trans-
ported (Saxton and Jacobson, 1997). As the direction of the movement is hard
to estimate, Sage et al. (2005), Sbalzarini and Koumoutsakos (2005), and Jaqaman
et al. (2008) all include distance of particles, with other measurements, in cost
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functions to be minimized. This random walk motion model can capture Brown-
ian motion. A probabilistic method presented by Godinez et al. (2009) also uses
random walk motion model with Gaussian probability. A motion model used in
Chenouard et al. (2013), called the conveyor-belt motion model (Saxton, 1994), is
a mix of randomwalk and directed transport motion models able to capture both
Brownian motion and actively transported motion of particle. A similar mix of
random walk and directed transport was presented in Genovesio et al. (2006).

Existing methods handle merge, split, appear, disappear and temporal dis-
appearance events with various success. Most of the methods cannot handle
merge and split events explicitly. Some methods have been developed for ap-
plications where particles cannot merge or split (Veenman et al., 2001; Shafique
and Shah, 2005) or where these events have been found unimportant to han-
dle (Chenouard et al., 2013; Godinez et al., 2009; Sbalzarini and Koumoutsakos,
2005). A common way to handle these events is described in Smal et al. (2008a),
where merge of two particles is handled as disappear of one particle, and split as
appear of a new particle. Jaqaman et al. (2008) use a second step to handle merge
and split events with the possibility to connect short trajectories together after
the initial linking step. Particle intensity is used in the cost function to identify
merge (increase in intensity) and split (decrease in intensity) events. Appear is
intuitively handled as a start of a new trajectory when a particle is not assigned
to any existing trajectory, whereas disappear is handled as a termination of trajec-
tory to which no particle is assigned. However, there are differences in the han-
dling of temporal disappearance, which in most cases leads to the termination of
a trajectory and creation of a new one. Sbalzarini and Koumoutsakos (2005) pro-
posed an idea of assigning a dummy particle in a trajectory which does not have
any measured particle assigned in a certain time point. In this way, the trajectory
is not terminated and could potentially continue on later time points. The same
method is used in Godinez et al. (2009). In Jaqaman et al. (2008), an additional
step of connecting track segments is used.

3.3.3 General feature-based tracking method

The method in Publication PII was designed as a general tracking method for flu-
orescence microscopy. The cost function and the constraints of the method can
be configured to the needs of the application. With constraints and local greedy
link assignments, the method is efficient and usable also in high-throughput ap-
plications. However, local optimization cannot guarantee that the method would
find a global optimal solution to the tracking problem. The method includes both
random walk and directed transport motion models. However, these cannot be
combined together as is done in Chenouard et al. (2013) and Genovesio et al.
(2006). Random walk can capture also directed motion. However, when only di-
rected motion is interesting to the application, this has to be defined in constraint.

Themethod can handle appear and disappear of particle directly by creation
or termination of trajectory. Split and merge events are handled as well. Depend-
ing on the constraints, a split of two particles is handled either as a creation of
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two new trajectories or in a common case as a continuation of one trajectory and
creation of a new one. Merge of particles is handled as a true merge event where
the same particle is assigned to more than one trajectory. This is uncommon in
SPT methods which typically include a constraint of a particle being assigned
only to a single trajectory at a time. The only event that cannot be handled by the
method is temporal disappearance. When disappearance is caused by a particle
detection problem, then nothing can be done in the current method. An event
of a temporal disappearance caused by merging of particles at an unresolvable
distance, could be caught and resolved in a simple post-processing step.

Candidate particle search can be constrained with four parameters based
on particle features and trajectory history. Let dmin and dmax be the application
specific minimum and maximum search distance, and let σd, σs, σi, σa be devia-
tions in distance, size, average intensity, and direction angle, respectively. Also
let ptk be the particle of k:th time point in trajectory t, and pl, ps, pi be the parti-
cle location, size, and average intensity features, respectively. Then all particles
p ∈ Pk+1, where Pk+1 is a set of particles detected in time point k+ 1, that fulfill
the following constraints, are included in a set of candidate particles of trajectory
t

dmin ∗ (1− σd) ≤ ||pl − ptkl || ≤ dmax ∗ (1+ σd)

|ps − ptks |

ptks
≤ σs

|pi − ptki |

ptki
≤ σi

cos−1

(
pl − ptkl

||pl − ptkl ||
·

ptkl − ptk−1
l

||ptkl − ptk−1
l ||

)
≤ σa.

(14)

All constraints, except the angle constraint, are usable in every trajectory.
For the angle constraint, the trajectory needs to have at least two particles as-
signed. It is common that the set of candidate particles include more than one
particle. To determine the goodness of fit for all candidate particles, a function



56

for each feature is defined

Ψd(t, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if dmin ≤ ||pl − ptkl || ≤ dmax∣∣∣∣ dmin−||pl−p
tk
l ||

dmax∗σd
− 1

∣∣∣∣ if ||pl − ptkl || < dmin∣∣∣∣ ||pl−p
tk
l ||−dmax

dmax∗σd
− 1

∣∣∣∣ if ||pl − ptkl || > dmax

Ψs(t, p) =

∣∣∣∣∣ |ps − ptks |

ptks ∗ σs
− 1

∣∣∣∣∣
Ψi(t, p) =

∣∣∣∣∣ |pi − ptki |

ptki ∗ σi
− 1

∣∣∣∣∣
Ψa(t, p) =

∣∣∣∣ |pa − (tpt−1)a|

(tpt−1)a ∗ σa
− 1

∣∣∣∣ .

(15)

For all particles p ∈ Pk+1 that passed constraints (Equation 14), a goodness
of fit for track t is calculated as a weighted sum of feature functions (Equation 15)

Ω(t, p) = ∑
k
wk ∗ Ψk(t, p), (16)

where k ∈ {d, s, i, a}, wk ∈ [0, 1], and ∑k wk = 1. The particle tracking algorithm
tries to assign a single particle only in a single trajectory. However, in case of
merging, and when there are no better candidates, one particle can be assigned
to more than one trajectory. One additional parameter, α ∈ [0, 1], is introduced
to control merge event. The probability of a merge event increases with a high
α value. The main points of the particle tracking method is presented in Algo-
rithm 2.

The method described in Algorithm 2 is implemented in BioImageXD soft-
ware presented in Section 5.1. The method is used to track α2β1 integrin clus-
ters in Publications PI and PII (Figure 9). For this application, use of a tracking
method able to detect merge events is especially important. Even though the
movements of similar particles are tracked in both experiments, there were sig-
nificant differences in the experiments. In Publication PII, clustering of α2β1 in-
tegrin is induced with echovirus 1 which makes the movement of particles more
rapid than in Publication PI where clustering is induced with antibodies. How-
ever, almost the same set of parameters are used to solve both tracking problems
with increased size constraint σs and adjusted size and average intensity weights,
ws,wi, in Publication PII. The results were qualitatively analysed and approved
by expert biologists in both experiments, and in Publication PI we are able to see
significant differences in average speed and average directional persistence (how
directly particles are moving) in cells under different treatments. However, as
validation of the results of complex tracking task is impractical even for an expe-
rienced biologist, the tracking method was validated with simulated datasets.
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Algorithm 2 The particle tracking algorithm (Publication PII)

Input: Particle sets Pk, where k ∈ [1,m] is time point of time series.
T = ∅ // Set of tracks
for all p ∈ P1 do

T = T ∪ NewTrack(p)

for k = 2 . . .m do
G = ∅ // Set for track, particle, and goodness value triple
for all non-terminated tracks t ∈ T do

Ctk = ParticlesPassConstraints(t, Pk) // (Equation 14)
for all p ∈ Ctk do

G = G ∪ (t, p,Ω(t, p)) // (Equation 16)

Order G by goodness value
for all (t, p, g) ∈ G do

ht = the highest goodness value for track t
if t and p not used, t not terminated, and g > α ∗ ht then

AddToTrack(t, p)
Mark other tracks with particle ptk−1 as terminated

for all Track t not used and not terminated do // Merge
p = Particle with the highest goodness value
AddToTrack(t, p)

for all p ∈ Pk not used yet do
T = T ∪ NewTrack(p)

return T

FIGURE 9 Five consecutive image stacks from an α2β1 integrin clustering sample im-
aged with 30 second interval. Top row: Single slice from each of the image
stacks. Bottom row: Segmented and tracked particles. Particles belonging to
same trajectory are visualized in the same color. Two particles merge in the
fourth time point (orange trajectory). Scale bar 3 μm.
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TABLE 3 Ground-truth and tracking results of simulated data as statistical measure-
ments. For each simulation, four parameters are shown: number of tracks,
average number of time points in tracks, average speed of particles in tracks
and average directional persistence.

Ground-truth # tracks Avg. tpts Avg. speed Avg. direct.
(nm/sec) persistence

Simulation 1 103 20.0 17.4± 0.3 0.25± 0.02
Simulation 2 154 18.1 34.5± 0.5 0.30± 0.02
Simulation 3 146 16.2 69.3± 1.1 0.36± 0.02
Tracking method # tracks Avg. tpts Avg. speed Avg. direct.
results (nm/sec) persistence
Simulation 1 104 19.8 17.9± 0.3 0.25± 0.02
Simulation 2 164 16.9 35.5± 0.6 0.32± 0.02
Simulation 3 177 13.3 68.5± 1.1 0.39± 0.02

Simulated live datasets are created in Publications PI and PII to validate
the tracking method. They were created to resemblance, as close as possible, the
experimental data used in the studies. Average speed and average directional
persistence are compared between the ground-truth and tracking result in Pub-
lication PI and no significant difference is found. In Publication PII, simulations
with three levels of complexity are created (Table 3). Particles are set to move at
the same speed as analyzed from the experimental data without any clustering in
Simulation 1. The average speed is doubled in Simulation 2 with 15% clustering
probability of closely located particles. Clustering was defined to increase parti-
cle size and average intensity. In Simulation 3, the speed of particles is set to be
four times faster than the speed analyzed from the experimental dataset, and the
clustering probability is increased to 30%. The tracking results are compared to
a ground-truth with four measures: number of trajectories, average time points
in trajectories, average speed of particles, and average directional persistence of
particle movement. The results (Table 3) show average speed and directional
persistence to be within of standard error. However, with increasing speed of
the particles, the number of trajectories is increased, and the average number of
time points in the trajectory is decreased. This could implicate the use of a too
tight maximum distance constraint, dmax, or that the method is making wrong
decisions leading to premature termination of some trajectories.

To get exact information on tracking method accuracy, all links need to be
verified. The results presented in Table 4 show linking accuracy in different sim-
ulation scenarios. In Simulation 1, without any clustering, the method gives near
perfect results. As expected, with increasing particle speed and clustering, the
number of perfect tracks decreases. However, almost all links are correct in track-
ing of Simulations 1 and 2, with almost 95% of correct links in the tracking re-
sults of Simulation 3. In the tracking results of Simulation 1, only a single wrong
link (merge event) was enough to make two existing trajectories imperfect and
to create one new imperfect trajectory, showing the sensitivity of perfect tracks
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TABLE 4 Linking accuracy of the tracking method on simulated data. The ratio of per-
fect tracks to the total number of tracks, the ratio of perfect tracks and tracks
in ground-truth, and the ratio of correct particle links to total particle links,
are shown for each analyzed series.

Simulation Tracks Tracks Links
(perfect / total) (perfect / truth) (correct / total)

Simulation 1 101 / 104 = 97.1% 101 / 103 = 98.1% 1956 / 1957 = 99.9%
Simulation 2 94 / 164 = 57.3% 94 / 154 = 61.0% 2579 / 2609 = 98.9%
Simulation 3 46 / 177 = 26.0% 46 / 146 = 31.5% 2067 / 2183 = 94.7%

measurement. From the results of link accuracy (Table 4), it can be deduced that
statistical measurements, such as those presented in Table 3, can be drawn from
all simulations. In Publication PII, a method by Jaqaman et al. (2008) is com-
pared with the presented method in all three simulation scenarios. The presented
method gave more accurate results in all of these.

3.4 Method validation

Validation of image analysis methods is imperative in bioimage analysis. How-
ever, validation is anything but a straightforward matter, as the ground-truth to
compare is generally unknown. Ground-truth phantom can be generated either
by simulating data or by having an application area expert to analyze data and
form the ground-truth. Both of these approaches have their strengths and weak-
nesses.

Validation by simulated data is a common approach in bioimage analysis.
The strength of using a simulated ground-truth is clear, as the ground-truth is
perfectly known. However, simulating data that resembles the characteristics and
variation in experimental data is a difficult task (Warfield et al., 2004). This prob-
lem can be handled to some extent by creation of different sets of simulated data
with different signal-to-noise levels as well as changes in other characteristics
typical in imaged data. Another question is raised about what characteristics can
be compared with simulated data. For instance, when simulating ground-truth
spots by convoluting with point-spread function to form a realistic simulated im-
age with blurry spots, it is clear that the accuracy of spot detection methods can
be compared by their success in finding the correct spot locations. Yet, can these
methods be expected to segment the ground-truth or blurry particles the way a
human expert would? The answer to this question need to be considered when-
ever simulated data is used to measure method accuracy. As an example, Ruusu-
vuori et al. (2010) show how big the difference there can be in the accuracy of spot
detection methods when comparing locations to segmented pixels.

Another possibility is to use human experts to define the ground-truth from
real image data. This can be done directly by the expert or after applying an auto-
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matic method the results of which are then edited by the expert. As ground-truths
defined by different experts, or by the same expert at different times, vary (Nat-
tkemper et al., 2003; Ruusuvuori et al., 2008), methods (Kamarainen et al., 2012;
Raykar et al., 2010; Warfield et al., 2004) have been designed to combine many
results to a single ground-truth. In bioimaging, researchers often believe in their
eyes more than to automatic image analysis methods. Human brain is a magnifi-
cient tool for object detection. However, expert results can be fooled easily with
things such as having a non-uniform background in the image (Eagleman, 2001).
Culverhouse et al. (2003) noticed on an ecological classification task that experts
make mistakes as a result of fatigue, short memory, and possible bias. Though
the study is from a different field of science, it can be generalized to experts in
cellular biology. In addition, expert validation is in many cases impossible when
analyzing hundreds or thousands of small particles in 3D time series.

Simulated data are used to validate and test analysis methods in Publica-
tions PI, PII and PIII. All simulations were created in the BioImageXD software
(Section 5.1, Publication PI). Decision to use simulated data instead of expert-
defined ground-truths were made since real image data are too complex to be
analyzed by a human expert (Publications PI and PII) or method is tested in a
setup for which no real data was available (Publication PIII). Altogether nine dif-
ferent combinations of signal-to-noise levels and clustering of objects are used in
both fixed and live simulated data in Publication PI to validate segmentation and
tracking analyses (Fig. 10). A number of objects, average volume and average
intensity are set according to real data analyses. In addition, objects are set close
to the membrane extracted from real image data, and defined to internalize at the
same speed as in real data. Similarly, parameters are extracted from real live data
analyses to setup simulated live data. However, objects are not segmented from
live data for tracking method validation. Instead, ground-truth particles are used
to confirm that possible problems in segmentation will not affect the testing of
particle linking accuracy. The methods used for both fixed and live sample anal-
yses are validated successfully. Simulated data for testing the analysis methods
in Publications PII and PIII are also setup according to experimental data (details
in Sections 3.3 and 3.2).
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FIGURE 10 Examples of simulated fixed (top row) and live (bottom row) data in Pub-
lication PI from a cell bottom slice. All examples are from the middle noise
level and clustering simulations. Simulations representing the 15-minute
time point (left) and the 45-minute time point (right). Linear enhancements
in the images are for visualization purposes. Scale bars are 5 μm.



4 SINGLE-PARTICLE RECONSTRUCTION

SPR is a method used to solve structures of large macromolecular complexes in
near-atomic resolution, typically in resolution between 6 to 15 Ångströms (Jonić
et al., 2008). Even though a resolution as good as that with crystallography tech-
niques (Jonić et al., 2008) has not been achievedwith SPR, it has many advantages
over crystallography: mainly, its usability to solve structures in its original state
and ability to solve complex structures that are hard to crystallize (Frank, 2002).

SPR is based on taking 2D projection images of numerous individuals of
the same particle in random orientations. This differs from typical tomography-
based reconstruction methods in that one sample includes tens or hundreds of
particles and that the sample is usually not tilted. Instead, particles are expected
to be in random orientations in the sample. Thousands of particle images are
needed for reconstruction for two reasons: (1) to effectively average out noise
from the high resolution particles imaged with a low electron dose, and (2) to
get good-quality particle averages from many orientations. Henderson (1995)
calculated that theoretically about 10 000 particle images are needed to achieve
atomic scale resolution, but Glaeser (1999) estimates that, in practice, more than
million are needed to average out noise and distorted particles. Even with typical
resolutions achieved with SPR, tens of thousands of particle images are used.
However, the number of particle images needed is greatly dependent on particle
symmetry and complexity, and therefore the universal number of particle images
needed to achieve a specific resolution cannot be given.

SPR is a computationally demanding iterative process. The main parts of
the SPR pipeline are presented in Figure 11. An SPR process starts by sample
preparation and imaging of samples in TEM. Typically, samples are fixed on vit-
reous ice (cryoEM) to get a stable sample for imaging (Frank, 2006b). Imaging is
carried out with a small defocus to reach the best possible resolution. However,
small defocus complicates the subsequent steps in the SPR pipeline, affecting the
quality of particle selection, classification, and reconstruction. Often, a large de-
focus results in more usable particles in the later steps of SPR, and as such, has an
effect on the number of samples needed. Thus, a balance between resolution and
usable images for reconstructionmust be found. Imaging is followed by a particle
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FIGURE 11 Outline of the SPR process (Ruprecht and Nield, 2001; Jonić et al., 2008; van
Heel et al., 2000). The SPR method is highly iterative (the main parts in the
figure are iterative as well) for gradual reconstruction of a high resolution
model from projections of particle in extremely low SNR electron micro-
graphs. A Simian virus 40 model edited from (Shen et al., 2011).

selection step to extract individual particle images from the micrographs. Parti-
cle selection is presented in Section 4.1, and literature review on particle selection
methods in Section 4.2, followed by a presentation of a novel particle selection
method in Section 4.3. Next, the steps following particle selection are presented
shortly.

After particle selection, particle images are aligned and grouped into simi-
larity classes. Alignment is carried out to translate all particles to the image cen-
ters and to rotate to the same orientation as the other images in the class. Initial
alignment is often done by finding amaximum correlation of a particle image and
an average image of all particles (Ruprecht and Nield, 2001; van Heel et al., 2000).
Any classification method can be used to define the classes of particle images.
Typically, the process is started by computing a set of eigenimages, using a mul-
tivariate statistical analysis by correspondence analysis or a principal component
analysis (Frank, 2006b). To ease the computational burden, covariance matrix is
not computed. Instead, eigenimages are generated iteratively by calculating the
inner product of eigenimages and particle images. The initial eigenimages for the
iterative process are generated randomly (van Heel et al., 2000). After multivari-
ate statistical analysis (detailed description of the process can be found in Frank
(2006b); Borland and van Heel (1990); van Heel et al. (2000)), each particle image
is represented by a j-dimensional vector in R

j factor space, where j is the num-
ber of eigenimages. Typically the number of eigenimages used is between 10 to
100 (van Heel et al., 2000).

A compressed representation of particle images as a linear combination of
eigenimages is used to create a set of classes. Classes can be formed with any
clustering method, for instance with k-means clustering (MacQueen, 1967). The
most used method is the hierarchical ascendant classification (van Heel et al.,
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2000). It starts by defining all particle images as individual classes. These classes
are merged together by minimizing the intra-class variance, measured by the dis-
tance of particle images in factor space, until only a single class exists. Merging
of classes forms a tree presentation. From the merging tree, a single level with a
pre-defined number of classes is selected to present the final classification of the
particle images (van Heel et al., 2000; Frank, 2006b).

After classification, particle images in a class are averaged to form a class
average that has SNR that is significantly higher than that of each single parti-
cle image (van Heel et al., 2000). After the first class averages are calculated, the
whole alignment and classification process is refined using class averages instead
of average of all particle images as references (Ruprecht and Nield, 2001). This
process is typically refined a few times until class averages do not change signif-
icantly.

Before the initial 3D model of the particle can be reconstructed, orientations
of each class average have to be estimated. A method called angular reconstitu-
tion (van Heel, 1987; Serysheva et al., 1995; van Heel et al., 2000), based on the
common line projection theorem (De Rosier and Klug, 1968; Crowther et al., 1970;
van Heel, 1987), is used to estimate the initial Euler angles of the class average
images. The common line theorem states that two 2D projections of a 3D object
have a one-dimensional common line (van Heel et al., 2000). To find common
lines between class averages, first a sinogram of each class average is formed.
Sinogram is a Radon transform (Radon, 1986) of a class average including 360
one-dimensional projections of a class average rotated by one degree intervals.
Next, the maximum correlation coefficient of sinograms of two class averages
that defines the common line is search (van Heel et al., 1997). Finally, the an-
gles between the common lines of different class averages are used to estimate
the orientation of each class average. During the angular reconstitution process,
bad class averages that show low correlation with other class averages, can be
removed.

Once particles have been selected from themicrographs, classified into classes,
class averages calculated, and Euler angles of class averages estimated, the first
3D model of the particle can be reconstructed. Any 3D reconstruction method
that can handle random tilts is usable. Typically, backprojection methods are
used for their efficiency and simplicity (Frank, 2006b; Penczek, 2010). Details of
backprojection and other reconstruction methods are described in Section 2.3.

After the initial 3D model of the particle is reconstructed, the model is re-
projected to create a set of projections with known orientations. This set, includ-
ing tens of projections, is used to refine the Euler angles of class averages es-
timated with the common lines method, until the model is stable (van Heel et
al., 2000). Many methods have been developed for reference-based orientation
estimation that employ for instance correlation of images to polar Fourier trans-
formed (Baker and Cheng, 1996) or wavelet transformed (Sorzano et al., 2004)
projections to find the closest reference orientation. Once the orientations of class
averages have been refined, the whole process from alignment to reconstruction
is refined iteratively until the reconstructed 3D model converges. During the it-
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erative refinement process, hundreds of projections of the reconstructed model
are used as references. The density of reference projections is increased at every
iteration to increase the accuracy of class averages. The number of reference pro-
jections needed depends on the complexity of the particle (Serysheva et al., 1995).
Finally, the highly iterative SPR process results in a final 3D model of the particle.

4.1 Particle selection

The first task in the SPR process is extracting particles from stained or cryoEM
micrographs to be used in the reconstruction process. Particle selection is gener-
ally also the most labor-intensive part. Traditionally, particle selection (boxing)
was done manually (Ramani Lata et al., 1995). However, boxing hundred thou-
sand particles can take a month; it has poor repeatability and user bias on man-
ual selection, and, therefore, automatic or semi-automatic methods are favored
nowadays.

Boxing particles from extremely low SNR electron micrographs is an in-
tractable task. High noise and low contrast are the result of the low electron dose
used in imaging to prevent damage to the sample (van Heel et al., 2000). Since
particles in micrographs can be in any orientation, it is often easiest to detect
symmetrical particles whose shape in a projection is the same in all orientations.
Asymmetric particles are more complicated as the size and shape of the particle
can vary considerably depending on the orientation of the particle. Small asym-
metric particles are the most difficult particles to detect, and even for experts to
find manually. Fortunately, all of the particles do not have to be detected from
micrographs. According to Glaeser (2004), more than 75% of particles should be
picked up by a particle selection method. It is clear that from the particle re-
construction point of view, it does not matter what percentage of particles are
selected as long as all orientations are included, although more micrographs are
needed when fewer particles are detected from each micrograph. A more im-
portant measure is the number of wrong selections (false positives): typically
background noise, damaged or overlapping particles, and contaminations (Fig-
ure 12). Non-particle images can have significant impact on the accuracy of the
reconstruction process. However, when the number is sufficiently low, false im-
ages are mostly averaged out during reconstruction process. Glaeser (2004) sug-
gests that the number of non-particle images should be less than 10%. The exact
number is mostly dependent on the particle, number of class averages, and how
non-particles are distributed in different classes. In any case, the particle selec-
tion method should pick as many true particles as possible while minimizing the
number of false particles. Oftenminimization of false particles is more important.

Accuracy of particle selection methods is often measured with a few simple
statistical measures. True positives (TP) is the number of particles correctly found
from micrographs while false positives (FP) is the number of wrongly detected
particles, and false negatives (FN) is the number of real particles not selected.
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FIGURE 12 Raw cryoEM micrograph (A) and common problematic regions to particle
selection methods. Only single isolated particles (C) should be picked. The
common problematic regions are particles touching (B) and overlapping
(D), as well as contamination (E) and other particles in the micrograph (F).
Scale bar of 20 nm in all images.

From these measures, simple statistics can be drawn to measure the rate of parti-
cles detected and the rate of wrong particles detected. The statistical measures of
precision (P) and recall (R) are defined as (Langlois and Frank, 2011):

P =
TP

FP+ TP
1− P =

FP
FP+ TP

(17)

R =
TP

FN + TP
1− R =

FN
FN + TP

(18)

It can be seen that precision (Equation 17) measures the ratio of correct parti-
cle picks (TP) to all picks (FP+ TP), whereas recall (Equation 18) measures the ra-
tio of correct particle picks (TP) to all existing particles (FN+ TP). 1− P is known
as false discovery rate and 1− R as false negative rate (Langlois and Frank, 2011). For
most of the methods, these measures are interconnected. It is common that while
recall increases precision decreases and vice versa, an effect often presented as
a precision-recall graph (Arbeláez et al., 2011). The functionality of the classifier
in particle selection method can be also presented in ROC graph (Fawcett, 2006)
showing false positive rate (FP/(FP+ TN)) and recall.

Several methods use separable particle detection and particle classification
or clustering. The first step is to detect the candidate particles with the aim of
detecting all real particles. A set of candidate particles will in principle always
include also false particles. Next, classification or clustering is used to increase
precision by removing as many false particle images as possible. If only false
particles are removed in the classification or clustering step, recall is the same
as after the detection step while precision increases. In practice, when precision



67

increases, recall decreases, as also true particles are removed.

4.2 Literature review on particle selection methods

Many different strategies have been used to select particles from electron micro-
graphs (Zhu et al., 2004; Nicholson and Glaeser, 2001). The methods typically
have separate particle picking and classification steps. However, for instance,
widely used semi-automatic methods rely on the user to do final classification by
ruling out ”junk” from detected images. Since methods cannot be clearly classi-
fied into specific classes, the review of existing methods will first focus on candi-
date particle picking schemes and then to classification and clustering strategies.

Template matching is a traditional method used to pick particles from elec-
tron micrographs (Nicholson and Glaeser, 2001). Reference-based methods of
this kind start by creating a set of 2D template images from different angles of
the particle. These images can be created from a previously solved model of the
particle or by reconstructing a scarce model from a few hundred or thousand
manual selections. A raw force method is to cross-correlate all templates with
micrograph to find high peaks in the correlation coefficient. Precision and per-
formance are problems in template matching with traditional cross-correlation of
tens of template images with micrograph.

Many variations of general template matching have been proposed to im-
prove performance and accuracy. Roseman (2003) suggested improving accuracy
of template matching by using local correlation that eliminates the effect of non-
uniform background illumination common in electron micrographs. Chen and
Grigorieff (2007) present spectrum correlation with local correlation to include
both intensity and shape in correlation function. To improve the performance
of template matching, modified representation of templates can be used. Local
correlation was used by Huang and Penczek (2004), who clustered a set of 98
template images to five by k-means clustering (MacQueen, 1967) and rotated to
a final set of 30 templates. Wong et al. (2004) did similar clustering of templates,
but instead of using cross-correlation, they use convolution of templates and mi-
crograph. Sigworth (2004) reduced the number of templates from 64 to 14 using
principal component analysis to create a set of eigenimages from templates.

To improve performance in orders of magnitude, template matching can
be done with a model. Volkmann (2004) defined reduced representation of tem-
plate image with less than 100 binary points. With this representation of tem-
plates, they reported a 1000-fold improvement in performance compared to nor-
mal cross-correlation (Volkmann, 2004). Some methods use even a simple Gaus-
sian profile for template matching (Hall and Patwardhan, 2004; Ramani Lata et
al., 1995) or Difference of Gaussian filter (Voss et al., 2009) to get candidate par-
ticles. It is clear that these methods generate many false candidate particles, and
as such, do not give satisfactory results without classification or clustering to re-
move false positives.
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The results of template matching are correlation coefficient images, one for
each template. From these images, a search for correlation peaks is performed
to find candidate particles. Selecting correct peaks is not an unambiguous task.
Many methods use user defined threshold values to select peaks (Volkmann,
2004; Huang and Penczek, 2004), but the information from the original model
can also be used (Wong et al., 2004). These methods proceed differently after a
set of peaks has been selected. Some methods accept all peaks as is while many
compute the distance between peaks. All peaks that are closer than the expected
size of the particles can be removed (Chen and Grigorieff, 2007; Volkmann, 2004)
or the highest peak kept while others are removed (Sigworth, 2004). Finally, can-
didate particles are extracted using peaks that have been left as centers of particle
images. Template matching methods typically result in a high recall measure, as
particles create a high peak in the correlation images. However, also low preci-
sion is common since artifacts with the size of a particle will often also create a
high correlation coefficient (Zhu et al., 2004).

Some research has been done on edge detection (Yu and Bajaj, 2004; Zhu et
al., 2002) and segmentation-based (Singh et al., 2004; Adiga et al., 2005) methods
used regularly to solve many macroscopic and light microscopy image analysis
problems. In general, these methods do not work robustly enough since particles
in low-SNR cryoEM micrographs rarely have distinguishable edges or shape. A
thorough search of suitable parameters and even filters needs to be done for each
different particle selection case. However, working protocols have been reported,
and the advantage of these methods is that no initial model or manual selection
of particles is needed. Methods based on edge detection start by searching a
large continuous gradient from the image, typically with the Canny edge de-
tection method (Canny, 1986). In (Zhu et al., 2002), edge detection is followed
by either circular or rectangular Hough transform (Duda and Hart, 1972). The
method does not distinguish contamination of the size of true particle, and can-
not be used for asymmetric particles. Yu and Bajaj (2004) replaced Hough trans-
form with distance transform, and in case of rectangular particles, also used the
Voronoi diagram (Aurenhammer, 1991) to estimate the pose of rectangle. Peaks
of distance transform were, after several refinement steps, defined as centers of
either circular or rectangular particles.

Segmentation-based methods differ from edge detection-based methods in
that a certain geometrical shape is not expected. Segmentation-based methods
typically use variations of filtering, thresholding, and morphological operations
to segment the particle, and in the end filter the found objects by a predefined
size range. Singh et al. (2004) proposed a segmentation-based method that uses a
hiddenMarkov random field initialized with the Otsu threshold (Otsu, 1979) and
refined by an expectation maximization algorithm (Dempster et al., 1977). Singh
et al. (2004) reported about 17% for false discovery rate. A high percentage of false
positives is expectable with segmentation-based methods without a final particle
pruning step. A similar false positive rate was reported by Adiga et al. (2005),
who applied a combination of global and local thresholding and morphological
operations to detect particles.
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Ogura and Sato (2004a) presented an interesting approach to particle pick-
ing. In their method, a specified number of windows is initialized in a micro-
graph and thenmoved around by SimulatedAnnealing optimization (Kirkpatrick
et al., 1983). This holds potential to effectively reduce the number of false posi-
tives, as only a specified number of particles are detected. It seems that the metric
used in optimization is not robust enough, and the precision from 50% to 95%was
reported with different particles (Ogura and Sato, 2004a). According to Ogura
and Sato (2004a), a final classification with supervised neural networks could be
used to improve precision. The downside is that supervised classification needs
manual labeling of training images.

Both supervised (trained with labeled data) and unsupervised (untrained
or trained with unlabeled data) classification/learning methods are often used
after candidate particle picking. Some methods use classification to remove some
of the false positives from already a good set of candidate particles, while others
rely almost completely to classification after picking all regions differentiating
from background noise. The classification methods as well as features used vary
significantly.

A common use case of supervised learning method is to manually classify
a set of initial particle images to particles and non-particles (Arbeláez et al., 2011;
Ramani Lata et al., 1995; Ogura and Sato, 2004b) used to train the method. It is
also possible to train a classifier to recognize different kinds of particles or non-
particles such as contamination and background. After a training phase, the clas-
sifier is used to classify particles automatically using calculated feature vectors
from particle images. Texture features (Arbeláez et al., 2011; Ramani Lata et al.,
1995) are typically used in feature vectors.

Different kinds of neural networks, both supervised and unsupervised, have
been used to solve the classification problem (Hall and Patwardhan, 2004; Ogura
and Sato, 2004b). Ogura and Sato (2004b) used supervised neural network trained
with hundreds of manually picked particle and background images. They re-
ported as high as 90–95% of precision without any particle detection method, but
testing all pre-defined size regions from the micrograph. An unsupervised neu-
ral network called the self-organizing map (Kohonen, 1990) was used by Hall
and Patwardhan (2004) after initial detection of candidate particles with the cor-
relation of Gaussian profile. From a self-organizing map, different clusters were
definedwith k-means clustering (Hall and Patwardhan, 2004). Hall and Patward-
han (2004) did not report the precision of the method. However, 3D reconstruc-
tions were made with manual and automatic particle selection, showing that the
automatic method with more particles selected gave improved resolution.

Supervised classification methods other than neural networks have been re-
cently used. These include support vector machines (Arbeláez et al., 2011) and
naive Bayesian classifier (Sorzano et al., 2009). Arbeláez et al. (2011) trained a
support vector machine with hundred to thousand manually selected particles,
and reached a precision of 80–90% with texture-based selection of candidate par-
ticles. Sorzano et al. (2009) reported as high as 90% precision using an ensemble
of naive Bayesian classifiers without candidate particle picking. However, a recall
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of less than 70% was reported with high precision values (Sorzano et al., 2009).
It is clear that a particle selection method cannot give satisfactory results

without an additional classification step if both precision and recall measures
should be high. Traditionally, template matching methods have been the most
used. Recently, supervised classification methods without any candidate parti-
cle picking have shown good results. For supervised methods, a combination of
candidate particle picking and classification trained with manually selected par-
ticles is most likely to give the best results. Research on unsupervised methods
with clustering of candidate particle picks has shown promising results. The ad-
vantage of unsupervised methods is that no initial model or selection of training
particles is needed. Even though common measures for the goodness of parti-
cle selection methods have not been established, Langlois et al. (2011) compiled
a table including the precision and recall values of the methods that have been
used on the labeled Keyhole Limpet Hemocyanin dataset (Zhu et al., 2004). On
average, the precision of the methods was around 80–90% and their recall about
70–90%.

4.3 Novel particle selection framework

A novel framework was developed as a basis to reference-free particle selection
in cryoEM micrographs. Detection and recognition of correct particles from cry-
oEM micrographs is a challenging task especially when no reference is available.
For this reason, a special focus on both candidate particle search and unsuper-
vised classification is needed. Next, details of the particle selection framework
are presented with application to boxing spherical Simian virus 40 particles. The
method details are followed by the results of an extensive study with simulated
data and results with experimental data. The framework is implemented in the
BioImageXD software presented in Section 5.1.

4.3.1 Details of the particle selection framework

Our particle selection framework (Algorithm 3) is based on iteratively moving
boxes and classification of final boxes. Previously, only Ogura and Sato (2004a)
have suggested a method which utilizes iteratively moving boxes. However,
their method relies on user-defined maximum number of particles, uses random-
izedmovement by simulated annealing optimizationwith different box goodness
evaluation, and does not include any classification of the final set of boxes.

The particle selection framework is based on image features computedwithin
every box. In principle, the same features could be evaluated in every pixel of an
image. However, this would lead to an intractable computational task with large
box sizes and nonlinear features, such as many texture features, and to obscure
peak selection from the feature image.

A box is defined by its centroid and size in an image grid. A box is always
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rectangular but can hold a mask of an arbitrary shape. The framework utilizes
image features calculated inside of a mask in the box. Feature vector is defined as
vector v = [v1, v2, . . . , vk] of computed features, where k ∈ N, and vi ∈ R. Dif-
ferent features can be weighted with feature weights, w = [w1,w2, . . . ,wk], where
wi ∈ R. Using weights and features, a feature value is defined as fv = ∑

k
i=1 wi ∗ vi,

where fv ∈ R. Finally, a feature function is a function that returns a feature value
computed from a box in given coordinates, f : N

2 → R.
Initialization. The method is initialized with a sparse grid of boxes. The

distance between adjacent boxes is not fixed. Smaller distance increases compu-
tation time and accuracy of the method. Larger distance has opposite effects. Dis-
tance of approximately half of the maximum diameter of the box is used to bal-
ance between efficiency and accuracy. However, research on the optimal distance
have not been made. Feature function is evaluated in every box, using defined
features, feature weights, and mask. Once all the initial boxes have been created,
the functions to normalize feature distribution to zero mean with the standard
deviation of one are created. Normalization is done to get a similar impact from
each feature on particle search.

Minimization of boxes’ feature values. After initialization, local minima
of feature function are searched by iteratively moving boxes. The minimization
is done by a gradient descent method. To estimate the gradient of a feature func-
tion, the complete feature function is first approximated with multilevel cubic B-
splines (Lee et al., 1997), using previously evaluated locations as known values.
The gradient is calculated from a feature function approximation, and normalized
to have a magnitude in the range of 0.0–1.0. After the gradient approximation,
each box is moved in the gradient descent direction by a length of the gradient
magnitude by a user-defined step size. If the maximum step size is too large, the
box might fluctuate around the local minima without ever reaching it. Typically,
the maximum step size is set to be smaller than the particle diameter, often half of
the diameter. However, the optimal value depends on the data. With a larger step
size, the method might converge faster, but to a different solution than with the
smaller step size. As the number of boxes decreases during iterations (explained
later), and the movement of some boxes stops in local minima, the number of
new evaluations decreases in every iteration. This also decreases the change in
the feature value approximation in every iteration. To prevent unnecessary com-
putation, the feature function is approximated only every 2k, where k ∈ N, itera-
tions.

Fusion of boxes and weighted feature sum. It is common that during itera-
tions, many boxes will move to the same local minimum. To ease computational
burden, and classification after a candidate particle search, boxes can be fused
together during iterations. A search for closely located boxes is done at the end
of every iteration. First, boxes are ordered by their feature values. Next, starting
from the boxwith the highest feature value, a search for boxes locating closer than
the minimum distance ||bix,y − bjx,y|| < dmin, where bkx,y is the location of box bk,
is conducted. The box with a higher feature value is fused to the other box. The
method convergence is checked after every iteration by calculating a weighted
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Algorithm 3 Outline of the particle selection framework

Input: TEM micrograph I of size (xmax, ymax)
B = {} // Set of boxes
d = Maximum diameter of searched particle
k = Initial distance between boxes
F = Image used to store known feature values
for all x ∈ {d/2, d/2+ k, . . . , xmax − d/2} do

for all y ∈ {d/2, d/2+ k, . . . , ymax − d/2} do
f = EvaluateFeatureFunction(I, (x, y))
F(x, y) = f
b = CreateBox((x, y), f )
B = B ∪ {b}

fn = CreateFeatureNormalizationFunctions(B)
i = 1
repeat

if log2i mod 1 = 0 then
Fapprox = ApproximateFeatureFunction(F)
G = Normalize(ComputeGradient(Fapprox))

for all b ∈ B do
bx,y = bx,y − G(x, y) ∗max_stepsize
b f = EvaluateFeatureFunction(bx,y, fn)
F(bx,y) = b f

B = FuseCloseBoxes(B)
f isum = WeightedFeatureSum(B)
if i = 1 then

fchange = fmin + 1
else

fchange = | f isum − f i−1
sum|

i = i+ 1
until i > itermax or fchange < fmin
for all b ∈ B do

bx,y = AlignBox(bx,y)

B = RemoveOverlapping(B)
C = Classi f yBoxes(B)
return C
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feature sum of boxes B, f isum = ∑b∈B b f ∗ (1+ b f used), where b f is a box feature
value, and the weight is defined by the number of boxes fused in the box. The
iterations of the candidate particle search are stopped when either the change in
the weighted feature sum between adjacent iterations is smaller than the defined
convergence value, or a maximum number of iterations have been done.

Final alignment and overlap removal. A feature-based particle search per-
forms well on finding a particle. However, a fine-tuned alignment should be
done with other methods. Centering is done by cross-correlating a mask in a
small region around the box centroid to find the maximum correlation between
the particle and the mask. After alignment, overlapping boxes are searched and
removed with the method used as the boxes were fused during iterations.

Unsupervised classification of boxes. The final set of boxes needs to be
classified to remove false positives such as contamination, overlapping particles,
and background. Unsupervised classification is done by clustering in feature
space. The common k-means clustering method is not optimal for clustering of
candidate particles for many reasons. First, the initial number of clusters is not
known a priori. Next, initialization of clusters is not straightforward. Finally, k-
means clustering does not detect outliers unless set into their own cluster. To find
a solution to these problems, a density-based clustering method DBSCAN (Ester
et al., 1996) was used. DBSCAN has many advantages over k-means clustering.
It does not need any initialization or a priori knowledge of clusters, and it can
detect and mark outliers even with very different measurements. DBSCAN takes
only two parameters: ε used to define the search range of measurements and a
minimum number of measurements needed to be found in the search range to
be considered as part of the same cluster. Typically, the second parameter can
be fixed to some percentage of the total number of measurements, and configure
the method only with the ε parameter. To be able to prune touching or slightly
overlapping particles, the box size is enlarged by 50% before clustering. Finally,
particle images of 25% enlarged box size (needed for later SPR steps) are extracted
from the micrograph to their respective classes.

4.3.2 Particle selection results

A particle selection method was tested with simulated and experimental micro-
graphs of Simian virus 40 (Stehle et al., 1996) particles. Simulated data with a
known ground-truth was created to test the accuracy of the proposed particle
selection framework with varying overlap scenarious and different contrast lev-
els. CryoEM micrographs were simulated with the TEM-simulator (Rullgård et
al., 2011). The main parameters defined for the simulations are presented in Ta-
ble 5. Additionally, the parameters related to the optical system, spherical and
chromatic aberration, and focal length were set to known values of TEM used in
experimental data imaging. Detector quantum efficiency and modulation trans-
fer function parameters, used to define noise in the micrographs, were adjusted
experimentally to get micrographs with a histogram as similar as possible to the
histogram of the experimental data.
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TABLE 5 Main parameters used in SV40 micrograph simulations.

Parameter Value
Acceleration voltage 200 kV
Defocus 1.2 μm and 2.5 μm
Electron dosage 10 e/Å2

Ice thickness 100 nm
Image dimensions 4096 x 4096
Image pixel size 2 Å
Magnification 50000
Physical pixel size 10 μm

Particles were set to touch or overlap with three different levels: no over-
lap, maximum of 15% of particles overlapping, and maximum of 30% of particles
overlapping. Each particle (approximately 50 nm diameter) was embedded in a
random depth in ice, and the orientation of the particle was randomized. A num-
ber of particles in each micrograph was drawn from normal distribution N(μ, σ),
where μ ∈ {50, 60, 70} was increased with the overlap level, and σ = 10. An
example of the simulated data is shown in Figure 13. Ten repetitions of all defo-
cus and overlap combinations were made, making the total number of simulated
micrographs 60.

Texture features from the gray-level run-lengthmatrix (Galloway, 1975; Chu
et al., 1990; Dasarathy and Holder, 1991), Haralick’s texture features (Haralick
et al., 1973), and mean intensity were tested as features for particle selection in
SV40 micrographs. As the searched particle is spherical, a circle mask was used
inside the boxes to define the region of interest for feature computation. Also,
for the final alignment, a thin circle ring mask was used to take advantage of the
distinguishable fringe of the particle.

Run-length features (Galloway, 1975; Chu et al., 1990; Dasarathy andHolder,
1991) are computed from the run-length matrix, which is a M× N matrix, where
M is the number of different intensity levels used and N is the number of run-
lengths. Floating point intensity values were binned to 16 intensity levels, and
the maximum run-length was defined as particle diameter. Each element (i, j)
in the run-length matrix includes information on the number of runs of j length
of i intensity level found in the image. Run-lengths are dependent on the direc-
tion they are measured. Element (i, j) of the run-length matrix computed in θ

direction is defined as p(i, j, θ). Haralick’s texture features (Haralick et al., 1973)
are computed from the co-occurrence matrix, a M × M matrix, where M is the
different intensity levels used as in the computation of the run-length matrix.

Different features were tested in the particle selection framework with a dif-
ferent set of simulated and experimental data from the one that was used to pro-
duce the results presented later. It turns out that in low SNR cryoEMmicrographs
many features either fail to distinguish particles from the background or are cor-
related and produce exactly the same results. Finally, two run-length features,
grey level non-uniformity (gln) (Galloway, 1975) and low grey level run empha-
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FIGURE 13 Examples of simulated micrographs with two different defocus levels in-
cluding SV40 particles. Top row: Defocus 1.2 μm with a third overlap level
includes many touching or overlapping particles. Bottom row: Defocus
level 2.5 μm with only isolated particles. Noiseless images (left) and final
simulations (right). Scale bar 40 nm.



76

sis (lgre) (Chu et al., 1990), were used in candidate particle search and box clas-
sification. The gln and lgre features are defined as (Galloway, 1975; Chu et al.,
1990):

gln(θ) =
1
n

M

∑
i=1

(
N

∑
j=1

p(i, j, θ)

)2

lgre(θ) =
1
n

M

∑
i=1

N

∑
j=1

p(i, j, θ)
i2

where n = ∑
M
i=1 ∑

N
j=1 p(i, j, θ) is the total number of runs. Texture features were

computed in all four principal directions θ ∈ {0°, 45°, 90°, 135°} to make the fea-
tures rotationally invariant. The final gln and lgre texture features were averages
over all directions. The features were weighted to define a single feature value
fv = 1.0 ∗ gln− 1.0 ∗ lgre used for particle search.

The particle selection results on simulated data with defined features are
presented in Table 6. The results of candidate particles are presented with the
final results using two different values of ε in DBSCAN clustering. The aim of
the initial candidate particle search is to find as many particles as possible by
keeping false particles at minimum. The number of false particles can be further
decreased in classification. More than thousand boxes that were initialized were
reduced to approximately 90 by the end of iterations. It can be seen that the can-
didate particle search was able to find almost all particles with only a few false
negatives. The number of false negatives increased with smaller defocus simu-
lation, as expected. The number of true positives was close to the false positive
boxes before classification. The results show that the method was able to find
particles with a great accuracy, as shown by recall values greater than 0.93 in all
simulations. Interestingly, recall was highest with simulations having the highest
rate of overlapping or touching particles, as fewer true positives were removed
in classification. False discovery rate (1-P), important for later SPR steps, was
low with 0.055 being the highest false discovery rate and 0.023 with simulations
with no overlapping or medium rate of overlapping particles. The smaller ep-
silon value for classification made false discovery rate slightly smaller while also
the recall was decreased as expected.

As can be seen from the results presented in Table 6, the epsilon parameter
in classification can be used to decrease the number of false positive particles.
The simulation result of the worst case scenario was used to study the effects of
epsilon parameter (Figure 14). It can be seen that smaller epsilon will decrease
recall. However, as epsilon can be used to decrease false discovery rate to some
extent in general, it does not necessarily have huge impact as the number of true
positives decreases while false positives are removed. With the worst case sim-
ulation, including many particles which barely touch, the current setup was not
sensitive enough to prune out all false positives, as can be seen from the ground-
truth in feature space (Figure 14). To solve the problem, either different features
or larger box size for classification would be needed.
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FIGURE 14 Particle selection results with different ε values in clustering. Particle se-
lection results with ε = 0.6/stdev (left) and ε = 0.3/stdev (right) drawn
in noiseless micrographs (1.2 μm defocus) for better visual interpretation,
and presented in feature space. Bottom row: Ground-truth result in feature
space.
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TABLE 6 Particle selection results for simulated data shown for each defocus and over-
lap level combination. The total number of true particles in simulations is 556
(no overlap), 484 (mid), and 470 (high). The number of true and false positives
after candidate particle selection (no classification), and the results with two
different epsilon values for classification, including recall and false discovery
rate (1-P), are shown.

Simulation No class. ε = 0.5 / stdev ε = 0.6 / stdev
Def. Overlap TP FP TP FP R 1-P TP FP R 1-P

1.2
No 545 383 518 4 0.932 0.008 536 4 0.964 0.007
Mid 478 427 451 8 0.932 0.017 465 10 0.961 0.021
High 467 444 456 25 0.970 0.052 461 27 0.981 0.055

2.5
No 554 366 543 1 0.977 0.002 551 2 0.991 0.004
Mid 483 434 473 7 0.977 0.015 476 11 0.983 0.023
High 469 448 467 20 0.994 0.041 469 22 0.998 0.045

The results on experimental data are shown in Figure 15. Only visual evalu-
ation of the experimental data results is possible, which is why there is no way to
define if the selected particle is actually a ”good” one. However, at least clusters
of particles, contamination, and touching particles are almost all removed from
the results. Only two clearly false positives were found. One of those was caused
by a misaligned box, and the other was in a particle touching another one. Over-
all, it can be said that the framework and selected features are functional with
low SNR experimental data of SV40 particles.
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FIGURE 15 Particle selection results on experimental data. Only two clear false posi-
tives (red), of which one is a badly aligned box, were found. Altogether
nine false negatives (marked with *) were found. It seemed that 76 of the
selected particles were true positives. However, as there is no ground-truth
available, this number is only an expert’s opinion. Scale bar 40 nm.



5 BIOIMAGE INFORMATICS SOFTWARE

From the bioinformatics field of science, a subfield called bioimage informatics has
emerged during last 15 years (Peng, 2008; Peng et al., 2012). From the bioimag-
ing pipeline (Figure 16), bioimage informatics covers areas related to data man-
agement and analysis as well as parts of data acquisition when automated mi-
croscopes are used in high-throughput applications (Pepperkok and Ellenberg,
2006). Broad needs in bioimage informatics collect together specialists from biol-
ogy, image analysis, and software engineering.

There has been a constantly growing need for bioimage processing and anal-
ysis methods and software since bioimaging moved from film to digital imaging
devices and turned from qualitative science to quantitative. Modern imaging
devices are capable of producing vast amounts of complex multidimensional im-
age data (Swedlow et al., 2009), which is utilized in bioimaging by increasing
sample sizes in experiments to gain more accurate results. Until recently, meth-
ods and software for analyzing the data have been the limiting factor in bioim-
age informatics (Wilt et al., 2009). Traditionally, the methods used have been
described in biological publications (Cardona and Tomancak, 2012) without the
method implementation being released at all, or released as an unmaintained
stand-alone program or a plugin to frameworks such as ImageJ (Abràmoff et al.,
2004; Schneider et al., 2012) or MATLAB (Mathworks) making reuse by other
biologists intractable task. Recently, the bioimage informatics community has
awaken to the software problem in the field which has resulted inmaintained and
supported open-source platforms such as BioImageXD (Publication PI), CellPro-
filer (Carpenter et al., 2006; Kamentsky et al., 2011), Fiji (Schindelin et al., 2012),
and Icy (de Chaumont et al., 2011, 2012).

Reproducibility is one of the key requirements in scientific research. To ful-
fill this requirement, methods used to analyze bioimage data should be made
available to the research community. Many closed commercial products, such
as Imaris (Bitplane), MATLAB, Metamorph (Molecular Devices), and Volocity
(Perkin-Elmer) are widely used in the field. It is clear that the exact implemen-
tation details are not known to the user of closed software even though many
commercial products do include method details at some level of specificity in
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FIGURE 16 Bioimaging pipeline. First, samples are prepared by a biologist for imaging.
These samples are then imaged in a software controlled microscope and
saved with metadata. Postprocessing software is used to process, visualize
and analyze data.

their manuals. It is possible to write a new open-source method as a script to
many commercial products. This is especially common in the MATLAB user
community. However, running this script would still require users to acquire
an expensive license to the software (MATLAB being an exception, with a lower
price range and availability in many research institutions) to be able to repeat the
results. Also, as Cardona and Tomancak (2012) pointed out, open-source software
is essential to enable continuous development in the growing bioimage informat-
ics field. Lately, journals and research communities have started to require open
software for reproducibility (Ince et al., 2012).

Bioimage informatics software development still holdsmany challenges. As
the imaging data is constantly growing and becoming more complex, software
need to be able to handle data as a whole, not just as a collection of images. For
instance, it is important that bioimaging software processes anisotropic voxels
correctly and can take multiple images in time series into account. Software ar-
chitecture is the key element that holds individual processing methods together
and defines how new methods can be included in the software. Most of modern
bioimage informatics software include versatile plugin architecture where new
tools are easily added. However, there is a risk that the continuously increasing
number of plugins can turn the software into an unusable mess for basic users. To
prevent this, strong management is also needed but rarely identified in scientific
open-source projects.

Carpenter et al. (2012) draw attention to bioimage informatics software us-
ability. This important matter is not on the top of the list of things to take care
in scientific software for a few reasons. First, most of the work is done to create
new methods to provide a solution for a specific biological problem. Addition-
ally, few labs have funding for a full-time software engineer to focus on testing
and usability of the software. For these reasons, scientific software are mostly
developed by application area or methodology experts without time or special
interest to focus on software engineering issues (Cardona and Tomancak, 2012).
To take better advantage of scarce resources in the field, interoperability between
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software packages and the usage of suitable libraries and toolkits is an increas-
ingly important aspect. Carpenter et al. (2012) also raises interoperability as one
of the challenges in the field. It is clear that even general bioimage informatics
software should not reinvent the wheel, but rather work in collaboration with
other projects.

5.1 BioImageXD

BioImageXD is an open-source post-processing software for bioimage informat-
ics. It is a general-purpose platform for processing, analysis and visualization of
multidimensional bioimaging data. BioImageXD is being developed by a mul-
tidisciplinary development team at the Universities of Jyväskylä and Turku in
Finland, and has formerly been under development in the Max Planck Institute
CBG in Dresden, Germany, with collaborators worldwide. BioImageXD version
1.0 was released for publication in the 2012 July issue of Nature Methods (Publi-
cation PI) after more than five years of development.

BioImageXD is a modular software, the core andmodules of which are writ-
ten in Python while C++ is used for more demanding computations. Its graphical
user interface utilizes wxPython (a wrapper for wxWidgets) library. Visualization
Toolkit (VTK) (Schroeder et al., 2006) and Insight Segmentation and Registration
Toolkit (ITK) (Yoo et al., 2002) are used in many of its processing, analysis and vi-
sualization modules. Also, many proprietary microscopy file format readers and
image processing, analysis and visualization filters developed in the project, are
implemented as VTK or ITK C++ filters.

The BioImageXD features are presented in detail in Publication PI Supple-
mentary material, as the features of early 2012. Shortly, BioImageXD can read
some proprietary and open image file formats. The open OME-TIFF (Linkert et
al., 2010) format is read andwritten to support data interchangewith other bioim-
age informatics software. BioImageXD includes regular visualization modes for
2D slices and projections. In addition, data can be visualized with a full modular
3D visualization mode where modules, such as volume and surface rendering,
can be combined in a common view to visualize the same data or different chan-
nels with multiple modules. A versatile animator can be used to create videos
of 3D visualizations of the data. Image processing is always done in 3D unless
specified otherwise or when processing 2D image data. BioImageXD includes
many noise filtering methods, morphological operations, and registration meth-
ods to compensate sample movement during live imaging. Many segmentation
and labeling methods can be used to identify different types of objects for object-
based analyses. A tracking method enables analyses of movement of individual
particles in live imaging. Colocalization analysis tools can be used to draw many
statistical measurements from signal overlap between channels. All processing
and analysis methods can be combined into processing pipelines and run in a
batch mode.
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5.1.1 BioImageXD design criteria

BioImageXD was designed with six design criteria: open, extensive, usable, ad-
justable, applicable, and extendable. Next, ideas and requirements for general
bioimage informatics post-processing software behind these criteria are presented.

Openness and transparency of the software are the most important criteria
from the scientific aspect, as pointed-out above. As the development was, and
mostly still is, driven by the needs and ideas of the main development team and
collaborators, it was clear that the software was licensed with the GNU GPL v2
license to make it available to users and other developers. Also, for the devel-
opment of BioImageXD, many other open-source packages, such as Python, VTK
and ITK, were used, which makes releasing the software with an open license
self-evident. Unlike proprietary and black-box commercial software, open soft-
ware is transparent. However, as most of the users are not familiar with reading
source code, it was important from the scientific aspect to make methods to carry
out only a single functionality. Thus there are no complex compound methods
which are not understandable to users without reading the source code. How-
ever, there is still work to do to improve the software documentation.

Extensive set of features is needed for bioimage informatics software to be
considered as general-purpose. As many other software in the field (Eliceiri et
al., 2012), also BioImageXD was initially developed for special purposes, mainly
visualization, animation, and colocalization analysis. During many years of de-
velopment and different projects, the feature list of BioImageXD has grown to
be extensive and general for many bioimage informatics needs. Turning images
into quantitative measurements is the most important task in bioimage informat-
ics. To support this for a wide range of imaging modalities, such as fluorescence,
phase contrast, and electron microscopy, a large set of processing and analysis
methods are needed. In addition, as the field is all about the images, it is im-
perative to have extensive visualization tools. We felt that these tools should
be coupled with the analysis tools. Furthermore, 3D visualization tools can be
used to create animations of datasets through user-defined flypaths. Eliceiri et al.
(2012) regarded BioImageXD visualization and animation tools as the best in the
field.

Usability, recently raised by Carpenter et al. (2012), was also one design cri-
teria for BioImageXD. It was clear from the beginning that BioImageXD should
run on all three major operating systems (Linux (many variants), Microsoft Win-
dows, and Mac OS X (Apple)) as opposed to many commercial software which
are only available to Windows and maybe to Mac OS X (Publication PI, Supple-
mentary material). We also felt strongly for distributing BioImageXD in a single
package without the need to search for various websites for plugins. It is clear
that this requirement is easier to fulfill in a smaller and younger project than for
instance in ImageJ, which has been developed for 25 years (Schneider et al., 2012)
and has huge user community. BioImageXD is run on single GUI (also command
line processing is possible) which is designed for scientific applications. One ex-
ample of this is that manipulation or processing is not saved until the user decides
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to do so, to prevent mistakes and unmeant manipulations to the original imag-
ing data. Carpenter et al. (2012) also lists support for reproducible research as
one usability criteria. In BioImageXD, this is handled by saving all processing
information to saved datasets, which can be used later to trace methods and pa-
rameters used to analyze data. Finally, the bioimage informatics software should
be usable with datasets much larger than the available system memory. BioIm-
ageXD was designed to load into memory only what is needed. Often this means
a single 3D stack from one time point and channel, but some features are usable
even with datasets that have 3D stack larger than the available system memory.

Adjustability, along with openness, is one of the key questions to enable ac-
curate scientific research. As mentioned above, BioImageXD was designed not to
include any unscientific black-box processing. To make adjustability possible, the
parameters of the methods are tunable by users. It is clear that too many options
can confuse biologists and new users (Carpenter et al., 2012) who are not familiar
with image processing and analysis nor understand how different parameters af-
fect processing. Unfortunately, research in image analysis and computer vision is
not yet in a state where everything could be automated. Human expertise is still
needed to solve general image analysis problems. However, default values and
recommendations are given to make the learning curve easier. Also, to increase
usability, parameters requiring more advanced knowledge are clearly marked.
Combining methods into an image processing pipeline is needed to solve most
image analysis problems (e.g segmentation pipeline in Figure 4). Construction of
pipelines is possible in BioImageXD without any macro-writing or programming
skills. Pipelines, along with the parameters used, can be saved for later use.

Applicability for a wide range of imaging modalities as well as image data
from single-channel 2D images to 3D multi-channel timeseries is important for
a general bioimage informatics platform. In addition, as high-throughput ap-
plications (Peng, 2008; Zhou and Wong, 2006) are becoming more popular, and
are a must in systems biology (Kitano, 2002; Pepperkok and Ellenberg, 2006), it
is imperative that the analysis methods are validated and that bioimage infor-
matics software are applicable to high-throughput analyses. BioImageXD is not
yet applicable for studies where the automatic microscope is controlled by the
analysis software. However, BioImageXD includes a versatile batch processor
usable for analyses of thousands of images without user interaction. Addition-
ally, validation tools in BioImageXD have been developed and used to validate
segmentation, tracking, and internalization analyses in Publications PI–PIII.

Extendability is amust inmodern software architectures, and especially im-
portant in bioimage informatics, where new methods are constantly published.
BioImageXD, as most other software in the field, is modular and utilizes plugin
architecture (raised also as criteria by Carpenter et al. (2012)). Modularity enables
rapid development and testing of new methods within an extensive platform of-
fering data input and visualization. Through the development of BioImageXD,
the project has leaned to other open-source toolkits, mainly to VTK for visualiza-
tion and ITK for processing and analysis. The developer and user communities
for these toolkits are huge, which guarantees continuous development. BioIm-
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ageXD can be extended with filters in these libraries with a simple module to
handle communication between the software and the filter. To give back to these
communities, all C++ processing code is written as filters to VTK or ITK and is
thus directly usable by others.

5.1.2 BioImageXD in research articles

BioImageXD has been cited in numerous research articles. Approximately 75 ar-
ticles were found in Google Scholar search that either cite or mention of using
BioImageXD. BioImageXD has been cited in research articles from various fields.
It can be seen that the software truly is a general-purpose bioimage informatics
platform as indicated in Publication PI. BioImageXD has been recently surveyed
for light microscopy applications in systems biology (Antony et al., 2013), pro-
filing cellular phenotypes (Laksameethanasan et al., 2013), bioimage informat-
ics software (Eliceiri et al., 2012) for systems pharmacology (Li et al., 2013), and
for open-source bioimage informatics for cellular biology (Swedlow and Eliceiri,
2009) as well as listed in many other review articles.

From the information extracted from individual research articles (not in-
cluding articles where the author of this work was involved), it can be concluded
that pixelwise colocalization tools are the most used analysis tools in BioIm-
ageXD, followed by 3D visualization and object-based quantification. Colocal-
ization tools have been used by numerous groups in many fields, including drug
delivery by nanoparticles (Bergman et al., 2013), neurology (Harrison et al., 2013),
experimental eye research (Mueller et al., 2013), as well as in many studies in vi-
rology (Khan et al., 2011; Quattrocchi et al., 2012; Turkki et al., 2013), and cellular
and molecular biology (Karjalainen et al., 2008; Laakkonen et al., 2009; Lemnitzer
et al., 2013). Object-based measurements are other common analyses done in
BioImageXD. Statistical analyses of object features such as average intensity and
size are preceded by segmentation and identification of individual objects in the
processing pipeline. Different processing pipelines have been used to measure
nanoparticles (Bergman et al., 2013), cell membrane proteins and/or subcellular
vesicles (Karjalainen et al., 2008; Siljamäki et al., 2013; Turkki et al., 2013), nu-
clei (Turkki et al., 2013), and to compute the amount of infected cells (Siljamäki et
al., 2013). Most of the analyses were done from 3D fluorescence data.

3D visualization tools have been used for a wider range of imaging domains
than analysis tools. In addition to visualization of fluorescence microscopy data
of cellular structures (Harrison et al., 2013), the software has been used to cre-
ate animations (Connors et al., 2007) and visualize blood vessels (Korpisalo et
al., 2008) from fluorescence data. BioImageXD has also been used for visualiza-
tion of untraditional imaging data such as scanning transmission ion microscopy
(STIM) data (Whitlow et al., 2007), coherent anti-Stokes Raman scattering (CARS)
microscopy data (Downes et al., 2009), single plane illumination microscopy data
(SPIM) (Ejsmont et al., 2009), stimulated emission depletion (STED) microscopy
data (Hämälistö et al., 2013), and 3D holographic light patterns (Yang et al., 2011).
To conclude, BioImageXD is applicable to a wide range of image analysis and vi-
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sualization task in many imaging domains in bioimage informatics.

5.2 Overview of other bioimage informatics software, tools and li-
braries

Many applications, tools, and software have been developed and published dur-
ing years of quantitative bioimaging. Development of many of the applications
has stopped and many of the applications are made only for a single special pur-
pose. In this section, software, tools and libraries which are actively developed,
and are at least partly in the same field as BioImageXD or offer methods of in-
terest to BioImageXD, are presented shortly. Reader is advised to consult Eliceiri
et al. (2012) for a more complete review of optical imaging software in bioimage
informatics.

ImageJ (Abràmoff et al., 2004) and its predecessor NIH Image have been un-
der development for 25 years (Schneider et al., 2012) as general-purpose image
processing software. Due to its openness, long development history, and early
adaptation of plugins, it has gain popularity in many fields of scientific imaging,
including bioimaging. ImageJ core processes and visualizes 2D images in a low-
throughput fashion. Over the years, numerous plugins have been developed to
ImageJ by bioimaging community to add new processing tools as well as to offer
3D visualization. However, most of these plugins have been distributed by in-
dividual research groups in their own websites. Fiji (Schindelin et al., 2012) was
developed to modernize the ImageJ architecture and to collect plugins of interest
to bioimaging community in a single package, with the ImageJ functionality as
its core. Fiji’s improved architecture with native support for multidimensional
image data has made many developers to move from ImageJ to Fiji.

Icy (de Chaumont et al., 2012) is a general-purpose bioimage informatics
software that offers native 3D visualization with VTK and a graphical tool for
creating complex processing pipelines. The Icy project takes community driven
development into a new level by offering anyone a chance to develop plugins
and to distribute these to others in a repository hosted by the project. In addi-
tion, Icy connects directly to ImageJ and MATLAB. Vaa3D (Peng et al., 2010) is
another native 3D software taking advantage of VTK for visualization and ITK
for image analysis. However, Vaa3D is designed for visualization-based analysis
and is mainly for larger-scale biological applications such as embryo anatomy at-
lases. CellProfiler (Carpenter et al., 2006; Kamentsky et al., 2011) offers tools for
completely different types of applications. It is designed for high-throughput 2D
applications of cell segmentation and phenotyping by classification.

As mentioned, many bioimage informatics software use VTK (Schroeder et
al., 2006) for visualization (BioImageXD, Icy, Vaa3D) and ITK (Yoo et al., 2002) for
analysis (BioImageXD, Vaa3D). Both of the toolkits are written in C++, but wrap-
ping to Python and Java is supported. Most microscopy imaging data is in micro-
scope manufacturers’ proprietary formats. The Bio-Formats (Linkert et al., 2010)
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Java library was developed for the community to read image formats (currently
approximately hundred), including all popular microscopy formats. The library
is used directly in Java-based software: ImageJ, Fiji, Icy, and CellProfiler. Also a
wrapper to include Bio-Formats to ITK pipeline has been developed but not yet
utilized in BioImageXD. Microscopes are also directly controllable through the
API of open source software μManager (Edelstein et al., 2010). μManager gives
the same advantages for controlling microscopes as Bio-Formats for reading pro-
prietary file formats.

TheOpenMicroscopy Environment (http://www.openmicroscopy.org, OME),
the present developers of the Bio-Formats library, support open microscopy data
interchange. OME-TIFF (Linkert et al., 2010) is a widely-adopted open file format
for microscopy. Recently, many microscope manufacturers have also added sup-
port for OME-TIFF into their software, making file interchange between software
easier. OME also develops the OMERO server used to manage microscopy data
(Figure 16, 3. Data management).

Many technically oriented researchers and developers in bioimage infor-
matics have become committed to academic open source software. However,
commercial software are still widely used in the field. Imaris (Bitplane) was
found to be the most applicable in cellular image analysis application in Publica-
tion PI (Supplementary material), with Volocity (Perkin-Elmer) having extensive
3D visualization and animation tools. Columbus (Perkin-Elmer) is a commercial
product for data management and 2D image analysis based on the open OMERO
server. Other products often cited in research articles are Metamorph for analysis
(Molecular Devices), Amira for visualization (FEI), and Huygens for deconvolu-
tion (Scientific Volume Imaging).



6 CONCLUSIONS AND FUTUREWORK

This work presented algorithms and software for biological image analysis at
multiple scales frommacromolecular structures imagedwith electronmicroscopy
to whole cells imaged with optical microscopy. The main conclusions are sum-
marized followed by suggestions for future work.

6.1 Main conclusions

The main results and conclusions of the work are:

• An open-source bioimage informatics software, BioImageXD, was devel-
oped (Publication PI, Section 5.1). The software enables image analysis,
such as internalization analyses, previously unavailable in open-source bio-
imaging software. BioImageXD also offers progressive tools for 3D visu-
alization and animation to make the structure of the imaged data more
understandable. All processing is done in multiple dimensions, and no
background processing, such as resampling data for faster visualization
are present. These are important aspects in scientific image analysis. Six
general criteria for bioimage informatics software were defined. Finally,
research articles citing BioImageXD were checked to find the most used
methods in the software. It seems that colocalization as well as object-based
and internalization analyses with 3D visualization were the most used fea-
tures. The aim to develop general-purpose bioimage informatics software
was fulfilled. The defined criteria guaranteed that the requirements for the
software were also fulfilled.

• A feature-based tracking method was developed (Publication PII, Subsec-
tion 3.3.3) and used to track α2β1 integrin clusters. The method was shown
to give a good linking accuracy (0.947− 0.999) and moderate perfect tracks
accuracy (0.260 − 0.97) with different simulations. The method was also
able to detect the clustering of particles. However, the method is dependent
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on good pre-segmentation of the image data. The objective of the particle
tracking method was fulfilled, as proven by the comparison to a state-of-
the-art SPT method with the same input segmentation and a similar pa-
rameter configuration. The developed method gave more accurate results
than the compared method in the tracking of clustering α2β1 integrin clus-
ter data. The method is highly configurable, and as such, fulfills the aim of
general-purpose particle tracking method. The particle tracking method is
available in the BioImageXD software.

• The third objective was to study new methods and existing colocalization
methods for analyzing particle association. A novel idea for particle asso-
ciation analysis and a novel PPM association method was presented (Pub-
lication PIII, Subsection 3.2.4) and compared to existing pixelwise colocal-
ization methods as well as to the ICP matching method. The objective was
fulfilled, and the PPM association method was proven more accurate than
the methods compared. For association analyses in various simulation con-
ditions, the global PPM association method was shown to be more accurate
than the local ICP method. The PPM association method was shown to pro-
duce results similar to those of pixelwise colocalization methods in fixed
imaging experiment with large amount of colocalization. Our method was
able to detect more association than traditional colocalization methods in
live imaging experiment with closely located particles without direct over-
lap. The PPM association method is currently available as MATLAB imple-
mentation. However, the plan is to include the method in BioImageXD in
near future.

• Effects of the missing wedge in limited angle ET were studied in Publica-
tion PIV. The missing wedge results in anisotropic resolution. A newMAP-
EM reconstruction method for biological ET was studied to solve problems
due to themissingwedge. Themethodwas shown to decrease elongation of
colloidal gold particles, as compared to commonWBP and SIRT methods in
simulated and experimental studies. Also, the contrast ratio was increased
in both, experimental and simulated data, reconstructions. The developed
method reduces the artifacts caused by the missing wedge, and as such, the
method fulfilled the objective of the study.

• A novel particle selection framework for SPR was developed (Section 4.3)
to maximize the quality of selected particle images for reconstruction. The
framework was tested with simulated and experimental micrographs in-
cluding Simian virus 40 particles. Run-length and Haralick’s texture fea-
tures were tested in the framework. The particle selection method gave a
high recall (over 0.93) and low false discovery rate (less than 0.055) even
with the most complex simulation scenario tested. The research on particle
selection framework mostly fulfilled the objective of minimizing false par-
ticle detection. However, the method has not been tested and configured
for detecting small asymmetric particles. The particle selection method is
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available in the BioImageXD software.

6.2 Plans for future work

During the research presented in this work, several directions for new research
have emerged. In the BioImageXD project, the future plans concern the usability
of high-throughput applications and the interoperability with other bioimage in-
formatics software. Usability is an important aspect in all software development,
but especially in scientific software: finding a balance between simple usage and
applicability to complex applications is hard. For the next generation of BioIm-
ageXD, different features are planned with the purpose of making them work
together more seamlessly without unnecessary intermediate processing. Inter-
operability will be improved by adopting the Bio-Formats library (Linkert et al.,
2010) for microscopy image data import and export. A general API for using
BioImageXD from other applications is planned to be designed in the next gener-
ation BioImageXD. Also direct access to other bioimage informatics software will
be researched.

Criteria for automatic parameter selection for the tracking method is an in-
teresting topic. This would relieve the user from sometimes intractable search
of suitable parameters. In addition, the plan is to include more features to be
used in search for particle correspondence, usable when tracking larger objects
such as nuclei or cells. Manually adjustable parameters for each feature is not a
sound solution. For this, automatic parameter selection would be needed. Idea
of dummy particles as a solution to temporal disappearance is another subject
worth of research.

SPR is another field of research with open questions. It would be interesting
to test many other features, such as wavelet features (Aydogan et al., 2009), in
the particle selection framework, and to develop the presented particle selection
method for the selection of small particles with their molecular weight of only a
few hundred kilodalton. CryoEM images of these particles are almost invisible
for naked eye, so there are few means for manual inspection to check whether
the selected particles are ”good”. A method for truly automatic selection and
classification of good particles would have a huge impact on the SPR commu-
nity. Another interesting direction would be to test the reconstruction method,
presented for ET to SPR, with particles that favor some orientations over others.
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YHTEENVETO (FINNISH SUMMARY)

Kuvantaminen on merkittävä osa nykypäivän solubiologian tutkimusta. Solu-
biologiassa tutkittavat kohteet ovat nanometreistä kymmeniin mikrometreihin.
Tämän kokoisten objektien kuvantaminen vaatii mikroskopiaa. Solubiologiassa
turvaudutaan usein fluoresenssimikroskopian menetelmiin, jotka mahdollistavat
tiettyjen rakenteiden merkkaamisen muuten käytännössä läpinäkyvistä soluista.
Valomikroskopialla ei kuitenkaan yleisesti pystytä erottelemaan rakenteita 200
nanometriä tarkemmin. Elektronimikroskopiaa käytetään, kun tarvitaan parem-
paa erottelukykyä muun muassa tutkittaessa kuinka vain kymmenien nanomet-
rien kokoiset virukset menevät soluun sisälle.

Tämä väitöskirja ”Moniskaalaisen biologisen kuva-analyysin algoritmeja ja
ohjelmisto” käsittelee mikroskopian kuva-analyysiongelmia sekä analyysiohjel-
mistoja useassa kokoluokassa. Työllä on viisi päämäärää. Ensimmäisenä on yleis-
käyttöisen ohjelmiston kehittäminen moniulotteisen mikroskopiadatan visuali-
sointiin ja analysointiin. Kuvantamismenetelmien kehittymisen myötä nykyiset
mikroskoopit tuottavat valtavat määrät moniulotteista kuvadataa, jonka kvali-
tatiivinen analysointi ei ole mahdollista, eikä tieteelliseltä kannalta edes suota-
vaa. Tästä syystä tarve tieteelliset vaatimukset täyttäville analyysiohjelmistoille
on ollut valtava. Tutkimustyön aikana on kehitetty avoimen lähdekoodin ohjel-
misto, BioImageXD, joka vastaa osaltaa biokuvantamisen haasteisiin. Ohjelmis-
ton vertailu muihin tarjolla oleviin sekä kaupallisiin että avoimiin ohjelmistoihin
osoittavat BioImageXD:n tarjoavan monipuolisia visualisointi- ja analysointiomi-
naisuuksia mitä ei ole saatavilla muissa vastaavissa ohjelmistoissa. Osoituksena
BioImageXD:nmonipuolisuudesta, ohjelmistoa käytettiin vaativan solubiologian
kuva-analyysiongelman ratkaisemiseen. Tutkimus on esitetty väitöskirjan ensim-
mäisessä osajulkaisussa.

Toinen ja kolmas tavoite liittyvät fluoresenssimikroskopiadatan analysoin-
tiin. Toisena päämääränä on kehittää seurantamenetelmä ratkaisemaan klusteroi-
tuvien partikkeleiden seurantaongelmaa kolmiulotteisessa aikasarjassa. Partik-
keleiden seuranta elävissä soluissa mahdollistaa solun toiminnan yksityiskohtai-
sen tutkimisen. Työssä kehitettyä menetelmää sovelletaan α2β1-integriinikluste-
rien seurantaan. Tulokset sekä simuloidulla että kokeellisella datalla ovat tarkko-
ja. Menetelmä ja tulokset esitetään tämän työn toisessa osajulkaisussa.

Kolmantena päämääränä on tutkia menetelmiä eri partikkeleiden yhteyk-
sien analysoimiseen, jolla on lukuisia käyttökohteita solun sisäisten vuorovaiku-
tusten ymmärtämisessä. Yleisesti käytetyt kolokalisaatiomenetelmät eivät kui-
tenkaan kykene tunnistamaan lähekkäin sijaitsevia objekteja elleivät ne sijaitse
alle valomikroskoopin resoluution etäisyydellä toisistaan. Tätä vaikutusta tutkit-
tiin myös tässä työssä. Partikkeleiden yhteyden analysoimiseen kehitettiin mene-
telmä täysin uudenlaisen idean pohjalta. Menetelmä todettiin tarkaksi ja vakaak-
si useilla simuloiduilla ja kokeellisilla datoilla. Menetelmät ja tulokset on esitetty
tämän työn osajulkaisussa kolme.

Neljäs ja viides päämäärä liittyvät elektronimikroskopiaan, joka tarjoaa mo-
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nisatakertaisen erottelukyvyn valomikroskopiaan verrattuna, mutta sisältäämyös
merkittäviä ongelmia. Osatyössä neljä tutkitaan elektronitomografian puuttuvis-
ta kuvakulmista aiheutuvia ongelmia. Perinteisesti käytetyillä menetelmillä luo-
duissa rekonstruoinneissa on selkeästi nähtävissä heikentynyt resoluutio ja eri-
näiset artefaktat. Ongelman ratkaisemiseen sovellettiin Tampereen teknillisessä
yliopistossa toimivan yhteistyöryhmän lääketieteen tomografiasovelluksiin kehi-
tettyämenetelmää, joka vähentää puuttuvista kuvakulmista aiheutuvia ongelmia
merkittävästi. Alustavat tulokset on esitetty osatyössä neljä.

Viidentenä tutkimuskohteena on pienten, vain nanometrien tai kymmenien
nanometrien kokoisten partikkelien rakenteiden tutkiminen nanometrien osien
tarkkuudella elektronimikroskopialla. Tällaisia partikkeleita ovat esimerkiksi vi-
rukset ja niiden rakenteet, joiden toimintaa voidaan ymmärtää paremmin nii-
den rakenteet tuntemalla. Niin sanotussa yksittäisen partikkelin rekonstruoin-
nissa luodaan kolmiulotteinen malli tuhansista kaksiulotteisista kuvista. Partik-
keleiden tunnistaminen näistä kaksiulotteisista kuvista on haasteellisuuden takia
yksi menetelmän merkittävimmistä rajoitteista. Tässä työssä esitellään menetel-
mä, jolla partikkeleita voidaan tunnistaa automaattisesti sekä karsia niin sano-
tusti ”huonoja” partikkeleita pois, joka yleensä vaatii päivien tai jopa viikkojen
manuaalista työtä.
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1Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
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ABSTRACT

Single-particle tracking is computationally a challenging prob-
lem, and usually solved with local methods. Local methods suffer
from defects in the image data or in the detection of particles, such
as temporal disappearing of particles. A particle tracking method
has to provide a solution also to real disappearing and appearing of
particles as a result of merging and splitting. Here, we present an ef-
ficient, greedy algorithm as a solution to the particle tracking prob-
lem. This improved local method is application independent, as it
has high configurability of the function used to solve particle corre-
spondence. To demonstrate the accuracy of the method, we apply it
to real microscopy image data with the BioImageXD software, vali-
date it using simulated image data, and compare it to a well-known
existing method.

Index Terms— Particle tracking, Biomedical image processing,
Image motion analysis, Optical microscopy, Greedy algorithms

1. INTRODUCTION

In order to gain in-depth understanding of the cellular physiological
processes during cell division, migration and pathological processes
such as cancer and inflammation, it is imperative to study these pro-
cesses in live cells. Recent advances in biomedical imaging have
facilitated the detection of fast cellular processes in 3D.

The dynamic behaviour of particles ranging from molecular
structures to whole cells, can be analysed using single-particle
tracking methods. In single-particle tracking, the three-dimensional
spatial locations of particles are traced through a time-lapse se-
quence of image volumes, producing particle trajectories that can be
analysed for instance for speed or direction of movement.

However, single-particle tracking in fluorescence microscopy is
a challenging task. First, the size, shape and intensity of fluores-
cent particles often vary through the recorded time series. This com-
plicates the process of linking the detected particles, which there
may be hundreds of, to the corresponding ones in the following time
point. Second, estimating the particle location in the next time point
may be problematic. Microscopic particles in cells often exhibit
Brownian motion, causing their movements to be somewhat erratic,
even if they are being actively transported. Larger biological parti-
cles, such as cells, also tend to constantly change their direction of
movement and have a complex, labile morphology. For these rea-
sons, many particle tracking methods search for the corresponding
particle using a specified maximum distance from the location of the
particle in the previous time point, instead of trying to estimate the

direction of movement. Third, there are many events that can oc-
cur during the image series that complicate tracking [1]. In a merge
event, two or more particles merge into one. This can happen when
particles are closer to each other than what the resolution limit of the
imaging device is, or when a real cluster is formed. A split event
occurs when a single particle is split into two or more distinct par-
ticles. Additional events to take into account include appearing and
disappearing of particles in the middle of a time series. Appearing
of a completely new particle occurs when a particle has moved into
focus or into the field of view, or when a particle has gained enough
size and intensity as a result of the clustering of fluorophores. Disap-
pearing is defined as an event where an individual particle disappears
without merging with other particles.

General single-particle tracking problem is NP-hard [2], which
makes finding a global solution, without approximations, computa-
tionally unfeasible even for tens of particles [1, 3]. To circumvent
this constraint, many tracking algorithms solve particle correspon-
dence locally. Greedy optimization makes particle tracking efficient,
but it usually cannot give an optimal global solution to the parti-
cle tracking problem [4]. Also, some local algorithms do not handle
merge and split events [5]. To improve local results, some algorithms
use an additional global step to recover the temporal disappearing of
particles [2, 3]. The downside is that many of these methods treat
merge and split events as temporal disappearing and appearing of
particles [2, 3].

In this paper, we present a new, greedy, local single-particle
tracking method for 3D fluorescence microscopy image data, de-
signed to overcome the challenges mentioned. Our algorithm han-
dles merge, appear and disappear events using only one-pass through
the particles in the time series. A split event is considered as the ap-
pearing of one new particle. We focus on finding trajectories of par-
ticles rather than methods to detect them. There are several meth-
ods for detecting particles, for instance spot detection methods for
finding small point-like structures [6], or active contour methods for
detecting large cells [7, 8]. The single-particle tracking method pre-
sented here is not application specific, and can thus be used to track
the movement of virtually any type of particles.

2. METHODS

2.1. Particle tracking method

Proposed particle tracking method makes decisions using informa-
tion of the existing trajectories and of the particles of the time point
under evaluation. Optimization of the particle selection for each tra-



jectory is based on the calculation of a goodness value. The goodness
value is calculated using particle location, size, average intensity and
direction of movement, and information of previous particles in the
trajectory. The user can control the method by setting weights to
these four parameters. Additionally, the user can define terms of
maximum deviation for the parameters that each particle has to fulfill
before being considered for the trajectory. If required, the weights
and terms can also be used to limit the tracking to specific trajecto-
ries, such as those of fairly straight moving particles.

The terms for size, average intensity and direction angle are de-
fined using the specified maximum deviations, as compared to the
previous particle in the trajectory. For the location term, the user can
define a minimum (Dl) and a maximum (Dh) distance in addition to
the maximum deviation. Let σd, σs, σi, σa ≥ 0 be the user-defined
deviations of distance, size, average intensity and direction angle, re-
spectively. Also, let pt be the time point, pl the location, ps the size,
and pi the average intensity of particle p, and let pa be the angle of
particle direction, and tk the particle of k:th time point in trajectory
t. Using these definitions, all particles p that fulfill the terms pre-
sented in equation 1 are considered to be included in the trajectory
t.

Dl ∗ (1− σd) ≤ d ≤ Dh ∗ (1 + σd)

|ps − (tpt−1)s|

(tpt−1)s
≤ σs

|pi − (tpt−1)i|

(tpt−1)i
≤ σi

|pa − (tpt−1)a|

(tpt−1)a
≤ σa

(1)

where d = ‖pl − (tpt−1)l‖. The direction angle of particle pa is
calculated using the location of the particle pl and the locations of
two previous particles in the trajectory (tpt−1)l and (tpt−2)l. Let �u
and �v be vectors defined as �u = pl − (tpt−1)l and �v = (tpt−1)l −
(tpt−2)l. The direction angle of the particle is then

pa =
�u

||�u||
·

�v

||�v||
.

To determine the goodness of fit for particle p in trajectory t, we
define functionΨ separately for distance, size, average intensity and
direction angle as defined in equation 2.

Ψd(t, p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if Dl ≤ d ≤ Dh∣∣∣ Dl−d

Dl∗σd

− 1
∣∣∣ if d < Dl∣∣∣ d−Dh

Dh∗σd

− 1
∣∣∣ if d > Dh

Ψs(t, p) =

∣∣∣∣
|ps − (tpt−1)s|

(tpt−1)s ∗ σs

− 1

∣∣∣∣

Ψi(t, p) =

∣∣∣∣
|pi − (tpt−1)i|

(tpt−1)i ∗ σi

− 1

∣∣∣∣

Ψa(t, p) =

∣∣∣∣
|pa − (tpt−1)a|

(tpt−1)a ∗ σa

− 1

∣∣∣∣

(2)

Finally, goodness of fit for particle p in trajectory t is computed
using equation 3.

Ω(t, p) =
∑
k

wk ∗Ψk(t, p) (3)

Step 1. If first time point, create new trajectory for every particle
in the time point and finish iteration.

Step 2. Calculate goodness value using equation 3 for every par-
ticle and track combination that fulfills definitions of
equation 1.

Step 3. Go through each goodness value from highest to lowest.
Add particle p to trajectory t, if t and p used to calcu-
late goodness value are not used yet, t is not terminated,
and Ω(t, p) > α ∗ ht, where ht is the highest goodness
value calculated for t. Mark every trajectory, that had
same particle as trajectory t in previous time point, as
terminated.

Step 4. Add particle with highest goodness of fit for every track
that is not used or terminated. If there are no particles
that fulfill definitions of equation 1, then mark trajectory
as terminated.

Step 5. For every particle that is not used yet, create new track
and add particle to that track.

Fig. 1. Description of the steps of our particle tracking algorithm,
iterated for every time point. α ∈ [0, 1] is a user-defined clustering
factor. Higher α value results in more merging of trajectories.

where wk, k ∈ {d, s, i, a} are the user-defined weights for the four
parameters. For the weights it holds that wk ∈ [0, 1] and

∑
k
wk =

1.
The proposed particle tracking method creates trajectories us-

ing a breadth-first search of particles. Unlike depth-first search, this
makes it possible to optimize the selection of the particles for all tra-
jectories at every time point. The key steps of the particle tracking
method, iterated for every time point, are presented in Figure 1. Step
1 is initialization, done only for the first time point. Step 2 calculates
the goodness of fit of the particles to existing trajectories. In step
3, unused particles are assigned to unused trajectories. A trajectory
does not necessarily get the particle that has the highest goodness
value calculated in step 2, since that particle might already be as-
signed to another trajectory for which it had a higher goodness of fit.
Clustering of the particles is handled in step 4, where also trajectories
without suitable particles are terminated. This provides a solution to
the merge and disappear events. Finally, in step 5, new trajectories
are created for all unused particles. This step solves the appear and
split events. An open source implementation of the proposed particle
tracking method is available in the BioImageXD software [9].

2.2. Real data

We tested our particle tracking method with the known phenomenon
of echovirus 1 induced clustering of its receptor, α2β1 integrin [10].
The integrins were labeled with a fluorophore-conjugated antibody,
and five consecutive image series were acquired, each consisting of
40 three-dimensional image stacks taken with 30 second intervals
with a confocal microscope (Olympus FV1000; slice dimensions
512 x 512, number of slices per stack 19–22, voxel size 0.207 x
0.207 x 0.500 μm3).

Before tracking, particles were detected from all 200 image
stacks with an automatic spot detection method as follows: 1) dif-
ference of Gaussian filtering with 3D kernel, 2) voxel classification
in three groups with Otsu’s automatic thresholding [11], 3) voxels in



the brightest group labeled as particles with connected component
labeling (removing particles smaller than seven voxels), and 4) par-
ticles quantified for centroid, volume and average intensity (values
used in subsequent tracking). The number of detected particles per
image stack ranged from 90 to 265. All processing was done with
the BioImageXD software [9].

Trajectories were created using the particle tracking method
with following parameters: Dl = 0.0μm, Dh = 1.0μm, σd = 1.0,
σs = 1.5, σi = 1.0, σa = π, wd = 0.4, wi = 0.25, ws = 0.15,
wa = 0.2, and α = 0.75.

2.3. Simulated data

We created three sequences of simulated image stacks to validate our
particle tracking method. Every simulated series had 20 time points
(dimensions 512 x 512 x 20, voxel size 0.207 x 0.207 x 0.500 μm3,
temporal resolution 30 seconds). For the first time point, particles
were set to discrete locations with a random average intensity value
between 96 and 128. The number and sizes of the particles were
initialized using results of the real data analysis. The speed and di-
rection of movement of each particle was set at every time point.
Clustering of the particles was defined to increase their size and av-
erage intensity.

The first series was initialized with 103 particles, set to move in
random directions at random speeds less than 34.5 nm/sec, without
clustering. The second series was initialized with 154 particles, set
to move at random speeds less than 69 nm/sec, with 15% of the
particles closer than 1.4 μm to each other clustering at every time
point. To facilitate clustering, 15% of the particles at every time
point were set to move towards one of six randomly initialized target
points. Other particles were set to move in random directions. The
third series was set to have more merging of the particles than the
second series. The speeds of the particles were set to be less than 138
nm/sec. 30% of the particles closer than 1.8 μm were set to cluster
and 30% of the particles set to move towards three target points. All
simulations were created with the BioImageXD software [9].

The particle tracking method was used to create trajectories for
all three simulated series. Parameters were the same for all series,
except for Dh: Dl = 0.0μm, σd = 1.0, σs = 0.5, σi = 0.5, σa =
π, wd = 0.4, wi = 0.25, ws = 0.25, wa = 0.1, and α = 0.75.
Dh was set to 1.0μm, 1.5μm, or 2.5μm for the first, second, and
third series respectively, to create trajectories with varying particle
speeds.

3. RESULTS

3.1. Real data results

We analysed the movement of the particles in real data using four
parameters: average number of time points in the tracks, average
length of the tracks, average speed of the particles and average di-
rectional persistence. The average number of time points is defined
as the duration of a track in frames. Directional persistence of track
t is defined as

||(tn)l − (t1)l||∑n

i=2
||(ti)l − (ti−1)l||

where n is the number of time points in trajectory t.
The results (Table 1) show that average speed of the particles

tends to slow down with time. Directional persistence seemed great-
est in the first series, meaning less Brownian motion, although the
difference is small. The average number of time points per track was
smallest in the first series, possibly caused by more active merging

Table 1. Results of the analysis of real microscopy data. Four pa-
rameters are shown for each series: average number of time points
in tracks, average length of tracks, average speed of particles and
average directional persistence.
Time point Avg. Avg. length Avg. speed Avg. dp

tpts (μm) (nm/sec)
33 min 8.42 4.15± 0.16 21.8± 0.5 0.53± 0.02
62 min 10.37 3.75± 0.16 16.0± 0.5 0.44± 0.02
92 min 10.10 4.05± 0.12 19.6± 0.4 0.48± 0.01
118 min 9.57 3.76± 0.13 18.2± 0.5 0.48± 0.02
141 min 10.77 3.74± 0.18 15.4± 0.5 0.46± 0.02

Fig. 2. Particle tracking results of real data of four consecutive time
points. Upper row: small regions cut from a single plane of the
original image data. Lower row: detected particles from the same
regions, with three sample trajectories. Particles belonging to the
same trajectory have the same color. Two of the trajectories merge
in the third time point.

of the particles. On the whole, the results of the five series were con-
sistent, and in agreement with the biology of the integrin clustering
phenomenon [10], indicating that our particle tracking method was
properly measuring the phenomenon. An example of the trajectories
created is shown in Figure 2.

3.2. Simulated data results

We analysed the movement of the particles in simulated data using
four parameters: number of tracks, average number of time points
in tracks, average speed of particles and average directional persis-
tence. The number of tracks was used to measure whether the parti-
cle tracking method correctly estimated merging of the particles.

We compared the ground truth of the simulated data (Table 2) to
the particle tracking results of the same data (Table 3). The average
speed and average directional persistence matched within error lim-
its for all simulations. The number of tracks and the average number
of time points in tracks also matched for simulation 1, but small
discrepancies emerged with the other simulations, as expected with
increasing particle speed. Still even the result for simulation 3 was
reasonably good, considering that it is an extreme case, where the
average speed of particles is over three times higher than the fastest
movement detected from real data.

We compared our method to the previously published and val-
idated method by Jaqaman et al [1]. We configured the Jaqaman
method using the same values of parameters as used in our method,
but since the methods have somewhat different sets of parameters,
the results acquired with the Jaqaman method are only approxi-



Table 2. Ground truth of simulated data for method validation. For
each simulation, four parameters are shown: number of tracks, av-
erage number of time points in tracks, average speed of particles in
tracks and average directional persistence.
Series # of Avg. Avg. speed Avg. dp

tracks tpts (nm/sec)
Simulation 1 103 20.0 17.4± 0.3 0.25± 0.02
Simulation 2 154 18.1 34.5± 0.5 0.30± 0.02
Simulation 3 146 16.2 69.3± 1.1 0.36± 0.02

Table 3. Results of the analysis of simulated data. For each analysed
series, the same four parameters are shown as in Table 2.
Proposed # of Avg. Avg. speed Avg. dp
method tracks tpts (nm/sec)
Simulation 1 104 19.8 17.9± 0.3 0.25± 0.02
Simulation 2 164 16.9 35.5± 0.6 0.32± 0.02
Simulation 3 177 13.3 68.5± 1.1 0.39± 0.02
Jaqaman # of Avg. Avg. speed Avg. dp
method [1] tracks tpts (nm/sec)
Simulation 1 115 17.7 18.2± 0.5 0.28± 0.02
Simulation 2 173 15.7 33.8± 0.7 0.35± 0.02
Simulation 3 147 15.1 70.6± 1.7 0.35± 0.02

mate. Both methods gave fairly similar results for the average speed
and the average directional persistence for all simulations, but our
method generally produced better results for the number of tracks
and the duration of tracks. Here the Jaqaman method performed bet-
ter only with the extreme case of the fast moving and highly merging
particles of simulation 3, most likely because of an additional linking
step done to the tracks.

We also analysed the number of perfect tracks (tracks in the
analysis results that have a complete match in the ground truth) and
successful linking of individual particles between time points. The
results show (Table 4) that our particle tracking method worked al-
most perfectly with simulation 1, which did not include any merging.
Only one incorrect link was made due to a single merging of two par-
ticles, and as a consequence, two tracks were set as non-perfect and
one new track was created. This illustrates the sensitivity of the per-
fect tracks metric. Simulation 2 gave a 98.9% accuracy for the links
and over 50% of perfect tracks. The fast moving and highly cluster-
ing simulation 3 gave 26.0% of perfect tracks, but the linking accu-
racy was still high (94.7%), proving that the quantitative analysis of
the movement of the particles can be reliably derived as presented in
Table 3.

Our method resulted in a higher number of perfect tracks and
correct links than the Jaqaman method, for all simulations. The re-
sults differed from the quantitative measurements in the fast moving
and highly merging simulation 3. It seemed that longer tracks gen-
erated by the Jaqaman method often had at least one incorrect link
assigned.

4. CONCLUSIONS

We have presented a new, greedy single-particle tracking method.
This method can be used to efficiently track hundreds or thousands
of particles, as it only needs one-pass through the particles in a time
series. The method provides a solution to the particle correspon-
dence problem, including handling of merging, splitting, appearing
and disappearing events. Options to configure the method for numer-

Table 4. Results of the track analysis of simulated data. The number
of perfect tracks compared to the total number of tracks, and the
number of correct particle links compared to total particle links, are
shown for each analysed series.
Proposed Tracks (perfect / total) Links (correct / total)
method
Simulation 1 101 / 104 = 97.1% 1956 / 1957 = 99.9%
Simulation 2 94 / 164 = 57.3% 2579 / 2609 = 98.9%
Simulation 3 46 / 177 = 26.0% 2067 / 2183 = 94.7%
Jaqaman Tracks (perfect / total) Links (correct / total)
method [1]
Simulation 1 79 / 115 = 68.7% 1883 / 1917 = 98.2%
Simulation 2 59 / 173 = 34.1% 2370 / 2535 = 93.5%
Simulation 3 4 / 147 = 2.7% 1594 / 2075 = 76.8%

ous different applications were presented. We tested the method by
quantifying particle motion in real, relevant microscopy data, with
expected results. We then validated the accuracy of the method us-
ing simulated image series. Finally, we compared the accuracy of the
method to a previously published, well known, single-particle track-
ing method. The results showed our tracking method to be reliable
and functional.
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Abstract

Determining vesicle localization and association in live microscopy may be challenging due to non-
simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to
movement of objects, imaging may also introduce shifting between the image channels, and traditional
colocalization methods cannot handle such situations. Our approach to quantifying the association be-
tween tagged proteins is to use an object-based method where the exact match of object locations is
not assumed. Point-pattern matching provides a measure of correspondence between two point-sets un-
der various changes between point-sets. Thus it can be used for robust quantitative analysis of vesicle
association between image channels. Results for a large set of images shows that the point-pattern-
based method performs comparably in colocalization studies for fixed cells and demonstrates improved
capability to detect association of closely located vesicles in live cell-microscopy.

Introduction

Live cell-imaging in subcellular scale has revolutionized the way cells are studied in molecular cell biology.
As microscopy and imaging devices have enabled efficient and accurate live cell-imaging in high resolu-
tion, the demand for automated image analysis and interpretation has become obvious. For example,
tagging proteins with specific fluorescent stains enables studying various cell functions through detec-
tion of protein-specific cell organelles, provided that the fluorescence-signal captured in digital images
can be accurately analyzed. The spatial pattern and location [1, 2] of the detected signal may reveal
the cell function or role of proteins, and colocalization of tagged proteins is in particular of interest [3].
In cell biology, close association of cellular structures, such as vesicles, occurs, e.g., in situations when
vesicle pathways follow similar tracks or when close association is meaningful and leads to possible fusion
events. There are very few tools available to study association. Instead, there are several tools to study
colocalization, represented by different-colored voxels occupying the same spatial location. Association
may be defined by a chosen distance between the objects. If differently colored objects are frequently
associated they may be considered to keep near each other over time and follow each other in the cell
cytoplasm. Analysis of closely associated objects in fixed cells allows accurate analysis, without errors
caused by the movement of the objects between subsequent imaging of different channels – provided that
the channels are aligned. However, in a live-imaging setup the quantification of sudden and transient
events is challenging [4], and live imaging is prone to such errors that depend on the speed of the imaging
setup.

Live imaging of cytoplasmic vesicles that are elicited from the plasma membrane after e.g. growth-
factor stimulation reveals important aspects of the fate of these crucial cellular regulators. Sorting of
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the growth-factor receptor to cellular compartments that mediate degradation of the receptor causes
attenuation of the signaling whereas recycling of the receptor back to the plasma membrane allows
further signaling. Recently, it has been acknowledged that several growth-factor receptors (e.g. epidermal,
platelet derived and vascular endothelial growth factors) reside in close proximity to several cell surface
integrin receptors (e.g. α2β1, α5β1) and some of them even have direct effects on each other’s function
[5, 6]. Like growth-factor receptors, integrins are important signaling receptors regulating vital cellular
processes, like cell survival, differentiation and proliferation. As the growth-factor receptors and integrins
use similar signaling pathways and show mutual regulation of important cellular processes it has become
important to follow their movement in live cells. The dynamic nature of these endocytic and recycling
pathways and the fact that these pathways may interact with each other provides complexity and makes
reliable interpretation of the imaging results a very challenging task.

Traditionally colocalization analysis has been a subjective process, performed as a visual comparison
of overlapping signal in two channels. Recent increase of the amount of image data and need for statistical
analysis have shifted colocalization towards a more quantitative analysis. In many cases, colocalization
is only partial leaving some voxels close by suggesting that fusion between the two colors has been
meaningful but not complete. The partial colocalization may also indicate compartmentalization inside
the structures. Therefore, instead of just colocalization, one could measure association with both voxels
in close proximity and, in live images, voxels moving as one unit even if not entirely colocalizing. One
example case where determining true colocalization may be ambiguous is given in Fig. 1 where a single
structure or a pair of vesicle-like structures in close association is shown, and in Fig. 2 where the same
vesicle is shown in a larger context with several similar structure pairs in two fluorescence channels.

One of the most straightforward quantitative methods include the pixel or voxelwise analysis where
intensity of each element in an image channel is plotted against its counterpart in the other channel.
This method, accompanied with statistical analysis of the significance of colocalization [3, 7] remains as
one of the most common ways to estimate colocalization. Typically the studied biological phenomenon
is related to specific subcellular organelles that have been labeled. Thus, instead of observing all the
pixels or voxels containing signal it may be of interest to concentrate on the detected spots. Since the
imaging resolution enables detection of individual organelles, it is possible to determine a quantitative
estimate of colocalization objectwise [8–11]. Such approach makes it possible to take into account small
changes in image due to imaging lag or other errors in the imaging phase. This can be advantageous
in live cell-microscopy, where particle trafficking may be fast, compromising the accuracy of pixelwise
colocalization analysis.

The essential idea of the proposed method is to determine the mapping between images such that
objects found in an image are paired with objects found in the compared image. Such problem is
commonly addressed in dynamic monitoring of subcellular objects using live imaging where fluorescence-
tagged organelles are followed throughout the imaging sequence [12–14]. However, to the best of our
knowledge, matching of point sets using two channels of only one timepoint has not been proposed before
for studying protein localization in fluorescence microscopy. Though both analyses rely on the property
that the same target is imaged, colocalization or association analysis differs from live cell particle tracking
in the assumption that the same objects may not be visible in the compared image. Also limiting to still
images at sparse time resolution hinders the use of tracking methods to determine the mapping between
frames.

Matching unpaired point-sets under a given class of transformations is a problem which can be di-
vided into two main classes. In what is often called registration, a transformation close to an optimum
matching transformation is known beforehand, and the problem is to refine that transformation to a
nearby local optimum. By the prior information this local optimum is then also hoped to be close to a
global optimum. In contrast, in point-pattern matching nothing is known about the position of the global
optima. Registration is local non-linear optimization, while point-pattern matching is global non-linear
optimization.
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In general, any point-set matching algorithm could be used as a basis of the proposed association
analysis. Here we design an algorithm, based on point-pattern matching, particularly suited for the
analysis of fluorescence microscopy images. PPM algorithms can be designed to be robust against changes
in image geometry, e.g., changes in the number of detected particles, scale or shifts in image. In our
application, the number of detected particles can typically vary significantly, whereas large systematic
changes such as rotation or scaling between corresponding point locations are not expected. Thus, we
may limit to translations and allow the method to only accept the transformation when the point sets
are close to each other. Such small changes can be compensated by using PPM, however, they may
cause the objects to be a miss in traditional co-localization analysis where co-localization is determined
by pixelwise comparison of channels.

As an alternative way of finding point-pair correspondense, we use the Iterated Closest Points (ICP)
[15] [16], or perhaps better described by Iterated Corresponding Points, which is a popular class of
algorithms for solving the registration problem. There are many algorithms in this class, many of which
are reviewed in [17]. An important trend in ICP-based algorithms has been to make them robust to
missing/extraneous points (subset matching) and noise. As practical variants of this type, we mention
the Biunique ICP [18] and the Trimmed ICP [19]. We provide a comparison to the Biunique ICP algorithm
by making its initial transformation match the centroids of the point-sets; such an assumption may or
may not hold for given microscopic images.

In this study we propose a novel method for association analysis. We show that the method is robust
against moderate translations and object movement between image channels. The applicability of the
method was demonstrated by following the entry of α2β1 integrin and epidermal growth-factor receptor
(EGFR) after triggering their internalization from the plasma membrane using fluorescent antibodies and
fluorescent growth-factor, respectively. The results indicate that the vesicles containing α2β1 integrin and
EGF are very close to each other along their internalization pathway to the center of the cell. Quantitative
comparison between the proposed PPM-based association algorithm and the traditional colocalization
estimates suggests that the results are in line for fixed cell experiments, with the new method providing
improved detection of association by closely located objects in live cell experiments.

Materials and Methods

Microscopy data and live cell-imaging

The A549 (human lung carcinoma) cell line (ATCC) was used in all experiments. The cells were grown in
Dulbeccos modified Eagle Medium (DMEM; Gibco) supplemented with 10% inactivated fetal calf serum
(FCS), L-glutamine and penicillin-streptomycin (Gibco BRL, Paisley, UK) at 37◦C, in 5% CO2. Cells
were plated on cell culture chambers (Ibidi 15 μ-slide 8-well) two days before and starved (serum-free
DMEM) for the last 16 hours before the experiment.

EGFR was stimulated and followed by microscopy by adding first biotinylated EGF (0,5 μg/ml) on
ice for 45 min and washed extensively. Then streptavidin Alexa 488 (5 μg/ml) was incubated on ice for 45
min and washed. α2β1 integrin clustering was done as described previously [20]. Briefly, specific antibody
(A211E10; a kind gift from Dr. Fedor Berditchevski, Institute of Cancer studies, Birmingham, United
Kingdom) against integrin was bound for 45 min on ice. Cells were washed extensively and incubated
with a clustering secondary antibody (goat anti-mouse Alexa 594; Invitrogen). After washing, the cells
were incubated in serum-free DMEM at 37◦C to allow internalization. In practice, biotinylated EGF
and integrin antibody was added simultaneously on cells and washed, and subsequently the fluorescent
conjugates were added together on ice. The Ibidi slides were transferred to Zeiss Cell Observer HS (37◦C,
5% CO2). The live imaging was performed using Colibri LED light source at 470 (41%) and 590 (46%)
wavelengths for Alexa 488 and 594, respectively. Videos with 5.77 seconds (Live I), and 5.16 seconds
(Live II) intervals were taken. In Figs. 1 and 2, close-ups of vesicles imaged using the maximum speed
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are illustrated.
For control experiments imaging perfectly colocalizing intensities, α2β1 integrin clustering was induced

using similar amounts of two fluorescent conjugates (goat anti-mouse Alexa 488 and 594). In addition,
control videos of stable, unmoving vesicles were imaged after cells were fixed with 4% PFA for 20 min. For
comparison, quantification of colocalization was determined using colocalization algorithms embedded in
the free, open source software package, BioImageXD (http://www.bioimagexd.net, [21]). Only high
intensity integrin clusters were selected for the colocalization analysis by first removing the background
by subtracting the most common intensity value from the images. Next, masks for colocalization analysis
were defined by filtering images with Difference of Gaussian filter and subsequent thresholding. Small
particles (less than 3 pixels for fixed and 8 pixels for live cells) were removed from the masks in order
to limit the detection of noise or small debris as spots. Finally, the masks were used for excluding
background from the colocalization analysis.

Simulated data

One of the motivations for using a point-set-based method for determining association stems from the
fact that the image channels may be shifted or aligned non-ideally during the measurement process. The
measurement consists of two separate image acquisitions with different filter applied in order to capture
the desired wavelengths, corresponding to the specific fluorescent protein markers. To illustrate the
robustness against such misalignments, we generated image sets with varying level of global displacement
in (x, y) space, and an additional random movement term for individual spots. The experiment can be
considered as a simulated live cell experiment where the effect of potential displacement and movement
due to imaging delay can be studied in a controlled manner. Importantly, the simulated experiments
allow us to study the matching accuracy directly through examining the correct matches, mismatches
and missing pairings. Thus, the simulations can be used both for evaluating the usefulness of the point-
set based association analysis and for quantitatively comparing our PPM algorithm with state-of-the-art
registration algorithm.

Simulated experiments were generated as images with additive background noise and spots with
varying intensity as foreground objects similarly as in [14]. The simulation parameters, i.e., number of
objects, object size and intensity, were inferred from real data in order to generate data that resembles
realistic experimental image data. The key parameters of the simulation process were varied as follows.
A global translation in random direction between the image channels was added using parameter space
{0, . . . , 3} (in pixels), where 0 corresponds to no global shift, and 3 corresponds to maximum allowed
magnitude of global translation. The other key parameter controls the random movement of individual
objects. The movement was implemented as an additive random term drawn from zero-mean normal
distribution N(0, σmov), where σmov ∈ {0, . . . , 5} defines the magnitude of movement as deviation (in
pixels) around the coordinate point. In the simulated images, the pixel size was set to correspond to
198 × 198nm. Furthermore, we generated three scenarios corresponding to low, intermediate, and high
levels of association between channels 1 and 2, where the association levels with respect to channel 1
were set as 0.7477 in high, 0.5225 in intermediate, and 0.2072 in low association scenario. For channel
2, the association levels were set to 0.8557 in high, 0.4715 in intermediate, and 0.2805 in low association
scenario. Number of objects was set to vary around a fixed number of 111 objects per channel, and
the association levels between channels were controlled by adding and removing objects from random
locations such that exactly the pre-set association levels were obtained. Finally, the simulations were
replicated 10 times for each parameter settings. To summarize, the simulation study consisted of 4 × 6
parameter combinations repeated in three association scenarios, each replicated 10-fold, resulting to 720
images with two channels. Object locations were extracted from the images using the DoG spot detection
as described earlier.
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Determining vesicle association using colocalization analysis

Analysis of vesicle localization between two fluorescence-labeled image channels can be done in 2D or
3D. The true geometry of the samples means the 3D imaging with confocal microscope and subsequent
processing in 3D enables more accurate analysis in theory. However, in live imaging such setting is
not always applicable, since 3D imaging is time consuming whereas intracellular trafficking and object
movement may be fast. In addition, use of 2D imaging enables higher throughput making 2D images a
commonly used compromise in live colocalization studies. Thus, we will use 2D images taken in time-lapse
live cell-imaging settings.

Some of the most widely used automated statistical colocalization estimates rely on correlation of the
pixel intensities between the image channels. Here we use two pixelwise colocalization estimates, Pear-
son correlation and Manders’ coefficient [22], as reference methods for comparison purposes. Pearson’s
correlation rp ∈ [−1 . . .+ 1] between channels g1 and g2 is given as

rp =
Σx(g1(x)− g1)(g2(x)− g2)√

(Σx(g1(x)− g1)
2) (Σx(g2(x)− g2)

2)
(1)

where g denotes the channel mean intensity. Positive correlation indicates match between channel in-
tensities and suggests there exists colocalization of some level, whereas values close to zero show no
correlation and thus give no evidence of colocalization. Possible negative correlations would indicate a
negative relation of pixel intensities between compared channels. Another well-known statistical measure
of pixelwise colocalization is the Manders’ colocalization coefficient Mi, which is defined for channel gi as

Mi =
Σxgi,coloc(x)

Σxgi(x)
(2)

where the colocalized proportion of the signal gi(x) is given by

gi,coloc(x) = gi(x), if gref (x) > tref (3)

where the selection of the threshold value tref for the reference channel is essential in determining the
colocalizing signal. Threshold selection, however, is not trivial and despite automated methods are
available [3, 23] the selection may sometimes need to be adjusted by user. Recently, a colocalization
measure combining both rp and Mi has been proposed in [24]. Here we have used the masks presented
earlier to define the region of interest for the quantitative colocalization estimators. The results by both
pixelwise estimators are obtained using the implementation available in BioImageXD.

Vesicle association analysis using point-pattern matching

Given two finite sets of points, say P,Q ⊂ R
d, and a set F ⊂ (Rd → R

d) of allowed transformations, a
point-pattern matching algorithm attempts to determine a transformation f ∈ F such that at least some
subset of the points in f(P ) would match some subset of Q. In this paper we will fix F as the set of
translations, i.e. each f ∈ F is of the form

f(p) = p+ t, (4)

for some t ∈ R
d.

The term match must be defined carefully to obtain meaningful results from a point-pattern matching
algorithm. For example, defining a match between P

′ ⊂ P and Q
′ ⊂ Q by the relation f(P ′) = Q

′ means
that a possible match is destroyed by an arbitrary small translation to any point in either P

′ or Q
′.

Since any real-world measurement contains noise, a practical point-pattern matching algorithm needs to
be able to maintain a match under small deviations of the point-sets, i.e. to be robust under noise. In
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addition, since in practice some measurements can be missing or extraneous in either P or Q, a practical
point-pattern matching algorithm should be able to find matches between subsets P

′ ⊂ P and Q
′ ⊂ Q

also.
Considering the application area, if we are to apply point-pattern matching to determine colocaliza-

tion, then the need for both kinds of robustness is seen as follows. First, it is likely that the detected
object-sets do not match perfectly even in the case of nearly perfect colocalization, since the measure-
ments are from different objects. Second, differences originate from biological variation which leads to
varying levels of colocalizing points. Third, even when the targeted objects are colocalized, the point-sets
include ”noise” from object movements.

The way the quality of a matching is measured affects the robustness of a point-pattern matching
algorithm tremendously. For example, if there were an exact copy of the model point-set (what to find) in
the scene point-set (from where to find), but there were an additional distant cluster of points, we would
like the cluster to not affect the matching result. Many papers on point-pattern matching concentrate
on minimizing the Hausdorff distance between point-sets [25] [26] [27], defined as

dH(P,Q) = max{sup
p∈P

inf
q∈Q

d(p, q), sup
q∈Q

inf
p∈P

d(p, q)}. (5)

Unfortunately, this distance can be made arbitrarily large by introducing an additional distant point in
either X or Y . For this reason, we reject the minimization of Hausdorff distance as a practical matching
strategy. To improve on the robustness issue, several authors have proposed using partial Hausdorff
distance instead, where the supremum is taken only over a given percentage of the smallest distance
values. By doing this, it is hoped that the procedure correctly rejects any points that are too far away
to be meaningful for the matching. Unfortunately, no percentage is small enough to guarantee that such
outliers are correctly rejected; the number of additional distant points can always be increased so that
the ratio of outliers exceeds the given percentage. For this reason, we also reject the minimization of the
partial Hausdorff distance as a practical matching strategy.

Instead, we adopt the matching criterion from [28]. Intuitively, a point p ∈ P matches a point q ∈ Q

under f ∈ F , if f(p) is close to q. By extension, P
′ ⊂ P matches Q

′ ⊂ Q, if each point in f(P ′)
has a unique match in Q

′. This intuition is made exact in the next section where we formulate the
matching algorithm. Our approach is to find a match under a given pointwise matching distance, and
then determine the amount of association from this correspondence.

Van Wamelen et al. [28] presented a fast algorithm for point-pattern matching in R
2 under conformal

affine transformations, with a robust matching criterion which we adopt. We do not, however, select this
algorithm, because the application we are dealing with requires a high degree of robustness. Moreover,
the algorithm can fail on given parameters, for which there is no systematic way to set to suitable values
beforehand. In fact, the requirement for finding a match if such exists sets a limit for possible algorithms,
and we are not aware of existing studies that would fit our application. Instead, we will construct one in
the next section.

Point-pattern matching under translations

In the following we present an algorithm for point-pattern matching between two finite point-sets in
P,Q ⊂ R

d, |P | = n, |Q| = m, when the class of transformations F is given by translations f ∈ F which
align P to Q:

∃p ∈ P, q ∈ Q : f(p) = q. (6)

The algorithm either reports that there is no match, or reports a bijection between subsets P ′ ⊂ P and
Q

′ ⊂ Q, such that P ′ and Q
′ match.
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Matching criterion

Let P = {p1, . . . , pn} ⊂ R
d and Q = {q1, . . . , qm} ⊂ R

d be two sets of points. Let ‖·‖ : Rd → R be a norm
in R

d. Given δ ∈ R, δ ≥ 0, called the matching distance, and α ∈ R, 0 < α ≤ 1, called the matching ratio,
the point-set P is said to match the point-set Q if there is a setM ⊂ P×Q = {(pi1 , qj1), . . . , (pi|M|

, pj|M|
)},

called a matching, where each point in P and Q is part of at most one pair,

• ∀s ∈ [1, |M |] : ‖pis − qjs‖ ≤ δ, and

• |M | ≥ αn = Mα.

In addition to the matching criteria above, we also set a limit for the bias of a match, which will be
discussed next.

Bias of a matching

Even if we find a matching M , it might be that the matching is of poor quality. Assume that for a
translation f ∈ F it holds that Q = f(P ) ∪ {q′}, where q

′ ∈ R
d, and it holds that ‖q′ − q‖ = δ for

some q ∈ Q. That is, f(P ) matches Q perfectly, but there is an extraneous point q
′ nearby q. Let

f
′ ∈ F : f ′(x) = f(x) + (q′ − q). Then also f

′(P ) matches Q. However, the matching given by f
′ is of

poor quality because the difference vectors between the pairs in the matching are all (except one) in the
same direction. We would rather want the error to be distributed uniformly in all directions. To avoid
these systematically poor matchings, we define the bias of a matching M by

bias(M) =
‖
∑|M |

s=1
[pis − qjs ]‖

δ|M |
. (7)

We will then define a maximum allowed bias β ∈ [0, 1] ⊂ R, and require from a matching that bias(M) ≤
β. The matching provided by f

′ in the example can then be avoided, by choosing β properly, since the
errors average near to zero with f and near to one with f

′.

Nearest neighbors searching

In nearest neighbors searching, the problem is to report those k points in Q which are closest to a given
point p ∈ R

d. To search for the k nearest neighbors in Q, we shall use the kd-tree data structure with
the sliding midpoint splitting rule [29]. This data structure can be constructed for Q in O(dm logm) and
O(dm) space.

In the following we shall assume that for each nearest neighbors search there will not be two points in Q

with the same distance to p. This simplification is without loss of generality; in an actual implementation
one gives a secondary order to equidistant points, for example, by giving them an ordered labeling. Let
Br(x) = {y ∈ R

d : ‖y − x‖ ≤ r}, where r ∈ R and x ∈ R
d.

Maximum bipartite matching

Let G = (V,E) be a graph (all graphs in this paper are directed and simple), where V is a finite set
of vertices, and E ⊂ V

2 is a finite set of edges. A graph is called bipartite, if it can be decomposed as
V = L∪R with L∩R = ∅, and E ⊂ L×R. A matching of G is a subset M ⊂ E without common vertices
(this definition is consistent with the matching of point-sets after we define V and E in the algorithm).
A maximum matching of G is a matching of G with the largest possible number of edges |M |. We use the

Hopkroft-Karp algorithm [30] to compute a maximum matching in a bipartite graph in O(E
√
V ) worst

case time, or in O(E log(V )) average time for random graphs.
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PPM Algorithm

Assume a matching distance δ, a matching ratio α, a maximum allowed bias β, and a maximum number
of nearest neighbors k. The point-pattern matching algorithm consists of repeating the following steps
for each pair (p, q) ∈ P ×Q.

1. Let t = q − p.

2. For each j ∈ [1, n], find k (or as many as possible) nearest points Nj ⊂ Q to pj + t in Q∩Bδ(pj + t).

3. Let G = (V,E) be a (bipartite) graph, where V = P ∪Q, and E = ∪n
j=1

({pj} ×Nj) ⊂ P ×Q.

4. Find a maximum bipartite matching M in G.

5. If |M | < Mα, start with a new pair (p, q).

6. If bias(M) > β, start with a new pair (p, q).

7. Return M as a matching between P and Q.

Object-based association analysis using point-pattern matching

In this section we apply the above point-pattern matching algorithm for estimating protein association
between image channels. First, since we are using point-pattern matching, the fundamental requirement
is to obtain point-sets where the points denote fluorescence-labeled objects detected from the image.
These objects, appearing as resolution-limited, low contrast blurry spots are challenging to extract, but
methods for detection have been presented and evaluated in the literature [31, 32]. Here we leave the
discussion about the selection of detection algorithm out of the scope and note that we made the method
selection based on experimenting and used the method described earlier for detecting the fluorescent
objects, and the centroids of detected objects from two channels form the point-sets P and Q.

Given the point-pattern matching algorithm under translations described above, it is now possible
to define the similarity between point-sets by finding a transformation between P and Q. This trans-
formation gives us the following information. First, if a match cannot be found, there is no association
at the specified level of correspondence, which is given as the matching ratio α. Second, if a match has
been found, we can check the transformation in order to find out how much the point coordinates had to
be altered in order to find a match. A moderate transform suggests that true association exists at the
matching ratio α, whereas a drastic transformation tells about a correspondence found by chance which
should not be counted as association. Using these observations, a rule for estimating association under
the restrictions can be defined by

C = max{α ∈ [0, 1] : P matches Q}, (8)

where α is the matching ratio, and the matching criterion is as defined previously. While α is a real
number, the matching algorithms only differ on finitely many values of α, corresponding to the different
number of required points Mα ∈ [1, n] in a matching. The values of C in Eq. 8 can be interpreted
similarly as, for example, direct pixel or objectwise overlap values – values close to the maximum value of
1 correspond to high level of association and values close to the minimum value 0 mean there is very little
association – with the only difference being that also closely located objects are allowed and direct overlap
is not required in the case of the point-pattern-matching-based association. Fig. 3 illustrates an example
matching using simulated data with 300 points drawn from normal distribution and 0.2 ratio of missing
points between channels, and with translation and noise introduced for the point-set. The matches are
marked with lines in the close-up, and circles illustrate the search range defined with parameter δ.
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Notes on implementation and 3D

Using two-dimensional projections as a basis of association analysis is a choice made for practical reasons.
However, cells are naturally 3D objects, and thus confocal microscopy suits well for true 3D colocalization
studies. In such cases, the objects can also be extracted in 3D, yielding an additional location coordinate.
Although 2D imaging is used in the experiments of this article, estimating association with the new
point-pattern-based method is also possible in 3D. Majority of the computational workload comes from
the matching process, thus we implemented the PPM matching algorithm in C++. The implementation
is available from supplemental site http://www.cs.tut.fi/sgn/csb/VesicleAssociation.

Results

We present quantitative results for both simulated and real data. Simulated data, for which ground
truth is available, is designed for demonstrating the properties and validating the performance of the
point pattern matching based association algorithm. Importantly, simulation serves as a powerful tool
for validating the novel approach based on point-set matching, and it enables comparing the proposed
matching algorithm to state-of-the-art algorithm directly, using matching accuracy as the criterion. Real
data, collected using experimental setup described in Materials and Methods section, allows comparison
with traditional colocalization measures in true use cases. Due to the lack of ground truth only indirect
measures of accuracy can be used, as is typically the case for real data. The real experiments, however,
can be validated through the biological setup. We have used two different scenarios; fixed cells with
very high level of colocalization between the labeled structures and live cell experiments with known
association of labeled structures without a perfect overlap.

The results section starts by an extensive simulation study where we demonstrate the properties of
the PPM-based association algorithm and compare it with ICP matching. Furthermore, we show how
the proposed method is able to detect associations under circumstances where traditional colocalization
estimates fail to produce accurate results. Second, we present a comparison with fixed cells where
traditional colocalization measures are known to perform well. Third, we show how the association
algorithm performs in live cell experiments and again compare against traditional colocalization methods.
Finally, we demonstrate robustness to artificially generated imaging delay between frames in live cell
experiments.

Robustness to channel displacement and object movement with simulated data

One of the key advantages in simulation is that the ground truth, that is, the correspondence between
objects in the two channels is known. This enables the use of quantitative measures of matching accuracy
instead of evaluating the results only based on the association estimate. Here we use the ground truth
information for determining true positive matches (object paired with a correct counterpart), false positive
matches (mismatch, object paired with a wrong counterpart) and false negative matches (object not
paired though counterpart exists), from which the precision, recall, and subsequently, the F-measure are
determined as explained in [33].

In Fig. 4, the F-measures by PPM (triangle) and ICP (circle) are shown as summaries across all
replicates; in (a) the results are presented for different values of object movement σ, and in (b) as
a function of global translation. All three simulation scenarios are shown in the same figure; high
association level with solid line and light grey, intermediate association level with mid grey dash line,
and low association level with dotted dark grey line. The results are averaged over the 10 replicates,
and parameter combinations leading to undefined F-measure (due to failed matching where none on the
pairings were true positives) were left out of the graph. The results for both algorithms are obtained
with matching distance δ = 6, which corresponds to roughly 1200nm distance with the simulated data.
Further, we used the simulation experiment for studying the effect of the matching distance parameter
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in both point-set based algorithms (Supplemental results) without significant changes in the relative
performances.

The results in Fig. 4 confirm that the point-set based approach for determining object association
is able to handle moderate object movements (Fig. 4 (a)) and that global translation between image
channels can be eliminated very efficiently (Fig. 4 (b)). When examining the results given by the two
matching algorithms, it can be seen that point-pattern matching slightly but consistently outperforms the
iterated closes point method for high and intermediate association values. Moreover, the results confirm
that, as can be expected, both of the methods relying on point-set matching generally perform more
accurately when the level of association is higher, but the drop in matching accuracy due to lowering
association level from approximately 0.80 to 0.25 was not dramatic for the point-pattern matching,
whereas the iterated closest points based method resulted to several failed pairings with low association
values (leading to missing values in the graphs). Given that it is common in this application that the
association level may be low either due to the lack of association in the studied biological phenomenon, or
due to severe imbalance in the number of objects in the channels, we will conclude based on the presented
results that the proposed PPM-based method should be preferred for matching the point sets. In the
remaining experiments, we will only use PPM for representing the proposed point-set based approach.

Comparison with traditional colocalization estimates with fixed cells

Second, we estimate colocalization for fixed samples from human lung carcinoma cells. This data can
be considered as a reference set since the cells are fixed and α2β1 integrin was labeled using similar
amounts of two fluorescent conjugates inducing almost perfect colocalization. The quantitative results
for four sets of fixed cells (denoted by Fix I - IV) comprising 277 images with two fluorescence channels
are show in Table 1, where μ#i is the average number of objects and CPPM i is the association estimate
by the new PPM-based method in channel i. For PPM, we used matching distance δ = 4, and maximum
bias β = 0.1. The matching distance was determined through setting a limit for the allowed area of
determining association using expert knowledge and information about the pixel dimensions; here δ = 4
corresponds to < 800nm. As expected, the association results given by the PPM-based method are rather
high which is well in accordance with the experimental setup.

For comparison, we estimated the colocalization by the commonly used Pearson correlation (rp) as
well as with the Manders’ colocalization coefficient (Mi) where the DoG method was used for masking as
explained earlier, and i refers to the image channel. Also the direct overlap percentage of pixels (Opixi) was
calculated for both channels using the masked images. The results suggest that the PPM-based method
yields colocalization estimates which in general behave similarly as the Manders’ colocalization coefficient
as well as the traditional pixelwise colocalization estimate. Importantly, allowing the point-set based
method to determine association within the matching distance instead of limiting to direct colocalization
does not seem to result to overestimated values when compared to the traditional colocalization measures.

Association and colocalization in live cell-imaging

Next, we assess the PPM-based method in live microscopy where movement of vesicles potentially affects
to traditional colocalization estimates. We use two live microscopy datasets with integrin labeled cells
from the A549 cell line imaged at over 150 time-points. The labeled structures are now different, thus
direct colocalization is expected to be low but the structures are known to be closely associating. An
example image can be seen in Fig. 5 (a) and the objects detected from both channels are shown in (b). In
total, there are 330 images with two fluorescence channels, and the average particle counts (size limited
to be 8 pixels minimum) are given in Table 2. The PPM maximum bias was again set to β = 0.1, and
matching distance was set to δ = 4 corresponding to < 800nm distance, which defines the allowed area
for determining association. The matching process is visualized in Fig. 5 (c) where the matching area
(defined by the matching distance) is shown with white circle around the transformed point locations, and
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paired objects are shown with blue lines connecting the object centers after applying the transformation
by PPM algorithm.

In Table 2, the results for a live cell experiments are given. Based on the results, the traditional
methods do not give much colocalization whereas the association estimate by PPM suggests that, even
though the structures are not directly overlapping, there exists a certain level of association which is
only revealed by the new point-set based method. The close-up area shown in Fig. 5 (c) shows examples
of points located very closely in the two channels having very little or no direct overlap, but which are
paired by the PPM algorithm, leading to detected association. This is in line with control colocalization
measurements of 3D data in confocal microscopy [34] and shows a high amount of association but very
limited direct colocalization. Results for the two datasets (denoted as Live I & II in Table 2) are almost
identical. The data thus suggest that EGFR and integrin-positive structures stay close but separate after
their triggered internalization. This has also been recently shown by us using confocal 3D colocalization
analysis [34].

Robustness to imaging delay with real data

The robustness of the algorithm against delay in imaging process is studied next. Different levels of delay
are considered by using frames I0(n) and I1(n+ t) for determining colocalization, where I0 and I1 are the
two image channels, n is the current frame and t ∈ {0, . . . , 3} is the delay in frames, where the length of
delay is defined by the imaging frequency (here the delay is multiplicates of 5.7s). The results are shown in
Fig. 6 both as numerical estimates and as relative values normalized by the first, non-delayed datapoint.
For PPM we evaluated the effect of search range parameter δ by giving values 4, 6, 8, 10. Given the
rather long delay, this time it is justified to use larger values for δ. The objectwise overlap was calculated
for comparison purposes using the same segmentation masks which were also used as a basis of PPM
matching. The results represented as relative to the non-delayed case reveal how the direct objectwise
colocalization estimate and the PPM method with too small search range are sensitive to imaging delay,
whereas association values obtained with larger search ranges (here, 8 and 10) are less affected by the
artificially introduced delay. The results also indicate that PPM-based association estimates are larger
than direct overlap-based colocalization, as was expected due to the lack of direct colocalization of the
labeled structures.

Discussion

In this article, we have presented a computational method for estimating protein association between two
image channels using an object-based point-pattern matching approach. The method searches a mapping
between point sets detected from the image channels through pairing individual objects detected in both
channels. The association is estimated as the fraction of paired objects, creating a measure that is directly
comparable to the colocalization percentages between overlapping objects or masked image pixels/voxels.
The advantage of the proposed method stems from the inherited robustness of point-pattern matching
against directed movement between the image channels, which could be potentially caused by misaligned
image channels. Also other moderate transformations, such as random object movement during the lag
in the imaging of the fluorescence channels, can be compensated within the search area. Any movement
of the fluorescence-labeled subcellular structures will potentially lead to missed colocalization unless the
movement is compensated, whereas the proposed point-pattern-matching-based method is able to resolve
association in cases where moderate object movement exists.

The proposed PPM-based method was experimentally validated with several time-lapse image se-
quences with hundreds of image frames, each image typically containing in the order of hundreds of
fluorescence-labeled subcellular objects. The results obtained for simulations demonstrate the benefits of
the proposed method. Misalignments and random movement of individual objects cause significant drop
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in the performance of traditional methods, whereas the matching based PPM and ICP methods per-
formed well when the random movement was moderate. Moreover, the results obtained for fixed human
lung carcinoma cells with known colocalization of two α2β1 integrin fluorescent conjugates show that
the estimates by the point-pattern-matching-based method are well in accordance with the traditionally
applied pixelwise colocalization estimates, such as the Manders’ colocalization coefficient and Pearson
correlation, as well as with colocalization estimated with direct object-based overlap. Finally, we studied
how association estimate performs in live cell experiments using live microscopy of α2β1 integrin and
EGF labeled cells from the A549 cell line. It was shown that dynamic association of two structures
which do not perfectly overlap could be detected by the proposed method. Further, the effect of delay
on the colocalization in live imaging situations was demonstrated, and the results under artificially cre-
ated heavy delay further confirm the robustness of our method compared to estimate without movement
compensation.
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Figure Legends

Figure 1. Close-up of a vesicle pair (red: integrin, green: EGF) in widefield microscopy images over a
time-lapse. Time between successive frames is 5.7s. Movement of vesicles in living cells causes
situations where determining true colocalization may be ambiguous – colocalization determined as a
direct overlap potentially misses close association of rapidly moving vesicles, and on the contrary,
association determined using any method using objects in the proximity may give false detections due
to closely located vesicles.

Tables
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Figure 2. Close-up of a set of vesicles in live cell widefield microscopy experiment imaged over time
(time between successive frames is 5.7s). Low contrast and blur makes object detection challenging.

Table 1. Colocalization and association estimates for fixed cell image sets. Average number of objects
per channel for each set are given as μ#i, association estimate by the PPM-based methods in CPPM i,
Manders’ colocalization coefficient is Mi, pixelwise overlap is Opixi, and rp is the Pearson correlation.

Image set #images μ#1 μ#2 CPPM1 CPPM2 M1 M2 Opix1 Opix2 rp

Fix I 71 154.41 126.46 0.6719 0.8123 0.7198 0.8111 0.6407 0.7300 0.7008

Fix II 70 154.40 67.37 0.4168 0.9493 0.4938 0.8946 0.3970 0.8469 0.7166

Fix III 69 201.32 82.06 0.3844 0.9345 0.4994 0.8705 0.3419 0.8266 0.7882

Fix IV 67 92.45 71.73 0.5645 0.7079 0.5441 0.7525 0.4784 0.6310 0.8116

Table 2. Colocalization and association estimates for live cell-imaging experiments. Average number of
objects per channel for each set are given as μ#i, association estimate by the PPM-based methods in
CPPM i, Manders’ colocalization coefficient is Mi, pixelwise overlap is Opixi, and rp is the Pearson
correlation.

Image set #images μ#1 μ#2 CPPM1 CPPM2 M1 M2 Opix1 Opix2 rp

Live I 156 103.60 260.69 0.3813 0.1528 0.1618 0.0850 0.1595 0.0615 -0.0294

Live II 174 142.37 410.02 0.4682 0.1650 0.1574 0.0831 0.1690 0.0561 -0.0590



16

-4 -2 0 2 4
-4

-2

0

2

4

6

8

-2 0 2

2

4

6

Figure 3. Example of matching point-sets. Left: Point-set (red) and an altered set (blue) under noise,
transformation, and with missing points with probability of 0.2. Right: The same point-sets after
matching. Each matched point has been marked with a line to the corresponding point in the other set.
The search area has been shown with circles. Up: Close up where matches and search areas can be seen.
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Figure 4. Result summary for simulated experiments. Results for PPM (triangle) and ICP (circle) are
given as average F-measure for ten replicate simulations for each parameter combination. All three
simulation scenarios are shown in the same figure; high association level with solid line and light grey,
intermediate association level with mid grey dash line, and low association level with dotted dark grey
line. (a) Results illustrated with standard deviation of the random particle movement (σmov) as a
parameter. (b) Results illustrated with length of the global transformation (in pixels) as a parameter.
F-measure is calculated through quantifying true and false matches, and results are not shown for
parameter combinations leading to undefined F-measures.
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Figure 5. Frame from a live-cell imaging experiment with; a) overlay of original image channels, b)
detected objects, colors correspond to image channels and direct pixelwise overlap (colocalization) is
visible as yellow color, c) close-up showing transformed point set and search area with white dashed
circles and found matches (association) with blue lines.
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Figure 6. Effect of delay to the estimate. Delay is given in frames (0 . . . 3). The left graph shows the
numerical estimates for association by PPM using different parameter values for search range (grey
graphs with triangle markers) and direct pixelwise colocalization (black graph with circle markers). On
the right the results are presented relative to the first datapoint, i.e. the values are divided by the
estimates obtained for the first, non-delayed values.



PIV

SEQUENTIAL STATISTICAL RECONSTRUCTION FOR
ELECTRON TOMOGRAPHYWITHMISSINGWEDGE

by

Lassi Paavolainen*, Erman Acar*, Uygar Tuna, Sari Peltonen, Pan Soonsawad,
Varpu Marjomäki, R. Holland Cheng & Ulla Ruotsalainen

Manuscript



�

��������	
 ��	������	
 
������������� ��� �
������ ������	���
���� ������� �����
����� ����	
��������
 ����� ���������
 ����� ������
 ���� ��
�	������
 ��� �		�������
 �����

����	� �!��
 "# $	

��� %&����
 �

� "�	���
����������

� ������	�
� �� 
��������� �
� �
����
	�
��� ����
�� � ��
�����
�� ��
���� �
��������

�� ������������ ������������  �
��
�

! ������	�
� �� ���
�� "�������
�� #�	���� �
�������� �� #��$
������ #�	�����  �
��
�

% 
��&���#��$� #�	���� �
�������� �� #��$
������ #�	�����  �
��
�

' ������	�
� �� &����(��� �
� ����(��� 
������� �
�������� �� �������
��� ������ ��� ��)

� �*(�� ��
���+(���


� �,	���- (���.�(�������
�
/�(�.0

�����	��

�
����	� �	�	����&� 	' (�	
	����
 ����
�� �� ���� �	 ����� �&� 	�����)���	� ��� �&� ��������� 	' ��(��

�*


�� �	��
�+�� �� ����� �����
# $	�����
 �
����	� �	�	����&� �� �� �

*�	��� ��	(
��
 �� ��	�����	�� ����	�

(� ������ 	��� '�

 ��
� ���
� ����� ���& �	������	��
 ���&��,���# ������� ��'	�����	� ����
�� �� ����'����

��� �� 
	�� 	' ���	
���	� �� �&� ���	��������	� �&�� �	 ���	� !�	�
���� 	' �&� ����
� �� ����
�(
�# �&� ���

	' �&�� ����� ��� �	 ����
	� � �	��-�� ����������
 ��,������
 ���	��������	� ���&	� .����*��/ �	 �
��*

��	� �	�	����&� 	' (�	
	����
 ����
�� ���&	�� ����� ���	� !�	�
����# �&� �0���� 	' ������� ��'	�����	�

��� �	 
������ ����
�� ����� �� �	������� ���& �&�� ����������
 ���	��������	� ���&	�# �&� ���	������*

��	� ���&	� ��� ������ ���& ����
���� ��� �+���������
 ��(��

�
�� ����
 ��� �	������ �	 ����
� ����

����&��� (��!��	�����	� .12�/ ��� ����
����	�� ��������� ���	��������	� ���&��,�� .�3"�/ ���&	��#

�� �

���	�� -����� ���&	� ��� ����
	��� �	 ����������

� ,�����'� �	
� ������
�� �� �&� ���	��������	��#

�&� �

���	��� ���� ���� �	 ���
�)� &	� ��

 �&� �������� ������
�� ��� (� ��������# �&� ����
�� �&	�

�&�� �&� ��������� ���&	� �	������� �&� �0���� 	' �&� ������� ��'	�����	� ���� �� �
	�����	� ���� ��

#

�&� ���
���(�
��� 	' ���	����� ���
���� ���&	�� ��� ��&����� ���& �&� ����	��� �	������ ����	# �&�

��������� ���&	� ���(
�� ���
���� 	' ��(��

�
�� ���������� ���& (����� �&���*�������	��
 ���	
���	� �&��

�&� �������	��
 ���&	��#

������������

�
����	� �	�	����&� .��/ 	' ��

�
�� ����
�� �� ����
� ���� ���&��,�� '	� �&���*�������	��
 .45/ ��*

�	��������	� 	' �	��
�+ ��(��

�
�� ���������� ���& �&� ���	
���	� ���(
��� �������	� 	' 	�����)���	� 	'

����	�	
���
�� �	��
�+�� 6�7# 3� ��
 ����������	� �
����	� ����	��	�� .���/ �� ���� �	 ����� ���*

���

� 899:;99 �� �&��! ����
�� 687# �� �
�������� �&� ���� '	� -��� �����	���� 	' �&� ����
� '	� 45

�������# �� -

� �&� ��� (������ ���������
 ���&	��
 ���& �� ����
�*������
� ���	��������	�
 ��� 	�����


����	��	��# ����� �	���� ����
� ���������	� ���&��,���
 ���& �� ���	 ���&	��
 �� ���(
�� ������� 	'

�	
���
�� ���&������ �� ��(��

�
�� ���������� �� �&��� ������ �	���+� 6�
 87#

�	�	����&� �� � ���&	� �	 ���	������� � 45 �	��
 	' � ����
� '�	� � �	

����	� 	' ��	*�������	��


.85/ ������

�������	� ������ 	' �&� ����
� ��!�� �� ��
���
� 	��������	��# 3� ��� ����
��� '	��
 ���&��

�&� ����
� 	� �&� �

�������	� �	���� ��� ������	� ��� �	����� ��	��� � ����
� �+�� '	� '�

 �<9 	� 4=9

������� �&�
� ��	�����	� ������ ��� ��!�� �� -+��
 ������

� �:8�
 �������
� 6�7#

�� 	' (�	
	����
 ����
�� &	
�� ��	 ���	� ������ �� ��,������	� 	' �	�	����&� ������# >����
 �� ������


����
 ����
� ����	� (� ������ �� '�

 �<9� ����� ����� �&� ��������� 	' �&� ����
� &	
��� ��� 
������

����� (������ �&� �	
� ������ 	' �&� 	(������� ������� ��,������ ������ ���& �&� &��&��� ��
� ���
�� 647# 3�

������	�
 �� �&� ����
� &�� �
�( �&���
 �
����� �� =9� ��
� ���
� �
����	� (��� &�� �	 ���� ����	+�����
�

����� �� ���& �������
 �� �� )��	 ������ ��
� ���
� 6?7 ��!��� �&� ,��
��� 	' &��& ��
� ���
� ������ �	���#



8

������

�
 �=9:@9� ����� �� ���� �� ��# ������� ����
�� �����
 !�	�� �� ������� ��	��
 �	���&�� ���&
�&� �������� �� ����& 	' �&� �������
 �&� �
����	� (��� &�� �	 ���� �� &��& ��
� ���
��
 ������ ����	��	���

���	
���	� �� �
	�����	� ��� (
������ 	' �&� 	(����� �� �+��
 �������	�# ���	��
 �&� �+���� �
����	� �	��

������� �&� ����
� (� �����	���� �&� ���

��� �����
�
 ��� ��� ������ ��'	�����	� ���& �� �&���!���

�� (��� �������	� 6?7# �	 ��	�� �&� ������ �	 �&� ����
�
 �� �� ���	����� �	 !��� ����
����� �
����	�

�	���� �� 
	� �� �	���(
�# $	�����
 
	� �
����	� �	���� ��������� �����
*�	*�	��� ����	
 ��� �� ���&
 �
�	

���	
���	�# � �	���	���� (������ �&� ���(�� 	' ��	�����	�� ��� �&� ���� �	���� 	� ���& ��	�����	�

����� �	 (� '	��� �	 ��+���)� �&� ���	
���	� 	' �&� ������ ����
�#

�&� �	�� ���� ���	��������	� ���&	�� �� �� ��� ����&��� (��!��	�����	� .12�/ 6;
 =7 ��� ����
*

����	�� ��������� ���	��������	� ���&��,�� .�3"�/ 6@7 ��� �	 �&��� ����
����� ��� ���� ����
�(�
��� ��

�	�	����&�� ���	��������	� �	'����� ���!����# $	�����
 (��!��	�����	� ���&	�� ��� ��������� �	 �&�

������� �����
 ��� ��� ����
� �� ������ ����'���� �� 
������ ���
� �	�	����&� ���& �� �� 6<7# �
��(����

���	��������	� ���&��,�� .�"�/ 6A7 �� ��	�&�� ����
� ���� ���&	� �	
���� �&� ���	��������	� ��	(
��

����� � ��� 	' 
����� �,����	��# 2	�& �3"� ��� �"� ��� ��������� ���&	�� �&�� ����	+����� 45 �	
���

(� ������)��� �&� ��0������ (������ 	������
 ��	�����	�� ��� ��	�����	�� 	' ���	��������� �	
���# �&�

���&	�� ���� ����
	��� �	 (� ���(
� �
�	 �� �� ���& 
���� ������� ����� ����� ������ ��� 	' ��	�����	��#

$	�����
 ����&�� �3"� �	� �"� -

� �&� ������� ����� 	� �� �(
� �	 &���
� ������� ����
� ����& (������


	� ��� &��& ��
� ���
�� 6�97# "�����
�
 �3"� ���&	� ����� 12� �� ������
�)���	� ��� (��!��	�����	�

����� ��� ��������� 6��7 �	 ����	�� ���	��������	� �	������ �	 ���&�� 	' �&� ���&	�� ��������
�#

"���
���)���	� ��� 
 ���
�� !�	�
���� ��� ���� �	 ������ ����'���� �	��	� �� �������	��
 ���	������*

��	� ���&	�� �� ��# ���
� ��������� �	�*
����� ����	��	��� ��0���	� -
������ 6�87 &�� (��� ���
��� �	

��	�����	� ������ �	 �	�������� ������� ����& 	' �&� ����
�# �	 �	�������� �&� ������� �����
 �	��


�������	� ��� �������	��
 ��		�&��� 6�47 &��� (��� ���
��� �	 ��	�����	� ������# �&���*(���� ����
��*

�)���	� ����� ���	� �	��
� 	' ������
�� ���
���� �� �&� ����
� 6�?7
 ��� ��������� ���! �� � ���	� ��

�	��-�� �3"� 6�;7 &��� (��� ��������� ������
�# $	�����
 �� ������
 �� ���	��������	� ��	(
��
 �	 

���
�� !�	�
���� 	' �&� ����
� �� ����
�(
�
 ��
��� ����� ��'	�����	� 	' !�	�� 	(�����
 ���& �� �	

	���


�	
� ������
��
 �� ���	�# "�����
�
 �	�������� ������� 6�=
 �@7 &�� (��� ���
��� �	 �� ���	��������	� �	

�	
�� ����'���� ������ (� �&� ������� �����# %	�������� ������� ���	��������	� ���&	�� &��� � ��,����*

���� 	' ���	� !�	�
���� 	' ������ ������������	� 	' �&� 	(����� �� �&� ����
� �&��& ��� �	
��� �� 6�=
�@7

����� ����� �������� ����	���� �������

� (	������ ����	�� �� �&� ������#

�&� ��� 	' �&�� ����� ��� �	 ����	���� � ��� ����������
 ����� ���	��������	� ���&	� ����(
� �	

�	����� �&� �0���� 	' ������� ����� ���� �&�� ���	� !�	�
���� 	' �&� 	(����� �� �	� ����
�(
�# �&�

�&	��� �	��-�� ��+���� � �	�����	�� �+�������	� ��+���)���	� .����*��/ ���&	� 6�<7 �����&�� �&�

�	�� 
�!�
� ��	��*�����	��
 ������ ����� �&� �������� ��	�����	�� '�	� ���# 1� ����
���)� �&� ���������

���	��������	� ���& � ������ -
����� ����� 	' �&� �����	�� �������	� �� � ����&��� 	��*���� 
��� �
�	���&�

�	 �	���	
 �&� �	��� �� �&� ���	��������� ������ 6�A7# �&� ���	��������	� ��������� ��
��� '	� �&� �������

����� ������ �&� �������	�� ��� '	��� � �&���*�������	��
 ����� '�	� �&� ������������# 3������ 	'

������� �&� ��������� ���	��������	� 	��� �	 �	��������� ���& � �&	��� ����&� '	� �&� ����
���)���	� ��

���
� �&� ���&	� ��,������

�# 3� �&� ��,������
 �&� �����	�� ����
� �� ������
�)��� �&� ��+� �������	� ���

(� �	�� �������� ������
�)���	� 	' �&� ��������� ���	��������	� �� ��� ������

� �������� �&� ����&� 	' �&�

����
���)���	� ��	���� �&�� ����	���� �&� ����� ,��
��� ���� (� ���� ������ �&� ��,������#

1� ������ �&� ����*�� ���&	� ���& ��	 ��0����� �	��� 
���
 ����
���� �������� ��� �� �+����*

�����
 �������
 ��� �	������ �	 �&� 12� ��� �3"� ���&	��# B	
� ������
�� �� �&� ���	��������	��

���� �������� ���& ���	����� �

���	�� -����� ���&	�# �&� ����*�� ���	��������	� ��	����� (�����

���	
���	� ���	����� �	 �

���	�� -����� �� �&� �+��
 �������	� �&	���� (����� �	��������	� 	' �&� �������

����� �&�� �&� �	������ ���&	�� �3"� ��� 12�# �
�	 �&� �	������ ����	 .%"/ �� �&� ����*�� ��*

�	��������	�� ��� (����� �&�� �� �&� 12� 	� �3"� ���	��������	��# 1� ��� �	��
��� �&�� �&� ��,������


����������
 ���*�� ����� ���	��������	� ���&	� �������� �	 �	����� �&� �0���� 	' �&� ������� �����

���� ��

#



4

�	����	
� 	�� �������

�	�	����

�� ���� ��
��
�� �&� ��

 �&���	� .>����� ��/ ��� ������� �� 	���� �	 ���� �&� ����
	��� ���&	�

���& � ���
����� ��������
 �&���	� 	' �� �����*��

�
�� ���������# �&� �	��������� �&���	� �� 	' �&� ��)�

;�8+;�8+�8< �� �&� .+
 �
 )/ �������	��
 ���& ��	��	��� �	+�
 ��)� 	' � ��# 3� �	������ 4 '���
� 
���� ��&�����


	(����� �����!��� ����� ������
��# ���& ����� ������
� &�� � �������� 	' <9 ��# � 
���� �

���	���
 �&����

	(���� ������������ � ��

 �����
� ��� �
�	 ���
����# �&�� �����
� ��� ��� �� &�
' '�	� �&� ����
� )*

�����	� ���
����� �&� ����	�	�� ��	����# �&� 
����&� 	' �&� �+�� 	' �&�� �����
� ��� �98
 <; ��� ;� ��#

2	�& ����� ������
�� ��� �����
� ���� ������� ����� ��+����� '�	� �&� ���	��������	� 	' �+���������


����# ������	��

�
 �� ���

 ��� ����� ��&�����
 	(����� ���������� �	
� ������
�� ���� �����# �&���

�	
� ������
��
 &����� �������� @
 A ��� �� ��
 &�� &��& ������� �	 ����
��� ��� �������# C	�*

���'	�� (��!��	��� ������� ��� ��� �	 ��		�&
� ���� 8#?D (������ �&� ������� ��� ��+���� �������#

��	�����	�� ���� ��!�� �� ��
� ����� 6*=9�
 E=9�7 ���& �� ���������# 1��& �&� ������	� 	' �	��� �	 �&�

��	�����	� ����
 ��	 ���� �	��	����� 	' �	��� �� �+���������
 ��� ��	�����	��
 �	���	� �	��� ��� �	

�
����	� �	���
 ��� B������� �	��� ��� �	 �&� %%5 ����	�
 ���� ����
����# �&� 	(������ ��	�����	��

���� �	���������� ���& ��	 ��0����� 
���
� �	�����	����� �	 �=#�D .�	��� 
���
 �
 C� �
 >��# �(/ ���

�<#9D .�	��� 
���
 8
 C� 8/ �	��� �	���������	� ���	����� �	 �&� �	�F�����*	'*�������	� ����#

�� ����������
� ������� 	
�
� �� �+���������
 ��� 	' ��� ��	�����	�� 	' �� �����*��

�
�� �����
�

��� ���� �� �� 6897
 ��� >��# ��
 '	���� (� � ������ 	' ��� ������ 	(������ ���& �&� G��*8�99> >��
�

������	� �
����	� ����	��	�� .G�H� ���#
 �	!�	
 G����/ �� � �	
���� 	' 899 !�# 3� �	������� �8?

������ 	' � ��

�
�� �����
� ��!�� �� �� �������
 	' ����	+�����
� �� �� �&� ����� 6*=;�
 E;<�7
 ���& �

�����-����	� 	' �9!# ��	�����	� ������ ���� �
����� (� �	���
���	� 	' �	
� ������
�� �� �� 6897# �&�

�������	�� 	' �&� ��	�����	� ������ ���� A;<+@�8 ��+�
� ��� �&� ��+�
 ��)� ��� � ��#

��������	
 �� !�� ��	�� 
������������� ������

����������
 ��������� ���&	�� ��� ����
� ���� �� �&� -�
� 	' �	�	����&�� ����� ���	��������	� 68�:8?7# �

�	��-�� �����	� 	' �&� ��

*!�	�� ���*�� ���&	� 6�<7 ��� ���� �� �&�� ����� '	� �	
���� �&� �������

����� ��	(
��# �&� �	��
 �	������	� �	 �&� ���*�� ���&	� �� �&� ��,������
 ���
�����	� 	' �&� ������


�	���� ����
���)���	�# �&� (
	�! ������� 	' 	�� ��,����� 	' �&� ���&	� �� ����� �� >����� 8#

�&� -��� ��,����� �� ������
�)�� ���& �� ����� 	' 	���# >����
 �&� ����� �� ��	������ �	 �&� ���	����

�	���� .�/# �&�� �&� �	������	� ���	���� �� ��
��
���� (� �������� �&��� ��	�����	�� �	 �&� ��������

��	�����	�� .8/# 3� �&� �	������	� ���	����
 �&� ����	� �&��& '�

� ���	 �&� ��!�	�� ��	�����	� (��� �� ���

�	 ��
�� �# �&�� �&� �	������	� ���	���� �� (��!*��	������ �	 �&� ����� �	���� .4/ �	 	(���� � �	������	�

�����# �&�� �	������	� ����� �� �	�(���� .?/ ���& �&� ����
���)���	� ����
� .;/ �	 ������ �&� �������

����� ��������# �&� ����&� 	' �&� ����
���)���	� ����
� �� �	���	

�� ���& �&� ����
���)���	� ���������

�# �&� ��
�� 	' � �� ������ �&�	��&	�� �&� ��,������ �� �&	�� �� >����� 4#

>���� � ��
�� �� ��� �	 � �&��& �	�����	��� �	 '�

 ����
���)���	�# �&�� �� �� ������� �	 9#� 
�����
�

�� �9 ����� ��� � -��
 ���� �� ���'	���� ���& �I9#9�# 2� ���������� �&� � ��
��
 �&� (
������ �0���

	' �&� ����
���)���	� -
��� �� �������# �&���'	�� �&� ���	
���	� ��� �&� ��������� �	������ ��� ��&�����#

$	�����
 � �� ����� ��� �	 9 �� 	���� �	 ���
�)� �&� 
	� ���� -
��� �&������������ 	' �&� ����
���)���	� -
���

��� �	 ��&���� �&� �����
 ,��
��� 	' �&� -��
 ���	��������� �����#

�	 ���
�)� �&� �&���� �� �&� ���	��������� ����� ������ ��,������ ,�����������
�
 �&� ���� �,����

���	� .���/ �� ��
��
���� ��J

��� I
�

�

�

�

.� �
� � ��/

�	

�&��� �� �� �&� ���	��������	� ����
� ��� � �
� �� �&� ��	��� ����& 	' �&� 
�� ��+�
# �&� ���(�� 	' �������	��



?

�� ���& ��,����� ��� ���������� �+���������

� '	� �&� �	��� ���� ���	����� �	 ���# �&� �&���� �� �&�

��� �&�	��&	�� �&� ��,������ '	� 	�� �
��� �� ���� �� >����� ?#

�&� ��� ��
�� ��������� ������ �&� �������	�� �� �� �� ���� '�	� �&� -���� �� �&� -��� �9 ��,������#

�� �&� -��
 ��,����� �&� �������� 	' � ��
�� '�	� 9#� �	 9#9� ����	����� �	�� �	��� �	 �&� ����� �&��&

���
�� �� �������� �� �&� ��� �����# $	�����
 ���������� ����&� 	' �&�� 
	� ���� ����
���)���	� -
���
 �&�

�����
 ,��
��� 	' �&� ����� �� ��&����� �� �&� -��
 ��,����� �� ����� 	' �&� ���	
���	� ��� �&� ���������

�	������ �� �� �� ���� �� �&� ������ ��� �&� ����� ��	-
�� �� >����� ;#

�&� ���	��������	� ���&	� �� ���
������� �� �����2 �� .���&1	�!� 3��#
 ��
 ���/ ��� �&� �	��

�� ��� 	� �&� �	������ ���� ���&�
� .���&�
� ���&�	
	���� ���#
 �������
 >��
���/# 3� �		! �(	�� A=9

&	��� '	� �&� ��

 �&���	� ������� ��� ?849 &	��� '	� �&� �+���������
 �����
� ������� �� %�� ���� �	

��� �&� ���	��������	� ����
��# ����	+�����
� �89 ��5 =? (�� ��	����	� �	�!�� �	������� ������������

�� �&� �+���������# �&���'	�� �&� ���	��������	� 	' �&� ��

 �&���	� ������� �		! �(	�� < &	��� ��� �&�

�+���������
 �����
� ������� �(	�� 4; &	���#

"���	��� �������������� �������

�&� ��,������
 ���*�� ���&	� �� �	������ ���& ��	 �	��	� ���	��������	� ���&	��
 ����
� �&�

12� 6;7 ��� �&� �3"� 6@7# 3��
��������	�� ����
�(
� �� �	�	45 �	'����� 68;7 ���� ���� �	 ���� �&�

���&	��# �3"� ��� ��� ���& 49 �������	�� �� ��

 �&���	� ���� ��� ;9 �������	�� �� �+���������
 �����
�

����#

�&� 12� ���&	� ����
� ������(���� �&� ��	�����	� ���� 	��� �&� ����� �
��� ��	�	���	��

� �	 �&�

�	����(���	� 	' ���& ����� �
����� .��+�
/# �&�� (��!��	�����	� 	������	� &�� � �����'�� '�����	� ���& �


	� ���� �&������������# 3� 	���� �	 �	�������� �&�� 
	� ���� �0���
 �&� ��	�����	� ���� �� ����&��� ���&

&��& ���� -
��� �	�F������ �� ���
 �����# �&� 12� ���&	� ��� (� ���&�������

� �+������� ��

�� I
�

�

���� .
�/	

�&��� �� �� �&� ���	��������	� ����
� 	' �&� 
�� �	+�

 ��� �� �&� ������ �����+ �
����� ��-���� �&�

�	����(���	� 	' �&� 
�� �	+�
 �	 �&� ��� ��	�����	�
 
� �� �&� ��� ��	�����	� ��� � .�/ ���������� �&� &��&

���� -
������ 	������	� 6;7#

�3"� �� ��	�&�� ��

*!�	�� ���	��������	� ���&	� �&��& ��&����� �&� ����� ���������
� ����� '	�����

��� (��!���� ��	�����	��# �&� ���&	� �� ������
�)�� ���& �� ��(������ ���	��������	� ��������# >����
 �&�

����� �� ��	������ �	 �&� ���	���� �	����# C�+�
 �&� ��0������ (������ �&� �������� ��	�����	�� ���

�&� ��	�����	�� '�	� �&� ������� ���	��������	� �� ��
��
����# >���

�
 �&� ��0������ �� (��!*��	������ �	

�&� ����� �	���� �	 ������ �&� ������� ����� ��������	�# �&� ���&	� ��� (� '	���
���� �� 6@7J

�
�����
� I �

���
� E

�

�

���

� �

�
� ����

���
�

�
� �

�
��

	

�&��� �
���
� �� �&� ����� ���	��������� �� �&� ��� �������	�#

�#	
�	���� �������

2	�& �����
 ��� ,����������� ���
����	�� ���� ���� '�	� �

 ���	��������	��# �����
 ���
����	�� ����

���� ���& 2�	3����K5 �	'����� 68=7# �
	�����	�� �� �

 �+�� ���� ���
�)�� '�	� �&� ���	��������	�� �	

������� �&� �0��� 	' �&� ������� ����� �	 �&� ���	
���	�# �	 ������ �&� 45 ���	
���	�
 � ��� ���&	�

�	 ������� �&� ���	
���	� ���& ��	���*����& �	
� ������
�� ��� ����
	���# 1��& ��	��	��� ���	
���	�


�
	�����	� �	�
� (� �#9 �� �

 �������	��
 �� �	
� ������
�� ��� ��&�����
 �� ���	����� ���
�# $	�����
 ��

� ����
� 	' �&� ������� �����
 �	
� ������
�� ���� �	 (� �
	������ �������

� �� �+��
 �������	�# �
	�����	�



;

��� ���	
���	� ������������ ���� ���� (� -����� �� �

���	�� �	 ���& �	
� ������
� ���
�)�� �� �&�

���	��������	��#

�

���	�� -����� ��� �	�� (� �������� � ��� 	' �

���	��� ����� E ����� E ����� I � ���& �������

�

���	���
 ���������� �	 �	 � � �# �	+�
� ������ 	' �� �

���	�� ���� ��� �� ���!# C	���
�)�� ��	��*

�	���
���	� ��� ���� �	 �����& '	� �&� 
	����	� 	' �	
� ������
� �� �&� ���	��������	� '�	� � ���

 �	
���

��	��� �&� ������
 
	����	�# 3�����
 �� �	
� ������
� 
	����	�� ���� !�	�� �� �&� ��

 �&���	� �	
���# >�	�

�&� �+���������
 �����
� ����
 
	����	�� 	' @ ��	
���� �	
� ������
�� ���� ������
�)�� �����

�# ����������

	' �&� (��� -����� �

���	�� '	� ���& �	
� ������
� ���� �+������� '�	� �	���
���	�� (� ��
������ �&� &��&���

�	���
���	� �	�F�����#

�&��� 	' �&� -���� �

���	�� ��� ���� �	 ���
�)� �	
� ������
� �
	�����	�
 �&��& ��� ���� �� � �������

	' ���	
���	� �� �&� �+��
 �������	�# �
	�����	�� ���� ��
��
���� ������
� '�	� �&� �

���	�� ���������� ��

�

 �������	�� �� �	
 I ���
 ��
 I ��� ��� ��	 I ���# �&� ���	
���	� 	' ��

 �&���	� ���	��������	�� ����

���
�)�� (� �	������� �&� ���������� 	' -���� �

���	�� �	 �&� ������ .�/ 	' ��	���*����& �	
� ������
� ��

�&� 	������
 �	
���# �&� ���	
���	� �� �

 �������	�� ���� ��
��
���� �� �
 I ���
 �	 I ��� ��� �� I ���#
%"� ���� ���
����� '�	� �&� ���	��������	�� �	 ,�����'� &	� ��

 �	
� ������
�� ��� (� �����
�)��

��� ���
�)��# �&� &��&�� %" ��
��� ���� &��&�� �	������
 ��� (����� ����(�
���
 �� �&� ���	���������

�	
����# %" ��� ��
��
���� ��

�� I

�

�� �.�/�����

�
 �.�/����

	

�&��� � �� �&� ���	��������� �	
���
 � � �� �� �&� �	+�
 ����+
 ��� �&� ���� � ��� � ��� �&� �	+�
�

������ �&� �	
��� 	' �������� ��� �� �&� �	
��� 	������ �&� �	
��� 	' ��������
 ����������
�# �&� �	
���

	' �������� ��� ��-��� (� �&� -���� �

���	��# �&� 	������ �	
��� 	' �������� ��� ��-��� �� �&� �	
���

��	��� �&� �	
��� 	' �������� ���& �&� ���� �&��� (�� ����� �&� �	
��� 	' �&� �	
��� 	' ��������# 5	�(
�

�	
��� ��� ��
����� �	 �	�-�� �&�� �&� 	������ �	
��� 	' �������� ��� �	������ �&� �	
��� 	' �������� ��

�

 �������	�� ���� ���& �&� ���

��� �	
� ������
��#


���
��

$������	
 ��	���� ����
��

H��&	�	��
 �
���� 	' �&� ���	��������	�� ��� ��������� �� >����� =# �&� ,����������� ������������ '	� �&�

�
	�����	�
 �&� ���	
���	� ��� �&� �	������ ����	 ������������ 	' �� �	
� ������
�� �� �&� ��

 �&���	�

���	��������	�� 	' (	�& �	��� 
���
� ��� ��������� �� ��(
� �# �&� ,����������� ������������ ��� (����

	� �&� �

���	�� -����� .>����� @/# �&� ����*�� ���	��������	� ����
�� ���� �	��������
� (����� ���&

�+�����
� �		� ���	
���	�# �&� ���&	� ��	����� ���	��������	�� ���& 
	� �
	�����	� �� �&� 
�����


�������	�# �&� 45 ���	
���	� �� �

 �������	�� ��� �
	�� �	 �&� ��	���*����& ��
���# �&� 12� ��� �&�

�3"� ���	��������	�� �&	� �������� �� ���	
���	� ��� �������� �� �
	�����	� �� �&� �+��
 �������	�
 ��

�������� (� �&� -���� �

���	���# �&� ���	
���	� �� �*�������	� �� �
�	 �+�����
� �		� �� �&� 12� ���

�&� �3"� ���	��������	��# $	�����
 �&� 12� ���	��������	� �
�	 ����
�� �� ����������� �	
� ������
��

�� �&� 
�����
 �������	�#

�&� %" ����
�� �� ��(
� � �&	� �&�� �&� ����*�� ���	��������	� ��	����� ���& (����� �	������

����	 �&�� �&� 12� ��� �&� �3"� ���	��������	��# �&�� �� �����

� ��������� �� >������ = ��� @# ����'����

��� �	� ����(
� �� �&� ����*�� ���	��������	� �� >����� =# �&� 12� ��� �&� �3"� ���	��������	��

�&	� �&��	�� ���� 	(����� �� �&� 
�����
 �������	�# >����� = �&	�� ��0����� ��	��� 	' �	��� �� �&�

���	��������	�� 	' ��0����� �	��� 
���
�# $��&�� �	��� ����� �	 ������ ����(
� ����'���� �� �&� 12� ���

�&� �3"� ���	��������	��#



=

�%��������	
 �	�	 ����
��

H��&	�	��
 �
���� �&�	��& �� ��	
���� �	
� ������
� ���!�� ���& �&��� ���	� ��� ��������� '	� �

 	' �&�

���	��������	�� �� >����� <# �&� �	
� ������
� �� ���& �	�� ����������&�(
� �� �&� ����*�� ���	������*

��	� �	������ �	 �&� 12� ��� �&� �3"� ���	��������	��# �&� ���� ��� (� ���� �� �&� �

���	�� -�����

	� � �	
� ������
� ��������� �� >����� A#

�&� ,����������� ������������ '	� �&� �
	�����	� ��� �&� �	������ ����	 ��� (���� 	� �&� �

���	��

-�����# �&� ������������ 	' @ �����

� ��
����� ��	
���� �	
� ������
�� �� �&� ���	��������	�� 	' �&�

�+���������
 �����
� ������� ��� ��������� �� ��(
� 8# �&� ����*�� ���	��������	� &�� �&� 
	����

�+��
 �
	�����	� ��� �&� (��� �+��
 ���	
���	�# �&� �	������ ����	 �� �&� ����*�� ���	��������	� ��

�
�	�� �&��� ����� &��&�� �&�� �� �&� 12� ��� �&� �3"� ���	��������	��# �&��� �� �	 �
	�����	� �� �&�

�	
� ������
�� �� 
�����
 �������	� �� �&� �3"� ���	��������	�# $	�����
 �&� �+��
 �
	�����	� �� �&� �3"�

���	��������	� �� &��&�� �&�� �� �&� ����*�� ��� �&� 12� ���	��������	��# �&� 12� ���	��������	�

�&	�� �
	�����	� �� �*�������	�
 �� �� ��

 �&���	� ���	��������	��#

����������

3� �&�� �	�!
 � ��,������
 ����������
 ���	��������	� ���&	�
 ����*��
 �� ���
��� �� �� ��� �	������

�	 ����
� ���� ��� ����
�(
� 12� ��� �3"� ���&	��# �&� ���&	�� ��� ���� �	 ���	������� � ����
����

��

 �&���	� ��� �+���������
 ���� 	' ��

 �����
�# �&� �&���	� �� ���� �	 ��
����� �&� ����
�� �������

!�	�� ��	���*����&
 ��� �
�	 ���� �	 ���� &	� ��0����� �	��� 
���
� �0��� �&� ����
��# �&� �+���������


���� �� ���� �	 ���� �&� ���&	�� ���& � ����
� 	' �	��
�+ (�	
	����
 ����������# L����������� ���

,��
������� ���
����	�� ��� ���� 	' �&� ���	��������	��# L����������� ������������ 	' �&� �	
� ������
��

��� ���� (� �

���	�� -�����# ����������
 ���
����	� 	' �&� �
	�����	� ��� �&� �	������ ����	 �� �	�� '�	�

�� �	
� ������
�� �� �&� ��

 �&���	� ���� ��� '�	� @ �	
� ������
�� �� �&� �+���������
 �����
� ����# 3�

������	�
 �&� ���	
���	� �� ���
���� '�	� �&� ��

 �&���	� ���� (� �	������� �&� -���� �

���	��� �	 �&�

��	���*����& �	
� ������
��#

�&���&	
�*'��� �

���	�� -����� ���&	� ��� ����
	��� �	 ���
�)� ���	
���	� 	' �&� ���	��������	��#

5������� 	' ���& �	
� ������
� �� !�	�� �� �&� ��

 �&���	� ���� �&�� ��� ���� �� �	������	� -� �	

�&� �

���	�� -����� ����
� ���� �	 ������ �&� ���	
���	� �����������# �&� �+��� �������� 	' �&� �	
�

������
�� �� �&� �+���������
 �����
� ���� ��� �	� !�	��# $	�����
 �&� ���	
���	� 	' �&� ���	��������	��

�� �+��
 �������	� ��� �	������ (� �&� 
����& 	' �&� -���� �

���	���# �&� �

���	�� -����� ��� �	�!���

�� �

 ����*�� ���	��������	��# �� �&� 12� ��� �3"� ���	��������	�� &��� ���& � 
	� �	������
 �&�

�

���	�� -����� �&	��� �	�� �������	� �������

� �� �	��� 
���
 8 ��

 �&���	� ��� �+���������
 �����
�

����#

�&� ,����������� ����
�� �&	� �&� ����*�� ���	��������	�� �	 (� ���& (����� �&�� �&� 12� ���

�&� �3"� ���	��������	��# �&� ���� ��� (� �	��
���� ���& ,��
������� ���
���� 	' �&� ���	��������	��#

�&� ����*�� ���	��������	�� &��� ���& &��&�� �	������ �&�� �&� 12� ��� �&� �3"� ���	��������	��#

3���	��� �	������ ����	 ���(
�� (����� �����
 ������������	� ��� ���	����� ���
���� �������
� ���

 ��F��
�

�� �&� ��# �&�� �� �&	�� �� �&� 12� ��� �3"� ���	��������	�� 	' �&� �	��� 
���
 8 ��

 �&���	� �������#

2	�& 12� ��� �3"� ���	��������	�� ���
��� ����'���� ��� �	 �&� ������� �����# �&��� ����'���� �	 �	�

�+��� �� �&� ����*�� ���	��������	��#

12� �� � '��� ��� ���� �	 ���
����� ����� ���	��������	� ���&	�# $	�����
 �� ��0��� �� ���	�*

��������� �&� ��	�����	� �������� ���& � ������� ����� 
�!� �� 	�� �� ����# �3"� ��� ����*��
 ��

��������� ���&	��
 ��� &���
� ���& �������� (�����# �3"� ���� � 
����� ��������	� �	��
 '	� �&� ���� ���

�	
��� �&� ��	(
�� �� �&� 
���� �,����� �����# $	�����
 ����*�� ���� � �	���	� ������(���	� �	��
 '	�

�&� ���� ��� �	
��� �&� ��	(
�� �� �&� ��+���� 
�!�
�&		� �����# H�� ����	� �&�� �&� �	������ ��
���

'	� �&� ����*�� ���� (����� �&�� �3"� �� �&� '��� �&�� �	���	� �	��
 ���������� �&� ��	�����	� ����

(����� �&�� �&� 
����� ��������	� �	��
# ��	�&�� ����	� �� �&� ����
���)��� ������ -
��� �&��& ���	���



@

�&� �	
���	� � ���	�� ��'	�����	� �&�� �&� ��������� ��
��� ��� ����
�� �� �&� ���

 ����&(	�&		� 	' ���&

��+�
 	' �&� ���	��������� �����# 2	�& �3"� ��� ����*�� ��� �	�������	��

� �+�������# ����*��

�� �
	��� �&�� �3"� ��� �	 �&� ����
���)���	� ��	���� ��� �&� ��,����� ���(�� 	' �������	��# �
�&	��&

�&� �� ����� ���	��������	� ���� �� �	� �� �������
 �� ���	��������	� ���� 	' �&� 	�&�� �	�	����&�� ����*

��� �	��
�����
 �� ��� (� ������� (� ����� �� 	�����)�� ��� �������� �������� �	 �&���� �&� �����-���

��,����� ��������� ����
���)���	� �	�F����� �# �	��	���
 �&� �	������� ���� '	� �&� ���&	� ��� (�

������� ���& � (����� �	������� ������ .%��
 B��
 ���� ���&�	
	����
 ���#/ ��� 	�����)�� �	'����� ��

�&� ���� '�����#

�&� ����
�� 	' �&� ����*�� ���	��������	� ���&	� ��� ���� �		� ���& ����
���� ��� �+���������


����# L����������� ������������ �&	� �&� ����*�� ���	��������	� �	 &��� (����� ���	
���	� �&�� �&�

�3"� ��� �&� 12� ���	��������	�# �����
 ��������	� ����	��� �&�� ��� �&	�� �&�� ����*�� ���	�*

�������	� ������� ������� ����� ����'����# 1� (�
���� �&�� �&�� �������� 45 ���
���� 	' �&� ����������

�� �� �� ������
 �&� ��,������
 ���*�� �	�
� (� �&� ���&	� �	 �&		��#

��&���
��������

�&� ��	���� ��� ����
� ����	���� (� C3$ .�39A;4<8/
 >�5���	 .�A�4M4�M89�8/
 ��� 5���	���� B����

.�%5B�@<A=A/# �&� ���&	�� �	�
� 
�!� �	 �&��! �	�&�	 �	���� .������� ���������� 	' ���&�	
	��


2�	�������&
 >��
���/ '	� ������ �	���������� �	������ '	� ����	���� �&� ����������#


���������

�# ������ 2>
 ���!	 � .899�/ �&� ��������� 	' �
����	� �	�	����&� �� �� ���	����� �		
 '	�

������������� ��

�
�� �
������������# G	����
 	' $���	�&������� N %��	�&������� ?AJ ;;4:;=4#

8# ��O��P� �
 > 	����� >
 2��������� 1 .899;/ ���������
 ������� (� �
����	� �	�	����&�J >�	� ��

�

�	 �	
���
��# �����
 "����� 	' 2�	�&������� @?J <44:<=;#

4# ����
�� �
 1��
��� � .8994/ 45 �
����	� ����	��	�� �� �&� �&�����
 ��������J �&� ����
	�����

	' Q*�	������ ��� �>��� �	�	����&�# �
�������	��	�� A=J ?�4:?4�#

?# R	���� �G
 B���� "
 ���!� 5
 $����
 "
 ��	��&�! �
 �� �
# .�AA@/ ������������ 	' �	
���
�� ���

��

�
�� �
����	� �	�	����&�# G	����
 	' ���������
 2�	
	�� �89J 8@=:49<#

;# "�������&�� � .899=/ 1���&��� (��!*��	�����	� ���&	��# 3�J >���! G
 ����	�
 �
����	� �	�	���*

�&�J ���&	�� '	� �&���*5������	��
 �����
�)���	� 	' ���������� �� �&� %�


 C�� S	�!J ��������#

8�� �����	�
 ��# 8?;:8@4#

=# H�
	� 3�
 �	���� 5B
 %&��� "$ .899=/ �F����� ���
��������	� 	' � -
����� (��!*��	�����	�

�
�	���&� ����� � �	+�
*(�*�	+�
 ����	��&# G	����
 	' ���������
 2�	
	�� �;?J 8<@:8A=#

@# B�
(��� � .�A@8/ 3�������� ���&	�� '	� �&� �&���*�������	��
 ���	��������	� 	' �� 	(���� '�	�

��	�����	��# G	����
 	' �&�	������
 2�	
	�� 4=J �9;:��@#

<# 5�
���� �
 2���
�� S .�AA</ B
	(�

� �	�������� ����*���������� ����
���)�� ���	��������	�J ��

���
�����	� �	 
������*���
� �	�	����&�# 3��� ���������	�� 	� 3���� ��	������� @J 89?*88�#

A# B	��	� "
 2����� "
 $����� B� .�A@9/ �
��(���� ���	��������	� ���&��,��� .�"�/ '	� �&���*

�������	��
 �
����	� ����	��	�� ��� K*��� �&	�	����&�# G	����
 	' �&�	������
 2�	
	�� 8AJ ?@�:

?<�#



<

�9# ����)�! �� .89�9/ >���������
� 	' �&���*�������	��
 ���	��������	� '�	� ��	�����	��# ���&	��

�� ��)��	
	�� ?<8J �:44#

��# 1	
' 5
 ��(! �
 ���&�� $ .89�?/ 1���&��� ����
����	�� ��������� ���	��������	� ���&��,�� '	�

����
�*�+�� �	�	����&�# �
�������	��	�� �4=J �;:8;#

�8# ���	��� �
 $������ �
 R�)�����)�! �
 ���	 2
 R������&�� �
 �� �
# .89�8/ 3���	���� �&� ,��
���

	' �
����	� �	�	����&� ����� �	
���� ����� ���*���	��������	� -
������# G	����
 	' ���������


2�	
	�� �<9J �48:�?8#

�4# ����� 3
 2�������&� �
 2	����� �
 ���	 $S
 �����	 B
 �� �
# .899@/ "���
���)���	� '	� ��������� �&�

���	� �����'	�� ���& ����� �	���������	�# 3�J ?�& 3��� 3��������	��
 ����	���� 	� 2�	������


3������J >�	� C��	 �	 ����	# ��# 8�@:889#

�?# B	�����& �
 K� B
 "��� 5
 H!��� H
 ��(�������� �
 �� �
# .89�8/ �&���*(���� ����
���)���	�

	' �
����	� �	�	����&�� ���	��������	�# 3��� ���������	�� 	� ������
 3������ 4�J 88?�:88;8#

�;# Q ����� �
 5 	(
����� �
 %���� �
 1�� "
 2��� � .89�8/ 5������� �	�	����&� 	' ��������� ����
��

(���� 	� � �	��-�� �3"� �
�	���&�# �
�������	��	�� ��;J ?�:?A#

�=# B	��� 2
 ��� ��� 2�	�! 1
 2����(��� R
 $������ ��)���� $
 2�
� � .89�8/ �
����	� �	�	����&�

(���� 	� � �	��
 �������	� ������)���	� ���	��������	� ���&��,��# �
�������	��	�� ��4J �89:�49#

�@# ����� "
 ���&� Q
 ����
�� ��
 $	

��� 5G .89�4/ %	�������� ������� �
����	� �	�	����&�# �
*

�������	��	�� �4�J @9:A�#

�<# ���� �
 �	&
(��� �
 "�	���
����� � .89�4/ %�� �� ������ ���%� ��,������	� ���� ����� ���*

�� ���	��������	�# G	����
 	' ������� "��	�����	� ��� 3���

����� ������� �J ;?:=4#

�A# �
����� �
 "�	���
����� � .8998/ B�����
�)���	� 	' ������ �		� ���	� ���	��������	�# 3��� �����*

����	�� 	� ������
 3������ 8�J �?�4:�?89#

89# �		������ �
 K��� �
 ��

� �
 �����	)� G�
 R����	 �
 �� �
# .89�9/ ���������
 �������� 	'

�
��	��	���� �����(
� �� ��

�
�� ���(���� �	���������� ���	� �	 �
�&������ (������# G	����


	' ���	
	�� <?J ���?;:���;�#

8�# 2	���� %
 ����� R .�AA4/ � ������
�)�� B������� ����� �	��
 '	� ����*���������� ��� ������*

��	�# 3��� ���������	�� 	� 3���� ��	������� 8J 8A=:4�9#

88# >���
�� G�
 $��	 �H .�AA;/ ����
�)�� ��+����*
�!�
�&		� ����� ���	��������	� ����� �����*

�
��������� ������
�)�� �� �
�	���&��# 3��� ���������	�� 	� 3���� ��	������� ?J �?�@:�?8A#

84# B���� �G .�AA9/ 2������� ���	��������	�� '�	� ������	� �	�	����&� ���� ����� � �	��-�� ��

�
�	���&�# 3��� ���������	�� 	� ������
 3������ AJ <?:A4#

8?# $�(��� �
 ���&� " .�A<A/ � ������
�)�� �� �
�	���&� '	� 4*5 2������� ���	��������	� '�	�

�	���	� ���� ����� B�((� ���	��# 3��� ���������	�� 	� ������
 3������ <J �A?:898#

8;# ���

���	 G3
 >�������) GG .89��/ >��� �	�	����&�� ���	��������	� 	� ��
���	�� �	�������# 2�	��*

'	������� 8@J ;<8:;<4#

8=# R��!���� � � �
 ����	
����� �
 ������ �
 R����
����� �
 � ��� ������ G
 �� �
# .89�8/ 2�	3����K5J

�� 	���
 ������
*����	�� ��� &��&*�&�	��&��� �����*��	������� �
��'	��# C����� ���&	�� AJ

=<4:=<A#



A

��� ���� ����	
� �

����	
�	� ��� ���� ����	
� ��

 	��	 �

���	�
� �����

��� ����
����	�� ������� ��

 	��	 �

���	�
� �����

 ��(�� �. ���� ��������. �/ ���'��� ��������� 	' �&� ��

 �&���	� �������# (/ Q��	 ��
� ��	�����	� 	'

�&� ��

 �&���	� ���& �	��� 
���
 �# �/ Q��	 ��
� ��	�����	� 	' �&� �+���������
 �����
� ���� ���&

�������� 
		!�� ��(
� '	� ����	��� �����
�)���	�#

'����� (������

�	�
��



�9

 ��(�� !. #$� +���� ������	 �� �$� ��*(�
���� &)",�& 1���
���(����
 &��$��. �
���
� ��

�&� ���	��������	� ����
� 	' �&� 
�� �	+�
 �� ��� �������	�
 ��� �� �&� ������ �����+ �
����� ��-���� �&�

�	����(���	� 	' �&� 
�� �	+�
 �	 �&� ��� ��	�����	�
 
� �� �&� ��� ��	�����	�
 ���.�/ �� �&� ������ -
���

���& � 4+4 !����
 ��)�
 � �� �&� �����-��� ��,����� ��������� �	�F����� ��-���� �&� ��	��� 	'

����
���)���	�#

 ��(�� %. #$� ��*(�
���� �$�
�� �� ���(����2����
 3���$�� �. �&� ��,������ ��� ������
�)�� ���&

�� ����� 	' 	��� .�&� 
�'��	�� �����/# �&��
 '	� ���& � ��
��
 A� �������	�� ��� ���'	����# �� �&� ���

	' ��,������ ���& ���������� � ��
���
 �&� -��
 ���	��������	� ����� �� 	(������ .�&� ���&��	�� �����/#



��

 ��(�� '. #$� �$�
�� �
 �$� 	��
 �*(��� ����� 4&��5 �$��(�$�(� �$� ��*(�
���.

 ��(�� 6. #$� ����
���(���� �	��� �� �$� �
� �� �$� �7�$ 4(���� ����5 �
� �$� ���$

4(���� ���$�5 ��*(�
��� �
� �$� ���0��� ����
 ���	 �$� ��
��� �� �$� �	����. �&� �����


,��
��� 	' �&� ����� �� ��&����� �� �&� -��
 ��,����� �� ����� 	' �&� ���	
���	� ��� �&� ���������

�	������ �� �&� �+����� 	' �� �������� �� �&� ���#



�8

��� ������ ��� ��� � � ��� ��� !"#$ ���

��� ������ ��% ��� � � ��% �	� !"#$ ��%

 ��(�� 8. 9��$���
�� ������ ���	 �$� ���� �$�
��	 ����
���(����
 ���(���. H��&	�	��
 +*�


+*) ��� )*� �
���� �&�	��& �&� ������ 	' �&� ���&� �	
� ������
�# �&� ����������� 	' ������ ��� ��&�����


�����
� �	 ����	�� �����
 �	�����(�
���#

#�+�� �. :(�
�������� ���(��� ��� �� ���� ��������� �
 ���� �$�
��	 �������

C	��� ���&	� �
 �	 �� �	
 ��
 ��	 %"

C� �

���*�� ��99� 9�99 ��99� 9�99 ��94� 9��9 ��99� 9�99 ��94� 9��9 ��94� 9��9 @�;@� ���8
12� 9�A8� 9��� ��99� 9�99 ��84� 9��@ ����� 9��; ��4=� 9�8; ��84� 9��@ ��=<� 9�9=
�3"� 9�A<� 9�9< ��99� 9�99 ��?=� 9��@ ��94� 9��9 ��;9� 9��@ ��?=� 9��@ ��=A� 9��8

C� 8

���*�� ��99� 9�99 ��99� 9�99 ��9=� 9��4 ��99� 9�99 ��9=� 9��4 ��9=� 9��4 ?�@4� 9�@;
12� 9�<A� 9��4 ��99� 9�99 ��9A� 9��4 ���;� 9��A ��8@� 9�4; ��9A� 9��4 ��4<� 9�9?
�3"� 9�A<� 9�9< ��99� 9�99 ��8A� 9�8� ��94� 9��9 ��48� 9��< ��8A� 9�8� ��??� 9�9<



�4

��� ������ ��� ��� � � ��� ��� !"#$ ���

��� ������ ��% ��� � � ��% �	� !"#$ ��%

 ��(�� ;.  ����� ���������� �
 �
 ������� ���� �������� �
 �$� ���� �$�
��	 ����. H��&	�	��


+*� .�����*
�'�/
 )*� .�����*���&�/
 ��� +*) .
	���*
�'�/ �
���� 	' �&� -���� �

���	�� ����� 	��� ��

������� �	
� ������
�# ���'��� ��������� 	' �&� �	
� ������
� .
	���*���&�/# �

 ������ �� �&� ���� �	�

��� �� ���
�# 3�	*��
�� ��� ��
����� �� �&� ���� 	' �&� ������� ��������� ��
�� ������ �&� �	
��� 	'

�������� ��� �&� 	������ �	
��� 	' ��������# �&� ���'��� ��������� �� ���������� 	' �&� 	����

 �&��� 	'

�&� �	
� ������
� ��� �&	�
� �	� (� ������
� �	������ (������ ���&	��# 3����� ��� ���
�� �	 �&�

��+���� ������� �����#

#�+�� !. :(�
�������� ���(��� ��� ; ���� ��������� �
 �<����	�
��� ������� ����

���&	� �	
 ��
 ��	 %"

���*�� ��9�� 9��@ ��8@� 9��< ��8@� 9��< 4�9�� 9�A;

12� ���?� 9��4 ��;@� 9�8? ��4<� 9��< ���<� 9�9?

�3"� ��99� 9�99 ��=@� 9�4@ ��=@� 9�4@ ���<� 9�94



�?

��� ������ ��� � �

��� !"#$

 ��(�� =. 9��$���
�� ������ ���	 �$� �<����	�
��� ������� ������� ����
���(����
 ���(���.

H��&	�	��
 +*�
 +*) ��� )*� �
���� �&�	��& �&� ������ 	' �&� �	
� ������
� ���!�� ���& �&��� ���	��#

�&� ����������� 	' ������ ��� ��&����� 
�����
� �	 ����	�� �����
 �	�����(�
���#



�;

��� ������ ��� � � ��� !"#$

 ��(�� >.  ����� ���������� �
 � ���� �������� �
 �$� �<����	�
��� ������� ����. H��&	�	��


+*� .�����*
�'�/
 )*� .�����*���&�/
 ��� +*) .
	���*
�'�/ �
���� 	' �&� -���� �

���	�� ����� 	��� �&� �	
�

������
� ���!�� �� >����� <# �&� ��
����� �	
� ������
� �� �		� ������� ������������ 	' �&� -����

�

���	��� �� �&� ���*�� ���	��������	�# �&� �	
� ������
� �� �&� 	�� ���& �&� (��� ���	
���	� �� �&�

12� ��� �3"� ���	��������	��# ���'��� ��������� 	' �&� �	
� ������
� .
	���*���&�/# 3�	*��
�� ��
�����

�� �&� ���� 	' �&� ������� ��������� ��
�� ������ �&� �	
��� 	' �������� ��� �&� 	������ �	
��� 	'

��������# �&� ���'��� ��������� �� ���������� 	' �&� 	����

 �&��� 	' �&� �	
� ������
� ��� �&	�
� �	� (�

������
� �	������ (������ ���&	��# 3����� ��� ���
�� �	 �&� ��+���� ������� �����#


	Lassi Paavolainen, Algorithms and Software for Biological Multiscale Image Analysis
	ABSTRACT
	ACKNOWLEDGEMENTS
	ACRONYMS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Objectives of the research
	1.2 Structure of the thesis
	1.3 Main contribution

	2 MICROSCOPY IMAGING TECHNIQUES AND 3-DIMENSIONAL RECONSTRUCTION
	2.1 Fluorescence microscopy
	2.2 Transmission electron microscopy
	2.3 Electron tomography

	3 BIOIMAGE ANALYSIS
	3.1 Segmentation
	3.2 Colocalization and particle association
	3.3 Tracking
	3.4 Method validation

	4 SINGLE-PARTICLE RECONSTRUCTION
	4.1 Particle selection
	4.2 Literature review on particle selection methods
	4.3 Novel particle selection framework

	5 BIOIMAGE INFORMATICS SOFTWARE
	5.1 BioImageXD
	5.2 Overview of other bioimage informatics software, tools and libraries

	6 CONCLUSIONS AND FUTURE WORK
	6.1 Main conclusions
	6.2 Plans for future work

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	BIOIMAGEXD: AN OPEN, GENERAL-PURPOSE AND HIGH-THROUGHPUT IMAGE-PROCESSING PLATFORM
	APPLICATION INDEPENDENT GREEDY PARTICLE
TRACKING METHOD FOR 3D FLUORESCENCE MICROSCOPY
IMAGE SERIES
	QUANTITATIVE ANALYSIS OF DYNAMIC ASSOCIATION IN
LIVE BIOLOGICAL FLUORESCENT SAMPLES
	SEQUENTIAL STATISTICAL RECONSTRUCTION FOR
ELECTRON TOMOGRAPHY WITH MISSINGWEDGE



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




