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ABSTRACT

Zaretskiy, Alexander
Mathematical models and stability analysis of three-phase synchronous machines
Jyväskylä: University of Jyväskylä, 2013, 92 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 179)
ISBN 978-951-39-5511-3 (nid.)
ISBN 978-951-39-5512-0 (PDF)
Finnish summary
Diss.

This work is devoted to the investigation of stability and oscillations of three-
phase synchronous machines with four-pole rotor at various connection (series
and parallel) in feed system. Nowadays, they are widely used as generators for
power generation in power plants and power systems.

To study these machines new mathematical models are developed under
the assumption of a uniformly rotating magnetic field generated by the stator
windings. This assumption goes back to classical ideas of N. Tesla and G. Ferraris.
The obtained models completely take into account rotor geometry in contrast to
the well-known mathematical models of synchronous machines.

Then the conditions of steady-state and global stability for synchronous ma-
chines are established. The dynamical stability is considered in the context of the
limit load problem. The limit permissible loads on synchronous machines with-
out control are estimated by the second Lyapunov method. In order to increase
dynamical stability, the direct torque control is suggested. The sufficient condi-
tions of the existence of circular solutions and at the limit cycles of the second
kind for the models of synchronous machines are obtained by the non-local re-
duction method. The obtained analytical results are an extension of Tricomi’s
classical results to multidimensional models of synchronous machines. More-
over, numerical modeling of systems, describing the synchronous machines un-
der the load without control, with a proportional control and with a step control,
is carried out. The conclusions on more preferred type of connection are made.

Keywords: synchronous machines, four-pole rotor, stability, transient processes,
the limit load problem, the non-local reduction method, circular solu-
tions, limit cycles of the second kind



Author Alexander Zaretskiy
Department of Mathematical Information Technology
University of Jyväskylä, Finland

Faculty of Mathematics and Mechanics
Saint-Petersburg State University, Russia

Supervisors Docent Nikolay Kuznetsov
Department of Mathematical Information Technology
University of Jyväskylä, Finland

Professor Gennady A. Leonov
Faculty of Mathematics and Mechanics
Saint-Petersburg State University, Russia

Professor Pekka Neittaanmäki
Department of Mathematical Information Technology
University of Jyväskylä, Finland

Professor Timo Tiihonen
Department of Mathematical Information Technology
University of Jyväskylä, Finland

Reviewers Professor Sergei Abramovich
School of Education and Professional Studies
State University of New York at Potsdam, USA

Professor Jan Awrejcewicz
Department of Automation, Biomechanics and Mechatronics
Lodz University of Technology, Poland

Opponent Professor Alexandr K. Belyaev
Director of Institute of Applied Mathematics and Mechanics
Saint-Petersburg State Polytechnical University, Russia
Honorary Doctor of Johannes Kepler University of Linz,
Austria



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Docent Nikolay
Kuznetsov, Prof. Gennady A. Leonov, Prof. Pekka Neittaanmäki and Prof. Timo
Tiihonen for their guidance and continuous support.

This thesis has been completed in the Doctoral School of the Faculty of
Mathematical Information Technology, University of Jyväskylä. I appreciate very
much the opportunity to participate in the Educational and Research Double
Degree Programme organized by the Department of Mathematical Information
Technology (University of Jyväskylä) and the Department of Applied Cybernet-
ics (Saint-Petersburg State University). This work was funded by the Faculty of
Information Technology of the University of Jyväskylä and Academy of Finland.
Also this work was partly supported by Saint-Petersburg State University and
Federal Target Programme of Ministry of Education (Russia).

I’m very grateful to the reviewers of the thesis Prof. Sergei Abramovich and
Prof. Jan Awrejcewicz.

I would like to extend my deepest thanks to my parents Tatyana Zaretskaya
and Mihail Zaretskiy for their endless support and for their faith in me and giving
me the possibility to be educated.



LIST OF FIGURES

FIGURE 1 The salient pole rotor with damper winding: 1 – source of con-
stant voltage, 2 – field winding, 3 – damper winging, 4 – shaft,
5 – brushes, 6 – rings, 7 – poles ............................................... 19

FIGURE 2 Scheme of four-pole rotor with different connections: 1 – field
winding, 2 – damper winging, 3 – poles, 4 – source of constant
voltage, 5 – coils, 6 – bars. a – series connection; b – parallel
connection ........................................................................... 19

FIGURE 3 Geometry of four-pole rotor at series connection: a – the direc-
tions of electromagnetic forces and currents; b – the projection
of force F1. ........................................................................... 22

FIGURE 4 Equivalent electrical circuit of four-pole rotor with series con-
nection ................................................................................ 23

FIGURE 5 Geometry of four-pole rotor at parallel connection: a – the di-
rections of velocity and emf; b – the definitions of angles ζ1
and ζ2. ................................................................................ 24

FIGURE 6 Equivalent electrical circuit of four-pole rotor with series con-
nection ................................................................................ 25

FIGURE 7 Phase space and cylindrical phase space ................................. 35
FIGURE 8 Scheme of rolling mill without load: 1– blank, 2 – top rolls, 3 –

connecting mechanism, 4 – bottom rolls, 5 – synchronous motor 38
FIGURE 9 Scheme of rolling mill under load........................................... 39
FIGURE 10 A – the region of permissible loads on uncontrolled synchronous

machines; B – the region of permissible loads on controlled
synchronous machines; C – the region which is not investi-
gated analytically; D – the region of the existence circular so-
lutions and the cycles of the second kind ................................ 43

FIGURE 11 a – proportional control law; b – step control law. .................... 44
FIGURE 12 Parameter spaces of systems (10) (a) and (12) (b) without con-

trol: 1 – permissible loads, obtained by theorems; 2 – permis-
sible loads, obtained numerically; 3 – impermissible loads ....... 45

FIGURE 13 The trajectory of system (10) without control. Permissible load.
Modeling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15,
c1 = 0.75, γmax = 1, γ = 0.8. .................................................. 46

FIGURE 14 The trajectory of system (12) without control. Permissible load.
Modeling parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75,
γmax = 1, γ = 0.85. ............................................................... 47

FIGURE 15 The trajectory of system (10) without control. Impermissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15,
c1 = 0.75, γmax = 1, γ = 0.85. ................................................ 48

FIGURE 16 The trajectory of system (12) without control. Impermissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, c1 =
0.75, γmax = 1, γ = 0.95. ....................................................... 49



FIGURE 17 Parameter spaces of systems (26) (a) and (27) (b) with propor-
tional control law: 1 – permissible loads, obtained by theo-
rems; 2 – permissible loads, obtained numerically; 3 – imper-
missible loads ...................................................................... 50

FIGURE 18 The trajectory of system (26) with proportional control. Per-
missible load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5,
d = 0.15, c1 = 0.75, γmax = 1, γ = 0.8. .................................... 51

FIGURE 19 The trajectory of system (27) with proportional control. Per-
missible load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5,
c1 = 0.75, γmax = 1, γ = 0.8. .................................................. 52

FIGURE 20 The trajectory of system (26) with proportional control. Im-
permissible load. Modeling parameters: a = 0.1, b = 0.2,
c = 0.5, d = 0.15, c1 = 0.75, γmax = 1, γ = 0.95. ....................... 53

FIGURE 21 The trajectory of system (27) with proportional control. Im-
permissible load. Modeling parameters: a = 0.1, b = 0.2,
c = 0.5, c1 = 0.75, γmax = 1, γ = 0.95. .................................... 54

FIGURE 22 Parameter spaces of systems (26) (a) and (27) (b) with step con-
trol law: 1 – permissible loads; 2 – impermissible loads ............ 55

FIGURE 23 The trajectory of system (26) with step control. Permissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15,
c1 = 0.75, γmax = 1, γ = 0.81. ................................................ 56

FIGURE 24 The trajectory of system (27) with step control. Permissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, c1 =
0.75, γmax = 1, γ = 0.85. ....................................................... 57

FIGURE 25 The trajectory of system (26) with step control. Impermissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15,
c1 = 0.75, γmax = 1, γ = 0.9. .................................................. 58

FIGURE 26 The trajectory of system (27) with step control. Impermissible
load. Modeling parameters: a = 0.1, b = 0.2, c = 0.5, c1 =
0.75, γmax = 1, γ = 0.975. ...................................................... 59



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION AND THE STRUCTURE OF THE WORK ................ 11

2 MATHEMATICAL MODELS OF SYNCHRONOUS MACHINES ......... 18
2.1 Electromechanical models of salient pole synchronous machines .. 18
2.2 Modeling assumptions.............................................................. 20
2.3 Mathematical models of four-pole rotor synchronous motors ....... 21

3 STABILITY AND OSCILLATIONS OF SYNCHRONOUS MOTORS ...... 31
3.1 Steady-state stability analysis of synchronous motors .................. 31
3.2 Dynamical stability of synchronous machines without load.......... 36
3.3 Dynamical stability of synchronous machines under constant load 38

4 NUMERICAL MODELING ............................................................... 44
4.1 The dynamics of uncontrolled synchronous machines.................. 45
4.2 The dynamics of synchronous machines with proportional control 50
4.3 The dynamics of synchronous machines with step control ............ 55

5 CONCLUSIONS .............................................................................. 60

YHTEENVETO (FINNISH SUMMARY) ..................................................... 61

REFERENCES.......................................................................................... 62

APPENDIX 1 CYLINDRICAL PHASE SPACE ......................................... 75

APPENDIX 2 PROOF OF THEOREMS .................................................... 78

APPENDIX 3 COMPUTER MODELING OF SYSTEMS DESCRIBING SYN-
CHRONOUS MOTORS UNDER CONSTANT LOADS (MAT-
LAB IMPLEMENTATION) ................................................ 86

INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

PI G.A. Leonov, N.V. Kondrat’eva, A.M. Zaretskiy, E.P. Solov’eva. Limit load
estimation of two connected synchronous machines. Proceedings of 7th Eu-
ropean Nonlinear Dynamics Conference, pp. 1–6, 2011.

PII G.A. Leonov, S.M. Seledzhi, E.P. Solovyeva, A.M. Zaretskiy. Stability and
Oscillations of Electrical Machines of Alternating Current. IFAC Proceedings
Volumes (IFAC-PapersOnline), Vol. 7, Iss. 1, pp.544–549, 2012.

PIII G.A. Leonov, A.M. Zaretskiy. Asymptotic Behavior of Solutions of Differ-
ential Equations Describing Synchronous Machines. Doklady Mathematics,
Vol. 86, No. 1, pp. 530-533, 2012.

PIV G.A. Leonov, A.M. Zaretskiy. Global Stability and Oscillations of Dynami-
cal Systems Describing Synchronous Electrical Machines. Vestnik St. Peters-
burg University. Mathematics, Vol. 45, No. 4, pp. 157-163, 2012.

PV G.A. Leonov, E.P. Solovyeva, A.M. Zaretskiy. Direct torque control of syn-
chronous machines with different connections in feed system. IFAC Pro-
ceedings Volumes (IFAC-PapersOnline), Vol. 5, Iss. 1, pp. 53–58, 2013.



1 INTRODUCTION AND THE STRUCTURE OF THE
WORK

The three-phase synchronous machines are the primary electromechanical en-
ergy converters widely used as compensators for reactive power compensation
(Thorpe, 1921; Miller, 1982; Eremia and Shahidehpour, 2013), as generators for
power generation in power systems (Shenkman, 1998; Tewari, 2003; Rashid, 2010;
Emadi et al., 2010; Manwell et al., 2010; Wu et al., 2011), as motors in indus-
trial drives (Stephen, 1958; Humphries, 1988; Bose, 1997; Tewari, 2003; Thumann
and Mehta, 2008) and in automatic voltage control (McFarland, 1948; Thumann
and Mehta, 2008; Bhattacharya, 2011; Trout, 2011). It was invented first by F. A.
Haselwander in 1887 (Boveri, 1992; Hall, 2008). The principle of operation of this
synchronous machine was based on an electromagnetic induction discovered by
M. Faraday and a rotating magnetic field obtained first with help of stator wind-
ings by N. Tesla and G. Ferraris (Tesla, 1888b,a; Ferraris, 1888). At the same time
both phenomena are a base of constructing modern electrical machines of alter-
nate current till now (McFarland, 1948; Stephen, 1958; Nasar, 1987; Humphries,
1988; Manwell et al., 2010; Bhattacharya, 2011; Hemami, 2011).

Electrical machines are usually divided into three types: direct current (d.c.)
machines, alternating current (a.c.) asynchronous (induction) machines and al-
ternating current (a.c) synchronous machines. "Of these machine types the d.c.
machines are no longer of practical interest as generators because of several drawbacks;
they require more maintenance effort, have an unfavourable power to mass ratio and
are not suitable for hight voltage windings. Of the a.c. machines, both asynchronous
and synchronous types are use" (Stiebler, 2008). The main difference between an
synchronous machine and the induction one is that a speed of the rotor of syn-
chronous machine coincides with a speed of stator magnetic field, being gener-
ated by supply voltage.

The theory of synchronous machines was developed during the first half
of the 20th century. There were a few of hundreds of engineers and scientists
who have published their results in this area (see, e.g., Blondel, 1923; Doherty
and Nickle, 1926, 1927; Park, 1928, 1933; Kilgore, 1930; Lyon, 1954; Concordia,
1951). First of all it was related to the problems of the construction of synchronous
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generators and power systems.
J.K. Maxwell was the first who applied analytical mechanics to analysis of

electromechanical systems. In his work (Maxwell, 1954) he established that the
electric circuit equations can be write in the form of Lagrange equations. These
equations are known as Maxwell equations. Despite the fact that he did not in-
vestigate synchronous machines but Maxwell equations had a great influence on
development of the theory of electrical machines in the future.

The first mathematical models of synchronous machines were suggested in
(Lyon and Edgerton, 1930a; Edgerton and Fourmarier, 1931; Tricomi, 1931, 1933).
The fundamental works on mathematical theory of synchronous machines are
works of Italian mathematician F. Tricomi (Tricomi, 1931, 1933). He derived the
simplest differential equation of a synchronous machine, namely the second or-
der equation, and carried out a global qualitative investigation of this equation.
He also proved the existence of nontrivial global bifurcation and obtained the es-
timations of bifurcation values of parameters. This equation became known as
Tricomi’s equation.

In the works (Amerio, 1949; Seifert, 1952, 1953, 1959; Hayes, 1953; Belustina,
1954, 1955) Tricomi’s equation is investigated in details and more accurate es-
timations of bifurcation parameter values are obtained. Further results of this
equation investigation were essentially theoretical and referred to the phase syn-
chronization theory.

The theory of steady-state operating mode of synchronous machines was
developed fairly deeply in the works (Doherty and Nickle, 1926, 1927, 1930; Bohm,
1953). For this purpose the mathematical models such as the vector diagrams
(Concordia, 1951; Kimbark, 1956; Puchstein, 1954) and the equivalent circuit mod-
els (Pender and Mar, 1922) were used. The main disadvantage of these models
are that they do not describe the dynamical processes arising during operation of
synchronous machines.

The next important step in the investigation of synchronous machines was
the development of mathematical models which describe the transient processes.
These models were first suggested by R. Park in (Park, 1928, 1929a,b; Park and
Bancer, 1929; Park, 1933). In 1928 A. A. Gorev (Gorev, 1927, 1960, 1985) published
general equations of a salient-pole synchronous machine similar to the Park‘s
equations. They were obtained from general equations of electrodynamic sys-
tem motion. Park-Gorev’s equations describe the synchronous machines under
transient conditions in stator and rotor windings.

A very valuable contribution to the development of the transient process
theory of synchronous machines was made by V. Bush and R.D. Booth (Bush and
Booth, 1925), R. E. Doherty and C. A. Nickle (Doherty and Nickle, 1926, 1927,
1930), R. Rüdenberg (Rüdenberg, 1931, 1942, 1975), E. Clarke (Clarke, 1943), F. R.
Longley (Longley, 1954), B. Adkins (Adkins, 1957), D. White and H. Woodson
(White and Woodson, 1959), R.A. Luter (Luter, 1939), A. Blondel (Blondel, 1923),
A.I. Vajnov (Vajnov, 1969), M.P. Kostenko (Kostenko and Piotrovskiı̆, s. a.), G.N.
Petrov (Petrov, 1963).

Among the works, it should be marked the fundamental works of G. Kron



13

(Kron, 1935, 1939, 1942, 1963) on the mathematical theory of electrical machines.
He suggested a new mathematical model for the generalized electric machine. It
is an idealized two-pole machine with two pairs of windings on the stator and
two pairs of windings on the rotor. This model allowed one to reveal the charac-
teristics of electromechanical energy conversion.

In monograph (White and Woodson, 1959) the equations for idealized two-
phase electric machine are derived. It was shown that on the basis of these
equations almost all used electromechanical converters can be analyzed. How-
ever, this model does not take into account any qualitative characteristics of syn-
chronous machines such as the rotor geometry, inductances in damper windings.

Nowadays, different mathematical models of synchronous machines, de-
scribed by ordinary differential equations (Rodriguez and Medina, 2002, 2003;
Wang et al., 2007; Lipo, 2012) or partial differential equations (Lefevre et al., 1989;
Silvester and Ferrari, 1996; Toliyat and Kliman, 2010; Krishnan, 2010), are used.
The differences between the models depend on the chosen coordinate system and
the made simplifying assumptions (Xu et al., 1991; Arrillaga et al., 1995; Srinivas,
2007; Bakshi and Bakshi, 2009c; Kumar, s. a.). In the same time the equations
of synchronous machines can be obtained using the Kirchhgoff’s and Newton’s
laws. The motion of the rotor can be described in any of an infinite number
of coordinate systems. However, in practice two systems of coordinates (a, b)
and (d, q) are in the most extensive use. The first system is the stationary refer-
ence frame with the reference axes a and b rigidly connected to the stator. The
mathematical models developed in (a, b) coordinate system are called the fixed
frame models (Subramaniam and Malik, 1971; Kron, 1938). They are used for in-
vestigation of synchronous machine operation under abnormal conditions, since
they allow one to take into account the time-varying mutual inductances between
the stator and rotor. The second system is the rotating reference frame with the
reference axis d and q rigidly connected to the rotor. The mathematical models
obtained in (d, q) coordinate system are called the rotating frame models (Lipo,
2012; Fuchs and Masoum, 2011; Smith, 1990). They are used for studying the
steady-state operation modes, as well as for estimating the transient processes.
R. Park in his work (Park and Bancer, 1929) suggested a transformation of co-
ordinates which associated (d, q) coordinate system with (a, b) coordinate sys-
tem. Mathematical models of synchronous machines can be also presented in
uniformly rotating coordinate systems (Clarke, 1943). The most suitable coordi-
nate system is used for solving particular problem which occurs when the induc-
tion motor operates. In this thesis we introduce the rotating system of coordinates
rigidly connected to the stator rotating magnetic field. It allows one to simplify
the derivation of differential equations of synchronous machines and obtain more
accurate mathematical models of these machines.

Mathematical models of synchronous machines described by partial differ-
ential equations take into account more completely a magnetic field, temperature
distribution, and another particular qualities of synchronous machines, but they
turn out to be considerably complicated for investigations. Due to the complex-
ity of such models they can not be analysed by analytical methods. Numerical
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analysis also does not provide exact results due to errors in computational proce-
dures and finiteness of computational time interval. At the same time analytical
analysis of mathematical models of synchronous machines, described by ordi-
nary differential equations, allows one to obtain qualitative behaviour of systems.
Therefore, these models are mostly used to describe the synchronous machines.

The engineering and analytical methods for investigating the stability of
synchronous machines have developed in parallel with the development of new
models. For example, step-by-step method (Hume and Johnson, 1934; Lipo, 2012),
the energy criterion of stability, the equal-area criterion (Sarma, 1979; Murty,
2008), the second Lyapunov method (Eremia and Shahidehpour, 2013) were used.
Among these methods, the second Lyapunov method is mostly used in dynam-
ical stability analysis of synchronous machines. The actual application of this
method to synchronous machines and power systems first appeared in publi-
cations of the “Russian school” (see, e.g., Yanko-Trinitskii, 1958; Gorev, 1960;
Putilova and Tagirov, 1971; Zaslavskaya et al., 1967). The second Lyapunov method
was developed in the monograph A.H. Gelig, G.A. Leonov, V.A. Yakubovich
(Gelig et al., 1978), where in addition to typical functions of Lyapunov, the func-
tions involving the information on solutions of Tricomi’s equation are used. These
Lyapunov-type functions are the essence of the non-local reduction method (Leonov,
1984a,b; Leonov et al., 1992; Yakubovich et al., 2004)

Due to the development of modern computer technology, the numerical
methods are widely used at present. A new information about the behavior of
trajectories can be obtained. However, in the practice it is insufficient to study
numerically one or several solutions of the systems, since some applied problems
require finding the estimations of attraction domain of equilibrium states. The
limit load problem (Bryant and Johnson, 1935; Sah, 1946; Annett, 1950; Blalock,
1950; Yanko-Trinitskii, 1958; Barbashin and Tabueva, 1969; Caprio, 1986; Chang
and Wang, 1992; Miller and Malinowski, 1994; Nasar and Trutt, 1999; Leonov et
al., 2001; Das, 2002; Bianchi, 2005; Leonov, 2006a; Wadhwa, 2006; Lawrence, 2010;
Glover et al., 2011) is one of these problems and related with synchronous ma-
chine stability under sudden changes of load. Numerical solution of the limit load
problem for particular values of the parameters is given in works of W.V. Lyon,
H.E. Edgerton (Lyon, 1928; Lyon and Edgerton, 1930b), as well as in monograph
of D. Stoker (Stoker, 1950). In these works to find the limit load, the equal-area
method was used.

The dynamical stability of synchronous machines can be increased by im-
plementing a controller. The controller may influence either on stator and rotor
currents or directly on the torque of the rotor. A variable frequency drive (VFD)
is frequently used as a controller, which allows one to change amplitude and fre-
quency of current. Two main techniques for the control of synchronous machines
are used: field-oriented control (Quang and Dittrich, 2008; De Doncker et al.,
2011) and direct torque control (Ozturk, 2008; Jin and Lin, 2011; Alacoque, 2012).

Field-oriented control (FOC) is a control technique, which is based on chang-
ing the stator magnetic field (De Doncker et al., 2011) by regulation of amplitude
and frequency of the stator supply voltage. K. Hasse and S. F. Blaschke first sug-
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gested such control for a.c. motors (Hasse, 1969; Blaschke, 1971, 1973). FOC is
divided into direct FOC (feedback vector control) and indirect FOC (feedforward
vector control). The first method is less used, since it requires direct computation
of flux magnitude and angle feedback signals (Hasse, 1969; Wu, 2006; Quang and
Dittrich, 2008). The second method uses an information obtained directly from
the sensors (Blaschke, 1971, 1973; Wu, 2006). Mathematical models for realization
FOC are usually developed in (d, q) coordinate system. Such models allow one to
determine the magnetic fluxes along two axes of the stator and effectively control
the synchronous machine.

Direct torque control is based on changing directly the rotor torque through
the rotor and stator supply voltage or the additional external devices. This con-
trol was first developed by M. Depenbrock (Depenbrock, 1988). Mathematical
models for realization DTC are basically determined in (a, b) coordinate system.
Direct torque control has many advantages, for example faster torque control,
high torque at low speeds and high speed sensitivity. In this thesis two control
laws, which can be achieved by DTC technique, are considered.

Despite much research and numerous publications devoted to the study of
synchronous machines, some problems still remain unsolved. One of the main
problems is the providing stable operation during changing process conditions.
In recent years the interest in this problem has increased significantly due to the
accident on the Sayano-Shushenskaya hydropower plant (Rostehnadzor, 2009)
and blackouts in the U.S. and Europe (Thomas and Hall, 2003; Bialek, 2004; Goodrich,
2005). The main reasons of loss of synchronism, which led to accidents, were
the increasing of load torque and voltage collapses. For example, Rostehnadzor
made the following conclusion about the accident at Sayano-Shushenskaya hy-
dropower plant: the accident happened due to the multiple additional variable
loads on a hydraulic aggregate connected with transition through non-recommended
operation domain of a turbine (Rostehnadzor, 2009). The loss of synchronism
can occur between one machine and the rest of the system or between groups
of machines. Synchronous machines are essential elements in any power sys-
tem. Because of these reasons the qualitative analysis of transient processes in
synchronous machines under sudden changes of load is required.

To study of synchronous machines it is important to develop mathemati-
cal models, which adequately describe their behaviour. Incorrect mathematical
modeling leads to occurrence of instability zone in corresponding models, which
is lacking in real induction machines. For example, increasing the supply volt-
age proportionally to increasing the torque load gives us stable mathematical
model, however, in practice the rotor sometimes starts rotating with acceleration,
i.e., synchronous machine is unstable. So ill-posed mathematical models of syn-
chronous machines cause the incorrect conclusions about stability of machines.

The mathematical models of synchronous machines are often described by
high-order differential equations with trigonometric nonlinearities. Due to the
complexity of these models they practically can not be studied by analytical meth-
ods, therefore, numerical methods are also used for investigation of these equa-
tions. However, some complicated effects such as semi-stable cycle solutions and



16

hidden oscillations1 which may occur in electromechanical systems can not be
found and studied only by numerical methods. Hence, it is necessary to develop
analytical methods for stability analysis of mathematical models.

Thus, the main goals of this thesis are the derivation of adequate mathemat-
ical models of synchronous machines under sudden changes of load and their
stability analysis with help of analytical and numerical methods.

Structure of the work. This thesis is divided into five main parts. The
motivation of this thesis, the literature review of the mathematical models of syn-
chronous machines and methods of their investigation found in the first chapter.
Also the main results obtained by the author and the articles which are the basis
of this thesis are presented.

In the second chapter the synchronous machines with fore-pole rotor at
series and parallel connections in feed system are considered and their opera-
tion principle is described. Then the simplifying assumptions which go back to
the classical ideas of N. Tesla and G. Ferraris are introduced. Based on these
assumptions and laws of classical mechanics and electrodynamics, the mathe-
matical models that completely take into account rotor geometry of synchronous
machines are developed. They are described by ordinary differential equations.

The third chapter is devoted to stability analysis of synchronous machines
under load conditions. The conditions of steady-state stability and the conditions
of global stability for synchronous machines are obtained. The limit load problem
is formulated and the estimations of the limit permissible load on synchronous
machines are found with help of the second Lyapunov method. By introducing
the direct torque control it was shown that the value of the limit permissible load
can be increased. Next the sufficient conditions of existence of circular solutions
and limit cycles of second kind, which correspond to unstable modes, are estab-
lished. The analytical results for a direct-torque-controlled synchronous machine
are obtained by the non-local reduction method.

In fourth chapter the numerical modeling of considered synchronous ma-
chines is carried out by the standard computational tools of MATLAB and a mod-
ification of the event-driven method. Moreover, two types of control laws are
studied. Numerical results are analyzed and compared with theoretical results.

Conclusions and future research directions are presented and discussed shortly
in the fifth chapter.

At the end of this thesis the reader finds Finnish summary, references, three
appendices and five included articles. In the first appendix the cylindrical phase
space for synchronous machines is introduced. In the second appendix the main

1 See chaotic hidden attractors in electronic Chua circuits (Leonov et al., 2010; Kuznetsov et
al., 2011a,b; Bragin et al., 2011; Leonov et al., 2011b, 2012; Leonov and Kuznetsov, 2012;
Kuznetsov et al., 2013; Leonov and Kuznetsov, 2013a; Leonov et al., 2011b,a; Kuznetsov
et al., 2010), in drilling systems (Kiseleva et al., 2012, 2014; Leonov et al., 2013), in air-
crafts (Leonov et al., 2012a,b; Andrievsky et al., 2012), in two-dimensional polynomial
quadratic systems (Kuznetsov et al., 2013; Leonov et al., 2011a; Leonov and Kuznetsov,
2010; Kuznetsov and Leonov, 2008; Leonov et al., 2008; Leonov and Kuznetsov, 2007;
Kuznetsov, 2008), in PLL (Leonov and Kuznetsov, 2014), and in Aizerman and Kalman
problems (Leonov et al., 2010b,a; Leonov and Kuznetsov, 2011, 2013b,c)
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theorems are proved. Listings of programs in MATLAB are represented in the
third appendix.

Included articles. This thesis is based on publications (Kondrat’eva, Solov’yova
and Zaretsky, 2010; Zaretskiy, 2012; Leonov, Solovyeva and Zaretskiy, 2013; Leonov,
Zaretskiy and Solovyeva, 2013; Leonov, Kuznetsov, Kiseleva, Solovyeva and Zaret-
skiy, 2014) and included articles (PI–PV). In these papers, the statements of prob-
lems are due to the supervisors, while the development of mathematical models
of synchronous machines, their analytical analysis and computer modeling are
due to the author. Four-pole rotor synchronous machines with damper windings
and without any control are studied at series connection in PII and at parallel
connection in PIII. The limit load problem for these machines is formulated and
the estimations of the limit permissible load are obtained by so-called equal-area
method. In PIV the direct torque control is introduced for four-pole rotor syn-
chronous machines with damper windings at series connection. In this case the
estimations of the limit permissible load are found by the non-local reduction
method. The effective sufficient conditions for the existence of circular solutions
and the limit cycles of the second kind are also established. In PV similar results
are obtained for four-pole rotor synchronous machines without damper windings
at different connections in feed system. In PI the non-local reduction method is
applied to the solution of the limit load problem for power system of two con-
nected synchronous machines.

The results of this thesis were also reported at the international conferences
5th IFAC International Workshop on Periodic Control Systems (Caen, France –
2013), 7th Vienna International Conference on Mathematical Modelling (Vienna,
Austria – 2012), International Conference TRIZfest-2011 (St.Petersburg, Russia
– 2011), 4th All-Russian Multi-Conference on Control Problems "MKPU–2011"
(Divnomorskoe, Russia – 2011), 7th European Nonlinear Dynamics Conference
(Rome, Italy – 2011), XI International Conference "Stability and Oscillations of
Nonlinear Control Systems" (Moscow, Russia – 2010, 2012), International Work-
shop "Mathematical and Numerical Modeling in Science and Technology" (Fin-
land, Jyväskylä – 2010) and at the seminars on the department of Applied Cyber-
netics (Saint Petersburg State University, Russia 2009 – 2013) and the department
of Information Technology (University of Jyväskylä, Finland 2010 – 2013).



2 MATHEMATICAL MODELS OF SYNCHRONOUS
MACHINES

The construction of electrical machines has been constantly improved and com-
plicated from the beginning of electrical machinery history. Obviously, the math-
ematical models of these machines become more complex and difficult for inves-
tigations. In this chapter we start with consideration of rather simple electrome-
chanical models, namely four-pole rotor synchronous machines without damper
windings. Next, these machines with different connections in feed system are
studied (PV). Finally, we introduce the damper windings into construction of
the four-pole rotor (PII, PII, PIV). For all considered machines, the mathemati-
cal models are developed by the author. The difference between models are ex-
plained. Unlike well-known mathematical models of synchronous machines the
obtained models completely take into the account geometry of rotors.

2.1 Electromechanical models of salient pole synchronous machines

Like any electrical machine, a synchronous machine consists of a stator and a
rotor separated by the air-gap. The stator is a hollow laminated cylinder, carrying
windings in slots on its inner surface. The stator winding generates a rotating
magnetic field when this winding is connected to the three-phase supply (in the
motor case) or produces a three-phase voltage (in the generator case).

Depending on the rotor construction, synchronous machines can be divided
into two types: salient pole and non-salient pole (or cylindrical pole) machines
(Tewari, 2003; Theraja, 2012). Synchronous machines, except those for very high
speed, are always constructed with salient poles (Prasad, 2005). However, the the
theoretical description of a salient pole rotor is much more complicated than that
of a non-salient rotor due to its asymmetries (Quaschning, 2005). In this thesis
we study synchronous machines with the salient pole rotor because of constantly
increasing use of these machines in many applications.

A salient pole rotor has four or more salient poles (Fig. 1). Further, for sim-



19

plicity, we consider a four-pole rotor. It consists of a dc field winding and is fed
from a dc source through slip rings and brushes which are mounted on the rotor.
The field winding is presented as two orthogonal pairs of parallel coils, each of
which is made of several turns of insulated wire. Modern salient pole rotors have
an additional winding, known as damper winding. Damper winding is provided
to damp the oscillations during transient processes of machine (Sivanagaraju et
al., 2009). It consists of bars short-circuited at each end by two rings and is very
similar to squirrel-cage winding of an induction motor. The scheme of four-pole
rotor with damper winding is shown in Fig. 2.

FIGURE 1 The salient pole rotor with damper winding: 1 – source of constant voltage,
2 – field winding, 3 – damper winging, 4 – shaft, 5 – brushes, 6 – rings, 7 –
poles
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FIGURE 2 Scheme of four-pole rotor with different connections: 1 – field winding, 2 –
damper winging, 3 – poles, 4 – source of constant voltage, 5 – coils, 6 – bars.
a – series connection; b – parallel connection

In the four-pole rotor of synchronous machines there exists two types of con-
nections in feed system, namely two different ways of connection of field winding
to one constant voltage source:
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1. series connection, when each coil is connected in series to a constant voltage
source (Fig. 2, a);

2. parallel connection, when each coil is connected in parallel to a constant
voltage source (Fig. 2, b).

Both types of connections are studied in this thesis.
More detailed description of construction of synchronous machines can be

found in (Bakshi and Bakshi, 2009b,a; Bhattacharya and Singh, 2006; Gönen, 2012).

2.2 Modeling assumptions

Synchronous machines obey the reversibility principle, i.e., they can operate as
either motor converting electrical energy into mechanical one or generator con-
verting mechanical energy into electrical one. The principle of reversibility allows
one to conclude that mathematical models of synchronous machines operating in
the generator mode preserve the same structure as synchronous machines oper-
ating in the motor mode. In what follows we consider synchronous machines
operating as a motor.

The classical derivation of expressions for currents in rotor windings and
electromagnetic torque of synchronous motor are based on the following sim-
plifying assumptions (Popescu, 2000; Leonhard, 2001; Skubov and Khodzhaev,
2008; Solovyeva, 2013):

1. It is assumed that the magnetic permeability of stator and rotor steel1 is
equal to infinity. This assumption makes it possible to use the principle of
superposition for the determination of magnetic field, generated by stator;

2. one may neglect energy losses in electrical steel, i.e., motor heat losses, mag-
netic hysteresis losses, and eddy-current losses;

3. the saturation of rotor steel is not taken into account, i.e. the current of any
force can run in rotor winding;

4. one may neglect the effects, arising at the ends of rotor winding and in rotor
slots, i.e., one may assume that a magnetic field is distributed uniformly
along a circumference of rotor.

Let us make an additional assumption2:
5. stator windings are fed from a powerful source of sinusoidal voltage.

Then, following (Adkins, 1957; White and Woodson, 1959; Skubov and Khodzhaev,
2008), by the latter assumption the influence of rotor currents on stator currents
may be ignored. Thus, a stator generates a uniformly rotating magnetic field
with a constant in magnitude induction. So, it can be assumed that the magnetic

1 Usually both stator and rotor are made of laminated electrical steel.
2 Without this assumption it is necessary to consider a stator, what leads to more complicated

derivation of equations and more complicated equations themselves, which are difficult for
analytical and numerical analyzing.



21

induction vector B is constant in magnitude and rotates with a constant angu-
lar velocity n1. This assumption goes back to the classical ideas of N. Tesla and
G. Ferraris and allows one to consider the dynamics of synchronous motor from
the point of view of its rotor dynamics (PV; Leonov, 2006a).

2.3 Mathematical models of four-pole rotor synchronous motors

In order to develop mathematical models of synchronous motors, the operation
of these motors is considered. The operation principle of synchronous motors is
based on the interaction of the magnetic fields of the stator and the rotor (mag-
netic locking).

Let us consider the motor starting. When the stator winding is excited by a
three-phase ac supply, a rotating magnetic field is produced. The speed at which
the magnetic field rotates is called the synchronous speed. At this instant the rotor
is stationary. In order to start the synchronous motor it is necessary to rotate the
rotor at a speed close to or equal to synchronous speed. For this purpose the rotor
is driven with help of some external device or damper winding in the direction of
rotating magnetic field. When the rotor achieves the speed close to synchronous
speed, the dc supply to the rotor winding is switched on. Now the rotor also pro-
duces a rotating magnetic field. At some instant, the magnetic field of the rotor
locks with the magnetic field of the stator and the motor operates at synchronous
speed. Then the external devise used to rotate rotor is removed. However, the
rotor continue to rotate at synchronous speed due to magnetic locking.

Now the rotor rotates at synchronous speed. Let us introduce the uniformly
rotating system of coordinates, rigidly connected with the stator magnetic field
and consider the motion of four-pole rotor in this coordinate system. Suppose
that the stator magnetic field rotates clockwise. Also, assume that the positive
direction of the rotation of the rotor coincides with the direction of the rotation of
the stator magnetic field.

The stator rotating magnetic field interacts with currents flowing in the field
winding. According to Ampere’s force law (Theraja and Theraja, 1999), the elec-
tromagnetic forces Fk arise, the directions of which are shown in Fig. 3, a.

The value of electromagnetic force, induced in a coil, is determined by Am-
pere’s force law:

F = Bl0i, (1)

where B – induction of the stator magnetic field, l0 – width of the coil, i – current
in the coil.

Let us define electromagnetic torque of a synchronous motor with four-pole
rotor in the case of series connection, which is produced by the electromagnetic
forces Fk, k = 1, ..., 8. The projections of force F1 and F2, (Fig. 3, b), acting on one
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FIGURE 3 Geometry of four-pole rotor at series connection: a – the directions of elec-
tromagnetic forces and currents; b – the projection of force F1.

wind of the first coil, are given by formula

F1pr = F1 cos β1 = Bl0i cos(θ + α),

F2pr = F2 cos β2 = Bl0i cos(α − θ),

where β1 – the angle between F1 and the perpendicular to the radius-vector;. β2
– the angle between F2 and the perpendicular to the radius-vector; α – the angle
between radius-vector and the plane of the first coil; θ – the angle between the
plane perpendicular to the vector of the stator magnetic field and the plane of the
first coil.

Taking into account the number of winds in the first coil and a positive
direction of the rotor rotation axis, it follows that the produced electromagnetic
torque, acting on the first coil, is equal to the following:

M1 = nl
(

F1pr + F2pr
)
= nl0lBi (cos(θ + α) + cos(α − θ)) ,

= n(2l0l cos α)Bi cos θ = nSBi cos θ,

where n – the number of winds in the coil; l – the length of radius-vector; S – the
area of one wind of the coil.

Electromagnetic torques, acting on other coils, are similarly determined:

M2 = nSBi cos
(

θ +
π

2

)
= −nSBi sin θ,

M3 = nSBi cos θ,

M4 = −nSBi sin θ,
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Thus, the electromagnetic torque of synchronous motor with four-pole rotor
at series connection is equal to

Mem = M1 + M2 + M3 + M4 = 2nSBi (cos θ − sin θ) =

= 2
√

2nSBi sin
(π

4
− θ

)
.

In the case of parallel connection the electromagnetic torque of synchronous
motor with four-pole rotor is equal to

Mem = nSB [cos θ(i1 + i3)− sin θ(i2 + i4)] ,

where i1, i2, i3, i4 – currents in the coils; other parameters have the same meanings
as before. We assume that all four coils are identical.

The dynamics of synchronous motor is described by the voltage equations
and the torque equation

Jθ̈ = Mem − Ml,

where θ corresponds to mechanical angle of rotor rotation; J – the moment of
inertia of the rotor; Mem – electromagnetic torque; Ml – load torque, which can
include a control law.

Now we find the voltage equations. Consider an electrical circuit of four-
pole rotor with series connection, shown in Fig. 4. Note that this electric circuit is
equivalent to that, presented in Fig. 3. Define the current in each coil.

�� �� �� ��

�� ���� ��

�� �� �� ��
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-  +

FIGURE 4 Equivalent electrical circuit of four-pole rotor with series connection

Applying Kirchhoff’s second law (Theraja and Theraja, 1999) to the closed
loop and choosing a positive direction as clockwise to traverse the loop, one ar-
rivals at the following differential equation

Li̇ + Ri = ξ1 − ξ2 + ξ3 − ξ4 + e,

where R, L – active and inductive resistances of each coil, respectively; ξk – elec-
tromotive force, induced in k-th coil by rotating magnetic field; e – constant volt-
age source. The directions of electromotive forces are shown in Fig. 4. According
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to the law of electromagnetic induction (Theraja and Theraja, 1999), the electro-
motive force which arises in the first coil moving in magnetic field, is given by
formula

ξ1 = l0Bv1 sin ζ1 + l0Bv2 sin ζ2,

where v1, v2 are velocities of coil relative to magnetic field, the directions of which
are shown in Fig. 5, a; ζ1, ζ2 are angles between a vector of velocity and a vector
of magnetic field induction. The angles ζ1 and ζ2 are defined in Fig. 5, b. Thus,
taking into account the number of turns, emf in the first coil is equal to

ξ1 = −nl0Blω
[
sin

(π

2
+ α + θ

)
+ sin

(π

2
+ α − θ

)]
=

= −n(2l0l cos α)Bω cos θ = −nSBω cos θ,

(2)

where ω = θ̇. Similarly, the expressions for emf in the rest coils are obtained and
take the form

ξ2 = −nSBω sin θ,

ξ3 = −nSBω cos θ,

ξ4 = −nSBω sin θ.

(3)
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FIGURE 5 Geometry of four-pole rotor at parallel connection: a – the directions of ve-
locity and emf; b – the definitions of angles ζ1 and ζ2.

Unlike the electrical circuit of four-pole rotor at series connection, the electri-
cal circuit of four-pole rotor with parallel connection has four closed loops (Fig. 6).
Using Kirchhoff’s second law for each closed loop and choosing a positive direc-
tion as before, one obtains the following differential equation for currents in the



25

case of parallel connection

Li̇1 + Ri1 = ξ1 + e = −nSBω cos θ + e,

Li̇2 + Ri2 = −ξ2 + e = nSBω sin θ + e,

Li̇3 + Ri3 = ξ3 + e = −nSBω cos θ + e,

Li̇4 + Ri4 = −ξ4 + e = nSBω sin θ + e.

The emf, induced in coils, are determined similarly to series model by equations
(2) and (3).
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FIGURE 6 Equivalent electrical circuit of four-pole rotor with series connection

Thus, the dynamics of four-pole rotor synchronous motor without damper
winding in the case of series connection is described by the following system of
differential equations

θ̇ = ω,

Jω̇ = 2
√

2nSBi sin
(π

4
− θ

)
− Ml,

Li̇ + R i = −2
√

2nSBω sin
(π

4
− θ

)
+ e,

(4)
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and in the case of parallel connection is described by

θ̇ = ω,

Jω̇ = nSB [cos θ(i1 + i3)− sin θ(i2 + i4)]− Ml,

Li̇1 + Ri1 = −nSBω cos θ + e,

Li̇2 + Ri2 = nSBω sin θ + e,

Li̇3 + Ri3 = −nSBω cos θ + e,

Li̇4 + Ri4 = nSBω sin θ + e.

(5)

As was mentioned above, most modern salient pole rotors have an damper
winding used to start the motor. The damper winding is presented as the squirrel-
cage rotor winding of an induction motor. Using results obtained in (Leonov et
al., 2013) for the squirrel-cage rotor winding, we get the equations for currents in
bars of damper winding of synchronous motor

L1 j̇k + R1 jk = −l0l1B cos(θ +
2kπ

n1
)θ̇, k = 1, ..., n1, (6)

and the electromagnetic torque of damper winding

Mem dam = l0l1B
n1

∑
k=1

cos(θ +
2kπ

n1
)jk.

Here n1 – the numbers of bars; jk – the current in the k-th bar; R1 – the bar re-
sistance; L1 – the bar inductance; l1 and l0 – the radius and the length of the
squirrel-cage, respectively.

Since the field winding and damper winding are presented as two indepen-
dent windings, then we obtain that the dynamics of four-pole rotor synchronous
motor with damper winding in the case of series connection is described by

θ̇ = ω,

Jω̇ = 2
√

2nSBi sin
(π

4
− θ

)
+ l0l1B

n1

∑
k=1

cos(θ +
2kπ

n1
)jk − Ml,

Li̇ + R i = −2
√

2nSBω sin
(π

4
− θ

)
+ e,

L1 j̇k + R1 jk = −l0l1B cos(θ +
2kπ

n1
)θ̇, k = 1, ..., n1,

(7)
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and in the case of parallel connection is described by

θ̇ = ω,

Jω̇ = nSB [cos θ(i1 + i3)− sin θ(i2 + i4)] +

+l0l1B
n1

∑
k=1

cos(θ +
2kπ

n1
)jk − Ml,

Li̇1 + Ri1 = −nSBω cos θ + e,

Li̇2 + Ri2 = nSBω sin θ + e,

Li̇3 + Ri3 = −nSBω cos θ + e,

Li̇4 + Ri4 = nSBω sin θ + e,

L1 j̇k + R1 jk = −l0l1B cos(θ +
2kπ

n1
)θ̇, k = 1, ..., n1.

(8)

Let us transform systems (7) and (8) to a form more convenient for the fur-
ther study. The nonsingular change of coordinates

ϑ = −θ − 3π

4
,

s = −ω,

x = i +
e
R

,

μ = − 2L1

n1l0l1B

n1

∑
k=1

ik sin
(

θ +
2kπ

n1

)
,

ν = − 2L1

n1l0l1B

n0

∑
k=1

ik cos
(

θ +
2kπ

n1

)
,

zk =

n1
4

∑
k=− n1

4

i(k+j)mod n1
+ ikctg

π

n1
k = 3, ..., n1.
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reduces system (7) to the form

ϑ̇ = s,

ṡ = ax sin ϑ + bν − ϕl(ϑ),

ẋ = −cx − ds sin ϑ,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

żk = −c1zk k = 3, ..., n1,

(9)

where

a = 2
√

2
nBS

J
; b =

n0(S0B)2

J
; c =

R
L

; c1 =
R1

L1
; d = 2

√
2

nBS
L

;

γmax = 2
√

2
nBSe

JR
; γl =

Ml

J
;

ϕl(ϑ) = γmax sin ϑ − γl.

Note that the system (9) can be studied without last n1 − 2 differential equations
because they do not affect on stability of the system and can be integrated inde-
pendently on the remaining equations. Therefore, further we consider the system
of fifth order differential equations

ϑ̇ = s,

ṡ = ax sin ϑ + bν − ϕl(ϑ),

ẋ = −cx − ds sin ϑ,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(10)
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Using nonsingular change of coordinates

ϑ =
π

4
− θ,

s = −ω,

x = − 2L
nSB

[
−

(
i1 + i3 +

2e
L

)
sin θ −

(
i1 + i3 +

2e
L

)
cos θ

]
,

y = − 2L
nSB

[(
i1 + i3 +

2e
L

)
cos θ −

(
i1 + i3 +

2e
L

)
sin θ

]
,

μ = − 2L1

n1l0l1B

n1

∑
k=1

ik sin
(

θ +
2kπ

n1

)
,

ν = − 2L1

n1l0l1B

n0

∑
k=1

ik cos
(

θ +
2kπ

n1

)
,

z1 = i1 − i3,

z2 = i2 − i4,

zk =

n1
4

∑
k=− n1

4

i(k+j)mod n1
+ ikctg

π

n1
k = 3, ..., n1.

system (8) reduces to the form

ϑ̇ = s,

ṡ = ay + bν − ϕl(ϑ),

ẋ = −cx + ys,

ẏ = −cy − xs − s,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

ż1 = −cz1,

ż2 = −cz2,

żk = −c1zk k = 3, ..., n1,

(11)
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where
a = (nBS)2

JL ; b = n0(S0B)2

JL0
; c = R

L ; c1 = R1
L1

;

γmax = 2
√

2
nBSe

JR
; γl =

Ml

J
;

ϕl(ϑ) = γmax sin ϑ − γl.

Note that the equations with the variables zk can be integrated independent of
the rest of the system and do not affect on its stability. Therefore, it suffices to
consider the system of sixth order differential equations

ϑ̇ = s,

ṡ = ay + bν − ϕl(ϑ),

ẋ = −cx + ys,

ẏ = −cy − xs − s,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(12)

Thus, investigation of four-pole rotor synchronous motors with damper
winding at different types of connections is reduced to study systems (10) and
(12).



3 STABILITY AND OSCILLATIONS OF
SYNCHRONOUS MOTORS

Stability analysis is one of the most important problems in operation, optimiza-
tion and control of synchronous machines. By stability we imply that the syn-
chronous machine re-establishes an operating mode after some disturbances. In
order to solve the stability analysis problems we use classical approach which is
based on analysis of properties of the systems of equations, describing the dy-
namics of synchronous machines.

This chapter is devoted to analysis of stability and existence of oscillations
in synchronous motors with different connections in the feed system. For both
cases the conditions that determine the stable operation characteristics of a syn-
chronous motor and the conditions of global stability are established by the au-
thor. Next the permissible changes of loads on synchronous motors, under which
a transient process is stable, are found. The torque control with linear growth in
the slip is suggested. It allows one to improve stability of these motors. At the
end the sufficient conditions of existence of circular solutions and limit cycles of
second kind, which correspond to unstable modes, are obtained by the author.

3.1 Steady-state stability analysis of synchronous motors

Steady-state stability is a fundamental requirement for normal operation of syn-
chronous machines. By steady-state (static, local) stability we mean the ability of
an synchronous motor to maintain an operating mode after its arbitrarily small
disturbances. The steady-state stability of modes of synchronous motors is stud-
ied with help of classical theorem on stability in the first approximation (Halanay,
1966; Merkin and Afagh, 1997; Menini and Tornambè, 2011). An asymptotically
stable equilibrium point corresponds to a operating mode of an synchronous
motor. An unstable equilibrium point corresponds to a physically unrealizable
mode.

Let us first study the steady-state stability of four-pole rotor synchronous
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motor with series connection, which is described by system

ϑ̇ = s,

ṡ = ax sin ϑ + bν − ϕ(ϑ),

ẋ = −cx − ds sin ϑ,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(10)

The stationary set of system (10) is empty if |γ| > γmax. Let |γ| ≤ γmax, then the
stationary set consists of countable number of isolated points

Λ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

ϑi + 2πk
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ∈ R5

∣∣∣ i = {0, 1}, ∀k ∈ Z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Here ϑ0 and ϑ1 are roots of the equation

γmax arcsin(ϑ) = γ, ϑ ∈ [0, 2π), (13)

and satisfy the following conditions

ϑ0 = arcsin
(

γ

γmax

)
, ϕ(ϑ0) = 0, ϕ′(ϑ0) > 0,

ϑ1 = π − arcsin
(

γ

γmax

)
, ϕ(ϑ1) = 0, ϕ′(ϑ1) < 0.

(14)

Let us determine which equilibrium points are stable. The characteristic
polynomial of the Jacobian matrix of (10) in stationary points is

f (λ) = det

⎛
⎜⎜⎜⎜⎝

−λ 1 0 0 0
−ϕ′(ϑi) −λ a sin ϑi 0 b

0 −d sin ϑi −c − λ 0 0
0 0 0 −c1 − λ 0
0 −1 0 0 −c1 − λ

⎞
⎟⎟⎟⎟⎠ =

= − (c1 + λ)
[
λ4 + (c + c1)λ

3 +
(
b + cc1 + ad sin2 ϑi + ϕ′(ϑi)

)
λ2+

+
(

bc + adc1 sin2 ϑi + (c + c1)ϕ′(ϑi)
)

λ + cc1ϕ′(ϑi)
]

.
(15)

The first-order polynomial situated in round brackets of (15) has one neg-
ative real root. Hence, stability of the characteristic polynomial is determined
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by stability of polynomial of the fourth order situated in square brackets of (15).
Stability of this polynomial is defined by Gurvic criterion: for the fourth-order
polynomial

f (λ) = λ4 + a3λ3 + a2λ2 + a1λ + a0

the necessary and sufficient conditions of stability are the following

a3 > 0, a2 > 0, a1 > 0, a0 > 0,

a1(a2a3 − a1)− a0a2
3 > 0.

(16)

Check these conditions in stationary points:

a3 = c + c1 > 0,

a2 = b + cc1 + ad sin2 ϑi + ϕ′(ϑi) > 0,

a1 = bc + adc1 sin2 ϑi + (c + c1)ϕ′(ϑi) > 0,

a0 = cc1ϕ′(ϑi) > 0,

a1(a2a3 − a1)− a0a2
3 =

(
bc + adc1 sin2 ϑi

) (
bc1 + adc sin2 ϑi

)
+

+(c + c1)
(

bc1 + adc sin2 ϑi

)
ϕ′(ϑi)+

+cc1(c + c1)
(

bc + adc1 sin2 ϑi

)
> 0

It is obvious that the first condition is fulfilled for any stationary point of
the system (10). The other conditions of Gurvic criterion are satisfied in the case
ϕ′(ϑi) > 0 and is not satisfied in the case ϕ′(ϑi) < 0. Hence, the equilibrium
states (ϑ0 + 2kπ, 0, 0, 0, 0)T are asymptotically stable and correspond to oper-
ating modes. The equilibrium states (ϑ1 + 2kπ, 0, 0, 0, 0)T are unstable and
correspond to physically unrealizable modes.

Let us study next the steady state stability of synchronous motor with four-
pole rotor at parallel connection, which is described by system

ϑ̇ = s,

ṡ = ay + bν − ϕ(ϑ),

ẋ = −cx + ys,

ẏ = −cy − xs − s,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(12)
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Similarly to the case of serial connection, the stationary set of the system (12) is
empty when |γ| > γmax. If |γ| ≤ γmax, then the stationary set is as follows:

Λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

ϑi + 2πk
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ R6

∣∣∣ i = {0, 1}, ∀k ∈ Z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where ϑ0 and ϑ1 are roots of the equation (13) and satisfy conditions (14). The
characteristic polynomial of the Jacobian matrix of system (12) in stationary states
is as follows:

fp(λ) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ 1 0 0 0 0
−ϕ′(ϑi) −λ 0 a 0 b

0 0 −c − λ 0 0 0
0 −1 0 −c − λ 0 0
0 0 0 0 −c1 − λ 0
0 −1 0 0 0 −c1 − λ

⎞
⎟⎟⎟⎟⎟⎟⎠ =

= (c + λ) (c0 + λ)
[
λ4 + (c + c1)λ

3 +
(
a + b + cc1 + ϕ′(ϑi)

)
λ2+

+
(
ac1 + bc + (c + c1)ϕ′(ϑi)

)
λ1 + cc1ϕ′(ϑi)

]
.

(17)

The stability of polynomial fp(λ) is determined by the stability of the fourth order
polynomial in square brackets of (17). Using Gurvic criterion for stability analysis
of the fourth order polynomial (16), we obtain

a3 = c + c1 > 0,

a2 = a + b + cc1 + ϕ′(ϑi) > 0,

a1 = ac1 + bc + (c + c1)ϕ′(ϑi) > 0,

a0 = cc1ϕ′(ϑi) > 0,

a1(a2a3 − a1)− a0a2
3 = (ac1 + bc) (ac + bc1) +

+(c + c1) (ac + bc1) ϕ′(ϑi) + cc1(c + c1) (ac1 + bc) > 0

Taking into account conditions (14), the characteristic polynomial fp(λ) is
stable for ϑi = ϑ0 and unstable for ϑi = ϑ1. Hence, the equilibrium points
(ϑ0 + 2kπ, 0, 0, 0, 0, 0)T are asymptotic stable and the equilibrium points (ϑ1 +
2kπ, 0, 0, 0, 0, 0)T are unstable.

The presence of the angular coordinate ϑ in the equations of synchronous
motors allows one to introduce the cylindrical phase space (see the main notions
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and approaches in Appendix 1). In the cylindrical phase space R5/H, where
H = {(2kπ, 0, 0, 0, 0)T ∈ R5 | k ∈ Z} the stationary set of system (10) is
presented by two points (Fig. 7):⎛

⎜⎜⎜⎜⎝
ϑ0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

ϑ1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ∈ R5/H.

R5 R5/H

FIGURE 7 Phase space and cylindrical phase space

The stationary set of system (12) also corresponds to two points in the cylin-
drical phase space R6/H, where H = {(2kπ, 0, 0, 0, 0, 0)T ∈ R6 | k ∈ Z}:

⎛
⎜⎜⎜⎜⎜⎜⎝

ϑ0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

ϑ1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ R6/H.

The use of cylindrical phase space gives us the following advantages:

– multiplicity related to angular coordinates disappears in Rn/H, i.e., all val-
ues ϑ + 2πk of the angular coordinate correspond to only one value of a
physical model (in our case one position of the rotor);

– in cylindrical phase space Rn/H the notion of boundedness of solutions can
be naturally introduced. The bounded solution in Rn/H is the bounded
solution in the phase space Rn if we exclude angular coordinates;

– it is convenient to classify the cycle solutions in cylindrical phase space (see
Appendix 1).

In the next section the global stability of systems (10) and (12) is proved in the
cylindrical phase space.
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3.2 Dynamical stability of synchronous machines without load

The term of dynamical stability means that a synchronous machine returns to an
operating mode after large disturbances. As well as the synchronous machine
is said to be globally stability if the machine returns to an operating mode after
any disturbances. In this section we prove the global stability of idle running
synchronous motors (synchronous motors under no-load conditions).

The models of synchronous motors developed in section 2.3 can be de-
scribed by the autonomous system of the form

ẏ = f (y), y ∈ Rn, (18)

where f : Rn −→ Rn is a continuously differentiable vector-function satisfying
the condition

f
(

y +

(
2kπ,

0

))
= f (y), ∀k ∈ Z.

We assume that any solution y(t, y0) of system (18) with initial data y(0) = y0
exists and is defined for all t ≥ 0.

Now we introduce the definition of global stability for system of differential
equation (18).

Definition 1. (see, e.g., Zinober, 1994; Leonov et al., 1996; Colonius and Kliemann,
2000) System (18) is called a gradient-like system if any solution tends to an equilibrium
state as t → +∞.

If the stationary set in cylindrical phase space Rn/H consists of only one
asymptotically stable equilibrium point and other equilibrium states are unstable
in the sense of Lyapunov, then such gradient-like system is said to be globally
stable.

In the context of theory of electrical machines the term "global stability"
is more acceptable than the term "gradient-like system", since here only unique
globally stable synchronism is observed physically.

The global stability of synchronous motors under no-load conditions is proved
by the following theorem, which is a extension of the well-known Barbashin-
Krasovskii theorem () and LaSalle’s principle () on the systems with cylindrical
phase space Rn/H, where H = {(2kπ, 0)T ∈ Rn | k ∈ Z}.

Theorem 1. Suppose that there exists a continuous function V(y) : Rn → R such that
the following conditions hold

1. V(y + h) = V(y), ∀y ∈ Rn, ∀h ∈ H;
2. V(y) + ϑ2 → +∞ as y → ∞;
3. for any solution y(t) of system (18) the function V(y(t)) is nonincreasing func-
tion;

4. if V(y(t)) ≡ V(y(0)), then y(t) ≡ const.

Then system (18) is the gradient-like system.
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The proof of this theorem can be found in (Leonov and Kondrat’eva, 2009).

Theorem 2. If γl = 0, then systems (10) and (12) are the gradient-like systems, i.e., the
idle running synchronous motors are globally stable.

Proof. We begin with proof for system (10). If γ = 0, then the stationary set of
system (10) consists of isolated points of two types: asymptotically stable points
(2πk, 0, 0, 0, 0) and unstable points ((2k + 1)π, 0, 0, 0, 0).

Let us show that the function

V(ϑ, s, x, μ, ν) =
1
2

s2 +
a

2d
x2 +

b
2

μ2 +
b
2

ν2 +

ϑ∫
ϑ1

ϕ(ζ)dζ.

satisfies all conditions of theorem 1.
The function V(ϑ, s, x, μ, ν) is periodic in ϑ with period 2π, since

V(ϑ + 2πk, s, x, μ, ν) = V(ϑ, s, x, μ, ν) +

ϑ+2πk∫
ϑ

ϕ(ζ)dζ = V(ϑ, s, x, μ, ν).

The second condition of theorem 1 for function V(ϑ, s, x, μ, ν) is implied by the
relation

ϑ∫
ϑ1

ϕ(ζ)dζ < C, ∀ϑ ∈ R.

On the solutions of system (10) (γ = 0) the function V(ϑ, s, x, μ, ν) is nonincreas-
ing function:

V̇(ϑ, s, x, μ, ν) = s(ax sin ϑ + bν − ϕ(ϑ)) +
a
d

x(−cx − ds sin ϑ)+

+bμ(−c1μ + sν) + bν(−c1ν − sμ − s)+

+sϕ(ϑ) = − ac
d

x2 − bc1μ2 − bc1ν2 ≤ 0,

(19)

Assume that the solution of system (10) with γ = 0 satisfies the condition

V(ϑ(t), s(t), x(t), μ(t), ν(t)) ≡ V(ϑ(0), s(0), x(0), μ(0), ν(0)).

Then from (19) and (10) it follows that

x(t) ≡ 0, μ(t) ≡ 0, ν(t) ≡ 0, s(t) ≡ 0.

Thus, s(t) = ϑ̇(t) ≡ 0, and hence ϑ(t) ≡ const, i.e., the fourth condition of 1 is
fulfilled.

So system (10) with γ = 0 is the gradient-like system. In cylindrical phase
space R5/H, where H = {(2kπ, 0, 0, 0, 0)T ∈ R5 | k ∈ Z} system (10) with
γ = 0 has unique asymptotically stable equilibrium point (0, 0, 0, 0, 0)T. There-
fore this system is globally stable.
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The proof of globally stability of system (12) with γ = 0 is carried out sim-
ilarly to the proof for system (10). It is used the cylindrical phase space R6/H,
where R6/H, where H = {(2kπ, 0, 0, 0, 0, 0)T ∈ R6 | k ∈ Z} and the func-
tion

V(ϑ, s, x, y, μ, ν) =
1
2

s2 +
a
2

x2 +
a
2

y2 +
b
2

μ2 +
b
2

ν2 +

ϑ∫
ϑ1

ϕ(ζ)dζ.

The synchronous machines are widely used as compensators which are in
fact synchronous motors running without a mechanical load. The synchronous
compensator can absorb or generate reactive power, keeping the voltage level
constant. The globally stability of idle running synchronous motors guarantees
that compensators pull into operating mode at any voltage level (in this case we
do not take into account overloads in motor windings).

3.3 Dynamical stability of synchronous machines under constant
load

In the previous section it was proved that if a synchronous motor is started with-
out a load, then it pulls in an operating mode after transient process. In other
words after start-up the motor operates in synchronism. Now the problem on the
maximum permissible load, under which the motor continues to operate, natu-
rally arises. This problem is known in engineering practice as the ultimate (limit)
load problem.

Let us describe the ultimate load problem using the example of a rolling
mill (Fig. 8). A synchronous motor drives mill rolls. We do not take into account
the interaction of connecting mechanisms. The model of the rolling mill in this
simplest case can be described by equations of the synchronous motor.

FIGURE 8 Scheme of rolling mill without load: 1– blank, 2 – top rolls, 3 – connecting
mechanism, 4 – bottom rolls, 5 – synchronous motor

While uniform metal blank moves only in bottom rolls, we assume that a
load on shaft of the synchronous motor is equal to zero and the motor operates
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in an operating mode. Then at some instant t = τ the blank enters in those part
of rolling mill, where the process of rolling happens (Fig. 9). Due to rotation of
top and bottom rolls in the opposite directions the blank moves on, decreasing in
thickness. Hence, at time t = τ the instantaneous load-on arose. The problem is
to find loads, under which the synchronous motor pulls in a new operating mode
after transient processes.

FIGURE 9 Scheme of rolling mill under load

Let us formulate the ultimate load problem mathematically. As previously
mentioned the synchronous motors can be described by the following system of
differential equations

ẏ = f (y), y ∈ Rn, (18)

Suppose that the synchronous motor without load works in an operating mode
which corresponds to the asymptotically stable equilibrium point y(t) = y∗ of
system (18). For t > τ the load γl is not already zero. Hence, the operating
mode of the motor changes. A new operating mode of the motor under load
corresponds to the asymptotically stable equilibrium point y0 of the system (18)
with initial data y(0) = y∗. A mathematical formulation of the ultimate load
problem for synchronous motors is as follows: to find conditions, under which
the solution of the system (18) with the initial data y(0) = y∗ belongs to the
attraction domain of the stationary solution y(t) = y0. The latter means that the
following relations hold

lim
t→∞

y(t) = y0. (20)

Thus, the ultimate load problem is closely related to the problem of estimation of
attraction domains of stable equilibrium points.

Consider the ultimate load problem for systems (10) and (12), which de-
scribe the dynamics of four-pole rotor synchronous motors with damper wind-
ings at series connection and at parallel connection, respectively. The problem
for system (10) is as follows: to find the conditions under which the solution
ϑ(t), s(t), x(t), μ(t), ν(t) of system (10) with zero initial data satisfies the relations

lim
t→∞

ϑ(t) = ϑ0, lim
t→∞

s(t) = 0, lim
t→∞

x(t) = 0,

lim
t→∞

μ(t) = 0, lim
t→∞

ν(t) = 0.
(21)

The problem for system (12) is as follows: to find the conditions under which the
solution ϑ(t), s(t), x(t), y(t), μ(t), ν(t) of system (10) with zero initial data satisfies
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the relations

lim
t→∞

ϑ(t) = ϑ0, lim
t→∞

s(t) = 0, lim
t→∞

x(t) = 0,

lim
t→∞

y(t) = 0, lim
t→∞

μ(t) = 0, lim
t→∞

ν(t) = 0.
(22)

The posed problems for systems (10) and (12) are studied by the second
method of Lyapunov in (PII, PII). The following results was obtained.

Theorem 3 (PII). If γl satisfies the inequality

0∫
ϑ1

(
sin ϑ − γl

γmax

)
dϑ < 0, (23)

then γl is a permissible load, i.e., the solution of system (10) with initial data ϑ(0) =
s(0) = x(0) = μ(0) = ν(0) = 0 satisfies relations (21).

Theorem 4 (PIII). If the following condition is fulfilled

0∫
ϑ1

(
sin ϑ − γl

γmax

)
dϑ < 0, (24)

then γl is a permissible load, i.e., the solution of system (12) with initial data ϑ(0) =
s(0) = x(0) = y(0) = μ(0) = ν(0) = 0 satisfies relations (22).

Theorems 3 and 4 are a justification of the widely used in engineering prac-
tice the equal-area criterion.

The value of maximum permissible load can be increased by torque con-
trollers with control law

u(s) = −ks. (25)

This control belongs to torque direct control. The systems (10) and (12) with con-
trol law (25) take the form

ϑ̇ = s,

ṡ = u(s) + ax sin ϑ + bν − ϕ(ϑ),

ẋ = −cx − ds sin ϑ,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(26)
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and
ϑ̇ = s,

ṡ = u(s) + ay + bν − ϕ(ϑ),

ẋ = −cx + ys,

ẏ = −cy − xs − s,

μ̇ = −c1μ + νs,

ν̇ = −c1ν − μs − s,

(27)

Since the equilibrium points of new systems (26) and (27) coincide with the the
equilibrium points of initial systems (10) and (12), therefore the formulation of
the ultimate load problem remains unchanged.

The following theorem gives us the conditions under which the ultimate
load on synchronous motors can be increased by suggested control law.

Theorem 5. Suppose that there exists a number λ ∈ R such that the following condi-
tions hold

1. 0 < λ < min{k, c, c1};
2. the solution of the differential equation

F
dF
dσ

= −2
√

λ(k − λ) F − ϕ(σ). (28)

with initial data
F(ϑ1) = 0,

satisfies the condition
F(0) > 0. (29)

Then the solution of system (26) with initial data ϑ = s = x = μ = ν = 0 satisfies the
relations (21) and the solution of system (27) with initial data ϑ = s = x = y = μ =
ν = 0 satisfies the relations (22).

The proof of theorem 5 is based on the modification of the non-local re-
duction method and is carried out for system (26) in PIV and for system (27) in
Appendix 2.

An unstable mode of a synchronous machine operation may lead to break-
down or even failure not only of the machine but also a power system. By this
reason it is necessary to determine the conditions under which unstable modes
arise. Circular solutions and limit cycles of second kind (see the definitions in Ap-
pendix 1) correspond to modes, in which the rotor rotates through an arbitrary
large angle. Thus, the presence of these solutions exclude stability of equations
of synchronous machines.

The following theorem gives us sufficient conditions under which circular
solutions and limit cycles of second kind arise.
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Theorem 6 (PIV). Suppose that there exists a number λ ∈ R such that the following
conditions hold

1. 0 < λ < min{c, c1} and

λ − k − (a + d)2

4(c − λ)
− (b + 1)2

4(c1 − λ)
≥ 0;

2. the solution F(σ) of the equation

F
dF
dσ

= −λF − ϕ(σ), (30)

with initial data F(ϑ(0)) = 0 satisfies the condition

inf F(σ) > 0 ∀σ > ϑ(0). (31)

Then for any ε > 0 system (26) has a circular solution (ϑ, s, x, μ, ν) with initial data
ϑ(0), s(0), x(0), μ(0), ν(0)), satisfying the conditions

s(0) > 0, |s(0)|+ |x(0)|+ |μ(0)|+ |ν(0)| < ε. (32)

Moreover, if k > 0, then system (26) has at least one limit cycle of the second kind.

Theorem 7. Suppose that there exists a number λ ∈ R such that the following condi-
tions hold

1. 0 < λ < min{c, c1} and

λ − k − (a + 1)2

4(c − λ)
− (b + 1)2

4(c1 − λ)
≥ 0; (33)

2. the solution F(σ) of the equation

F
dF
dσ

= −λF − ϕ(σ), (34)

with initial data F(ϑ(0)) = 0 satisfies the condition

inf F(σ) > 0 ∀σ > ϑ(0). (35)

Then for any ε > 0 system (27) has a circular solution (ϑ, s, x, y, μ, ν) with initial data
(ϑ(0), s(0), x(0), y(0), μ(0), ν(0)), satisfying the conditions

s(0) > 0, |s(0)|+ |x(0)|+ |y(0)|+ |μ(0)|+ |ν(0)| < ε. (36)

Moreover, if k > 0, then system (27) has at least one limit cycle of the second kind.

Theorem 7 is proved in Appendix 2.

Numerical analysis of the conditions of the theorems gave us the following
results. From the conditions of theorems 3 and 4 the region of permissible loads
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FIGURE 10 A – the region of permissible loads on uncontrolled synchronous machines;
B – the region of permissible loads on controlled synchronous machines;
C – the region which is not investigated analytically; D – the region of the
existence circular solutions and the cycles of the second kind

on uncontrolled synchronous machines (the region A in Fig. 10) is obtained in the
parameter space. From the conditions of theorem 5 we get the region of permis-
sible loads on controlled synchronous machines (the regions A and B in Fig. 10).
From the conditions of theorems 6 and 7 the region of the existence circular solu-
tions and the cycles of the second kind (the region D in Fig. 10). Thus, the region
C in Fig. 10 remains not investigated analytically.

Note that the region of the existence circular solutions and the cycles of the
second kind decreases and the region of permissible loads increases as the pa-
rameter k increases. For any initial points in the phase space and any permissible
parameters of the systems we can find enough big k to make the system stable.



4 NUMERICAL MODELING

In this chapter numerical modeling of differential equations (10), (12), (26) and
(27), which describe the dynamics of synchronous machines under load condi-
tions, is carried out. The standard computational tools of MATLAB (Shampine
and Reichelt, 1997; Ashino et al., 2000) and a modified algorithm for modeling
the systems with discontinuous right hand-sides, presented in (Piiroinen and
Kuznetsov, 2008) are used.

We consider the following situation, when an idle synchronous machines
operates in synchronism and at some instant the machine is put under load.
Moreover, three cases are studied:

1. there are no any controls, i.e., u(s) ≡ 0;
2. a proportional control law of the form u(s) = −ks is used (see Fig. 11, a).

This control can be achieved by the direct torque control technique;

s

u

0

0

0.2

0.2 0.4 0.6

0.1

s

u

0

0

0.2

0.2 0.4 0.6

0.1

��

u

a b

FIGURE 11 a – proportional control law; b – step control law.

3. a step control law of the form

u(s) =

⎧⎨
⎩

0, if s < n1,

−T, if s ≥ n1.



45

is used (see Fig. 11, b). This control law describes a process of instanta-
neous torque change when the particular conditions are achieved (in our
case when the given slip is achieved).

For all cases the numerical estimations of limit permissible load on synchronous
machines are found. Moreover, the regions of the existence of the second kind
limit cycles are plotted. Obtained results are compared with theoretical results.

4.1 The dynamics of uncontrolled synchronous machines

Let us recall that uncontrolled synchronous machines under load at series and
parallel connections are described by systems (10) and (12), respectively. It was
shown that after start-up the machines without load pull in synchronism, that
is, the solutions of the systems tend to zero equilibrium points. It follows that
the initial conditions is zero. The parameter γ is varied from 0 up to γmax. If
γ > γmax, then the systems don’t have equilibrium points, hence, the machines
don’t have operating modes.

Results of numerical modeling are presented in Fig. 12. For all parameters
γ, taken from the regions 1 and 2, the trajectories of systems (10) and (12) tend to
asymptotically stable equilibrium points (Figs. 13, 14), i.e., these loads on uncon-
trolled synchronous machines are permissible. In the same time, the trajectories
of systems (10) and (12) for parameters γ, taken from the regions 3, tend to infin-
ity (Figs. 15, 16), i.e., these loads are impermissible. Since in the case of parallel
connection the region 2 is more than the region 2 in the series connection case,
then uncontrolled synchronous machines at parallel connection are more stable
to sudden changes of load than ones at series connection.
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a b

FIGURE 12 Parameter spaces of systems (10) (a) and (12) (b) without control: 1 – per-
missible loads, obtained by theorems; 2 – permissible loads, obtained nu-
merically; 3 – impermissible loads
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FIGURE 13 The trajectory of system (10) without control. Permissible load. Modeling
parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15, c1 = 0.75, γmax = 1, γ = 0.8.
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FIGURE 14 The trajectory of system (12) without control. Permissible load. Modeling
parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75, γmax = 1, γ = 0.85.
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FIGURE 15 The trajectory of system (10) without control. Impermissible load. Model-
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γ = 0.85.
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FIGURE 16 The trajectory of system (12) without control. Impermissible load. Model-
ing parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75, γmax = 1, γ = 0.95.
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4.2 The dynamics of synchronous machines with proportional con-
trol

In this section we study the synchronous machines with proportional control un-
der load conditions. Controlled synchronous machines under loads at series and
parallel connections are described by systems (26) and (27), respectively. We as-
sume that first synchronous machines operate without control and under no-load
conditions, then at some instant simultaneously the load-on occurs and a con-
troller is connected to the machine. Therefore, initial date are chosen zero. They
correspond to the operating modes of idle synchronous machines. The parameter
γ is varied from 0 up to γmax. It is used the proportional control law u(s) = 0.1s.

Numerical results obtained in modeling systems (26) and (27) with propor-
tional control law are shown in Fig. 17. The regions 1 and 2 correspond to per-
missible loads, since for all parameters γ from these regions the trajectories of
systems (10) and (12) tend to asymptotically stable equilibrium points (Figs. 18,
19). The regions 3 correspond to impermissible loads, since the trajectories of
systems (10) and (12) with parameters γ from these regions tend to the limit cy-
cles of the second kind, in other words the regions 3 are the region of existence
of limit cycles of the second kind (Figs. 20, 21). Thus, the estimations obtained
by theorem 5 are improved by numerical modeling. From Fig. 17 it is obvious
that in the context of permissible loads the parallel connection for synchronous
machines with proportional control is more preferred than series connection.
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FIGURE 17 Parameter spaces of systems (26) (a) and (27) (b) with proportional control
law: 1 – permissible loads, obtained by theorems; 2 – permissible loads,
obtained numerically; 3 – impermissible loads
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FIGURE 18 The trajectory of system (26) with proportional control. Permissible load.
Modeling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15, c1 = 0.75,
γmax = 1, γ = 0.8.



52

time space

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

θ

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

s

0 10 20 30 40 50 60 70 80 90 100
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time

x,
 y

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time

μ
, ν

phase space

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

θs

x

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.4

−0.2

0

sμ

ν

FIGURE 19 The trajectory of system (27) with proportional control. Permissible load.
Modeling parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75, γmax = 1,
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FIGURE 21 The trajectory of system (27) with proportional control. Impermissible
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4.3 The dynamics of synchronous machines with step control

In this section we consider the synchronous machines with step control under
load conditions. Controlled synchronous machines under loads at series and par-
allel connections are described by systems (26) and (27), respectively. As before
we assume that first synchronous machines operate without control and under
no-load conditions, then at some instant simultaneously the load-on occurs and
a controller is additionally connected to the machine. Initial date are zero. The
parameter γ is varied from 0 up to γmax. We use the step control law

u(s) =

⎧⎨
⎩

0, if s < n1,

−0.1, if s ≥ n1.

Results of numerical modeling are presented in Fig. 22. For parameters γ

from the regions 1, the trajectories of systems(26) and (27) with step control tend
to asymptotically stable equilibrium points (Figs. 23, 24), i.e., these loads are per-
missible. In the same time, the trajectories of systems (10) and (12) with step
control for parameters γ from the regions 2 tend to infinity (Figs. 25, 26), i.e.,
these loads are impermissible. As in previous two cases synchronous machines
with step control at parallel connection are more stable to sudden changes of load
than ones at series connection.
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FIGURE 22 Parameter spaces of systems (26) (a) and (27) (b) with step control law: 1 –
permissible loads; 2 – impermissible loads
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FIGURE 23 The trajectory of system (26) with step control. Permissible load. Modeling
parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15, c1 = 0.75, γmax = 1,
γ = 0.81.
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FIGURE 24 The trajectory of system (27) with step control. Permissible load. Modeling
parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75, γmax = 1, γ = 0.85.
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FIGURE 25 The trajectory of system (26) with step control. Impermissible load. Mod-
eling parameters: a = 0.1, b = 0.2, c = 0.5, d = 0.15, c1 = 0.75, γmax = 1,
γ = 0.9.
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FIGURE 26 The trajectory of system (27) with step control. Impermissible load. Mod-
eling parameters: a = 0.1, b = 0.2, c = 0.5, c1 = 0.75, γmax = 1, γ = 0.975.



5 CONCLUSIONS

Two mathematical models of four-pole rotor synchronous motors with damper
windings at series and parallel connections were constructed based on laws of
classical mechanics and electrodynamics and some simplifying assumptions. The
steady-state stability analysis of these machines was carried out. Both models
have asymptotically stable equilibrium points. These points correspond to the
operating mode of the synchronous machines.

The dynamical stability of the idle synchronous machines is performed. It
was shown that they are global stable under no-load conditions. Thus, indepen-
dently on initial position of the rotors and currents in the rotor windings, the
machines pull in synchronism.

The theorems about the estimates of the permissible limit load on uncon-
trolled and controlled synchronous machines were proved by the equal-area method
and the modified non-local reduction method. Analytical results shown that the
estimations of the permissible limit load for both models with equal parameters
and different connection in exciting systems are equal. However, the numerical
modeling gave us greater value of the permissible limit load in comparison with
the value obtained by theorem. Moreover, it was shown that synchronous ma-
chines at parallel connection are more stable to sudden changes of load than ones
at series connection.

In this thesis we consider the case when the synchronous machines are
already running under different conditions, i.e., we do not study the start-up.
Therefore, according to classical theoretical works (Adkins, 1957; White and Wood-
son, 1959; Skubov and Khodzhaev, 2008) the basic assumptions behind the mod-
elling is permissible. On practical grounds we need engineering specialists to
verify the obtained results. It is the next step of our work.
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YHTEENVETO (FINNISH SUMMARY)

Tässä työssä tarkastellaan nelinapaisella roottorilla varustettujen kolmivaihesynk-
ronikoneiden stabiilisuutta ja värähtelyjä syöttöjärjestelmien erilaisissa peräkkäis-
ja rinnakkaiskytkentäsovelluksissa. Nykyisin näitä koneita käytetään yleisesti ge-
neraattoreina sähköenergian tuottamiseen sähkövoimaloissa ja energiajärjestel-
missä.

Näiden koneiden tutkimista varten on kehitetty uusia matemaattisia malleja
käyttäen oletusta tasaisesti pyörivästä magneettikentästä, jonka staattorin käämit
tuottavat. Tämä oletus on lähtöisin N. Teslan ja G. Ferrarisin klassisista ideoista.
Aikaansaaduissa malleissa on huomioitu täysin roottorin ulkomuodot erotukse-
na tunnetuista asynkronikoneiden matemaattisista malleista.

Työssä on muodostettu ehdot synkronikoneiden lokaalille ja globaalille sta-
biilisuudelle. Dynaamista stabiilisuutta on tarkasteltu huippukuormitustehtävän
yhteydessä. Synkronikoneiden huippukuormitusta ilman säätöä on arvioitu käyt-
täen toista Ljapunovin menetelmää. Dynaamisen stabiilisuuden tehostamiseksi
ehdotetaan välitöntä momentin säätöä (direct torque control). Ei-lokaalin me-
netelmän avulla on johdettu riittävät ehdot ympyränmuotoisten ratkaisujen ja
toisen luokan rajasyklien olemassaololle. Saadut analyyttiset tulokset yleistävät
Tricomin klassisisia tuloksia synkronikoneiden moniulotteisiin malleihin. Lisäk-
si on simuloitu numeerisesti synkronikoneiden eri kuormitukselle ilman säätöä,
määräsuhdesäädöllä ja asteittaissäädöllä.

Mallien ja simulointien perusteella voidaan tehdä johtopäätöksiä eri rootto-
rikytkentöjen paremmuudesta eri tilanteissa.
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APPENDIX 1 CYLINDRICAL PHASE SPACE

Systems of differential equations (10), (12), (26), (27), describing the dynamics
of synchronous machines, contain angular coordinate which determines position
of the rotor relative to the stator. For these equations following (Yakubovich et
al., 2004; Leonov and Kondrat’eva, 2009) we introduce a cylindrical phase space.
In some cases it turns out to be useful for qualitative investigation of obtained
systems.

Let us consider the differential equation

ẏ = F(y), y ∈ Rn, (37)

where F(y) is a vector function defined in Rn. Assume that for linearly indepen-
dent vectors dj ∈ Rn(j = 1, ..., m) the identity

F(y + dj) = F(y), ∀y ∈ Rn. (38)

is satisfied. The value d∗j /|dj| is often called an angular or phase coordinate.
In order to introduce a cylindrical phase space we need some definitions

from theory of groups (see, e.g., Robinson, 1996).

Definition 2. Suppose that G is a nonempty set, (·) is an associative binary operation
defined on the set G and the following conditions are fulfilled:

1. there exists an element e ∈ G such that a · e = e · a = a for any a ∈ G. The
element e is called the neutral element; called neutral,

2. for any a ∈ G there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e.
The element a−1 is called the inverse element for a.

Then a set G with given the operation (·) on it is called a group.

Definition 3. A group G is said to be abelian (commutative) if the operation is commu-
tative, i.e.,

a · b = b · a

for all a, b ∈ G.

In what follows, an operation given in a group is denoted by (·).
Definition 4. A subset H of elements of a group G is called a subgroup of the group G if
H is a group under the same operation defined in G.

Definition 5. A subgroup H of a group G is called a normal subgroup if

a ∈ H, b ∈ G, ∃c ∈ G : b = c−1 · a · c =⇒ b ∈ H.

Definition 6. Let H be a subgroup of a group G and let a be some element of G. The set

a H = {a · h | h ∈ H}
is called a left coset of H in G generated by a. Similarly, the set

H a = {h · a | h ∈ H}
is called a right coset of H in G generated by a.
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It is easy to show that if H is a normal subgroup, its left cosets and right
cosets coincide (Robinson, 1996; Leonov and Kondrat’eva, 2009).

Definition 7. A group formed by the set of all cosets of a normal subgroup H in a group
G is called a factor group of the group G by the normal subgroup H and is denoted by
G/H.

The definition of an abelian group implies every subgroup of an abelian
group is normal. This property of the abelian group is true, since in such group
a · c = c · a for any elements a, b from the group. Hence, a factor group can be
constructed by any subgroup of the abelian group.

The vector space Rn form an abelian group with respect to an operation
which is always called “addition” and denoted by +. Let us introduce a discrete
subgroup of this group

H =

{
y = kdϑ

∣∣∣∣ k ∈ Z

}
.

Consider the cosets of a subgroup H in a group Rn, defined in the following
way

[y] = {y + h|∀h ∈ H, y ∈ Rn}.

They form a factor group Rn/H.
Let us define the so-called flat metric in the space Rn/H

ρ([x], [y]) = inf
u∈[x],v∈[y]

|u − v|. (39)

Here u ∈ Rn, v ∈ Rn.

Proposition 1. (Leonov and Kondrat’eva, 2009) If y(t) is a solution of differential equa-
tion (37) defined on the interval (t1, t2), then y(t) + kdj for any integer number k and
for dj satisfying (38) is also a solution of equation (37) on the interval (t1, t2).

From proposition 1 it follows that the metric space Rn/H introduced above
is the phase space of system (37). It means that the space Rn/H can be partitioned
into disjoint trajectories [y(t)] of system (37).

The space Rn/H is called a cylindrical phase space for the systems of the
form (37), since it is diffeomorphic to the surface of the cylinder

C × C × . . . × C︸ ︷︷ ︸
m

× R × . . . × R︸ ︷︷ ︸
n−m

with C being a circle.
Now we define the notions of a circular solution and a limit cycle of the

second kind which are used in this thesis.

Definition 8. A solution y(t) of differential equations (37) is said to be circular if there
exists the numbers ε > 0 and τ such that the following inequality holds

d∗j ẏ(t) ≥ ε ∀t ≥ τ.
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Definition 9. A solution y(t) of differential equations (37) is said to be a limit cycle
of the second kind if there exists the numbers T > 0 and k ∈ Z, k 
= 0 such that the
following relation holds

y(t + T) = y(t) + kdj ∀t ∈ R.

The concept of the limit cycle of the second kind is clear in a cylindrical
phase space. This cycle represents a trajectory which is closed in the cylindrical
phase space, but ceases to be closed if we turn to the phase space Rn. Unlike
the usual cycle (the cycle of the first kind), this trajectory in the cylindrical phase
space can not homotopically contracted to a point.



APPENDIX 2 PROOF OF THEOREMS

To prove the main theorems we need some definitions and lemma 1.

Definition 10. A set M ∈ Rn is called a positively invariant set of the autonomous
system

ẏ = f (y), y ∈ Rn (40)

if for any point p ∈ M it follows that

y(t, p) ∈ M ∀t ≥ 0.

Definition 11. System (40) is said to be dichotomic if any solution bounded on [t0,+∞)
tends to stationary set as t → +∞.

Lemma 1. Suppose that the function u(t), continuously differentiable on [0,+∞), sat-
isfies the following conditions:

1. there exists a constant C such that

|u̇(t)| ≤ C, ∀t ≥ 0,

2. u(t) ≥ 0, ∀t ≥ 0,

3.
+∞∫
0

u(t)dt < +∞.

Then lim
t→∞

u(t) = 0.

The proof of this lemma can be found in (Leonov, 2006b; Leonov and Kon-
drat’eva, 2009)

In this appendix we consider system (27) with u(s) = −ks.

Theorem 8. Any solution of system (27) bounded for t ≥ 0 tends to some equilibrium
point as t → +∞, i.e., system (27) is dichotomic.

Proof. Let ϑ(t), s(t), x(t), y(t), μ(t), ν(t) be a solution of system (27) bounded for
t ≥ 0. Let us consider the function

V(ϑ, s, x, y, μ, ν) =
1
2

s2 +
a
2

x2 +
a
2

y2 +
b
2

μ2 +
b
2

ν2 +

ϑ∫
0

ϕ(ζ)dζ. (41)

For any solution of system (27) the following relation holds

V̇(ϑ, s, x, y, μ, ν) = −ks2 − acx2 − acy2 − bc1μ2 − bc1ν2 ≤ 0. (42)

Hence, the function V(ϑ, s, x, y, μ, ν) on the solutions of system (27) does not in-
creases with respect to T. The boundedness of the solution implies the bounded-
ness of the function V for t ≥ 0. Thus, there exists a finite limit

lim
t→+∞

V (ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) = const. (43)
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Consider the function

u(t) = ks(t)2 + acx(t)2 + acy(t)2 + bc1μ(t)2 + bc1ν(t)2

and apply lemma 1 to this function. Obviously, condition 1 of lemma 1 is fulfilled.
Taking into account (42), we obtain

t∫
0

u(τ)dτ = V(ϑ(0), s(0), x(0), y(0), μ(0), ν(0))−V(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)).

Consequently, from (43) we get

+∞∫
0

u(t)dt < ∞,

that is, condition 1 of lemma 1 is satisfied. Moreover, due to the boundedness of
the solution of system (27), the following relation is valid

|u̇| = |−2 (ks(−ks + ay + bν − ϕ(ϑ)) + acx(−cx + ys)+

+acy(−cy − xs − s) + bc1μ(−c1μ + νs)+

+bc1ν(−c1ν − μs − s))| ≤ C,

that is, condition 3 of lemma 1 is fulfilled. Finally, the application of lemma 1
yield

lim
t→∞

u(t) = lim
t→∞

(
ks(t)2 + acx(t)2 + acy(t)2 + bc1μ(t)2 + bc1ν(t)2

)
= 0

From the last relation it follows that

lim
t→+∞

s(t) = 0,

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0,

lim
t→+∞

μ(t) = 0, lim
t→+∞

μ(t) = 0.

(44)

Hence, taking account equality (43) and expression for the function V(ϑ, s, x, y, μ, ν),
we have

lim
t→+∞

t∫
0

ϕ(ϑ(τ))dτ = const.

Then the periodicity of the function ϕ(ϑ) implies the existence of some number
ϑ0 such that

lim
t→+∞

ϑ(t) = ϑ0.

Thus, the point ϑ = ϑ0, s = 0, x = 0, y = 0, μ = 0, ν = 0 is equilibrium point of
system 27. This completes the proof of the theorem.
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Theorem 5. Suppose that there exists a number λ ∈ R such that the following condi-
tions hold

1. 0 < λ < min{k, c, c1};
2. the solution of the differential equation

F
dF
dσ

= −2
√

λ(k − λ) F − ϕ(σ). (28)

with initial data
F(ϑ1) = 0,

satisfies the condition
F(0) > 0. (29)

Then the solution of system (26) with initial data ϑ = s = x = μ = ν = 0 satisfies the
relations (21) and the solution of system (27) with initial data ϑ = s = x = y = μ =
ν = 0 satisfies the relations (22).

Proof. The proof of the theorem for system (26) is given in PIV. Here we prove the
theorem for system (27).

Introduce the function

V(ϑ, s, x, y, μ, ν) =
1
2

(
s2 + a(x2 + y2) + b(μ2 + ν2)− F2(ϑ)

)
.

Taking into account (28), for any solution of system (27) the following relation is
satisfied

V̇(ϑ, s, x, y, μ, ν) + 2λV(ϑ, s, x, y, μ, ν) = s(−ks + ay + bν − ϕ(ϑ)) + ax(−cx + ys)+

+ay(−cy − xs − s) + bμ(−c1μ + νs) + bν(−c1ν − μs − s)− s
[

F
dF
dϑ

]
(ϑ) + λs2+

+λax2 + λay2 + λbμ2 + λbν2 − λF2(ϑ) = −a(c − λ)y2 − a(c − λ)x2−

−b(c1 − λ)μ2 − b(c1 − λ)ν2 − (k − λ)s2 +

(
−ϕ(ϑ)−

[
F

dF
dϑ

]
(ϑ)

)
s−

−λF2(ϑ) ≤ −(k − λ)s2 − 2
√

λ(k − λ) s F(ϑ)− λF2(ϑ) =

= −(
√

k − λ s +
√

λ F(ϑ))2 ≤ 0.

Hence, on the boundary of the set

Ω0 =
{

V(ϑ, s, x1, y1, x2, y2) ≤ 0
}

the relation
V̇(ϑ, s, x, y, μ, ν) ≤ 0
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is fulfilled. Thus, Ω0 is the positively invariant set. Using the 2π-periodicity of
the function ϕ(ϑ), it can be similarly shown the positive invariance of the sets

Ωk =
{

s2 + a(x2 + y2) + b(μ2 + ν2)− F2(ϑ + 2kπ) ≤ 0
}

, ∀k ∈ Z.

According to condition (29), differential equation (28) has

1. either a solution F such that there exists a point ϑ2 < 0 for which

F(ϑ2) = F(ϑ1) = 0, F(σ) > 0, ∀σ ∈ (ϑ2, ϑ1);

2. or a solution satisfying the inequality

F(σ) > 0, ∀σ ∈ (−∞, ϑ1).

In the first case the positively invariant set Ω0 is bounded. In the second case the
set Ω = Ω1 ∩ Ω0 is bounded. Obviously, the set Ω is also positively invariant,
since it is the intersection of the positively invariant sets.

Let us show that if the conditions of the theorem are satisfied then the sets
Ω and Ω0 contain the initial data ϑ = s = x = y = μ = ν = 0 and the equilibrium
point ϑ = ϑ0, s = x1 = y1 = x2 = y2 = 0 of system (27). Since ϑ0 ∈ (0, ϑ1) and
F(σ) > 0 for all σ ∈ (0, ϑ1), then⎛

⎜⎜⎜⎜⎜⎜⎝

ϑ0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ Ω0,

⎛
⎜⎜⎜⎜⎜⎜⎝

ϑ0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ Ω. (45)

From the invariance of equation (28) with respect to the shift by 2πk, k ∈ Z

and condition (29) it follows that

−F(0 + 2kπ) = −F(0) < 0, ∀k ∈ Z.

Thus, we get ⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ Ω0,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ Ω. (46)

In theorem 8 was proved that system (27) is dychotomic. This fact, the bound-
edness and positive invariance of the sets Ω and Ω0 and inclusions (45) and (46)
imply (22).

Theorem 7. Suppose that there exists a number λ ∈ R such that the following condi-
tions hold
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1. 0 < λ < min{c, c1} and

λ − k − (a + 1)2

4(c − λ)
− (b + 1)2

4(c1 − λ)
≥ 0; (33)

2. the solution F(σ) of the equation

F
dF
dσ

= −λF − ϕ(σ), (34)

with initial data F(ϑinit) = 0 satisfies the condition

inf F(σ) > 0 ∀σ > ϑinit. (35)

Then for any ε > 0 system (27) has a circular solution (ϑ, s, x, y, μ, ν) with initial data
(ϑ(0) = ϑinit, s(0), x(0), y(0), μ(0), ν(0)), satisfying the conditions

s(0) > 0, |s(0)|+ |x(0)|+ |y(0)|+ |μ(0)|+ |ν(0)| < ε. (36)

Moreover, if k > 0, then system (27) has at least one limit cycle of the second kind.

Proof. Introduce the function

U(ϑ, s, x, y, μ, ν) =
1
2

(
F2(ϑ)− s2 + x2 + y2 + μ2 + ν2

)
.

Note that for ϑ = ϑinit there exists a vector sinit, xinit, yinit, μinit, νinit satisfying
condition (36) for which

U(ϑinit, sinit, xinit, yinit, μinit, νinit) < 0.

From the continuity U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) it follows that on some in-
terval [0, T) we have U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0. Then

0 < −1
2

F2(ϑ(t)) +
1
2

s2(t), ∀t ∈ [0, T).

This inequality and conditions (35) and (36) imply

F(ϑ(t)) < s(t), ∀t ∈ [0, T). (47)

Let us show that the function

U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) +
t∫

0

[
2λU(ϑ(τ), s(τ), x(τ)) + δ(τ)

]
dτ (48)

is a nonincreasing function of t on the interval [0, T), where

δ(t) =
1
2

(
λ − k − (a + 1)2

4(c − λ)
− (b + 1)2

4(c1 − λ)

)
s2(t).
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It follows from condition (33) of the theorem that the function δ(t) is the
nonnegative function. Using (33), (47) and F being a solution of equation (34), for
any solution of system (27) we obtain

U̇ + 2λU + δ = −(c2 − λ)z2 −
(√

c1 − λx − a+d
2
√

c1−λ
s
)2
+

+ϕ(ϑ)s + F
dF
dϑ

s + λF2(ϑ) ≤
(

F
dF
dϑ

+ λF + ϕ(ϑ)
)

s = 0.

The last inequality implies that the function (48) is nonincreasing on the interval
[0, T).

Now we show that U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0 on the interval
[0, ∞).

Let V(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0 on the interval [0, T). We prove
that there does not exist T such that

U(ϑ(T), s(T), x(T), y(T), μ(T), ν(T)) = 0. (49)

Suppose by contradiction that U(ϑ(T), s(T), x(T), y(T), μ(T), ν(T)) = 0. Then
there exists T1 < T such that

δ(t) > |2λU(ϑ(T), s(T), x(T), y(T), μ(T), ν(T))| ∀t ∈ (T1, T).

Since the function (48) does not increase on the interval [0, T), then the fol-
lowing relation holds

U(ϑ(T), s(T), x(T), y(T), μ(T), ν(T))− U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t))+
T∫

t

[
2λU(ϑ(τ), s(τ), x(τ), y(τ), μ(τ), ν(τ)) + δ(τ)

]
dτ ≤ 0 ∀t ∈ (T1, T).

From the last two inequalities we have

U(ϑ(T), s(T), x(T), y(T), μ(T), ν(T)) < U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t))

on the interval (T1, T) and, hence,

U(ϑ(T), s(T), x(T), y(T), μ(T), ν(T)) < 0.

This contradicts (49). Thus,

U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0, t ≥ 0,

and therefore,
F(ϑ(t)) < s(t) ∀t ≥ 0. (50)

Thus, there exists a solution of system (27) with initial data ϑ(0) = ϑinit, s(0),
x(0), y(0), μ(0), ν(0), which satisfy (36) and U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0
for t ≥ 0. Consequently, for estimates (50) and (35) we can conclude that such
solution is circular.
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Now we prove the existence of the cycles of the second kind under the con-
dition k > 0.

Consider the set

Ω =
{
(ϑ, s, x, y, μ, ν)

∣∣∣U(ϑ, s, x, y, μ, ν) < 0, s > 0, ϑ ≥ ϑ(0)
}

.

Since for any solution of system (27) with initial data from Ω the inequality
U(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) < 0 is fulfilled for all t ≥ 0, then it follows the
positive invariance of the set Ω. Due to continuous dependence of the solutions
of system (27) on the initial data, the closure Ω is also positively invariant.

Let δ < min{k, c, c1}. Consider the function

W(ϑ, s, x, y, μ, ν) =
1
2

s2 +
a

2d
x2 − w,

where w > δ−1 max |ϕ(ϑ)|. The boundedness the function ϕ(ϑ) implies ν < +∞.
For any solution of system (27) we have

Ẇ(ϑ(t), s(t), x(t), y(t), μ(t), ν(t))+
+δW(ϑ(t), s(t), x(t), y(t), μ(t), ν(t)) ≤ 0, ∀t ≥ 0.

Hence, the set

Σ =
{
(ϑ, s, x, y, μ, ν)

∣∣∣ W(ϑ, s, x, y, μ, ν) ≤ 0
}

.

is positively invariant.
The continuity of F(σ) on [ϑinit,+∞) and the relations F(ϑinit) = 0, F(σ) > 0

∀σ > ϑinit imply the existence of a number ϑ∗ > ϑinit such that

F(ϑ∗ + 2π) > F(ϑ∗).

It follows from estimate (50) that for any vector

u1 = (ϑ1, s1, x1, y1, μ1, ν1) ∈ Σ1 =
{
(ϑ, z, x) ∈ Ω ∪ Σ

∣∣∣ ϑ = ϑ∗
}

there exists a instant τ1 = t(u1) > 0, for which the following conditions are
satisfied

u(τ1, u1) ∈ Σ2 =
{
((ϑ, s, x, y, μ, ν)) ∈ Ω ∪ Σ

∣∣∣ ϑ = ϑ∗ + 2π
}

u(t, u1) /∈ Σ2 ∀t ≥ 0, t 
= τ1.

Here u(t, u1) denotes the solution of system (27) with initial data u1 = (ϑ1, s1, x1, y1, μ1, ν1).
Let us define a transformation

T : Σ1 → Σ2

u �−→ u(t(u), u), where u ∈ Σ1,

and an operator
Q : Σ2 → Σ1
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(ϑ, s, x, y, μ, ν) �−→ (ϑ − 2π, s, x, y, μ, ν).

The continuous dependence of the solutions of system (27) on the initial
data and the fact that the set Σ2 is contactless provide the continuity of the trans-
formation T. Consequently, the operator QT is continuous. It is easy to show that
the set Σ1 = Ψ∪Σ is convex. Hence, according to the well-known Brouwer’s the-
orem on fixed point (Petrovskii, 1984), there exists a point u0 with the property
QTu0 = u0. This means that

ϑ(t(u0), u0) = ϑ(0, u0) + 2π, s(t(u0), u0) = s(0, u0),

x(t(u0), u0) = x(0, u0), y(t(u0), u0) = y(0, u0),

μ(t(u0), u0) = μ(0, u0), ν(t(u0), u0) = ν(0, u0),

Thus, the solution u(t, u0) of system (27) is a limit cycle of the second kind.



APPENDIX 3 COMPUTER MODELING OF SYSTEMS
DESCRIBING SYNCHRONOUS MOTORS
UNDER CONSTANT LOADS (MATLAB
IMPLEMENTATION)

Program code in Matlab for simulating the behavior of synchronous motors with
different torque controls under constant loads.

1 function [] = runSynch(time, n, g0, g1, model, controlName)
2 global params control;
3 control = getContpolParams(controlName);
4 gammas = g0:(g1-g0)/n:g1;
5 for j = 1:1:(n+1)
6 [init, params] = getParams(model, gammas(j));
7 [t, z] = modelling( strcat(model, ’_model’), ...
8 strcat(’jacobian_’, model), ...
9 [0, time], init );

10 [tF, pF] = plotter(model, t, z);
11 saver(model, tF, pF, gammas(j), ’png’);
12 end
13 end
14

15 function [control] = getContpolParams(index)
16 switch(index)
17 case 1
18 k = 0; M = 0; n_1 = 0;
19 case 2
20 k = 0.1; M = 0; n_1 = 0;
21 case 3
22 k = 0; M = 0.2; n_1 = 0.5;
23 case 4
24 k = 0.1; M = 0.15; n_1 = 0.5;
25 otherwise
26 disp(’Error in runSynch:getContpolParams’);
27 end
28 control = [k, M, n_1];
29 end
30

31 function [init, params] = getParams(model, g)
32 a = 0.1; b = 0.2; c = 0.5; d = 0.15;
33 c_1 = 0.75; gamma_max = 1;
34 switch (model)
35 case ’parallel’
36 init = [ 0, 0, 0, 0, 0, 0 ];
37 params = [a, b, c, c_1, gamma_max];
38 case ’serial’
39 init = [ 0, 0, 0, 0, 0 ];
40 params = [a, b, c, d, c_1, gamma_max];
41 otherwise
42 disp(’Error in runSynch:getParams’);
43 end
44 params = [params, g*params(length(params))];
45 end
46

47

48 function [tv, zv] = modelling(model, jacobian, tspan, z0)
49 [state,dir] = findstate(model, jacobian, z0);
50 options = odeset(’RelTol’, 1e-5, ’AbsTol’, 1e-6, ’MaxStep’, 0.01, ...
51 ’Events’, @fevents);
52 zv = []; tv = [];
53 while 1
54 [t,z,TE,YE,IE] = feval(’ode45’, @func, tspan, z0, options, ...
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55 model, jacobian, state, dir);
56 z0 = z(end,:); tspan =[t(end),tspan(end)];
57 zv = [zv;z]; tv = [tv;t];
58

59 if ~isempty(IE) && (t(end)~=tspan(end))
60 for k = 1:length(IE)
61 if IE(k) ~= 4
62 switch 1
63 case state(3)
64 switch IE(k)
65 case {2,3}
66 state([IE(k)-1, 3, 4, 5]) = -state([IE(k)-1, 3, 4, 5]);
67 dir([1, IE(k)]) = -[1, dir(IE(k))];
68 end
69 case state(4)
70 switch IE(k)
71 case 1,
72 state([1, 2]) = -state([1, 2]);
73 dir(IE(k)) = -dir(IE(k));
74 case {2,3}
75 state([4, 5]) = -state([4, 5]);
76 dir(IE(k)) = -dir(IE(k));
77 end
78 case state(5)
79 switch IE(k)
80 case 1,
81 state([1, 2, 3]) = -[1, 1, state(3)];
82 dir(IE(k)) = -dir(IE(k));
83 case {2,3}
84 state([4, 5]) = -state([4, 5]);
85 dir(IE(k)) = -dir(IE(k));
86 end
87 otherwise, disp(’Error in runSynch:modelling’);
88 end
89 end
90 end
91 else
92 break;
93 end
94 end
95 end
96

97 function [state, dir] = findstate(model, jacobian, z)
98 %% State
99 [F1,F2,H,dH] = feval(model, z);

100 dHF1 = dH*F1; dHF2 = dH*F2;
101 state = - ones(1,5);
102 dir = [-sign(H), -sign(real(dHF1)), -sign(real(dHF2))];
103 if H > 0
104 state(1) = -state(1);
105 elseif H < 0
106 state(2) = -state(2);
107 elseif sign(dHF1)*sign(dHF2) < 0
108 state(3) = -state(3);
109 else
110 if sign(dHF1) > 0
111 state(1) = -state(1);
112 else
113 state(2) = -state(2);
114 end
115 end
116 %% Difficalty function
117 if sign(dHF1)*sign(dHF2) > 0
118 state(4) = -state(4);
119 elseif sign(dHF1)*sign(dHF2) < 0
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120 state(5) = -state(5);
121 else
122 if isempty(jacobian)
123 state(4) = -state(4);
124 else
125 [J1,J2,d2H] = feval(jacobian, z);
126 if dHF1 == 0
127 HxF1x_F1Hxx = dH*J1 + F1’*d2H;
128 sig = sign(HxF1x_F1Hxx*F1)*sign(dHF2);
129 dir(2) = -sign(HxF1x_F1Hxx*F1);
130 elseif dHF2 == 0
131 HxF2x_F2Hxx = dH*J2 + F2’*d2H;
132 sig = sign(HxF2x_F2Hxx*F2)*sign(dHF1);
133 dir(3) = -sign(HxF2x_F2Hxx*F2);
134 else
135 disp(’Error in runSynch:findstate’)
136 sig = 1;
137 end
138

139 if sig < 0
140 state(5) = -state(5);
141 else
142 state(4) = -state(4);
143 end
144 end
145 end
146 end
147

148 function dy = func(t, z, model, jacobian, state, dir);
149 [F1,F2,H,dH] = feval(model, z);
150 switch 1
151 case state(1) % H > 0
152 dy = F1;
153 case state(2) % H < 0
154 dy = F2;
155 case state(3) % H == 0
156 dHF1 = dH*F1; dHF2 = dH*F2;
157 Hu = -((dHF1 + dHF2)/(dHF2 - dHF1));
158 dy = 0.5*(F1 + F1 + Hu*(F2 - F1)) - H*dH’;
159 otherwise
160 disp(’Error in runSynch:func’);
161 end
162 end
163

164 function [value,isterminal,direction] = fevents(t, z, ...
165 model, jacobian, state, dir)
166 [F1, F2, H, dH] = feval(model,z);
167 dHF1 = dH*F1; dHF2 = dH*F2;
168 value = [real([H, dHF1, dHF2]), 1];
169 isterminal = [1, 1, 1, 0];
170 direction = [dir, 0];
171 switch 1
172 case {state(1),state(2)}
173 direction(1) = -state(1);
174 case state(3)
175 [J1, J2, d2H] = feval(jacobian,z);
176 dHF1p2 = dHF1 + dHF2; dHF2m1 = dHF2 - dHF1;
177 F2m1 = F2-F1; F1p2 = F1+F2;
178 dHu = -( ((F1p2’)*d2H + dH*(J1+J2))*(dHF2m1) ...
179 -((F2m1’)*d2H + dH*(J2-J1))*(dHF1p2) ) ...
180 /(dHF2m1^2);
181 F = 0.5*F1p2 - 0.5*F2m1*((dHF1p2)/(dHF2m1)) - C*H*dH’;
182 value = [1, value([2, 3]), real(dHu*F)];
183 otherwise
184 disp(’Error in runSynch:fevents’)
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185 end
186 end
187

188 function [tF, pF] = plotter(model, t, z)
189 theta = z(:,1); s = z(:,2); x = z(:,3);
190

191 tF = []; %% Figures in time space
192 pF = []; %% Figures in phase space
193

194 tF = [tF, figure(1)];
195 plot(t, 0.*t, ’-k’);
196 hold on; grid on;
197 plot(t, s, ’-b’);
198 xlabel(’time’); ylabel(’s’);
199 hold off;
200

201 pF = [pF, figure(2)];
202 plot3(theta, 0.*theta, 0.*theta, ’-k’, ...
203 0.*s, s, 0.*s, ’-k’, ...
204 0.*x, 0.*x, x, ’-k’);
205 hold on; grid on;
206 plot3(theta, s, x, ’-k’);
207 xlabel(’\theta’), ylabel(’s’), zlabel(’x’)
208 hold off;
209 end
210

211 function [] = saver(model, tF, pF, gamma, format)
212 global control;
213 controlStr = strcat( ’[’, ...
214 num2str(control(1)), ’|’, ...
215 num2str(control(2)), ’|’, ...
216 num2str(control(3)), ’]’);
217

218 time_prefix = strcat(model, ’-time-’);
219 time_dir = strcat(time_prefix, format);
220 mkdir(time_dir);
221 for i=1:1:length(tF)
222 fName = strcat(time_prefix, ...
223 num2str(i), ’-’, ...
224 controlStr, ’-’, ...
225 num2str(gamma));
226 saveas(figure(tF(i)), strcat(time_dir,’/’,fName, ’.eps’), format);
227 end
228

229 phase_prefix = strcat(model, ’-phase-’);
230 phase_dir = strcat(phase_prefix, format);
231 mkdir(phase_dir);
232 for i=1:1:length(pF)
233 fName = strcat(phase_prefix, ...
234 num2str(i), ’-’, ...
235 controlStr, ’-’, ...
236 num2str(gamma));
237 saveas(figure(pF(i)), strcat(phase_dir,’/’,fName, ’.eps’), format);
238 end
239 end

1 function [ f1, f2, j1, j2, H, dH, d2H ] = control( z )
2 global control; %% Parameters
3 k = control(1); M = control(2); n_1 = control(3);
4 b = M - k*n_1; s = z(2);
5 %% Vector fields of control
6 f1 = zeros(length(z), 1); % H > 0
7 f2 = zeros(length(z), 1); f2(2) = -(k*s+b); % H < 0
8 %% Jacobian of control
9 j1 = zeros(length(z)); % H > 0
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10 j2 = zeros(length(z)); j2(2,2) = -k; % H < 0
11 %% Discontinuity surface
12 H = n_1 - s;
13 if (n_1 == 0)
14 H = -1;
15 end
16 dH = zeros(1, length(z)); dH(2) = -1;
17 d2H = zeros(length(z));
18 end

1 function [F1, F2, H, dH] = serial_model(z)
2 global params; %% Parameters sets in run_ciynch:getParams()
3 a = params(1); b = params(2); c = params(3); d = params(4);
4 c_1 = params(5); gamma_max = params(6); gamma = params(7);
5 %% Variabals and non-linearity
6 theta = z(1); s = z(2); x = z(3); mu = z(4); nu = z(5);
7 phi = - gamma_max * sin(theta) + gamma;
8 %% Vector fields
9 F = [ s; ... % = \dot{\theta}

10 a*x*sin(theta) + b*mu + phi; ... % = \dot{s}
11 - c*x + d*s*sin(theta); ... % = \dot{x}
12 - c_1*mu - nu*s - s; ... % = \dot{\mu}
13 - c_1*nu + mu*s ]; ... % = \dot{\nu}
14 % Control. Function defining the discontinuity surface (H = 0)
15 [f1, f2, j1, j2, H, dH, d2H] = control(z);
16 F1 = F + f1; % H > 0
17 F2 = F + f2; % H < 0

1 function [J1, J2, d2H] = jacobian_serial(z)
2 global params; %% Parameters sets in run_ciynch:getParams()
3 a = params(1); b = params(2); c = params(3); d = params(4);
4 c_1 = params(5); gamma_max = params(6); gamma = params(7);
5 %% Variabals and non-linearity
6 theta = z(1); s = z(2); x = z(3); mu = z(4); nu = z(5);
7 [f1, f2, j1, j2, H, dH, d2H] = control(z);
8 %% Jacobians
9 j21 = a*x*cos(theta) - gamma_max*cos(theta);

10 j23 = a*sin(theta); j31 = d*s*cos(theta); j32 = d*sin(theta);
11 J = [ 0, 1, 0, 0, 0; ... % theta
12 j21, 0, j23, b, 0; ... % s
13 j31, j32, -c, 0, 0; ... % x
14 0, -nu-1, 0, c_1, -s; ... % mu
15 0, mu, 0, s, -c_1]; ... % nu
16 J1 = J + j1; %% H > 0
17 J2 = J + j2; %% H < 0

1 function [F1, F2, H, dH] = parallel_model(z)
2 global params; %% Parameters sets in run_ciynch:getParams()
3 a = params(1); b = params(2); c = params(3);
4 c_1 = params(4); gamma_max = params(5); gamma = params(6);
5 %% Variabals and non-linearity
6 theta=z(1); s=z(2); y=z(3); x=z(4); mu=z(5); nu=z(6);
7 phi = - gamma_max*sin(theta) + gamma;
8 %% Vector fields
9 F = [ s; ... % dot theta

10 a * y + b * mu + phi; ... % dot s
11 - c * y - x * s - s; ... % dot y
12 - c * x + y * s; ... % dot x
13 - c_1 * mu - nu * s - s; ... % dot mu
14 - c_1 * nu + mu * s ]; % dot nu
15 % Control. Function defining the discontinuity surface (H = 0)
16 [f1, f2, j1, j2, H, dH, d2H] = control(z);
17 F1 = F + f1; % H > 0
18 F2 = F + f2; % H < 0
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1 function [J1,J2,d2H] = jacobian_parallel(z)
2 global params; %% Parameters sets in runSynch:getParams()
3 a = params(1); b = params(2); c = params(3);
4 c_1 = params(4); gamma_max = params(5); gamma = params(6);
5 %% Variabals
6 theta=z(1); s=z(2); y=z(3); x=z(4); mu=z(5); nu=z(6);
7 d_phi = - gamma_max * cos(theta);
8 [f1, f2, j1, j2, H, dH, d2H] = feval(control,z);
9 %% Jacobians

10 J = [0, 1, 0, 0, 0, 0; ... % theta
11 d_phi, 0, 0, a, b, 0; ... % s
12 0, y, -c, s, 0, 0; ... % x
13 0, -x-1, -s, -c, 0, 0; ... % y
14 0, -nu-1, 0, 0,-c_1, -s; ... % mu
15 0, mu, 0, 0, s, -c_1];... % nu
16 J1 = J + j1; %% H > 0
17 J2 = J + j2; %% H < 0
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