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ABSTRACT

Saksa, Tytti
On Modelling and Stability of Axially Moving Viscoelastic Materials
Jyväskylä: University of Jyväskylä, 2013, 64 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 186)
ISBN 978-951-39-5542-7 (nid.)
ISBN 978-951-39-5543-4 (PDF)
Finnish summary
Diss.

In many industrial processes e.g. in paper making, there are parts, in which some
material is transported through a series of rollers. Spans between the rollers,
where the material travels without mechanical support, are called open draws.
At high transport velocities, problems with loss of stability may be encountered,
especially within the open draws. In this thesis, the axially moving material in
an open draw, where the material is supported only at two edges, is modelled
using (high order) linear partial differential equations representing axially mov-
ing elastic or viscoelastic panels and plates. For the use of linear models, small
transverse displacements are assumed. To study the stability of these linear sys-
tems, classical dynamic analyses are performed, i.e. the standard time harmonic
trial function is inserted to the dynamic equations describing the system and the
eigenfrequencies of the system are studied to characterize the system behaviour.
Many studied linear models predict axially moving panels or plates to undergo
static instability at a high enough transport velocity. If the dynamic characteris-
tics of the system are known, the critical conditions at a possible static instability
can be studied in detail by solving an eigenvalue problem for the static form of
the equations. The eigenvalue problems are here solved numerically using finite
differences, the Fourier–Galerkin method, and analytical expressions when appli-
cable. In this study, some new additions to the models of axially moving materials
are presented, and the effects of different material parameters and other physical
conditions on the stable behaviour of the moving materials are investigated. It is
found, e.g., that material viscosity seems to stabilize the out-of-plane vibrations
of a travelling panel but surrounding flowing fluid diminishes this stabilizing ef-
fect. The results of this thesis on the stability of axially moving materials give new
insight to the behaviour of the production process of paper and other materials.
The stability analyses provide a theoretical maximum for the safe transport ve-
locity. As an application of this an optimization problem is presented for seeking
desired conditions for production processes. The analytical findings and compu-
tationally light models also provide other tools for the use of industry.

Keywords: modelling, solid mechanics, continuum mechanics, out-of-plane vi-
brations, viscoelasticity, stability
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PREFACE

This thesis is based on the work conducted at the University of Jyväskylä, De-
partment of Mathematical Information Technology during the years 2010 to 2013.

The work was done in a research group lead by professor Pekka Neittaan-
mäki from the University of Jyväskylä and professor Nikolay Banichuk from the
Russian Academy of Sciences. Other researchers in the group include Ph. D. Juha
Jeronen, Tech. Lic. Matti Kurki, M. Sc. Maria Tirronen and Ph. D. Tero Tuovinen.
Professors Banichuk and Neittaanmäki, professor Raino A. E. Mäkinen from the
University of Jyväskylä and Dr. Jeronen supervised the thesis.

The research topic of the group is motivated by a desire for efficient produc-
tion of paper, in which mechanical stability of the paper machines plays an im-
portant role. This thesis extends the previous work of the research group giving
new insight to the questions of stable behaviour of the produced paper material,
taking into account material viscoelasticity and orthotropicity, and introducing a
multi-objective optimization problem of finding optimal conditions for the pro-
duction process.
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NOMENCLATURE

Notation

∂u
∂x

, u,x partial derivative of u with respect to x

du(x, t)
dt

=
∂u(x, t)

∂t
+

dx
dt

∂u(x, t)
∂x

total (material, Lagrange) derivative of u(x, t) with respect to t,
here often dx/dt = V0 is constant

Δ2u =
∂4u
∂x4 + 2

∂4u
∂x2∂y2 +

∂4u
∂y4

bi-harmonic operator acting on u, here used only in PVI

ΔT (small) change of T, variation of T

i imaginary unit

a complex conjugate of a

Re a real part of a

Im a imaginary part of a

Symbols

a length of edge crack. Unit [a] = m

a0 initial length of edge crack. Unit [a0] = m

b width of panel or half-width of plate. Unit [b] = m

c dimensionless velocity of the panel, c = V0
√

m/T0

D flexural stiffness. For panel, D = Eh3/(12(1 − ν2)). Unit [D] = N m

Dj (where j = 1, 2, 3) orthotropic flexural stiffness. D1 is related to the
axial direction x, D2 to the cross (width) direction y, and D3 to the
coupling term between the two

E Young’s modulus of isotropic plate or panel. Unit [E] = N/m2

E1 Young’s modulus of orthotropic plate in axial direction x.
Unit [E1] = N/m2

E2 Young’s modulus of orthotropic plate in cross (width) direction y. Unit
[E2] = N/m2

εx axial component of bending strain. εx = −z(∂2w/∂x2)

εy width-directional component of bending strain. εy = −z(∂2w/∂y2)



η viscous damping coefficient. Unit [η] = N s/m2

g standard gravity. Unit [g] = m/s2

G12 in-plane shear modulus of orthotropic plate in xy plane.
Unit [G12] = N/m2

γxy shear strain due to bending. γxy = −2z(∂2w/∂x∂y)

h thickness of panel or plate. Unit [h] = m

K stress intensity factor. Unit [K] = Pa
√

m

KC fracture toughness. Unit [K] = Pa
√

m

k material constant in Paris law

� free span length parameter. For the panel submerged in flowing fluid,
the free span is taken to be x ∈ (−�, �). Otherwise, as x ∈ (0, �). Unit
[�] = m

M bending moment per unit length

m mass per unit area. Unit [m] = kg/m2

mj (where j = 1, 2, 3) added mass. m1 is added mass due to the transverse,
m2 to Coriolis, and m3 to centripetal acceleration

μ Poisson ratio for viscosity (dimensionless)

n number of loading cycles

ncr critical number of loading cycles due to fatigue fracture

ν Poisson ratio of isotropic plate or panel (dimensionless)

ν12 Poisson ratio for orthotropic plate. When stretched along axis 1 (x), ν12
is the contraction factor along axis 2 (y)

ν21 Poisson ratio for orthotropic plate. When stretched along axis 2 (y), ν21
is the contraction factor along axis 1 (x)

Ω domain of the governing equation (connected open set)

qf aerodynamic reaction pressure

r scaled aspect ratio, r = (1/π)(�/b)

s stability exponent in linear stability analysis (complex-valued)

σx normal stress for plate due to bending in the x direction.
Unit [σx] = N/m2

σy normal stress for plate due to bending in the y direction.
Unit [σy] = N/m2

T tension. Unit [T] = N/m

T0 constant (homogeneous) tension

Txx axial tension for plate. Unit [Txx] = N/m



Txy in-plane shear tension for plate. Unit [Txy] = N/m

Tyy cross-directional (width-directional) tension for plate.
Unit [Tyy] = N/m

t time coordinate

tR retardation (creep, delay) time constant. Unit [tR] = s

τ scaling constant for nondimensionalization of time coordinate, called
the characteristic time. In Section 4.3 and in PVII, cycle time period.
Unit for both uses [τ] = s

τxy shear stress for the plate due to bending. Unit [τxy] = N/m2

Υ viscous analogue of flexural stiffness. Unit [Υ] = N m s

V0 axial velocity of panel or plate. Unit [V0] = m/s

Vcr
0 critical velocity of elastic instability of travelling panel or plate

v∞ free-stream velocity of surrounding fluid. Unit [v∞] = m/s

W transverse (z-directional, out-of-plane) displacement (dimensionless).
Function of space. Used for the space part of the time-harmonic solu-
tion

w transverse (z-directional, out-of-plane) displacement. Function of space
and time. Dimensional or dimensionless depending on context. Unit
of dimensional displacement [w] = m
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1 INTRODUCTION

This thesis work is about modelling of out-of-plane behaviour of axially moving
materials. Talking about modelling, comparison of the results to measurements
or experiments is often involved. In this work, we work on modelling without
measured data against which the results could be verified. Modelling, however,
can be very useful there, where exact measurements are difficult to be carried
out. E.g. Hristopulos and Uesaka (2002) point out that as web breaks in press-
rooms are statistically rare, experimental investigations would require lots of ef-
fort, which models may complement.

Modelling is an extensive field: almost anything can be modelled. One may
use discrete or continuous models depending on the modelled system. In this
work, we will use continuous models and apply the theories of the classical con-
tinuum mechanics.

Within continuum mechanics, we concentrate on a very specific topic that is
out-of-plane behaviour and vibrations of continuous plates, which are travelling
between supporting rollers. We study a part of the plate travelling between two
supports, such that the plate material flows into the studied region at one edge
and flows out at the other edge continuously preserving the material (mass). In
the articles by Ulsoy and Mote (1982), Wickert and Mote (1990), Lin (1997) and
Lee and Oh (2005), the characteristics of the dynamic out-of-plane behaviour of
moving materials have been studied with the help of string, beam, and plate
models, investigating the stability of the systems by eigenfrequency analyses. In
Figure 1, a schematic figure of a system, in which material travels between two
supporting rollers is shown.

FIGURE 1 Material travelling between two supports.
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Axially moving materials have many applications in industry. Examples
of systems with axially moving materials are band saws, power transmission
belts, paper making processes, printing presses, manufacturing of plastic films
and sheets, and extrusion of aluminium foils, textiles and other materials. In Fig-
ure 2(a), one can see a mechanical belt. In Figure 2(b), an old band saw is shown.
Figure 3 presents a detail of an old paper machine. Dryer cylinders are shown on

(a) A mechanical belt. (b) A band saw.

FIGURE 2 Examples of applications for systems of axially moving materials.
(Figure 2(a) is a work in the public domain, from
http://commons.wikimedia.org/wiki/File:Keilriemen-V-Belt.png
and Figure 2(b) has no known copyright restrictions and is from
http://www.flickr.com/photos/keenepubliclibrary/7308330284/ )

the left hand side. The applications in Figures 2 and 3 differ from each other in
geometry: the path of the material is closed for the mechanical belt and the band
saw, and open for the paper machine.

FIGURE 3 A detail of an old paper machine.
(The use of Figure 3 is unrestricted. The figure is from
http://research.archives.gov/description/518334 )

Application processes, in which the material is transported as a continuous
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TABLE 1 Measured values for paper material parameters. E1, E2 are the Young’s mod-
uli in the machine direction and in the cross-machine direction, respectively,
and G12 is the in-plane shear modulus, ν12 and ν21 are the Poisson ratios

Low basis Copy UKP sack
weight paper1 paper2 paper2

E1 (MPa) 8790 6820 7320
E2 (MPa) 2740 3160 2680
G12 (MPa) 1600 1950 1890
ν12 0.62 0.156 0.164
ν21 0.191 0.098 0.060
basis weight (kg/m2) 0.060 - -
1 Seo (1999); 2 Yokoyama and Nakai (2007).

plate, often require high transport velocities. For example in paper making, the
transport velocity of the paper web is today around 100 km/h. Increasing veloc-
ity, however, may lead to loss of stability, which from the application viewpoint,
may mean breakage of the material. In practice, such material breakage may risk
occupational safety or decrease process efficiency, e.g. production.

We mentioned above that from the the applications of axially moving ma-
terials, we will mostly concentrate on paper making. Although paper has a fiber
network structure, it usually can be regarded as continuous as far as on the cen-
timeter scale (Niskanen, 2012). Let us describe shortly the parts of a paper ma-
chine and some important properties of the paper as material.

The paper machine begins with a forming section, in which a mixture of re-
fined pulp and water is spread on a moving continuous screen. The moisture raw
paper is then transported through suction units and a press section to remove wa-
ter from it. A section consisting of dozens of hot cylinders, called a dryer section,
follows to evaporate water. Some paper materials are further processed through
calendaring or coating sections to make paper smooth or glossy. The final paper
is wound to paper rolls. The solids content varies a lot with the process, being
about 1 % in the forming section, and about 50 % after the press section (Niska-
nen, 2012).

Paper web is very thin and wide. For example, the thickness of newspaper
is about 0.1 mm, and the width of the produced continuous paper web is usually
between 5 m and 10 m (Niskanen, 2012). Table 1 presents some measured values
of elastic parameters, basis weight or density for different types of paper. The
mass per unit area of paper (basis weight) varies usually between 0.040 kg/m2

and 0.100 kg/m2, depending on the type of paper (Niskanen, 2012).
Paper as a material is not purely elastic but viscoelastic, nearly plastic. Thus,

the behaviour of the paper is time-dependent. Two phenomena, related to time-
dependent behaviour, and examined a lot within paper materials, are creep and
relaxation. Creep is defined as the increase in strain over time keeping the state of
stress constant, and relaxation is the decrease in stress over time under a constant
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state of strain. For more details, see Niskanen (2012).
Viscoelastic behaviour of paper is known to be non-linear. Recently, Sor-

vari et al. (2007) compared different viscoelasticity theories for paper materials
and concluded that linear viscoelasticity captured very well the time- and rate-
dependent behaviours at practical strain levels of paper. Creep and relaxation
test data were compared to predictions by a linear model, Schapery’s nonlinear
model (Schapery, 1969) and uniaxial multiple integral representation.

In many parts of the paper machine, the processed paper web is transported
without mechanical support. Examples of these parts include transportation from
the press nip to the drying section, the drying section itself, and the winding of
the final paper to rolls. The spans, where the web travels without support are
called open draws. Within these open draws the paper web is subject to dam-
age. Stability of these parts is therefore an interesting research question for the
applications.

In this study, we will address to questions concerning the stability of axi-
ally moving materials involving high transport velocities. The analysis that will
be presented can be applied in any processes with axially moving plate-like ma-
terials, although our viewpoint is especially paper web handling processes with
wide and thin webs, and thus the parameters in the numerical examples are cho-
sen to represent a typical paper material.

1.1 Objectives

Aim of this study is to examine how different factors affect the out-of-plane be-
haviour of a continuous, axially transported material. These factors include mate-
rial viscoelasticity, surrounding flowing fluid, Earth’s gravity, material orthotrop-
icity and inhomogeneities in tension. To model the axially moving material, the
derivation and choice of the models needs to be done carefully, so that the model
is able to describe the phenomenon under investigation. Especially, with the help
of models, we would like to examine the mechanical stability of travelling ma-
terial plates, and to find out if the physical factors mentioned above affect the
stability. We aim to increase knowledge of the behaviour of axially moving mate-
rials from the viewpoint of basic research.

1.2 Structure of thesis

To study the models for axially moving materials and the questions of their sta-
bility, it is reasonable to know the models that have been previously applied and
results that have been reported previously. Chapter 2 discusses the previous re-
search first on 1D models, then on 2D models, and finally models for cracked
materials. The review is restricted mostly on vibrations of travelling materials.
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The same chapter contains a section, in which the contribution of this work to the
field is summarized.

The subsequent chapters discuss the models used in this thesis work. Chap-
ter 3 presents a model for an axially moving viscoelastic panel in vacuum or
submerged in flowing fluid, and for an axially moving elastic panel in gravita-
tional field, limiting the discussion to 1D models. After presenting the models, we
shortly describe the methods used for stability analyses. The papers PI–PIV are
related to Chapter 3. In Chapter 4, 2D models for an axially moving orthotropic
plate under a constant or linear tension profile are described as well as the meth-
ods to study their stability and an example of applying the stability analysis on
optimization of productivity of some processes. Papers PV–PVII are related to
Chapter 4.

Chapter 5 summarizes application of the numerical methods for the pre-
scribed models, and in Chapter 6, we discuss the key results, their applicability
and outcome of this work.



2 LITERATURE REVIEW AND THIS WORK’S

CONTRIBUTION

It is well known that a high transport speed of an axially moving material may
lead to loss of stability resulting in damage or even breakage of the processed
material. The models used for transverse motion of travelling materials include
strings, membranes, beams, panels and plates. Stability of these models has often
been studied by dynamic analysis, i.e. by studying the eigenfrequencies of the
system. Apart from a loss of stability, damage and breakage of material may
result e.g. from arising or growing of cracks.

2.1 Literature review

This section summarizes previous research on axially moving materials, and the
models applied for them, concentrating especially on transverse vibrations and
questions of stability. The first studies in the area concerned 1D models including
Skutch (1897); Sack (1954); Miranker (1960); Swope and Ames (1963); Mote (1968,
1972, 1975); and Simpson (1973), some of which we further discuss below in the
context of axially moving elastic and viscoelastic strings and beams. After string
and beam models, we continue with the review on 2D models for axially moving
elastic and viscoelastic membranes and plates. Models taking into account the
surrounding fluid (air) are discussed thereafter. Finally, we look at models for
vibrations of thin cracked materials.

Axially moving elastic and viscoelastic strings and beams

Skutch (1897) was the first to investigate axially moving materials, the paper be-
ing published originally in German. The first paper on the topic published in
English was by Sack (1954). Both of these studies discussed the vibrations of a
travelling string.
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Archibald and Emslie (1958) and Simpson (1973) studied the effects of axial
motion on the frequency spectrum and eigenfunctions. Both the travelling string
and beam were shown to experience divergence instability at a sufficiently high
velocity. It was also observed that the natural frequency of each eigenmode de-
creases as the transport velocity is increased. Wickert and Mote (1990) studied
stability of axially moving strings and beams presenting the expressions for the
critical transport velocities analytically. They used modal analysis and a Green’s
function method. Recently, Wang et al. (2005a) showed that no static instabil-
ity occurs at the critical velocity in the case of a string model. Kong and Parker
(2004) found closed-form expressions for the approximate frequency spectrum
via perturbation analysis in their study concerning axially moving beams with
small flexural stiffness.

Industrial materials usually have viscoelastic characteristics (Fung et al.,
1997), and consequently, viscoelastic moving materials have been recently stud-
ied widely. Viscoelasticity is also a property of paper, playing important part es-
pecially for wet paper webs (see e.g. Alava and Niskanen, 2006; Niskanen, 2012).

First studies on the transverse vibrations of a viscoelastic material travel-
ing between two fixed supports were done by Fung et al. (1997), using a string
model. Extending the work, they studied the material damping effect in Fung et
al. (1998).

Several studies on travelling viscoelastic materials, concerning strings and
beams, have been performed during the last decade. Chen and Zhao (2005) pre-
sented a modified finite difference method to simplify a non-linear model of an
axially moving viscoelastic string. They studied the free transverse vibrations of
elastic and viscoelastic strings numerically.

Oh et al. (2004) and Lee and Oh (2005) studied critical speeds, eigenvalues,
and natural modes of axially moving viscoelastic beams performing a detailed
eigenfrequency analysis, and reported that viscoelasticity did not affect the criti-
cal velocity.

Marynowski and Kapitaniak (2002) compared two different internal damp-
ing models in the modelling of moving viscoelastic (non-linear) beams. For the
linearized Kelvin–Voigt model, it was found that the beam exhibits divergent
instability at some critical speed. In the case of non-linear Bürgers model, the
critical speed decreased when the internal damping was increased, and the beam
was found to experience the first instability in the form of flutter.

A particular question about whether one should use the material time deriva-
tive or the partial time derivative in the viscoelastic constitutive relations for mov-
ing materials, has recently been discussed especially in the case of the widely
used Kelvin–Voigt material model. Using the material derivative instead of the
partial time derivative was first suggested by Mockensturm and Guo (2005) and
the material derivative has been used in most of the recent studies concerning ax-
ially moving viscoelastic beams (see e.g. Chen et al., 2008; Chen and Ding, 2010;
Chen and Wang, 2009; Ding and Chen, 2008). Kurki and Lehtinen (2009) sug-
gested, independently, that the material derivative in the constitutive relations
should be used in their study concerning the in-plane displacement field of a
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travelling viscoelastic plate.

Axially moving elastic and viscoelastic membranes and plates

Stability of travelling rectangular membranes and plates was first studied by Ul-
soy and Mote (1980, 1982), and Lin and Mote (1995, 1996). Ulsoy and Mote (1980,
1982) studied natural frequencies and stability of the moving plate using the Ritz
method and simplified boundary conditions at the free edges. They also com-
pared the analytical results with experimental data reporting a good agreement.
Lin and Mote (1995) studied an axially moving membrane in a 2D formulation,
predicting the equilibrium displacement and stress distributions under trans-
verse loading. Later, the same authors predicted the wrinkling instability and
the corresponding wrinkled shape of a web with small flexural stiffness (Lin and
Mote, 1996).

Stability of out-of-plane vibrations of axially moving rectangular membranes
was studied by Shin et al. (2005). For the behaviour of the membrane, it was
found that the motion is stable until a critical speed, at which static instability
occurs.

In recent studies concerning axially moving plates, material properties such
as orthotropicity (Wang, 1999) or viscoelasticity (Marynowski, 2010) have been
taken into consideration and their effects on the plate behaviour have been in-
vestigated. Also such phenomena as winding in the context of axially moving
materials has been studied (Garziera and Amabili, 2000).

Lin (1997) studied stability of an axially moving plate, and numerically
showed that loss of stability of the plate occurs in a form of divergence at a suffi-
ciently high speed. The critical velocity and the corresponding critical shapes of
an axially moving elastic plate were studied, and an analytical expression for the
critical velocity was provided e.g. by Banichuk et al. (2010b).

Wang (1999) analysed behaviour of axially moving orthotropic plates via
the finite element method and using Reissner–Mindlin plate theory. Wang stud-
ied the eigenfrequencies and mode shapes of the moving plate. More recently,
Hatami et al. (2009) studied free vibration of the moving orthotropic rectangu-
lar plate at sub- and super-critical speeds, and flutter and divergence instabilities
at supercritical speeds. Their study was limited to simply supported boundary
conditions at all edges. For the solution of equations of orthotropic moving ma-
terials, many necessary fundamentals can be found in the book by Marynowski
(2008).

Free vibrations of orthotropic rectangular plates, which are not moving,
have been studied by Biancolini et al. (2005) including all combinations of simply
supported and clamped boundary conditions on the edges. Xing and Liu (2009)
obtained exact solutions for free vibrations of stationary rectangular orthotropic
plates considering three combinations of simply supported (S) and clamped (C)
boundary conditions: SSCC, SCCC and CCCC. Kshirsagar and Bhaskar (2008)
studied vibrations and buckling of loaded stationary orthotropic plates. They
found critical loads of buckling for all combinations of boundary conditions S, C
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and F.
A few studies on transverse vibrations of axially moving viscoelastic plates

have also been done. Hatami et al. (2008) studied free vibrations of axially mov-
ing viscoelastic plates using a finite strip method. They used the standard vis-
coelastic solid model. They found that, as for an elastic plate, also for a viscoelas-
tic plate the vibration frequency decreases as axial velocity is increased and be-
comes zero at a critical velocity for the lowest frequency. Zhou and Wang (2007)
studied transverse vibration characteristics of axially moving viscoelastic rectan-
gular plates. They assumed the plate to be elastic in dilatation but viscoelastic
in distortion, where the viscoelasticity was described by the Kelvin-Voigt law.
Two different combinations were used as boundary conditions: all four edges
simply supported and two opposite edges simply supported but the remaining
edges clamped. It was found that when the dimensionless delay time was very
small (plate was almost elastic), the dynamic characteristics and stability of the
axially moving viscoelastic plate were nearly the same as for an axially moving
elastic plate. It was also reported that the increase of delay time did not alter the
critical divergence velocity in the first mode and that the plate did not exhibit a
coupled-mode flutter. (Similar behaviour for viscoelastic beams was reported by
Lee and Oh, 2005.) Very recently, Yang et al. (2012) studied vibrations, bifurca-
tion and chaos of axially moving viscoelastic plates using finite differences and
a non-linear model for transverse displacements. They concentrated on bifurca-
tions and chaos, but also studied the dynamic characteristics of a linearised elastic
model with the help of eigenfrequency analysis.

Recently, some studies using the material derivative in the viscoelastic con-
stitutive relations for moving viscoelastic 2D plates have been done. Marynowski
(2010) studied free vibrations and stability of Levy-type viscoelastic plates com-
paring a three-parameter Zener model and a two-parameter Kelvin–Voigt model
for the viscoelasticity. It was found that the critical transport velocity predicted by
the Zener model was higher than the one predicted by the Kelvin–Voigt model,
which in turn was slightly higher than the critical velocity of an elastic plate. Tang
and Chen (2013) studied stability in parametric resonance of moving viscoelastic
plates with time-dependent velocity of axial motion.

Fluid-structure interaction in the context of moving materials

For thin and wide webs, interaction with surrounding air affects significantly the
behaviour of travelling material. In the case of travelling paper webs, the effects
of the air are important, see e.g. Kulachenko et al. (2007a,b) and Pramila (1986).

Pramila and Niemi published a series of papers in 1986 to 1987 concern-
ing the interaction between the travelling paper web and the external medium,
using at first an analytical added-mass approximation and then the finite ele-
ment method (Niemi and Pramila, 1986; Pramila, 1986, 1987; Pramila and Niemi,
1987). These studies by Pramila and Niemi are considered the first studies in
which fluid-structure interaction has been taken into account in the context of ax-
ially moving webs. In their studies, it was found that the presence of air reduces
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the values of the eigenfrequencies and critical velocities drastically compared to
the vacuum case. The presence of air may reduce both down to 15–26 % of the
vacuum case (Pramila, 1986). However, the model that was used, was later inter-
preted by Pramila to mean that the fluid particles move with the travelling web,
which probably is not the actual physical case there (Pramila, 1987). Recently,
Frondelius et al. (2006) used an added mass model with non-constant coefficients
derived from the boundary layer theory. However, for this approach to be appli-
cable, one needs to include a leading edge in the model.

Chang and Moretti (1991) further developed the added mass approach for
axially moving webs comparing also their theory to wind-tunnel experiments for
stationary webs surrounded by flowing air. They modelled the web as an ideal
membrane and the surrounding air was treated using potential flow theory. Ku-
lachenko et al. (2007a) modelled the fluid-structure interaction on the basis of
acoustic theory finding also that the presence of air reduces the eigenfrequencies
of the web compared to the vacuum case. Recently, Banichuk et al. (2010c, 2011a)
studied the interaction between the moving web and flowing air using a panel
model (a plate with cylindrical deformation) and an analytical expression for the
aerodynamic reaction pressure. The aerodynamic reaction was solved analyti-
cally for potential flow in a complex plane from which the panel was cut. Eigen-
frequencies and dynamic behaviour of this model were further investigated by
Jeronen (2011).

Existing studies on moving viscoelastic materials interacting with surround-
ing fluid seem to be rather limited, namely to the cases of beams having circular
cross-section (Gosselin et al., 2007; Lin and Qiao, 2008; Taleb and Misra, 1981) and
to viscoelastic pipes conveying fluid (Drozdov, 1997; Wang et al., 2005b).

Vibrations of cracked materials

Transported materials may also be subject to initial cracks, and these cracks may
grow if material is under a load. E.g. in the context of paper making, Wathén
(2003) has discussed how damage in paper affect web breaks, and Tryding (1996)
has studied crack growth evolution in paper material using experiments and a
cohesive crack model with finite element analysis.

In some previous studies on web vibrations, fracture has been included into
the problem dynamics and the effects of the cracks on the stability have been stud-
ied. Various analyses of vibrations and stability of stationary beams and plates ex-
ist. An extensive review on fracture of cracked materials and challenges in such
models was discussed by Dimarogonas (1996). Finite element analysis has often
been applied to analyse the vibrations and stability of cracked rectangular plates,
considering centre or edge located cracks. Bachene et al. (2009) used the extended
finite element method, and Liew et al. (1994) developed an efficient decomposi-
tion method to study vibrations of cracked plates. Brighenti (2005) examined
buckling failure of cracked plates for different crack orientations with the help of
finite element analysis. Both buckling and vibration analysis were covered in the
finite element studies of cracked plates by Prabhakara and Datta (1993, 1997).
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Stahl and Keer (1972) studied vibrations and stability of rectangular plates
with the help of dual series equations. Vafai et al. (2002) studied parametric insta-
bility of plates having one crack at an edge. They considered simply supported
rectangular plates under periodic loadings using an integral equation method.
Effects of cracks on the eigenfrequencies and eigenmodes of axially moving beams
at sub-critical transport speeds were studied by Murphy and Zhang (2000). How-
ever, the effect of the cracks on the results was found to be small.

2.2 Contribution of this work to the field

This thesis work discusses models for axially moving viscoelastic panels in vac-
uum and interacting with surrounding fluid, travelling elastic panels in the grav-
itational field, and axially moving orthotropic and isotropic plates under homo-
geneous and non-homogeneous tension profiles. The included articles mainly
add new details to the models and concentrate on the dynamic or static stability
analyses of axially moving materials.

In PI, eigenvalues and stability characteristics of viscoelastic axially moving
panels in vacuum were studied using the material derivative in the viscoelastic
constitutive relations. A fifth boundary condition for the partial differential equa-
tion describing the dynamical out-of-plane behaviour of the system and being of
the fifth order in space was derived based on a physical continuity condition
for the bending moment. A similar continuity condition had been previously
applied by Flügge (1975) for a viscoelastic beam of infinite length and under a
moving load. In the numerical studies, it was found that if the viscosity is high
enough, all modes behave stably with damped vibrations for all studied values
of transport velocity, and no critical speed was detected.

PII presented a model for axially moving thin webs, in which the material
viscoelasticity was taken into account by the Kelvin–Voigt type model and the ef-
fects of the surrounding air were approximated using an added mass approach.
To our knowledge, the study was the first taking into account both (Kelvin–Voigt)
material viscoelasticity and aerodynamic effects in the modelling of webs travel-
ling between two fixed supports. As a new result, it was reported that the pres-
ence of the flowing air diminished the stabilizing effect of viscosity, i.e. for certain
values of the parameters characterizing viscoelasticity, the panel could be stable
when surrounded by stationary air but unstable when the air was flowing.

In PIII, a model including Kelvin–Voigt viscoelasticity and aerodynamic re-
action pressure as solution of potential flow problem around the moving thin
web was presented. Predictions of the critical velocities and behaviour at differ-
ent transport velocities by the model in PIII were compared with the predictions
by the model in PII. As for the added mass model, for the potential flow model
it was found that presence of flowing air diminished the stabilizing effect of vis-
cosity. In the case that fluid velocity was equal to the panel velocity, the potential
flow model predicted no such stabilizing effect of viscosity at all in the range of
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values tested.
The effect of gravity has often been neglected within the previous studies

concerning axially moving materials. For stationary beams, there exists previous
investigations. E.g. Duan and Wang (2008) presented exact solutions for the buck-
ling of columns under self-weight with the help of hypergeometric functions. In
PIV, the stability analysis of elastic panels was concerned for axially moving pan-
els. It was reported, that the gravitational force had a major effect on the buckled
shape of the panel but a minor effect on the critical panel velocity.

The study PV provided detailed analytical considerations of static instabil-
ity (divergence) on the axially moving orthotropic membranes and plates. It was
analytically shown that the eigenvalues of the problem determining the buckled
shape in the cross-section are non-negative. The buckled shapes were found to
significantly depend on the value of the in-plane shear modulus. The effect of the
magnitude of the in-plane shear modulus on the critical plate velocity, however,
was minor.

PVI presented a study, in which tension inhomogeneities were taken into
account in the stability analysis for axially moving isotropic plates. The tension
field in the plate with linear tension distribution at the in-flow and out-flow edges
was solved analytically and also a lower limit for the critical plate velocity was
derived. As a result, it was found that inhomogeneities in a tension profile may
significantly decrease the critical velocities, and that even slight inhomogeneities
have a dramatic response in the divergence shapes.

In PVII, an example of applying the analytical results for the critical veloc-
ities in optimization of the productivity of a process, in which the produced ma-
terial travels as a continuous plate through a system of rollers and under cyclic
tension, was presented. As a high plate velocity constrains the value of tension
from below, the probability of arising and growing of edge cracks sets an upper
limit for the value of tension. A new idea of finding an optimal value for the
magnitude of tension was presented by formulating an analytical expression for
process effectiveness (productivity) with the help of plate velocity and a number
of tension cycles before fracture. Some examples of solving the obtained multi-
objective optimization problem of maximizing the transport velocity, the loading
cycles before fracture, and process effectiveness were given.



3 1D MODELS FOR MOVING MATERIALS

String and beam models are the usual 1D models used for the modelling of out-of-
plane behaviour of thin moving or stationary materials. String and beam models
are usually used to describe behaviour objects that are relatively thin and narrow
compared to their length, and thus, roughly 1D themselves. The panel model in
turn describes a 2D plate but with an assumption that the displacement does not
vary in some coordinate direction. Mathematically, the beam and panel models
are similar but the physical interpretation of the coefficients is slightly different
for these models.

In the case of wide plates, e.g. paper webs, one natural choice is to consider
plates under cylindrical deformation. By cylindrical deformation, we mean that
the transverse displacement does not vary in the cross direction to the direction
of movement of the plate (Figure 4). For the term cylindrical deformation, see

FIGURE 4 Assumption of cylindrical deformation. (From PI.)

e.g. Timoshenko and Woinowsky-Krieger (1959). We call the plate model with
cylindrical deformation a panel model. The term panel has been used e.g. by
Bisplinghoff and Ashley (1962) for plates, but since they focused on the case of
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cylindrical deformations in their examples, the term panel is adapted for this 1D
plate model with cylindrical deformation here and in other previous publications
(Banichuk et al., 2010c, 2011a, 2014).

Many rheological models to describe material properties such as elasticity,
viscosity and plasticity exist. One of the simplest models for viscoelastic solids is
the Kelvin–Voigt model. Regardless of its simplicity, the Kelvin–Voigt model is
able to describe the most important rheological phenomena related to viscoelas-
ticity such as creep and relaxation. In predicting creep after loading, the Kelvin–
Voigt model gives good results, but the model is limited in expressing relaxation.
Bearing this limitation in mind, we will use the Kelvin–Voigt model for mate-
rial viscoelasticity to investigate fundamental qualitative effects of viscosity. As
an advantage of simplicity of the Kelvin–Voigt model, as we will see below, we
may express material viscosity with a single parameter and directly compare the
results with the corresponding purely elastic material model.

3.1 Dynamic equation for an axially moving Kelvin–Voigt panel

We consider dynamic out-of-plane behaviour of an axially moving viscoelastic
panel. The panel is assumed to be supported at x = 0 and x = �, and the length
of the unsupported interval (span) is �. The axial velocity of the panel is assumed
to be constant and is denoted by V0. The transverse displacement is described by
the function w = w(x, t). Assuming small transverse displacements, the dynamic
equilibrium for the bending forces affecting the panel (according to Newton’s
second law) is

∂2M
∂x2 + T0

∂2w
∂x2 = m

∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ mV2
0

∂2w
∂x2 , 0 < x < � , (1)

where m is the mass per unit area, and T0 is a constant tension at the panel ends,
having the unit of force per unit length.

The viscoelasticity of the material is described using the rheological Kelvin–
Voigt model. The spring element is described by the elastic parameters E and ν,
and the damper by the viscous damping coefficient η and the Poisson ratio for
viscosity μ. See Figure 5.

Since we consider a panel, i.e., a 2D plate with the assumption that its trans-
verse displacement does not vary in the y direction, we will first present the
stress-strain relations of bending for the plate and then reduce them to the 1D
relations to clarify the origin of the elastic and viscoelastic flexural stiffness pa-
rameters D and Υ of the panel (below in (6)). We assume both volumetric be-
haviour (dilatation) and response to shear to be viscoelastic, which is a realistic
assumption for paper materials (see e.g. Uesaka et al., 1980; Lif et al., 1999).

Under the assumption of plane stress, the constitutive stress-strain relations
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FIGURE 5 The Kelvin–Voigt viscoelastic material model. A 1D scheme of a 2D model.
(From PI.)

for a viscoelastic Kelvin–Voigt panel are (Sobotka, 1984; Tang and Chen, 2013)

σx =
E

1 − ν2

(
εx + νεy

)
+

η

1 − μ2

(
dεx

dt
+ μ

dεy

dt

)
,

σy =
E

1 − ν2

(
νεx + εy

)
+

η

1 − μ2

(
μ

dεx

dt
+

dεy

dt

)
, (2)

τxy =
E

2(1 + ν)
γxy +

η

2(1 + μ)
dγxy

dt
,

where σx and σy are the normal stresses, and τxy is the shear stress due to bending.
The bending strains εx and εy, and the shear strain γxy, for small deformations,
are defined as (Timoshenko and Woinowsky-Krieger, 1959)

εx = −z
∂2w
∂x2 , εy = −z

∂2w
∂y2 , γxy = −2z

∂2w
∂x∂y

. (3)

In (2), the derivative d/dt denotes the material derivative d/dt(·) = ∂/∂t(·) +
V0∂/∂x(·).

Denoting σ = σx and ε = εx, and assuming cylindrical deformations (hence
εy = −z∂2w/∂y2 = 0), the relations (2) are reduced to

σ =
E

1 − ν2 ε +
η

1 − μ2

(
∂ε

∂t
+ V0

∂ε

∂x

)
. (4)

For the bending moment per unit length, we have

M =
∫ h/2

−h/2
zσ dz = −

[
D

∂2w
∂x2 + Υ

(
∂3w

∂x2∂t
+ V0

∂3w
∂x3

)]
, (5)

where we have used the notations

D =
Eh3

12(1 − ν2)
, Υ =

ηh3

12(1 − μ2)
. (6)

Let us define the parameter tR as a retardation time constant (see Sobotka,
1984)

tR =
η

E
. (7)
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The SI unit of tR is the second. In literature, the parameter tR has been also called a
creep time constant (Marynowski, 2008) or a delay time (Zhou and Wang, 2007).
With the help of (7) and assuming, for simplicity, that the elastic and viscous
Poisson ratios coincide, i.e. μ = ν, we may write

Υ = tRD .

Inserting expression (5) for the bending moment per unit length into (1) (see
also Ding and Chen, 2008), we have

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ tRD
∂5w

∂x4∂t
+
(
mV2

0 − T0
) ∂2w

∂x2

+D
∂4w
∂x4 + V0tRD

∂5w
∂x5 = 0 , 0 < x < � .

(8)

In (8), m is mass per unit area, and T0 is a constant tension at the panel ends,
having the unit of force per unit length.

Since (8) is of the fifth order in space, we need five boundary conditions. It
is the use of the material derivative in the viscoelastic constitutive relations for
a beam or a panel model that leads to a partial differential equation that is fifth-
order with respect to the space coordinate. In Ding and Chen (2008), Chen and
Wang (2009), and Chen and Ding (2010), the fifth-order dynamic equation was
attained but four boundary conditions (in space) were used. We will use five
boundary conditions (in space). Mathematically, (8) is an odd order dispersive
type partial differential equation, the time-dependence of which is similar to gy-
roscopic systems. The choice of boundary conditions for the full time-dependent
problem to be well-posed is an open question. For boundary value problems of
higher order differential equations, see e.g. Agarwal (1986).

Boundary conditions for a panel (or beam) being clamped at both ends can
be derived, e.g., by setting clamped boundary conditions for the panel in the ref-
erence frame moving with the panel, and then performing an appropriate change
of variables. For details, see e.g. Chen and Ding (2010), in which the case of an
axially moving beam is considered.

To derive the fifth boundary condition, we assume that the bending moment
M = M(x, t) in (5) satisfies the continuity condition

lim
δ→0

∫ +δ

−δ
M(x, t) dx = 0 .

Similar continuity condition was used by Flügge (1975) for an infinite beam on a
continuous support, with a concentrated load moving along the beam at a con-
stant velocity.

In the domain x < 0, let w− denote the displacement of the panel. We have

lim
δ→0

{
−D

∂w
∂x

(+δ, t) − Υ

[
∂2w
∂x∂t

(+δ, t) + V0
∂2w
∂x2 (+δ, t)

]

+ D
∂w−

∂x
(−δ, t) + Υ

[
∂2w−

∂x∂t
(−δ, t) + V0

∂2w−

∂x2 (−δ, t)
]}

= 0 . (9)
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We obtain in the limit δ → 0

− D
∂w
∂x

(0, t) − Υ

[
∂2w
∂x∂t

(0, t) + V0
∂2w
∂x2 (0, t)

]

+ D
∂w−

∂x
(0, t) + Υ

[
∂2w−

∂x∂t
(0, t) + V0

∂2w−

∂x2 (0, t)
]

= 0 . (10)

Since (∂w/∂x)(0, t) = 0 and thus (∂2w/∂x∂t)(0, t) = 0, by a kinematic continuity
condition for the panel (Flügge, 1975)

lim
δ→0

{
∂w
∂x

(+δ, t) − ∂w−

∂x
(−δ, t)

}
= 0 ,

we have (∂w−/∂x)(0, t) = 0 and thus (∂2w−/∂x∂t)(0, t) = 0. Substituting these
into (10), we obtain

∂2w
∂x2 (0, t) =

∂2w−

∂x2 (0, t) .

That is, the second derivative of the panel deflections before and after the sup-
port must coincide at x = 0. We set (∂2w−/∂x2)(0, t) = 0, and obtain the fifth
condition

∂2w
∂x2 (0, t) = 0 . (11)

The derivation of the fifth boundary condition is also presented in PI.
A clamped boundary condition at the out-flow end and three conditions at

the in-flow end are

w(0, t) = 0 ,
∂w
∂x

(0, t) = 0 , (12)

∂2w
∂x2 (0, t) = 0 , (13)

w(�, t) = 0 ,
∂w
∂x

(�, t) = 0 . (14)

Equations (12)–(14) will be called the C+-C conditions. If the condition (13) is
removed, we obtain the clamped–clamped (C-C) boundary conditions.

In PI, a combination of boundary conditions with an elastic simply sup-
ported condition at the out-flow end and three conditions at the in-flow end (12)–
(13), was also considered. The elastic simply-supported condition corresponds to
zero moment for an elastic panel, but for the viscoelastic panel, it should be con-
sidered as a purely kinematical (i.e. displacement-like) condition. Alternatively,
if Υ is small, it can be viewed as an approximative condition for the moment
given by (5).

3.2 Axially moving viscoelastic panel interacting with surround-
ing fluid

In this thesis, two different models describing the fluid–structure interaction be-
tween the travelling viscoelastic panel and the surrounding, flowing fluid, are
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considered. In this section, the origin of the coordinate system is chosen in a
slightly different manner compared to Section 3.1: the length of the span is 2�,
and the panel is supported at x = −� and x = �. See Figure 6. This choice has
been used in PIII for solving the aerodynamic problem in a convenient form. In
PII, the coordinate system has been selected as in Section 3.1.

FIGURE 6 A travelling panel with cylindrical deformation. Note the choice of coordi-
nate system. (From PIII.)

In PII, an added mass approach has been applied. As Chang and Moretti
(1991) and Chang et al. (1991), we include added mass due to the transverse,
Coriolis and centripetal acceleration, denoted by m1, m2 and m3, respectively.
Inserting the added mass terms into (8), we have

(m + m1)
∂2w
∂t2 + 2(m + m2)V0

∂2w
∂x∂t

+ tRD
∂5w

∂x4∂t

+
[
(m + m3)V2

0 − T0
] ∂2w

∂x2 + D
∂4w
∂x4 + V0tRD

∂5w
∂x5 = 0 , −� < x < � ,

(15)

where

m1 =
π

4
Caρfb ,

m2 = 2ρf
1

V0

∫ δ

0
U(r)dr , (16)

m3 = 2ρf
1

V2
0

∫ δ

0
U2(r)dr ,

and ρf is the density of the fluid, Ca the added mass coefficient depending on the
problem geometry, b the width of the panel, U = U(r) the velocity of the fluid
with respect to the distance r from the panel, and δ the thickness of the moving
fluid layer i.e. the boundary layer.

The second model for an axially moving viscoelastic panel submerged in
flowing fluid, presented in PIII, accounts for axially flowing fluid as a free stream
potential flow. The equation for the out-of-plane motion of the travelling panel is
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now written with the help of the aerodynamic reaction pressure qf = qf(w):

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ tRD
∂5w

∂x4∂t
+
(
mV2

0 − T0
) ∂2w

∂x2

+D
∂4w
∂x4 + V0tRD

∂5w
∂x5 = qf(w) , −� < x < � .

(17)

We assume non-stationary aerodynamic flow in the xz plane.
Solving the aerodynamic problem via the techniques of complex analysis,

we obtain the following analytical expression for qf(w):

qf(w) = −ρf

(
�

τ

∂

∂t′
+ v∞

∂

∂x′

) ∫ 1

−1
N(ξ, x′)

(
�

τ

∂

∂t′
+ v∞

∂

∂ξ

)
w′(ξ, t′)dξ , (18)

where the kernel function N is

N(ξ, x′) =
1
π

ln
∣∣∣∣1 + Λ(ξ, x′)
1 − Λ(ξ, x′)

∣∣∣∣ , (19)

Λ(ξ, x′) =
[
(1 − x′)(1 + ξ)
(1 − ξ)(1 + x′)

]
. (20)

The solution process of solving the aerodynamic reaction pressure is outlined in
PIII. The original solution with details is given in Banichuk et al. (2011a). In (18),
we have used the dimensionless displacement w′ = w/h, and the dimensionless
coordinates x′ = x/�, t′ = t/τ. In (18), v∞ denotes the free stream velocity of the
fluid, τ is called the characteristic time and it can be chosen freely, and � is half
the span length.

The boundary conditions for (15) and (17) are

w(−�, t) = 0 ,
∂w
∂x

(−�, t) = 0 , (21)

∂2w
∂x2 (−�, t) = 0 , (22)

w(�, t) = 0 ,
∂w
∂x

(�, t) = 0 . (23)

3.3 Elastic panel travelling in gravitational field

The effect of gravity on the behaviour of axially moving materials has usually
been considered relatively small and thus neglected from the models. Some re-
cent studies on the topic exist, e.g. by Luo and Mote (2000). They studied equi-
librium of travelling, elastic, sagged cables under uniformly distributed loading
using a three-dimensional model.

Investigating the behaviour of an axially moving elastic panel in the grav-
itational field, the value of tension T varies within the longitudinal direction of
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the panel. Choosing the coordinate system such that the panel is supported at
x = 0 and at x = � and travelling in parallel with the x axis, tension depends
on x, i.e. T = T(x). The dynamic equation for an elastic plate with x-dependent
tension reads

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+
∂T
∂x

∂w
∂x

+
(
mV2

0 − T
) ∂2w

∂x2 + D
∂4w
∂x4 = 0 , 0 < x < � .

(24)

Note the additional term ∂T/∂x, which is zero if T is a constant.
The value of tension T depends also on the angle between the direction of

the gravitational force and the direction of motion of the panel. If the angle is
zero, the value of tension T is given as follows:

T(x) = T0 + mgx , (25)

where T0 is constant tension at the lower edge of the panel and g is the standard
gravity. See Figure 7. The dynamic equation for the transverse displacement w

FIGURE 7 A travelling panel in a gravitational field. (From PIV.)

under tension expressed in (25) is

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ mg
∂w
∂x

+
(
mV2

0 − T0 − mgx
) ∂2w

∂x2 + D
∂4w
∂x4 = 0 , 0 < x < � .

(26)

For (26), we set the simply supported boundary conditions

w(0, t) = 0 ,
∂2w
∂x2 (0, t) = 0 , (27)
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w(�, t) = 0 ,
∂2w
∂x2 (�, t) = 0 . (28)

The static form of (26) is of the same form as the equation for stationary beams
under self-weight, see e.g. Duan and Wang (2008).

In PIV, the static form of (26) with (27), (28) is analysed. Analytical estimates
for the critical velocity Vcr

0 can be derived. For details, see PIV.

3.4 Stability of travelling strings, beams, and panels

A natural choice to study the stability of systems, the behaviour of which can be
expressed by a linear partial differential equation, is to use linear stability anal-
ysis. This analysis is often called dynamic (stability) analysis or Bolotin type of
stability analysis after Bolotin (1963).

It is known that the normal vibrations of an elastic linear system are time-
harmonic. This is noted e.g. by Xing and Liu (2009). For the stability analysis of
such systems, it is standard to use the trial function

w(x, t) = est W(x) , (29)

where s is complex, and W(x) is an unknown eigenmode to be determined. The
use of this trial function removes the time dependence from the partial differen-
tial equation, making it sufficient to solve a steady-state problem including the
unknown scalar s. The resulting equation will be a partial differential equation in
space, but polynomial with respect to s.

The trial function (29) produces a complex-valued solution w(x, t). The
space component W(x) is typically real-valued for stationary materials, and comp-
lex-valued for moving materials. It is easy to see that in the case of linear partial
differential equations with real-valued coefficients, the real and imaginary com-
ponents of w(x, t) will also be solutions of the original problem. Let L be a linear
differential operator. For example, for the real part, we have

Re (L(w)) = Re [L( Re (w) + i Im (w) )]

= Re [L(Re (w)) + i L(Im (w))]

= L(Re (w)) ,

(30)

where the last equality holds only if the coefficients of L are real. The same ob-
servation holds for the imaginary part. Thus, both Re w(x, t) and Im w(x, t) are
real-valued solutions of the original problem.

For moving materials, the real and imaginary components of W(x) are typ-
ically not solutions of the auxiliary steady-state problem: using the trial func-
tion (29), only the full complex-valued solution W(x) is valid for the auxiliary
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problem. It is only the complete solution w(x, t) whose real and imaginary com-
ponents satisfy the original problem separately. The reason is that the stability
exponent s is complex.

Considering the system behaviour, the stability exponent s characterizes it
in the following manner:

– If the imaginary part of s is non-zero, and

– the real part of s is zero, the system vibrates harmonically with a small
amplitude.

– the real part of s is positive, the amplitude of transverse vibrations
grows exponentially (flutter).

– the real part of s is negative, the transverse vibrations are damped ex-
ponentially.

– If the imaginary part of s is zero, and

– the real part of s is zero, the system has a critical point.
– the real part of s is positive, the displacement of the system grows

exponentially (divergence, buckling).
– the real part of s is negative, the displacement of the system decreases

exponentially.

The sign of the real part of s characterizes the stability of the system: if Re s > 0,
the behaviour is unstable, and otherwise it is stable.

Depending on whether Im s = 0 or not in the critical state, at which the
real part of s changes sign from negative to positive, we may classify the type
of instability. If Im s = 0, we talk about static instability, and otherwise about
dynamic instability. This classification is due to Bolotin (1963).



4 2D MODELS FOR MOVING MATERIALS

In the modelling of axially moving wide materials is reasonable to use 2D mod-
els. The membrane or plate models have been used in this context. The first
studies on the stability of axially moving plates include Ulsoy and Mote (1980,
1982), and Lin (1997). Different models for axially moving elastic and viscoelastic
orthotropic plates are reviewed or presented in the book of Marynowski (2008).
In this section, models for axially moving elastic plates are concerned.

4.1 A travelling orthotropic plate

In this section, we discuss the models for axially moving orthotropic plates under
a constant or a skewed tension profile at the fixed edges. Consider a rectangular
part

Ω = {0 < x < � , −b < y < b} (31)

of a moving plate in the cartesian coordinate system. The plate is supported at
x = 0 and x = �. The length of the span is �, and the width of the plate is 2b.
The constant axial velocity of the plate is denoted by V0. The mass per unit area
is denoted by m. The setup with a skewed tension profile is presented in Figure
8.

For an axially moving orthotropic plate, the dynamic equation for the trans-
verse displacement w(x, y, t) has the form (see e.g. Marynowski, 2008; for a sta-
tionary orthotropic plate Timoshenko and Woinowsky-Krieger, 1959)

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ mV2
0

∂2w
∂x2 − Txx

∂2w
∂x2 − 2Txy

∂2w
∂x∂y

− Tyy
∂2w
∂y2

+D1
∂4w
∂x4 + 2D3

∂4w
∂x2∂y2 + D2

∂4w
∂y4 = 0 in Ω ,

(32)
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FIGURE 8 An axially moving orthotropic plate under a skewed tension profile. (From
PVI.)

where the flexural stiffness parameters are

D1 =
h3

12
E1

1 − ν12ν21
,

D2 =
h3

12
E2

1 − ν12ν21
, (33)

D3 =
h3

12

(
ν12E2

1 − ν12ν21
+ 2G12

)
.

In (33), the parameters E1 and E2 are the Young’s moduli in the x and y directions,
respectively, G12 is the shear modulus in the xy plane, ν12 and ν21 are the Poisson
ratios in the xy plane, and Txx, Tyy, and Txy are the components of in-plane tension
(xx and yy corresponding to uniaxial stress components and xy to shear stress).
The in-plane tension components are assumed to satisfy the following equilibria:

∂Txx

∂x
+

∂Txy

∂y
= 0 ,

∂Txy

∂x
+

∂Tyy

∂y
= 0 , in Ω . (34)

In the case of an orthotropic plate, the boundary conditions with two oppo-
site edges simply supported and the remaining two edges free of traction read

w(0, y, t) = w(�, y, t) = 0 ,
∂2w
∂x2 (0, y, t) =

∂2w
∂x2 (�, y, t) = 0 , −b ≤ y ≤ b ,

(35)(
∂2w
∂y2 + β1

∂2w
∂x2

)
(x,−b, t) =

(
∂2w
∂y2 + β1

∂2w
∂x2

)
(x, b, t) = 0 , 0 ≤ x ≤ � ,

(36)(
∂3w
∂y3 + β2

∂3w
∂x2∂y

)
(x,−b, t) =

(
∂3w
∂y3 + β2

∂3w
∂x2∂y

)
(x, b, t) = 0 , 0 ≤ x ≤ � ,

(37)
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where β1 and β2 are mechanical parameters defined as

β1 = ν12 , β2 = ν12 +
4 G12

E2
(1 − ν12ν21) . (38)

Equation (32) reduces to a dynamic equation for a membrane if we set the flexural
stiffnesses D1, D2, and D3 equal to zero. Setting two opposite edges fixed and two
edges free, the boundary conditions for a (travelling) membrane are written as

w(0, y, t) = 0 , w(�, y, t) = 0 , −b ≤ y ≤ b , (39)

∂w
∂y

(x,−b, t) = 0 ,
∂w
∂y

(x, b, t) = 0 , 0 ≤ x ≤ � . (40)

Equation (32) becomes the dynamic equation of an isotropic plate if

E1 = E2 = E ,
ν12 = ν21 = ν ,

G12 = G =
E

2(1 + ν)
.

(41)

Using a geometric average in-plane shear modulus introduced by Huber (1923),

G12 = GH =
√

E1E2

2(1 +
√

ν12ν21)
, (42)

the dynamic equation (32) can be represented mathematically in the same form
as the dynamic equation for an axially moving isotropic plate.

Note, furthermore, that (32) reduces to a dynamic equation of a travelling
elastic panel if the displacement in the y direction is assumed not to vary. In this
case, all the derivatives with respect to y are equal to zero.

Consider the case where the axial tension is not constant but has a linear
profile at the fixed edges. The boundary conditions for Txx, Txy and Tyy are

Txx(0, y) = Txx(�, y) = T0 + αy , Txy(0, y) = Txy(�, y) = 0 , −b ≤ y ≤ b ,
(43)

Tyy(x,−b) = Tyy(x, b) = 0 , Txy(x,−b) = Txy(x, b) = 0 , 0 ≤ x ≤ � , (44)

where T0 is a constant tension and α,

0 < α < T0/b ,

is a given constant that is called here the tension profile skew parameter. The
in-plane tensions satisfying (34), (43) and (44) are

Txx(x, y) = T0 + αy , Txy(x, y) = 0 , Tyy(x, y) = 0 , in Ω . (45)

The dynamic equation (32) then reads as

m
∂2w
∂t2 + 2mV0

∂2w
∂x∂t

+ (mV2
0 − T0 − αy)

∂2w
∂x2

+D1
∂4w
∂x4 + 2D3

∂4w
∂x2∂y2 + D2

∂4w
∂y4 = 0 in Ω .

(46)
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The boundary conditions for (46) with two opposite edges simply supported and
the two remaining edges free are given in (35)–(37). In PVI, these equations were
analysed in the case of an elastic isotropic plate. For the case of an orthotropic
plate under constant tension, (46) and (35)–(37) were analysed in PV.

4.2 Stability of travelling membranes and plates

In Section 3.4, stability of moving materials in the case of 1D models (strings,
beams, and panels) was discussed. The same analysis can be applied for 2D mod-
els. As discussed in Section 2.1, stability of axially moving membranes and plates
have been studied to some extent. The previous analyses predict that an axially
moving elastic plate undergoes instability at a sufficiently high transport velocity
and that the instability is of the divergence type. See e.g. Lin (1997) for axially
moving isotropic plates, and Marynowski (2008) for axially moving orthotropic
plates.

In this thesis, the analysis of travelling membranes and plates is limited to
static analysis, in which we assume that a critical velocity, at which the mem-
brane or plate undergoes divergence instability, exists. In such a case, the critical
velocity and the corresponding divergence shape of the plate can be found by
static analysis: the time-independent equation with boundary conditions and in
homogeneous form is solved as an eigenvalue problem such that the smallest
eigenvalue corresponds to the critical velocity and the corresponding eigenmode
to the critical divergence shape. This is conducted by inserting the trial function

w(x, t) = est W(x) , (47)

to the time-dependent equations and solving the case s = 0 for the critical value
of the velocity V0.

In the case of a constant or a linear tension profile at the fixed edges of the
travelling (isotropic or orthotropic) plate, the eigenvalue problem can be solved
in a simple manner using the trial function

W(x, y) = sin
(πx

�

)
f
(y

b

)
, (48)

where f (y/b) is an unknown function, and sin (πx/�) is known to be a solution
in x direction in the case of an isotropic case (see e.g. Lin, 1997). The same form
can be seen to be applicaple also for an orthotropic plate. With this trial function,
the x dependence is removed from the equations, and it is sufficient to solve an
eigenvalue problem, in which the eigenfunctions depend only on the y coordi-
nate.

Let us outline the procedure for an axially moving orthotropic plate under
a linear tension profile (Saksa and Jeronen, 2012). We present the solution of (46)
and (35)–(37) in the form of (47) and set s = 0.
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Introducing a new variable η = y/b and inserting (47) (with s = 0) and (48)
into (46), we obtain

r4H2
d4 f
dη4 − 2 r2H3

d2 f
dη2 + (H1 + α̃η) f = λ f , −1 < η < 1 , (49)

where

r =
�

πb
, α̃ =

b�2

π2D0
α , (50)

the eigenvalue λ is defined as

λ =
�2

π2D0

(
mV2

0 − T0

)
, (51)

and the dimensionless bending rigidities are

H1 =
D1

D0
, H2 =

D2

D0
, H3 =

D3

D0
. (52)

In (52), D0 can be chosen freely, e.g., D0 = D1.
The boundary conditions (36)–(37) at η = ±1 become

(
r2 d2 f

dη2 − β1 f
)

(−1) = 0 ,
(

r2 d2 f
dη2 − β1 f

)
(1) = 0 , (53)

(
r2 d3 f

dη3 − β2
d f
dη

)
(−1) = 0 ,

(
r2 d3 f

dη3 − β2
d f
dη

)
(1) = 0 . (54)

The parameters β1 and β2 are explained above in equation (38). Note that for an
isotropic material H1 = H2 = H3 = 1 with D0 = D, and β1 = ν and β2 = 2 − ν.
For comparison, see PVI.

For the case of an orthotropic plate under constant tension, the details of
the solution process are presented in PV. Details for the case of an isotropic plate
under a linear tension profile are given in PVI.

4.3 Application of stability analysis on productivity optimization

Considering out-of-plane vibrations of axially moving materials, it is known that
an increase in tension has a stabilizing effect but a decrease in tension may lead to
a loss of stability. From the viewpoint of fracture, tension has the opposite effect:
high tension may lead to the growth or appearance of cracks, and tension low
enough then guarantees safe operation. Seeking the optimal value of tension but
having opposing objectives, we encounter a multi-objective optimization prob-
lem, which usually has no unique optimal solution but a set of "equally optimal",
Pareto optimal solutions. In this optimization analysis, we may apply the solu-
tions from stability analysis for the critical velocities.
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FIGURE 9 An axially moving plate having an initial crack and supported by a system
of rollers. (From PVII.)

Consider an axially moving elastic isotropic plate, travelling at a constant
velocity V0 and having an initial crack, between a system of subsequent supports
(rollers). The plate undergoes open draws between the supports, the open draws
being assumed to be equal in length. For the problem setup, see Figure 9.

The plate is assumed to be tensioned and subject to small cyclic tension
variations during the process. For one cycle, tension increases from T = Tmin up
to T = Tmax (the loading process) and then decreases from T = Tmax down to
T = Tmin (the unloading process). We suppose quasi-static processes meaning
that the dynamic effects are excluded.

We define parameters T0 (average tension) and ΔT (small tension variation)
such that

Tmin = T0 − ΔT and Tmax = T0 + ΔT , (55)
Tmin ≤ T ≤ Tmax , (56)

and

T0 − ΔT > 0 and
ΔT
T0

� 1 . (57)

Note that Tmax − Tmin = 2ΔT.
The critical velocity at which the plate undergoes divergence instability can

be found analytically as presented for an orthotropic plate in PV. The critical
velocity can be solved for a plate under constant tension T0, e.g., from Eq. (35) in
PV:

Vcr
0 =

√
T0

m
+

γ2∗
m

π2D0

�2 . (58)

In the case of an isotropic plate,

D0 = D =
h3

12
E

1 − ν2 .
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The parameter γ = γ∗ is found as the root of the equation

Φ(γ, r) − Ψ(γ, ν) = 0 , (59)

where

Φ(γ, r) = tanh
(√

1 − γ

r

)
coth

(√
1 + γ

r

)
,

Ψ(γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 ,

(60)

and r is the scaled aspect ratio defined in (50). Note that in place of the analytical
expression (58), one could use a more complicated model for computing the criti-
cal velocity with respect to tension e.g. taking into account surrounding air. Here,
we limit the discussion to the vacuum case with provided analytical solution.

For predicting the critical number cycles before fracture, we use Paris’ law

da
dn

= C(ΔK)k , (61)

where a = a(n) is the length of the crack, n is number of loading cycles, C and
k are constants depending on the material, and ΔK is the difference between the
maximum stress intensity factor Kmax (at maximum loading) and the minimum
stress intensity factor Kmin (at minimum loading). Here, ΔK can be expressed as

ΔK =
2β

√
πa

h
ΔT , (62)

where β is a parameter depending on the crack geometry and ΔT is the small
tension variation defined in (56) and (57). The critical number of cycles can be
solved from (61). Using an initial condition a(0) = a0 and the assumption that
ΔT/T � 1, i.e., the variation of tension is small compared to the average tension
T, we obtain in the case that k 	= 2:

ncr = A
[

a−
k−2

2
0 − (ζT0)k−2

]
, (63)

where

A =
2

(k − 2)Cκk , κ =
2β

√
π

h
ΔT , ζ =

β
√

π

KCh
, (64)

and KC is the fracture toughness of material.
To find an optimal value of tension, we would like to maximize the transport

velocity Vcr
0 in (58), maximize the number of cycles before fracture ncr in (63),

and maximize the process effectiveness. We estimate the process effectiveness or
production as the total mass of the material that is being processed:

M = m0V0nτ , (65)

where m0 = 2bm, and τ is a cycle time period, which is assumed to be small as
the number of cycles n is assumed to be large, so that nτ gives approximately the
process time.
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Using the critical velocity Vcr
0 , longevity ncr and process effectiveness Mcr

and noticing that these values depend on the value of in-plane average tension
T0, we define the following vector function:

J(T0) =

⎧⎨
⎩

JV(T0)
JN(T0)
JM(T0)

⎫⎬
⎭ ≡

⎧⎨
⎩

Vcr
0 (T0)

ncr(T0)
Mcr(T0)

⎫⎬
⎭ , (66)

where Mcr is given by (65) with critical parameter values.
Now, we formulate the multi-objective optimization problem. It is required

to determine the optimal value T∗
0 of in-plane tension T0 that gives a maximum

of the considered vector function, i.e.

J∗ = J(T∗
0 ) = max

T0
J(T0) , (67)

where the max operation is considered in the Pareto sense.
To solve this multi-objective optimization problem, we apply the weighting

method, which is applicable for concave object functions in seeking Pareto op-
timal results. The multi-objective optimization problem of finding the optimal
in-plane tension T∗

0 separately for different particular cases is analysed in PVII.



5 NUMERICAL SOLUTION PROCESS

For numerical computations, it is often convenient to express the problem to be
solved in a dimensionless form. This helps the investigator to better understand
how the solution depends on different parameters and also simplifies the mathe-
matical formulation and the implementation.

Consider the axially moving viscoelastic panel discussed in Section 3.1 and
the problem (8), (12)–(14). We first introduce the dimensionless coordinates

x′ =
x
�

, t′ =
t
τ

, (68)

and the dimensionless out-of-plane displacement

w′(x′, t′) =
w(x, t)

h
. (69)

Inserting (68) and (69) into (8), omitting the primes, multiplying by �2/(T0h), and
choosing

τ = �

√
m
T0

, (70)

we obtain

∂2w
∂t2 + 2c

∂2w
∂x∂t

+ γα
∂5w

∂x4∂t
+ (c2 − 1)

∂2w
∂x2 + α

∂4w
∂x4 + γαc

∂5w
∂x5 = 0 , 0 < x < 1 ,

(71)
where

c =
V0√
T0/m

, α =
D

�2T0
, γ =

λ

τ
=

η

E

√
T0

�
√

m
. (72)

Inserting the time-harmonic trial function (29) into (71) and dividing by est,
we get

s2W + s
(

2c
∂W
∂x

+ γα
∂4W
∂x4

)
+ (c2 − 1)

∂2W
∂x2 + α

∂4W
∂x4 + γαc

∂5W
∂x5 = 0 , (73)
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for 0 < x < 1. The C+-C boundary conditions for the dimensionless displace-
ment function W are

W(0) = 0 ,
∂W
∂x

(0) = 0 , (74)

∂2W
∂x2 (0) = 0 , (75)

W(1) = 0 ,
∂W
∂x

(1) = 0 . (76)

Problem (73)–(76) is homogeneous and can be considered as an eigenvalue
problem with respect to eigenvalues s and eigenfunctions W. To solve the eigen-
value problem numerically, it is to be discretized. We outline here the finite dif-
ference discretization approach, which is a relevant choice, as we have a simple
geometry and the method adapts to five boundary conditions.

We seek w = (w1, . . . , wn) satisfying the discretised form of (73)–(76). We
use central differences of second-order asymptotic accuracy:

∂wj

∂x
=

wj+1 − wj−1

2Δx
,

∂2wj

∂x2 =
wj+1 − 2wj + wj−1

(Δx)2 ,

∂4wj

∂x4 =
wj+2 − 4 wj+1 + 6 wj − 4 wj−1 + wj−2

(Δx)4 ,

∂5wj

∂x5 =
wj+3 − 4 wj+2 + 5 wj+1 − 5 wj−1 + 4 wj−2 − wj−3

2(Δx)5 . (77)

The interval [0, �] is divided to n + 1 subintervals equal in length. The end points
of the subintervals are labelled as 0 = x0, x1, x2, . . . , xn, xn+1 = �. We use two
virtual points (w−2 and w−1) at the in-flow end and one virtual point (wn+2) at
the out-flow end. From the boundary conditions (74)–(76), we get at the in-flow
end:

w−2 = −w2 (from
∂2W
∂x2 (0) = 0) ,

w−1 = w1 (from
∂W
∂x

(0) = 0) ,

w0 = 0 ,

and at the out-flow end:

wn+1 = 0 ,
wn+2 = wn .

In (77), the grid spacing Δx = 1/(n + 1). We use the following backward differ-
ence scheme to calculate the fifth-order derivative at the out-flow end (j = n):

∂5wj

∂x5 =
3 wj+2 − 16 wj+1 + 35 wj − 40 wj−1 + 25 wj−2 − 8 wj−3 + wj−4

2(Δx)5 .
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We denote the derivative matrices by K1, K2, K4, K5, built up with the help
of (77) with the following correspondence:

K1 :
∂W
∂x

, K2 :
∂2W
∂x2 , K4 :

∂4W
∂x4 , K5 :

∂5W
∂x5 .

Inserting the matrices K1, K2, K4, K5 into (73), we obtain the matrix equation

s2w + s [2cK1 + γαK4] w +
[
(c2 − 1)K2 + αK4 + γαcK5

]
w = 0 . (78)

Note that in the case α = 0 or c = 0, we obtain a fourth-order equation needing
only four boundary conditions. This has been taken into account: the virtual
point w−2 is needed only by the matrix K5. When K5 is removed from the matrix
equation (78), the boundary condition (75) is simultaneously removed from the
discretised problem.

It was numerically confirmed that when we decrease the value of α, the
solution of (78) with the boundary conditions C+-C approaches the solution of
the corresponding elastic problem with the boundary conditions C-C. This was
the case even if we selected w−2 = w2 from (∂W/∂x)(0) = 0, and w−1 = −w1
from (∂2W/∂x2)(0) = 0.

The matrix equation (78), which is a quadratic eigenvalue problem with
respect to s, can be rewritten as[ −M1 −M0

I 0

] [
sw

w

]
= s

[
sw

w

]
, (79)

where

M0 = (c2 − 1)K2 + αK4 + γαcK5 ,
M1 = 2cK1 + γαK4 . (80)

The matrix equation (79) is a linear eigenvalue problem of the standard form

Ay = sy (81)

with

A =
[ −M1 −M0

I 0

]
, y =

[
sw

w

]
. (82)

The technique of linearising a quadratic eigenvalue problem in the way presented
in (79), (81), and (82) is standard (see e.g. Tisseur and Meerbergen, 2001).

The size of the eigenvalue problem (81), depending on the number of subin-
tervals in the finite difference discretization, is 2n. Thus, the number of eigenval-
ues s of (81) is 2n. The larger the value of n is, the more accurate are the values
of the lowest eigenvalues. In Figure 10, we present three lowest eigenvalue pairs
with respect to the dimensionless panel velocity c. The critical velocity is denoted
by ccr, marking the point at which the real part of s becomes positive for the first
eigenmode.
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FIGURE 10 Three lowest eigenvalue pairs for a travelling viscoelastic panel. The pa-
rameter c is the dimensionless panel velocity. In the upper right subfigure,
the eigenmode corresponding to the critical velocity is plotted with a solid
line. The dashed line shows the corresponding critical eigenmode for an
elastic clamped-clamped panel. (From PI.)

Also in PII, the finite difference discretization method is used. Due to the
added mass terms, there will be some additional multipliers ζ, ζ2 and ζ3 in the
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dimensionless forms, and the matrices M0 and M1 are in that case

M0 = (ζ3c2 − ζ)K2 + αζK4 + γαcζK5 ,
M1 = 2cζ2K1 + γαζK4 , (83)

where
ζ =

m
m + m1

, ζ2 =
m + m2

m + m1
, ζ3 =

m + m3

m + m1
. (84)

In PIII, the results presented are computed via the finite element method
using a Hermite basis with C2 continuity, consisting of fifth-degree polynomials.
The author solved the problem (17), (12)–(14) via the finite difference method
outlined above. Comparison was made with the finite element results presented
in the article: both methods gave the same results.

If, by analysing the eigenvalue spectra, a velocity exists, at which the panel
(or plate) loses stability in a divergence form, the critical velocity and the corre-
sponding mode can be solved from (78) in the case that s = 0. Again, we end up
with a quadratic eigenvalue problem, but this time, with respect to c:

c2(K2w) + c(γαK5w) + (−K2 + αK4) w = 0 . (85)

If we neglect viscosity and consider the elastic equation corresponding to (85),
the parameter γ = 0. By choosing e.g. λ = c2, the eigenvalue problem is reduced
to a linear eigenvalue problem with respect to the eigenvalue λ.

In PIV–PVII, indeed, the critical velocity and the corresponding critical
mode are solved in the case that s = 0. The discretization for a travelling elastic
panel in a gravitational field with simply supported boundary conditions is done
using the Fourier–Galerkin method in PIV. The Fourier–Galerkin method is re-
lated to the finite element method, the both methods belonging to the Galerkin
methods, and in the Fourier–Galerkin method we have global basis functions.
The unknown function W was presented as a Galerkin series in basis

ϕj(x) = sin(jπx) , 0 < x < 1 , j = 1, 2, 3, . . . , (86)

in which the basis functions satisfy the boundary conditions

W(0) = 0 ,
∂2W
∂x2 (0) = 0 , W(1) = 0 ,

∂2W
∂x2 (1) = 0 .

In PVI, stability of an axially moving isotropic plate under a linear tension
profile was investigated via static analysis. In this case, the use of the trial func-
tion (48) lead to an eigenvalue problem that was solved via central finite differ-
ences.

In PV and PVII, the problems were practically solved analytically and nu-
merical tools were used for simply solving transcendental equations and for vi-
sualisations. In Figure 11, the critical eigenmodes are plotted for a travelling
orthotropic plate under a skewed tension profile summarizing the effects of in-
plane shear modulus and tension inhomogeneities on the shape of the mode. For
the separate analyses, see PV and PVI.
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FIGURE 11 Effects of the tension inhomogeneities and the value of the shear modulus
on the critical eigenmode. The tension profile skew parameter α increases
from left to right, and the shear modulus decreases from top to bottom.
(From Saksa and Jeronen, 2012.)



6 CONCLUSION

Out-of-plane vibrations of axially moving materials have been studied previously
to some extent and the results often have given insight to the limits inside which
the vibrations are predicted to be stable. These models are often based on con-
tinuum mechanics, where equilibrium equations describe the dynamic (or static)
behaviour.

This thesis presented new additions to the models for travelling panels and
plates. We presented a derivation for a fifth physical boundary condition for the
differential equation of a travelling viscoelastic Kelvin–Voigt panel, introducing a
new set of boundary conditions for this equation. Furthermore, we combined the
vacuum equations for travelling viscoelastic panel with the aerodynamic reaction
pressure term accounting for surrounding flow. Tension variation due to Earth’s
gravity was taken into account in a model of an axially moving panel for the first
time. A new application for stability results was presented as an optimization
problem to find an optimal value of tension average for an axially moving brittle
plate undergoing cyclic tension variations, instability limiting the value from be-
low and fatigue fracture from above. For the models studied previously in this
field, some new properties were found.

To analyse the models and the mechanical stability of the systems they
present, classical tools (e.g. Bolotin, 1963) were applied. In numerical studies, the
appropriate methods were chosen taking into account problem geometry, bound-
ary conditions, partial solutions etc.

As results of stability analyses, it was found that, for a travelling Kelvin–
Voigt panel, the introduced viscosity may make the panel behave stably at a
velocity at which the elastic panel undergoes divergence instability. If fluid is
introduced to the model, the stabilizing effect of panel viscosity is diminished.
E.g. for certain values of the parameters characterizing viscoelasticity, the panel
behaviour was stable when surrounded by stationary air but unstable when the
air was flowing. The effect of the gravitational force on the critical panel velocity
was found to be minor, though the buckled shape corresponding to the critical ve-
locity of the elastic panel notably depended on the angle between the directions
of transport and the gravitational force.
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For a travelling orthotropic plate, the effects of the value of the in-plane
shear modulus and the ratio of Young’s moduli on the buckled shape were in-
vestigated. Both the ratio of Young’s moduli and the value of the in-plane shear
modulus affected notably the buckled shapes and slightly the critical plate ve-
locity. The skewness of tension profile at the edges was reported to significantly
affect the critical velocity of an axially moving (isotropic) plate.

The models presented or applied in this thesis were limited to linear equa-
tions. If e.g. large deformations or the behaviour of the panel or the plate at a
super-critical velocity are to be analyzed, non-linear models are needed. From
the application point of view, it is important that the models describe the real
situation as precisely as possible in order to give realistic predictions. E.g. by ex-
cluding the surrounding fluid from the model for an axially moving thin paper
web, one may overestimate the critical transport velocity of the web by a factor
of four (Pramila, 1986). Surrounding fluid can be seen as destabilizing factor for
the out-of-plane vibrations of a travelling web. Tension inhomogeneities were
also found to have a destabilizing effect. Material viscosity, in turn, seemed to
slightly stabilize the out-of-plane vibrations. In computations, the studied pa-
rameter ranges were limited to the values describing paper material and paper
production. For other materials, the importance of the factors affecting the pre-
dictions of the critical velocity may appear in a different manner. In this thesis,
we also limited the discussion to the cases, in which the web velocity is constant.
In paper machines, there is actually a velocity difference between each two con-
secutive rollers. Taking this into account will be a topic of future research.

The results in this thesis extend knowledge about models for axially mov-
ing panels and plates. The research itself is basic research, but closely related to
applications in industry. The models studied in this thesis are relatively light as
for numerical computations. This allows for comprehensive parametric studies
and separate analyses of effects of different physical factors. Fast solvers pro-
vide us also with applicability for real time computations and tools for the use of
industry.
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YHTEENVETO (FINNISH SUMMARY)

Työn otsikko: Aksiaalisesti liikkuvien viskoelastisten materiaalien mallinnuk-
sesta ja stabiiliudesta

Tämän työn esittelemän tutkimuksen innoittajana ovat olleet teollisuuden pro-
sessit, joissa jokin materiaali kulkee nauhana tai leveänä jatkuvana levynä rul-
lien tai telojen ohjaamaa rataa pitkin. Näissä prosesseissa esiintyy usein kohtia,
joissa kulkevan materiaalin rata ei ole tuettu rullien välisellä osalla. Esimerkiksi
paperinvalmistuksessa tällainen kohta on useissa paperikoneissa märän pään ja
kuivatusosan välissä, missä paperiraina kulkee ilman tukea puristinosasta kui-
vatusosan teloille.

Kuten paperinvalmistuksessa myös monissa muissa näiden tasossa liikku-
viksi materiaaleiksi kutsuttujen kohteiden sovelluksissa havitellaan suuria radan-
kuljetusnopeuksia. Suuret nopeudet näissä kuljetuksissa saattavat kuitenkin ra-
dan tukemattomissa kohdissa johtaa epästabiiliin käyttäytymiseen. Tämä tosia-
sia onkin varmasti osasyynä tasossa liikkuvien materiaalien mallintamisen jo yli
puoli vuosisataa kestäneelle tieteelliselle suosiolle.

Tässä väitöskirjassa mallintaminen tehdään osittaisdifferentiaaliyhtälömal-
leja käyttäen ja rajoittuen lineaarisiin malleihin, joiden käyttämiseksi joudutaan
olettamaan, että radan poikkisuuntaiset värähtelyt ovat poikkeamaltaan pieniä.
Tässä tai aiemmin esitettyjen mallien avulla analysoidaan mallin kuvaaman koh-
teen stabiiliutta eli vakavuutta aikaharmonisen yritefunktion avulla. Yritteen si-
joittaminen kohdetta kuvaaviin aikariippuviin yhtälöihin tuottaa ominaisarvo-
tehtävän. Ominaisarvoista suoraan laskettavien ominaistaajuuksien (tai suoraan
ominaisarvojen) avulla voidaan luonnehtia systeemin käyttäytymistä.

Tasossa liikkuvien materiaalien stabiiliutta on tutkittu paljon ennestäänkin.
Tunnettu ilmiö monille tutkituille malleille on se, että radan käyttäytyminen on
stabiilia alhaisilla nopeuksilla, mutta jos radan kuljetusnopeus kasvatetaan kyllin
suureksi, niin stabiilius menetetään. Useiden lineaaristen mallien ennusteet esit-
tävät radan käyttäytymisen muuttuvan stabiilista epästabiiliksi tietyllä nopeu-
den arvolla, jota kutsutaan kriittiseksi nopeudeksi. Tätä suuremmilla nopeuden
arvoilla materiaaliradan poikkeama kasvaa ennusteen mukaan rajatta.

Kriittisen nopeuden olemassaoloa ja mahdollisen epästabiiliuden luonnetta
voidaan tutkia mm. laskemalla materiaaliradan ominaistaajuudet nopeuspara-
metrin suhteen. Tällaista joko matemaattista tai numeerista analyysia kutsu-
taan tässä dynamiikan analyysiksi. Jos esimerkiksi yllä mainitun dynamiikan
analyysin avulla tiedetään, että kriittinen nopeus on olemassa ja vastaava omi-
naismuoto ei ole aikariippuva, niin kriittisen nopeuden arvo voidaan ratkaista
yhtälöiden aikariippumattomasta muodosta edelleen ominaisarvotehtävän avul-
la. Ominaisarvotehtävät ratkaistaan tässä työssä numeerisesti käyttäen apuna
analyyttisiä osaratkaisuja, differenssimenetelmää sekä Fourierin ja Galerkinin me-
netelmää.

Malleja koskevia uusia tuloksia esitetään muutamia. Tasossa liikkuvan vis-
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koelastisen paneelin poikkivärähtelyjä kuvaavalle osittaisdifferentiaaliyhtälölle
johdetaan viides reunaehto perustuen fysikaaliseen paneelin vääntömomentin
jatkuvuusoletukseen. Edellä mainitun liikkuvan viskoelastisen paneelin tyhjiö-
malliin liitetään ympäröivän fluidin mukaan tuomat paneelin reaktiotermit. Gra-
vitaatio liitetään elastisen liikkuvan paneelin yhtälöihin. Liikkuvan elastisen laa-
tan mallia tarkastellaan tilanteessa, jossa laatan päihin kohdistuvan jännityksen
profiili on vino. Stabiiliusanalyysin tulosten uutena sovelluksena esitetään tuo-
tantofunktio, joka antaa prosessoidun materiaalin massan, liikkuvan materiaalin
kuljetusnopeuden funktion ja syklisten jännitysvaihtelujen lukumääräfunktion
avulla.

Numeerisina uusina tuloksina havaitaan, että Kelvinin ja Voigtin viskoelas-
tisten relaatioiden avulla mallinnetun liikkuvan paneelin ominaistaajuudet en-
nustavat tutkitulla nopeuden arvojen alueella, että kriittistä nopeutta ei ole ole-
massa, kunhan viskositeettia kuvaava kerroin on tarpeeksi suuri. Pienillä visko-
siteettikertoimen arvoilla kriittinen nopeus on olemassa ja sen arvo on hieman
suurempi kuin vastaavalla elastisella paneelilla, mikä on käyttäytymisenä yh-
denmukaista aiempien mm. liikkuvien viskoelastisten laattojen malleja koske-
vien tutkimusten tulosten kanssa.

Ympäröivän fluidin virtauksen ottaminen mukaan liikkuvan viskoelastisen
paneelin malliin vaikuttaa häivyttävän tyhjiömallille havaittua viskositeetin sta-
biloivaa vaikutusta. Esimerkiksi tietyillä materiaaliparametrien arvoilla paikal-
laan olevan fluidin ympäröivä paneeli käyttäytyy stabiilisti, ja fluidin virtausno-
peuden kasvattaminen nollasta johonkin positiiviseen arvoon riittää muuttamaan
käyttäytymisen epästabiiliksi.

Maan gravitaation mukaan ottaminen tasossa liikkuvan elastisen paneelin
malliin vaikuttaa vain vähän paneelin kriittisen nopeuden ennusteeseen verrat-
taessa malliin, jossa gravitaatio jätettiin huomiotta. Sen sijaan kriittistä nopeutta
vastaava paneelin poikkeama muuttuu ennusteessa muodoltaan huomattavasti.

Analyyttisesti osoitetaan, että liikkuvan ortotrooppisen laatan kriittinen no-
peus on suurempi kuin vastaavan kalvomallin ennustama kriittinen nopeus. Nu-
meerisissa tutkimuksissa nähdään, että laatan leikkausmoduulin arvo vaikuttaa
hieman laatan kriittiseen kuljetusnopeuteen ja jonkin verran vastaavaan poikkea-
man muotoon. Vinon jännitysprofiilin alla kuljetettavan laatan tapauksessa kriit-
tisen nopeuden havaitaan alenevan huomattavasti vinoutta kasvatettaessa.

Työssä todetaan myös, että käytetyttyjen lineaaristen mallien soveltamisessa
on rajoitteita. Epälineaarisia malleja tarvitaan, jos halutaan analysoida esimerkik-
si poikkeamaltaan suuria radan värähtelyjä tai liikkuvien materiaalien käyttäyty-
mistä kriittistä nopeutta suuremmilla nopeuden arvoilla. Huomionarvoista on
myös se, että leveiden ja ohuiden levyjen tapauksessa ympäröivän ilman huomi-
oimatta jättäminen mallintamisessa voi tuottaa kriittiselle nopeudelle jopa neljä
kertaa liian suuren arvion.

Tässä väitöskirjassa esitetty tutkimus laajentaa tietämystä tasossa liikku-
vien materiaalien malleista, erityisesti paneeli- ja laattamallien osalta. Esitetyt
perustutkimukselliset tulokset ja laskennallisesti kevyet mallit tarjoavat myös
työkaluja sovellusten kohteina oleviin teollisuuden radanhallintakysymyksiin.



55

REFERENCES

Agarwal, R. P. 1986. Boundary Value Problems for Higher Order Differential
Equations. World Scientific Publishing Co Pte Ltd. (ISBN 9971-50-108-2).

Alava, M. & Niskanen, K. 2006. The physics of paper. Reports on Progress in
Physics 69 (3), 669–723.

Archibald, F. R. & Emslie, A. G. 1958. The vibration of a string having a uniform
motion along its length. ASME Journal of Applied Mechanics 25, 347–348.

Bachene, M., Tiberkak, R. & Rechak, S. 2009. Vibration analysis of cracked plates
using the extended finite element method. Archive of Applied Mechanics 79
(3), 249–262. 〈URL:http://dx.doi.org/10.1007/s00419-008-0224-7〉.

Banichuk, N., Ivonova, S., Kurki, M., Saksa, T., Tirronen, M. & Tuovinen, T. 2013.
Safety analysis and optimization of travelling webs subjected to fracture and
instability. In S. Repin, T. Tiihonen & T. Tuovinen (Eds.) Numerical methods for
differential equations, optimization, and technological problems. Dedicated to
Professor P. Neittaanmäki on his 60th Birthday, Vol. 27. Springer Netherlands.
Computational Methods in Applied Sciences, 379–392. (ISBN: 978-94-007-5287-
0 (Print) 978-94-007-5288-7 (Online)).

Banichuk, N., Jeronen, J., Neittaanmäki, P., Saksa, T. & Tuovinen, T. 2014. Me-
chanics of moving materials, Vol. 207. Springer. Solid mechanics and its appli-
cations. (ISBN: 978-3-319-01744-0 (print), 978-3-319-01745-7 (electronic)).

Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T. & Saksa, T. 2010a. Theo-
retical study on travelling web dynamics and instability under a linear tension
distribution. University of Jyväskylä. (Reports of the Department of Mathemat-
ical Information Technology. B: Scientific Computing.).

Banichuk, N., Jeronen, J., Neittaanmäki, P. & Tuovinen, T. 2010b. On the instabil-
ity of an axially moving elastic plate. International Journal of Solids and Struc-
tures 47 (1), 91–99. 〈URL:http://dx.doi.org/10.1016/j.ijsolstr.2009.09.020〉.

Banichuk, N., Jeronen, J., Neittaanmäki, P. & Tuovinen, T. 2010c. Static instability
analysis for travelling membranes and plates interacting with axially moving
ideal fluid. Journal of Fluids and Structures 26 (2), 274–291. 〈URL:http://dx.
doi.org/10.1016/j.jfluidstructs.2009.09.006〉.

Banichuk, N., Jeronen, J., Neittaanmäki, P. & Tuovinen, T. 2011a. Dynamic be-
haviour of an axially moving plate undergoing small cylindrical deformation
submerged in axially flowing ideal fluid. Journal of Fluids and Structures 27
(7), 986–1005. 〈URL:http://dx.doi.org/10.1016/j.jfluidstructs.2011.07.004〉.

Banichuk, N., Jeronen, J., Saksa, T. & Tuovinen, T. 2011b. On the Instability of
Elastic Web Axially Moving in the Gravitational Field. University of Jyväskylä.



56

(Reports of the Department of Mathematical Information Technology. B: Scien-
tific Computing.).

Banichuk, N., Kurki, M., Neittaanmäki, P., Saksa, T., Tirronen, M. & Tuovinen,
T. 2011c. Optimization of Axially Moving Webs Subjected to Instability and
Fracture. University of Jyväskylä. (Reports of the Department of Mathematical
Information Technology. B: Scientific Computing.).

Banichuk, N., Kurki, M., Neittaanmäki, P., Saksa, T. & Tuovinen, T. 2011d. On
Axially Moving Webs Under Fracture and Instability Constraints. University
of Jyväskylä. (Reports of the Department of Mathematical Information Tech-
nology. B: Scientific Computing.).

Banichuk, N., Neittaanmäki, P., Saksa, T., Tirronen, M. & Tuovinen, T. 2012.
Pareto Optimal Solutions for Good Runnability of Moving Bands. University
of Jyväskylä. (Reports of the Department of Mathematical Information Tech-
nology. B: Scientific Computing.).

Biancolini, M. E., Brutti, C. & Reccia, L. 2005. Approximate solution for free vi-
brations of thin orthotropic rectangular plates. Journal of Sound and Vibration
288 (1–2), 321–344. (DOI: 10.1016/j.jsv.2005.01.005).

Bisplinghoff, R. L. & Ashley, H. 1962. Principles of Aeroelasticity. New York:
Dover Publications, Inc. (2nd edition, 1975).

Bolotin, V. V. 1963. Nonconservative Problems of the Theory of Elastic Stability.
New York: Pergamon Press.

Brighenti, R. 2005. Numerical buckling analysis of compressed or tensioned
cracked thin plates. Engineering Structures 27 (2), 265–276. 〈URL:http://dx.
doi.org/10.1016/j.engstruct.2004.10.006〉.

Chang, Y. B., Fox, S. J., Lilley, D. G. & Moretti, P. M. 1991. Aerodynamics of mov-
ing belts, tapes and webs. In N. C. Perkins & K. W. Wang (Eds.) ASME DE, Vol.
36, 33-40. (Presented in ASME Symposium on Dynamics of Axially Moving
Continua, Miami, Florida, September 22-25, 1991.).

Chang, Y. B. & Moretti, P. M. 1991. Interaction of fluttering webs with surround-
ing air. TAPPI Journal 74 (3), 231–236.

Chen, L.-Q., Chen, H. & Lim, C. 2008. Asymptotic analysis of axially accelerating
viscoelastic strings. International Journal of Engineering Science 46 (10), 976–
985. (DOI: 10.1016/j.ijengsci.2008.03.009).

Chen, L.-Q. & Ding, H. 2010. Steady-state transverse response in coupled planar
vibration of axially moving viscoelastic beams. ASME Journal of Vibrations and
Acoustics 132, 011009-1–9. (http://dx.doi.org/10.1115/1.4000468).



57

Chen, L.-Q. & Wang, B. 2009. Stability of axially accelerating viscoelastic
beams: asymptotic perturbation analysis and differential quadrature vali-
dation. European Journal of Mechanics - A/Solids 28 (4), 786–791. (DOI:
10.1016/j.euromechsol.2008.12.002).

Chen, L.-Q. & Zhao, W.-J. 2005. A numerical method for simulating transverse
vibrations of an axially moving string. Applied Mathematics and Computation
160 (2), 411–422. (DOI: 10.1016/j.amc.2003.11.012).

Dimarogonas, A. D. 1996. Vibration of cracked structures: A state of the art
review. Engineering Fracture Mechanics 55 (5), 831–857. 〈URL:http://dx.doi.
org/10.1016/0013-7944(94)00175-8〉.

Ding, H. & Chen, L.-Q. 2008. Stability of axially accelerating viscoelastic beams:
multi-scale analysis with numerical confirmations. European Journal of Me-
chanics - A/Solids 27 (6), 1108–1120. (DOI: 10.1016/j.euromechsol.2007.11.014).

Drozdov, A. D. 1997. Stability of a viscoelastic pipe filled with a moving fluid.
ZAMM - Journal of Applied Mathematics and Mechanics 77 (9), 689–700.
〈URL:http://dx.doi.org/10.1002/zamm.19970770908〉.

Duan, W. H. & Wang, C. M. 2008. Exact solution for buckling of columns
including self-weight. Journal of Engineering Mechanics 134 (1), 116–119.
(DOI:10.1061/(ASCE)0733-9399(2008)134:1(116)).

Flügge, W. 1975. Viscoelasticity (2nd edition). New York: Springer-Verlag.

Frondelius, T., Koivurova, H. & Pramila, A. 2006. Interaction of an axially moving
band and surrounding fluid by boundary layer theory. Journal of Fluids and
Structures 22 (8), 1047–1056.

Fung, R.-F., Huang, J.-S., Chen, Y.-C. & Yao, C.-M. 1998. Nonlinear dynamic anal-
ysis of the viscoelastic string with a harmonically varying transport speed.
Computers & Structures 66 (6), 777–784. (DOI: 10.1016/S0045-7949(98)00001-
7).

Fung, R.-F., Huang, J.-S. & Chen, Y.-C. 1997. The transient amplitude of the vis-
coelastic travelling string: An integral constitutive law. Journal of Sound and
Vibration 201 (2), 153–167. (DOI: 10.1006/jsvi.1996.0776).

Garziera, R. & Amabili, M. 2000. Damping effect of winding on the lateral vibra-
tions of axially moving tapes. ASME Journal of Vibration and Acoustics 122,
49–53.

Gosselin, F., Païdoussis, M. P. & Misra, A. K. 2007. Stability of a deploy-
ing/extruding beam in dense fluid. Journal of Sound and Vibration 299 (1–2),
123–142. 〈URL:http://dx.doi.org/10.1016/j.jsv.2006.06.050〉.



58

Hatami, S., Azhari, M., Saadatpour, M. M. & Memarzadeh, P. 2009. Exact free
vibration of webs moving axially at high speed. In AMATH’09: Proceedings
of the 15th American Conference on Applied Mathematics. Stevens Point, Wis-
consin, USA: World Scientific and Engineering Academy and Society (WSEAS),
134–139. (Houston, USA).

Hatami, S., Ronagh, H. R. & Azhari, M. 2008. Exact free vibration analysis of
axially moving viscoelastic plates. Computers & Structures 86 (17–18), 1738–
1746. (DOI: 10.1016/j.compstruc.2008.02.002).

Hristopulos, D. T. & Uesaka, T. 2002. A model of machine-direction tension vari-
ations in paper webs with runnability applications. Journal of Pulp and Paper
Science 28 (12), 389–394.

Huber, M. T. 1923. Die Theorie des kreuzweise bewehrten Eisenbetonplatten. Der
Bauingenieur 4, 354–392.

Jeronen, J. 2011. On the mechanical stability and out-of-plane dynamics of a trav-
elling panel submerged in axially flowing ideal fluid: a study into paper pro-
duction in mathematical terms. Department of Mathematical Information Tech-
nology, University of Jyväskylä. Ph. D. Thesis. 〈URL:http://julkaisut.jyu.fi/
?id=978-951-39-4596-1〉. (Jyväskylä studies in computing 148. ISBN 978-951-
39-4595-4 (book), ISBN 978-951-39-4596-1 (PDF)).

Kong, L. & Parker, R. G. 2004. Approximate eigensolutions of axially moving
beams with small flexural stiffness. Journal of Sound and Vibration 276, 459–
469.

Kshirsagar, S. & Bhaskar, K. 2008. Accurate and elegant free vibration and
buckling studies of orthotropic rectangular plates using untruncated in-
finite series. Journal of Sound and Vibration 314 (3–5), 837–850. (DOI:
10.1016/j.jsv.2008.01.013).

Kulachenko, A., Gradin, P. & Koivurova, H. 2007a. Modelling the dynamical be-
haviour of a paper web. Part I. Computers & Structures 85, 131–147.

Kulachenko, A., Gradin, P. & Koivurova, H. 2007b. Modelling the dynamical be-
haviour of a paper web. Part II. Computers & Structures 85, 148–157.

Kurki, M., Jeronen, J., Saksa, T., Tuovinen, T. & Neittaanmäki, P. 2011. Liikku-
van paperiradan kriittinen rajanopeus ja stabiilisuusanalyysi paperi- ja kar-
tonkikoneen eri osaprosesseissa (The critical velocity and stability analysis of
a moving paper web in different subprocesses in paper and cardboard ma-
chines). (Paperi ja Puu (Paper and wood) 1/2011).

Kurki, M., Jeronen, J., Saksa, T. & Tuovinen, T. 2012. Strain field theory for vis-
coelastic continuous high-speed webs with plane stress behavior. In J. Eber-
hardsteiner, H. J. Böhm & F. G. Rammerstorfer (Eds.) CD-ROM Proceedings of
the 6th European Congress on Computational Methods in Applied Sciences



59

and Engineering (ECCOMAS 2012). Vienna, Austria: Vienna University of
Technology. (ISBN 978-3-9502481-9-7).

Kurki, M. & Lehtinen, A. 2009. In-plane strain field theory for 2-d moving vis-
coelastic webs. In Papermaking Research Symposium 2009 (Kuopio, Finland).
PRS.

Lee, U. & Oh, H. 2005. Dynamics of an axially moving viscoelastic beam subject
to axial tension. International Journal of Solids and Structures 42 (8), 2381–2398.
〈URL:http://dx.doi.org/10.1016/j.ijsolstr.2004.09.026〉.

Liew, K. M., Hung, K. C. & Lim, M. K. 1994. A solution method for analysis of
cracked plates under vibration. Engineering Fracture Mechanics 48 (3), 393–
404. 〈URL:http://dx.doi.org/10.1016/0013-7944(94)90130-9〉.

Lif, J., Östlund, S. & Fellers, C. 1999. Applicability of anisotropic viscoelastic-
ity of paper at small deformations. Mechanics of Time-Dependent Materi-
als 2 (3), 245–267. 〈URL:http://dx.doi.org/10.1023/A:1009818022865〉. (DOI:
10.1023/A:1009818022865).

Lin, C. C. & Mote, C. D. 1995. Equilibrium displacement and stress distribution
in a two-dimensional, axially moving web under transverse loading. ASME
Journal of Applied Mechanics 62, 772–779.

Lin, C. C. & Mote, C. D. 1996. Eigenvalue solutions predicting the wrinkling
of rectangular webs under non-linearly distributed edge loading. Journal of
Sound and Vibration 197 (2), 179–189.

Lin, C. C. 1997. Stability and vibration characteristics of axially moving plates.
International Journal of Solids and Structures 34 (24), 3179–3190.

Lin, W. & Qiao, N. 2008. The free vibration of rectangular plates. International
Journal of Solids and Structures 45 (5), 1445–1457. 〈URL:http://dx.doi.org/10.
1016/j.ijsolstr.2007.10.015〉.

Luo, A. C. J. & Mote, C. D. J. 2000. An exact, closed-form solution for equilib-
rium of traveling, sagged, elastic cables under uniformly distributed loading.
Communications in Nonlinear Science & Numerical Simulation 5 (1), 6–11.

Marynowski, K. & Kapitaniak, T. 2002. Kelvin-Voigt versus Bürgers inter-
nal damping in modeling of axially moving viscoelastic web. International
Journal of Non-Linear Mechanics 37 (7), 1147 – 1161. (DOI: 10.1016/S0020-
7462(01)00142-1).

Marynowski, K. 2010. Free vibration analysis of the axially moving Levy-type
viscoelastic plate. European Journal of Mechanics - A/Solids 29 (5), 879–886.
(DOI: 10.1016/j.euromechsol.2010.03.010).



60

Marynowski, K. 2008. Dynamics of the Axially Moving Orthotropic Web, Vol.
38. Germany: Springer–Verlag. Lecture Notes in Applied and Computational
Mechanics.

Miranker, W. L. 1960. The wave equation in a medium in motion. IBM Journal of
Research and Development 4, 36–42.

Mockensturm, E. M. & Guo, J. 2005. Nonlinear vibration of parametrically ex-
cited, viscoelastic, axially moving strings. ASME Journal of Applied Mechanics
72 (3), 374–380. (DOI: 10.1115/1.1827248).

Mote, C. D. 1968. Divergence buckling of an edge-loaded axially moving band.
International Journal of Mechanical Sciences 10, 281–195.

Mote, C. D. 1972. Dynamic stability of axially moving materials. Shock and Vi-
bration Digest 4 (4), 2–11.

Mote, C. D. 1975. Stability of systems transporting accelerating axially moving
materials. ASME Journal of Dynamic Systems, Measurement, and Control 97,
96–98.

Murphy, K. D. & Zhang, Y. 2000. Vibration and stability of a cracked translating
beam. Journal of Sound and Vibration 237 (2), 319–335. 〈URL:http://dx.doi.
org/10.1006/jsvi.2000.3058〉.

Niemi, J. & Pramila, A. 1986. Vibration analysis of an axially moving membrane
immersed into ideal fluid by FEM. Tampereen teknillinen korkeakoulu (Tam-
pere University of Technology).

Niskanen, K. (Ed.) 2012. Mechanics of Paper Products. Walter de Gruyter GmbH
& Co. (ISBN 978-3-11-025461-7).

Oh, H., Cho, J. & Lee, U. 2004. Spectral element analysis for an axi-
ally moving viscoelastic beam. Journal of Mechanical Science and Technol-
ogy 18 (7), 1159–1168. 〈URL:http://dx.doi.org/10.1007/BF02983290〉. (DOI:
10.1007/BF02983290).

Prabhakara, D. L. & Datta, P. K. 1993. Vibration and static stability characteristics
of rectangular plates with a localized flaw. Computers & Structures 49 (5), 825–
836. 〈URL:http://dx.doi.org/10.1016/0045-7949(93)90029-D〉.

Prabhakara, D. L. & Datta, P. K. 1997. Vibration, buckling and parametric insta-
bility behaviour of plates with centrally located cutouts subjected to in-plane
edge loading (tension or compression). Thin-Walled Structures 27 (4), 287–310.
〈URL:http://dx.doi.org/10.1016/S0263-8231(96)00033-X〉.

Pramila, A. & Niemi, J. 1987. FEM-analysis of transverse vibrations of an axially
moving membrane immersed in ideal fluid. International Journal for Numer-
ical Methods in Engineering 24 (12), 2301–2313. 〈URL:http://dx.doi.org/10.
1002/nme.1620241205〉. (1-09702-07).



61

Pramila, A. 1986. Sheet flutter and the interaction between sheet and air. TAPPI
Journal 69 (7), 70–74.

Pramila, A. 1987. Natural frequencies of a submerged axially moving band. Jour-
nal of Sound and Vibration 113 (1), 198–203.

Sack, R. A. 1954. Transverse oscillations in traveling strings. British Journal of
Applied Physics 5, 224–226.

Saksa, T., Banichuk, N., Jeronen, J., Kurki, M. & Tuovinen, T. 2013. Dynamic be-
haviour of a travelling viscoelastic band in contact with rollers. In S. Repin,
T. Tiihonen & T. Tuovinen (Eds.) Numerical methods for differential equations,
optimization, and technological problems. Dedicated to Professor P. Neittaan-
mäki on his 60th Birthday, Vol. 27. Springer Netherlands. Computational Meth-
ods in Applied Sciences, 393–408. (ISBN: 978-94-007-5287-0 (Print) 978-94-007-
5288-7 (Online)).

Saksa, T. & Jeronen, J. 2012. On Static Instability and Estimates for Critical Ve-
locities of Axially Moving Orthotropic Plates under Inhomogeneous Tension.
University of Jyväskylä. (Reports of the Department of Mathematical Informa-
tion Technology. B: Scientific Computing.).

Saksa, T. 2011. Dynamic behaviour of an axially moving viscoelastic panel in con-
tact with supporting rollers. In Proceedings of CAO2011 – ECCOMAS The-
matic Conference on Computational Analysis and Optimization. University of
Jyväskylä, 69–72. (ISBN 978-951-39-4331-8).

Schapery, R. A. 1969. On the characterization of nonlinear viscoelastic materi-
als. Polymer Engineering & Science 9 (4), 295–310. 〈URL:http://dx.doi.org/10.
1002/pen.760090410〉.

Seo, Y. B. 1999. Determination of in-plane shear properties by an off-axis tension
method and laser speckle photography. Journal of Pulp and Paper Sciences 25
(9), 321–325.

Shin, C., Chung, J. & Kim, W. 2005. Dynamic characteristics of the out-of-plane
vibration for an axially moving membrane. Journal of Sound and Vibration 286
(4-5), 1019–1031.

Simpson, A. 1973. Transverse modes and frequencies of beams translating be-
tween fixed end supports. Journal of Mechanical Engineering Science 15, 159–
164.

Skutch, R. 1897. Uber die Bewegung eines gespannten Fadens, weicher gezwun-
gen ist durch zwei feste Punkte, mit einer constanten Geschwindigkeit zu
gehen, und zwischen denselben in Transversal-schwingungen von gerlinger
Amplitude versetzt wird. Annalen der Physik und Chemie 61, 190–195.

Sobotka, Z. 1984. Rheology of Materials and Engineering Structures. Amsterdam:
Elsevier Science Ltd.



62

Sorvari, J., Kouko, J., Malinen, M., Kurki, M. & Hämäläinen, J. 2007. Paper as a
viscoelastic material: Comparison between different theories. In Appita Con-
ference and Exhibition (61th : 2007 : Gold Coast, Qld.), Vol. 2007. Vic.: Appita
Inc, 389–396.

Stahl, B. & Keer, L. M. 1972. Vibration and stability of cracked rectangular plates.
International Journal of Solids and Structures 8 (1), 69–91. 〈URL:http://dx.doi.
org/10.1016/0020-7683(72)90052-2〉.

Swope, R. D. & Ames, W. F. 1963. Vibrations of a moving threadline. Journal of
the Franklin Institute 275, 36–55.

Taleb, I. A. & Misra, A. K. 1981. Dynamics of an axially moving beam submerged
in a fluid. AIAA Journal of Hydronautics 15 (1), 62–66. 〈URL:http://dx.doi.
org/10.2514/3.63213〉.

Tang, Y.-Q. & Chen, L.-Q. 2013. Stability analysis and numerical confirma-
tion in parametric resonance of axially moving viscoelastic plates with time-
dependent speed. European Journal of Mechanics / A Solids 37, 106–121.
〈URL:http://dx.doi.org/10.1016/j.euromechsol.2012.05.010〉.

Timoshenko, S. P. & Woinowsky-Krieger, S. 1959. Theory of plates and shells (2nd
edition). New York : Tokyo : McGraw-Hill. (ISBN 0-07-085820-9).

Tisseur, F. & Meerbergen, K. 2001. The quadratic eigenvalue problem. SIAM Rev.
43, 235–286.

Tryding, J. 1996. In-plane fracture of paper. Lund University, Lund Institute of
Technology, Division of Structural Mechanics. Report TVSM-1008. (Sweden).

Uesaka, T., Murakami, K. & Imamura, R. 1980. Two-dimensional linear viscoelas-
ticity of paper. Wood Science and Technology 14, 131–142.

Ulsoy, A. G. & Mote, C. D. 1980. Analysis of bandsaw vibration. Wood Science 13,
1–10.

Ulsoy, A. G. & Mote, C. D. 1982. Vibration of wide band saw blades. ASME Jour-
nal of Engineering for Industry 104, 71–78.

Vafai, A., Javidruzi, M. & Estekanchi, H. E. 2002. Parametric instability of edge
cracked plates. Thin-Walled Structures 40 (1), 29–44. 〈URL:http://dx.doi.org/
10.1016/S0263-8231(01)00050-7〉.

Wang, X. 1999. Numerical analysis of moving orthotropic thin plates. Computers
& Structures 70 (4), 467–486. 〈URL:http://dx.doi.org/10.1016/S0045-7949(98)
00161-8〉.

Wang, Y., Huang, L. & Liu, X. 2005a. Eigenvalue and stability analysis for trans-
verse vibrations of axially moving strings based on Hamiltonian dynamics.
Acta Mechanica Sinica 21, 485–494.



63

Wang, Z.-M., Zhang, Z.-W. & Zhao, F.-Q. 2005b. Stability analysis of viscoelastic
curved pipes conveying fluid. Applied Mathematics and Mechanics 26 (6), 807–
813. 〈URL:http://dx.doi.org/10.1007/BF02465432〉.

Wathén, R. 2003. Characterizing the influence of paper structure on web breaks.
Helsinki University of Technology, Department of Forest Products Technology.
Licentiate thesis. (Espoo, Finland).

Wickert, J. A. & Mote, C. D. 1990. Classical vibration analysis of axially moving
continua. ASME Journal of Applied Mechanics 57, 738–744.

Xing, Y. & Liu, B. 2009. New exact solutions for free vibrations of rectangular thin
plates by symplectic dual method. Acta Mechanica Sinica 25, 265–270.

Yang, X.-D., Zhang, W., Chen, L.-Q. & Yao, M.-H. 2012. Dynamical analysis of
axially moving plate by finite difference method. Nonlinear Dynamics 67 (2),
997–1006. 〈URL:http://dx.doi.org/10.1007/s11071-011-0042-2〉.

Yokoyama, T. & Nakai, K. 2007. Evaluation of in-plane orthotropic elastic con-
stants of paper and paperboard. In 2007 SEM Annual Conference & Exposition
on Experimental and Applied Mechanics.

Zhou, Y.-F. & Wang, Z.-M. 2007. Transverse vibration characteristics of axially
moving viscoelastic plate. Applied Mathematics and Mechanics (English Edi-
tion) 28 (2), 209–218. 〈URL:http://dx.doi.org/10.1007/s10483-007-0209-1〉.



PII

STABILITY OF MOVING VISCOELASTIC PANELS
INTERACTING WITH SURROUNDING FLUID

by

Tytti Saksa, Juha Jeronen and Tero Tuovinen 2012

Rakenteiden mekaniikka (Finnish Journal of Structural Mechanics), Vol. 45,
No 3, pp. 88–103

Reproduced with kind permission of Rakenteiden mekaniikan seura r.y.



Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 45, No 3, 2012, pp. 88 – 103

Stability of moving viscoelastic panels interacting with
surrounding fluid

Tytti Saksa, Juha Jeronen and Tero Tuovinen

Summary. We study a model describing the out-of-plane vibrations of an axially moving
viscoelastic panel submerged in flowing fluid. The panel is assumed to travel at a constant
velocity between two fixed supports, and it is modeled as a flat panel made of viscoelastic
Kelvin-Voigt material. The fluid flow is modeled with the help of the added mass coefficients.
The resulting dynamic equation is a partial differential equation of fifth order in space. Five
boundary conditions are set for the studied problem. The behavior of the panel is analyzed with
the help of its eigenvalues (eigenfrequencies). These characteristics are studied with respect to
the velocity of the panel. In our study, we have included the material (total) derivative in the
viscoelastic relations. We study the effects of the surrounding flowing fluid on the behavior of
the moving viscoelastic panel. It was found that, in presence of flowing fluid, the critical panel
velocity was significantly lower than in the vacuum case. Secondly, for high enough values of
viscosity, the panel did not experience instability detected at low values of viscosity in the form
of divergence. The flowing fluid was found to diminish the stabilizing effects brought about by
material viscosity.

Key words: moving panel, viscoelasticity, eigenvalues, FSI, axial flow, stability, paper industry

Introduction

In industrial processes with axially moving materials, such as making of paper, steel or
textiles, high transport speed is desired but it also may cause loss of stability. In model-
ing of such systems, the researchers have generally studied dynamic behavior of strings,
membranes, beams and plates taking into account the transverse, Coriolis and centripetal
accelerations of the material motion. For materials with low density, interaction with
surrounding fluid affects significantly the behavior of traveling material. For example for
traveling paper webs, the effect of the surrounding air is important [20, 21, 36].

Industrial materials usually have viscoelastic characteristics [14], and consequently,
viscoelastic moving materials have been recently studied widely. In paper making, wet
paper webs are highly viscous, and therefore, viscoelasticity should be taken into account
in the model [1]. Both fluid-structure interaction and material viscosity belong to fields
of research, which are challenging and remain many open questions.

Vibrations of traveling elastic strings, beams, and bands in vacuum have been stud-
ied extensively. The first studies on them include Sack [39], Archibald and Emslie [2],
Miranker [27], Swope and Ames [42], and Mote [29, 30, 31].

Archibald and Emslie [2] and Simpson [41] studied the effects of axial motion on
the frequency spectrum and eigenfunctions. In their research, it was shown that the
natural frequency of each mode decreases as the transport speed is increased, and that
the traveling string and beam both experience divergence instability at a sufficiently high
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speed. Wickert and Mote studied stability of axially moving strings and beams using
modal analysis and Green’s function method [49]. They presented the expressions for
the critical transport velocities analytically. However recently, Wang et al. [46] showed
analytically that no static instability occurs for the transverse motion of a string at the
critical velocity. For axially moving beams with a small flexural stiffness, Kong and
Parker [19] found closed-form expressions for the approximate frequency spectrum by a
perturbation analysis.

First studies on modeling the effects of the surrounding air on the moving web behavior
by the analytic added mass approximation include the research by Pramila, and Niemi
and Pramila [32, 36, 37, 38]. In all of these studies, the surrounding air was found to
reduce the eigenfrequencies and critical transport velocities significantly compared to the
vacuum case. According to Pramila’s study from the year 1986, the presence of air may
reduce both about 15–26 % of the vacuum case. However, the model that was used, was
later interpreted by Pramila to mean that the fluid particles move with the traveling web,
which probably is not the actual physical case there. Recently, Frondelius et al. used
an added mass model with non-constant coefficients computed from the boundary-layer
theory [13]. However, if the boundary-layer theory is used, one needs to include a leading
edge in the model.

The added mass approach has been further used and developed, e.g., by Chang and
Moretti in their study on out-of-plane vibrations of a moving web [7]. They developed
a method for computing the effect of surrounding enclosure on the aerodynamic inertia
coefficient and presented an example calculation for a web translating through a drying
oven. They also compared their theory with wind-tunnel experiments for stationary webs
surrounded by flowing air.

Recently, Lin and Qiao [24] studied vibrations and stability of axially moving beams
taking into account both the material viscoelasticity and the effects of surrounding fluid.
They investigated a beam with uniform circular cross-section using similar approach to
Gosselin et al. [16]. Gosselin et al. studied extruding of a cantilevered beam with circular
cross-section, in which case the formulations for axial tension are different from that of
beams with both ends being supported. The problem of extruding of cantilevered beams
immersed in fluid was first studied by Taleb and Misra [43]. Their study was corrected by
Gosselin et al. [16] and Päıdoussis [35]. In all these studies on extruding of cantilevered
beams, material viscoelasticity was taken into account with the help of Kelvin-Voigt
model.

Lin and Qiao found that moving beams with circular cross-section undergo buckling-
type instability at a sufficiently high speed [24]. At higher values of traveling speed, the
beam may undergo flutter instability.

Fluid surrounding the moving web has been modeled also as potential flow [3, 4, 6, 7,
17, 45, 48], by acoustic elements placed on one side of the web [18], by utilizing fluid-solid
interaction based on acoustic theory [20] and by using a Navier–Stokes code [48].

First studies on transverse vibration of viscoelastic material traveling between two
fixed supports was done by Fung et al. [14] using a string model. Extending their work,
they studied the material damping effect in their later research [15].

Oh et al. [33] and Lee and Oh [23] studied critical speeds, eigenvalues, and natural
modes of axially moving viscoelastic beams using the spectral element model. They
analyzed dynamic behavior of axially moving viscoelastic beams using modal analysis,
performed a detailed eigenfrequency analysis, and reported that viscoelasticity did not
affect the critical moving speed.
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Marynowski and Kapitaniak compared two different internal damping models in mod-
eling of moving viscoelastic (non-linear) beams [26]. For the linearized Kelvin–Voigt
model, it was found that the beam exhibits divergent instability at some critical speed.
In the case of non-linear Bürgers model, the critical speed decreased when the internal
damping was increased, and the beam was found to experience the first instability in the
form of flutter.

In the discussed studies above, a partial time derivative has been used instead of a ma-
terial derivative in the viscoelastic constitutive relations. Mockensturn and Guo suggested
that the material derivative should be used [28]. They studied non-linear vibrations and
dynamic response of axially moving viscoelastic strings, and found significant discrepancy
in the frequencies at which non-trivial limit cycles exist, comparing the models with the
partial time derivative or the material time derivative. Recently, the material derivative
has been used in most of the studies concerning axially moving viscoelastic beams (see
e.g. [8, 9, 10, 11]). Kurki and Lehtinen [22] suggested, independently, that the mate-
rial derivative in the constitutive relations should be used in their study concerning the
in-plane displacement field of a traveling viscoelastic plate.

In a recent study by Saksa et al., eigenvalues and stability characteristics of viscoelastic
axially moving panels in vacuum were studied [40]. They used the material derivative in
the viscoelastic constitutive relations, which leads to a partial differential equation of fifth
order in space. The similar equation was also obtained by the other researchers who used
the material derivative but usually the problem was solved setting only four boundary
conditions. Saksa et al. derived a fifth boundary condition for the studied problem. In
their study, it was also found in the numerical studies that if the viscosity is high enough,
all the modes behave stable with damping vibrations for any value of transport velocity
and no critical speed was detected.

Models for pipes conveying fluid often share similarities with the models for axially
moving materials [34, 35]. In the study by Drozdov [12], a pipe filled with a moving fluid
was studied modeling the pipe as a viscoelastic beam driven by the forces caused by the
fluid. Drozdov investigated stability of the system under a periodic flow. It was found
that for some parameter values, an increase in viscoelasticity resulted in a decrease in the
critical fluid velocity while for other choices of parameters, an increase in viscoelasticity
resulted in an increase in the critical velocity. Recently, Wang et al. [47] derived a sixth
order model for a curved viscoelastic pipe conveying fluid based on Hamilton’s principle.
Viscoelasticity of the pipe was modeled with the help of the Kelvin–Voigt model. The
viscoelastic pipe was found to undergo divergent instability in the first and second order
modes and, for greater values of fluid velocity, single-mode flutter took place in the first
order mode.

Existing studies on moving viscoelastic materials interacting with surrounding fluid
seems to be limited to the cases of beams having circular cross-section [16, 24, 43] and to
viscoelastic pipes conveying fluid [12, 47]. These models do not fit to the case in which
we tackle a problem with thin and wide webs traveling between supports and having low
density and high viscosity.

In this study, we take both material viscosity and interaction with fluid into account
in the model for thin panels, moving axially at a high speed. We use the term panel
for a two-dimensional web with the assumption that the transverse displacement of the
web does not vary in the direction perpendicular to the moving direction of the web.
Term flat panel has been used e.g. by Bisplinghoff and Ashley in their classical book on
aeroelasticity [5].
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Figure 1. An axially moving panel submerged in flowing fluid.

An axially moving panel traveling through an enclosure

Consider an axially moving panel, traveling between two fixed supports at a constant
velocity. We assume that the transverse displacement does not vary in the y direction,
i.e. the transverse deformation of the panel is cylindrical [5, 44]. The panel is supported
at x = 0 and x = �, and the length of the span is �. The transport velocity of the panel
is assumed to be constant and denoted by V0. The transverse displacement of the panel
is denoted by the function w = w(x, t). The width of the panel is denoted by b, and the
thickness of the panel by h (assumed to be constants).

The panel is assumed to travel through a long enclosure with rectangular cross-section
to model a web traveling through a drying oven. The height of the enclosure is H and
the width of it is B. The velocity field of fluid is denoted by U (not necessarily constant).
See Figure 1.

A traveling viscoelastic panel in vacuum

We study a panel be made of viscoelastic material. Viscoelasticity is taken into account
with the help of the Kelvin–Voigt model consisting of an elastic spring and a viscous
damper connected in parallel. The spring element is described by the parameters E (the
Young’s modulus) and ν (the elastic Poisson ratio), and the damper by η (the viscous
damping coefficient) and μ (the Poisson ratio for viscosity). See Fig. 2.

Figure 2. The rheological Kelvin–Voigt model.

We denote stress and strain in the x direction by σ and ε, respectively. Assuming the
cylindrical deformation, the stress-strain relation for the Kelvin–Voigt panel is described
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as [40]

σ =
E

1− ν2
ε+

η

1− μ2
(ε,t + V0ε,x) . (1)

Using the stress-strain relation in (1), the dynamic equilibrium for the transverse
displacement w can be written as [11, 40]

mw,tt + 2V0mw,xt + λDw,xxxxt + (mV 2

0 − T0)w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (2)

In Eq. (2), m is the mass per unit area, T0 is constant tension at the panel ends, D is the
bending rigidity of the panel defined as

D =
Eh3

12(1− ν2)
, (3)

and λ is the creep time constant defined as

λ =
η

E
, (4)

the unit of which is the second. We have assumed that the Poisson ratios ν and μ coincide.

Traveling panel interacting with flowing fluid

In this section, we consider the model for an axially moving viscoelastic panel that was
introduced in the previous section, but we further take into account the aerodynamic
effects. As Chang and Moretti [7] and Chang et al. [6], we include added mass due to the
transverse, Coriolis and centripetal acceleration (in all inertia terms) denoted by m1, m2,
and m3, respectively.

We insert the added mass terms into Eq. (2), and have the following final equation
for the out-of-plane displacement w:

(m+m1)w,tt + 2V0(m+m2)w,xt + λDw,xxxxt

+ [(m+m3)V
2

0 − T0]w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (5)

The added mass terms in (5) can be calculated as [6, 7]

m1 =
π

4
Caρb ,

m2 = 2ρδ∗ ,

m3 = 2ρθ , (6)

where Ca is the added mass coefficient depending on the problem geometry, ρ is the density
of air, δ∗ is the displacement thickness of the boundary layer and θ is the momentum
thickness of the boundary layer.

If U = U(r) is the velocity of the fluid flow with respect to the distance r from the
panel, δ∗ can be calculated as

δ∗ =
1

V0

∫ δ

0

U(r) dr , (7)

where δ is the thickness of the moving fluid layer.
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Similarly, the momentum thickness θ is

θ =
1

V 2
0

∫ δ

0

U2(r) dr . (8)

In the case of stationary air, terms m2 and m3 are negligible compared to the mass m
of the panel [35]. In that case, the dynamic equation reads

(m+m1)w,tt + 2V0mw,xt + λDw,xxxxt

+ [mV 2

0 − T0]w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (9)

As boundary conditions, we use clamped-clamped conditions at both ends and an
additional boundary condition at the in-flow end indicating that we have more information
there than at the out-flow end. The fifth condition can be derived with the help of
continuity of the panel [40]. The boundary conditions are

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(�, t) = w,x(�, t) = 0 . (10)

We transform the problem (5) and (10) into a dimensionless form. We perform the
following transformations

x → x

�
, t → t

τ
, w(x, t) → w(x, t)

h
, (11)

choose

τ = �

√
m

T0

as a characteristic time, and introduce the dimensionless problem parameters

ζ =
m

m+m1

, ζ2 =
m2

m+m1

, ζ3 =
m3

m+m1

, (12)

and

c =
V0√
T0/m

, α =
D

�2T0

, γα =
λD

�3
√
mT0

, (13)

where

γ =
λ

τ
=

η

E

√
T0

�
√
m

(14)

is here called the dimensionless creep time constant. After transformations in (11) and
insertion of (12) – (14), we obtain

w,tt + 2cζ2w,xt + γαζw,xxxxt + (c2ζ3 − ζ)w,xx + αζw,xxxx + γαcζw,xxxxx = 0 , (15)

with the boundary conditions

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(1, t) = w,x(1, t) = 0 . (16)
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Dynamic analysis

To study stability of the problem (15) and (16), we perform classical dynamic analysis by
inserting the standard harmonic trial function

w(x, t) = W (x)est , (17)

into (15) and (16).
In (17),

s = iω , (18)

and ω is the dimensionless angular frequency of small transverse vibrations. The sign of
the real part of s characterizes the stability of the panel: if Re s > 0, the behavior is
unstable, and otherwise it is stable.

Insert (17) into (15), and obtain

s2W + s(2c ζ2W,x + γαζW,xxxx) + (c2ζ3 − ζ)W,xx + αζW,xxxx + γαcζW,xxxxx = 0 . (19)

The boundary conditions for W are

W (0) = W,x(0) = W,xx(0) = 0 , W (1) = W,x(1) = 0 , (20)

We study the stability behavior of the traveling viscoelastic panel by solving Eqs. (19)–
(20) with respect to the transport velocity.

The problem (19)–(20) was discretized via the finite difference method. We used
central differences of second-order asymptotic accuracy but at the out-flow edge for the
fifth order term, a backward difference scheme of second order asymptotic accuracy was
used. The finite differences schemes are given, e.g., in [40]. The interval [0, �] is divided
to n+ 1 sub-intervals equal in length. The end points of the sub-intervals are labeled as
0 = x0, x1, x2, . . . , xn, xn+1 = �. We use two virtual points (x−2 and x−1) at the in-flow
end and one virtual (xn+2) point at the out-flow end. From the boundary conditions (20),
we get at the in-flow end:

w−2 = −w2 , w−1 = w1 , w0 = 0 ,

and at the out-flow end:
wn+1 = 0 , wn+2 = wn .

We denote the derivative matrices by K1,K2,K4,K5 built up with the help of the
finite difference schemes with the following correspondence:

K1 : W,x , K2 : W,xx , K4 : W,xxxx , K5 : W,xxxxx .

Inserting the matrices K1,K2,K4,K5 into (19), we obtain the matrix equation

s2w + s [2cζ2K1 + γαζK4]w +
[
(c2ζ3 − ζ)K2 + αζK4 + γαcζK5

]
w = 0 . (21)

Note that in the case α = 0 or c = 0, we obtain a fourth-order equation needing only
four boundary conditions. This has been taken into account: the virtual point w−2 is
needed only by the matrix K5. When K5 is removed from the matrix equation (21), the
boundary condition w,xx(0) = 0 is simultaneously removed from the discretized problem.
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The matrix equation (21), which is a quadratic eigenvalue problem with respect to s,
can be rewritten as [

−M1 −M0

I 0

] [
sw
w

]
= s

[
sw
w

]
, (22)

where

M0 = (ζ3c
2 − ζ)K2 + αζK4 + γαcζK5 ,

M1 = 2c ζ2K1 + γαζK4 . (23)

The matrix equation (22) is now an eigenvalue problem of the standard form

Ay = sy (24)

with

A =

[
−M1 −M0

I 0

]
, y =

[
sw
w

]
.

Some example studies

As an example, we consider simple flow through an enclosure with a rectangular cross-
section. We assume a Couette type flow such that the fluid velocity coincides with the
panel velocity on the panel surface and is equal to zero at the surface of the enclosure.
See Figure 3.

Similar example was considered by Chang and Moretti [7]. They computed also the
added mass coefficient Ca for different simple problem geometries assuming potential flow
in the cross-direction plane, obtaining the stream-function by a finite difference method,
summing up the kinetic energy in the flow field, and referring it to the web velocity. In
such conditions that H/B = 0.4 and b/B = 0.8, they found that Ca = 1.66. If b/B was
small, the added mass coefficient was close to 1 as would be expected.

U(z)

H

z

0

x

Figure 3. Simple flow through a drying oven.

The parameters that were used were the following:

T0 = 500 N/m m = 0.08 kg/m2 E = 109 N/m2 ν = 0.3 ρ = 1.225 kg/m3

� = 1 m b = 0.6 m h = 10−4 m H = 0.3 m B = 0.75 m (25)

Using the physical parameters in (25), the dimensionless parameter α in Eq. (13)
gets the value α = 1.8315 · 10−7. Creep time constant λ was given the values λ =
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5 · 10−5 s, 5 · 10−4 s, and 5 · 10−3 s, the dimensionless creep time constant γ getting the
values γ = 3.953 · 10−3 , 3.953 · 10−2 , and 0.3953 , respectively.

For the example flow, the added masses calculated from Eqs. (6) are

m1 =
π

4
Caρb ≈ 0.9583 kg/m2 , (26)

m2 =
1

2
ρH ≈ 0.1838 kg/m2 , (27)

m3 =
1

3
ρH ≈ 0.1225 kg/m2 , . (28)

Three different cases were studied:

1. traveling viscoelastic panel in vacuum (m1 = m2 = m3 = 0),

2. traveling viscoelastic panel surrounded by stationary fluid in an enclosure (m2 =
m3 = 0), and

3. traveling viscoelastic panel surrounded by laminar fluid flow in an enclosure.

The dimensionless frequency F was calculated with the help of the dimensionless
angular frequency ω = Im s. The dimensional frequency f is

f =
ω

2πτ
=

ω

2π�

√
T0

m
.

We define F by dividing it by the natural frequency of a non-moving panel in vacuum,
that is, by 1/(2�)

√
T0/m:

F = f2�

√
m

T0

=
ω

π
=

Im s

π
. (29)

The behavior of the dimensionless frequency F was studied with respect to the di-
mensionless panel velocity c. Computations were carried out for all the three cases. In
Figure 4 on the left hand side, the lowest dimensionless frequencies are plotted in the case
of elastic material. The results coincide with the previous investigations [4, 7, 37]: the
presence of fluid decreases the natural frequencies, and the effect of the flowing fluid is
that the critical panel velocity in decreased notably.

In Figure 4 on the right hand side, the effect of the material viscosity on the eigen-
frequencies can be seen. The greater the creep time constant λ, the greater the are the
values of the eigenfrequencies. That is, the effect of the material viscosity is opposite to
that of the fluid.

In Figure 5, the dependence of the dimensionless critical speed ccr on the dimensionless
creep time constant γ is shown for two different cases: on the left hand side, the behavior
in vacuum and in presence of stationary air are shown, and the right hand side presents
the behavior in the case of flowing air. As seen, the presence of stationary air does not
alter the value of the critical velocity independent of the value for the dimensionless creep
time constant. The effect of the viscosity is very small but visible. In the case of flowing
air, the critical speed of the viscoelastic panel with γ = 0.1 is about 1.6 · 10−4 % greater
than that of the elastic panel. In the case of stationary air and vacuum, the critical speed
of the viscoelastic panel with γ = 0.1 is about 4.4 · 10−4 % greater than that of the elastic
panel. In these cases, the effect of the viscosity is almost three times bigger than in the
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Figure 4. Dimensionless eigenfrequency F with respect to the dimensionless critical speed c.
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Figure 5. Dependence of the dimensionless critical speed c on the dimensionless creep time constant γ.

case of flowing fluid. This suggests that the effect of the viscosity is diminished in presence
of flowing fluid.

In Figures 6 and 7, the three lowest eigenvalues s are given for an elastic panel and
for three viscoelastic panels having different creep time constants. Figure 6 presents the
case for a stationary fluid (air). In the upper left corner, the eigenvalues for an elastic
panel are shown. In the sub-figures from left to right, from top to bottom, the viscosity
increases (the creep time constant increases). It can be seen that the real parts of the
eigenvalues before the critical velocity become negative when the viscosity is inserted to
the model. This means damping vibrations in the behavior of the panel. In a sub-figure
in the lower left corner, one may see that the critical velocity becomes slightly after the
point at which the imaginary part of the lowest eigenvalue becomes zero. The computed
critical velocity is also slightly greater than that of an elastic panel, see Figure 5. In the
lower right corner of Figure 6, critical velocity can not be detected and all the three lowest
eigenvalue stay negative, which means stable behavior at any value of velocity. The limit
value of the dimensionless creep time constant, after which no instability can be detected,
was calculated via the bisection method, and it was γ = 0.1022 which it exactly same as
in vacuum case [40].

In Figure 7, we see the three lowest eigenvalues in the case of flowing air. As above, we
have four cases: elastic panel, and viscoelastic panels with the three different creep time
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constants. The behavior seems qualitatively similar to that of the case with stationary
fluid. However, the absolute value of the real parts of the eigenvalues are significantly
smaller suggesting that the damping of the vibrations before the critical velocity is weaker
than in the case of stationary fluid. The limit value of the dimensionless creep time
constant after which all the modes stay stable was calculated to be γ = 0.1625, which is
59 % greater than the one in the case of stationary fluid (and vacuum). This suggests
that in presence of flowing fluid, the viscoelastic panel is more unstable than in the case of
stationary fluid or vacuum, since e.g. for γ = 0.11 the panel surrounded by stationary air
is stable while the panel surrounded by flowing air still undergoes divergence instability
at some sufficiently high speed.

Typical behavior of moving viscoelastic materials were seen to remain even if the
fluid was inserted to the model with the added mass approach. For example such a
characteristic as removal of the coupled mode flutter typical of moving elastic materials,
was detected in the eigenvalue spectra of the viscoelastic moving panels [23, 47].
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Figure 6. Behavior of the eigenvalues for the stationary fluid case. The values of the creep time constants
in the figures from left to right, from top to bottom are λ = 0, λ = 5 · 10−5 s, λ = 5 · 10−4 s, and
λ = 5 · 10−3 s, in that order.
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s, in that order.

Conclusions

Stability characteristics of an axially moving viscoelastic web interacting with surrounding
fluid were studied. The material viscoelasticity was modeled with the help of the Kelvin-
Voigt model. Interaction with the fluid was taken into account by the added mass terms
based on potential flow theory. To our knowledge, this is the first study in which both
material viscoelasticity and aerodynamic effects were taken into account in modeling of
moving webs traveling between two supports.

Two different kinds of flow models were investigated in the numerical part. They both
concerned the case, in which a panel is traveling through a rectangular enclosure. The
first study concerned the case with assumption that the surrounding air is stationary or
that the effect of the boundary layer is negligible. In the second study, a laminar flow
around the moving panel was taken into account resulting in added mass terms containing
the displacement and momentum thicknesses of the boundary layer.

As expected, the presence of fluid decreased the value of the critical speed, and the
viscoelasticity had a stabilizing effect on the web behavior: the viscosity increased the
critical speed and for high enough values of viscosity, no instability occurred. These results
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are known from the studies were either the effects of the fluid or the effects of material
viscosity have been studied [25, 35].

As a new result, it was found that the presence of flowing fluid diminished the sta-
bilizing effect of viscosity. In other words, the viscoelastic panel with certain creep time
constant was stable when surrounded by stationary air but could be unstable when fluid
was flowing.

The presented model has an application in modeling the behavior of fast moving wide
webs in industry, e.g. in paper making. For more accurate predictions than in this paper,
one should notice that viscoelasticity in paper does not behave linearly and that, to take
account the complicated flows inside the machine, the added mass approach is probably
not accurate enough.
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[3] N. Banichuk, J. Jeronen, P. Neittaanmäki, and T. Tuovinen. Static instability anal-
ysis for travelling membranes and plates interacting with axially moving ideal fluid.
Journal of Fluids and Structures, 26(2):274–291, 2010.

[4] N. Banichuk, J. Jeronen, P. Neittaanmäki, and T. Tuovinen. Dynamic behaviour
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Static instability analysis of an elastic band travelling in
the gravitational field

Nikolay Banichuk, Juha Jeronen, Tytti Saksa and Tero Tuovinen

Summary. Static instability analysis is performed for an axially moving elastic band, which
is travelling at a constant velocity in a uniform gravitational field between two supports. The
buckling of the band is investigated with the help of admitting small transverse deflections. The
model of a thin elastic beam (panel) subjected to bending, centrifugal forces and nonhomoge-
neous tension (including a gravitational term) is used. Buckling analysis and estimation of the
critical velocities of elastic instability are based on variational principles and variational inequal-
ities. As a result, explicit formulas for upper and lower limits for critical velocities are found.
It is shown analytically that a critical velocity always exists. The critical buckling modes are
found, first, by solving the original differential equation directly, and, secondly, by energy min-
imization. The buckling modes and corresponding critical velocities are found and illustrated
with some numerical examples. The gravitational force is shown to have a major effect on the
buckled shape, but a minor effect on the critical velocity.

Key words: stability, paper industry, paper, elasticity, gravitation, partial differential equations,

optimization

Introduction

Vibrations and stability of axially moving materials, such as strings, beams, membranes
and plates, have been studied widely, since such models have various applications in
industry, e.g., in paper making or in transmission cables. Stability studies of travelling
materials are important, since they yield information on critical transport velocities for
machine operation.

In previous studies concerning vibrations of (moving) materials, the effect of gravity
has usually been neglected, since its magnitude is minor compared to the magnitude of
the axial tension. Recently, Luo and Mote have studied equilibrium of travelling elastic,
sagged cables under uniformly distributed loading [10]. For a three-dimensional model,
they derived exact, closed-form solutions for the equilibrium configuration and tension
distribution of the cables. The present study concentrates on stability of thin, elastic
panels and critical velocity estimations.

Vibrations of travelling strings, beams and bands have first been studied by Archibald
and Emslie [1], Miranker [11], Swope and Ames [17] Mote [12, 13, 14], Simpson [16],
Ulsoy and Mote [18], Chonan [5], Wickert and Mote [21]. These studies focused on free
and forced vibrations including the nature of wave propagation in moving media and the
effects of axial motion on the eigenfrequencies and eigenmodes. Stability of travelling
two-dimensional rectangular membranes and plates have been studied by Ulsoy and Mote
[19], Lin and Mote [9], Lin [8], Banichuk et al. [2].
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Archibald and Emslie [1] and Simpson [16] studied effects of the axial motion on the
eigenfrequencies and eigenfunctions. It was shown that the natural frequency of eachmode
decreases when the transport speed increases, and that the travelling string and beam both
experince divergence instability at a sufficiently high speed. Stability considerations were
reviewed by Mote [13].

Recent studies on travelling materials have been performed, e.g., by Shin et al. [15],
Wang et al. [20], Frondelius et al. [7], Banichuk et al. [3]. In Shin et al., the out-of-plane
vibrations of an axially moving membrane were studied, and it was shown numerically
that membrane is stable until a critical velocity, at which statical instability occurs [15].
Wang et al. studied transverse vibrations of axially moving strings [20]. In their study,
it was shown using a Hamiltonian approach that for the transverse motion of the string,
no instability occurs at the critical velocity, where a steady-state solution exists.

Frondelius et al. [7] and Banichuk et al. [3] studied a travelling band interacting with
surrounding fluid and the fluid-web-contact influence on the critical velocity. Banichuk et
al. studied the static instability of the travelling band submerged in flowing ideal fluid,
and it was found that in presence of fluid the critical divergence speed is much lower than
the vacuum solution and the divergence shape also differs from the vacuum case [3].

In the present study, the static instability of an axially moving thin, elastic band is
investigated, when the band is travelling in the gravitational field. The investigation
is performed in the case where the band is moving parallel to the gravity but it can
also be applied to cases in which the direction of motion with respect to the gravity
varies, of which several numerical examples are given. Based on variational principles and
variational inequalities, explicit estimations for the critical velocity are derived. In the
numerical examples, the effects of the gravity are visualised.

The critical transport velocity and the corresponding buckled shape are found numeri-
cally by solving directly the original differential equation via the Fourier–Galerkinmethod.
Secondly, they are solved by minimizing a functional corresponding to the energy. The
obtained nonlinear optimization problem is solved numerically using the Rayleigh–Ritz
method.

Basic relations

We consider an elastic band, travelling at a constant velocity between two supports parallel
to a uniform gravitational field (Earth’s) in a rectangular coordinate system. We study
the transverse displacement w of the band assuming that the displacement is cylindrical,
i.e., the displacement does not vary in the cross section (in the y direction). The distance
between the two supports is constant, denoted by �.

The transport velocity of the panel is assumed to be a constant, V0, and the panel is
moving along the x axis. The panel is tensioned at the edges, and the tension T depends
on the space coordinate x, T = T (x). The standard gravity constant is denoted by g, and
the thickness of the panel by h. The panel is assumed to have a constant mass per unit
area, m.

The dynamic equation for the transverse displacement of the panel can be written as

mwtt + 2mV0 wxt +mV 2

0 wxx = T wxx + Tx wx −Dwxxxx . (1)

Here, D describes the bending rigidity of the panel.
Tension T varies due to the gravity as

T (x) = T0 +mgx , (2)
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Figure 1. Panel moving in the gravitational field.

Figure 2. The elastic band moving in a nonvertical direction (inclined with respect to the gravity).

where T0 is a constant tension at the lower edge of the panel (see Figure 1). Substituting
(2) into (1), we obtain

mwtt + 2mV0 wxt +mV 2

0 wxx = (T0 +mgx)wxx +mgwx −Dwxxxx . (3)

In the more general case, where the direction of motion of the band has some nonzero
angle θ with respect to the uniform gravitational field, we can perform analogous analysis
using the expression

T (x) = mgx cos θ + T0 (4)

instead of (2), and include the term mg sin θ in the right-hand side of (3). See Figure 2.

Buckling analysis

To study the instability of the panel, we perform a buckling analysis. The static form of
the dynamic equation (3) is studied as a spectral boundary value problem using simply
supported (also known as pinned or hinged) boundary conditions.

Equilibrium for the transverse displacement w is described by the following differential
equation

mV 2

0 wxx − (T0 +mgx)wxx −mgwx +Dwxxxx = 0 . (5)
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The boundary conditions are

w(0) = wxx(0) = 0, w(�) = wxx(�) = 0. (6)

We represent (5)–(6) in a dimensionless form[
V 2
0

T0/m
− 1− mg�

T0

x

]
wxx − mg�

T0

wx +
D

�2T0

wxxxx = 0 ,

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 , (7)

where x ∈ [0, 1] is the dimensionless coordinate. By defining

c0 := V0/
√

T0/m , (8)

α :=
D

�2T0

, (9)

β :=
mg�

T0

, (10)

and substituting (8)–(10) into (7), we obtain

αwxxxx + (c20 − 1− βx)wxx − β wx = 0 , (11)

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 . (12)

Boundary value problem and variational principle

Consider the boundary value problem (11)–(12). Multiply (11) by a test function v,
satisfying the boundary conditions (12) and integrate the obtained equation over [0, 1]:

α

∫
1

0

wxxxxv dx+ (c20 − 1)

∫
1

0

wxxv dx− β

∫
1

0

xwxxv dx− β

∫
1

0

wxv dx = 0 . (13)

Integration by parts yields∫
1

0

wxxv dx = −
∫

1

0

wxvx dx ,

∫
1

0

xwxxv dx = −
∫

1

0

xwxvx dx−
∫

1

0

wxv dx ,∫
1

0

wxxxxv dx =

∫
1

0

wxxvxx dx . (14)

Substitute (14) into (13) to obtain

α

∫
1

0

wxxvxx dx+ (1− c20)

∫
1

0

wxvx dx+ β

∫
1

0

xwxvx dx = 0 . (15)

Substituting v = w into (15), we finally obtain

α

∫
1

0

w2

xx dx+ (1− c20)

∫
1

0

w2

x dx+ β

∫
1

0

xw2

x dx = 0 . (16)

The left hand side of the equation (16) corresponds to the energy of the system. We
want to find the minimal velocity c0, at which equation (16) has a non-trivial solution.
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Thus, we resolve c20 from (16), and minimize the other side of the obtained equation. This
minimal velocity is the critical velocity for the buckling problem [6], and is obtained from

(c∗0)
2 = min

w∈K

(
1 + α

∫
1

0
(wxx)

2 dx∫
1

0
(wx)2 dx

+ β

∫
1

0
x (wx)

2 dx∫
1

0
(wx)2 dx

)
, (17)

where
K = {w ∈ C([0, 1]) : w(0) = 0 , w(1) = 0} . (18)

The function w minimizing (17)–(18) is the buckling mode corresponding to the critical
velocity c∗0.

Let us show that the minimization problem (17)–(18) corresponds to the original
problem (11)–(12). Denote

I(w) = 1 + α

∫
1

0
(wxx)

2 dx∫
1

0
(wx)2 dx

+ β

∫
1

0
x (wx)

2 dx∫
1

0
(wx)2 dx

,

and

I1(w) =

∫
1

0

(wxx)
2 dx , I2(w) =

∫
1

0

(wx)
2 dx , I3(w) =

∫
1

0

x(wx)
2 dx . (19)

It can be easily seen that if w �≡ 0, then

I1(w) > 0 , I2(w) > 0 , I3(w) > 0 .

Let w∗ be the minimizer of (17)–(18). To prove that w∗ satisfies the necessary ex-
tremum condition, we derive the Euler equation for w∗. Since w∗ is the minimizer, the
first variation of I(w∗) is zero, that is

δI(w∗) = 0 .

Notice that

δI =
1

I2
(α δI1 + β δI3)− 1

I22
(α I1 + β I3) δI2 . (20)

As a result from the variation in (20), we obtain

2

I2(w∗)

∫
1

0

(
αw∗

xxxx − βxw∗
xx − βw∗

x + (c20 − 1)w∗
xx

)
δw dx = 0 , (21)

for any function δw ∈ K. In addition, w must satisfy the boundary conditions (12).
Equation (21) holds for all δw ∈ K. Thus, the resulting Euler equation is

αw∗
xxxx − βxw∗

xx − βw∗
x + (c20 − 1)w∗

xx = 0 ,

which is (11). In other words, the solution w∗ of the minimization problem (17)–(18) is a
weak solution of the original problem (11)–(12).
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Estimations for the critical velocity

In this section, we derive analytical lower and upper bounds for the critical velocity. We
estimate the critical velocity c∗0 corresponding to (11)–(12) given by the relation

(c∗0)
2 = I(w∗) = 1 + α

I1(w
∗)

I2(w∗)
+ β

I3(w
∗)

I2(w∗)
. (22)

For the lower bound of (22), we obtain

(c∗0)
2 ≥ 1 + α min

w∈K
I1(w)

I2(w)
. (23)

For the upper bound of (22), we have

(c∗0)
2 ≤ 1 + α

I1(w
a)

I2(wa)
+ β

I3(w
a)

I2(wa)
, (24)

where wa is any function in K.
Combining (23) and (24), we can estimate c∗0 as follows:

1 + α min
w∈K

I1(w)

I2(w)
≤ (c∗0)

2 ≤ 1 + α
I1(w

a)

I2(wa)
+ β

I3(w
a)

I2(wa)
. (25)

To find the lower bound accurately, we solve the minimisation problem

min
w∈K

I1(w)

I2(w)
. (26)

Problem (26) can be transformed to the following boundary value problem (Euler equation
with boundary conditions):

wxxxx + λwxx = 0

w(0) = wxx = 0 , w(1) = wxx(1) = 0 . (27)

Solutions to eigenvalue problem (27) are known to be

wk(x) = A sin(kπx) , k = 1, 2, 3, . . . ,

λk = (kπ)2 .

The normalised solution (A = 1) corresponding to the minimum in (26) can be shown to
be

wmin(x) = w1(x) = sin(πx) ,

λmin = λ1 = π2 .

Inserting w1 into (19), we obtain

I1(w1) = π2

∫
1

0

cos2 (πx) dx =
π2

2
, I2(w1) =

∫
1

0

sin2 (πx) dx =
1

2

I3(w1) =

∫
1

0

x sin2 (πx) dx =
1

4
. (28)

Choosing wa = w1 ∈ K in (24) and inserting (28) into (25), we obtain the estimate

1 + απ2 ≤ (c∗0)
2 ≤ 1 + απ2 +

β

2
. (29)

Estimate (29) gives lower and upper bounds for (c∗0)
2. Here, c0, α and β are defined in

(8), (9)–(10).

177



Numerical solution by the Rayleigh–Ritz and the Fourier–Galerkin methods

The minimization problem was discretized using the Rayleigh-Ritz method and solved
using the interior point method. The differential equation was solved via the Fourier-
Galerkin method. Both methods were realized in Matlab.

Numerical solution for the minimization problem

Consider the minimization problem (17). Constant one does not effect the location of the
optimum and it can be omitted. Divide (17) by constant α. The obtained minimization
problem is equivalent to (17):

min
w∈K

[∫
1

0
(wxx)

2 dx+ a
∫

1

0
x (wx)

2 dx∫
1

0
(wx)2 dx

]
, (30)

where

a =
β

α
=

gm�3

D
.

The problem (30) has infinite amount of solutions: If w is a solution, then also cw, c
is a constant, is a solution. Problem (30) can be solved as [6, p. 273]

min
w∈K

∫
1

0

(wxx)
2 dx+ a

∫
1

0

x (wx)
2 dx

subject to

∫
1

0

(wx)
2 dx = 1 . (31)

In addition, w must satisfy boundary conditions w(0) = w(1) = 0. Now, the condition∫
1

0
(wx)

2dx = 1 sets the absolute value of the constant c mentioned above. Note that the
normalization constant, which is now chosen to be one, can be chosen freely.

We discretize (31) using the Rayleigh-Ritz method. We present function w as a series

w(x) =
∞∑
j=1

vjϕj(x) (32)

in the basis
ϕj(x) ≡ sin(jπx) , x ∈ [0, 1]. (33)

The basis (33) fulfills the boundary conditions w(0) = w(1) = 0 naturally. We fix a finite
positive integer n0 (number of modes), and approximate (32) with its finite analog

w(x) =

n0∑
j=1

vjϕj(x) . (34)

Inserting (33)–(34) into (31), we obtain

min vTAv + a vTBv

subject to vTCv − 1 = 0 , (35)

where v = (v1, . . . , vn0)
T ∈ R

n0 .
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The elements of the matrices in (35) can be found analytically. They are

Aij :=

∫
1

0

(ϕj)xx (ϕi)xx dx =
j4π4

2
δij ,

Bij :=

∫
1

0

x (ϕj)x (ϕi)x dx = −
∫

1

0

x (ϕj)xx ϕi dx−
∫

1

0

(ϕj)x ϕi dx = −Eij −Dij ,

Cij :=

∫
1

0

(ϕj)x (ϕi)x dx =
j2π2

2
δij ,

Dij :=

∫
1

0

(ϕj)x ϕi dx =

{
0 , i = j

ij[(−1)i+j−1]
j2−i2

, i �= j
,

Eij :=

∫
1

0

x (ϕj)xx ϕi dx =

{ − j2π2

4
, i = j

−2ij3[(−1)i+j−1]
[i−j]2[i+j]2

, i �= j
, (36)

where δij is the Kronecker delta.
The discretized problem (35) is a nonlinear optimization problem with a nonlinear

objective function and a nonlinear constraint. The optimization problem variable is vector
v. Note that the size of the problem depends on n0. Note also that the boundary
conditions are included in matrices A, B ja C.

Numerical solution of the differential equation

The numerical solution of the original boundary value problem (5)–(6) was performed by
using the Fourier–Galerkin method.

Define
λ := 1− c20 . (37)

Consider the dimensionless problem (11)–(12). Eigenvalue problem for the eigenvalue-
eigenfunction pair (λ,w) is

αwxxxx − β (xwxx + wx) = λwxx , (38)

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 . (39)

By solving c0 from (37), we see that the largest eigenvalue λmax corresponds to theminimal
critical velocity.

It is easy to show that all eigenvalues λ ≤ 0. Inserting λ in (37) into (16), we obtain

−α

∫
1

0

wxxvxx dx− β

∫
1

0

xwxvx dx = λ

∫
1

0

wxvx dx . (40)

Denote a(w, v) = −α
∫

1

0
wxxvxx dx− β

∫
1

0
xwv dx. Choosing v = w, we have a(w,w) ≤ 0,

but on the other hand a(w,w) = λ
∫
1

0
w2

x dx. Thus λ ≤ 0, and a physically meaningful
solution (c20 > 0, by (37)) always exists. Furthermore, we see that c20 ≥ 1, i.e., the critical
velocity cannot be smaller than that of a travelling string (for which it is

√
T0/m).

We apply the Fourier–Galerkin method to problem (38)–(39). Once we have the
eigenvalue λ, we can obtain V ∗

0 from (37) and (8).
We present function w as a Galerkin series (32) in the basis (33). The basis (33)

fulfills the boundary conditions (39) naturally. Inserting (33)–(34) into (40), we obtain
the matrix equation

(−αA− βB)v = λCv. (41)
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Table 1. Physical parameters for the reference case.

g T0 m � h E ν

9.81 m/s2 500 N/m 0.08 kg/m2 1 m 10−4 m 109 N/m2 0.3

⇒ D = Eh3/(12 · (1− ν2))

9.1575 · 10−5 Nm

The elements of matrices in (41) are given in (36).
Equation (41) now becomes a standard generalized linear eigenvalue problem for the

pair (λ,v), to which any standard solver may be applied.

Numerical results

The physical parameters used are given in Table 1. The number of basis functions used
was n0 = 200. By equations (9) and (10), the given values lead to the nondimensional
parameter values α = 1.8315 · 10−7, β = 1.5696 · 10−3 and a0 = β/α = 8.5700 · 103, which
was used as a reference case. Problem (35) was solved using the Matlab Optimization
Toolbox. Optimization method was chosen to be the interior point method. The results
given by optimizer were validated by comparing to solutions given by the direct solver
(Fourier–Galerkin method).

Figure 3 presents the buckling modes and the corresponding critical velocities for the
different values of a in the case of the Rayleigh–Ritz and the Fourier–Galerkin methods.
In each figure, a solid line corresponds to the solution given by the optimizer, and a
dash-dot line corresponds to the critical mode given by the differential equation solver.
The buckling modes and the critical velocities (in figure titles) were the same in the
results given by the optimizer and the direct solver. (The solution plots for the calculated
buckling modes overlap.)

Some qualitative observations were made. First, the effect of gravity on the eigenmode
is very large, see Figures 3 and 4. The extremum of the eigenmode concentrates toward
the start of the span in both studied models. This result is as expected, because positive
x axis was chosen to point up in the gravitational field.

The effect of the gravity on the critical velocity is veryminor, typically less than 0.01%.
See Figure 5. In this respect, the results resemble those from our earlier study, where the
effect of a linear tension profile to the buckling behaviour of an axially moving plate was
investigated [4].

Furthermore, the strength of the concentration effect depends on the ratio of the
dimensionless parameters β and α, i.e. on the quantity a = β/α = mg�3/D. The larger
this parameter is, the stronger is the effect. In the limit a → 0, the effect vanishes. In
the other limit a → ∞, the eigenmode approaches a characteristic shape that resembles
a sawtooth function (but starts smoothly from 0). See Figure 4.

In the case of nonvertical direction of motion with respect to the gravity, the buckling
problem was solved for different values of the angle θ in equation (4). In Figure 6 on the
left, the graphs of the buckled shapes are shown for the values θ = 0, π/8, , π/4, 3π/8, π/2,
and the displacement maxima are marked by �.

In Figure 6 on the right, the buckling modes are represented for the values [0, π/2] of θ
as a colour sheet. It is seen that the buckling mode rapidly becomes nonsymmetric, when
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Figure 3. Critical buckling mode for some values of the parameters. The band moves toward the right
and gravity points toward the left. Comparison of the solutions given by the energy minimization (”opt”,
solid line) and by the direct solving of a differential equation (”direct”, dash-dot line). The dashed line
corresponds to a reference solution with no gravity (g = 0).
The top right picture represents the reference case given in the text, for which a = 8.57 · 103.
In the pictures, a/a0 = 10, 1, 0.1, 0.01, 0.001, 10−8 (from left to right, top to bottom, in that order).
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Figure 4. Critical buckling mode for different parameter values. The band moves toward the right and
gravity points toward the left.
The reference value is a0 = 8.57 · 103. Note the logarithmic scale of a/a0.

Figure 5. Effect of the dimensionless parameters α and β (defined by (9) and (10)) on the critical velocity.
Note that the reference case is at the lower edge of the figure at β ≈ 0.0016. The scaling for the axes was
chosen to show the structure of the data.

 = 0

 =  / 8

 =  / 4

 = 3  / 8

 =  / 2

Figure 6. Buckling modes, when the direction of motion of the band is at an angle to the gravity. Left:
Graphs of buckling modes for some selected cases. Displacement maxima are marked by �. Right: Colour
sheet of the buckling mode for values of θ between 0 and π/2.
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Figure 7. The location of the maximum displacement for θ in [0, π/2]. The stars (�) correspond to those
shown in Figure 6.

the moving direction of the panel non-orthogonal to the gravity, and the nonsymmetric
modes are quite similar for small values of θ. This behaviour is illustrated more clearly
in Figure 7.

Note that the sign of the axial velocity V0 does not affect the buckling problem (5)–(6).
Therefore, the range θ ∈ [0, π/2] covers all possible band orientations with respect to the
gravity.

Conclusion

The loss of elastic stability of an axially moving band (panel) was investigated, taking the
gravitational force into account. The studies performed were mainly based on analytical
approaches. The onset of instability in a divergence (static) form for some critical value of
the transport velocity was estimated using a variational principle to develop variational
inequalities. Analytical lower and upper bounds for the critical velocity were derived.
Additionally, it was shown that a critical velocity always exists.

Nonsymmetric solutions of the buckling problem (divergence forms and corresponding
critical eigenvalues) were illustrated with the help of numerical examples. As a result, a
large influence of the gravity force on the buckling mode, and a small effect on the critical
transport velocity, were established and discussed.

Optimization methods were shown to give reliable results for solving this type of
differential equations. However, the used interior point method was seen to be slow
compared to the direct solver.

The effect of the angle of the motion of the band with respect to the gravity was
numerically illustrated. This was done by solving the buckling problem, and the obtained
buckling modes were illustrated. Compared to the case where the gravity is orthogonal
to the axial motion, and does not affect the buckling mode, it was seen that even a small
angle is enough to produce a notably nonsymmetric shape.

Comparing to the effect of introducing a linear tension profile in the noncylidrical
deformation case (see [4]), it seems that very high sensitivity of the buckling mode, and
very low sensitivity of the critical velocity, to various aspects of the problem setup is a
phenomenon typical to this class of problems.
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P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland
juha.jeronen@jyu.fi, tytti.saksa@jyu.fi, tero.tuovinen@jyu.fi

185


	Tytti Saksa, On Modelling and Stability ofAxially Moving ViscoelasticMaterials
	ABSTRACT
	PREFACE
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Objectives

	2 LITERATURE REVIEW AND THIS WORK’S CONTRIBUTION
	2.1 Literature review
	2.2 Contribution of this work to the field

	3 1D MODELS FOR MOVING MATERIALS
	3.1 Dynamic equation for an axially moving Kelvin–Voigt panel
	3.2 Axially moving viscoelastic panel interacting with surrounding fluid
	3.3 Elastic panel travelling in gravitational field
	3.4 Stability of travelling strings, beams, and panels

	4 2D MODELS FOR MOVING MATERIALS
	4.1 A travelling orthotropic plate
	4.2 Stability of travelling membranes and plates
	4.3 Application of stability analysis on productivity optimization

	5 NUMERICAL SOLUTION PROCESS
	6 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	STABILITY OF MOVING VISCOELASTIC PANELS INTERACTING WITH SURROUNDING FLUID
	STATIC INSTABILITY ANALYSIS OF AN ELASTIC BAND TRAVELLING IN THE GRAVITATIONAL FIELD



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




