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Abstract
Thiolate-protected gold clusters have been studied intensively since their first
synthetization two decades ago. We studied the thermodynamical properties of
one of the well-known cluster, Au25(SR)

–
18, via density functional theory molecular

dynamics simulations. Based on our 10 ps simulations in temperatures between
300K and 600K the weakest bonds in the cluster are in the core-thiolate interface.
However, we did not observe bond breakings, which suggests that the cluster is
extremely stable, in agreement with previous experimental observations. The
superatom electronic structure, which is previously seen only in ground state
calculations, is now identified in the presence of thermal vibrations.

We applied the density-functional tight-binding method to study the same
cluster by developing the parametrizations for the important chemical interactions
in the model cluster Au25(SH)

–
18. We were able to show that tight-binding can

reproduce both the atomic and electronic structure to satisfactory accuracy. The
symmetry of the atomic structure was preserved and the superatom structure was
seen in the electronic states. However, more benchmarking is required before the
tight-binding can be reliably used in novel studies.

Aluminum oxide growth in the atomic layer deposition process over the titanium
dioxide nanoparticles, present in dye-sensitized solar cells, was studied using density
functional theory. We found out that the aluminum oxide layer is not uniform after
the first deposition cycle but contains holes. This indicated that the electrolyte
present in the solar cell may still be able to contact the titanium dioxide, thus
decreasing the power conversion efficiency. Also the binding of dye molecules
is affected, lifting the standard N3 dye molecule ∼ 1.7Å higher, weakening the
electronic coupling between the molecule and the titanium dioxide. It is therefore
questionable whether the aluminum oxide layer can help to improve the efficiency
of the cells.
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1 Introduction

1.1 The structure of matter

The understanding of what matter is has been evolving along mankind. For example,
in ancient Greece the constituents of all matter were four elements: fire, earth, air
and water. Sometimes aether was added to the list as the fifth element.[1] In the
absence of accurate measuring devices and proper experiments, this kind of model
of the world worked well enough, as there was no experimental evidence that would
falsify the theory. For example, let’s imagine that we have a gold bar and we cut
it in half. The two halves do not differ from the original bar other than in size
and weight, so in this experiment the gold behaves as continuous, homogeneous
material.

Over the centuries people invented more sophisticated measuring devices and
conducted different experiments. It started to become evident that the five-element
model was not adequate enough. The discovery of an electron by Thomson[2] first
led to a model, where the negatively charged particles are confined in a positive
homogeneous matter (the plum pudding model). Then Rutherford presented
experimental results that the positive charge must be also gathered into small
blocks, and the atom nucleus was discovered.[3]

After that we have learned that these subatomic particles behave in a way
that cannot be explained by classical physics, and quantum physics was developed,
starting from Planck’s work on black body radiation in 1900. We know that nuclei
consist of both protons and neutrons, which again consist of even smaller particles,
called quarks. We have found many other particles that are not stable and do
not exist free in nature, but can be seen (indirectly) e.g. in large hadron collider
(LHC) at CERN. At the time of writing this thesis, two groups working at LHC
announced that they have found another particle, which may turn out to be the
Higgs boson of the standard model.[4, 5]

Here I will make a rough categorization of physics, using the above-mentioned
gold bar as a demonstration tool. The region where we are splitting macroscopic
gold bars in two can be described as classical physics. In the other end where we
are splitting individual gold atoms goes into the area of nuclear physics. When
splitting the protons and neutrons of the nucleus we are talking about high energy
physics, or particle physics. Between the classical and nuclear physics there is a
region, where the gold particles become so small that their properties begin to differ
from the bulk properties. These phenomena begin to emerge when the particles
are in the nanometer (10−9 m) scale (i.e. nanoparticles), and therefore this field is
called nanoscience.

The emerging phenomena are connected partly to the surface-area-to-volume
(sa/vol) ratio which grows as the particle size gets smaller. In another words, more
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2 Introduction

and more atoms are located at the surface of the particle as opposed to being in
the bulk environment. This has interesting consequences. In bulk phase the atoms
often form a crystal structure, because it minimizes the free energy. With high
sa/vol ratio, it might be more advantageous to minimize the surface energy instead,
and the atomic configuration becomes different than the bulk crystal structure.

The change in the structure affects many other properties, for example how
the cluster absorbs light. Bulk gold is yellowish, but gold nanoparticles appear
to be red (this was noticed already in the Middle Ages; the red colour in glass
paintings was often achieved by grinding gold into powder and mixing it into the
glass. The reason was, however, not understood). Another good example is that
even though the bulk gold is highly inert material (it does not react easily with
other compounds), the gold nanoparticles, especially on a proper substrate, are
highly reactive and work as a catalyst for many reactions.[6] Suggested explanations
include for example charge effects and a high number of low coordinated atoms.[7, 8]

It is then obvious that our knowledge about bulk materials cannot be blindly
applied to nanoparticles of the same material. One aim of nanoscience is to develop
general understanding of how the different properties of materials change as the
size of the particles is reduced. Then it is possible to make predictions of what
kinds of materials one should study in order to achieve some desired properties.

The gold bar was just a simple example, but similar things are happening e.g.
in the semiconductor industry. The basic building block of virtually all the modern
electronic devices, the transistor, has been already squeezed into so tiny volume
that further minimizing is forbidden by the quantum-mechanical phenomena that
cause uncontrollable electrical leakage in the system. Therefore it is necessary to
develop completely new types of electronic components, and for example it has
been shown that it is possible to reliably hold one bit of information using only 12
Fe atoms.[9]

1.2 Thiolate-protected gold clusters

As mentioned briefly before, bare gold nanoparticles are highly reactive, which
makes it difficult to control them and study them experimentally in detail. They
can be produced in vacuum, and some properties, like electron diffraction, can be
subsequently measured.[10] However, when they are deposited on substrate, their
shape tends to change, they are often quite mobile and coalesce with each other to
form larger clusters.[11] All this makes it difficult to not only study them but also
use them in applications.

There are many envisioned applications for the small gold particles.[12] One
of the most interesting is to use them in cancer treatment.[13] The gold atoms,
being heavy elements, absorb radiation more efficiently than organic material. If
we could attach the gold clusters to tumors, a larger portion of the irradiation
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would concentrate into the tumor, thus reducing the collateral damage to the
neighbouring healthy tissue. Another possibility is to use them as markers. The
gold nanoparticle doped tumors could be seen clearer in X-ray images or with some
other imaging methods, e.g. with UV[14] or Raman[15] spectroscopy. On some
surfaces they drain charge from the substrate and can act as a catalyst.[16]

The bare reactive clusters are impossible to deal with but they can be passi-
vated by a layer that isolates the cluster and inhibits it from reacting with other
molecules. Already three decades ago Briant et al. managed to produce small
gold clusters that were surrounded by phosphine ligands[17], and in 1994 Brust et
al. managed to synthesize similar clusters with thiolate1 (SR) ligands.[18] After
the first synthetization the study of monolayer(ML)2 protected clusters has been
intense. It was found that clusters with specific masses were substantially more
stable than others, but there was no rigorous explanation for that.

The big breakthrough was made in 2007 when Jadzinsky et al. were able
to crystallize one of these clusters, Au102(SR)44, and resolve its atomic structure
precisely.[19] This is shown in figure 1 (although with smaller ligands for clarity).
Subsequently the electronic structure was calculated with state-of-the-art computa-
tional methods[20], and a better understanding of thiolate-protected gold clusters
was achieved.

The stability can be explained by two factors. First, the atomic configuration
is highly symmetric. The center of the cluster is pure gold arranged in five-fold
D5h symmetry. It is protected by RS−Au−SR and RS−Au−S(R)−Au−SR units
that are also arranged in symmetric fashion on the gold core surface. Second, the
electronic structure resembles that of a noble gas atom. The arguments explaining
the stability and non-reactivity of the noble gas atoms can be generalized to these
clusters to some extent, and therefore atomic clusters showing this type of behaviour
are named superatoms.

So far the atomic structure of three different thiolate-protected clusters has
been resolved. These are Au25(SR)18 in both anionic[21, 22] and neutral[23] form,
Au38(SR)24[24] and Au102(SR)44.[19] The search for new stable clusters is ongoing
and the mass and composition of many relatively stable clusters are known.[25–28]
For the Au144(SR)60 there is already a promising theoretical prediction for the
atomic structure.[29]

In the cancer treatment applications, it is not enough that the clusters are
protected. They should also selectively attach to cancer cells. This could be
achieved by replacing or modifying the ligands in the protecting layer by molecules
that are designed to attach to specific environments. The partial, selective ligand-

1Thiol is a molecule with a general structure R−S−H, where R is a carbon-containing group,
and thiolate is a thiol from where the H is removed.

2Monolayer is a layer that consists of molecules of only one type, completely covers the surface,
and is only one molecule thick.
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Figure 1: The structure of the Au102(SR)44, the first thiolate protected cluster
whose atomic structure was resolved. The real ligands are replaced by methyl
groups for clarity. a) The full atomic structure. b) The protecting layer composed
of S−Au−S and S−Au−S−Au−S units. c) The three concentric shells of the
metallic gold core.

exchange has been performed with Au102(SR)44, which is an important step in
learning to design the ligand layer for different purposes.[30]

More research on the thiolate-protected gold clusters is needed in order to
realize their envisioned applications. The next section deals with dye-sensitized
solar cells, which are already operational, and more work is needed mainly to make
them commercially more viable.

1.3 Dye-sensitized solar cells

Worldwide energy consumption is increasing constantly.[31] At the same time the
price of oil is increasing as the old oil deposits are drying up and new ones are
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harder to exploit. The traditional energy production methods (oil, coal, natural
gas) release greenhouse gases into the atmosphere, and the climate is warming
at alerting rate.[32] Therefore renewable energy has become worthy option and
different ways to harness renewable energy sources are studied and developed.

One of the most popular and straightforward ways is to convert sunlight directly
into electricity. This can be done with solar cells. They are manufactured from
semiconducting material, and the sunlight is used to excite electrons from the
valence band to the conduction band of the semiconductor. The formed electron-
hole pairs subsequently separate and create electric current.

In traditional solar cells the semiconductor of choice is silicon. In silicon the
band gap is about 1.0 eV, which is narrow enough for visible light to excite electrons
from valence to conduction band. The main reason for the high price of traditional
solar cells is the expensive process of purifying silicon.

In 1991 O’Regan and Grätzel developed a new, cheaper way to produce solar
cells.[33–35] They replaced the silicon with considerably cheaper titanium dioxide.
Unfortunately, the band gap of TiO2 is three times wider compared to the silicon,
so visible light is not energetic enough to excite electrons. To overcome this problem
the titanium dioxide is covered with dye molecules to sensitize it to visible light.
These cells are therefore called dye-sensitized solar cells (DSSC).

The principles of the operation of a DSSC is shown in figure 2. The visible
light excites an electron of a dye molecule from the highest occupied molecular
orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (arrow 1).
Subsequently the excited electron tunnels from the dye into the conduction band
of the TiO2 (arrow 2). Some energy is wasted as the electron relaxes to the bottom
of the conduction band (arrow 3). The injected electron travels through the TiO2
layer to the anode and to the external circuit (arrow 4). The circuit is closed when
the dye acquires a missing electron from the electrolyte (arrow 5).

The cell efficiency is highly dependent on the ability of the dye molecule to
capture photons and inject the excited electrons into the titanium dioxide. Several
sensitizer molecules have been developed and tested. Currently the standard
molecule is called N3 (proper formula is Ru(dcbpy)2(NCS)2, where dcbpy = 4,4’-
dicarboxy-2,2’-bipyridine), which is shown in figure 3. After it’s introduction more
efficient molecules have been discovered recently, for example CYC-B19.[36]

Currently the top efficiency of the DSSCs (∼ 10%) is far behind the values of
the silicon solar cells (∼ 40%)[37] (these are record values, the commercial cells
are naturally less efficient). There are many processes that decrease the conversion
efficiency of the DSSCs. The electron that is already injected into the TiO2 may
recombine directly with the electrolyte at the surface of the TiO2 (arrow 6) or with
a dye molecule that is missing an electron (arrow 7). Both of these events take
place at the TiO2 surface. Inside the TiO2 the traveling electron might get trapped
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Figure 2: Left: The schematic structure of the dye-sensitized solar cell. The anode
is coated with TiO2 nanocrystals that are sintered together. Then they are covered
with dye molecules. The circuit is closed by electrolyte which connects the TiO2-dye
combination to the cathode. Right: The energy schematics of the operation of
DSSC.

into the potential wells created by the defects in the crystal.
The electron injection rate depends on how the molecule interacts with the

titanium dioxide, which in turn is determined by orientation the molecule is
adsorbed on the surface. The adsorption geometry has been studied for example
by analyzing the shifts in IR spectrum, and also computer simulations have been
employed.[38–41] The optimal adsorption on the clean anatase (101) surface is via
one COOH groups from both dcbpy-groups.

Some studies indicated that the efficiency could be increased by coating the
titanium dioxide with a thin layer of another oxide before attaching the dyes.[42]
The idea is to create a barrier which prevents the electrolyte molecules from coming
too close to the surface and the electrons tunneling back from the TiO2. This
naturally also slows down the tunneling from the dye molecule to the titanium
dioxide, but this reaction is so fast that it is not the limiting factor and can thus
be slowed down to some extent.[43]

There are many methods to coat materials, e.g. chemical vapor deposition
(CVD) and sol-gel process, just to name a few.[44, 45] Perhaps the most accurate
method (in terms of surface thickness) to grow thin films is the atomic layer
deposition (ALD) method.[46, 47] With ALD various materials can be grown on
the surface of many substrates. It is a sequential process, and the steps are described
in figure 4. In the first step the substrate is exposed to a precursor molecule A. In
an ideal case the A molecules adsorb on the substrate but not on top of each other,
so after the first step the substrate is completely covered with A molecules. In the
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Figure 3: The standard dye molecule N3. In the center there is a ruthenium
atom (brown). To it is connected two NCS groups and two planar organic groups.
The COOH groups (four) are used to attach the molecule to the surfaces. Colors:
Brown-Ru, dark blue-N, light-blue-C, yellow-S, red-O, white-H.

second step the surface is exposed to precursor molecules B which react with A
molecules, but not with each other. Ideally after the second step the substrate is
covered with a layer of AB molecules. This is called the first ALD cycle, and by
repeating the cycle one can grow many layers of new material and of course control
the thickness of the layer to high accuracy.

In reality the process is not that perfect. The molecules are not like LEGO R©
blocks that perfectly match each other, the molecules can be adsorbed to different
orientations etc. Also the precursor molecules may be so big that steric repulsion
prevents a formation of a full monolayer in a single ALD cycle. As a result there
will be holes left on the layers and the forming surface will not be perfectly smooth.
Also the lattice constants of different materials are not the same, so there will
probably be some sort of amorphous region at the interface which connects the
original and new crystal structures.

While ALD is often used to coat the substrate with another compound, it is
also possible to grow the same material. The task for every substrate-coating
combination is to find suitable precursor molecules. Ref. [47] lists many tested
combinations, and it can be seen that the ALD is a highly versatile process.

Because the ALD does not work ideally, the structure of the coating (especially
at the substrate-coating interface) is not known. Therefore the process has been
studied computationally to get a deeper understanding of the structure of the
interfaces and the formation processes.[48–57]
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Figure 4: The ideal ALD process. a) The original surface (grey) is exposed to
precursor A (the green particles). They adsorb on the surface but not onto each
other. b) The treated surface is then exposed to precursor B (red particles) that
again only adsorb onto A particles. c) The surface after one ALD cycle. d) More
realistic picture of the layer formation.

1.4 Computational modeling of atomic systems

The dimensions of nanoscale systems are comparable to the atomic distances. This
means that usually individual atoms must be simulated explicitly to have a realistic
model of the system. In addition, calculating the electronic structure is often vital
to have reliable results and to understand the properties of the systems.

I have used two different simulations methods in my work. One method is
called the density functional theory (DFT). It is in widespread use and is a well
tested method, and there is good understanding of to what kind of studies it fits
and which properties are reliably reproduced. The DFT is popular method because
it provides good accuracy with reasonable computational costs. The importance of
the method is emphasized by the fact that Walter Kohn was awarded the Nobel
prize in 1998 for the development of the DFT. I used the method to study both
the thiolate-protected gold clusters and titanium dioxide surfaces.

The problem with DFT (as with all the methods) is that the computational
demands grow as a function of the system size. Density-functional tight-binding
(DFTB) is an approximation to the DFT that tries to capture the essential parts
but at the same time reduce the complexity of the problem. The DFTB calculations
require orders of magnitude less computational resources, but this comes with the
cost of decrease in the accuracy and transferability. I studied the possibility to use
DFTB to study the thiolate-protected gold clusters.

Simulation methods require some sort of information about the systems we are
simulating. It can include macroscopic properties of the material (e.g. density or
electric conductivity), or in the case of atomistic simulation, information about the
atoms in the system. Depending on the level of theory, element-specific information
can be enough. In more approximative approaches also the interactions between
the elements may be included into the parameters. One part of my work was to
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develop these kinds of parameters (mainly for the gold and sulfur) to be able to
simulate thiolate-protected gold clusters using DFTB.
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2 Theoretical research methods

2.1 The principles of theoretical modeling

Modeling reality with theoretical models and computers is challenging. Even though
computational power has been growing exponentially, often we cannot run many
interesting simulations due to insufficient resources. This means that we must
simplify our theoretical models. Therefore the models we use in simulations do not
always reflect our best knowledge of the real physical world, but are approximations
that capture the most essential parts.

The simplest approximation to do atomistic simulations is to treat the atoms
as classical balls. The interaction between the atoms can be modeled e.g. with
Lennard-Jones pair-potential

V (r) = 4ε

((σ
r

)12
−
(σ
r

)6)
, (1)

where r is the distance between the atoms and the parameters ε and σ are fitted
to e.g. experimental results. The first term approximates the Pauli repulsion and
the second long-range van der Waals attraction3.

This approach works adequately for noble gas atoms, which do not interact
chemically with each other. It is too simple to model different kinds of bondings
between the atoms (e.g. covalent versus metallic), and more parameters must
be added to the model if one wants to simulate chemical reactions.[58] However,
in reality the chemical bonds are the manifestation of the electron gas relaxing
to the lowest energy configuration. Therefore simulating reactions with classical
potentials requires tuning several parameters, and some properties (for example the
optical absorbance) are simply out of reach because the method does not contain
information about the electronic structure.

The accuracy and reliability of the simulations can be increased by taking the
electronic structure into account explicitly. The electrons are such small particles
that the laws of classical physics cannot be blindly applied to describe them. Instead
they are described with quantum mechanics, which explains many phenomena that
classical physics cannot (for example why the electrons orbiting the atoms do not
radiate energy away and collide with the nucleus).

The standard way to do electronic structure calculations is to invoke the Born-
Oppenheimer approximation. It states that because the atomic nuclei are ≥ 2000
times heavier than electrons, their movement can be decoupled. In practice this
means that we can always assume that the electrons have had time to relax to the

3The form of the first term is simply an approximation for the repulsion, and the exponent
was chosen to be 12 so that it is faster to calculate it as the square of the second term.

11



12 Theoretical research methods

movement of the nuclei, and they are always in the lowest energy configuration.
Moreover, again because the nuclei are heavier, we treat them as classical balls,
and the electrons we treat with quantum mechanics.

With this model e.g. the hydrogen atom can be solved even analytically, and
the results agree perfectly with the experimental absorption spectra. However,
the hydrogen atom is the simplest possible example one can imagine. In my work
with clusters and surfaces there are tens or even hundreds of atoms, and there
are no more analytic solutions available. We must resort to treat the problems
numerically.

2.2 Quantum mechanics for calculating the electronic struc-
ture

It is evident that we need information about the electronic structure of the systems
we are studying to get accurate results. The electrons are small particles that
cannot be described with Newtonian mechanics; we need to dive into quantum
mechanics.

In quantum mechanics the total energy of the system is represented by the
Hamiltonian operator Ĥ. For electrons in any system it can be written as

Ĥ = T̂ + V̂ext + Ŵ , (2)

where the first term represents the kinetic energy of the electrons, the second
is the potential energy of the electrons in the external potential (caused by the
atom nuclei and e.g. external electric field) and the last is the Coulomb energy
of the electrons. Here we have ignored e.g. relativistic corrections and spin-orbit
couplings. For light elements this is justified[59], but for heavy nuclei (e.g. gold) it
is necessary to include relativistic corrections.[60]

The electrons are not described by classical particles at specific position, but
by an abstract state |Ψ〉. When the Hamiltonian operates on the state, it returns
the total energy of the system

Ĥ |Ψ〉 = E |Ψ〉 . (3)

These are abstract concepts, and in practice we must often choose some repre-
sentation to do actual calculations. Perhaps the easiest to grasp is the real-space
representation, where we project the state into real-space:

〈~r |Ψ〉 = Ψ(~x1, ~x2, ..., ~xN), (4)

where ~xi = (~ri, χi) is the position and the spin of the electron. The projection is
called the wave function. The square norm of the wave function, |Ψ(~x1, ~x2, ..., ~xN)|2,
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is proportional to finding one electron at point ~r1 with spin χ1, another at ~r2 with
spin χ2 and so on. In real-space representation the Hamiltonian (in unit system
where ~ = m = e = 1) takes the form

Ĥ =
N∑
i

−1

2
∇2
i +

N∑
i

vext(~ri) +
N∑
i

N∑
j>i

1

|~ri − ~rj|
, (5)

where vext is the external potential created by the nuclei. In the case of hydrogen
atom, the eigenvalue equation in the real-space reduces into

−1

2
∇2

1Ψ(~r1) + vext(~r1)Ψ(~r1) = EΨ(~r1), (6)

which can be solved analytically because the electron-electron interaction term
vanishes and the external potential is simple enough (spherically symmetric).

Usually the analytic solving of the problem is impossible, and we must resort
to numerical methods. But even then we immediately run into problems. Let’s say
we want to simulate the two electrons of the hydrogen molecule H2 in a simulation
box of 10Å× 10Å× 10Å with grid spacing 0.2Å. This gives us grid points×
spin =

(
10Å
0.2Å

)3
× 2 = 250 000 values for each coordinate ~xi. For N particles the

Ψ(~x1, ~x2, ..., ~xN) is then an object with (250 000)N values. If the value of the wave
function at each point is saved as double precision complex number (which uses 16
bytes (B) of memory), then the memory required to express the whole many-body
wave function of the H2 is roughly

(250 000)2 × 16B = 1 000 000 000 000B ∼ 930GB (7)

It is obvious that this kind of direct approach takes us nowhere. Fortunately, there
are ways to go around this problem.

2.3 Density functional theory

The exponential dependence (on the number of electrons) of the computational
demands can be avoided by the use of density functional theory (DFT). It is mainly
based on two important pieces of work that enable us to simplify calculations
considerably: the Hohenberg-Kohn theorem[61] and the Kohn-Sham approach[62]
for its implementation.

The Hohenberg-Kohn theorem (in its simplest form only valid for non-degener-
ate ground states) shows that there is one-to-one mapping (bijection) between the
potentials and the electron densities. Here two potentials are considered different if
they differ more than by a constant. It follows that the ground state wave function
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and ground state observables are functionals of the electron gas density. Especially
the ground state total energy can be written as

E [n] = 〈Ψ[n]| V̂ext + T̂ + Ŵ |Ψ[n]〉 = Vext[n] + T [n] +W [n]

=

∫
1

vext(~r1)n(~r1) + F [n]

=

∫
1

vext(~r1)n(~r1) + EH[n] +G[n],

(8)

where
∫
1

:=
∫
d~r1 and EH[n] is the classical Coulombic energy, called Hartree

energy

EH[n] =
1

2

∫
1

∫
2

n(~r1)n(~r2)

|~r1 − ~r2|
, (9)

vext is again the external potential, and F and G are universal functionals of the
electron gas density n(~r). Since there is one-to-one mapping between the electron
density and potentials, only one density gives the ground state and therefore the
variation of the total energy at the ground state density vanishes:

δ

δn(~r)
E[n] = 0 ⇒ δ

δn(~r)
G[n] = −vext(~r)− vH(~r), (10)

where we defined the Hartree potential

vH(~r) =

∫
2

n(~r2)

|~r2 − ~r|
. (11)

This is huge simplification, since in principle it allows us to find the ground state of
the system by varying the electron gas density, which is much simpler object than
the many-body wave function. It is real-valued and positive, and the formalism is
the same regardless of the number of electrons (as opposed to the wave function
in equation (4) which gets more and more complex as the number of electrons is
increased). The problem is that the Hohenberg-Kohn theorem does not provide any
means to actually calculate the total energy. In equation (8) the largest constituent
of the functional G is the kinetic energy of the electrons, and we don’t know how
to calculate that from the electron gas density.

To get forward we use the approach developed by Kohn and Sham.[62] In the
derivation of the Hohenberg-Kohn theorem the interaction between the particles is
not relevant, so it is applicable even if the particles do not interact at all. In the
Kohn-Sham (KS) approach we switch from the original system to auxiliary system
of non-interacting electrons. From the HK theorem we know that such a potential
vs exists that produces the same electron density as in the interacting case. We
can then write the Hamiltonian as

Ĥs = T̂ + V̂s[n]. (12)
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From now on I will concentrate strictly on fermionic systems, i.e. systems, that
contain only spin-1

2
particles. Since there is no interaction between the auxiliary

electrons, the many-body wave function (of the auxiliary electrons) Ψs can be
expressed as a Slater determinant of orthogonal single particle states ψi:

Ψs(~x1, ~x2, ..., ~xN) =
1√
N !

∑
σ∈SN

sgn(σ)
N∏
i=1

ψi(~xσi), (13)

where the SN is the set of permutations of length N . For simplicity I will only
consider systems that are spin-paired, i.e. each state has electron with spin up and
spin down (it is possible to do spin-polarized calculations, we just need separate
spin-up and spin-down densities).

In spin-paired cases we can split the eigenvalue equation

Ĥs |Ψs〉 = Es |Ψs〉 (14)

into N/2 single particle equations{
− 1

2
∇2 + vs(~r)

}
ψi(~r) = εiψi(~r) for i = 1, ..., N/2. (15)

We need N/2 states because only two electrons (with spin up and spin down) can
be put in the same state. The electron density and total energy are obtained from

n(~r) = 2

N/2∑
i=1

|ψi(~r)|2 , (16)

Es = 2

N/2∑
i=1

εi = Ts +

∫
1

vs(~r1)n(~r1), with (17)

Ts = 2

N/2∑
i=1

〈ψi| −
1

2
∇2 |ψi〉 . (18)

The εi is the energy of the single particle state ψi and Ts is the kinetic energy of
the non-interacting system (see the section 2.4.2).

The main idea of the Kohn-Sham approach is to use the kinetic energy of
the non-interacting system as an approximation for the kinetic energy of the real
physical system, so therefore we define

G[n] = Ts[n] + EXC[n], (19)

where the term EXC[n] is called the exchange-correlation (XC) energy. By definition
it contains the energy due to the purely quantum-mechanical interactions and the
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difference between the real and non-interacting kinetic energies. In the final form
the total energy of the real physical system is written as

E[n] =

∫
1

vext(~r1)n(~r1) +
1

2

∫
1

∫
2

n(~r1)n(~r2)

|~r2 − ~r1|
+ Ts[n] + EXC[n]. (20)

At the ground state density the variation vanishes, i.e.

δ

δn(~r)
E[n] = 0 = vext + vH +

δ

δn(~r)
Ts + vXC, (21)

where we defined
vXC[n](~r) =

δ

δn(~r)
EXC[n] . (22)

It can be shown that δ
δn(~r)

Ts = −vs, so we get

vs = vext + vH + vXC . (23)

As the vs is used in calculating the single particle states and energies using equation
(15), the exchange-correlation functional affects the calculations in much deeper
way than simply by affecting the total energy in equation (20).

The Kohn-Sham approach does not provide a direct solution to the many-
body problem, but an iterative scheme where the set of equations are solved
self-consistently until the solutions converge. The algorithm to solve the equations
is in principle:

1. Create an initial guess for the single-particle wave functions (can be random,
but more physical initial guess speeds up the calculation).

2. Calculate the electron density from the wave functions using equation (16).

3. Calculate the Hartree and exchange-correlation potentials from the electron
density using (11) and (22).

4. Solve the single-particle equations (15) using the previously-calculated poten-
tials to get new wave functions and the total energy.

5. If the total energy and/or the wave functions changed more than some
convergence criteria, go back to step 2. Otherwise, the problem is considered
solved.

The Kohn-Sham method is iterative, i.e. we have to repeat the solving cycle several
times to get a solution that is converged well enough.
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2.3.1 The exchange-correlation functional

We introduced the exchange-correlation functional when we approximated the real
kinetic energy with the non-interacting kinetic energy. The XC functional therefore
contains the difference between these two energies. In addition it contains all the
purely quantum-mechanical effects we have not included so far. This is problematic
term in DFT since we don’t know how the XC functional should look like. Many
different approximations have been developed using numerous arguments. I will
not go into details on how to approximate the term but only give two common
examples.

In local density approximation (LDA) we think that the electron gas is
divided into small cubes where the gas density is constant, and calculate the EXC

as the sum over these cubes. The mathematical way to say this is that we integrate
the XC energy density of the uniform electron gas εunif.XC multiplied by the electron
density:

ELDA
XC [n] =

∫
1

εunif.XC (n(~r1))n(~r1), (24)

where the uniform electron gas energy density εunif.XC is taken from Monte Carlo
simulations. This gives surprisingly good results for various different systems, but
it is obvious that it does not take into account the density gradients.

The next step in approximating the EXC is to include the density gradients
into the functional. The exchange-correlation functionals of this type are called
generalized gradient expansion (GGA) functionals. In general the GGAs are
of the form

EGGA
XC [n] =

∫
1

f(n,∇n)(~r1) . (25)

They are called semi-local functionals, because even though they use information
around the point of evaluation, they do not contain any long-range effects. Following
the reasoning, it is possible to include also higher order derivatives of the density
into the functionals, but they have not achieved as high same popularity.

There are numerous different functionals developed with different approaches.
Some are derived purely from the theoretical basis while others contain parameters
that are fitted to some (experimental) data (these are called semi-empirical func-
tionals). An open source collection of exchange-correlation functionals libxc lists
tens of different LDA parametrizations, GGAs and higher-order functionals.[63] In
my work I have been using Perdew-Burke-Ernzerhof (PBE) GGA functional.[64]
It is derived strictly from theoretical basis and it performs well on a variety of
systems. The semi-empirical functionals often perform better with small molecules
(and they are often used in chemistry) but in solid state physics LDA and PBE
usually perform better.
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2.4 Implementation of the density functional theory

2.4.1 Simulation cell and boundary conditions

In DFT we are modeling a small region of space. This is called the simulation cell.
The cell is defined by three lattice vectors, which are often chosen to be orthogonal
(but don’t have to be). The atoms are then inserted inside the cell, where they can
move during the simulation.

The boundary conditions define how the particles see the simulation cell walls.
There are basically two types of boundary conditions. Free boundary conditions
mean that the particles cannot escape the cell; there the cell walls act like infinite
potential barriers. This is natural if we are simulating e.g. molecules or clusters
in gas phase. In DFT the wave functions must vanish at the boundaries, so the
cell walls cause non-physical forces to the atoms that are too close to the walls.
Therefore it is necessary to ensure that there is always several Ångströms of empty
space between the atoms and the walls.

The boundary conditions can also be periodic, which means that the simulation
cell is repeated infinitely to every direction. If the particle crosses the simulation
cell wall, it can be transferred to the opposite side of the cell. Periodic boundary
conditions are used when simulating e.g. bulk materials. It should be noted that
this is highly simplistic picture. In reality the crystals always contain lattice defects
and impurities. If the material consist mainly of single crystal structure and the
impurities and defects do not play crucial role, this approach can give reasonable
results.

We have used open-source python package called Atomic Simulation Environ-
ment (ASE) to manage the atoms in simulations.[65] In ASE it is possible to
apply the periodic boundary conditions to some directions and let the rest have
free boundary conditions. This is especially convenient for simulating elongated
structures (periodic in one direction) and surfaces using slab models (periodic in
two directions).

From periodic boundary conditions it follows that the external potential (that
the electrons experience) has translational symmetry. When solving the single
particle equations in such a potential we end up to the Bloch’s theorem, which
states that the solutions are so-called Bloch wave functions. They do not vanish
at the edges anymore but get a phase shift proportional to the wave vector of the
wave function.[66]

There are materials that do not have any crystal structure, i.e. they are
amorphous. The way to simulate those kinds of materials is to choose periodic
boundary conditions, and in addition choose a simulation cell large enough so that
the periodicity is effectively screened.
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2.4.2 Electronic temperature and state occupations

Usually when switching to non-interacting system we need more than N/2 single-
particle states, for both physical and technical reasons.

When the single-particle equations are solved, it is possible that the HOMO is
degenerate. In those cases there is no physical reason to favor any of those states,
i.e. we don’t know where to assign the last electrons. In addition, the degenerate
states are not spherically symmetric, so assigning electrons to only some of them
would result into non-spherical ground state, which is unphysical if the external
potential is spherical (mainly in the case of isolated atoms). For example the
isolated Boron atom has electronic structure [He].2s2.2p1, and assigning the last
electron to any 2p state would result to non-spherical atom. Similar problem arises
with metals, which have high density of states at the Fermi level.

This problem is solved by giving each state an occupation number, which does
not have to be an integer. In practise we modify the equation (16) - (18) by
replacing the multipliers 2 with occupation numbers fi ∈ [0, 2] and adding more
states into the calculation:

n(~r) =
∑
i=1

fi |ψi(~r)|2 , (26)

Es =
∑
i=1

fiεi = Ts +

∫
1

vs(~r1)n(~r1), and (27)

Ts =
∑
i=1

fi 〈ψi| −
1

2
∇2 |ψi〉 . (28)

The electrons are fermions so they follow Fermi-Dirac statistics. The occupation
numbers are therefore obtained from the Fermi-Dirac distribution

fi =
2

exp[(εi − EF)/kBT ] + 1
, (29)

where EF is the Fermi energy and kBT is usually set from 0 eV to 0.1 eV. This
has the effect that near the Fermi level little population is transferred from the
occupied states to the unoccupied ones, and it mimics the thermal excitations of
the electrons. This procedure is necessary whenever the density of states is high at
the Fermi energy (as is often with metals). It also gives degenerate states equal
occupations.

There are also technical reasons for the empty states in the calculations. One
of the mostly used algorithms to solve the single-particle equations is called RMM-
DIIS (residual minimization scheme, direct inversion in the iterative subspace[67]).
With this algorithm converging the highest single-particle states included in the
calculation is difficult. Therefore it is necessary to have some empty states in the
calculation so that the occupied state can be converged efficiently.
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2.4.3 Basis functions

Because we are working with computers and numerical computations, the wave
functions must be represented somehow on the computer. This is achieved by
choosing a suitable set of functions (basis set), and expanding the wave functions
as a linear combinations of these functions. There are basically three different
types of basis sets: real-space grid4, plane-waves and localized atomic orbitals. I
will briefly explain these in more detail.

Real-space grid is perhaps the most straightforward way to express the wave
functions. The simulation cell is divided into uniform boxes, and each box contains
the (average) value of the wave function in that box. The finer the grid spacing h is
the more accurately the wave functions can be expressed. However, simultaneously
the memory requirements grow as

(
1
h

)3 and the calculations become slower. The
trick is to find the optimum grid density so that the results do not change (notably)
if it is further raised.

The wave functions can also be expressed as a linear combinations of plane
waves, i.e. linear combinations of functions {ei~k·~r}. Since the plane waves form
a complete set, an infinite expansion would give infinite accuracy, but again in
practice we must terminate the expansion at some point. The energy of the plane
wave is related to the wave vector as E ∼ |~k|2, and the expansion is terminated
when the energy exceeds a predefined value, called cut-off energy. As with the grid
basis, one must find the optimum cut-off energy to find good balance between the
accuracy and the computational demands.

Although from the mathematical point of view the grid and plane wave basis
are the same thing expressed in different way (one can Fourier-transform from one
to another), in practice they behave differently, and both have useful properties
and weaknesses. For example, in real-space grid integrals are easy to divide into
separate spatial regions and parallelize over several cores. In plane wave basis
getting the value of the wave function at a specific coordinate requires evaluating
the value of each basis function multiplied with the coefficient. In plane wave basis
increasing the accuracy of the calculation can be easily done by increasing the
cut-off value. Mathematically this means simply adding more functions to the basis
set, and usually the computed values converge smoothly. With grid, increasing the
grid spacing changes all the previous grid points, and the positions of the atoms
w.r.t. the grid points change. Often this leads to the oscillation of the total energy
(and other values), and can sometimes cause problems.

With the grid and plane waves each part of the simulation cell is treated with
equal precision. This is not the case with the localized basis sets. The basis
functions are centered at the atomic nuclei, and the functions are (often) calculated

4One can argue that grid is not a basis set, but from technical point of view there is no reason
to treat it differently.
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from single atom calculation, so they resemble atomic orbitals. They are designed
to represent electron wave functions near the atoms, but the inter-atomic region
cannot be reproduced as accurately as with previous two basis sets. It is therefore
challenging to describe highly non-local electrons with localized basis set. The
advantage is that for systems, where this kind of basis is good enough, the use of
localized basis functions is often orders of magnitude faster.

With grid and plane wave basis the basis set is chosen before the calculation.
This is different with localized basis set, where each atom contains some number
of basis functions. This means that the more there are atoms in the simulation
cell, the better the basis set is. From this fact arises a serious problem, called basis
set superposition error. It can be explained by simple example of calculating the
adsorption energy of a molecule on the surface. First we calculate the total energies
of the clean surface and the molecule in gas phase. Then we calculate the total
energy of the system, where the molecule is adsorbed on the surface. However,
now both the molecule and the surface have more basis functions available than
in the previous calculation. This means that the total energies are not strictly
comparable, and the adsorption energy (calculated as the difference of the separated
systems and the adsorbed system) may contain considerable errors. This error can
be decreased by adding so-called ghost atoms on the clean surface and gas phase
molecule calculations. It means that we don’t add real atoms in the system, but
the same basis function (at the same places) as in the combined system, so that
the isolated systems can benefit from the same extra basis functions.

2.4.4 Projector-augmented wave method and core states

The parts of the wave functions between the atoms are considerably smoother
compared to the parts close to the atomic nuclei, where they often oscillate rapidly.
Whether using a grid or plane waves as a basis, representing these oscillations
accurately would require so dense grid or so large plane wave basis that it is
practically impossible. The way to circumvent this problem is to treat the spatial
region near the nuclei separately.

One way to do this is to use projector-augmented waves (PAW). In this approach
there are regions around the nuclei (augmentation spheres) where the wave functions
are represented using pre-calculated partial wave functions. They are element-
specific, and represent well the oscillations of the wave functions near the nuclei.
They are generated by performing a DFT calculation for an isolated atom with
dense grid. For heavy elements the relativistic effects are taken into account by
scalar-relativistic approximation.

In PAW calculations most operations are performed with smooth pseudo wave
functions, but whenever needed, there is a linear transformation that augments
the pseudo wave functions with the partial waves and returns the normalized
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Figure 5: The all-electron and pseudo densities of the Au–3 cluster in the plane
z = 0Å, calculated with the GPAW DFT code. Upper figures show the cross
sections of the densities at z = 0Å. The all-electron density is localized near the
atom nuclei, but the pseudo density has maximum values around the nuclei at
the augmentation sphere edges. Lower figures show the densities along the line
z = 0Å, y = 3.8Å (marked in the upper figures). Note that the color bar in panel
a is not linear.

all-electron wave function. The advantage is that the smooth pseudo wave function
can be stored in coarse grid and only inside the augmentation spheres the grid is
denser. In figure 5 the all-electron and pseudo density of Au–3 are shown.

We are often interested in studying systems with several hundreds of atoms.
Simulating a bare gold cluster with 100 atoms (each contains 79 electrons) would
mean solving the KS equations for roughly 4000 electronic states5. If the simulation
cell is a cube with side length 20Å, the grid spacing 0.2Å, the wave functions can

5Assuming spin-paired calculation (two electrons per state) and some empty states
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be chosen to be real-valued, we would need

(20Å)3

(0.2Å3
)
× 4000× 8B = 32 000 000 000B = 29.8GB

memory for simply to store all the wave functions of a spin-paired calculation. This
specific example could be calculated, but it shows that calculations quickly become
very demanding.

Often in solid-state physics and in chemistry we are interested in atomic
structures and chemical bonding. These are both mainly determined by the valence
electrons of the atoms. The core electrons sit considerably closer to the atomic
nuclei and do not participate in bond formation. This is the reason why elements
in the same columns of the periodic table have similar chemical properties: their
valence electron shells are similar. Therefore to make calculations less demanding
it is common strategy to explicitly simulate only the valence electrons, and treat
the core electrons as frozen. In the previous example this would reduce the number
of needed states from 4000 to 600. This means that we do not have KS single
electron wave function for each electron. The total density is however obtainable
by augmenting the pseudo-density with the core electron contributions.

2.4.5 Limitations of the DFT

In the derivation of DFT we have used several mathematical tricks, the most
obvious being switching into non-interacting system and single-particle equations.
However, they are all mathematically rigorous and, as implied by the HK theorem,
the electronic density in the equations corresponds to the real electronic density.

The only part where we really have to do an approximation is when we give an
explicit form for the exchange-correlation functional. As explained in the chapter
2.3.1 there are many options to choose from. Because of this term even the electron
density contains some errors, and their shape and magnitude depends on which
XC functionals we are using.

As can be seen from equation (15) the exchange-correlation functional directly
affects the KS states. Unfortunately there is no unique way to rank the functional
according to their performance. For example the LDA, the simplest XC functional,
gives better bulk gold lattice constant than the more sophisticated PBE. Often the
rationale for choosing the XC functional for the calculations is to choose the one
that gives best results e.g. in terms of the lattice constant or band gap width when
compared to experimental values. However, one quantity might be reproduced
well while others poorly, so it is always necessary to do initial check calculations
when starting to study new systems or old systems with new exchange-correlation
functional.
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Because of the reasons mentioned above, estimating the errors of the calculation
is cumbersome. DFT code GPAW (more in next section) gives errors (with PBE
XC functional) in atomization energies and bond lengths of well-known molecules
less than one percent. To get good results, the calculations must be converged well
enough.

There is a vast number of quantities that cannot be derived from electron gas
density. For example calculating the optical absorbance requires information of
how the electron gas can be excited. Therefore it is very tempting to use the KS
single particle states to approximate the electronic excitations. Unlike the electron
density, the states do not correspond to real electronic states even in theory. This
being said, in practice analyzing them often offers great help, and for example the
states near the Fermi level have been successfully correlated with STM-images.[68]

The more rigorous way to study excitations in the system is via time-dependent
density functional theory (TD-DFT).[69] There are two approaches to the TD-
DFT: real-time propagation of the wave functions[70] and linear response approxi-
mation[71]. I will not go into details of these methods, but I want to point out that,
as in ground state DFT, where we need to approximate the exchange-correlation
functional, in TD-DFT we have to approximate the response functional, which tells
how the wave functions response to external electric fields.

2.4.6 The DFT code GPAW

The program I have been mainly using in my research is open source DFT package
GPAW (Grid-based projector-augmented wave method).[65, 72, 73] As the name
suggests, GPAW uses primarily a uniform real-space grid to represent the wave
functions and the electron gas density, and implements the PAW formalism to
handle the atomic core regions. Also the LCAO mode has been implemented[74],
and at the time of writing this thesis the implementation of plane waves basis set
has been also started. GPAW is very versatile program with tested PAW setups
available for various elements, and it can be efficiently parallelized over thousand
CPUs (with large systems). There is a possibility to do time-dependent DFT
(either by using linear response or time propagation)[75], transport calculations and
much more. The GPAW is used as an calculator, that is attached to the simulation
cell from the ASE package.

2.5 Density-functional tight-binding

Density-functional tight-binding (DFTB) is an approximation to the Kohn-Sham
approach of the DFT. In DFTB we use extremely small localized atomic orbital
basis to represent wave functions. Distinction to standard DFT is that here we
calculate all the integrals needed in evaluating the Hamiltonian and overlap of the
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wave functions beforehand and during the actual simulation we simply read and
interpolate the integrals from the tables. The exchange-correlation effects are not
calculated explicitly but incorporated into the parametrizations beforehand. I will
next briefly go through the main points of this method. The notation here differs
slightly from the ref. 80 and is hopefully even more clear.

The total energy of the system can be written in a form

E[n] =
∑
i

fi 〈ψi| −
1

2
∇2 |ψi〉+

∫
1

vext(~r1)n(~r1)

+
1

2

∫
1

∫
2

n(~r1)n(~r2)

|~r2 − ~r1|
+ EXC[n] + EII,

(30)

where the first term is the kinetic energy Ts of the non-interacting electrons, second
the potential energy due to external potential, third the Coulombic interaction
energy, fourth the exchange-correlation energy, and EII the repulsion energy between
the ions. It is the same as equation (20) with the kinetic energy written differently
and with the EII term. We then make an approximation that the ground state
density nmin is close to the density n0, which we would get if the neutral atoms
were brought together and they would not interact with each other. In other words

nmin = n0 + δn, (31)

where the minimum electron density is calculated as in DFT

nmin(~r) =
∑
i

fi |ψi(~r)|2 . (32)

where δn is small perturbation to the density n0. As an example the electron
densities of isolated gold atoms and a gold dimer, calculated using DFT, are shown
in figure 6. From figure 6e it can be seen that the difference δn between the two
densities is rather small.

Then we expand the terms w.r.t. the δn to second order (see appendix A for
details) to obtain

E[nmin] ≈
∑
i

fi 〈ψi| −
1

2
∇2 + vext + vH[n0] + vXC[n0] |ψi〉

+
1

2

∫
1

∫
2

(
δ2EXC[n0]

δn(~r1)δn(~r2)
+

1

|~r2 − ~r1|

)
δn(~r1)δn(~r2)

+ EXC[n0]−
∫
1

vXC[n0](~r1)n0(~r1)−
1

2

∫
1

vH[n0](~r1)n0(~r1) + EII.

(33)

The first term is called the band structure energy,

EBS[nmin] =
∑
i

fi 〈ψi| Ĥ0 |ψi〉 , (34)
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Figure 6: The cross sections (z = 0) of the isolated gold atoms and gold dimer
electron densities. Panels a and b show the electron densities of isolated gold atom
at positions ~Ra and ~Rb, respectively. Panel c shows the sum of the densities shown
in panels a and b. In panel d is shown the electron density of gold dimer obtained
from GPAW grid calculation. Panel e shows the difference between the densities
shown in panels c and d. In this case the interaction between the two atom drains
the electron density from behind the atoms into the bonding region between the
atoms.

in which the Hamiltonian operator Ĥ0 does not contain any charge transfer effects.
The second term takes into account the charge fluctuations in the system:

ECoul[n0] =
1

2

∫
1

∫
2

(
δ2EXC[n0]

δn(~r1)δn(~r2)
+

1

|~r2 − ~r1|

)
δn(~r1)δn(~r2) . (35)

All the remaining terms are gathered under one object, called the repulsion term

Erep = EXC[n0]−
∫
1

(
vXC[n0](~r1)−

1

2
vH[n0](~r1)

)
n0(~r1) + EII . (36)

Note that this term does not depend on the charge perturbation δn.
Tight-binding is very broad concept, and it has been used successfully before.[76–

79] I will now dig into how to calculate the three energy terms in practice.
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2.5.1 The band structure energy

As stated before, we use minimal localized atomic basis. The atom-centered orbitals
φi are constructed from real combinations of spherical harmonics, multiplied by
radial functions:

φi(~r) = Ri(r)Yi(r̂), (37)

where Ri is the radial function for state i and Yi is a real combination of spherical
harmonics with proper angular momentum for the state i. The radial functions
are obtained from DFT calculation of an isolated atom with added confinement
potential vconf to make the wave functions less diffuse:{

− 1

2
∇2 + vs + vconf

}
φi = εiφi. (38)

We have used quadratic form for the confinement

vconf(r) =

(
r

r0

)2

, (39)

where r0 is one of the parameters. The default is to set r0 = 2 · rcov, where rcov is
the covalent radius of the element. Minimal basis also means that we have only
one radial function for each angular momentum l. Each element has at least one
s-type basis function. For some elements (e.g. hydrogen) this is adequate. The
basis set can be enhanced by adding three p-type orbitals (good for e.g. carbon).
For transition metal elements with weakly bound valence electrons we can have in
addition five d-type orbitals. All of the basis functions are visualized in table 2 of
ref. 80.

We use these localized basis function to expand the KS states

|ψi〉 =
∑
µ

ciµ |φµ〉 , (40)

where the µ goes through every atomic orbital at every atom. The band structure
energy becomes

EBS =
∑
i

fi 〈ψi| Ĥ0 |ψi〉 =
∑
i

fi
∑
µ

∑
ν

c∗iµciν 〈φµ| Ĥ0 |φν〉︸ ︷︷ ︸
=H0

µν

.
(41)

2.5.2 The charge fluctuation term

The charge fluctuation is decomposed into localized atomic contributions, that are
approximated by a Gaussian distribution (this approximation is justified in figure 1
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of ref. 80). If we further assume that the exchange-correlation part is only local
(i.e. we ignore the XC effects of the charges between different atoms), we can write

1

2

∫
1

∫
2

δn(~r1)δn(~r2)

|~r2 − ~r1|
≈ 1

2

atoms∑
I,J

∆qI∆qJ γIJ , (42)

where

γIJ =

{
UI , I = J
erf(CIJRIJ )

RIJ
, I 6= J

(43)

and
∆qI =

∑
i

fi
∑
µ∈I

∑
ν

1

2

(
c∗iµciν + c.c.

)
Sµν − q0I . (44)

The parameter UI is the on-site energy of the charge fluctuation at atom I, and
it contains both Coulombic and XC energies. The default value for the UI is to
calculate the ionization energy minus the electron affinity:

UI = IE − EA, (45)

where the IE and EA are determined by DFT calculations. By default the
parameters CIJ are defined by the parameters UI of the atoms. Because with local
XC functional there are no long-range effects, the parameters CIJ can be tuned if
needed.

The ∆qI represents the extra charge on the atom I. The Sµν is the overlap
matrix of the orbitals φµ an φν , and q0I is the number of valence electrons on the
neutral atom I. The equation follows from the assumption that integrating the
overlap of two orbitals (φµ at site I and φν at site J) over the volume belonging to
the atom I can be approximated by half of the overlap of these orbitals over the
whole space, i.e. ∫

VI

φµ(~r)φν(~r) ≈
1

2

∫
φµ(~r)φν(~r) =

1

2
Sµν . (46)

This is called Mulliken population analysis.
With these approximations the Coulombic and XC energy due to charge fluctu-

ations is easy and fast to calculate. However, including these effects often increases
the calculation time considerably because more iterations are needed to get a
converged result.

2.5.3 The repulsion term

The biggest contribution to this term is the ion-ion repulsion (hence the name), but
it also contain all the errors we have made in the approximations so far. Because
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we don’t know how to treat all the parts in this term, the repulsion term is simply
fitted to some reference systems. The total repulsive energy in the system is then

Erep =
∑
I

∑
J>I

V IJ
rep(RIJ), (47)

where RIJ is the distance of the atoms I and J and V IJ
rep is the repulsive energy

between them. The functions V IJ
rep are fitted for each element pair separately.

We produce the repulsion potential by fitting a smoothing spline to the collected
data points. There is one parameter λ that defines how smooth the fitted curve is,
and another Rcut that defines the range of the repulsion.

These terms must be short-ranged for them to be transferable, so they cannot
be used to compensate all the errors we have made before. The default strategy
is to choose a set of reference systems (e.g. small molecules, bulk material) and
optimize the bond lengths or lattice constant by tuning the fitting parameters. The
parametrization process for thiolate-protected gold clusters is shown in chapter
3.1.1.

2.5.4 Calculating the ground state

We have now derived the equation for the total energy of the system as

E = EBS + ECoul + Erep

=
∑
i

fi
∑
µ

∑
ν

c∗iµcjνH
0
µν +

1

2

atoms∑
I,J

∆qI∆qJγIJ +
∑
I

∑
J>I

V IJ
rep .

(48)

Then we apply the variation principle δ(E −∑i εi 〈ψi|ψi〉) and solve the Lagrange
free multipliers for the set of equations∑

µ

c∗iµ (Hµν − εiSµν) = 0 . (49)

The overlap matrix elements are integrals

Sµν =

∫
1

φµ(~r1 − ~vµ)φν(~r1 − ~vν) . (50)

The main idea of the DFTB is to calculate these matrix elements beforehand. This
is done by first translating the coordinate system so that the φµ is at the origin,
and then rotating the coordinate system so that the φν is at the z-axis:

Sµν =

∫
1

ϕµ(~r1)ϕν(~r1 − vẑ), (51)
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where ϕ:s are the rotated basis functions, ~v = ~vµ−~vν and v = |~v| (figure 7a-c). Now,
due to the completeness of the spherical harmonics, the rotated basis functions
ϕ can be again expressed as linear combinations of the original basis functions φ
(figure 7d):

Sµν =

∫
1

(∑
i

aµiφi(~r1)

)(∑
j

aνjφj(~r1 − vẑ)

)

=
∑
i

∑
j

aµiaνj

∫
1

φi(~r1)φj(~r1 − vẑ),

(52)

where the coefficients a depend on the rotations, i.e. on the vector ~v. The summa-
tions go over the basis functions at the same atom with same angular momentum
(for example the rotated px orbital can be expressed as a linear combination of the
original px, py and pz orbitals).

Here I only talked about overlap matrix elements, but the Hamiltonian matrix
elements Hµν in equation (49) are calculated in the similar manner. The catch is
that all the integrals needed during the simulations can be transformed in a similar
way. Most of the integrals in the summation in eq. (52) are zero, and many of the
remaining ones are the same. The non-zero integrals are listed in table 3 of ref.
80. Only one of the each symmetrical combinations are shown, naturally e.g. the
integral between two py orbitals is the same as between the shown px orbitals.

As there is only a limited number of orbital pairs that give non-zero integrals,
and the integrals only depend on the distance of the orbitals, they can be tabulated
beforehand and then simply interpolated during the actual simulations. This gives
a huge speed-up to the calculations.

The coefficients aµiaνj for the integrals are listed in table 4 of ref. 80. I will
show how to derive them in appendix B.

2.6 DFTB implementation: hotbit

The DFTB method has been implemented in open-source python package hotbit.
It uses ASE to store the atomic coordinates (as does GPAW) so it is simple to
switch between different levels of theory. This enables e.g. quick initial structure
optimization using hotbit, and then refining the results with GPAW.

All the boundary conditions that can be used with GPAW are implemented
also into hotbit. In addition, there are e.g. mirror and rotational symmetries
available[81], which would be difficult to implement into uniform real-space codes.

Prior to performing calculations, all the needed elements and element pairs
have to be parametrized. We have included all the parametrization tools into the
hotbit code. As explained before, for the repulsive part some reference systems are
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Figure 7: The schematics of the Slater-Koster integral transformations. We want
to perform overlap integral of the basis functions pz at ~va and py at ~vb (a). First we
translate the system by −~va (b) and rotate (c) so that the one basis function is at
the origin and the second on z-axis. Finally we expand the rotated basis functions
in new basis (d). The arrows show all the integrals after the expansion. The grey
color indicates that the integral is zero by symmetry.

required. They can be systems calculated with e.g. DFT or experimental ground
state configurations.

2.7 Molecular dynamics simulations

As already stated before, we are using the Born-Oppenheimer approximation, which
means that the movement of the electrons and the nuclei are decoupled. The most
common way to do molecular dynamics (MD) simulations is not to simulate the
movement of the electrons explicitly, but assume that they are always in the ground
state in the external potential created by the moving nuclei.

Prior to performing MD simulations one must choose how to simulate the atomic
interactions. The requirement from the method is that it must provide the forces
acting on the atoms consistently. All of the previously mentioned methods are able
to do this.
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There are many different flavours of MD simulations. One straightforward
approach is to conserve the total energy of the system. This is called the micro-
canonical ensemble or NVE ensemble, where letters refer that the particle number
N, simulation cell volume V, and the total energy E are conserved. This is also
technically easy because we don’t need to worry about adding(removing) particles
to(from) the system. In this method we simply calculate the forces fi acting on the
atoms and then propagate them by integrating the classical equations of motion:

a
(0)
i =

1

m
f
(0)
i

x
(1)
i = x

(0)
i + v(0)∆t+

1

2
a
(0)
i (∆t)2

v
(1)
i = v

(0)
i + a

(0)
i ∆t,

(53)

where x is the position, v the velocity and a the acceleration of the atom i.
The upper indices refer to the instant of time, so the values at time t + ∆t are
obtained by integrating the equations at time t by interval ∆t. In practice this
straightforward method leads to large errors that quickly accumulate during the
subsequent integrations and more advanced (integration) schemes are developed
(e.g. velocity-Verlet algorithm[82]), but I will not dig into them.

Here I want to point out that it is important that the accuracy criteria of
the electronic structure calculation is high enough. When simply optimizing the
structure one ends up very close to the "real" ground state even with quite loose
convergence criteria. However, using the same criteria in the MD simulations easily
results to a considerable drift of the total energy. Therefore the convergence criteria
must be higher than might seem reasonable at the first glance.

The NVE simulation is a very well defined way to do MD. However, it leads to
the kinematics where the temperature is not constant, especially in systems with
small number of atoms. This is natural since temperature is a thermodynamical
quantity that is properly defined only for macroscopic system. Thus in small
systems there can be substantial fluctuations in such quantities. As a simple
example, one liter of hydrogen gas can have steady temperature, but the kinetic
energy of a particular H2 molecule varies substantially as a function of time.

Another way to do MD simulations is canonical ensemble, NVT. Here, instead
of conserving the total energy, the method tries to keep the temperature constant.
This can be achieved in many ways and maybe the most famous way is to use
the Langevin equation, where we add extra "noise" to the forces we get from the
ground state calculation:

a
(0)
i =

1

m
f
(0)
i + µi . (54)

The nature of noise term µi is random so the NVT MD simulation are non-
deterministic and depending on how the noise forces are generated the simulations
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can also be non-reproducible. In any case there is no good physical argument to
decide which way is the best, and therefore the arguments for NVT simulation are
flimsy. As can be seen from the previous hydrogen example, especially in small
systems constant temperature would be even non-physical.

There are other approaches, where e.g. the size of the simulation cell may vary
in order to keep pressure constant. Independent of the chosen flavor of molecular
dynamics simulation, the main procedures are more or less the same:

1. Put atoms into the simulation cell to initial coordinates.

2. Calculate the forces acting on the ions (if e.g. DFT or DFTB is used, then this
means solving the electronic structure for the current atomic configuration).

3. Propagate atoms according to Newton’s 2nd law for previously determined
time step.

4. Stop simulation or return to step 2.

2.7.1 Structure optimization

Usually we are interested in the ground state configuration of the system. Finding
the energy minimum of the system is a two-sided problem. Finding a local minimum
is done simply by incorporating the idea of MD simulation, but instead of moving
the particles according to the Newtonian laws, we simply move them along the
force vectors, and repeat until the residual forces are small enough. We may end
up to the global minimum if the initial atomic configuration was close to the real
ground state.

The problem is that often the atomic systems have many metastable configu-
rations[83], and the optimization algorithm might get trapped into one of those. To
circumvent this, more sophisticated structure optimization algorithms have been
developed, for example simulated annealing method, where the system is heated
in order to escape the metastable states, or genetic algorithms, which try to find
the optimal configuration by joining and mutating randomly created initial atomic
configurations.[84–87] As the number of atoms increases, it becomes impossible
to search the whole configuration space, and one can never be sure whether the
structure the algorithm finds is the most optimal one.
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3 Results

3.1 Modeling thiolate-protected gold clusters with density-
functional tight-binding

The theoretical prediction of the structure of thiolate-protected clusters from scratch
is extremely difficult. If certain mass and composition have been measured, it allows
us to concentrate on a smaller configuration space. However, clusters with more
than 30 gold atoms are already demanding systems for DFT and a faster method
would be extremely useful. The classical force fields are not accurate enough for
these systems because the electronic structure, which is an important stabilizing
factor, is not incorporated in the method. Therefore we turned our attention to the
DFTB since in this method the electronic effects are taken into account explicitly.

With DFTB we can access not only the atomic configuration but also some
electronic properties, e.g. charge transfer in the system. We used the atomic
and electronic structure as the indicators for the validity of our parametrizations.
We were not expecting 100% agreement with experimental or DFT results, but
qualitative agreement so that we could use DFTB to quickly identify promising
structure candidates and then switch to DFT for more accurate analysis.

3.1.1 Creating the parametrizations

First we needed to parametrize the important interactions. In this case we needed
interactions for Au–Au, Au–S, S–C and C–H element pairs. Of course in general
all the interactions are important, but in this study only the above mentioned
chemical bonds exist in the clusters (with SCH3 ligands), and other chemical bonds
do not play any role.

As explained before, the parametrizations contain physically three different parts.
First in the parametrization process one must construct the wave functions for the
isolated atoms with additional confinement potential defined by the parameter r0
(see equation (39)). This defines the band structure part of the total energy. We
used the default value for the confinement potential parameter r0, as I found that
these systems (or at least the properties we were looking at) are quite insensitive
to this parameter.

The next parameter to define is the Coulombic energy and the parameter U in
equation (45). We again used the default values for all the elements.

The last term in the total energy expression is the repulsive energy. After all
the other parameters are fixed, the repulsive potential is fitted to minimize the
difference between the DFTB and some reference systems. The repulsive term
affects directly only the geometry, so it is natural to try to minimize the difference
of the atomic positions.

35
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Figure 8: Fitting the repulsive forces for the C−H (a) and Au−Au (b) interaction.
The points show the deviations in the forces of the DFT and DFTB calculations
without the repulsive potential. The red dotted lines indicate the cut radii for the
repulsions.

The reference systems and the process of parametrizations for the thiolate-
protected gold clusters are discussed in the ref. [88]. In short, to parametrize
the Au–S, S–C and C–H interactions we used several small molecules. With our
parametrizations the geometries of these molecules were accurately reproduced.
For the Au–Au we tried several reference systems with varying luck. The DFT
optimized Au55 clusters tended to distort with DFTB. In the end using the gold
dimer and bulk gold gave the best results. The problems in parametrizing this
specific interaction hints that because the Au–Au interactions is metallic, it is
difficult to describe it using a minimal basis set employed in DFTB. This is seen in
the comparison of the fits of the repulsive potentials for the C−H and Au−Au in
figure 8. For the C−H repulsion several molecules give similar data points, which
hints that the parametrization is transferable. In the case of Au−Au, the dimer
curve and bulk gold data point differ substantially, which means that the Au−Au
parametrization may not work in all the systems with the same accuracy. Note
that the both curves are not close to zero at the cut distance. This hints that there
are long-range effects that are not completely described by the band structure and
Coulombic terms.
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Figure 9: The three thiolate-protected clusters with methyl groups as the ligands
in the units. The two Au atoms refer to gold atoms in the core (Auc) and in the
units (Auu).

We did not deliberately design our parametrizations only for protected gold
clusters but since we used known clusters as benchmark systems, the obtained
parametrizations are of course implicitly biased to some extent.

3.1.2 The simulations

We applied our new parametrizations to three thiolate-protected gold clusters
Au25(SR)

–
18, Au102(SR)44 and Au144(SR)60, shown in figure 9. For the first two

there is experimentally resolved atomic structure, for the third only theoretical
model exists so far. We compared the DFTB relaxed atomic configurations to the
DFT ones by measuring the distance of the atoms from the center of mass of the
cluster. In these clusters the atoms form "shells" which are seen as spikes in figure
10. In this sense the atomic configurations were well reproduced, the clusters did
not distort extensively and the similar atomic shell structure is observable in both
calculations. The DFTB is not perfect; for example in figure 10c) the 3rd and 4th
shell join into one shell. The symmetry, however, is preserved in all three cases.

The positions of the thiolates at the gold surface are not random, but each
has specific location so that the whole surface of the core is passivated. This is
important for the stability of the cluster. The gold-thiolate interface is accurately
reproduced by the DFTB and our parametrizations. The units bond to the same
gold atoms as in the experimental structure, and even the different Au−S bond
lengths are reproduced, as can be seen in the table 1 (note that we use same
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Figure 10: The radial distribution of the atoms of three different thiolate-protected
gold clusters, calculated with DFT and DFTB. a) Au25(SMe)–18 b) Au102(SMe)44
c) Au144(SMe)60.

parametrizations for all the elements, i.e. we do not have separate parametrizations
for gold atoms in the core and in the protecting units).

The comparison of charge transfer in different methods is not straightforward.
In DFT the excess charges on the atoms are often calculated using the Bader
method. In DFTB we get the charge of the atom from Mulliken analysis.[80]
Keeping in mind that the whole definition of which portion of the electron gas
belongs to which atom is arbitrary to high degree, comparing the numbers from
different simulation methods with different analysis methods very strictly is not
reasonable. We calculated the charge transfer using GPAW in both grid mode (to
get Bader charges) and in LCAO mode with different basis sets (to get Mulliken
charges) in order to make better comparison. This is shown in table II. in ref. [88].
The results vary to some extent but the general trends are similar.

The electronic structure is well reproduced. The clear angular momentum
character of the electronic states and the state separations near the Fermi energy
are quite comparable to the DFT results, as can be seen from figure 11. With DFTB
the symmetry of the clusters is slightly distorted and therefore the degeneracies of
some of the states are broken, and in the largest cluster the state ordering is not
exactly the same. The explanation might be that in larger clusters the electronic
structure is not as important as in the small ones, and the errors in the Au−Au
parametrization accumulate and overcome the electronic effects that try to preserve
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Table 1: The Au-S bond lengths in three thiolate-protected clusters, calculated
with DFT and DFTB.

Auc-S (Å) Auu-S (Å)
Au25(SMe)–18 DFT 2.400± 0.039 2.344± 0.004

DFTB 2.407± 0.017 2.378± 0.004
Au102(SMe)44 DFT 2.448± 0.035 2.348± 0.012

DFTB 2.519± 0.292 2.379± 0.006
Au144(SMe)60 DFT 2.463± 0.013 2.339± 0.004

DFTB 2.418± 0.004 2.377± 0.002

symmetry.
In this work we concentrated on the gold core and the gold-thiolate layer of

the clusters, and we used methyl groups as the ligands in the protecting layer. We
managed to produce parametrizations that reproduce the geometries and electronic
structures quite well. However, more tests and different benchmarks are required
to gain better understanding of the reliability of these parametrizations. Already
at this point the DFTB (and our parametrizations) could be used in studies where
the ligand layer is modified, since the DFTB reproduces the geometry of the gold-
thiolate interface well and organic molecules are an ideal target for tight-binding
methods.

3.2 Thermal behaviour of Au25(SH)–18
The Au25(SR)

–
18 cluster has been shown experimentally to work as a catalyst in

room temperature solution for hydrogenating aldehydes and ketones.[89] However,
at the atomic level the reaction is not understood. The reactive gold core is covered
by the protecting units, so it should not be able to react with anything. One
possible explanation is that the units vibrate in such a fashion that sometimes the
gold core is exposed for a short period of time. We decided to tackle this problem
with molecular dynamics simulations.

To produce a reliable trajectory using MD simulation the potential energy
surface (especially around the equilibrium configuration) should be well reproduced.
Because we do not have well established understanding of the strengths and
weaknesses of DFTB and our parametrizations, we decided to use DFT in LCAO
mode for this study. We ran four 10 ps long NVE molecular dynamics simulations
in approximately 300K, 400K, 500K and 600K temperatures. As explained before,
in NVE simulation the temperature cannot be controlled exactly, as so the average
temperatures of the simulations turned out to be 304K, 392K, 495K and 596K,
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Figure 11: The angular momentum character of the Kohn-Sham states from DFT
and DFTB calculations. a) Au25(SMe)–18 b) Au102(SMe)44 c) Au144(SMe)60. The
Fermi energy is set to zero in each panel.

with standard deviations of roughly 8%.
We found out that the structure of the cluster is surprisingly stable. In ground

state configuration the atoms are located at specific distances, or shells, from the
center of mass, and this feature is prominent even at 600K temperature, see figure
12. The thermal vibrations of course broaden the sharp ground state peaks but the
shells structure is clearly seen at all temperatures. Judging by the maxima of the
peaks there is slight thermal expansion in the cluster. The heat capacity, which
is the derivative of the total energy with respect to the temperature (the slope of
the graph in figure 13), stays the same in all the temperatures we studied. This
indicates that the cluster is not close to melting.

The Au25(SR)
–
18 cluster contains only long V-shaped protecting units, so each
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Figure 12: Left: The model cluster Au25(SH)
–
18 used in this study. Some of the

atoms are named for further analysis. Right: The radial atomic distributions in
different temperatures. Black lines indicate 0K positions.

unit contains three ligands. In the experimentally resolved structure the ligands
at the end of the units always point to opposite directions. This is probably the
configuration where the ligands feel the least steric repulsion from each other. In
our model we passivated the sulfur atoms simply with hydrogen atoms pointing to
the same directions as the real ligands. Naturally hydrogens do not see each other,
so in principle they could be able to flip to point to opposite direction. However,
during the 10 ps simulations we did not observe a single flip, which hints that
already the electronic structure alone keeps the orientation of the ligands ridig.
Because the real ligands cannot vibrate freely due to the steric repulsion and they
might be even bound together via van der Waals forces (e.g. via π-stacking[30]), it
is unlikely that there is any ligand flipping taking place in real clusters either.

We analyzed the bond length distributions in the cluster to get information
about the strengths of the bonds. The distributions are shown in figure 14. The
shape of the distribution of the Au–S bonds in the protecting units is symmetric,
which suggests that the bonds are vibrating in the harmonic region and are not close
to breaking. In contrast, the distribution of the Au–S bonds between the sulfur
atoms at the end of the units and the core gold atoms are asymmetric, suggesting
that the vibration is already anharmonic. This hints that these bonds are the
weakest and may be the first to break in longer simulations or higher temperatures.

The zero Kelvin atomic structure of the cluster atoms is highly symmetric.
This imposes symmetry also to the electronic structure and the states near the
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Figure 13: The average total energy of the cluster as a function of temperature.
The slope of the fit gives the heat capacity.

Fermi energy have distinct angular momentum character. The HOMO is threefold
degenerate with p-type symmetry, the LUMO is twofold degenerate with d-type
symmetry. In addition the HOMO-LUMO gap is over 1 eV. These effects further
stabilize the cluster. We studied how much the electronic structure is affected as
the thermal movement breaks the high symmetry of the 0K structure.

Both the HOMO and LUMO notably broaden (i.e. the degeneracy is broken)
compared to the 0K values and the broadening slightly increases as a function of
temperature. Also the HOMO-LUMO gap narrows as the temperature increases.
The gap is, however, over 1 eV in all the simulations. The angular momentum
characteristics of the HOMO and LUMO states are conserved. This indicates that
the superatom model is valid at room temperatures and participates in stabilizing
the cluster.

In our simulations we did not observe any phenomena that would explain
the catalytic behaviour of the cluster. The protecting units stay at their very
places during the whole simulations and the core is never exposed. It is of course
possible that our simulations were too short and that eventually we would observe
something that offers an explanation for the catalysis. Another possibility is that
the catalytic reaction is more complex and involves solvent molecules and perhaps
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Figure 14: The bond length distributions of the Au−S and Au−Au bonds in
Au25(SH)

–
18 in different temperatures. The black vertical lines indicate the bonds

at 0K.

several reacting molecules.

3.3 Modeling the coating of titanium dioxide and dye ad-
sorption

So far the systems studied have been so small that it has been possible to include
the whole particle into the simulation (albeit with smaller ligands). This changes
in the case of dye-sensitized solar cells.

This study was conducted in a collaboration with experimental groups, that
tried to improve the efficiency of DSSCs by coating the titanium dioxide with a thin
layer of aluminum oxide prior to attaching the dye molecules. They employed ALD
method to grow the coating layer by using trimethyl aluminum (TMA, Al(CH3)3)
and water as precursors. We studied the formation of the aluminum oxide layer
and its effect on the adsorption of the dye molecules by modeling them both with
DFT.

The general structure of the DSSC is explained in section 1.3. The porous
titanium dioxide on the anode is often prepared by sintering together TiO2 nanopar-
ticles, in which the anatase is the prevailing crystal structure. These are too large to
be simulated with reasonable resources. Therefore we applied the normal procedure
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Figure 15: The clean (a) and hydrated (b) TiO2 anatase (101) surface. The atoms
names in panel a indicate the coordination number of the titanium and oxygen
atoms, and in panel b the h refers to hydration.

to simulate only the surface of these particles with the help of periodic boundary
conditions.

As can be seen from e.g. STM images[90] in anatase nanoparticles the (101)
surface is the most exposed one due to it being energetically the most favoured
one. Therefore the natural choice was to model the TiO2 surface in the DSSCs
with anatase (101) surface. We intentionally ignored other surfaces, crystal defects,
terraces etc. and concentrated on the most stable facet on the TiO2 anatase
nanocrystal. Taking into account all the possible surfaces and numerous defects
would render the problem too complex to tackle.

In this the GPAW program package was again employed, this time with the
grid basis. We calculated the bulk anatase unit cell to be 3.82Å× 9.57Å which is
in good agreement with experimental and other theoretical results.[91, 92] Next
we built a three-layer thick stoichiometric (101) slab to model the surface. The
model is shown in figure 15a. Three layers is the thinnest that produces reasonable
density of states.[40, 93, 94]

In the ALD process prior to the first ALD cycle the surface is exposed to water
vapor, and H2O supposedly dissociates to form OH groups and hydrogens to surface
titanium and oxygen atoms, respectively. As there is no proper understanding of
how large portion of the surface is hydrated at these temperatures[95], we put the
maximal coverage of the OH-groups on the surface to get the upper limit for the
Al2O3 coverage after the first ALD cycle (figure 15b).

We modeled the first cycle of the ALD process, where the aluminum oxide
was grown on TiO2 anatase(101) with precursor molecules H2O and Al(CH3)3
(trimethyl aluminum, TMA). The ALD cycle is a two-step process, which can be
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expressed as the following two reactions

TiOH∗ + Al(CH3)3 → TiOAl(CH3)
∗
3−n + n · CH4

Al(CH3)
∗
3−n + (3− n) · H2O→ Al(OH)∗3−n + (3− n) · CH4

(55)

The first reaction describes the adsorption of the TMA molecule on the hydrated
surface. It can bind by losing one methyl group (n = 1 in the equation), which we
called single ligand exchange adsorption, or two methyl groups (n = 2), in which
case we called it double ligand exchange adsorption. The size of our surface model
is such that the maximum number of TMA molecules that can be adsorbed is four.
In the second reaction the adsorbed TMA molecules are exposed to vapor. In the
reaction the H2O dissociates and forms methane gas with the methyl groups of the
aluminum atoms.

The adsorption energy of a TMA molecule was calculated using the equation

Eads = Esurf+TMA − Esurf − ETMA, (56)

where, Esurf+TMA is the total energy of the surface with TMA adsorbed, Esurf is
the total energy of the hydrated surface, and ETMA is the total energy of the
TMA in gas phase. The negative adsorption energy means that the adsorption is
exothermic.

For single ligand-exchange adsorption we found three competing sites, and for
double ligand-exchange four sites were identified. These are shown in figure 16
with the corresponding adsorption energies. We developed a labeling scheme for
the adsorptions. The names of the surface atoms related to the adsorption are
separated by dashes. In single ligand-exchange adsorption two surface atoms are
involved and one donates a hydrogen. With double ligand-exchange adsorption
three atoms are involved, and two donate hydrogen atoms. Therefore in our labeling
the first or two first names indicate the surface atoms that donate hydrogens.

We estimated the surface coverage by calculating the differential adsorption
energies for the adding of TMAs. The adsorption energy for the Nth TMA is
calculated from the equation

EN
diff.ads. = EN

surf + x · ECH4
− EN−1

surf. − ETMA, (57)

where EN
surf is the total energy of a surface with N TMAs, ECH4

and ETMA the gas
phase energies of methane and TMA, respectively, and x is 1 for a single and 2 for
double ligand-exchange adsorption. We concentrated only on adsorptions h-h, 2c-h
and h-2c-h. Our calculations show that via single ligand-exchange adsorption three
TMA molecules may adsorb on the surface, the third with half of the adsorption
energy of the first two. In addition the third TMA rotates on the surface, and
effectively blocks the fourth TMA from adsorbing. If forced on the surface, the
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Figure 16: The three single (a-c) and four double (d-e) ligand-exchange adsorption
geometries found in this work. The names indicate to which atoms the aluminum
atom is binding (see figure 15 for the names). The adsorption energies are shown
after the names (in electronvolts).

binding of fourth TMA is energetically neutral. With double ligand-exchange
binding four TMAs can be adsorbed with similar energies.

We explained the difference by the steric repulsion of the methyl groups. In
the single ligand-exchange case the third TMA rotates on the surface in order to
maximize the distances between the methyl groups. With double ligand-exchange
this is not a problem, because each adsorbed TMA has only one methyl group
attached. Based on the binding energies we estimated the maximum methyl
group surface density to be 0.5ML to 0.75ML, or 5.1 nm−2 to 7.6 nm−2. This is
in accordance with an estimation for the maximum methyl group surface density
7.2 nm−2 given in ref. 47. Also the TMA (or aluminum atom) surface density from
our calculations was in good agreement with TOF-ERD measurements.[96] Because
the adsorption energies of different adsorption geometries are so similar, it is fair
to assume that the structure of the initial ALD layer is amorphous.

The obtained surface aluminum density suggests that the coating after the
first ALD cycle does not completely cover the TiO2 surface, but some areas are
left exposed to the electrolyte in the cell. The electrolyte used in the DSSC often
contains iodine, where it exist in I2 and I–3 forms.[97] As the I–3 is linear, we studied
whether it is able to penetrate the porous AlO layer by forcing an iodine atom to
the surface. Our calculations showed that there is virtually no barrier for an iodine
atom to adsorb from the gas phase to the TiO2 surface through the hole in the
aluminum oxide layer (see figure 17).
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Figure 17: Panels a and b show side and top views of the original TiO2 slab (balls
and sticks) and the 0.75ML AlO coating (surface). The top view shows the hole in
the coating. In panel c is plotted the total energy of the slab and an iodine atom
as a function of the distance of the atom from the highest Ti atoms on top of the
hole.

Next, we studied how the coating affects the binding of the most common
dye molecule N3. Binding on the clean anatase (101) surface has been studied
extensively[38–40] with DFT, which gave us a good starting point and ideas for the
binding geometries on the coating. We chose to study the surface with three TMAs
adsorbed via h-h single ligand-exchange adsorption (with methyl groups replaced
by OH groups). This surface we call OH-rich. In experiments the coated TiO2 is
often heated in order to remove excess water from the surface. Therefore we used
also another surface model, called OH-deficient, which is the OH-rich surface with
one OH group removed from each aluminum and the same number of hydrogen
atoms from the surface.

The best adsorption geometry on the clean surface (from ref. 40) and three
adsorptions on the coated surface we found are shown in figure 18. Our calculations
suggest that already after the first ALD cycle the N3 cannot anymore bind to the
original TiO2 surface due to steric repulsion and is therefore forced to bind on
the new aluminum oxide coating. This lifts the molecule at least 1.7Å, almost
doubling the adsorption distance from the clean surface, so the electron injection
rate is inevitably decreased. This, with the fact that it is possible that the electron-
electrolyte recombination may not be completely hindered, raises serious doubts
about enhancing the efficiency of the DSSCs via aluminum oxide coating.

We also studied the beginning of the second ALD cycle to find out whether
the holes in the coating could be filled in subsequent ALD cycles. Replacement
of the methyl groups with OH groups should be independent of each other, i.e. if
one can be replaced then they all will be. Therefore we modeled the first half of
the second cycle by simply replacing the methyl groups with OH ones. We studied
four different adsorption sites for the first TMA of the second cycle. We found out
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Figure 18: The different adsorption geometries of the N3 dye molecule. Panel
a shows the optimal adsorption geometry on the clean anatase (101) surface
(according to ref. 40). Panels b and c show the adsorptions on the OH-deficient
surface. In panel b the N3 is connected to the TiO2 whereas in panel c it binds to
the aluminum atoms. In panel d the adsorption on the OH-rich surface is shown.

that there is no big difference whether the TMA adsorbs on the original TiO2 or
on the new aluminum oxide. This indicates that the holes can be filled in the later
ALD cycles but also that the surface can be quite rough after few cycles.

Our results are based on the calculated thermodynamical properties (total
energy differences) and kinetic effects (e.g. reaction barriers) are ignored. There
is evidence that in real situation both adsorption mechanisms take place.[98] The
small size of our unit cell places restrictions on the accuracy of the surface cover
estimation. We used ideal anatase (101) surface to model the surface of the TiO2
nanoparticle. While it is arguably decent model for the surface, not all the details
(defects, terraces etc.) are taken into account. Therefore our results are suggestive.
However, as the methyl group surface density seems to be the limiting factor for the
adsorption of TMA molecules, one can assume that similar results can be obtained
also from other surface models.



4 Summary and outlook
In the nanoscale systems the exact knowledge of atomic and electronic structure is
important for understanding the properties of the systems. Even small structural
differences may result into very different properties. Solving the complete quantum-
mechanical problem, however, is impossible, and some approximations must be used.
I have used two tools, the density-functional theory, which is nowadays widely used
standard tool for theoretical physicists and chemists, and the density-functional
tight-binding, which can be used to solve the electronic and atomic structure.

The thiolate-protected gold cluster Au25(SR)
–
18 was studied by density functional

theory molecular dynamics simulations. We were able to identify that the weakest
point in the cluster is the gold-thiolate interface, judging by the anharmonic bond
length profile. Also the explanations for the stability (the symmetric atomic and
electronic configuration) hold in the presence of thermal vibrations. Our results
can help to explain other mysteries concerning the cluster, e.g. how it works as a
catalyst.

We were also able to employ the density-functional tight-binding to study
thiolate-protected gold cluster by developing parametrization for the needed chem-
ical interactions. The work can help to eventually simulate these particles with
considerably less computational resources, even though at this point more bench-
marking is still needed to get better understanding on the reliability of the method.

The properties of thiolate-protected gold clusters must be studied more, their
properties understood better, and their handling improved before they are ready
to be used in applications. The situation is different with dye-sensitized solar cells.
They have been actively developed since their introduction by Grätzel, and research
is needed mainly to enhance their efficiency and stability. The efficiency has been
tried to improve by coating the titanium dioxide in the cells with aluminum oxide
to prevent the electrolyte reaching the TiO2. Our simulations suggest that the
forming AlO layer does not prohibit this completely, but at the same time it does
weaken the electron injection rate from the dye to TiO2 by lifting the dye molecules
further away from the surface.

These two research subjects I have been involved with are quite different in
many aspects. Despite the completely different nature of these systems the same
computational methods can be used to describe and simulate them. This shows
that the methods are quite universal and highly adaptable to different problems.
Therefore their development is important to the nanoscience. As the commercial
electronic devices get smaller and smaller, also the fruits of the nanoscience research
become more comprehensible to the layman in the form of e.g. faster and smaller
electronic devices.
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A DFT total energy expansion
Functional is a mathematical object that returns a number when it is given a
function. They can be Taylor expanded around a function analogously to functions
that can be Taylor expanded around a point:

F [n0 + δn] = F [n0] +
∞∑
k=1

1

k!

∫
1

...

∫
k

δkF [n0]

δn(~r1)...δn(~rk)
δn(~r1)...δn(~rk), (58)

where ∫
1

δF [n0]

δn(~r1)
δn(~r1) ≡ lim

ε→0

1

ε

[
F [n0 + εδn]− F [n0]

]
. (59)

Writing down the expansion of the Hartree energy to the second order gives

EH[n0+δn] ≈ EH[n0]+

∫
1

δEH[n0]

δn(~r1)
δn(~r1)+

1

2

∫
1

∫
2

δ2EH[n0]

δn(~r1)δn(~r2)
δn(~r1)δn(~r2) . (60)

Using the definition (59) the first term is∫
1

δEH[n0]

δn(~r1)
δn(~r1) = lim

ε→0

1

ε

[
EH[n0 + εδn]− EH[n0]

]
= lim

ε→0

1

ε

[
1

2

∫
1

∫
2

(n0(~r1) + εδn(~r1)) (n0(~r2) + εδn(~r2))

|~r2 − ~r1|
− 1

2

∫
1

∫
2

n0(~r1)n0(~r2)

|~r2 − ~r1|

]
= lim

ε→0

1

ε

[
1

2

∫
1

∫
2

{
n0(~r1)n0(~r2)

|~r2 − ~r1|
+ ε

n0(~r1)δn(~r2)

|~r2 − ~r1|
+ ε

n0(~r2)δn(~r1)

|~r2 − ~r1|

+ε2
δn(~r1)δn(~r2)

|~r2 − ~r1|
− n0(~r1)n0(~r2)

|~r2 − ~r1|

}]

=

∫
1

∫
2

n0(~r1)δn(~r2)

|~r2 − ~r1|
=

∫
1

∫
2

n0(~r2)

|~r2 − ~r1|︸ ︷︷ ︸
=vH[n0](~r1)

δn(~r1) =

∫
1

vH[n0](~r1) δn(~r1).

(61)

We can use this result to calculate the second term:

1

2

∫
1

∫
2

δ2EH[n0]

δn(~r1)δn(~r2)
δn(~r1)δn(~r2) =

1

2

∫
1

δ

δn(~r1)

∫
2

δEH[n0]

δn(~r2)
δn(~r2)δn(~r1)

=
1

2
lim
ε→0

1

ε

[∫
1

∫
2

n0(~r2) + εδn(~r2)

|~r2 − ~r1|
δn(~r1)−

∫
1

∫
2

n0(~r2)

|~r2 − ~r1|
δn(~r1)

]
=

1

2

∫
1

∫
2

δn(~r2)

|~r2 − ~r1|
δn(~r1) =

1

2

∫
1

∫
2

1

|~r2 − ~r1|
δn(~r1)δn(~r2).

(62)
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62 DFT total energy expansion

Collecting the results of the expansion of the Hartree energy to the second order,
we get

EH[n0 + δn] ≈ EH[n0] +

∫
1

vH[n0](~r1) δn(~r1) +
1

2

∫
1

∫
2

1

|~r2 − ~r1|
δn(~r1)δn(~r2) . (63)

Using the definitions (31) and (32) we can split the second term as∫
1

vH[n0](~r1) δn(~r1) =

∫
1

vH[n0](~r1)nmin(~r1)−
∫
1

vH[n0](~r1)n0(~r1)

=
∑
i

fi 〈ψi| vH[n0] |ψi〉 −
∫
1

vH[n0](~r1)n0(~r1).
(64)

For the exchange-correlation functional we can formally do similar expansion:

EXC[n0 + δn]

≈ EXC[n0] +

∫
1

δEXC[n0]

δn(~r1)
δn(~r1) +

1

2

∫
1

∫
2

δ2EXC[n0]

δn(~r1)δn(~r2)
δn(~r1)δn(~r2)

= EXC[n0] +

∫
1

vXC[n0](~r1)δn(~r1) +
1

2

∫
1

∫
2

δ2EXC[n0]

δn(~r1)δn(~r2)
δn(~r1)δn(~r2)

= EXC[n0] +
∑
i

fi 〈ψi| vXC[n0] |ψi〉 −
∫
1

vXC[n0](~r1)n0(~r1)

+
1

2

∫
1

∫
2

δ2EXC[n0]

δn(~r1)δn(~r2)
δn(~r1)δn(~r2).

(65)



B Deriving Slater-Koster transform rules

Let’s derive some Slater-Koster transformation rules for the orbitals centered at ~va
and ~vb (see figure 7a). The orbitals we use are radial functions multiplied by the
real combinations of spherical harmonics. The real combinations are listed below:

s(~r) =
1√
4π

px(~r) =

√
3

4π
sin θ cosφ =

√
3

4π

x

r

py(~r) =

√
3

4π
sin θ sinφ =

√
3

4π

y

r

pz(~r) =

√
3

4π
cos θ =

√
3

4π

z

r

d3z2−r2(~r) =

√
5

16π

(
3 cos2 θ − 1

)
=

√
5

16π

1

r2
(
3z2 − r2

)
dx2−y2(~r) =

√
15

16π
sin2 θ cos 2φ =

√
5

16π

1

r2
(
x2 − y2

)
dxy(~r) =

√
15

16π
sin2 θ sin 2φ =

√
15

4π

1

r2
xy

dyz(~r) =

√
15

16π
sin 2θ sinφ =

√
15

4π

1

r2
yz

dxz(~r) =

√
15

16π
sin 2θ cosφ =

√
15

4π

1

r2
xz,

(66)

where in the second part we used the cartesian coordinate transformation

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ.

(67)

We want to move to a new coordinate system, where the first orbital is at the
origin, and the second on the z-axis. We do this by linear translation followed by
two subsequent rotations.

The first translation is trivial −~va, and after this the first orbital is at the origin
and the second at position ~v = ~vb − ~va (figure 7b). Here for simplicity I assume
that the ~v is in the positive octant.
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64 Deriving Slater-Koster transform rules

In this coordinate system we define two angles. The first φ1 is the angle between
the basis vector ê2 and the projection of the vector ~v to the ê1, ê2-plane:

φ1 = arcsin

(
v1√
v21 + v22

)
= arccos

(
v2√
v21 + v22

)
, (68)

where we use the notation ~v = v1ê1 + v2ê2 + v3ê3 and v = |~v|. The second angle θ2
is the angle between the basis vector ê3 and the vector ~v:

θ2 = arcsin

(√
v21 + v22
v

)
= arccos

(v3
v

)
. (69)

The first rotation along the z-axis corresponds to a coordinate transformation

x 7→ cosφ1 · x+ sinφ1 · y
y 7→ − sinφ1 · x+ cosφ1 · y
z 7→ z,

(70)

and the second rotation along the x-axis to

x 7→ x

y 7→ cos θ2 · y + sin θ2 · z
z 7→ − sin θ2 · y + cos θ2 · z.

(71)

Combining the two subsequent rotations gives us the complete transformation rules
for the coordinates
x 7→ cosφ1 · x+ sinφ1 · y 7→ cosφ1 · x+ sinφ1 cos θ2 · y + sinφ1 sin θ2 · z
y 7→ − sinφ1 · x+ cosφ1 · y 7→ − sinφ1 · x+ cosφ1 cos θ2 · y + cosφ1 sin θ2 · z
z 7→ z 7→ − sin θ2 · y + cos θ2 · z.

(72)

To shorten the equations we switch to a notation
v1
v

= x,
v2
v

= y,
v3
v

= z,
x2 + y2 = α and x2 − y2 = β. With this notation the rotation angles are:

sinφ1 =
x√
α

cosφ1 =
y√
α

(73)

sin θ2 =
√
α cos θ2 = z (74)

and the coordinate transformations

x 7→ y√
α
x+

zx√
α
y + xz

y 7→ − x√
α
x+

yz√
α
y + yz

z 7→ −
√
αy + zz.

(75)
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We can find out how the orbitals transform by substituting these into the formula
of the orbitals:

px =

√
3

4π

1

r
x 7→

√
3

4π

1

r

(
y√
α
x+

zx√
α
y + xz

)
=

y√
α
px +

xz√
α
py + xpz

py 7→ −
x√
α
px +

yz√
α
py + ypz

pz 7→ −
√
αpy + zpz.

(76)

Now we are ready to calculate the integrals between the p-orbitals at arbitrary
positions. The overlap integral is over the whole space, so the limits are not affected
by the transformations. Many of the integrals are zero by symmetry, the ones that
remain are listed in table 3 in ref. 80. I will calculate here the integrals between
the p-orbitals.

∫
1

px(~r1 − ~va)px(~r1 − ~vb) =

∫
1

px(~r1)px(~r1 − ~v)

=

∫
1

([
y√
α
px(~r1) +

xz√
α
py(~r1) + xpz(~r1)

]
×[

y√
α
px(~r1 − vẑ) +

xz√
α
py(~r1 − vẑ) + xpz(~r1 − vẑ)

])
= (the cross terms are zero by symmetry)

=
y2

α

∫
1

px(~r1)px(~r1 − vẑ)︸ ︷︷ ︸
=Sppπ(v)

+
x2z2

α

∫
1

py(~r1)py(~r1 − vẑ)︸ ︷︷ ︸
=Sppπ(v)

+ x2

∫
1

pz(~r1)pz(~r1 − vẑ)︸ ︷︷ ︸
=Sppσ(v)

= x2Sppσ(v) +
y2 + x2

=1−α︷︸︸︷
z2

α
Sppπ(v)

= x2Sppσ(v) +
1

α
(

=α︷ ︸︸ ︷
y2 + x2−x2α)Sppπ(v)

= x2Sppσ(v) +
(
1− x2

)
Sppπ(v).

(77)
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∫
1

px(~r1 − ~va)py(~r1 − ~vb) =

∫
1

px(~r1)py(~r1 − ~v)

=

∫
1

([
y√
α
px(~r1) +

xz√
α
py(~r1) + xpz(~r1)

]
×[

− x√
α
px(~r1 − vẑ) +

yz√
α
py(~r1 − vẑ) + ypz(~r1 − vẑ)

])
= (the cross terms are zero by symmetry)

= −xy

α

∫
1

px(~r1)px(~r1 − vẑ)

+
xyz2

α

∫
1

py(~r1)py(~r1 − vẑ) + xy

∫
1

pz(~r1)pz(~r1 − vẑ)

= − 1

α
xy(

=α︷ ︸︸ ︷
1− z2)Sppπ(v) + xySppσ(v)

= xySppσ(v)− xySppπ(v).

(78)

∫
1

px(~r1 − ~va)pz(~r1 − ~vb) =

∫
1

px(~r1)py(~r1 − ~v)

=

∫
1

([
y√
α
px(~r1) +

xz√
α
py(~r1) + xpz(~r1)

]
×[

−
√
αpy(~r1 − vẑ) + zpz(~r1 − vẑ)

])
= (the cross terms are zero by symmetry)

= −xz
∫
1

py(~r1)py(~r1 − vẑ) + xz

∫
1

pz(~r1)pz(~r1 − vẑ)

= xzSppσ(v)− xzSppπ(v).

(79)

To obtain all the coefficients listed in table 4 in ref. [80] we need to first rotate
the d-orbitals in the same way as we did for the p-orbitals in equation (76). Then
we simply need to evaluate all the non-zero integrals between s, p and d orbitals.


