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Abstract

The rapid and reversible phase change in chalcogenide phase-change materials is
an unusual property with many technological applications in rewritable optical
memory, such as CD, DVD, or Blu-ray Disc. Phase change materials are a promis-
ing candidate for next-generation electronic memory applications, and the first
devices became available in 2012.

In this thesis, we studied the structure and dynamics of four phase-change ma-
terials: Ge15Te85, Ge2Sb2Te5, GaSb and GaSb7 by simulating the structural models
using the density functional (DF) theory of electronic structure. We developed
a new model for Ge15Te85 by fitting experimental high-energy x-ray and neutron
diffraction data with an atomic structure that had a low DF energy. We studied
the crystallization progress of Ge2Sb2Te5 by simulating the structures with a fixed
seed to promote crystallization at 500 K, 600 K and 700 K. In the final article,
we used molecular dynamics simulation to mimic deposition of GaSb and GaSb7

thin films and modeled the as-deposited and melt-quenched polymorphs of those
alloys.

The new model for Ge15Te85 incorporates Ge-Ge bonds, which were excluded
from most earlier models. In this material, germanium has two different local en-
vironments (tetrahedral and defective octahedral), and tellurium can be classified
in two cases depending on its binding with Ge. Nanosized cavities calculated
using a Voronoi prescription comprise 22-24% of the total volume.

Ge2Sb2Te5 crystallization simulations at different temperatures agreed with
the experimental result for the fastest crystallization speed. We show that the
crystalline structure has “wrong bonds”, which are absent in the idealized model
of the structure, and that percolation of the crystalline cluster starts at an early
stage of crystallization. Cavities (vacancies) aid the atomic rearrangements during
crystallization.

GaSb simulations reveal tetrahedral local coordination for both species, as
in crystalline GaSb. This can explain the very fast crystallization speed of this
material. In GaSb7, gallium is again bonded tetrahedrally, but antimony has the
defective octahedral coordination found in elemental antimony. GaSb has no
rings with more than eight atoms but GaSb7 has larger rings. The lack of large
rings in GaSb was attributed to the lack of suitable cavities that would allow
long irreducible rings to surround them. GaSb structures include Ga-rich clusters
similar to the crystalline gallium structure.
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1 Introduction

Humans have a desire to store information. I could start with the dawn of time
and cave paintings depicting past events, but instead, I will move to modern
times. As of 2007, humans stored approximately 295 exabytes of non-redundant
information [1] and the number is growing exponentially. This number is beyond
comprehension for an average human, but if this amount of data was stored on
state-of-the-art hard disk drives (2 TB capacity, 3.5 in. form factor), those drives
could be used to pave an 8-meter-wide road for 243 kilometers, which is almost
the distance from Jyväskylä to Helsinki.

An increasing fraction of this information is personal digital photographs or
home videos recorded with mobile phones. The data is often kept on these mobile
devices. The mobile devices are powered by rechargeable batteries, and it is thus
preferred to use memory components with as little need for operating power as
possible. Phase-change (PC) memory can be made with low power requirements,
and it is the latest addition to the memory types available for consumer electronics.

In PC memory, the information is stored in the atomic structure. This is
inherently different from the electric charge used as the fundamental storage
medium in DRAM and flash memories, or the magnetization used in hard disk
drives. Data recording is done by switching the structure between ordered and
disordered phases, and reading utilizes the different electric or optical properties
of the phases.

The composition of the material dictates the behavior of the material, e.g.
how much operating power it needs or how fast is the data write speed. In
addition to varying the ratio of the main constituents, it is possible to affect
the behavior of the PC material by doping it with additional elements. Typical
dopant concentrations in PC materials are in the few percent range (in contrast
to the ppm range used with traditional semiconductors). It is easy to see that the
number of possible compositions is very large, and even though there exists some
composition-dependent trends in the physical parameters of the materials, there
is still much to be discovered.

PC materials are crystalline in the ordered phase, but the disordered amor-
phous phase has similarities with glassy materials. The most used glassy materials
are different compositions of silicate glass, which is mostly SiO2, and is widely
used, for example in windows, or drinking glasses. However, in theory any liq-
uid can be vitrified if cooled fast enough, and even molten metals form so-called
bulk metal glasses [2]. Good glass formers vitrify with slower cooling rates when
compared to poor glass formers, which require fast cooling rates to avoid crystal-
lization. Glasses in general are rigid, solid materials that do not flow (contrary to
the fallacy believed by many, [3]), and are not quite standard solids or liquids. The
widespread usage is not based on the fact that we understand the microscopical
structure of glasses, which even today is not well-known, and the same can be
said about the glass transition[4].

The glass transition, recrystallization, and atomic structure are in the very
heart of the operation of PC materials. The reason why PC materials are useful in
memory applications is that while they vitrify, the glassy amorphous state is not
particularly stable and the material can be readily recrystallized. Thus the fact
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that they are poor glass formers is very important for the operation of a memory
device, and the fast reversible transition between the two phases is what makes
these materials unique. In order to be able to design new PC materials without
having to resort to experimental trial-and-error method, it is imperative to shed
light on the effect of varying composition on the glassy phase structure and phase
transitions. One method which can be used for this is atomistic modeling of the
PC material structures and dynamics on a computer.

Computers have been utilized for scientific research for several decades while
the computing power has been rapidly increasing. Atomistic simulations have
been done since the 1960’s but the available computing power restricted the
simulations to small clusters, ideal lattices that could be modeled with a few
repeating atoms, or systems modeled with classical force fields that do not allow
for bond breaking and formation. During the last 10-15 years it has become
possible to model systems of a few hundred atoms with methods, such as density
functional (DF) theory, which solve the electronic structure and include bond
breaking and forming phenomena. These methods are excellent for modeling
PC materials, as switching the phase induces significant changes in the bonding
network.

This thesis comprises three studies of four PC materials. In the first article,
we studied the amorphous structure of Ge15Te85, and based on combining exper-
imental data with DF calculations we proposed a new structural model for the
material. In the second article, we simulated the crystallization of Ge2Sb2Te5 after
the formation of critical nucleus, and noted that cavities provide space for the
atomic rearrangements during crystallization, and the resulting crystal structure
has a number of defects in it. In the final article, we studied different polymorphs
of GaSb and GaSb7 PC materials. Here we created models for as-deposited (AD)
and melt-quenched (MQ) structures by mimicking the vapor deposition (fabri-
cation) of thin films, and melt-quenching the AD structures into MQ structures.
In general, fourfold coordination was present in GaSb for both species, while
in GaSb7 gallium was fourfold coordinated and antimony was threefold coordi-
nated. Interesting Ga-rich cluster resembling crystalline gallium was found in the
AD structure of GaSb.

The computer simulations presented in this thesis are computationally very
demanding and would not have been possible without the vast resources avail-
able at the Forschungszentrum Jülich, Germany. For example during the summer
of 2012, in two months alone, I used approximately 15 million core-hours of com-
putation time on the new IBM Blue Gene/Q (JuQueen) supercomputer. In terms
of floating point operations (FLOP, a measure of the amount of computation),
this is equivalent of 207 years of computing on a Core i5 2500 quad-core “Sandy
Bridge” desktop computer processor, which was released by Intel in early 2011.
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2 Theory

2.1 Density functional theory

2.1.1 Early history

The density functional (DF) theory of electronic structure was developed as a
direct consequence to the formulation of quantum mechanics in the early 20th
century. Most of this exciting history was brought to my attention by Dr. R.O.
Jones [5]. The accurate quantum description of an atom started in 1926 with Erwin
Schrödinger’s publication of Quantisierung als Eigenwertproblem [6], which he later
republished in English [7]. These contained a derivation of the Schrödinger
Equation (SE). Soon after this it was noted, however, that the exact solution of
this equation is impossible for most systems of interest and approximations are
needed in order to do calculations. The article, Quantum Mechanics of Many-
Electron Systems, by P.A.M. Dirac in 1929 starts with the following [8]:

The general theory of quantum mechanics is now almost complete,
the imperfections that still remain being in connection with the exact
fitting in of the theory with relativity ideas. These give rise to diffi-
culties only when high-speed particles are involved, and are therefore
of no importance in the consideration of atomic and molecular struc-
ture and ordinary chemical reactions, in which it is, indeed, usually
sufficiently accurate if one neglects relativity variation of mass with
velocity and assumes only Coulomb forces between the various elec-
trons and atomic nuclei. The underlying physical laws necessary for
the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too com-
plicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be devel-
oped, which can lead to an explanation of the main features of complex
atomic systems without to much computation.

To this day, only one-electron systems such as hydrogenoid atoms or the H+
2

molecule have been solved analytically [9]. The ability to do almost any kind of
numerical calculations on electronic structure is completely due to practical ap-
proximations that yield answers close enough to the exact one. Density functional
theory is one such practical approximation and today even one of the most used
ones.

The density functional theory is conceptually based on the Thomas-Fermi
(TF) model [10, 11], which, even though very inaccurate, was the first theory to
calculate electronic structure of matter using electron density as the fundamental
variable instead of wave functions. Dirac helped to develop the model further by
adding an electron exchange term to it in 1930. However the model remained too
inaccurate because of the kinetic energy term, which was only exact in the limit
of infinite nuclear charge and induced a significant error to the model otherwise.
In his paper on the TF model in 1930, Dirac [12] described the fundamental
philosophy behind the density functional theory:
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Each three-dimensional wave function will give rise to a certain electric
density. This electric density is really a matrix, like all dynamical
variables in the quantum theory (although one usually considers only
its diagonal elements, as one can insert these directly into one’s picture
of the atom). By adding the electric densities arising from all the
wave functions we can obtain the total electric density for the atom.
If we adopt the equations of the self-consistent field as amended for
exchange, then this total electric density (the matrix) has one important
property, namely, if the value of the total electric density at any time is
given, then its value at any later time is determined by the equations of
motion. This means that the whole state of the atom is completely
described simply by this electric density; it is not necessary to specify
the individual three-dimensional wave functions that make up the
total electric density. Thus one can deal with any number of electrons
by working with just one matrix density function.

The italics are in the original. It seemed clear (at least to Dirac) already
then, that the electronic density can be used to calculate any property of an
atomic system. These two quotations sum up the concept of density functional
theory very well. In it, the fundamental variable is the electron density and
it is an approximate method to solve problems which have proven impossible
for the exact methods. In the following sections I will outline the derivation
of density functional theory, explain the differences of different approximations
for the exchange-correlation energy and describe pseudopotentials, which are
simplifying approximations of the core electrons.

2.1.2 Derivation of density functional theory

There are a number of books and articles [9, 13, 14] where the density functional
theory is reviewed and the derivation generally starts from the Hohenberg-Kohn
(HK) theorems [15]. The HK theorems are the formal mathematical foundation
for working with the electron density instead of the wave functions when calcu-
lating energy and other observables. It is important to note that the DF theory
is in principle exact, and the only caveat is that the exchange-correlation energy
functional Exc is unknown. Thus, in order to calculate anything with DF theory,
we need approximations, and different functionals to approximate Exc have been
developed over the years with various results. The functionals will be covered in
more detail in section 2.2.1.

Starting from Schrödinger equation

ĤΨ = EΨ (1)

with antisymmetric wave function Ψ to satisfy the Pauli principle for interchang-
ing identical fermions, we can write a general Hamiltonian as
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Ĥ = −

P∑
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ZIZJ∣∣∣RI − RJ

∣∣∣ +
e2

2

N∑
i=1

N∑
j,i

1∣∣∣ri − r j
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P∑
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N∑
i=1

ZI

|RI − ri|
, (2)

where me is the electron mass, MI and ZI are the masses and charges of ions, and
RI and ri are the positions of ions and electrons, respectively.

The electronic part of the Hamiltonian ĥe is

ĥe = −

N∑
i=1

~2

2me
∇

2
i +

e2

2

N∑
i=1

N∑
j,i

1∣∣∣ri − r j

∣∣∣ − e2
P∑

I=1

N∑
i=1

ZI

|RI − ri|
(3)

= T + Vee + Vext. (4)

This electronic Hamiltonian is usually used to describe the movement of elec-
trons in the potential formed by ions, even though Vext can in principle be any
external potential. In practice when calculating the electronic structure, ions can
be regarded as being stationary because of the vast difference of the particle sizes
(Mp ∼ 1836 × me). This is called as the Born-Oppenheimer (BO) approximation,
or the adiabatic approximation, and it greatly reduces the complexity of the cal-
culations. Because the electronic structure is then solved with stationary ions, the
coordinates of the ions are regarded as parameters instead of variables and the
potential induced by them is included in Vext.

The HK theorems require that the electron density n (r) is “v-representable”,
same result was later proven for “N-representable” external potential by Levy. v-
representability requires that there exists a local potential v (r) for which n (r) is
a ground-state density, while N-representability requires only that the densities
are non-negative and integrate to the number of electrons, N [16, 17, 18]. All
v-representable densities are N-representable, but not vice versa.

For any N-representable density n(r), Levy proved [16] that for a variational
functional

F [n] = min 〈Ψ |T + Vee|Ψ〉 , (5)

the ground state energy

EGS ≤ F [n] +

∫
Vext (r) n (r) dr, (6)

with the equality holding only for the ground state density, i.e.

EGS = F [nGS] +

∫
Vext (r) nGS (r) dr. (7)
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Based on this we can define our energy functional

E [n] ≡ F [n] +

∫
Vext (r) n (r) dr (8)

= T + Vee + Vext (9)

= ĥe (10)

and by minimizing it, we will find the ground state energy of the system. The
functional F [n] is not known exactly. If it was, one could use DF theory to
calculate electronic energies exactly. The problems when using this method come
from the many-body nature of the kinetic energy of interacting electrons T and
the electron-electron potential Vee. One could use the TF approximation for the
former but that would lead to no molecular bonds or atomic shell structure.

Another approach to approximate the functional F [n] suggested by Kohn and
Sham [19] in 1965 was to write the functional as

F [n] = T0 [n] + VH [n] + Exc [n] , (11)

where the T0 is the kinetic energy of non-interacting electrons with the same density
as the interacting electrons, Exc is the exchange-correlation energy and

VH [n] = e2 1
2

"
n (r) n (r′)
|r − r′|

drdr′ (12)

is the Hartree potential (classical Coulomb potential). The idea is to perform most
calculations with much simplier description of a non-interacting system with
identical density instead of the true interacting system. This way all many-body
effects are moved to the Exc. The other terms can be solved exactly by using
single-particle (Kohn-Sham, KS) orbitals φi (r). The density is readily calculated
from these orbitals as

n (r) =

N∑
i=1

φ∗i (r)φi (r) (13)

and can be used to calculate the VH [n], T0 can be written explicitly as

T0 = −
~2

2m

N∑
i

∫
φ∗i (r)∇2φi (r) dr (14)

and the only term left is the Exc, for which one needs to find an approximation.
The selection of the approximation can affect the resulting energy substantially.
There is an extensive comparison of results obtained with different Exc functionals
and non-density functional methods in ref. [14].

Effectively, part of T (the correlation kinetic energy Tc = T−T0) and part of Vee

(the exchange and correlation potential Vxc = Vee − VH) are moved to Exc in the
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KS scheme. Exc can be further decomposed into exchange and correlation parts,
Ex and Ec, respectively. Ex is known as the Fock term and can be written with
single-particle orbitals as

Ex = −
e2

2

N∑
i

N∑
j,i

φ∗j (r)φ∗k (r′)φ j (r′)φk (r)

|r − r′|
drdr′. (15)

This way one can write everything, except for the correlation energy, Ec in
terms of K-S orbitals and not in terms of density directly. In practical applications
Ex is often approximated along with Ec, but a family of functionals (exact exchange
functionals) use the exact formulation of Ex in eq. 15.

2.2 Practical approximations

We now have formulated the basic theory. As described in the previous chapter,
the DF theory would be exact if the exact form of Exc would be known. The first
task is to devise an approximation for it. Such approximations are described in
the following chapter.

DF theory is usually formulated via KS orbitals in computer simulations. The
orbitals are expressed as a linear combination of mutually orthogonal basis func-
tions. The group of basis functions is called as a basis set, and there are multiple
ways to define one. In atom or molecular calculations a good choice would be
atom-centered orbital basis, but as the calculations in this thesis involve solids a
plane-wave basis is used. Plane-wave basis and the accompanying pseudopoten-
tials are described in the section 2.2.2.

We need to solve some practical matters for numerical calculations to be able
to calculate a ground-state energy of an electronic system on a computer. In
practical calculations the energy is calculated as follows. The exchange-correlation
potential is defined as

µxc [n (r)] =
δExc [n (r)]
δn (r)

=
Exc [n (r) + δn (r)] − Exc [n (r)]

δn (r)
, (16)

where δn (r) is a small variation in the density. The single-particle eigenvalue
equation is

[
−
~2

2m
∇

2 + VH + Vext + µxc

]
φi (r) = εiφi (r) , (17)

and we recall the density from eq. (13). These are then solved self-consistently
with a computer by calculating n (r) from initial guess orbitals, using the result to
calculate µxc [n (r)] and subsequently solving the eigenvalue problem. However
the orbitals φ (r) vary with the density, i.e. φ [n (r)], and thus, one can calculate
the new density nnew (r) using

9



nnew (r) =

N∑
i=1

φ∗i [nold] (r)φi [nold] (r) . (18)

The new and old densities, nnew and nold, should be the same. In practice, they
are not and this self-consistent loop is carried on until the difference is below a
convergence threshold defined by the user. There are various mixing schemes
developed to speed up the convergence (via damping the oscillations from old to
new density), where the new density is not used “as is” but is mixed with the old
density instead. A simple mixing scheme is to use a fraction of the nold in addition
to the orbitals calculated using it

nnew (r) = α
N∑

i=1

φ∗i [nold] (r)φi [nold] (r) + (1 − α) nold (r) . (19)

More details of various mixing schemes are described for example in ref. [9].

2.2.1 Approximations of the exchange-correlation energy

Various approximations for the Exc functional have been developed over the years.
Typically, they are referred to simply as “functionals”, and a common question
among the experts of the field is “Which functional did you use?”. Over the years,
several tens of functionals have been developed, and in 2001 John Perdew pre-
sented an elegant way to arrange them in families on rungs of a “Jacob’s ladder”
that is shown in figure 1. On the rungs are the functional families (right) and
each step adds a new quantity (left) on which the energy functional of that rung
depends on in addition to the dependencies of the previous rungs. However, the
added dependencies make the functionals require progressively more computa-
tion. It is also worth noting that adding more sophisticated dependencies to the
functional form does not automatically make it more accurate. The most accurate
functional tends to depend on the system which one is calculating, and the best
functional for one calculation might be outperformed by another one in a different
calculation [20].

The bottom rung is the local density approximation (LDA), where the exchange-
correlation energy is approximated with that of the homogeneous electron gas
(HEG) of equal density. The exchange part of this can be derived analytically but
correlation part requires, for example quantum Monte Carlo simulations. The
energy can be written as

ELDA
xc =

∫
n (r) εH

xc[n (r)]dr, (20)

where the εH
xc[n (r)] is the exchange-correlation energy per electron in HEG with

density n. In the LDA calculation this is a function of r regardless of the HEG
density itself being homogeneous, because within LDA the density varies, and it
is assumed separately for each r that εH

xc = εH
xc [n (r)].
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Figure 1: Jacob’s ladder of approximations for exchange-correlation energy func-
tional after J.P. Perdew [21].

The next rung is the generalized gradient expansion (GGA) functionals. In
addition to the value of density in each point r they incorporate the rate of change
of the density, ∇n. In a sense, LDA can be regarded as using zeroth-order ap-
proximation and GGA as the first-order approximation of the density profile. A
general GGA functional form can be written as

EGGA
xc =

∫
n (r) f [n (r) ,∇n (r)]dr. (21)

At this stage the number of possibilities for different functionals increases greatly.
The LDA is in principle unique with possibly different parametrizations but in
the GGA world there is no perfect way to define a functional.

One GGA functional is known as the Perdew-Burke-Ernzerhof (PBE) func-
tional [22]. As a non-empiciral functional it has no adjustable parameters other
than those of the LDA part, and it is the basis for another functional tailored
specifically for surfaces and solids (PBEsol) [23], which in turn was used for most
calculations of this thesis. Another widely used GGA functional is the BLYP
functional [24], which combines Becke’s exchange functional (B) [25] and Lee-
Yang-Parr (LYP) correlation functionals [26]. B and LYP functionals (and thus
also BLYP) differ from other commonly used functionals by being derived from
short-range two-particle effects instead of electron gas properties [24]. It is impor-
tant to note that on the GGA level it is impossible to construct a functional that
would give accurate molecular dissociation energies as well as accurate energies
for densely packed solids and their surfaces [23]. This is one more reason why
there are so many functionals. Naturally, one needs to choose a good functional
for the system one is calculating.

The third rung includes meta-GGA functionals that include the orbital-dependent
kinetic energy
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τ (r) =
~2

2m

occ∑
i

∣∣∣∇φi (r)
∣∣∣2 (22)

or the second derivative of the density (∇2n)

EmGGA
xc =

∫
n (r) f [n (r) ,∇n (r) , τ (r)]dr. (23)

In addition to PBEsol, the other functional used in this thesis is the Tao-Perdew-
Staroverov-Scuseria (TPSS) functional [27], and it is an example of this rung and
functional family. While these functionals are not true orbital functionals, they
contain an orbital-dependent term (τ).

The last two rungs are occupied by hybrid functionals which utilize the exact
exchange (EXX) representation (Eq. 15) of the exchange part of Exc and calculate the
correlation part in various ways. These functionals are directly dependent on the
orbitals, either only occupied orbitals or both occupied and unoccupied orbitals.
Hybrid functionals are typically functionals that have combined the exchange and
correlation energies from multiple methods. These can include the EXX with a
weight factor. For example, the B3 functional [28] combines the local spin-density
approximation (LSDA), EXX, the B88 functional [25] and PW91 functional [29]
with three (hence the name) empirically fitted weight coefficients, and B3LYP
[30] combines the B3 and LYP functionals (using VWN local correlation [31]).
The Heyd-Scuseria-Ernzerhof (HSE) functional [32] is an example of a hybrid
functional that weights computation speed in its design. HSE uses PBE0 [33],
a hybrid functional by Perdew, Burke and Ernzerhof based on PBE, and utilizes
Coulomb screening to speed up calculations in metallic solids and large molecules.

Functionals on all rungs have also corresponding spin-polarized versions,
which are actually the ones more commonly in use. In these, the density n is
divided into spin-up and spin-down densities that sum up to the total density
n (r) = n↑ (r)+n↓ (r) and the corresponding terms are explicitly dependent on the up
and down spin densities: εH

xc[n (r)] ⇒ εH
xc[n↑ (r) ,n↓ (r)] and f [n (r) ,∇n (r) , τ (r)] ⇒

f [n↑ (r) ,n↓ (r) ,∇n↑ (r) ,∇n↓ (r) , τ↑ (r) , τ↓ (r)].

2.2.2 Plane-wave method and pseudopotentials

Plane-wave basis set consists of plane waves with different energies up to a
cutoff energy, which is defined in the simulation parameters. A higher cutoff
energy means more individual plane-waves and increased cost of computation. In
principle, this cutoff should be very high because of the sharply-peaking potential
of the atomic nuclei which require similarly-shaped waves (high energy means
short wave length and thus steep oscillation) to approximate wave functions
across the nuclei regions. This requirement can be alleviated by the usage of
pseudopotentials which replace the core electron states and the nucleic charge
with a unified potential. This potential is less steep than pure nucleic potential,
and this makes it possible to achieve good accuracy with lower energy cutoff for
plane-waves.
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The pseudopotentials used in this thesis are norm-conserving and scalar-
relativistic Troullier-Martins pseudopotentials [34]. In their paper, they list four
criterion that most pseudo-potentials satisfy. First, the valence pseudo-wave-
function generated from the pseudo-potential should contain no nodes. Second,
pseudo-wave-function and all-electron wave functions are equal beyond a suit-
able l-dependent cutoff radius rcl. Third, total charge within a sphere with radius
rcl are equal. This is the norm-conserving condition

∫ rc

0

∣∣∣rRPP
l (r)

∣∣∣2 dr =

∫ rc

0

∣∣∣rRAE
l (r)

∣∣∣2 dr, (24)

where RPP
l and RAE

l are the pseudo-wave function and the all-electron wave func-
tion, respectively. And fourth, valence all-electron and pseudopotential eigenval-
ues must be equal.

Troullier and Martins prescribe a recipe for a pseudopotential, where a radial
SE

(
−

1
2

d2

dr2 +
l (l + 1)

2r2 + V
[
ρ; r

])
rRln (r) = εnlrRnl (r) (25)

is inverted to solve the screened pseudopotential

VPP
scr, l (r) = εl −

l (l + 1)
2r2 +

1
2rRPP

l (r)
d2

dr2

[
rRPP

l (r)
]
, (26)

V
[
ρ; r

]
is self-consistent one-electron potential. The ionic pseudopotential is then

calculated as

VPP
ion, l (r) = VPP

scr, l (r) − VPP
H (r) − VPP

xc (r) , (27)

by subtracting the Hartree VPP
H (r) and exchange-correlation VPP

xc (r) potentials from
the screened potential. This yields a pseudopotential which has a separate l-
dependent potential acting on each angular momentum component of the wave
function. The ionic pseudopotential operator is defined as

V̂PP
ion (r) = VPP

ion, local (r) +
∑

l

Vnonlocal, l (r) P̂l, (28)

where VPP
ion, local (r) is the local potential and

Vnonlocal, l (r) = VPP
ion, l (r) − VPP

ion, local (r) (29)

is the semilocal potential for each l and P̂l is the projection operator of the angular
momentum component l. The semilocal potential can be written as
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VKB
nonlocal, l (r) =

∣∣∣Vnonlocal, l (r) ΦPP, 0
l (r)

〉 〈
ΦPP, 0

l (r) Vnonlocal, l (r)
∣∣∣〈

ΦPP, 0
l (r)

∣∣∣ Vnonlocal, l (r)
∣∣∣ΦPP, 0

l (r)
〉 (30)

following Kleinman and Bylander (KB) [35]. Here the ΦPP, 0
l (r) is the atomic ref-

erence pseudo-wave-function that includes the l-component for which the pseu-
dopotential was calculated. This separable form of the potential greatly reduces
the computation when calculating electron structures.

One last property affecting the computational cost is the smoothness of the
pseudopotential. The term smoothness refers to the convergence rate of the cal-
culation in this context – calculations using smoother pseudopotentials converge
faster in terms of the required plane waves in the basis set. One way to create
smooth pseudopotentials, referred to by Troullier and Martins as their “favorite
recipe”, is the following. The functional form of the pseudo-wave-function is

RPP
l (r) = rl exp

[
p (r)

]
, (31)

where

p (r) = c0 + c2r2 + c4r4 + c6r6 + c8r8 + c10r10 + c12r12 (32)

with r ≤ rc, which is the cutoff radius for the pseudopotential. At higher radii,
the all-electron wave function is used. This formulation yields a pseudopotential
which, in addition to conforming to the four criterion listed above, is very smooth
at the origin because the polynomial contains only even powers of r.

The coefficients c are determined with seven conditions which are listed in
the original paper. These are norm-conservation requirement, five continuity-
conditions of the polynomial and its first four radial derivatives at rc to make the
transition from pseudo-wave-function to all-electron wave function smooth, and
a zero-curvature condition for the screened pseudopotential at the origin to allow
the use of smaller energy cutoff for the plane-wave basis. Finally, scalar-relativistic
pseudopotentials take into account the fact that innermost core electrons in heavy
atoms have such high energies that relativistic corrections are required. This is
the case for the chalcogenide alloys in this thesis.
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3 Methods

3.1 CPMD software package

CPMD [36] is a parallel simulation code, which specializes in density-functional /
molecular dynamics (DF/MD) simulations with plane-waves and uses pseudopo-
tentials. CPMD can be used for Car-Parrinello molecular dynamics (CP-MD) as
well as Born-Oppenheimer molecular dynamics (BO-MD) calculations, and both
methods were used in the present work. The code also supports various geome-
try optimization methods. The calculations are parallelized over the 3D Fourier
transform grid points (in one of the dimensions) and by the use of distributed
linear algebra. The former results in good “soft scaling” of the code, which means
the scaling when problem size is increased with the number of processors. This
makes it possible to efficiently increase system size while increasing the number
of processors.

3.2 Molecular dynamics calculation methods, BO-MD and CP-
MD

In the present work, two different molecular dynamics methods were used. Both
are based on electronic structure calculations with the DF theory, and they are
sometimes referred to as ab initio molecular dynamics (AIMD) methods [37], al-
though chemists tend to reserve the term for methods that solve the Schrödinger
equation explicitly. The first method is the Born-Oppenheimer molecular dy-
namics (BO-MD), and it uses a similar scheme as the BO approximation in the
electronic structure calculations: For each timestep, solve the electronic structure
with stationary ions, then calculate the ionic movement with stationary electronic
structure and recalculate the electronic structure with new ionic positions.

After solving the electronic structure, we can apply the Hellman-Feynman
theorem and calculate the forces from the ground state energy as

FI = −
∂E [n0 (r)]
∂RI

, (33)

where the ground state density n0 (r), as well as the energy calculated from it are
dependent on the ionic positions RI through Vext, as described in section 2.1.2.
These forces yield ionic accelerations aI = FI/mI, and together with the time step
length, old positions and velocities a new set of ionic positions and velocities are
calculated. There are various methods to calculate the values for the next step,
as the discretization of time causes the ionic trajectory to drift away from the
exact trajectory over time, particularly if they are calculated simply as RI, new =
RI, old + ṘI∆t and ṘI, new = ṘI, old + aI∆t. One solution is a predictor-corrector
method, where the next step is first calculated as such (predict step), and then
the value is refined (correct step). In more sophisticated methods multiple prior
values are taken into account [38]. The electronic structure of the next step can
be calculated with the new ionic positions. The old electronic densities of few
past steps are commonly used to calculate the initial guess for the self-consistent
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loop. This helps in reaching the convergence, and in practice, a single BO-MD
step in the middle of a simulation requires much less computational effort than
the calculation of electronic density of the same ionic structure from scratch.

Another molecular dynamics method used in the present work is the Car-
Parrinello molecular dynamics (CP-MD) [39]. It also uses the DF theory to cal-
culate electronic structure, but after the initial electronic structure calculation the
electronic KS-orbitals are coupled to the ionic movement and propagated along
rather than kept stationary while the ions are moved, as was the case in BO-MD.
In this scheme, the ground state of the electron orbitals is allowed a finite “thick-
ness”, in energy, where the electronic solution is allowed to vary and fictitious
electron dynamics is used to couple electronic and ionic motion.

The formulation of CP-MD follows the Lagrangian mechanics with the added
coupling to electronic wave functions. The Lagrangian is [40]

L = µ
∑

i

∫ ∣∣∣ψ̇i

∣∣∣2 dr +
1
2

∑
I

MIṘ2
I − E

[{
ψi

}
, {Ri}

]
+

∑
i, j

Λi j

(∫
ψ∗i (r)ψ j (r) dr − δi j

)
,

(34)

where dot denotes a time derivative, ψ are the electronic orbitals, Ri and MI the
ionic positions and masses, Λ are Lagrange multipliers for the orthonormality
constraint, and µ is the fictitious electron mass. Usually µ of the order of 102me-
103me is used to make electron dynamics sufficiently slow to allow for a longer
time step. However the time step required is still much shorter than what is
required with BO-MD.

The equations of motion of this Lagrangian are then

µψ̈i (r, t) = −
δE

δψ∗i (r, t)
+

∑
j

Λi jψ j (r, t) (35)

MIR̈I =
∂E
∂RI

. (36)

This way the ground state does not need to be solved for every ionic configuration
but rather the ground state can be propagated in time while moving the ions.

In the present work, BO-MD was used for the simulations of Ge15Te85 and
Ge2Sb2Te5, while the CP-MD was used with GaSb and GaSb7.

3.3 Periodic boundary conditions

Imposing periodic boundary conditions (PBC) is a practical trick and an ap-
proximation, where one uses a small super cell for the material in question and
multiplies that infinitely many times in one, two or three directions to model the
bulk material. For crystalline structures with translational symmetry (this rules
out so called quasicrystals), it is known that a wave function of an electron has
the same translational symmetry [41] and it can be used with other symmetry
operations as well [42]. In periodic crystals, the primitive cell can be used, and in
some cases only a few atoms are needed to reproduce the crystalline structure; for
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example the NaCl rock-salt structure has two atoms in its primitive cell while the
GaSb zinc blende structure has eight. This makes it possible to model a bulk crys-
tal with very little computation. In nature, however, crystalline materials have
never perfect periodicity over a macroscopic length scales but it is a reasonable
approximation in most cases.

Using primitive cell neglects random defects, and their inclusion requires an
increased super cell sizes to allow sufficient statistics and randomness in the
defect placement. For disordered solids, a larger super cell sizes have obvious
advantages as the materials are assumed to have no periodicity in the first place.
The larger system sizes improve statistics and reduce the artificial effects of the
imposed periodicity, and this leads to more accurate structural models. A general
rule of thumb with disordered materials is that structural features up to a distance
of one half of the super cell size can be regarded as reliably modeled. With large
super cell it is sufficient to calculate the electronic structure in only one k-point
(Γ) in the Brillouin zone, but for smaller structures it is necessary to have multiple
(up to a few tens of) k-points to properly sample the band structure.

3.4 Temperature control

A Nosé-Hoover thermostat is a common way to implement temperature control
in molecular dynamics simulations. It introduces an additional coupling in the
system with a thermostat, which drives the system towards a target temperature
(ionic thermostat) or target electronic kinetic energy (electronic thermostat) [43,
44]. The coupling is done by introducing an extra degree of freedom s into the
Hamiltonian of the system. The extended Hamiltonian is then expressed in a new
set of (virtual) variables ri, pi and t. The real variables (primes) can be expressed
in terms of the virtual variables as r′i = ri, p′i = pi/s and t′ =

∫ t
s−1dt. The new

Hamiltonian is then

H =
∑

i

p2
i

2mis2 + V (r) +
p2

s

2Q
+ gTk ln s, (37)

where ps is the conjugate momentum of s, Q is the mass of the virtual degree of
freedom, T is the target temperature of the thermostat, k is the Boltzmann constant
and g is essentially the number of degrees of freedom in the system.

This Hamiltonian results in a set of equations of motion, which are dependent
on s. The dependence can be eliminated [44] and the simplier equations of motion
can be written as

ṙi =
pi

mi
(38)

ṗi = F (ri) − ζpi (39)

ζ̇ =

∑
i

p2
i

mi
− gkT

 · 1
Q

(40)
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Comparing the two first equations with the coordinate equation of motion without
a thermostat [Eq. (36)] shows that the thermostat controls temperature essentially
by scaling the acceleration of ions with a term proportional to the velocity of
the ions (temperature). The coefficient of velocity is the thermodynamic friction
coefficient ζ ≡ ps/Q, and it follows the third equation listed above.

Multiple thermostats can be chained to achieve a damping effect on the ther-
mostat behavior. When using chained thermostats, the first thermostat directly
changes the ionic or electronic kinetic energy and the second thermostat affects the
amount of change. The subsequent thermostats work similarly, each affecting the
previous one and being affected by the next one. The last thermostat can be either
uncontrolled, meaning that it doesn’t have a subsequent thermostat that would
control it, or can be coupled back to the second-last thermostat in a loopback
fashion.

3.5 Reverse Monte-Carlo

Reverse Monte Carlo (RMC) is a mathematical method to fit a distribution of
atomic structures into a set of experimental data and other constraints. Coor-
dination numbers, bond angles and other structural parameters are used as the
user-specified constraints. RMC++ [45] was the code used in present work. In
contrast to Monte-Carlo scheme, where one uses (pseudo)random procedure to
calculate a probability distribution for a given phenomena, the RMC scheme uses
experimental probability distributions (pair distribution functions, structure fac-
tors, etc.) as the input, hence the name “reverse” Monte-Carlo. In RMC method,
the experimental data and user constraints form an acceptance criterion

χ2 =
1
δ2

∑
k

(
Scomp

k (Qk) − Sexpt
k (Qk)

)2
, (41)

where the sum is over data points k and superscripts denote computed and
experimental S (Q).

The computer then randomly displaces an atom in the candidate structure
and recalculates χ2, if χ2

new < χ2
old the move is always accepted and if χ2

new >

χ2
old then the move is accepted with a probability exp

[
−

(
χ2

new − χ
2
old

)
/2

]
. This

way the structure is gradually changed to another one with a better fit with the
acceptance criterion. In practice, RMC will return a distribution of structures that
statistically match the input data. The user constraints are important in addition
to the experimental data because the RMC method is a purely mathematical
method and will prefer the most disordered atomic configurations that fit the
experimental data unless constrained [46]. RMC without correct constraints is
known to produce flawed results, for example amorphous structures with metallic
electronic density of states for Ge2Sb2Te5 [47].
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4 Materials

This thesis considers phase-change (PC) materials, which is an important family
of chalcogenide alloys. PC materials are used in optical storage, i.e. rewritable
CD, DVD, and Blu-ray Disc. Recently, they have been utilized in electronic
memory as well (phase-change random-access-memory, PC-RAM or PRAM). In
this section, a short overview of the key concepts is laid out for the reader. There
is a number of extensive review articles covering all aspects of phase-change
memory, from theoretical foundations to manufacturing an array of memory
devices. This section is mostly based on two of them, references [48] and[49].

As PC materials have two phases, crystalline and amorphous (disordered,
glassy), I will start with an introduction to glassy materials. This is followed by
the classical nucleation theory, which is a simplified model for crystallization.
In this section I shall also describe modern computer memories, phase-change
materials and phenomena, and have a closer look at the specific materials studied
in this thesis.

4.1 Glasses

Most liquids form a glass if you cool them fast enough. The concept of a glass usu-
ally refers to an undercooled liquid-like structure where the atoms or molecules
move much slower than in the liquid; the difference can be as high as 14 orders
of magnitude. It is not clear why the material experiences such a change within
relatively small (some fraction of melting temperature) change in temperature.
The glass transition is not a phase-transition similar to thermodynamic transi-
tions (e.g. melting, freezing) and the glass temperature Tg cannot be defined
as one fixed number similarly to the transition temperatures of thermodynamic
transitions [4].

Knowledge of glass physics can be useful in various fields, for example liquid
physics or in “soft” condensed matter where glassy phases might occur in colloidal
systems, emulsions, beer foam, proteins, or granular materials. The glass concept
can also be applied to more exotic behaviors, for example in so-called “spin-glass”
the magnetic disorder freezes in low temperatures similarly to the positional
disorder in glasses [4].

Figure 2 is an Angell plot of various glasses adopted from ref. [50]. Glasses can
be strong or fragile in a sense that relates to the stability of the local environment
of an atom or a molecule over the glass transition, and this has nothing to do
with the mechanical shattering of a piece of glass. Rather the strong glasses tend
to have slow crystallization rates while the fragile ones crystallize faster. When
vitrifying a material, the quench needs to be fast enough to achieve vitrification
before crystallization happens, and thus fragile glasses are harder to vitrify. A
textbook example of a strong glass is SiO2, which has a local tetrahedral structure
both, below and above the Tg [4], while fragile glasses generally do not preserve
the local structure across Tg. The PC materials, such as Ge15Te85 and Ge2Sb2Te5

can be classified as fragile glass formers [51, 52], and their viscosities change
dramatically as a function of temperature at temperatures above Tg.
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Figure 2: Angell plot of viscosity (log scale) as a function of Tg/T. “Strong” glasses
follow the straight line, while “fragile” glasses have lower viscosities. Inset shows
the jump in Cp at Tg, which generally increases with fragility. Adopted from
ref. [50].

4.2 Classical nucleation theory

The classical nucleation (CN) theory is a theory that describes nucleation in liquids
and amorphous materials. In the CN theory the formation energy of a nuclei with
radius r is simply a sum of the free energy gained when a certain volume of
the material is in crystalline phase and the free energy cost to form an interface
between the crystalline and amorphous phases. The change in Gibbs free energy
for a spherical crystallite with radius r is thus

∆G (r) = −∆Gac
4
3
πr3 + σac4πr2, (42)

where ∆Gac is the Gibbs energy difference between amorphous and crystalline
phases per unit volume and σac is the amorphous – crystalline interfacial energy
per unit area [48]. For small r, ∆G (r) increases with radius, but after a critical
nucleus size (rc = 2σac/∆Gac) it is energetically favorable for a nucleus to grow.
The thermal fluctuations cause small nuclei to form and dissolve randomly, and
after a while there is a nucleus with r > rc which will continue growing.

Within the CN theory, one can model the heterogeneous nucleation with spher-
ical cap model, where the crystal is assumed to grow spherically from an interface.
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Figure 3: Spherical cap model for heterogeneous cluster formation. The crystal
is assumed to have the shape of a spherical cap. θ is the wetting angle, and
σrmas, σrmac, and σrmcs are the interfacial energies between the amorphous (a) and
crystalline (c) phases and the substrate (s). Adopted from ref. [48].

The interface can be a substrate or an existing crystal volume. We can write the
heterogeneous Gibbs free energy differences as

∆Ghet (r) = −∆Gac
4
3
πr3 f (θ) + σac4πr2 1 − cosθ

2
− π (r sinθ)2 σac, (43)

where

f (θ) =
(2 + cosθ) (1 − cosθ)2

4
. (44)

The wetting angle (θ) is the angle between the existing interface and the newly
grown spherical interface (fig. 3). We can compare the free energy for isolated
nucleus and spherical cap of equal radii, for which the nucleation energy can be
shown to be

∆Ghet = f (θ) ∆Ghom. (45)

In addition, the volume of spherical cap is the volume of a sphere multiplied by
f (θ), which means that the energy required per unit of crystalline volume – or
number of atoms for that matter – is equal in both cases.

This leads one to think that it is not the low growth rate, which makes nucle-
ation dominant PC materials to behave as they do but rather the exceptionally fast
nucleation rate. On the other hand, nucleation rate and growth speed are tem-
perature dependent [48] which enables one to tune the nucleation/growth ratio
of a given material. In these situations, it is possible to switch the material from
growth dominant to nucleation dominant, or vice versa.
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4.3 Memory in modern computers

Computer memories can be divided in two categories according to the time they
retain the stored data without operating power, volatile and non-volatile memory.
Currently computers use both, and the development has lead to very distinct
roles for both types: There is a very fast volatile memory to store frequently-
changing data and much slower non-volatile memory to store persistent data.
Modern DDR3 SDRAM memory has a latency time of ∼10 ns, data rates of tens
of gigabytes/s and a cost of few euros/GB, and is used for the working memory.
On the other hand, long term storage is done with a hard disk drive which has
a latency of milliseconds, data rate of hundreds of megabytes/s and a cost of
few eurocents/GB. In comparison to SDRAM, hard disks have approximately 105

times longer latency, and 100 times slower data transfer, but are 100 times cheaper
per byte. Solid state (flash) drives have become widely used during the last 5
years and are currently ∼1 order of magnitude faster and more expensive than
traditional hard disks with spinning plates.

DDR3 SDRAM memory consists of a large array of capacitors on an integrated
circuit (IC) board which either have charge (“1” bit) or have no charge (“0” bit).
However, the capacitors leak charge and will soon all show as “0” bit; this means
that the memory needs to be read and rewritten (refreshed) before this happens.
JEDEC standards define that the DDR3 SDRAM memory uses 7.8 µs refresh
interval [53], corresponding to ∼128 MHz refresh rate in order to preserve the
stored data for as long as the computer is switched on. The order of magnitude of
the time which DDR3 memory retains its data after power off is few microseconds.
On the other hand, a hard disk drive can keep the data stored on magnetic plates
for years after powered off. There have been ideas of a possibility to design a
so-called universal memory that would have the speed of DRAM and also retain
its data for long periods of time [54]. However, there is still much to be done until
this kind of memory is in common use.

The most important characteristics of a candidate phase-change material for
electronic memory are crystallization speed at room and at elevated tempera-
ture, melting temperature, resistances in both phases, endurance (cycling) and
threshold switching parameters.

4.4 Phase-change materials

Technically, the term “chalcogenide” refers to compounds containing at least one
element from the chalcogen group (group 16) of the periodic table. However, after
the discovery of chalcogenide phase-change materials there have been found other
materials which behave the same way but contain no elements from the group
16, for example GaSb. All phase-change materials studied in the present work
contain either tellurium (group 16), antimony (group 15) or both, and this is true
for most — if not all — materials that exhibit the rapid phase-change phenomena.

The existence of multiple distinguishable solid states for certain chalcogenide
alloys has been known for decades. The early reports of the rapid and reversible
switching between these states were reported in 1968 by S.R. Ovshinsky [55]. He
described the materials as oxide- and boron-based glasses and materials which contain
the elements tellurium and/or arsenic combined with other elements such as those of
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groups III, IV and VI (groups 13, 14 and 16 in the modern IUPAC numbering) and
used Ar30Ge10Si12Te48 for the measurements. This material is initially in a highly
resistive state and can be switched to a conductive state by applying a voltage Vt

across it (ranging from 2.5 V to 300 V, as a function of film thickness). If the voltage
is removed, the material switches back to the resistive state. In the same paper, he
also mentioned that some other compositions of the same elements have a memory
effect, that is: the conductive state is preserved even if the voltage is removed. The
resistive state can be restored with a large enough current pulse. This memory
effect is in the center of the modern industrial use of chalcogenide phase-change
materials.

The resistance change is not the only measurable difference between the dif-
ferent states. First report of an optically induced and measured phase-change in
chalcogenide materials was in 1971 by Feinlieb et al. [56]. However, the early
materials weren’t suitable for industrial production. In 1987, Yamada et al. [57]
reported a high-speed optical phase-change of Ge1Sb2Te4 (GST-124) with cycla-
bility up to 105 times. Such materials which could be switched and read with a
laser became the first widely used phase-change memory materials in the form
of rewritable disks (CD, DVD). The contemporary Blu-ray Discs are the latest
addition to this family. Optical disks are mostly based on compounds on the
pseudobinary GeTe-Sb2Te3 tie-line or on doping Sb2Te with various elements [48].

The reversible switching is used to record data in small bits on the recording
film that are either in resistive and non-reflective (amorphous) or conductive
and reflective (crystalline) phase, and the different electric resistance or optical
contrast is used to read the data. The memory effect means that the data stays
in the memory for an extended period of time, making the memory operate as a
non-volatile memory.

When considering a material for electronic phase-change memory, the key
factors are cyclability, data retention and recrystallization speed. Phase-change
memories commonly show cyclability of 108-1010 cycles, which is enough for most
applications in storage class memories but not quite enough for a replacement of
DRAM. A typical data retention requirement of a phase-change memory device
is that the device must keep the written data for 10 years at 85◦C with less than 1
failing device in 109. The amorphous to crystalline switch is always slower than
the crystalline to amorphous switch, and thus the recrystallization speed places
an upper bound for the switching speed of a phase-change memory. This directly
affects the data write rate [49]. However, it is not trivial to find a material with fast
crystallization speed and long data retention, which at first seem to be mutually
exclusive. This is understandable as the required nonlinearity in the tempera-
ture dependence of crystallization speed is unusually large, and the usable PC
materials are the ones where the crystallization speed is accelerated by a factor
of ∼1017 when temperature is increased by a factor of ∼2. When a PC material
is deposited on a device, the as-deposited PC material is commonly amorphous,
as the deposition process is carried out at below the crystallization temperature.
This as-deposited (AD) phase can differ from the cycled melt-quenched (MQ)
amorphous phase considerably [58], even though both are amorphous. However
the behavior could also be approximately the same for both [59]. The awareness
of this difference has helped to explain discrepancies between experiments and
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Figure 4: Ternary diagram of Ge-Sb-Te phase-change materials. The pseudobinary
GeTe-Sb2Te3 line is drawn on the left and the Sb-rich PC materials reside on the
right side near Sb3Te. Ge15Te85 and Ge2Sb2Te5 positions are marked. The plain
ternary diagram base was adopted from Wikipedia (license: CreativeCommons
Attribution-ShareAlike 3.0).

computer simulations of Ge2Sb2Te5 [60].
The phase-change materials can be divided in two categories by their crystal-

lization dynamics. The classification follows approximately the division between
GeTe-Sb2Te3 pseudobinary alloys and the Sb-rich alloys. The former group is
often referred to as the nucleation dominant PC material family and the latter as
growth dominant. The ternary diagram for Ge-Sb-Te alloys (figure 4) shows this
pseudobinary line and two of the materials studied in this thesis (Ge15Te85 and
Ge2Sb2Te5). The growth dominant Sb-rich materials, such as Ag3.5In3.8Sb75Te17.7

used in rewritable DVD disks, reside near the Sb-corner of the diagram with Sb3Te.
According to the CN theory, the nucleation dominated and growth dominated
categories can be described as homogeneously nucleating and heterogeneously
nucleating, respectively.

Threshold switching is a peculiar feature in PC materials. When an amorphous
PC material is subjected to a large enough electric field, it can switch to a highly
conductive temporary state within nanosecond timescale. If the voltage is left on,
the current heats the material, crystallizing it and the material is switched. On
the other hand, if the pulse is short enough the material does not experience a
phase-change and will keep the high-resistance amorphous state after the field is
turned off.

Threshold switching is visible in the I-V curve of a phase-change memory cell
shown in figure 5, where the voltage across the cell is increased in the resistive
amorphous state (full circles) until just below 1.2 V, where the voltage suddenly
drops while the current increases. This negative differential resistance state is
what causes the threshold switching. The current increases until a positive dif-

24



Figure 5: Measured I-V curves for a phase-change memory cell in the set (open
symbols) or reset (filled symbols) states. The latter displays the threshold switch-
ing effect at about VT = 1.2 V. Adopted from ref. [48].

ferential resistance state is reached; typically at this current the PC material is
crystallized very rapidly, and the I-V curve follows closely that of the crystalline
phase (open circles) [48]. Resistance switching is crucial for the operation of a
phase-change memory cell, as it allows for two separate voltage regimes for read-
ing and programming the cell and also reduces the required power for the switch
operation, making the memory more power-efficient.

4.5 Phase-change materials studied in this thesis

In the following I shall describe the materials studied in this thesis as they are
presented in the literature.

Ge15Te85

The eutectic composition Ge15Te85 is a binary PC material and one of the first ones
to show rapid switching [61]. The switching time has been measured to be as low
as 5 ns [62]. It is regarded as a prototype PC material with a melting temperature
of 648◦C [63], and it has a very high crystallization temperature of 446-471◦C,
depending on the heating rate [64]. The crystalline structure is ambiguous, and
there are studies that report signs of segregation. In the amorphous structure,
germanium is predominantly tetrahedrally coordinated with edge- and corner-
sharing GeTe4 tetrahedra while tellurium prefers threefold coordination, and 26%
of volume is occupied by nanosized cavities in computational structure model
[65] evaluated by using a method as described in ref. [66]. Our aim was to extend
the model presented in ref. [65] by using experimental measurements along with
a larger simulation cell.

25



Ge2Sb2Te5

Ge2Sb2Te5 (GST-225) is one of the early PC materials utilized in optical storage. It
is also one of the most studied. It was discovered in 1987 by a Yamada et al. [57].
It has a melting temperature of 620◦C and a rather low crystallization temperature
of 160◦C [67]. Electric resistivity changes approximately 5 orders of magnitude
upon phase change [67], while the difference in refractive index is of the order of
1.20 [68]. GST-225 shows segregation after repeated set-reset cycles, presumably
due to the higher electronegativity of tellurium (5.49 eV) than that of antimony
and germanium (4.6 and 4.85 eV, respectively), which causes tellurium to drift
towards the positive electrode [49]. This effect can be minimized by cell design
or alternating the direction of polarity.

It crystallizes in a metastable rock-salt structure, where, according to the most
accepted model [48], tellurium atoms occupy one sublattice while the other con-
tains randomly placed germanium and antimony atoms. 10% of the sites are
vacant. However, distinction between antimony and tellurium atoms is hard and
Nonaka et al. finds equally good match to experimental data by swapping all
antimony in the lattice with tellurium [69]. There could also be order in the Ge/Sb
sublattice [70].

Ge2Sb2Te5 expands upon amorphization by ∼7% and the volume of vacancies
or voids increases slightly from 10% to 11.8%. The amorphous structure has
small structural units that are reminiscent of the rock-salt structure, namely the
so called ABAB-rings, and cubes and the amorphous structure contains traces
of the crystalline order in the form of AB alternation. Ge and Sb atoms have
mostly defective octahedral coordination in the amorphous phase with three
short and three long bonds. In addition, one third of Ge are tetrahedrally bonded.
The crystallization can then be viewed as a reorientation of these remnants of
the ordered structure into a periodic crystal [66]. The rapid recrystallization in
Ge2Sb2Te5 is very important for the current and future PC memory applications.
In this study we extended the understanding of the growth of a super critical
nucleus in this material by using simulations in three different temperatures.

GaSb

GaSb is a stoichiometric compound that shows a high crystallization temperature
of 275◦C [67] and fast crystallization speed of 19 ns [71]. The former makes GaSb
a potential material for memory cells used at higher temperatures, for example
in automobiles. The GaSb melting temperature is 705◦C [72]. The crystalline
structure is a cubic “zinc blende” structure where the elements are completely
mixed in tetrahedral sites, and ideally the structure contains no homopolar bonds.
Crystallization characteristics shows nucleation-dominancy in a static laser-tester
study [73]. Not much is known about the structures of amorphous Ga/Sb films.
In this study our goal was to create models for the AD and MQ polymorphs of
GaSb, and to study their differences and similarities.
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GaSb7

GaSb7 is a PC material, which crystallizes in a growth-dominated fashion typical
for an Sb-rich material [74]. The composition is very close to the eutectic Ga12Sb88.
The melting temperature of GaSb7 is 590◦C [72]. Crystallization temperature
varies between 233◦C (as-dep.) and 210◦C (after write-erase cycle) [74]. The
crystallization temperature is ambiguous because there are signs of segregation
to elemental Sb and GaSb regions: With segregation, Sb regions can crystallize
at ∼187◦C and GaSb regions closer to 350◦C [73], making the material semi-
crystalline over a wide temperature range. The segregation can explain also the
discrepancy between crystallization times as high as 750-1000 ns and as low as 5 ns
for as-deposited (longest times) and melt-quenched (shortest times) amorphous
samples [71, 73]. In this study our goal was to create models for the AD and MQ
polymorphs of GaSb7, and to gain information on why the recrystallization speed
of this material differs between the AD and MQ polymorphs [71], while in the
GaSb it does not.
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5 Results and discussion

5.1 Computational details

All simulations were performed with the CPMD code [36], periodic boundary
conditions, single point (k= 0) in the Brillouin zone, and in NVT ensemble (con-
stant number of particles N, volume V, and temperature T). Temperature was
controlled with a Nosé-Hoover thermostat (chain length 4, frequency 800 cm−1)
[43]. Scalar-relativistic Troullier-Martins pseudopotentials [34] were used with a
kinetic energy cutoff of 20 Ry for the plane-wave basis. In addition to these, the
following parameters were used in the respective simulations: TPSS functional
[27] in the geometry optimizations of Ge15Te85 and PBEsol [23] for all other simu-
lations. BO-MD with a timestep of 3.0236 fs (125 a.u.) for molecular dynamics of
Ge15Te85 and Ge2Sb2Te5 and CP-MD [39] with a timestep of 0.1693 fs (7 a.u.) and
fictitious electron mass of 1200 me for the molecular dynamics of GaSb and GaSb7.

TPSS was used to optimize the Ge15Te85 because it has been shown to reproduce
the various parameters of crystalline tellurium well (lattice parameters, bond
lengths and angles, and the cohesive energy), in particular it is better than PBEsol
[75, 76]. However, due to the increased computational cost, it was impossible
to use it throughout all simulations, and we decided to use PBEsol for the MD
part. The reason for using CP-MD was that we were unable to get the BO-MD
calculations for Ga-containing structures to work properly. We do not have a
clear reason for this, but it may be related to the peculiar properties of gallium,
e.g. metallicity, low melting temperature and unique crystal structure consisting
of Ga2 dimers. Otherwise, BO-MD was used as it can be tuned to perform much
faster, similarly to the reasoning for using PBEsol.

5.2 Structure of Ge15Te85

5.2.1 Model structures and experimental fitting

We studied the amorphous structure of the prototypical Ge15Te85 PC material
by BO-MD simulation and a subsequent RMC refinement. Both methods were
important: If one would use only the simulation method the model structure
would have a slightly better energy (calculated with the DF theory), but the pair
distribution functions and total structure factors would be worse. Similarly, when
using only RMC the result would agree better with the experimental data but have
much worse DF energy.

The structure was based on a 216-atom melt-quenched amorphous structure
from an earlier study [65]. The super cell of the 216-atom structure was a cube
with 19.7 Å sides, and the structure was repeated periodically as it would be in a
simulation. From the repeated structure, a larger super cell with a side of 27.08 Å
was cut out, and the atoms near the new super cell edges were adjusted not to
interfere with periodicity. A self-made code was written for this, which worked as
a steepest descent geometry optimization with a hard-sphere potential for atoms
near the edges. This resulted in a 560-atom structure with experimental number
density (0.0282 Å−3) and exact 15:85 composition.
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Simulated annealing was performed on the structure to remove any artifacts
that would otherwise result from the enlargement of the super cell in the above-
mentioned manner. The structure was heated to 500 K, which is below the melting
point of Ge15Te85 (680 K) and annealed in five steps of 20 ps each at 500, 450, 400,
350 and 300 K. After the annealing the structure was optimized. The optimized
structure is referred to as “DF-opt” structure in the rest of this section and was used
as one base structure for RMC-refinement. This structure should be representative
of the set of structures in the MD simulation trajectory; for this reason we used the
MD trajectory data for better statistics when possible. All BO-MD runs were done
using the PBEsol functional, whereas the geometry optimizations were done with
the TPSS functional, both of which are discussed in sec. 2.2.1.

An alternative base structure, referred to as “ideal” structure was also created.
This structure was created with a hard-sphere run using the RMC++ code and a
subsequent long RMC run to fit the structure to the experimental data as well as
possible. This structure was also optimized using the TPSS functional and the DF
energy was 10.15 meV/at. above the DF-opt structure energy.

The base structures were then fitted to experimental neutron diffraction (ND)
and x-ray diffraction (XRD) data. Various different sets of constraints for RMC
were tested to achieve as good fit to the experimental data with energy as close to
the DF minimum energy as possible. When starting from an optimized structure,
the RMC improves the fit to experimental data at the cost of increasing structure
energy, and an energy of 100 meV/at. above the DF-opt structure energy was
decided as the target for refined structure energy. Particularly, the ND total
structure factor was hard to reproduce with a low energy structure. The set (a)
was the best one that was based on the DF-opt structure and disallowed Ge-
Ge bonds, set (b) was the best one that was based on the ideal structure and
disallowed Ge-Ge bonds, and set (c) was the best one that allowed Ge-Ge bonds.
The first two were consistent with earlier models that did not allow Ge-Ge bonds
(for example [46, 77, 78]) while the last one was different. When fitting structure
(c) to the experimental data, it was noted that changing the weights of ND and
XRD data sets (adding more weight to ND) resulted in good fit for the ND data
with little or no change in the XRD fit. However, in the other two [(a) and (b)]
changing the weights did not improve the overall fitting quality.

The minimum inter-atomic distances in the RMC refinement were Ge-Te:
2.55Å, Te-Te: 2.70 Å, and Ge-Te 3.50 Å (Ge-Ge bonds forbidden) or 2.50 Å (Ge-Ge
bonds allowed). The RMC refinement runs targeted to 100 meV/at. energy were
short, only 10 000-15 000 accepted moves were needed to raise the energy by that
amount. The maximum displacement of an atom was 0.05 Å.

The results are listed in table 1 and the comparison with experimental S(Q)
graphs is in figure 6. We used an iterative RMC refinement scheme, where a base
structure was first refined with RMC (iteration #1), then re-optimized with the DF
theory, refined again (iteration #2), and so on in order to see whether subsequent
geometry optimization-RMC refinement cycles would drive the structure into a
new energy minimum in the configuration space. This was not the case, and
the resulting structures were similar for all iterations. This indicates that each
re-optimization returned the structure close to the original base structure, and
the next refinement produced again a structure similar to the previous refined
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Table 1: ND and XRD values of
〈
χ2〉 (δ = 0.01, average over data points) and total

energies during iterative refinement. Energies are in meV/atom with respect to
the DF energy minimum.

structure (a) structure (b) structure (c)
iter.

〈
χ2〉

ND
〈
χ2〉

XRD ∆E
〈
χ2〉

ND
〈
χ2〉

XRD ∆E
〈
χ2〉

ND
〈
χ2〉

XRD ∆E
1 2.76 2.06 101 2.64 2.11 105 2.10 2.03 103
2 2.69 2.09 97 2.57 2.11 106 2.02 2.12 100
3 2.84 1.87 100 2.86 2.06 102 2.03 2.04 102
4 2.88 2.04 95 2.58 2.11 102 2.02 2.01 104
5 2.76 1.88 98 2.63 2.11 102 2.10 1.97 101
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Figure 6: S(Q) fits for samples of (a), (b), and (c) structures. Red: calculation, blue:
experimental. The x-ray S(Q) has been shifted by 0.5 units.

structure.
The results of the RMC refinement (table 1) show that all three structures fitted

the XRD structure factor well, with the structure (b) slightly (by∼0.1 units) behind
the other two. The ND structure factor was different with structures (a) and (b)
fitting it∼0.5 units worse than structure (c) with (b)∼0.1 units better than (a). This
indicates that Ge-Ge bonds in model structures, albeit in small numbers, improve
the structure in terms of the DF energy and the agreement with both the ND and
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Table 2: Distances and coordination numbers in a-Ge15Te85. rmax
X−Y (rmin

X−Y): first
PDF maximum (minimum), Nr: total (structural) coordination number, and nX−Y

partial coordination number. Nc: chemical coordination numbers. Nr and nX−Y

were determined with bond cutoff of 3.0−3.3 Å. In the MD and DF opt column, the
chemical coordination numbers are calculated from the DF-opt structure while
the rest is averaged over the 300K MD trajectory.

Structure (a) (b) (c) MD and DF opt
rmax

Ge−Te (Å) 2.58 2.58 2.58 2.65
rmax

Te−Te (Å) 2.74 2.73 2.74 2.84
rmin

Ge−Te (Å) 3.12 3.12 3.10 3.07
rmin

Te−Te (Å) 3.12 3.12 3.15 3.15
Nr(Ge) 3.63±0.13 3.60±0.10 3.71±0.13 3.72±0.28
Nr(Te) 2.21±0.14 2.22±0.16 2.21±0.13 2.32±0.34
nGe−Te 3.63±0.13 3.60±0.10 3.58±0.12 3.62±0.27
nTe−Ge 0.64±0.02 0.64±0.02 0.63±0.02 0.64±0.05
nGe−Ge 0 0 0.13±0.01 0.11±0.01
nTe−Te 1.57±0.12 1.58±0.13 1.58±0.11 1.69±0.30
Nc(Ge) 3.44 3.50 3.55 3.53
Nc(Te) 2.06 2.04 2.05 2.13
nchem

Ge−Te 3.44 3.50 3.45 3.43
nchem

Te−Ge 0.60 0.61 0.59 0.60
nchem

Ge−Ge 0 0 0.10 0.10
nchem

Te−Te 1.46 1.43 1.46 1.53

XRD experimental structure factors.
The electronic structure shows semiconductor characteristic with a very small

band gap. The gaps were of the order of 0.1 eV, and there were several impurity
states nearby. This is typical for DF calculations of PC materials, which have small
(semiconducting) band gaps, and the standard DF theory further underestimates
band gaps for solids. Usually, RMC refined structures tend to have metallic
electronic structure, but a semiconductor-like behavior can be achieved with bond
angle constraints, as is the case here.

5.2.2 Bonds and coordination numbers

Table 2 shows the radii of first maxima (rmax) and first minima (rmin) of the Ge-Te
and Te-Te partial pair distribution functions (PDF, g(r)), and coordination number
values for the structures. The RMC refinement caused the first peak of the PDF to
move to the minimum allowed distance of the two atoms and narrow down, and
thus the rmax and rmin values of the three RMC refined structures are very similar
differing by only 0.03 Å at most. The partial PDF peaks calculated from the MD
trajectory are both at slightly higher radii than the peaks in RMC structures (by
0.07-0.10 Å) due to the choice of using the shortest inter-atomic distance of MD
structure as the minimum inter-atomic distance in the RMC refinement.
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Figure 7: Te-Te Partial PDF (a) and Ge-Te partial PDF (b) for the RMC structures
(a)-(c) and MD simulation at 300 K (annealing, PBEsol functional).

Together with the peak sharpening, this led to the result where the first peak
of every structure starts at the same distance, but as the MD peak is wider,
the maxima are at longer distances in comparison to the RMC structures. It
is also worth noting that the EXAFS values for Ge-Te (2.60±0.02 Å) and Te-Te
(2.79±0.02 Å) are between the rmax values of RMC structures and MD, being
slightly closer to the RMC values. The difference between the RMC structures
and MD is also visible in figure 7, where the peaks of structures (a), (b) and (c)
are practically on top of each other, while MD peak starts at same distance but is
wider and not as high.

The partial coordination numbers are similar for Ge-Te and Te-Ge atom pairs.
Ge-Ge coordination number is of course different for structures where Ge-Ge
bonding is not allowed [structures (a) and (b)] and where it is allowed (structures
(c) and DF-opt) but the Ge-Te coordination does not change when disallowing
Ge-Ge bonds, which leads to Ge total coordination being lower in structures (a)
and (b). Te-Te coordination is ∼0.1 lower in all three RMC structures than in
DF-opt structure.

In addition to the atomic structure, it is possible to study chemical bonding by
projecting the Kohn-Sham eigenfunctions on the atomic orbitals. In this scheme,
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Figure 8: Chemical bond orders (strengths) in (a), (b) and (c) structures, and DF-
opt (d). The chemical bond strength is plotted against bond length for Ge-Te (e)
and Te-Te (f) bonds in DF-opt. For (e), red denotes threefold coordinated Ge, and
blue fourfold coordinated Ge.

a single covalent bond would have a bond strength of one. This shows how
strongly two atoms are bonded according to DF theory and doesn’t necessarily
follow the inter-atomic distance directly.

Figure 8 shows the bond order plots (left and middle columns) for the RMC
and the DF-opt structures. The Ge-Ge bonds are visible in bottom panels, and
they are generally weaker than the other bonds. Ge-Te and Te-Te bonds are mostly
between 0.6 and 0.9 bond strength, while Ge-Ge bonds are between 0.5 and 0.65.
The second nearest-neighbors are visible near zero strength, and there is less
weight between the nearest and the second nearest-neighbor peaks in the RMC
structures when compared to the DF-opt structure, which is consistent with the
sharpened first maxima in PDF (see figure 7).

The bond strengths can be used to calculate coordination numbers, and the
chemical coordination numbers Nc are shown in table 2. We used a bond strength
cutoff of 0.4 based on the bond strength plots in figure 8[(a)-(d)], and 0.4 is
approximately the value where the weight from nearest-neighbor bonds vanishes.
Chemical coordination numbers are slightly below Nr, which are calculated with
the cutoff radius. Nc are within the error bounds of Nr in the DF-opt structure
and near the bounds of the RMC refined structures. The Nc of RMC refined
structures is consistently just below the error bound, which indicates that the
RMC refinement causes some atom pairs to be within a bonding distance of each
other, but they do not have electronic bonding according to the DF theory. We
also evaluated the distances where Nr = Nc, and the corresponding values (for
DF-opt) are Ge-Te: 3.03 Å; Te-Ge: 3.01 Å; Ge-Ge: 3.16 Å; and Te-Te: 3.06 Å. These
values correspond to the average coordination with minimum bond strength of
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0.4 in a structure which is optimized with DF theory and serve as an estimate for
reasonable radial cutoff distances.

The bond angle distributions with a bond cutoff distance of 3.2 Å are shown in
figure 9. In general, the bond angles are close to octahedral. The Te-Ge-Te and Ge-
Te-Ge plots show a shoulder and a dual maxima, respectively, which are signs of
two distinct local environments for germanium. The existence of octahedral and
tetrahedral local environments for germanium is shown also in figure 8(e), which
display the bond distance and bond strength plotted for threefold and fourfold
coordinated (as per chemical coordination) germanium atoms in red and blue,
respectively. The threefold coordinated germanium have longer shortest bonds,
and there is no distinct gap between first and second coordination shells. This
is consistent with a distorted octahedral local environment, while the fourfold
coordinated Ge is consistent with a tetrahedral local environment with shorter
bonds, higher bond strengths, and a distinct gap between the first and second
coordination shells. Figure 10 shows the distance distributions of nine nearest-
neighbors of Ge atoms, similarly to the analysis performed by Raty et al. [79].
Signs of the two environments are yet again visible in figure, where the second
to fourth nearest-neighbor plots have dual maxima and fifth and sixth neighbor
plots have long shoulder or tail towards shorter distances. Approximately half
of the germanium atoms belong to each of these environment types, as shown in
table 3 with structure (c) having the most fourfold coordinated germanium (56%)
and (a) the least (45%). Tellurium atoms are mostly twofold coordinated with a
smaller fraction (∼10-15%) of threefold coordination.
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Figure 10: Nearest-neighbor distance distributions in DF/MD around Ge atoms.

Table 3: Nearest-neighbor analysis of Ge and Te (atomic %) using a chemical bond
strength cutoff of 0.4 for neighbor search (see Figure 8.)

Atom Neighbors (a) (b) (c) DF-opt
Ge GeTe3 7 7

Te4 45 52 49 45
Te3 54 45 41 45

Te GeTe2 5 6 4 7
Te3 3 3 4 7
Ge2 7 7 7 7
GeTe 31 31 30 28
Te2 47 45 46 44
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Figure 11: Ring size statistics of structures (a)-(c)

5.2.3 Medium range order

The medium range order is a term used to describe atomic order or arrange-
ments at length scales just beyond the first and second nearest-neighbor distances.
Ge15Te85 has a so-called first sharp diffraction peak (FSDP) in the total structure
factor (see fig. 6, at small Q). The FSDP is predominantly visible in the ND total
structure factor, and not in XRD, which indicates that it is related to germanium
atoms rather than tellurium. This is because tellurium is a stronger x-ray scatterer
than germanium (atomic numbers 52 and 32, respectively) but for ND the case
is quite the opposite (bound coherent scattering lengths are 5.68 and 8.19 fm,
respectively [80, 81]). The peak is at a Q range between 1.0 and 1.1 Å−1, which
corresponds to a length scale of 2π/Q ' 6.0 ± 0.3 Å.

The medium range order is affected by cavities, which are abundant in this
material, and the existence of large irreducible rings, which surround the cavities
and thus be quite large. Cavities were studied by placing a dense grid on the
structure and checking for each grid point if the point was farther than 2.8 Å from
all atoms, and then constructing the cavities with Voronoi prescription between
these points and the nearby atoms, as described in ref. [66]. The cavities calculated
this way comprise 22-24% of the volume in the RMC refined structures and 21.5%
of the volume in the DF-opt structure. As mentioned before, the large volume
of cavities and also their irregular shapes facilitate the formation of large rings
around them. Figure 11 shows that smaller rings (4-6 atoms) are the most common,
but the existence of large rings even up to (and beyond) 20 atoms is possible only
due to cavities that entangled rings can surround without being shortcut in the
middle.

A special class of rings can be separated, namely the so-called ABAB-rings
where germanium and tellurium atoms alternate. The fraction of germanium
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Table 4: Distribution of types of Te (I-III) and percentage of Ge in four-membered
ABAB rings. Te(I) is directly bonded to germanium, Te(II) is not directly bonded
to germanium but bonded to Te(I), and Te(III) are all others.

(a) (b) (c) DF-opt
Te(I) 48 49 47 47
Te(II) 26 26 25 27
Te(III) 26 25 27 26
Ge (ABAB) 15 14 20 27

Figure 12: DF-opt sample: (a) Overview, (b-c) Te atoms not bonded to Ge [Te(I)
and Te(II)] from front and right, (d-e) Ge and bonded Te atoms [Te(I)] from front
and right, and (f) the largest cluster of ABAB rings. Red (thick): Ge atoms in ABAB
rings, magenta: other Ge, yellow: Te(I), white: Te(II), blue: Te(III). Te(I)-Te(III) are
defined in Table 4.
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atoms in fourfold ABAB rings is listed in table 4, and the fraction of tellurium
atoms is always 15/85 ' 0.18 times that of germanium because of the alloy
composition, while the number of atoms in the rings is equal. ABAB-rings are
found to be relevant in Ge50Te50 and Ge2Sb2Te5 [66], but they also seem to exist in
Ge15Te85. The four-membered ABAB-rings (squares) can form clusters, which are
the building blocks of crystalline Ge50Te50, and a 21-atom cluster of ABAB squares
was found in the DF-opt structure. An overview of the DF-opt structure is shown
in figure 12(a) and the panel (f) shows the cluster.

Tellurium atoms can be divided into categories, where Te(I) atoms are bonded
to germanium, Te(II) atoms are bonded to Te(I) atoms but not to germanium, and
Te(III) atoms are the rest [no connection to Ge or Te(I)]. The fractions are shown
in table 4. It turns out that approximately half of tellurium atoms belong to the
Te(I) group, which means that the other half of tellurium atoms are not bonded
to germanium. These tellurium may – in principle – segregate, but there is no
such sign: Instead of forming larger Ge-free volumes, they form a thin mesh [see
fig. 12(b)-(c)] where the Ge-Te bits [see fig. 12(d)-(e)] are spatially quite uniformly
distributed. There is slightly more GeTe in the right half of the panels (d) and (e),
which indicate that there is locally more GeTe bits in that part of the super cell.

5.2.4 Conclusions

The amorphous model structures for eutectic Ge15Te85 alloy were constructed by
combining density functional calculations with RMC. The resulting three models
had equally good computational energies (as set by definition). However, the
best fit to the experimental data was obtained with the structure which contained
a small number of Ge-Ge bonds. The Ge-Ge bonds have been excluded from
many models of the amorphous Ge15Te85 structure, and they can be considered
as defects. Our results show that they should not be excluded from the model
structures, as they seem to allow for a better fit with the experimental and com-
putational ND structure factors while keeping the DF energy low.

Germanium has a coordination number between 3.5 and 4 in all structures,
while tellurium is close to twofold coordinated. The most common local envi-
ronments (neighbors) for germanium are Te3 and Te4, while the most common
ones for tellurium are GeTe and Te2. Tellurium is slightly overcoordinated with
respect to the 8-N rule (N is the number of valence electrons), and germanium is
undercoordinated.

The model structures of Ge15Te85 contain two types of germanium atoms.
Approximately half of the germanium is fourfold coordinated with a distinct
gap between first and second nearest-neighbors (in PDF). This is attributed to a
tetrahedrally coordinated local bonding environment. Another half of Ge has a
defective octahedral coordination with 3 short bonds, and there is no well-defined
gap visible between the first and second-neighbor shells.

Another similar division can be made for tellurium by distinguishing the atoms
that bind to germanium from those that only bind to other tellurium atoms. The
latter type forms a threadlike mesh where the GeTex bits reside, and there is no
clear indication of segregation visible. However, the division to Ge-bonding and
non-Ge-bonding tellurium could act as a precursor for segregation. It is also
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Figure 13: Visualization of the 600 K structure at different stages of crystallization.
The atoms with crystalline environment are highlighted with balls and sticks and
the fixed seed is visible in the first panel. Green: Ge, purple: Sb and orange: Te.

possible that the limited simulation cell size does not support segregation. The
GeTe bits can form clusters, where the ABAB motif can be seen in ABAB rings.
Ge15Te85 contains a significant volume of cavities (22-24%) and a number of large
rings that surround the cavities.

5.3 Crystallization of Ge2Sb2Te5

We studied the crystallization of Ge2Sb2Te5 (GST) at constant temperatures with
a fixed “seed” present in the otherwise amorphous structure. According to the
CN theory (section 4.2), a material crystallizes by creating a crystallite of critical
radius spontaneously from which the crystallization then proceeds according to
the energy minimization principle. There are studies suggesting that the critical
crystallite size for GST would be of the order of few tens of atoms [82]. We used a
64-site crystallite seed (lattice constant 3.0 Å) with 13 Ge, 13 Sb and 32 Te atoms (58
atoms, 6 vacancies) that followed a commonly accepted model where tellurium
occupies one sublattice and Ge/Sb/vacancies randomly occupy the other. The
function of the seed was to skip the stochastic part of the crystallization (the
onset) and enable focusing on the growth of the crystal around the seed.

The seed was embedded into an amorphous structure from an earlier work
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[47]. The super cell size was 24.629 Å (0.0308 atoms/Å3) in the amorphous state,
and the size was decreased in five steps of 0.114 Å each to 24.060 Å (0.0330
atoms/Å3) during the simulations to mimic the density increase of a thin film
sample. Three simulations with 460 atoms were done at 500, 600 and 700 K in
order to study the temperature dependence of crystallization. The 500 and 600 K
simulation lengths were 600 ps each with a full crystallization at 600 K (shown in
fig. 13) and some early signs of order at 500 K. The 700 K simulation crystallized
faster, and the simulation length was only 350 ps. In addition to these three simu-
lations, one 600 ps simulation with 648 atoms and larger super cell was performed.
However the potential crystalline structure would not have been commensurate
with the simulation cell and number of atoms, and thus, crystallization was not
expected. This simulation showed early signs of crystallization after which the
crystalline fraction of atoms decreased. In this thesis I will concentrate on the
three smaller simulations.

We analyzed the crystallization from the trajectory using a Steinhardt-type or-
der parameter [83], where the vectors of atomic bonds are projected onto spherical
harmonics basis Ylm(ri j), and the local order can be calculated as

Qlm (i) =
1

N (i)

N(i)∑
j=1

Ylm(ri j), (46)

where N (i) is the number of neighbors of atom i. This is then averaged over the
atom i and its neighbors

Q̄lm (i) =
1

Nb (i)

Nb(i)∑
k=1

Qlm (k) , (47)

where Nb (i) includes the atom i and its neighbors. The final order parameter is
achieved by summing over m,

Q̄l (i) =

√√
4π

2l + 1

l∑
m=−l

∣∣∣Q̄lm (i)
∣∣∣2. (48)

This scheme can be used to various crystal structure and symmetries by changing
the l parameter, and for the cubic structures the first nonzero value of Q̄l is when
l = 4. Based on the trajectories of amorphous, crystallizing and crystalline samples
of GST we define a “crystalline atom” as any atom which has Q̄4 ≥ 0.6.

Percolation is the formation of long-range connections in a random lattice.
Percolation has been found to affect electrical properties significantly in GST [84],
as current only needs a narrow conducting pathway, but there is a negligible effect
on optical properties, as reflectivity is measured as an average over finite-sized
spherical laser spot. We calculate percolation properties in the simulations by
determining if there is a continuous bonded path of crystalline atoms from any
atom to its periodic replica. We use 3.20 Å bond length cutoff for this purpose. If
such a path exists, then the atom (and consequently all the atoms belonging to the
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Figure 14: (a) Total energy (normalized for box size), (b) fraction of crystalline
atoms, and (c) number of ABAB rings/atom in each simulation. The vertical
dashed lines mark reductions in the super cell size until the crystalline density is
reached.

bonded crystalline cluster) are considered percolating. In practice, the relatively
large size of the seed (half of the super cell width in 1D, quarter of the area in
2D) makes it probable that a percolating path would go through the seed or the
crystalline cluster surrounding it. This means that after the very beginning of
the simulation, there is only one crystalline cluster (comprising the seed and the
attached crystalline atoms) which is then the percolating system.

5.3.1 Crystallization overview

The simulation energy in all three simulations, shown in figure 14(a) follows in-
versely the fraction of crystalline atoms in figure 14(b). The 700 K simulations
crystallizes most rapidly, which is in agreement with recent ultrafast calorimetry
measurements [52], where the peak crystallization speed was found at approxi-
mately 670 K temperature. The crystallization is most rapid from 150 ps to 200 ps
at 700 K and at 600 K from 325 ps to 450 ps. Prior to the fast crystallization phase,
the crystalline fraction increases steadily, and the fast crystallization begins after
approximately 40% of the atoms are crystalline.

The number of ABAB squares per atom is shown in figure 14(c) and it follows
the crystalline fraction evolution. However, the number of ABAB rings seems to
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Figure 15: Size of the percolating crystalline cluster as a function of time. Left,
middle and right columns are 500, 600 and 700 K simulations, respectively. Top,
middle and bottom rows are percolation along x, y and z axes, respectively.

be sensitive to the super cell size. The number of ABAB squares shows a sudden
jump as the super cell size changes. Especially, this can be observed in the 600 K
simulation at 500 ps and in the 700 K simulation after 200 ps. This could be due
to the restrictions of the definition of an ABAB ring, a bond length cutoff of 3.2 Å
was used here requiring that all four bonds of an ABAB square were below this
value. It is easy to imagine based on the crystalline structure that the network
of ABAB rings will break in all possible directions if the super cell size becomes
too large. This is then reflected in the average number of ABAB squares, which
seems to have a capping limit based on the super cell size.

The order parameter Q̄4 does not have this behavior, and there are no sudden
jumps visible at the changes in super cell size. This can be explained by noting
that too long bonds do not affect the calculation of Q̄4: A removal of a bond does
not change the crystallinity of an atom if the bond angles where the removed
bond contributed were similar to the angles of the other bonds.

5.3.2 Bonds and connectivity changes

The crystallization process is shown in figure 13, which shows snapshots of the
600 K structure during the crystallization. The crystallization starts from the
seed as expected, and the crystalline cluster starts to percolate quite early in the
simulation. Percolation is visible in the straight edges of the highlighted structure.
The crystallization is complete at 600 ps, but there are still lattice defects with
missing atoms and atoms in wrong sublattice visible around the edges of the
simulation cell.

The percolation is shown in figure 15, the graphs show the percolating cluster
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Figure 16: PDF of atom pairs in the 600 K simulation. Each plot is the average
over 20 ps of trajectory. Red: 80-100 ps, green: 180-200 ps, blue: 280-300 ps,
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size whenever there is percolation in one or more of the coordinate directions.
The shapes of the graphs are identical for different directions towards the end of
each simulation, as the percolating cluster is the same for every direction. The
order of percolation directions is z, y, and x at 600 K, and x, z, and y at 700 K. This
means that there is no preferred direction found for percolation, even though all
the simulations were started from the same starting structure. The percolation is
also present in the 500 K simulation in two (y and z) directions even though the
crystalline fraction is below 30% at the end of the simulation. It is seen that as
little as 20% crystalline fraction can enable a stable percolation connection.

The partial PDFs of 600 K simulation are shown in figure 16, and they show
the evolution of the bonding network during the crystallization. The Bragg peaks
from fixed seed are visible at various distances corresponding to 3.00 Å lattice
constant and different diagonal lines within such lattice (3.00, 4.24, 5.20, 6.00, 6.71
and 7.35 Å). During crystallization, the free-moving atoms gather weight around
these peaks as the structure crystallizes, and the crystallization seems to be fastest
between 280-300 ps (blue) and 480-500 ps (black) lines. The peaks between 2 and
3 Å in the so-called wrong bond pairs (Ge-Ge, Ge-Sb, Sb-Sb and Te-Te) diminish
and move to higher distances but do not vanish completely.

This is also visible from the evolution of the number of wrong bonds shown
in figure 17. In the simulations where crystallization is complete (600 and 700 K),
the number of wrong bonds decreases the most, while there is little change in the
500 K simulation. When looking at the specific atom pairs, it is seen that Te-Te
bonds are the most numerous, and this can be explained at least in part by the
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Figure 17: (a) Average number of wrong bonds per atom (all simulations). (b)
Number of wrong bonds by type at 600 K and (c) 700 K simulations. In (a) red:
500 K, blue: 600 K, and magenta: 700 K. In (b) and (c): red: Ge-Ge, black: Ge-Sb,
blue Sb-Sb, and magenta: Te-Te.

abundance of tellurium atoms in the structure. However, the difference between
Ge-Ge and Sb-Sb bonds [red and blue lines in (b) and (c)] cannot be explained
in terms of composition as there are equal numbers of these atoms. Also the
number of Ge-Sb bonds is higher than the number of Sb-Sb bonds at 600 K but
the opposite is true for 700 K. The reason for this could be the temperature, but
one cannot make solid conclusions based on only two simulations. Overall, the
number of wrong bonds goes down as the structure crystallizes, but a number of
wrong bonds are still present at the fully crystalline structure. A possible reason
for this is that the rapid rate of crystallization does not support ordering to a
perfect lattice for all atoms.

Figure 18 shows the PDFs involving cavities before and after crystallization.
The center point of a largest sphere that can be placed inside a cavity without
overlapping any atoms was used as the cavity center point here. There is a clear
tendency for the cavity centers to move away from Ge and Sb nearest-neighbor
lattice distance (3.00 Å) and towards the diagonal site at 4.24 Å distance. For Te,
the cavities remain at 3.00 Å distance, but there is some oscillation visible, similar
oscillation can be seen at the Ge-cav and Sb-cav PDF near 6.00 Å. In addition
to changes induced by the changing super cell size, the total volume of cavities
fluctuates during the simulation (see sec. 5.3.4), and this can be related to the PDF
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Figure 19: MSD for all atoms and for each element at (a) 500, (b) 600 and (c) 700 K.
Insets show σ(MSD)/MSD. Fixed atoms were excluded.

fluctuations.

5.3.3 Atomic mobility

Atomic motion was studied based on the mean-square-displacement (MSD) of
free moving atoms, which is shown in figure 19. The MSD increases until the
crystallization locks the atoms in a lattice (600 K and 700 K) and seems to continue
until the end of the simulation at 500 K, where the structure did not crystallize yet.
It is notable in the 500 K simulation that the germanium MSD rapidly increases
after 500 ps up to the antimony MSD which was higher until then. The order
of germanium and antimony MSD are the opposite at 600 and 700 K, and it is
known that antimony has a higher mobility in the liquid, and the behavior at
higher T could be related to this property. The insets show the relative deviation,
σ(MSD)/MSD, and they indicate a wide range of different mobilities for atoms.
This is understandable as some atoms that crystallize in the first shell around the
fixed seed do not move much during the simulation, whereas other atoms that
crystallize at the edge of the simulation box can diffuse for much longer until
they are locked in the lattice. In both, the 600 K and 700 K simulations, the atom
species that is the most mobile also has the highest σ(MSD)/MSD, while the atom
species that is second most mobile has the lowest σ(MSD)/MSD.
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Figure 20: Variation of total cavity volume in (a) 600 and (b) 700 K simulations,
blue line is average over 1 ps period. Shaded areas correspond to the periods of
fastest crystallization [325-450 ps in (a) and 150-200 ps in (b)].

5.3.4 Cavities

Cavities play an important role in the crystallization mechanics. The total volume
of cavities is shown in figure 20, and it shows a decrease of ∼30%. Based on
the cavity fractions of crystalline and amorphous GST and the density change
associated with crystallization, this is in agreement with the expected change.
Most of the change in cavity volume comes from the jumps at super cell size
changes but there is some variation within a single-cell-size simulation periods,
for example between 400-500 ps at 600 K which coincides with the sudden increase
in the crystalline fraction at 430 ps (see fig. 14). This variation in the cavity volume
could cause the oscillation seen in the Te-cav PDF (fig. 18) where the peak at 3.0 Å
decreases from 0-100 ps to 400-500 ps and increases again at 500-600 ps.

The distribution of cavities is both random and uniform, and no preferred re-
gions could be distinguished where cavities were more abundant than elsewhere.
The cavity size distribution is shown in figure 21. It shows that the cavity distri-
bution before the crystallization resembles the liquid phase. The 600 K simulation
has a clear peak near 80 Å3, which was tracked down to a dual cavity (di-vacancy)
inside the fixed seed. The distribution after crystallization shows periodic peaks
at multiples of ∼35 Å3, which is approximately the volume of a single vacancy
in the crystalline structure. These peaks thus arise from different sizes of lattice
vacancies which comprise 10% of the lattice.
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5.3.5 Conclusions

The crystallization of Ge2Sb2Te5 was studied in different temperatures with the
focus on the late part of the crystallization. Crystalline growth was seen in all
structures, but at 500 K the structure did not fully crystallize. At 600 K and 700 K,
the crystallization was complete before 600 ps.

These simulations of Ge2Sb2Te5 show that percolation of the crystalline cluster
is present from very early on in the crystallization process. It requires as little as a
20% crystalline fraction for the percolation to occur continuously, and it appears
as the formation of narrow necks between periodic replicas of the seed. The
crystallization speed in our simulations is higher at 700 K than at 600 K, which is
in agreement with recent ultrafast DSC study by Orava et al. [52] where the peak
crystallization speed was observed at 670 K.

Wrong bonds in the crystalline structure seem to be an inherent consequence
of the very rapid crystallization. Their numbers decrease from the amorphous
values, but there is a small number of wrong bonds left in the fully crystalline
structure. Cavities are generally assumed to play an important role during the
crystallization of GeTe-Sb2Te3 pseudobinary materials, and our simulations sug-
gest that cavities provide space for atomic rearrangements during the crystal-
lization. They also order in the end of the crystallization with a small number
of cavities remaining in the wrong lattice site, at 3 Å distance from Sb atoms.
Some fluctuations in the cavity volume was seen, and it is possible that these
fluctuations results in from atoms, which temporarily occupy vacancies in order
to facilitate rearrangements to reduce the number of wrong bonds in the nearly
crystallized structure.

5.4 Structures of GaSb and GaSb7

The structures of GaSb and GaSb7 were studied in the third article, in particular
the differences between as-deposited (AD) and melt-quenched (MQ) structures.
The aim of this study was to find the first detailed structural models of both
amorphous polymorphs and of each composition. The model AD structures were
created by iteratively relaxing twenty 24-atom layers (sparse layers, 3.2 Å min.
inter-atomic distance) on top of a random 48-atom fixed template (2.6 Å min.
inter-atomic distance) and compressing the resulting film structure into a bulk
as-deposited structure in a piston-like manner (but with small pressure). The
final models had 528 atoms each and a “vacuum” of at least 10 Å was used to
separate the films in vertical direction.

The procedure is shown in figure 22(a). The deposited layers were allowed
to relax for 5 ps at 300 K, and in few cases additional relaxation was required,
particularly with the Sb-rich GaSb7 where the deposition resulted in isolated Sb4

tetramers (the most stable cluster size for Sb). Figures 22[(b)-(c)] show the GaSb
and GaSb7 film structures and the corresponding compressed AD structures. The
GaSb7 film was very porous, which is visible in the figure 22(c). The GaSb7 film
also contracted significantly more during the compression than the GaSb film. In
the beginning of the compression, the extra vacuum was removed by decreasing
the simulation cell size in the z-direction until the shortest distance between atoms
on top and bottom of the film was 3.5 Å. The compression was nonlinear, and we
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Figure 22: The growth of the GaSb film: Fixed layer with 5, 10, 15 and 20 relaxed
layers (a), GaSb film structure and compressed AD structure (b), and GaSb7 film
structure and compressed AD structure (c). Orange: Ga, purple: Sb.

started with higher compression rates (at most 0.5 Å/ps) since the sparsely spaced
atoms could move easily, and gradually slowed the process to 0.067 Å/ps to allow
for a better relaxation of the structure.

The model structure for melt-quenched (MQ) structure was created from the
AD structure by heating it up above the melting temperature (GaSb to 1000 K,
GaSb7 to 900 K), and cooling it down rapidly to produce the amorphous structure.
These simulations were 60 ps for both alloys. The densities had initially been
approximated with known bulk densities of c-GaSb and c-Sb, and we verified
that they were reasonable by evaluating computational stress tensor values during
MD.

5.4.1 Bonds and coordination numbers

The final as-deposited (AD) and melt-quenched (MQ) structures of GaSb are
shown in figures 23[(a)-(b)] with close-ups of small bits of the structure in [(c)-
(d)]. The simulated PDF and S(Q) are shown in figure 24. The XRD PDF has been
experimentally measured by Shevchik and Paul on GaSb films deposited on Cu
substrates [85], and their PDF has similar values (2.67±0.03 Å, 4.30±0.05 Å) for the
first two peaks as our structures (AD: 2.68 and 4.32 Å, and MQ: 2.70 and 4.36 Å,
for total PDF with XRD weights).

Ga-Sb bonds are the most abundant in both structures. The PDF weight
for both homopolar bonds decreases from AD to MQ, while the weight of the
Ga-Sb bond increases. This is also visible in the partial coordination numbers
(table 5), and the crystalline GaSb (where no homopolar bonds exist outside of
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Figure 23: Full structures (a-b) and close-ups of structural details (c-d) for GaSb.
AD structure in (a) and (c) and MQ structure in (b) and (d). Orange: Ga, purple:
Sb.
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Table 5: First maxima (rmax
X−Y) and minima (rmin

X−Y) in the partial PDF (Å), coordination
numbers Nr for the corresponding rmin, and chemical coordination numbers Nc.

GaSb GaSb7

Structure AD MQ AD MQ
rmax

Ga−Ga 2.48 2.47 2.48 2.46
rmax

Ga−Sb 2.68 2.69 2.67 2.69
rmax

Sb−Sb 2.86 2.86 2.88 2.89
rmin

Ga−Ga 3.20 3.13 2.82 2.92
rmin

Ga−Sb 3.28 3.27 3.25 3.24
rmin

Sb−Sb 3.19 3.27 3.18 3.19
Nr (Ga) 4.35 4.11 4.01 3.98
Nr (Sb) 3.87 3.95 3.20 3.19
nGa−Ga 1.73 1.13 0.19 0.12
nGa−Sb 2.62 2.98 3.82 3.86
nSb−Ga 2.62 2.98 0.55 0.55
nSb−Sb 1.25 0.97 2.65 2.64
Nc (Ga) 3.98 3.93 3.95 3.94
Nc (Sb) 3.79 3.85 3.15 3.18
nchem

Ga−Ga 1.44 1.02 0.21 0.12
nchem

Ga−Sb 2.54 2.91 3.74 3.82
nchem

Sb−Ga 2.54 2.91 0.53 0.55
nchem

Sb−Sb 1.25 0.94 2.62 2.63
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Table 6: Nearest-neighbor composition (atomic %, configurations with population
< 1.5 % in all structures are not listed) of amorphous GaSb and GaSb7 using a
chemical bond order cutoff 0.3 for counting bonds. The total weight for a particular
coordination is given in boldface.

GaSb GaSb7

Atom Coordination Neighbors AD MQ AD MQ
Ga 5 Ga4Sb 1.9 0.8 - -

Ga3Sb2 3.8 3.4 - -
Ga2Sb3 1.5 1.1 - -
All 8.0 5.3 1.5 -

4 Ga3Sb 9.5 2.7 - -
Ga2Sb2 17.8 15.5 - -
GaSb3 37.5 37.5 13.6 12.1
Sb4 15.5 27.3 78.8 81.8
All 81.1 83.0 92.4 93.9

3 GaSb2 5.7 4.9 3.0 -
Sb3 2.3 4.6 1.5 6.1
All 10.6 11.4 6.1 6.1

Sb 5 Ga5 4.6 2.7 - -
All 4.6 4.2 0.2 -

4 Ga4 14.4 24.6 - -
Ga3Sb 30.7 34.5 1.5 0.9
Ga2Sb2 21.2 14.8 4.6 7.8
GaSb3 3.8 1.5 6.9 5.6
Sb4 - - 2.0 3.3
All 70.1 75.4 14.9 17.5

3 Ga3 3.0 4.6 0.2 0.4
Ga2Sb 8.7 9.1 4.8 3.0
GaSb2 11.0 4.9 22.3 23.4
Sb3 2.7 1.5 57.6 55.4
All 25.4 20.1 84.9 82.3

defects) is in this regard closer to the MQ structure than AD structure. The
coordination numbers were calculated from the atomic structure using a cutoff
radius of 3.2 Å (Nr) and from bond orders using a cutoff bond strength of 0.3
(Nc). The bond orders (bond strengths) were calculated by projecting the Kohn-
Sham eigenfunctions onto atomic s- and p-orbitals. The projection is 99.0-99.2%
complete, depending on the structure. The cutoff bond strength was lower than
the one used for Ge15Te85 because here the strongest-bond peaks continued to
lower strengths in an oscillating manner (see fig. 25).

The coordination numbers of GaSb show a general fourfold coordination for
both atomic species. The chemical coordination numbers are consistently slightly
lower than the structural, although the PDF minimum distances are close to
the cutoff radius. The overall tetrahedral coordination, visible in figure 23[(c)-
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Figure 26: Full structures (a-b) and close-ups of structural details (c-d) for GaSb7.
AD structure in (a) and (c) and MQ structure in (b) and (d). Orange: Ga, purple:
Sb.

(d)], is evident from the total coordination number for both Ga and Sb, which
are approximately four for both AD and MQ structures. The nearest-neighbor
composition is shown in table 6, and it shows that over 80% of gallium and 70% of
antimony have four bonded neighbors in both structures. Fourfold coordination
also increases from AD to MQ, and other changes include a decrease in threefold
coordinated antimony and a slight increase in threefold coordinated gallium.
When going from AD to MQ, gallium tends to switch to fewer gallium (more
antimony) as neighbors, while antimony tends to move towards more gallium
(less antimony) as neighbors.

The full model structures of GaSb7 are shown in figures 26[(a), (b)], and the
close-ups of the atomic bonding are shown in panels (c) and (d). The PDFs in
figure 27[(a)-(c)] show that the number of Ga-Ga bonds decreases from AD to
MQ. The absolute change is only of the order of 0.10 in the Ga-Ga coordination
(table 5), but the relative change halves the Ga-Ga coordination. Otherwise, there
are almost no changes in the PDFs. It is noted that the first ν-shaped minima
for Sb-Sb is similar to the one in AIST, which was attributed to the defective
octahedral 3+3 coordination in ref. [87].
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Figure 27: PDF of GaSb7 for atom pairs Ga-Ga (a), Ga-Sb (b), Sb-Sb (c) and S(Q)
calculated with ND weights (d) and XRD weights (e). Red: AD, blue: MQ.

The GaSb7 coordination numbers listed in table 5 suggest an overall tetrahe-
dral coordination for gallium and threefold defective octahedral coordination for
antimony. These motifs are visible also in the structure close-up visualizations in
figures 26[(c), (d)]. The chemical coordination numbers are closer to the structural
ones than was the case for GaSb, and there is no similar systematic difference be-
tween the two for GaSb7. The local environments in table 6 further support the
tetrahedral gallium coordination (92-94% fourfold coordination), and threefold
antimony coordination (82-85%), and the local environment statistics are almost
identical for AD and MQ. The S(Q) shown in figures 27[(d), (e)] changes very little
from AD to MQ: There is some change at FSDP region (∼1 Å−1) and on the height
and depth of the first maxima and minima.

The bond order distribution of GaSb is shown in figures 25[(a)-(b)], and the
main peak of nearest-neighbor bonds was between 0.5 and 0.9, but Ga-Ga bonds
show some oscillation down to 0.3 in the AD structure. Most of the bonds are
thus slightly weaker than a covalent single bond, which would correspond to a
bond strength of unity. The bond strengths were calculated for the AD and MQ
structures of GaSb7 similarly as for GaSb. These graphs are shown in figures 25[(c)-
(d)]. The Ga-Sb bond peak is narrower than the same peak of GaSb, and the Sb-Sb
peak is higher due to the higher Sb fraction. There are some peculiar shoulders
and minor maxima between the first and second nearest-neighbors, and these
require a closer look. The maxima in the Ga-Ga graph of AD structure is from a
single bond, and it stands out only because there are very few Ga-Ga bonds in
GaSb7. The local maxima in both of the Ga-Sb graphs (marked with arrows) near
0.6 bond strength turned out to be more interesting. The atom pairs forming these
weaker bonds are often both tetrahedrally coordinated and form five-membered
rings which go through the weak bond. This is visualized in figure 28(a) where
the Ga-Sb pair is in the center with two five-membered rings that contain the
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Figure 28: Tetrahedrally coordinated Ga and Sb atoms in GaSb7 (a), atomic clusters
in GaSb similar to crystalline gallium in AD (b) and MQ (c), and a closeup of the
c-Ga structure corresponding to the cluster in AD GaSb (d). Black lines: long
bonds (3.03 Å), orange: Ga, purple: Sb. Red dots denote hub atoms, blue lines
stronger bonds and green lines weaker bonds.

weak bond and also a separate six-membered ring. Fourfold coordination of
antimony is not so common in general (AD: 15%, MQ: 17.6%, see tab. 6), whereas
93% in AD and 97% in MQ of these weakly bonded antimony atoms are fourfold
coordinated. A significant fraction (∼40%) of all fourfold coordinated antimony
atoms are weakly bonded.

The AD structure of GaSb contains an interesting detail: A cluster which shows
striking visual resemblance to crystalline structure of gallium [86]. It consists of
nine gallium atoms and one antimony atom, and it is visualized in figure 28(b)
with the corresponding portion of crystalline gallium shown in the panel (d). The
cluster is a slightly twisted sheet with two perpendicularly protruding atoms.
The red dots in the figures denote a hub atom (six-coordinated in AD GaSb). In
the gallium crystal structure the sheet is more bent, and there are seven neighbors
within 2.8 Å for both hub atoms. In the panel (b), the blue lines mark stronger
bonds along the edge of the cluster [2.48-2.57 Å, bond strength 0.52-0.61], while
the green lines mark weaker bonds across it [2.78-2.89 Å, bond strength 0.22-0.28].
The three non-marked bonds in the sheet are in between. The corresponding
bonds are also marked with same colors in the c-Ga visualization, although they
do not have the same bond distance ordering there. In c-Ga, the nearest-neighbors
are Ga2 dimers with 2.49 Å bond length, and the dimer partner atoms of hub atoms
(red dots) are marked with white dots in the visualization.

The cluster in AD structure is broken down during the melt-quench, but in the
MQ structure another cluster emerges, which – while still bearing the some visual
resemblance – is much more distorted. This cluster has two similar hub atoms,
which are 2.78 Å apart, and the visualization is shown in figure 28(c). The bond
lengths are longer in the MQ cluster, but the geometry is similar to the cluster
in AD structure if the bonds up to 3.03 Å are drawn. Both hub atoms have six
neighbors within this radius. It is also notable that the bonds drawn in black in
figure 28(c) are all 3.03±0.005 Å long, and their length is below the rmin

Ga−Ga distance
of GaSb. The atoms in the MQ cluster were initially tetrahedrally coordinated in
the AD structure, which means that there should be no memory effect involved.

The bond angles of GaSb are shown in figure 29, and they peak near the
tetrahedral reference angle (109.5◦) or slightly below it around 98◦. This is also
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Figure 29: Bond angle distributions in GaSb for (a) Sb-Sb-Sb, (b) Ga-Sb-Sb, (c),
Ga-Sb-Ga, (d) Ga-Ga-Ga (e), Ga-Ga-Sb and (f) Sb-Ga-Sb bonds (cutoff 3.2 Å). Red:
AD, blue: MQ. Dashed vertical lines at tetrahedral angle (109.5◦) and (c-e) 60◦.

consistent with fourfold coordination seen from the coordination numbers. There
is another peak at 60◦, which comes from three-membered rings, triangles, that
are present in the structures. The triangles can form clusters, such as a rhombus
of four atoms, or bigger clusters as discussed earlier.

The GaSb7 bond angles are shown in figure 30. The antimony-centered bond
angle distributions peak at ∼98◦, which is between the octahedral and tetrahedral
reference angles. This is consistent with the distorted octahedral coordination,
while the gallium-centered distributions peak at the tetrahedral angle of fourfold
coordination. There are very few Ga-Ga-Ga triplets, which means very low
statistics for that bond angle distribution. There is some weight near 60◦, which
indicates the presence of triangular atomic arrangements in the structures, albeit
in lower numbers than what was present in GaSb. In addition, the weight of these
diminishes significantly from AD to MQ, and they are possibly not intrinsic for
the amorphous GaSb7 structure.

5.4.2 Rings and cavities

The ring size distributions of all four structures are shown in figure 31. It shows
the existence of the three-membered rings that were evident from the bond angle
graph. It also shows that the ring size of GaSb has an upper bound at eight
atoms, which means that GaSb does not contain large cavities that large rings
could encase. The cavities occupy 22% (AD) and 20% (MQ) of the volume, but
in the AD structure there are more cavity domains than in MQ, which indicates
different surface-to-volume ratio. The most common rings are rings with five and
six atoms, and the numbers of those increase when going from AD to MQ.
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The ring size distribution of GaSb7 shows that there are very little three-
membered rings when compared to GaSb, and their number further decreases
from AD to MQ. In general, the difference between GaSb7 AD and MQ structures
is less than the corresponding difference in GaSb. The ring distribution peaks at
five-membered rings and unlike GaSb, GaSb7 contains large rings. This indicates
that there are a number of larger cavities in GaSb7. The total cavity volume
of GaSb7 is 24% (AD) and 22% (MQ), which is close to that of GaSb, and the
differences between the two compositions are likely to be in the shapes and sizes
of the individual cavities. The relative volume of cavity domains in GaSb7 indicate
that the surface-to-volume ratio is higher in AD than in MQ, similarly to GaSb.

In the simulations, there are some signs of the segregation mentioned in sec-
tion 4.5. There exists gallium-free domains in both AD and MQ structures of
GaSb7. Over half of the antimony atoms (61-62%) do not bond to gallium, and
these atoms form gallium-free regions (i.e. pure elemental antimony), which are
of the order of 1 nm across. These are probably too small to cause the two-stage
crystallization reported in ref. [73], and it is possible that much larger simulation
cells are needed in order to model segregation correctly.

5.4.3 Electronic density of states

The electronic density of states (DOS) and inverse participation ratio (IPR) are
shown in figure 32 for the MQ structures of GaSb and GaSb7. IPR is defined as

IPR =

∫ ∣∣∣ψ (r)
∣∣∣4 dr(∫ ∣∣∣ψ (r)
∣∣∣2 dr

)2 (49)
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and varies from 1 of the fully localized states to 1/Nstates of the fully delocalized
states. The different chemical compositions induce differences in the two s-bands
and the inverse participation ratio (IPR). In particular the intermediate band near
-6 eV is much narrower and more localized in GaSb7, while the lowest band is
slightly wider and less localized. The lowest band is associated with Sb, the
intermediate band is mixed with mostly Ga in GaSb and mostly Sb in GaSb7.
The valence band is associated mostly with Sb in both compositions. Band gaps
(GaSb: 0.15 eV, GaSb7: 0.13 eV) most likely underestimate the optical gaps, which
is typical for DF calculations. The states near energy gaps are more localized than
the others.

5.4.4 Conclusions

We have simulated the GaSb and GaSb7 phase-change materials by creating model
structures for as-deposited and melt-quenched amorphous structures of both com-
positions. The models have 528 atoms each, and they were formed by sequential
deposition of sparse layers of atoms on top of a fixed template at 300 K. These film
structures were then compressing to the bulk density to create a model for the AD
structure. The AD structure was then heated above the melting temperature and
quenched to produce the model for the MQ structure.

GaSb prefers tetrahedral coordination, whereas in GaSb7 gallium is tetrahe-
drally coordinated but antimony has a defective octahedral coordination. In
GaSb7, almost half of the fourfold coordinated antimony are weakly bonded to
gallium, which enables antimony to have the fourth bonded neighbor. Both ma-
terials have many five and six-membered rings and some three-membered rings,
but the last are quite rare in GaSb7. The computational total PDF (with XRD
weights) agrees well with the experimental PDF measured with XRD by Shevchik
and Paul [85].

In GaSb there are no rings with more than eight atoms, which indicates absence
of large cavities. In contrast, GaSb7 has larger rings, albeit in low numbers.
Cavities make up 20-24% of the total volume in both materials, and in both
compositions the surface-to-volume ratio of the cavities is higher in AD than
in MQ. We also found small clusters in the GaSb structures, which resemble
crystalline gallium. The cluster in AD GaSb was more similar to c-Ga than the
one in MQ GaSb, as the cluster in MQ GaSb had more elongated bonds.

In GaSb, gallium and antimony atoms become more interconnected as the
structure is melt-quenched, which does not support elemental segregation. Seg-
regation seems to be possible for the GaSb7, where volumes of elemental antimony
are present in both AD and MQ structures, and these volumes are approximately
1 nm across. However, proper atomistic studies of phase-separation would re-
quire samples much larger than used here, and they would be thus enormously
demanding computationally.
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6 Summary and outlook

This thesis reports results of computer simulations of phase-change (PC) materials
at atomistic level. PC materials have been used in commercial optical rewritable
disks (CD, DVD, Blu-ray Disc) and are a potential class of materials for the next-
generation electric memory (PC-RAM, PRAM). In particular, PC materials show
better cyclability and switching speed than the current Flash memory.

The results include an improved structural model for the amorphous Ge15Te85

alloy (prototype PC material) with Ge-Ge bonds playing an important role. The
present model encompasses good fit to the experimental data and low total energy
according to the density functional energy. It also shows two significantly different
local environments for germanium atoms (tetrahedral vs. octahedral), and two
different classes of tellurium atoms where bonding with Ge was either present or
not.

The crystallization simulations of Ge2Sb2Te5 revealed that, at least for the
simulation cell sizes attainable with today’s supercomputers, percolation of the
crystalline cluster starts very early in the crystallization process. Cavities in the
structure seem to provide space for the atomic rearrangements, even after the
structure is mostly crystallized. Wrong bonds (Ge-Ge, Ge-Sb, Sb-Sb and Te-Te)
are present in the structure due to the rapid phase transition with does not support
a full relaxation. The simulations agree with the experimental result of 670 K as
the fastest crystallization temperature [52].

The computer-aided deposition of Ga/Sb alloys shows that there is little dif-
ference in the amorphous AD and MQ structures of GaSb. This agrees with the
experimental result of the near-equal crystallization times for the two. However,
GaSb7 shows different crystallization times for AD and MQ structures in exper-
iments, but no clear reason for this was found in this study. GaSb was found to
lack large ring sizes (N>8) completely, and this was attributed to cavity shapes,
while in GaSb7 large rings existed. Initial signs of segregation were found in the
GaSb7 alloy, but the small simulation cell sets severe restrictions for studying this
effect further.

In general, computational modeling can support experimental work but not
to replace it. The computer speed has increased by a factor of ∼103 within the
last 10 years, and expected to reach an EFLOPS (1018 floating point operations
per second) performance level in just a few years. In future, it will be possible to
calculate structural models with more detail and larger simulation cells. However,
the models of atomistic structures are still models, and they need to be verified by
experiments. The models give theoretical insight of the important properties and
can be used for making predictions, for example of new PC material compositions,
and one does not need to test every composition with experiments. Modeling can
be used to unravel the atomic structure of amorphous materials as the experiments
can only measure averaged quantities (e.g. S (Q), PDF, EXAFS spectra) of these
materials. This means that the experimental results cannot be pinpointed to a
specific atom, but these results can be used in computer simulations to find out
what are the possible structures and atomic arrangements corresponding to the
results.

This is even more vital when the disordered structure is changing very rapidly,
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as is the case in nanosecond timescale crystallization of PC materials. Here the
computer modeling allows to track a (modeled) trajectory of a single atom, which
can help to understand how it is possible to form an ordered lattice structure in
such a short time. Insights of the atomic movement during crystallization can
then help in engineering desired properties for new PC materials.
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