
Ilkka Kortelainen

Automated GUI Testing for Android Applications

Bachelor’s Thesis
in Information Technology
December 12, 2012

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Ilkka Kortelainen
Contact information: ilkka.j.kortelainen@student.jyu.fi
Title: Automated GUI Testing for Android Applications
Työn nimi: Android-ohjelmien graafisten käyttöliittymien testauksen automatisaa-
tio
Project: Bachelor’s Thesis in Information Technology
Page count: 21
Abstract: Mobile devices are becoming more and more important in our society. As
the number of mobile device users grows, so does the importance of proper appli-
cation quality control and verification. Test automation is one of the key factors in
increasing application quality. This paper is a literature review on current research
on automated GUI testing of Android applications.
Suomenkielinen tiivistelmä: Mobiililaitteet ovat yhä tärkeämmässä asemassa yhteiskun-
nassamme. Kun mobiililaitteiden käyttäjien määrä kasvaa, samoin kasvaa tarve
sovelluksien paremmalle laadunvarmistukselle. Testauksen automatisointi on yksi
avaintekijöistä sovelluksien laadun parantamiseen. Tämä tutkimus on kirjallisu-
uskatsaus Android-ohjelmien graafisten käyttöliittymien testauksen automatisaa-
tion nykytutkimuksesta.
Keywords: Android, Test Automation, Testing Tools, GUI testing, GUI automation
Avainsanat: Android, Test Automation, Testing Tools, GUI testing, GUI automation

Contents

1 Introduction 1

2 GUI testing methods 3
2.1 A GUI Crawling-Based Technique for Android Mobile Application

Testing . 3
2.2 Automated GUI Testing on the Android Platform 5
2.3 Automating GUI testing for Android applications 7
2.4 Experiences of System-Level Model-Based GUI Testing of an Android

Application . 8
2.5 GUI testing using computer vision . 10

3 Analysis of the testing methods 11
3.1 The GUI crawler . 11
3.2 Android Instrumentation Framework and Positron Framework . . . 12
3.3 JUnit and Monkey . 13
3.4 MBT with Monkey and TEMA tools 14
3.5 Sikuli Test . 15

4 Conclusions 17

References 17

i

1 Introduction

Mobile devices are increasingly important in modern society. The gap between tasks
performed with desktop computers and mobile devices is shrinking rapidly. As
the devices get bigger screens, faster processors and the graphical user interfaces
(GUIs) become more complex, new ways to ensure the quality of applications must
be found.

The verification of mobile applications differs from traditional desktop appli-
cations in how the applications are constructed and the environment they are run
in. In desktop environment the testers of non-GUI applications have several tools
to automate their testing needs. For example, to test that a function call multiply-
ByTwo(4) works correctly, a test can be written where this function is called followed
by an assertion function call such as assert(multiplyByTwo(4) == 8) to check the cor-
rectness of the answer and report an error if the answer differs from the expected
one. The finished script can then be automated to run as many times and as often as
needed, which reduces the tester’s need for repetitive actions (Chang, TH., Yeh, T.
& Miller RC., 2010). Also there is no chance of manual mistakes while executing the
test.

In comparison, manual GUI testing is a time consuming and error-prone task.
Let’s consider testing the functionality of the "play" button in a video player: when
pressed, the button should change from the "play" button to "pause" button. To ver-
ify the correct functionality, a tester must find a the "play" button on the screen, click
it, and check that the "pause" button has replaced it. Every time this functionality is
to be verified, a tester must repeat the same steps over and over again (Chang et al.,
2010).

Testing mobile GUI applications has some special requirements compared to the
desktop applications: The GUIs are event-driven and the user can click anywhere
on the screen he chooses making the applications non-deterministic. To test every
possible state the GUI is in is almost impossible. This makes mobile GUI testing
harder compared to normal functional testing. Manual GUI testing is prone to errors
and it is very hard to reproduce exactly the same conditions every time we want
to run the same test. This translates to a high workload on the testers (Hu, C. &
Neamtiu, I., 2011).

Automating the GUI testing in mobile devices is one of the next big challenges
in the mobile industry. Without automation the quality of the software we are using
will not be as good as it could, and, without any doubt, should be.

Google’s Android platform is one of the most popular mobile device platforms

1

at the moment with a leading market share in smartphones in Q3 of 2011. There
are many different methods and tools to automate Android GUI testing. Choosing
the right method and tool for the job is critical for the successful verification of an
application.

This paper presents a literature review of current research on automated GUI
testing on Android devices and tries to answer the following question: for different
kinds of testing, what is the most practical automatic GUI testing approach for test-
ing Android applications. It is important to differentiate between different testing
needs. Regression testing may need a different tool set than e.g. performance testing
and it is improbable that one single method is best for everything.

The following should be considered important factors in every good GUI test
automation tool (Chang et al., 2010):

• The testers should be able to write their own automation scripts;

• The scripts should be easy to maintain: the less the scripts have to be modified
because the application changes, the better;

• The testing tool should minimize the effort of writing the test scripts;

There are also some secondary factors, such the possible cost of the tool, the
effect of frequency of application updates and the diversity of different devices that
run Android that must be taken into account when comparing the different testing
methods, if possible.

One interesting point to consider is: can we depend on that calling low-level
APIs to send keystrokes and verifying the result is really analogous to what the
end-user does and sees. Is there any possibility of missing some of the errors when
we depend on the information we get from the low-level APIs compared to human
manual testing.

The research was conducted by making a literature review on the subject. This
method was chosen because it is an appropriate way to compare all the different
research on the subject to find out if some method is better than others in relation
to the research question. It would also be impossible for me to gain access to all
the hardware and software needed to do a comprehensive research on the subject
myself.

Because the field of this research is comparatively young, there are many differ-
ent kinds of answers to GUI testing automation problem. By conducting a literature
review I got a fairly good insight in the current solutions and the direction the re-
search is heading.

2

The rest of the thesis is structured as follows. Section 2 discusses the selection
method of the articles that were chosen for the literature review and describes the
content of each paper. Section 3 analyses the different methods and tools used in the
selected papers. Section 4 highlights a couple of interesting methods and concludes
the paper.

2 GUI testing methods

The following articles were selected to reflect the current state of automated An-
droid GUI testing. The relevance of the results was evaluated by reading the ab-
stracts. It must be noted that there were more potentially relevant results than
the five that were taken into this study, as the scope of this review is limited. As
such, this cannot be considered a systematic literature review (SLR) as discussed
by Kitchenham et al. (2010). I did not assess the quality of the included studies with
any formal metrics.

All but one of the selected texts are fully about Android GUI testing automation.
The exception to this is the Chang et al. (2010) article on GUI testing using computer
vision. I included this paper because it brings a unique point of view to the discus-
sion: all the other methods described are mostly based on low-level APIs to check
that the device’s output is what it is supposed to be. The computer vision method
uses screenshots of the display which are then compared to the expected output. In
the end-user testing scenario this resembles more closely to what the real end-user
would see compared to checking some UI components value from the APIs, but it
also has some inherent technical difficulties.

Next, I will briefly go through the selected papers and describe their content.

2.1 A GUI Crawling-Based Technique for Android Mobile Application Testing

In their paper, Amalfitano, D., Fasolino, AR. & Tramontana, P. (2011) describe the
open issues and problems in Android application testing and propose adopting a
GUI crawling based testing technique used in traditional GUI testing. For this GUI
crawling testing, Amalfitano et al. (2011) created a tool called A2T 2 (Android Auto-
matic Testing Tool), a Java application which consists of three main components:

• Java code instrumentation component;

• GUI Crawler;

• Test Case Generator.

3

The Java code instrumentation component is used to instrument the Java code
running on the virtual machine (VM). The component instruments the code auto-
matically and enables the detection of run-time crashes.

The GUI crawler component is used to automatically generate a GUI tree by
deducing the possible event sequences in the GUI. The GUI tree’s nodes represent
user interfaces and the edges are event-based transitions between the interfaces (see
Figure 1). The GUI crawler component produces a repository which details the
GUI tree, describes the found interfaces and triggered event. The repository is also
used to produce reports of the crashes which happened during testing and describes
which event sequences lead to the crashes.

Figure 1: The GUI Tree obtained by crawling the example Android applica-
tion (Amalfitano et al., 2011)

The Test Case Generator component is used to automatically generate test cases
from the GUI tree produced by the GUI crawler component. The test cases them-
selves are Java test methods, which have the ability to replay different event se-
quences in the GUI tree, verify the existence of application crashes and assert if the
interfaces between different test sessions are the same as those acquired during the
GUI crawling process (Amalfitano et al., 2011).

The team demonstrated the effectiveness of this technique by automatically find-
ing run-time crashes in a small example program. The method also provides means
for regression testing the application.

4

In the future Amalfitano et al. (2011) have plans to execute an empirical vali-
dation of the technique by testing the method with several real world applications
compared to the simple test application they used in this study. The aim of the
future work is evaluating the method’s cost-effectiveness and scalability in a real
world testing context.

2.2 Automated GUI Testing on the Android Platform

In their paper Kropp, M. and Morales, P. (2010) explain the importance of test au-
tomation. The new high-resolution displays and increased processor power of smart-
phones offer near desktop level user experiences to their users. Testing that the ap-
plications actually work correctly in this new environment has become a important
success factor. However, as the GUI capabilities of the devices increase, the man-
ual testing of the GUIs has become impractical and susceptible to errors. This has
led to a situation where it is highly important for an efficient mobile application
development to use some form of automated GUI testing.

The paper describes two approaches for automating mobile GUI application test-
ing, the Android Instrumentation Framework and the Positron Framework, and ex-
plores the strengths and weaknesses of both of the approaches.

The Android Instrumentation Framework is an integral part of the Android de-
velopment environment. Its test suites are based on JUnit, which makes it fairly easy
to learn for a tester with JUnit experience (see Figure 2). Instrumentation refers to
the ability to monitor all the interactions that the application has with the Android
system by inserting tracking code, debugging techniques, performance counters,
and event logs into the code, which also allow measuring its performance and con-
trol its behavior. The Android Instrumentation Framework includes supporting test
classes, which allow the management of starting, running, controlling and terminat-
ing of the application in test mode (Kropp, M. & Morales, P., 2010).

The Android Instrumentation Framework’s low level API lets the test code to
execute simulated key presses and gestures to mimic user input on the device.

Kropp, M. & Morales, P. (2010) describe The Positron framework as a client-
server model built on top of the Android Instrumentation Framework in order to
manage the activity’s resources, offering a Selenium-like (a tool for automating web
applications) higher-level method for writing and executing test cases. In the Positron
framework, each test case is treated as a client which connects to a server compo-
nent which runs the activity we are testing. The underlying communication infras-
tructure and utilities required by the server are provided by the framework. The

5

Figure 2: Android Instrumentation Framework Class Diagram (Kropp, M. &
Morales, P., 2010)

Positron framework implements its own set of Selenium-like commands to facili-
tate the automated running of high-level GUI test suites.

According to Kropp, M. & Morales, P. (2010), while the Android instrumentation
framework offers greater flexibility and direct access to the GUI controls through
its low-level API, it also forces the tester to write more test code, which increases
the possibility of errors and causes bigger effort to maintain the test cases when
something changes in the application. The Positron framework provides a higher-
level interface for writing automated GUI tests than the Android instrumentation
framework, which reduces the effort for both writing and maintaining the test code
significantly. The strengths of both the frameworks are: use of instrumentation for
managing UI resources through the activity; the possibility for user interaction sim-
ulation by sending key events; execution on the target platform; usage of standard
JUnit assertions in verifying the state and the behaviour of the GUI. Among the
weaknesses of these approaches are that the test case writer must have a detailed
knowledge of the source code of the application under test to find the correct UI

6

resources in the code (Kropp, M. & Morales, P., 2010).
Even though the Android platform as one of the currently most emerging envi-

ronments, this area is still in its beginning. The two analysed frameworks provide
basic GUI testing functionality on various levels, but compared to GUI desktop test-
ing tools, both frameworks yet show notable limitations (Kropp, M. & Morales, P.,
2010).

2.3 Automating GUI testing for Android applications

In their paper Hu, C. and Neamtiu, I. (2011) report on a bug study and describe an
approach for detecting Android GUI bugs.

The bug study and categorization of Android-specific bugs showed that a sig-
nificant amount of Android bugs manifest themselves in a way that is markedly
different from the more traditional, e.g. desktop/server application bugs. To iden-
tify and detect the most frequent Android bug categories, Hu, C. and Neamtiu,
I. (2011) performed an empirical study where they collected and categorized bugs
on 10 popular applications in the Android Market, Google’s official repository for
Android applications.

In their method of detecting Android GUI bugs Hu, C. and Neamtiu, I. (2011)
used a combination of test case and user input generation which were followed by
runtime monitoring and log file analysis. The team used JUnit to generate the re-
quired test cases. After generating the test cases, Monkey, an automatic event gen-
eration tool was used to create the required used inputs in both deterministic and
random ways and to send those generated events to the target application. While
the test was running, they recorded the interaction between the system and the ap-
plication in a log file which was then analysed for potential bugs after the test case
finished running.

Activities are the main GUI components of an Android application; an activity
error usually occurs due to incorrect implementations of the Activity class.

Event errors occur when the application performs a wrong action as a result of
receiving an event. By design, Android applications are expected to be prepared to
receive and react to events in any state of an activity they happen to be in, e.g. an
application must be able to handle the interruption caused by an incoming phone
call in every state. If developers do not provide correct implementations of event
handlers associated with certain states, the application can enter an incorrect state
or crash as a result of an event (Hu, C. and Neamtiu, I., 2011).

Dynamic type errors arise from runtime type exceptions.

7

Figure 3: Old (re-discovered) bugs and new (not previously reported) bugs (Hu, C.
& Neamtiu, I., 2011)

The method proved effective in finding some types of errors (Figure 3): it was
able to discover the existing, already known bugs while finding some new bugs
from the 10 applications they selected for the paper. (Hu, C. and Neamtiu, I., 2011).

2.4 Experiences of System-Level Model-Based GUI Testing of an Android Ap-
plication

The Takala, T., Katara, M. & Harty, J. (2011) paper describes experiences in model-
based graphical user interface testing of Android applications. Takala et al. (2011)
describe an implementation of model-based testing and test automation on An-
droid, including details on application modeling, test design and execution and the
kind of problems that were found in the application which was tested during the
process.

According to Takala et al. (2011) model-based testing (MBT) is a testing method
where the system we are interested in testing is described with a formal model in
such detail that the model can be used to automatically generate test cases. The
test case generation is based on algorithms that process the model of the application
and generate the desired tests. The advantages of MBT are the reduced need for test
script maintenance as we are maintaining the models of the application instead of
large sets of test scripts and a basically unlimited variety of different tests that can
be generated from the models.

To make it possible to automate the GUI testing of Android application, Takala et
al. (2011) needed to be able to send the application GUI events, such as key presses,
and to verify the state of the GUI. The team solved the first requirement by using the

8

network interface of the Monkey application. The Android’s Window service was
selected as the way to verify the GUI contents (see Figure 4).

Figure 4: Architecture of the keyword-based test automation tool for Android
(Takala et al., 2011)

One way to approach the design of GUI tests is the keyword-driven testing
method. In keyword-driven testing the low-level UI operations and API calls are
abstracted using keywords. Keywords usually describe basic user events, such as
pressing hardware keys, tapping or dragging objects on the screen, or pressing a
GUI button. Because the usage of keywords creates an abstraction between the test
scripts and the actual low-level functionality, they are easier to maintain.

Takala et al. (2011) decided to use TEMA tools for the study. TEMA Tools is a
model-based testing toolset which was originally created for the testing of Symbian
S60 GUI applications, but has also been used in Linux, Android, Java Swing and
Qt/Maemo environments according to the team. TEMA tools contain tools for all
the different aspects of MBT: test modeling, test design, test generation and test de-
bugging. On the Android device, the MBTClient class implements the client side
TEMA tools test engine and runs test cases generated from the models. In addi-
tion to running whole model-based test cases, the TEMA test automation enables
keywords to be executed straight from a file or from an interactive prompt.

The paper focused on a case study that was performed with a popular Android
application, the BBC News Widget. The team’s goal was to present real-world data
using the testing method on Android platform and to discuss if there are benefits

9

in using the model-based testing in comparison with the more traditional, usually
low-level, methods of graphical user interface testing. The second product of the
paper was a description of a keyword-based tool for test automation that was im-
plemented for the Android emulator during the case study.

The modeling method proved to be an effective way to find bugs in the applica-
tion. Although the application has been in the Android marketplace for some time
now, the method was able to find new bugs in it. Also, as the testing models do
not usually change much between releases, the team now has a relatively easy-to-
maintain way to do regression testing for the next version of the application. Takala
et al. (2011) claim that setting up a regression test that goes through all actions in the
model can be done quite easily in a few minutes.

2.5 GUI testing using computer vision

The paper by Chang, TH., Yeh, T. & Miller RC. (2010) presents Sikuli Test, an ap-
proach to GUI testing that uses computer vision to help GUI testers automate their
tasks. In Sikuli Test the testers write a visual GUI test scripts which use pictures to
specify which of the GUI components to interact with and what visual feedback to
be expected. Testers are also able to generate test scripts by demonstrating the test
actions. This is done by recording the user inputs and the screenshots of the applica-
tion under test, identifying the components the tester interacted with and the visual
feedback associated with the interactions. (Chang et al., 2010).

The testing method described in the paper worked well within the goals the
team had set to it, but there were some big drawbacks to the method: While Sikuli
Test can cope with situations where known visual assets appear or disappear on the
screen, it is unable to handle situations where something unexpected is shown on
the screen or something is missing. For example, if an image is accidentally placed
in a blank area where there should be no images, Sikuli Test is unable to detect this
error because it only tests the areas which should change during the test.

Another major drawback is that Sikuli Test is designed to only test the GUI’s out-
ward appearance. It does not understand what is going on below the visible GUI.
As an example, Sikuli Test can assert that when the user presses the Delete button,
the correct visual feedback is displayed, but it has no way of verifying that some-
thing is actually deleted from the device. This may require using another testing
method in conjunction with the one (Chang et al., 2010).

10

3 Analysis of the testing methods

In this section I will try to answer the following questions about each of the methods
described in the previous chapter:

• What method was used to automate the testing?

• What testing tools were used? What are the underlying mechanics in the An-
droid platform the tool uses?

• What kind of tests does the tool support?

• Are testers able to write their own scripts?

• Is the script language easy to use? Does writing scripts take a lot of effort? This
is hard subject to quantify, but some general idea of the difficulty involved will
do.

• Are the test scripts easy to maintain if the target application of the tests or the
device we are running the tests on changes?

• What kind of results were reported in the paper? Did the tool work as ex-
pected?

• What are the main weaknesses of the method?

Does the method satisfy the requirements that have been deemed important in
the research question? How about the secondary factors? I will divide these results
into groups based on the type of testing the tool supports. From these groups one
can see the strengths and weaknesses of each method compared to each other and
select the one that is most practical for the specific testing needs at hand.

3.1 The GUI crawler

Kropp, M. & Morales, P. (2010) automated their tests by a GUI crawling method
using A2T 2 testing tool. The GUI crawler uses Robotium, a test framework created
for testing Android applications. Robotium provides means for the run-time anal-
ysis of the Android application’s components. The tool supports crash testing and
regression testing.

This method seems to be mostly focused on automatically crawling the appli-
cations UI and generating the crash test cases, and as such does not offer much
flexibility for the testers to write their own tests.

11

In the paper Kropp, M. & Morales, P. (2010) used the method on a simple calcu-
lator application. The crawler successfully acquired the GUI tree of the application
and generated 17 crash test cases.

The test cases found some crashes from the application. For example, one crash
was caused when pressing a certain button on the calculator. The crash was caused
by the lack of a try/catch exception handling code block for a input of a non-numeric
value in a input TextEdit widget (Kropp, M. & Morales, P., 2010). I believe these
types of errors are among the most common ones found with this type of testing.

The lack of scripting available to the testers and the limited scope of crash/regression
testing poses a serious limitation to the usefulness of the tool in many testing activ-
ities. I could not find any outside references on the testing tool used, if it was open
source or even available somewhere.

If there is no need for other types of testing, the paper showed that the method
can be used for running crash and regression testing and that it is capable of detect-
ing some types of errors in a completely automatic manner, which certainly mini-
mizes the effort in writing the test scripts.

3.2 Android Instrumentation Framework and Positron Framework

Kropp, M. & Morales, P. (2010) used two methods to automate their tests: the
Android Instrumentation Framework and the Positron Framework. The Android
Instrumentation Framework is an integrated part of the Android SDK, while the
Positron framework is a client-server model built on top of the Android Instrumen-
tation Framework. In both of the approaches testers are able to write their own test
cases.

The Android Instrumentation Framework test cases are basically JUnit cases
which should make using the method easy for an experienced JUnit tester accord-
ing to Kropp, M. & Morales, P. (2010). This approach allows for writing test cases at
very low level, which ensures efficient runtime and fast response.

The Positron framework offers a higher-level interface to write the GUI test suites
with. It implements a client-server model where each test case is treated as a client,
which connects to a server component which runs the activity. The upside of this
model is that the amount of code needed is less than in the Android Instrumentation
Framework, but at the same time the framework connects to the application under
test each time when the test class needs to use activity resources, which slows down
the execution.

Both the methods could be considered as viable alternatives for some testing

12

tasks with exceptions, i.e. the Positron framework would not be ideal for perfor-
mance testing due to its slow execution times. Both of the approaches should be
reasonably easy to get into for a tester who is familiar with JUnit or some other
comparable approach.

The maintainability of the scripts produced with these methods is probably not
the highest, at least when talking about Android Instrumentation Framework, as
we are dealing with pretty low-level cases with no inherent support for abstraction.
The authors did not offer any real world examples of using the method or their
effectiveness in the paper.

To use instrumentation, the tester must have access to the application’s source
code. Instrumentation can only control applications which have been started in
the same process as the actual testing application, and as such it is not suited for
system-wide GUI testing where interactions between multiple applications are nec-
essary. (Takala et al., 2011).

3.3 JUnit and Monkey

Hu, C. & Neamtiu, I. (2011) used JUnit for test case generation. JUnit was used
to test whether an activity was properly created, whether the activity performed
according to UI specification and that the activity’s state was correct. The team used
Monkey for automatic event generation. To discover a wide range of issues, the
team used random sequences: the sequences were generated using Monkey, and
input to the application under test.

After the test cases were generated, the team ran them on the application through
the Dalvik VM (the Android platforms virtual machine). To monitor the execution of
test cases, the VM was configured to log the details of each test case into a trace file.
The traces captured three kinds of events: GUI events, method calls, and exceptions.
The VM operation was monitored to detect application bugs that cause the VM to
shut down prematurely. These log files were further analysed to identify potential
bug patterns.

The team’s method is quite similar to Kropp, M. & Morales, P. (2010) use of The
Android Instrumentation Framework, except that Hu, C. & Neamtiu, I. (2011) gen-
erate the tests automatically. This automatic test case generation might be a good
thing when we just need an automatic way to test the GUI components getting
used randomly, but it does not suit all testing needs. As the method uses JUnit,
the testers are able to write their own testing scripts, but that defeats the purpose of
the method. Because of JUnit it should be reasonably easy to get into for experienced

13

testers. The test scripts should be easy to maintain as they are all automatically gen-
erated.

Hu, C. & Neamtiu, I. (2011) found quite a few already known and new bugs of
certain types using this method (see Figure 3). As we do not have any facts about the
real number of bugs in the tested applications, it is hard to say anything conclusive
about the effectiveness of the method.

3.4 MBT with Monkey and TEMA tools

Takala et al. (2011) used a model-based testing approach where they used Monkey
for even generation and the Window service to verify the GUI’s state. The Android
device is connected to TEMA tools, a tried and true set of model-based testing tools
(see Figure 5).

Figure 5: Architecture TEMA tools (Takala et al., 2011)

TEMA tools have a wide variety of tools for different parts of the testing process:
For the test modeling there are tools for model design with a web GUI for designing

14

test objectives, and several utility tools. The test generator uses a variety of algo-
rithms which in turn use the models and test objectives to generate test cases. The
test debugging tools help in discovering what went wrong in failed a test case. Fi-
nally, the keyword execution tool runs the test cases on the SUT and is the only part
of the tools that is dependent on the platform (Takala et al., 2011). In the case study
the Android test automation tool was used as the keyword execution tool.

The approach allows for the testers to create their own models of the application
under test. As a side benefit the actual process of creating the models is an effec-
tive way for manually testing the application. The modeling part of the testing task
requires more effort than in the methods where the cases are generated automati-
cally, but after the models are complete, the separation of the GUI functionality into
models makes the maintenance a lot easier than dealing with low-level test scripts
such as in JUnits case. As an example, Takala et al. (2011) noticed that the Android
platform update to version 2.2 introduced some changes to the GUI e.g. in the home
screen, which in turn required only some small changes to the model. Eventually
the platform dependency was handled by using keywords to abstract the platform
version differences in a way where the testing tool checks the platform version and
chooses the appropriate action based on that information.

Model-based testing has been successfully used in real-life mobile device testing
projects on different platforms such as S60 and Maemo (Takala et al., 2011).

The team reported 14 bugs found from the target of their case-study, the BBC
News Widget.

The team mentions one disadvantage in the tool: it uses parts of the Android
platform which are not included in the public API. As an example of the problem
the team mentioned the possibility of format changes in data returned by some of
the non-public APIs which in turn would some maintenance overhead between ver-
sions.

In my opinion this method is perhaps the only serious answer to professional
Android GUI testing automation covered by this literature review. It has robust
tools and tried-and-true approach to actually making a maintainable and flexible
testing suite.

3.5 Sikuli Test

Chang et al. (2010) used Sikuli Test for test automation. Sikuli Test is a visual au-
tomation technology to test graphical user interfaces using screenshot images. The
testers are able to write their own scripts and also use a "record-playback" mecha-

15

nism where the testers can record interactions which are needed for the test case.
These actions as well as the screenshots of the device are saved and the associated
user inputs and visual assertions are converted into a test case automatically. The
created test case, when executed, repeats the actions just as if the testers were exe-
cuting the same test case themselves. Sikuli Test is platform independent, and can
be used to test applications on an device emulator and even in a different mobile
platform than Android (Chang et al., 2010). This differentiates Sikuli Test from the
other methods described in this paper, which are mostly concentrated on Android
platform.

Figure 6: Sikuli Test script example (Chang et al., 2010)

Because of their visual nature, the testing scripts seem relatively easy to create
and understand even for someone who is not experienced with the tool (Figure 6).
The reusability analysis done on two applications showed the scripts were quite
easy to maintain as long as the application’s GUI evolved incrementally.

The method seems to be good for regression testing, especially if we are more
interested in end-user experience, as the method is excellent for checking what is
actually going on on the device’s screen compared to asking some arbitrary variable
values from a low-level API. As a drawback, the method is designed to test the GUI’s
visual feedback and does not provide a way to check the actual internal functionality
i.e we can only test for things we can see. Chang et al. (2010) do not make any
comments on the performance of the method, but I suspect that taking screenshots
and comparing captured images with the reference ones is not the fastest process,

16

so I would be cautious to use this method for any time-critical testing. In addition
to the problems in coping with unexpected visual feedback, Sikuli Test is limited to
emulator environments, which further limits its usability.

4 Conclusions

The area of test automation in mobile devices is still very young and there are many
different ways to handle the task. All the studied methods have their own strengths
and weaknesses, some of them are better for a specific task than others.

All the methods described in the papers have their uses and can be just the right
thing for a certain project, however in my opinion, two of the methods I explored
proved the most interesting for further study: the model based testing with TEMA
tools by Takala et al. (2011) and the computer vision utilizing Sikuli Test by Chang et
al. (2010). Both of these methods satisfy the requirements that are common in good
testing tools: the tester’s ability to write his own scripts, the ease of maintenance of
the scripts and the minimized effort of the script creation. It is interesting to note
that both of the methods use external testing tools to manage the testing, which
probably is a good thing considering the limited resources in a smartphone and the
potential performance impact of heavy test framework running on the device.

Sikuli Test seems like a very potent tool for testing application UI’s functionality.
If the Sikuli Test team manages to get the test runner to work on actual devices
instead of just emulators, this will be very interesting possibility for organisations
with this kinds of testing needs.

MBT with TEMA tools, on the other hand, offers a solid, tried-and-true platform
for automating test case generation and test execution. The focus on modeling good,
reusable components which are easy to maintain is essential for bigger professional-
level projects and the versatility of the tool implies, it will suit most testing needs an
organisation might have.

As the testing methods and needs are continually evolving, we need also to re-
evaluate our view on the testing tools from time to time. None of the methods
studied here are yet mature enough to be the perfect solution for every case.

References

Amalfitano, D., Fasolino, AR. & Tramontana, P. 2011. A GUI Crawling-Based Tech-
nique for Android Mobile Application Testing. 2011 IEEE Fourth International Con-

17

ference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 252–261.

Chang, TH., Yeh, T. & Miller RC. 2010. GUI testing using computer vision. CHI ’10
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1535–1544.

Hu, C & Neamtiu, I. 2011. Automating GUI testing for Android applications. AST ’11
Proceedings of the 6th International Workshop on Automation of Software Test,
pp. 77–83.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, OP., Turner, M., Niazi, M. &
Linkman, S. 2010. Systematic literature reviews in software engineering – A tertiary
study. Information and Software Technology, 52(8) pp. 792–805.

Kropp, M. & Morales, P. 2010. Automated GUI Testing on the Android Platform. Pro-
ceedings of the 22nd IFIP International Conference on Testing Software and Sys-
tems: Short Papers, Montreal: CRIM, pp. 67–72.

Takala, T., Katara, M. & Harty, J. 2011. Experiences of System-Level Model-Based GUI
Testing of an Android Application. IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 377–386.

18

