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Abstract 

 

Meter is known to play a paramount role in the aesthetic appreciation of music, yet computational modelling 
remains deficient compared to other dimensions of music analysis. Classical audio-based methods detect the 
temporal repartition of notes, leading to an onset detection curve that is further analysed, in a second step, for 
periodicity estimation. Current state of the art in onset detection, based on energy and spectral flux, cannot 
handle complex but common musical configurations such as dense orchestral textures. Our proposed im-
provement of the flux method can detect new notes while ignoring spectral fluctuation produced by vibrato. 
Concerning periodicity estimation, we demonstrate the limitation of immediately restricting the range of 
tempi and of filtering out harmonics of periodicities. We show on the contrary how a complete tracking of a 
broad set of metrical levels offers a detailed description of the hierarchical metrical structure. One metrical 
level is selected as referential level defining the tempo and its evolution throughout the piece, by comparing 
the temporal integration of the autocorrelation score for each level. Tempo change is expressed independent-
ly from the choice of a metrical level by computing the difference between successive frames of tempo ex-
pressed in logarithmic scale. A new notion of dynamic metrical centroid is introduced in order to show how 
particular metrical levels dominate at particular moments of the music. Similarly, dynamic metrical strength is 
defined as a summation of beat strength estimated on dominant metrical levels. The model is illustrated and 
discussed through the analysis of classical music excerpts. 

Keywords: periodicity estimation, onset detection, metrical analysis  

1. Introduction  

The metrical dimension of music is known to 
play a paramount role in the aesthetic appreci-
ation of music, including emotion, yet compu-
tational modelling remains particularly defi-
cient, compared to other dimensions of music. 

Classical audio-based methods detect in a 
first step the temporal repartition of notes, 
leading to an onset detection curve that is fur-
ther analysed, in a second step, for periodicity 
estimation. This paper follows the same two-
step approach, and introduces new methods 
for each step. 

The model has been implemented in MIR-
toolbox (Lartillot & Toiviainen, 2007) and is 
available in the new version 1.5 of the toolbox. 

2. Onset detection curve 

Th  f  st st    o s sts      o u   g    “o s t 
  t  t o   u v ”  wh  h  s   t m o  l  u v : 
musical events are indicated by peaks; the 
height of each peak is related to the im-
portance of the related event, in terms of en-
ergy and/or spectral contrast. There are two 
main approaches to obtain such onset curve: 

One approach consists in extracting an am-
plitude envelope curve, showing the general 
evolution of energy along time, corresponding 
to the following command in MIRtoolbox: 

o = mironsets(a, 'Envelope') 
where a can be for instance the name of an 
audio file. 

Another approach consists in computing 
spectral flux, i.e. in evaluating the distance 
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with respect to the global spectral distribution 
between successive instants: 

o = mironsets(a, 'Flux') 
Both methods give relevant results for mu-

sic where notes are sufficiently isolated or ac-
centuated with respect to the background en-
vironment, such as in Fig. 1a and 1b. But when 
dealing with a complex orchestral sound where 
notes cannot be detected based on global en-
ergy changes, such as in Fig 2a and 2b, things 
get more complex. The 'Envelope' method 
does not work since the general envelope indi-
cates the global dynamic change without re-
vealing the note onset position hidden in the 
polyphonic texture. The 'Flux' method, on the 
other hand, can detect notes in the polyphony 
but may fail in the presence of vibrato. 

For that reason, we have developed an im-
proved version of the flux method, called 
‘Em  g ’  that is able to detect more notes and 
in the same time ignore the spectral variation 
produced by vibrato. More precisely, when 
comparing two successive frames, for each 
periodicity, the energy from the new frame 
that exceeds the energy level for a range of 
similar periodicities from the previous frame is 
summed. By looking not only at the exact 
same periodicity in the previous frame, but 
also similar periodicities, this allows to ignore 
slight changes of periodicities. For the mo-
ment, the frequency tolerance has been simply 
fixed to an arbitrary value that corresponds to 
a maximal frequency difference between suc-
cessive frames of 17 Hz. 

The new onset curve is available in MIR-
toolbox 1.5 by using the following command: 

o = mironsets(a, 'Emerge') 
The onset curves related to this new 

'Emerge' method are shown in Fig. 1c and 2c. 
We can also observe how the choice of onset 
curve has an impact in the estimation of perio-
dicity, further discussed in the next section, 
since the autocorrelogram (the matrix showing 
the autocorrelation function frame by frame, 
as in Figure 3) computed with the new 'Emerge' 
method shows more clearly the metrical struc-
ture than those computed with the other 
methods: In Fig. 3a, using the 'Flux' method, 
the three metrical levels 1, 2 and 3 are not 
clearly shown in the autocorrelogram, but still 
detected by the metrical tracker, whereas they 

are clearly shown in Fig. 3b, using the 'Emerge' 
method. Besides, the 'Emerge' method clearly 
shows the subdivision of level 1 into six sub-
beats. Notice also how accentuations on the 
fifth sub-beat (level 5/6) in the second half of 
the excerpt, shown in Fig. 3b, in a very con-
stant tempo is roughly understood in Fig. 3a as 
a global tempo increase at level 1. 
 

 

 

 

 

Figure 1. Three different onset curves extracted 
from the first seconds of a performance of the 
3

rd
 movement of C.P.E. B  h’s Concerto for cello 

in A major, WQ 172, using the 'Envelope' (1a), 
'Flux' (1b) and 'Emerge' (1c) methods, with the 
detailed spectrogram (1d) used for the 'Emerge' 
method. 

 

 

 

 

Figure 2. Three different onset curves and spec-
trogram extracted from the first seconds of a 
performance of the Aria of J.S. B  h’s Orchestral 
suite No.3 in D minor, BWV 1068, using the same 
approaches as in Fig. 1.
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Figure 3. Metrical analysis of the first five seconds of a performance of the Finale (Allegro energico) of M. 
Bruch’s Violin Concerto No.1 in G minor, op.26. Both figures show an autocorrelogram: each successive col-
umn corresponds to a time frame of 5 s, starting from 0 s and moving every .25 s. For each frame in each 
column the autocorrelation function is represented, showing periodicities with warm colours (green-
yellow) at the given period in s. (on Y-axis). The autocorrelogram (3a) is computed using the 'Flux' onset 
curve method, while for the second one (3b) the new 'Emerge' method is used. On top of the autocorrelo-
gram the metrical structure as tracked by the algorithm is annotated (cf. text for an explanation). 

3. Periodicity estimation 

Pulsation corresponds to a periodicity in the 
succession of peaks in the onset curve. This 
periodicity can be detected through the com-
putation of autocorrelation function on suc-
cessive large frames (of a few seconds) of the 
onset curve, such as: 

ac = mirautocor(o, 'Frame') 
mirpeaks(ac, 'Total', 1) 

In the presence of a given pulsation in the 
musical excerpt that is being analyzed – l t’s 
say with a BPM of 120, i.e., with two pulses per 
second – the autocorrelation function will indi-
cate a high autocorrelation score related to the 
period .5 s. But generally if there is a pulsation 
at a given tempo, subdivisions of the pulsation 
can also be found that are twice slower (1 s), 

three times slower, etc. For that reason, the 
autocorrelation function usually shows a series 
of peaks equally distant for all multiples of a 
given period. This has close connections with 
the notion of metrical structure in music, with 
the hierarchy ordering the levels of rhythmical 
values such as whole notes, half notes, quarter 
notes, etc. 

One common approach to extract the tem-
po from the autocorrelation function is to se-
lect the highest peak, within a range of beat 
periodicities considered as most adequate, 
typically between 40 and 200 BPM, with the 
possible use of a resonance curve (Toiviainen & 
Snyder 2003). 

This can be performed in MIRtoolbox by 
calling the mirtempo operator and toggling off 
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the 'Metre' option (further presented in the 
next sections): 

mirtempo(a, 'Metre', 'No') 
One main limitation of this approach is that 

if different metrical levels are emphasized 
throughout the temporal development (Fig. 
4a), the tempo tracking will constantly switch 
from one BPM value to another one twice 
slower, twice faster, etc (Fig. 4b). This would 
happen very often, since in most music, suc-
cessions of same durations can often be fol-
lowed by succession of durations twice slower 
or faster for instance. 

 

 

Figure 4a. Metrical analysis of the first seconds 
of the first movement of a performance of J.S. 
B  h’s  Brandenburg concert No.2 in F Major, 
BWV 1047. Traditional tempo extraction ap-
proach based on detecting the most dominant 
pulse frame by frame from the processed auto-
correlogram. 

 

Figure 4b. Tempo curve resulting from the ap-
proach presented in Fig. 4a. 

 

Figure 4c. New method constructing a metrical 
structure from the unprocessed autocorrelo-
gram. 

 

Figure 4d. Tempo curve resulting from the ap-
proach presented in Fig. 4b. 

4. Metrical structure tracking 

As a solution to this problem, we propose 
to track a large part of the metrical structure, 
by following in parallel each metrical level sep-
arately and combining all the levels in one sin-
gle hierarchical structure. 

The metrical structure of any audio file can 
be computed and displayed in MIRtoolbox 1.5 
using the following command: 

mirmetre(a) 
Examples of metrical structures are shown 

in Fig. 3. Metrical levels are indicated with lines 
of crosses that are linked together between 
successive frames with dotted lines. The level 
index is indicated on the left of each line. The 
dominant metrical level, indicated as level 1, is 
drawn in black, while other levels are shown in 
light brown. The cross size indicates the relat-
ed pulse strength, corresponding to the auto-
correlation score for that periodicity. If the ac-
tual periodicity is deviated from the theoretical 
harmonic series of periodicities expected from 
a metrical structure, a vertical line is drawn 
between the actual and the theoretical periods. 

In Fig. 3a, level 1 is subdivided into one sub-
level .5, corresponding to a binary rhythm, 
with multiples 1.5, 2.5, etc. In Fig. 3b, on the 
contrary, level 1 is subdivided into six sub-
beats, with its elementary level 1/6, as well as 
its half slower level 2/6 corresponding to a ter-
nary division of level 1, and finally its three 
times slower level 3/6 corresponding to a bina-
ry division of level 1. 

Other examples of metrical structures are 
given in Fig. 4c, 5a and 6a. We can notice for 
instance in Fig. 6a that at the middle of the 
excerpt, the ternary rhythm turns into a binary 
rhythm for a dozen of seconds. 
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Figure 5a. Autocorrelogram with tracking of the metrical structure for the first seconds of a performance 
of the 3

rd
 movement of C.P.E. B  h’s Concerto for cello in A major, WQ 172. 

 

Figure 5b. Corresponding tempo curve. 

 

Figure 5c. Corresponding tempo change curve. 

 

Figure 5d. Corresponding metrical centroid curve. 

 

Figure 5e. Corresponding metrical strength curve. 
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Figure 6a. Autocorrelogram with tracking of the metrical structure for the first 80 seconds of a perfor-
mance of the Scherzo of L. van Beethoven’s Symphony No.9 in D minor, op.125. 

 

Figure 6b. Corresponding tempo curve. 

 

Figure 6c. Corresponding metrical centroid curve. 

 

Figure 6d. Corresponding metrical strength curve.  
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5. Tempo and tempo change 

Once the metrical structure has been con-
structed, one metrical level is chosen as the 
referential level that defines the tempo and its 
evolution throughout the piece (Fig. 4d). This 
metrical level is chosen due to its high degree 
of saliency and also because it is related to a 
tempo rate that fits best to the range of best 
perceived tempos. To each metrical level is 
associated a global sum by summing up the 
autocorrelation scores over time for each met-
rical level separately, and by weighting this 
total score with a resonance curve (Toiviainen 
& Snyder 2003) in order to emphasize most 
easily perceived pulsations. The metrical level 
with the highest global sum is selected as the 
main metrical level that defines the tempo.   

This approach for tempo estimation based 
on metrical structure is used by default by the 
mirtempo operator in the new version 1.5 of 
MIRtoolbox. So it can be called simply like this: 

mirtempo(a) 
Fig. 4 compares the tempo tracking meth-

ods. The classical paradigm is based on select-
ing a preferred range of BPMs in the autocor-
relogram, and choosing the maximum auto-
correlation score at each frame (Fig. 4a). This 
leads to a tempo curve with a lot of shifts from 
one metrical level to nother (Fig. 4b). The new 
method builds a metrical structure (Fig. 4c), 
which enables to find coherent metrical levels 
leading to a continuous tempo curve (Fig. 4d). 
Other examples of tempo curve are given in 
Fig. 5b and 6b. 

The selection of a main metrical level as 
referential level for the computation of tempo 
values remains somewhat subjective. Often 
neighboring levels (twice faster, twice slower, 
etc.) could have been selected as well. On the 
other hand, the dynamic evolution of tempo 
seems to play a more important role for the 
listener as it describes how music speeds up or 
slows down, in parallel along all the metrical 
levels. Tempo change is expressed inde-
pendently from the choice of a metrical level 
by computing the difference between succes-
sive frames of tempo expressed in logarithmic 
scale. 

The tempo change curve is computed in 
MIRtoolbox 1.5 using the following command: 

mirtempo(a, 'Change') 
An example of tempo change is given in Fig. 

5c. 

6. Dynamic metrical centroid 

On the other hand, the fact that particular 
metrical levels may be more dominant than 
others at particular moments of the music is an 
important aspect of the appreciation of 
rhythm. The common method of selecting the 
most dominant metrical level at each succes-
sive frame is not satisfying, as it would lead to 
shifts between metrical levels that are some-
what artificial and chaotic. Instead of selecting 
one single metrical level at each frame, we in-
troduce a new assessment of metrical activity 
that is based on the computation of the cen-
troid of a range of selected metrical levels. Not 
all levels found in the autocorrelogram are 
taken in the computation of the centroid, be-
cause there can exist dozens of them, without 
theoretical limitations. 

Only levels corresponding to actual theo-
retical metrical levels, such as whole notes, 
half notes, quarter notes, etc., are selected. 
This selection is performed automatically, so 
that it can detect whether the metrical struc-
ture is binary, ternary, etc. More precisely, for 
each frame considered in isolation, metrical 
levels whose strengths (defined by the auto-
correlation value at those points) are higher 
than the strengths of all their underlying met-
rical sub-levels are selected. This corresponds 
to metrical levels that are N times faster for all 
N > 1. I        f   g v   m t    l l v l (l t’s s y 
level 3) is weaker than one if its underlying 
metrical sub-level (for instance level 1), this 
means that the grouping of three pulses at 
level 1 does not emerge from the succession of 
such pulses. On the other hand, if that metrical 
level (3) is stronger than the immediately lower 
sub-level (2), this means that the grouping of 3 
notes has still more importance than the 
grouping of 2 notes. For that reason we pro-
pose to select such metrical levels as well. 

For each frame, the dominant metrical lev-
els are selected and the centroid of their perio-
dicity (in seconds) is computed, using as 
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weights their related autocorrelation scores. A 
refined version of the algorithm defines the 
weights as the amount of autocorrelation 
score at that specific level that exceeds the 
autocorrelation score of the underlying met-
rical sub-levels. In this way, any sudden change 
in the number of selected metrical levels from 
one time frame to the successive one does not 
lead to abrupt changes in the metrical centroid 
curve. 

 The resulting metrical centroid curve indi-
cates the temporal evolution of the metrical 
activity. The metrical centroid values are ex-
pressed in BPM, so that they can be compared 
with the tempo values also in BPM. High BPM 
values for the metrical centroid indicate that 
more elementary metrical levels (i.e., very fast 
levels corresponding to very fast rhythmical 
values) predominate. Low BPM values indicate 
on the contrary that higher metrical levels (i.e., 
slow pulsations corresponding to whole notes, 
bars, etc.) predominate. If one particular level 
is particularly dominant, the value of the met-
rical centroid naturally approaches the corre-
sponding tempo value on that particular level. 

The metrical centroid is computed in MIR-
toolbox 1.5 using the following command: 

mirmetroid(a) 
Examples of metrical centroid curves are 

given in Fig. 5d and 6c. We can notice for in-
stance in the metrical structure in Fig. 5a that 
the emphasis is put first on the fastest level 
(level 1), followed by a progressive activation 
of levels 3 and 6 from t = 6 s. Then, after a 
break around t = 15 s, level 3 becomes domi-
nant. This can be seen in the metrical centroid 
curve, first focusing on the fastest pulsation 
(around 450 BPM) on the first half of the ex-
cerpt, followed by a focus on the lower pulsa-
tions (around 100 and 200 BPM) on the second 
half. 

7. Dynamic metrical strength 

Another major description of the metrical ac-
tivity is assessing its strength, i.e., whether 
there is a clear and strong pulsation, or even a 
strong metrical hierarchy, or whether on in the 
other hand the pulsation is somewhat hidden, 
unclear, or there is a complex mixture of pulsa-
tions. Studies have been carried out in the old 

paradigm – i.e., one single metrical level de-
tected at a time, as discussed in Section 3. In 
such case, since there is just one beat or pulsa-
tion, the strength is therefore related to that 
single metrical level (Lartillot et al., 2008). Fol-
lowing one simple traditional approach, beat 
strength is simply identified with the autocor-
relation score of that main metrical level. 

We propose a simple generalization of this 
metrical strength approach by simply sum-
ming the autocorrelation scores of the select-
ed dominant levels (using the same selection 
method as in last section). The metrical 
strength is increased by any increase of auto-
correlation score at any dominant level, or if 
new dominant levels are added to the selec-
tion. Whereas the autocorrelation score is a 
value lower than 1, the metrical strength can 
exceed 1. 

The metrical strength is implicitly comput-
ed when assessing the metrical centroid, and 
can for that reason be obtained in MIRtoolbox 
as a second output (below: ms) of the mirme-
troid command: 

[mc ms] = mirmetroid(a) 
Examples of metrical strength curves are 

given in Fig. 5e and 6d. 

8. Collinearity between metrical features 

In this section, we evaluate the collinearity of 
the most important metrical features intro-
duced in this paper (tempo change, metrical 
centroid, metrical strength) – computed using 
the current version of the algorithms while 
writing the paper, i.e., MIRtoolbox 1.4.1.4 – to 
which we add two additional features. The first 
additional feature is pulse clarity, i.e. the 
strength of the main pulse detected at each 
frame (Lartillot et al., 2008), obtained in MIR-
toolbox using: 

mirpulseclarity(a, 'Frame') 
The other additional feature is metrical nov-

elty, i.e. the novelty curve, computed using the 
new method (Lartillot et al., 2013), in its beta-
version in MIRtoolbox 1.4.1.4, based on the 
autocorrelogram function ac used for the as-
sessment of the metrical structure (cf. §3): 

mirnovelty(ac, 'Flux') 
All these features were extracted from thir-

ty-six musical excerpts covering a large range 
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Table 1. Pairwise Pearson product-moment correlation coefficients between the following features: pulse 
clarity (pc), metrical centroid (mc), metrical strength (ms), novelty of the autocorrelation computed from 
the onset curve (nv), tempo change (tc). Features are replaced with their square roots. 

  pc mc ms nv tc 

pc 

r = 1 r = 0.203 r = 0.053 r = -0.167 r = 0.006 

N=21721 N=21681 N=21721 N=21685 N=21637 

p= --- p<0.01 p<0.01 p<0.01 p=0.38 

mc 

  r = 1 r = -0.314 r = 0.057 r = 0.006 

  N=21682 N=21682 N=21648 N=21634 

  p= --- p<0.01 p<0.01 p=0.40 

ms 

    r = 1 r = -0.036 r = 0.011 

    N=21722 N=21686 N=21638 

    p= --- p<0.01 p=0.11 

nv 

      r = 1 r = -0.002 

      N=21686 N=21638 

      p= --- p=0.77 

tc 

        r = 1 

        N=21638 

        p= --- 

 
of musical styles from baroque to contempo-
rary classical music (Eliard et al., 2013; Eliard & 
Grandjean, in preparation) with a mean dura-
tion of 155.83 ± 10.66 seconds. Frame size of 
the moving window was fixed to 1 second and 
the hop factor was fixed to 0.25 seconds. Since 
these features were Gamma distributed, Pear-
son product-moment correlation coefficients 
were computed on their square roots. Correla-
tions were also calculated using pairwise dele-
tion. The results of the correlations are shown 
in Table 1. 

   o    g to Coh  ’s  o v  t o  (1988)  f-
fects sizes are small, except for the correlation 
between metrical centroid and metrical 
strength (r = -0.314, p < 0.01). Results also sug-
gest that these features are relatively inde-
pendents. 

9. Discussion 

This new computational model, freely availa-
ble in the new version 1.5 of MIRtoolbox, ena-
bles a relatively robust assessment of tempo 
and its dynamic evolution in any piece of music. 
Even more, it offers a very detailed description 
of the metrical structure, revealing import as-
pect of the metrical structure that are inde-
pendent from the tempo dimension: the new 

concept of metrical centroid (or metroid) that 
we are introducing, and metrical strength. 

We may expect high impact of these met-
rical dimensions to the emotional experience 
of music, in particular with respect to activity 
(Russell, 1980) and more particularly to ener-
getic arousal, and maybe tense arousal as well 
(Thayer, 1989). 

Small deviations from the metrical struc-
ture in musical performances are a typical 
means of musical expressivity, and are there-
fore crucial for the affective impact of music. 
The methods presented here provide a proce-
dure to quantify these metrical features, which 
will be very useful in studies that try to better 
understand the link of musical structure and 
performance features with emotions in re-
sponse to music. 

The actual tempo level is not so much of 
importance in this respect, because a same 
musical excerpt can often be associated with 
several parallel tempi in harmonic relation 
(l t’s s y 60     120 BP ). Indeed, tempo is 
rather a musical convention that does not nec-
 ss   ly   fl  t th  l st    ’s sub  ctive experi-
ence. We may expect however a positive corre-
lation between a change in tempo and a 
change in arousal. An interesting complemen-
tary descriptor here is metroid, which could be 
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also correlated with arousal, not only in terms 
of metroid change, but also in terms of actual 
metroid value. Metroid is somewhat inde-
pendent from tempo: a change of metroid can 
be independent from a change of tempo, as 
can be seen for instance in Fig. 6b and 6c. Fi-
nally metrical strength can have also an im-
portant impact in arousal. The relative contri-
bution from these different tempo and met-
rical descriptors to the two aspects of arousal, 
energetic and tense, remains an open question. 

Tempo and metrical descriptions might also 
aspect the other main dimension of the emo-
tional appreciation of music, i.e., valence. But 
a complete study of this aspect might require 
additional rhythmical and metrical descrip-
tions, related to accentuation in particular, 
which would depend also on aspects related to 
dynamics in general, register and timbre. 

Tempi and metrical changes as well as the 
clarity of them are probably crucial to explain 
the subjective entrainment during music lis-
tening and it has been proposed that this phe-
nomenon is important in emotion emergence 
in music (Juslin et al., 2010). Entrainment, both 
visceral and motor components, seems to play 
an important role in the emergence of feelings 
during musical listening (Labbé & Grandjean, 
submitted). Moreover, these tempi and metric 
features might be combined with dynamic 
subjective musical feelings and/or dynamic 
perceived emotions in music. Such combina-
tion will allow the assessment of causality in 
the emergence of complex emotions using for 
example Granger causality measures to inves-
tigate how different characteristics of tempi 
and metrics might be crucial in the emergence 
of subtle musical feelings such as them de-
scribed in Geneva Emotion Musical Scales 
(Zentner, Grandjean, & Scherer, 2008). 
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