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Finnish summary 
Diss. 
 
Peer-to-peer networks consist of autonomous nodes that communicate with 
each other to share and exploit resources in totally decentralized manner. Cur-
rent P2P applications focus mainly on providing file storage and sharing that 
scales to the demand without heavy investment to centralized coordination. 
Unstructured P2P networks allow varied resource search queries based on 
keywords but suffer from scalability of used search algorithms. Delivering 
messages in the physical network is fast, but the processing of queries and 
messages at the application level requires capacity and causes delays, limiting 
the usability and scalability of P2P applications.  

This thesis studies algorithms both for self-organizing and managing logi-
cal topology and for performing efficient resource discovery in unstructured 
peer-to-peer networks using only local information that nodes can collect while 
within the network. Topology algorithms aim to organize the overlay topology 
so that peers can find the resources they need close to them in logical topology.  
Thus the scope of the search queries could be reduced and results would be 
found with smaller overhead of query traffic.  

In addition to topology management algorithms intended for general use 
this thesis also studies the combination of topology management with search 
algorithms that are tailored to function optimally in specific environments or 
use cases.  

The work covers the art of simulating P2P networks, various approaches 
to topology management and adaptive search methods, some theoretical ap-
proximations of ideal search efficiency, and a systematic experiment to compare 
topology management and adaptive search methods in a simple, controllable 
case. 
 
Keywords: peer-to-peer networks, P2P, overlay topology, topology 
management, self-organizing, resource discovery 
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1 INTRODUCTION 

The development of technology has put peer-to-peer networks (P2P) back on 
the map in last ten years. Although P2P networks have gained a lot of publicity 
since 2000, this technology is not new. In the peer-to-peer network all nodes 
have equal roles: nodes both provide resources to other nodes and consume 
resources from other nodes. This idea of equality was already behind the AR-
PANET, which was invented in the late ‘60s. The emergence of applications 
such as e-mail and the WWW in the ‘90s changed the network to client–server 
architecture comprised of a small amount of powerful and dedicated servers 
and a huge amount of clients using services from these servers. Since then, the 
capacity of low-cost home computers and telecommunication has grown to en-
able the development of different P2P applications.  

The best known application area in P2P networks is content distribution.  
The file distribution systems, such as Napster and Gnutella, brought P2P into 
the public eye. In addition to file services, the applications may utilize the un-
used CPU time to perform tasks that would otherwise require expensive super-
computers.  The P2P networks can be used also for communications; for exam-
ple the popular internet phone application Skype is based on the peer-to-peer 
model. The most popular and widely-used networks and applications have 
been developed for open and voluntary use and require no service commitment 
from individual nodes, only the installation of the application. However, P2P 
systems can also be made available to restricted environments and be devel-
oped for the specific needs of organizations, particularly for applications where 
resilience and scalability are needed. 

 P2P network consists of computers, called nodes or peers, and the connec-
tions between them. The nodes and connections together form the logical to-
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pology of the P2P network on top of the physical network. The P2P networks 
can be divided into several groups based on the logical topology of the net-
work. In unstructured P2P networks, the node’s position in the network is not 
predefined, whereas structured P2P networks have specific rules dictating 
where the node joining the network is placed. Furthermore, unstructured net-
works can be pure or hybrid and nodes may construct one or more layers in the 
topology. The hybrid network has a special server called a broker, which in-
cludes the index of the resources.  

The different topologies have their own advantages and disadvantages 
and properties affecting their efficiency. In particular, the topology affects the 
usability of different search mechanisms, and searching for the resources is con-
sidered to be the main bottleneck in the scalability of unstructured P2P net-
works. 

This thesis concentrates on the unstructured pure P2P networks where the 
simplest search algorithm is flooding breadth-first search (BFS), where nodes 
forward the query to their neighbors and possible replies are sent back to the 
querier along the same route by which the queries were sent. 

The performance analysis of P2P networks is far from simple. The real 
networks are hard to monitor as they have no central control, the networks are 
big, and the traffic and resources are quite diverse. Also, the expectations for 
performance may differ even within the same network. Design and optimiza-
tion of networks is further complicated by the fact that the observable proper-
ties of the networks are mainly emergent and global whereas the design and 
control is local. So, it is quite understandable that the literature on the analysis 
of P2P networks is quite diverse and lacking commonly-used benchmarks. 

The big question driving this work has been to understand how the topol-
ogy of P2P networks can be adapted to the needs of the users of the network. 
For such a broad question no general solution is to be expected. So our focus is 
in studying the related sub-problems and tools that will be needed when an-
swering this question in a concrete situation. The essential sub-problems consist 
of the following: 

1. How to make controlled experiments on P2P networks and proto-
cols? 

2. How far is the real observed search performance of simple P2P pro-
tocols from theoretical limits? 

3. How much the performance can be improved by careful tuning of 
the parameters? 

4. How to analyze systematically the performance of a topology man-
agement algorithm for a given setup? 

1.1 Structure of the Thesis 

The thesis is structured so that the first five chapters present background in-
formation on the study of topology management in unstructured P2P networks, 
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with a focus on the first three research questions. The actual contribution relat-
ed to these first chapters is documented in the attached papers I through VI. As 
the papers have been written to obey strict page limits, they cannot cover all 
aspects of a systematic analysis. Chapter 6 aims to expand on this by document-
ing a detailed analysis of a simple experiment. 

Chapter 2 includes definitions of peer-to-peer networks and presents how 
they are classified based on the level of centralization and the overlay structure. 
The developed tools and topology management algorithms presented in this 
thesis are designed for pure unstructured P2P networks, which are introduced 
in greater detail by using the Gnutella protocol, for example. 

Chapter 3 and Chapter 4 concentrate on two aspects affecting the efficien-
cy of pure unstructured peer-to-peer networks, namely: search algorithm and 
topology. Chapter 3 presents the problem of the resource discovery in pure un-
structured networks and the most common search algorithms, which are used 
when studying the search and topology management algorithms. Typically, 
search algorithms depend on rules and parameters defined in the implementa-
tion phase. The NeuroSearch algorithm presented in paper PI uses neural net-
works to decide which neighboring parameters are relevant when forwarding 
the query. Neither NeuroSearch nor any other developed search algorithm us-
ing local information has optimal performance. To facilitate the efficiency eval-
uation of the algorithms, paper VII presents an upper bound for efficiency to 
which the algorithms can be compared to.  

In the unstructured P2P network, nodes may manage their neighborhood 
by adding or dropping the neighbors to improve efficiency. Chapter 4 introduc-
es the principle of topology management and its different aspects. Also, the so-
lutions developed to improve the topology are presented and compared to the 
ones developed in this thesis. The topology management may be based on the 
physical parameters of the network or the information collected from the logical 
networks. The two algorithms presented in papers PII and PV use local infor-
mation about neighbors that nodes have collected. These algorithms improve 
the efficiency of the search algorithms by organizing the topology in such a way 
that nodes with similar interests are situated close to one another. The infor-
mation used in the management is rather complex and has several parameter 
values that impact the results and performance.  

As the real networks cannot be analyzed and optimized easily, some arti-
ficial models must be used. It is common practice for a preliminary evaluation 
of a technology to explore its behavior under well-understood conditions and 
simple models. After that large scale simulation with more realistic conditions 
can be designed and performed. Thus, a well-designed simulator can be a use-
ful tool. The P2PRealm simulator presented in the paper PIV was developed for 
the study of search and topology management algorithms, especially those us-
ing neural networks. Systematic simulation of P2P networks is a challenge due 
to the lack of well-defined benchmarks, test-suites, and scenarios. The parame-
ters defining the simulation environment and their possible values are intro-
duced in Chapter 5. 
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For any algorithm, the performance depends not only on the values of the 

algorithm’s own parameters, but also on the properties and parameters of the 
networks used. Chapter 6 focuses on making simulation studies of the algo-
rithms in simple and controlled networks rather than in snapshots of real-world 
P2P networks to be better able to control the effects of algorithms on the behav-
ior of the networks. Thanks to simple and well-controlled setup new infor-
mation about the qualitative behavior of the studied topology management al-
gorithm could be obtained. The tendency to create star-like topologies and to 
create unconnected networks while optimizing the short range search efficiency 
was observed and could be partially controlled. The managed network provid-
ed also a better environment to adaptive search algorithms but this effect may 
be largely related to the artificial, evenly distributed resource allocation used in 
the simulation. Hence no strong conclusions about the performance in real net-
works can be made.  As the setup is fully artificial and has little in common 
with any real use case of P2P networks, the most valuable findings are not re-
lated to the actual performance of different methods but to various aspects and 
features of the methods and simulation experiments that are revealed through 
systematic analysis in a simple setup. 

Chapter 7 summarizes the contribution of the thesis. The appendix docu-
ments the results of different simulation tests in greater detail.   



2 PEER-TO-PEER NETWORKS 

The peer-to-peer networks (P2P) are a class of distributed systems. The P2P 
networks can be further divided into several subclasses based on the properties 
of their logical topologies. This chapter introduces different P2P networks and 
discusses advantages and disadvantages of peer-to-peer architecture. 

2.1 Distributed Systems 

In the literature, several definitions are presented for a distributed system. 
(Coulouris, et al, 2005) define it from a system infrastructure view by saying 
that a “distributed system is a system in which hardware and software compo-
nents located at networked computers communicate and coordinate their ac-
tions only by passing messages”. (Tanenbaum, et al, 2002) has included a user’s 
view into their definition of the distributed system. According to their defini-
tion, “a distributed system is a collection of independent computers that ap-
pears to its users as a single coherent system.”  Thus the system consists of sev-
eral computers that cooperate together with messages for providing users a 
service. In spite of being distributed, the system functions as if it was running 
on one computer, and the user does not have to be aware of the details of dis-
tribution. 

Currently, the most common distributed network architecture is the client-
server architecture. The system consists of one server and several clients. The 
architecture is centralized: the server’s role is to provide a service to clients, 
who request services from the server and wait for replies from it. Usually the 



20 
 
server has high performance compared to the clients. The system based on cli-
ent-server architecture is easy to manage because of the centralized server, but 
at the same time, the server is also a possible bottleneck of the system and the 
biggest obstacle to scalability of the system. Expensive clusters, high-capacity 
communication channels, and storage are typically needed to maintain good 
service in client-server architecture. 

Master-slave is a distributed architecture that is used mostly for computa-
tional tasks. The architecture consists of one master unit and several other units 
called slaves.  The master node has some computational task, which it divides 
into independent subtasks. The master sends subtasks to slaves that process the 
data. After processing the data, the slaves send results back to the master. In the 
master-slave architecture, the master controls the commands. Thus the architec-
ture has a centralized unit that may become the bottleneck of the system. The 
architecture is well suited for situations where the tasks can be easily divided 
into smaller tasks and the amount of slaves does not increase infinitely.  

The third common architecture for distributed systems is a peer-to-peer 
(P2P) architecture that in the purest form is totally decentralized. In the P2P 
architecture, all computers can take on either role, working as masters or clients 
giving out tasks, or as slaves or servers providing work and resources for the 
others. Thus the architecture is scalable in terms of amount of computers, but 
finding a certain resource and controlling the system is a challenge.    

 These three architectures differ from each other with respect to the cen-
tralization of resources or commands. In the client-server architecture, resources 
are centralized and provided by a server, but commands are decentralized and 
executed by clients. In the master-slave architecture, commands are centralized, 
coming from the master, but the resources are decentralized in slaves. Peer-to-
peer architecture is totally decentralized: both resources and commands are de-
centralized. The client-server and P2P architectures differ also with respect to 
the location of service providers. In the client-server network, the servers are 
situated in the middle of the network whereas in peer-to-peer applications the 
utilized resources are available at the edges of the Internet (Coulouris, et al, 
2005). 

 

FIGURE 1  Peer-to-peer and traditional client-server architectures. 
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2.2 P2P Network 

In the peer-to-peer network, all computers or peers (also called nodes) in the 
network have equal roles. The main idea is that each peer in the peer-to-peer 
network may both provide resources to other peers in the network and request 
resources from the others. According to (Schollmeier, 2001) “the peer-to-peer 
network is a distributed network architecture where the participants, i.e. peers, 
share a part of their own hardware resources which are necessary to provide 
service and content offered by the network. Participants are accessible by other 
peers directly, without passing intermediary entities. The participants of such a 
network are thus resource providers as well as resource requestors.“ In the 
peer-to-peer networks, peers communicate by message passing and thus it fits 
to the definition of distributed systems presented in the previous chapter 
(Ciglaric & Vidram, 2002). 

(Androutsellis-Theotokis & Spinellis, 2004) add the concept of self-
organizing into the definition. The nodes self-organize into network topologies 
to share resources, but those topologies are also “adapting to failures and ac-
commodating transient populations of nodes while maintaining acceptable 
connectivity and performance, without requiring the intermediation or support 
of a global centralized server or authority.” Thus in a peer-to-peer network, dy-
namicity of the networks is considered normal behavior. 

Schollmeier’s definition of peer-to-peer networks can be expanded for de-
fining a pure peer-to-peer network. In a pure peer-to-peer network, any single, 
arbitrary chosen peer can be removed from the network without affecting the 
service (Schollmeier, 2001). Gnutella is the best known and most used pure 
peer-to-peer protocol. 

Another category of peer-to-peer networks is the hybrid peer-to-peer net-
works (Schollmeier, 2001). In the hybrid peer-to-peer network, the resource re-
quests are sent to a central entity usually called an intermediate or broker, 
which replies by sending information about nodes possessing the requested 
resource. The requesting peer selects from the reply message a node that it 
wants to utilize as a resource and establishes a connection to that node. Thus in 
the hybrid peer-to-peer network, the searching is like client-server, but the ac-
tual service, for example downloading a file, is pure peer-to-peer. The popular 
music file-sharing application Napster used hybrid peer-to-peer architecture. 
Hybrid peer-to-peer systems are easy to implement and searching is simple, but 
they have the same disadvantages as the client-server system due to centralized 
architecture. The intermediate may become a bottleneck of the system, restrict-
ing the scalability.  

In addition to the traditional pure and hybrid peer-to-peer networks, there 
is a third class called partially centralized architecture. In a partially centralized 
system, all peers are not equal, but there is a subset of peers that are called su-
pernodes or ultrapeers. Other participating peers are called leaf peers. Ul-
trapeers and leaf peers form a two-tier topology so that ultapeers form a top-
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level topology to which leaf peers are connected through ultrapeers. An ul-
trapeer knows the resources of the leaf peers connected to it, so it can process 
the resource search queries on behalf of its leaf peers. Ultrapeers have to have 
sufficient capacity, but they are dynamically replaceable. (Androutsellis-
Theotokis & Spinellis, 2004), (Stutzbach & Rejaie, 2008), (Wang, et al, 2007), 
(Yang & Garcia-Molina, 2003). The Kazaa file-sharing application has the two-
tier topology.  

 

FIGURE 2 Topology of partially centralized architecture. 

2.3 Unstructured and Structured P2P 

Peer-to-peer networks can also be categorized into unstructured and structured 
peer-to-peer networks, based on the evolution of logical topology. 

In a structured network, the overlay topology is controlled and there is 
mapping between resources and the peers providing them. Thus the resource 
queries can be routed efficiently and it is guaranteed that the resource can be 
found if it exists in the network. The disadvantage of this overlay architecture is 
that maintaining the topology needs work and it is not suitable for networks 
where nodes are joining and leaving the network at a very high rate (Lv, et al, 
2002B). Examples of structured peer-to-peer systems are Freenet, Chord (Stoica, 
et al, 2001), CAN (Ratsanamy, et al, 2001) and Tapestry (Zhao, et al, 2004). 

A P2P network is unstructured when a peer’s position in the network is 
not predefined. A peer can join the network by connecting to any node in the 
network and freely select its neighboring peers, so the overlay topology is total-
ly nondeterministic (Androutsellis-Theotokis & Spinellis, 2004). In an unstruc-
tured P2P network, resource discovery burdens the network because it has to be 
done by propagating a resource query from peer to peer. An advantage is that 
the search key is not restricted to the predefined keywords used on the struc-
tured networks. Unstructured P2P is also suitable for networks where the net-
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work is highly transient because maintaining the topology does not need extra 
work.  

This thesis concentrates on pure unstructured peer-to-peer networks be-
cause of their flexibility for different kinds of applications and ability to scale. 

2.4 Gnutella Protocol 

The most traditional pure unstructured peer-to-peer architecture uses the so-
called Gnutella protocol. Gnutella protocol was introduced in 2000 and since 
that it has been used for several file sharing applications. 

Because of the pure nature, the joining to the network is challenging. 
When the peer wants to join the Gnutella network it needs to locate one node in 
the network. The protocol does not define how this should be done, but it can 
be done for example through a specific web page listing nodes. Rejoining the 
network is easier because each node keeps an index of the neighbors it has. 
When a node wants to rejoin the network after disconnection, it checks its index 
of neighbors from a previous session and tries to reestablish connections. 

Gnutella uses a propagation mechanism called flooding for searching 
nodes and resources. Gnutella uses two types of messages. Ping/Pong messag-
es are for finding new nodes and Query/Query Hits messages for locating re-
sources. Gnutella node sends a Ping message to the node to which it is connect-
ed. The node replies to the message by a Pong message and includes in the 
message its connection information, IP and port number, and information about 
its resources. The node also forwards the Ping message to all of its neighbors. 
Using the Ping message, the entering node gains knowledge of the nodes close 
to it and thus finds new nodes to connect with. 

Locating resources with a Query message is also implemented with a 
flooding algorithm. A node sends a Query message to all its neighbors, who 
then forward the Query message to their neighbors. If the node receiving the 
Query message has the queried resource, it sends back as a response the so-
called Query Hit message. A Query Hit message includes IP and port number 
of the sender and the number of resources that match the query. All response 
messages, Pong and Query Hits are propagated back to the initiator by the 
same route that the Ping or Query message came to the responder.   

Gnutella protocol has two ways to restrict the flooding algorithms. The 
Ping and Query messages have a time-to-live (TTL) value that is used to limit 
the searchable area. Each copy of the messages has a TTL value that is de-
creased by one every time a query arrives at a node. When the value of TTL is 
zero, the message is not forwarded but discarded.  The nodes also keep a histo-
ry of the messages they have forwarded. When a node initiates a query, it as-
signs to it a unique ID. All nodes propagating queries add the copy of the ID 
and the node from where the query arrived into its local history.  If a node re-
ceives a query already included in its history, it discards it. The information 
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about the sender is used when the response message is delivered back to the 
initiator.  

When the node that initiated a Query message receives Query Hit replies, 
it selects the nodes from which it wants to use the resource. The initiator estab-
lishes a connection to the replier and uses the resource. In the case of file distri-
bution the peers replicate files when downloading them from a peer. Thus the 
principle is that all downloaded resources will be available also in the peer that 
has downloaded them.  

2.4.1 Two-Tier Gnutella 

Modern Gnutella utilizes a two-tier overlay topology, described in chapter 2.3, 
which enables more-efficient search mechanisms. When connecting to ul-
trapeers, a leaf peer uploads a set of hashes of its resource keys (filenames) to 
the ultrapeer. Ultrapeers manage the queries for their leaves so that queries are 
propagated in top-level topology only. (Stutzbach & Rejaie, 2008), (Rasti, et al, 
2006), (Wang, et al, 2007) 

Modern Gnutella uses Dynamic Query Protocol, which is totally con-
trolled by ultrapeers (Fisk 2003). The challenge of the unstructured P2P network 
is that the popularity of specific resources in the network is not known and it is 
hard to select a proper TTL value. In the Dynamic Query Protocol, a node uses 
a probe query to gather information about popularity of the searched resource. 
The probe queries are sent to specific amount of neighbors and the horizon is 
varied based on the received replies.  

In Gnutella protocol, a leaf node is allowed to become an ultrapeer if it 
cannot find enough ultrapeers than can accept an additional leaf.  Proper bal-
ance between ultrapeers and leaf peers and well-connected top-level overlay is 
important in order to provide scaling and short pair-wise distances.  Two popu-
lar implementations of two-tier Gnutella protocol are LimeWare and BearShare.  

2.5 Advantages and Disadvantages of Pure Unstructured P2P 
Networks 

The pure unstructured peer-to-peer system has several advantages when com-
pared to the traditional client-server architecture, such as high availability, 
scalability and fault-tolerance (Oram, 2001). The lack of central management is a 
consequence of the decentralized architecture. The scalability of search algo-
rithm and freeriding are the most recognized problems in the P2P networks. 

(DePaoli & Mariani, 2004) define scalability as the degree of adaptability a 
system exhibits with respect to increasing load situations.  P2P systems are 
highly dynamic and unpredictable in size, topology and activity.  Size of the 
network may grow or shrink due to connecting and disconnecting peers, which 
also affects the topology of the system. As (Ge, et al, 2003) states, the increasing 
population of peers not only increases workload, but also increases the capacity 
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to serve the workload. Peer-to-peer networks are scalable regarding amount of 
peers and resources, but the used flooding search algorithm is not scalable. This 
barrier should be overcome by using more efficient search algorithms.  

P2P has also lower costs because peer-to-peer networks typically utilize 
unused capacity of the computers and resources already available in the net-
work, i.e. the disk space of home computers (Coulouris, et al, 2005). Thus the 
system does not need any dedicated, expensive servers, space or administrators.  

The fault-tolerance of the P2P network can be derived from the decentral-
ized nature and equality of the nodes. The availability of a P2P system does not 
depend on any specific node, and leaving of a node is assumed to be a normal 
behavior of a P2P system. The homogenous distribution of connections pro-
vides no reference points for attackers, but if the nodes are organizing as in the 
small-world network model, the attacks can be targeted to peers with numerous 
connections. Even in this case, elimination of one node is not enough to para-
lyze the system, but the attacking needs to be more systematic. (DePaoli & Mar-
iani, 2004) 

P2P networks provide users high availability through replication. Because 
peers may join and leave the network whenever they want, availability of a cer-
tain resource in a certain node is not guaranteed. But since a downloaded re-
source is usually replicated into the downloading peer, popular data can be 
found from several peers in the networks.  There are also peers that do not rep-
licate data or do not share any resources with other peers but instead search 
and download resources that others are sharing. Those peers are called freerid-
ers, or freeloaders, and there exists several studies concerning impact of freerid-
ing to the P2P systems performance.  

(Adar & Huberman, 2000) present that if a system demands that a peer 
has to share a resource to be able to download a resource, this may cause peers 
to share randomly generated files or other data that has no value to the system. 
The authors have studied the user traffic on Gnutella and found the significant 
amount of freeriding in the system. According to the authors, approximately 63% 
of the peers share no files and the top 20 % shares 98% of files. A result of sig-
nificant freeriding might be that decentralized peer-to-peer network becomes 
more centralized if there are just few peers that provide resources to others act-
ing just as clients. Those peers sharing popular content might become overload-
ed and thus become bottlenecks of the networks (Ramaswamy & Liu, 2003B). 
Significant freeriding also affects the amount of files in the system and the 
number of popular files may even decrease, which reduces a user’s interest in 
using the system (Ramaswany & Liu, 2003). Because of the freeriders, the search 
horizon should be expanded so that it reaches enough nodes providing re-
sources, which generates more traffic in the network.  

Generally freeriding is thought as a disadvantage of the decentralized P2P 
systems but according to a study of (Ge, et al, 2003) pure unstructured networks, 
the limited flooding algorithm can tolerate some number for freeloaders with-
out much degradation in the query success probability and the overall system 
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throughput may increase, but performance drops sharply if this number is too 
large.  

In addition to the scalability of the used search algorithm and freeriders, 
the lack of global knowledge of the network is a recognized problem in P2P 
networks. In the client-server system, a resource placement is easy to manage, 
but in the P2P system it is difficult to place data across peers so that workload 
would be balanced in the network. Lack of global knowledge causes also chal-
lenges for management of replicas and resource discovery.  



3 RESOURCE DISCOVERY IN UNSTRUCTURED P2P  

Resource discovery is a challenge in the pure unstructured network where re-
sources are distributed across the network and location of the resources is not 
known by the nodes. The use of flooding mechanisms for resource discovery is 
the main barrier for the scalability of unstructured peer-to-peer networks.   

(Tsoumakos & Roussopoulos, 2003A) categorize search methods as either 
blind or informed methods. Blind search algorithms function without any in-
formation about resource location whereas informed methods use some kind of 
index to assist with the search. Blind methods are neither accurate nor efficient. 
So the goal is to maximize the number of found resources and minimize the 
number of messages needed to achieve that.  

This chapter briefly describes the most common blind and informed 
search methods. 

3.1 Evaluating the Search 

(Lv, et al, 2002A) have categorized metrics used in the evaluation of search al-
gorithms for user aspects and load aspects. User aspects include success, i.e. the 
probability of finding the queried object before the search terminates, and num-
ber of hops needed to find the resource. Load aspects include for example 
number of search messages per node, number of visited nodes, and percentage 
of message duplication.  

Search algorithms are evaluated mainly based on the success and efficien-
cy of the query. The search is successful if the node receives a reply or replies to 
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the request. One common criterion is that a search is successful if the request 
results to at least one reply, but the criterion may demand also more replies. 
Success rate describes the proportion of successful searches to total searches, 
and it is used as a measure of estimating the performance of the search algo-
rithm. Efficiency presents proportion of received replies to the generated que-
ries. Usually efficiency of the search algorithm is compared to the efficiencies of 
other search algorithms, but it can also be evaluated against theoretical target 
value as presented in the paper VII. 

Other metrics used when estimating resource discovery algorithms are 
cost and quality of results (Yang & Garcia-Molina, 2002). The used processing 
power and bandwidth are main costs when processing the query. When esti-
mating quality of the results, the number of results, satisfaction, and time to 
satisfaction are taken into account. The query is satisfied if at the very least a 
defined amount of results is found. Time to satisfaction is the time that has 
passed since the user sent the query until he got the last result needed to 
achieve the satisfaction. 

3.2 Blind Search Methods 

The most common blind search algorithm is flooding Breadth first search (BFS) 
algorithm, which is described in chapter 2.4. Advantages of BFS are that it is 
easy to implement and is able to find a queried resource if it exists in the hori-
zon defined by the TTL value.  So if only the number of results is used as the 
quality metric, the BFS is ideal. The disadvantage is, as mentioned earlier, the 
scalability problem. Because the replication ratio of the resource is not known, 
the TTL value has to be high to ensure success. At the same time, the number of 
duplicate queries also increases. Those produce extra work in the network and 
decrease the effectiveness. (Tsoumakos & Roussopoulos, 2003A), (Tsoumakos & 
Roussopoulos, 2006), (Yang & Garcia-Molina, 2002), (Lv, et al, 2002A)  

There are blind algorithms derived or extended from the BFS algorithm, 
for example iterative deepening. The Iterative Deepening algorithm consecu-
tively sends BFS searches and increases the depth of the query in each iteration 
until the resource is found or the defined maximum depth is reached. (Yang 
and Garcia-Molina, 2002) suggest that when satisfaction is the used metric, the 
iterative deepening algorithm should be used. The disadvantage of the search 
algorithm is that each time the depth is increased, the same query message is 
also forwarded again to the same neighbors. 

The random walk algorithm randomly selects a neighbor node to which 
the query is sent. This is repeated in every node receiving a query message until 
the query is satisfied. When only one walker is used, the user may notice delay. 
This can be avoided by using multiple walkers. The initiator of the query sends 
k query messages, which utilize random walk to k randomly selected neighbors. 
Usually k is between 16 and 64. The random walk algorithm needs a TTL value 
and periodical checking from the initiator to terminate the query. Compared to 
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BFS, the random walk algorithm increases the amount of hops a bit but reduces 
message overhead significantly, and it is a more scalable search algorithm (Lv, 
et al, 2002A). The disadvantage of the algorithm is variability of success rates 
and number of hits, which depend on topology. (Lv, et al, 2002A), (Tsoumakos 
& Roussopoulos, 2006). One specific random walk algorithm is Highest Degree 
Search, which selects the neighbor that has the highest degree, i.e., highest 
amount of neighbors, and that has not yet been visited (Adamic, 2001). The al-
gorithm is especially suitable for the networks with power-law distribution. 

3.3 Informed Search Methods 

Informed search algorithms utilize the same kind of information as the interest-
based topology management. There are several algorithms derived or extended 
from the BFS algorithm that can be classified as informed search methods 
(Tsoumakos & Roussopoulos, 2006), (Kalogeraki, et al, 2002). Intelligent-BFS 
algorithm is an extension of Modified-BFS, where nodes select part of the 
neighbors to forward the query to. The benefit is that it reduces the amount of 
generated messages but covers still a large number of peers. When using Intel-
ligent-BFS search, each node stores information about recent answers for sent 
resource queries and uses that information when deciding where to forward the 
resource query. The node keeps a profile for each of its neighbor nodes and 
stores in the profile the resource replies returned by the neighbor. When decid-
ing where to forward a query message, the node uses a query similarity metric 
to find out the similar queries in profiles and rank the neighbors. Intelligent-BFS 
has a high success rate and it does not produce any overhead when neighbors 
are joining or leaving. The disadvantage is that intelligent-BFS still produces a 
large amount of messages. (Kalogeraki, et al, 2002)   

Adaptive Probabilistic Search (APS) collects information about previous 
searches to define forwarding probabilities for its neighbors. Searching is done 
by using k random walkers. The local index is updated based on the success of 
a walker. If the walker succeeds, the relative probabilities of the nodes on the 
walker’s path are increased. If the walker fails, the probabilities are decreased. 
The advantage of APS algorithm is bandwidth-efficiency. (Zhang et al, 2007), 
(Tsoumakos & Roussopoulos, 2006) 

In Routing Indices (RI) method, each node keeps an index for every 
neighbor it has. The index contains information how many resources belonging 
to each resource categories can be found from that neighbor direction. The in-
formation is not gathered from the replies, but the nodes provide that infor-
mation to each other. There is no information on which node will provide a re-
source, just a direction. Searching using Routing Indices is very bandwidth-
efficient, but maintenance of routing indices uses flooding, which creates load 
in dynamic networks. (Crespo & Garcia-Molina, 2002), (Tsoumakos & Rous-
sopoulos, 2003A), (Tsoumakos & Roussopoulos, 2006) 
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(Crespo & Garcia-Molina, 2002) have presented the compound and the 
hop-count routing indices. In compound RI (CRI) the neighbors are ranked 
based on their goodness, i.e. the estimated number of resources that may be 
found from the neighbor’s direction. The query is forwarded to the neighbor 
with the highest goodness value. If a node has no neighbors, the query is for-
warded back to the neighbor from which the node received the query, which in 
turn selects the second best neighbor and forwards the query to that one. In 
hop-count Routing Indices, aggregated RIs are saved for each hop up to the 
maximum number of hops. Goodness is defined as the ratio between the num-
ber of resources available through that neighbor and the number of messages 
required to get those resources. This method has higher storage and transmis-
sion cost than the CRI has. 

Directed BFS (DBFS) algorithm (Yang & Garcia-Molina, 2002) uses also in-
formation on neighbors and replies. The querier sends query only to a subset of 
neighbors and selects the neighbors based on the defined heuristic. The criteri-
on may be for example the amount of replies or closeness of replier. The nodes 
receiving the query forward it using the BFS algorithm. The algorithm has low-
er cost than BFS without significant loss in quality of results.  



4 TOPOLOGY MANAGEMENT IN UNSTRUCTURED 
P2P 

This chapter presents how the efficiency and scalability of unstructured peer-to-
peer networks can be improved by reconstructing the overlay topology. The 
topology can be presented as a graph, and concepts and parameters from the 
graph can be used to characterize P2P network topologies. The concept of to-
pology management is defined and the various methods to optimize the topol-
ogy are presented. 

4.1 Characteristics of Overlay Topologies  

Overlay topology of the peer-to-peer network can be presented as an undi-
rected graph G = < V, E >, where V is a set of nodes in the network and E is a 
set of edges representing connections between the nodes. The topology man-
agement affects connections in the overlay by changing them, and the effect of 
the management can be evaluated using properties derived from the graph of 
the overlay. Networks have some simple global properties that can be used to 
characterize the topology. The global parameters that affect the search perfor-
mance the most are the diameter of the networks, the average distance between 
the nodes, and the average degree of the nodes. All of those have influence on 
the needed TTL value, the amount of hops, i.e., the traffic the query is causing.  

The distance of two nodes i and j, dij, is the number of edges (i.e. connec-
tions) of the shortest path between the nodes. Diameter of the network is the 
length of the maximum distance in the network. Characteristic path length, L, 
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measures the typical distance in the network, i.e., the average shortest path 

lengths from a node to all other nodes in the network. −=
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(Watts & Strogatz, 1998), (Newman, 2003), (Xie, et al, 2007).  Using diameter of 
the graph the maximum number of hops needed for reach all the nodes in the 
network can be defined and thus the maximum search path can be calculated. 
The node degree, k, is the number of connections the node is maintaining, i.e., 
the number of the node’s neighbors. A more informative way to characterize 
node degrees is node degree distribution, which  can be formed by using Prob-
ability Distribution Function (PDF) p(k) = n(k)/n, where n(k) is the total number 
of nodes with degree value k (Xie, et al, 2007). 

Peer-to-peer networks can be categorized according to graph properties 
such as grid, random, scale-free or small-world networks. Grids are always 
constructed and not suitable to be maintained in the dynamic environments 
where nodes are joining and leaving the networks whenever they want. A two-
dimensional grid graph is an m*n graph that is the graph cartesian product of 
path graphs on m and n vertices. In the regular m*m grid, the nodes have an 
almost equal position and the degree distribution is uniform. The regular torus 
is a periodic grid, where all nodes have the same degree of 4 and the diameter is 
m/2.  Hypercube is a special grid used usually in parallel computing. It is a 
graph, joining the vertices of a n-dimensional hypercube along the edges. It has 
2n nodes of degree n and the diameter is n.  

Random graph is a graph in which edges are placed between nodes ran-
domly. The number of possible edges is n(n-1)/2, where n is the number of 
nodes. Each pair of nodes is connected with probability p. In random graphs, 
the degree of the node follows binomial distribution, or a Poisson distribution, 
in the limit of large n. (Newman, 2003) 

 In real networks, also in Internet or P2P networks, degree distribution 
does not usually follow the Poisson distribution but a power law γ−kkP ~)( .  
Networks with power law degree distribution are called scale-free networks. 
According to (Albert & Barabasi, 2002) power law is based on growth and pref-
erential attachment. Preferential attachment means that probability of connect-
ing to a node depends on node’s degree. Power law distributed network can be 
formed by algorithm of the Barabasi-Albert method: In each time step, one new 
node is added to network. Probability that node will be connected to node i: 
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kk )( , where ki is degree of node i. (Albert & Barabasi, 2002), (Newman, 

2003) 
Interconnectivity of the node’s neighbors is measured by a local clustering 

coefficient, which is the average probability for any two nodes sharing a neigh-
bor to be connected. The local clustering coefficient is calculated by 
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EC  where ki is degree of node i and Ei denote actually existed edges 

between the node’s neighbors. The clustering coefficient of the network, C, is 
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the average of the local clustering coefficients =
n

iCn
C

1

1 . In random graph C = p. 

(Albert & Barabasi, 2002), (Xie, et al, 2007). Networks, which have small charac-
teristic path lengths similar to random graphs, but a larger clustering coefficient, 
are called small-world networks. (Watts & Strogatz, 1998) 

4.2 Topology Management 

Topology management involves constructing the overlay topology in a self-
organizing way. It affects the overlay topology of the network by defining prin-
ciples for nodes choosing their neighbors and thus making the network more 
efficient for the given purpose. Topology management includes two processes 
that together determine the topology. First is the process of inserting new nodes 
to the network. The second process includes methods to define when and how 
to make changes, and add or remove connections. The purpose of the topology 
management is to maintain the neighborhood of the node so that neighbors are 
the best nodes available to a specific node according to some defined criteria. 
The rules may be defined by the developer of the algorithm or the algorithms 
may also adapt some principles from the existing models, such as Schelling’s 
model (Singh & Haahr, 2007), club concept (Asvanund, et al, 2003), (Idris & 
Altmann, 2006), prisoner’s dilemma (Hales, 2005), (Lai, et al, 2003) or social 
networks (Yang, et al, 2008). 

4.2.1 Characteristics of Neighbors 

Because there is no global knowledge of the network, nodes make decisions 
regarding their neighbors based on local knowledge only. Nodes to which a 
node is connected are called neighbors. Other nodes, that a node is aware of, are 
called candidate nodes. Nodes decide on taking candidate nodes as their neigh-
bors based on their knowledge about some property or properties of the candi-
dates. Nodes either collect this information locally from the candidate nodes or 
utilize information that the neighbors or the potential neighbors are providing. 
The topology management approaches are more or less characterized by these 
choices: what information to collect, what criteria to apply to the information, 
and what action to take. 

One popular criterion is that the node’s neighbors should be the nodes 
which are the closest nodes in the physical network. The purpose is to match 
logical topology to the underlying physical topology and thus prevent a situa-
tion where the flooded message goes through the same path several times in the 
physical level, although it is handled at most once by the node in the applica-
tion level. Thus the purpose is to decrease the amount of traffic in the physical 
network and to decrease the delay. However, in the logical topology, this solu-
tion may increase the amount of hops needed to find a searched resource. If the 
used time-to-live values of the flooded messages need to be increased to find a 
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certain amount of resources, it increases the traffic both on logical and physical 
levels. The methods work well in the network where data is largely replicated. 
(Agrawal & Casanova, 2003), (Alima, et al, 2002), (Hu and Sereviratne, 2003), 
(Liu, et al, 2003), (Liu, et al, 2004A), (Liu, et al, 2004B), (Liu, et al, 2005A), (Liu, et 
al, 2005B), (Lu, et al, 2005), (Massoulie, et al, 2003), (Ni & Liu, 2004), (Ratsanamy, 
et al, 2002), (Wan, et al, 2005), (Xiao, et al, 2005), (Zhang, et al, 2004) 

A good neighbor can be defined also as a node providing service that the 
other node needs. This service may be the capacity to handle the received mes-
sages, it may be the amount of resources or replies the node is providing, or it 
may be the quality of the provided resources. This criterion for goodness is very 
similar to the one used in node selection, i.e., when a node is selecting where it 
will finally download the found resource from. Issues taken into account may 
be physical properties of the connection or historical information about the 
node and resources it has provided (Abraham, et al, 2007), (Berstein, et al, 2003), 
(Habib and Chuang, 2006), (Liu, et al, 2008), (Liu, et al, 2010), (Sun, et al, 2007). 

When capacity information, delivered usually by the candidate node, is 
used as criteria, the purpose is to manage the load in the network. Good neigh-
bor is a node which has the capacity to handle the messages it receives from the 
node. This prevents nodes from overloading and decreases the processing delay 
in the network. (Lv, et al, 2002B), (Chawathe, et al, 2003) 

The criterion may also be the similarity of interests. When the good node 
is defined as a node providing replies for the resource requests, the purpose is 
to put nodes with a similar interest close to each other in the logical network. 
This clustering may be established based on the information gathered from the 
received replies for the sent queries or it may involve semantic metadata de-
scribing resources or interests. In the first case, the idea is that nodes that have 
provided resources to the node will provide results also for the future queries. 
In the second case, there have to be some global and predefined rules for de-
scribing, classifying, and matching resources and measuring similarities (Han-
durukande, et al, 2004), (Khambatti, et al, 2004), (Broekstra, et al, 2003), (Sakar-
yan & Unger, 2003A and 2003B), (Asvanund, et al, 2003), (Idris & Altmann, 
2006), (Voulgaris, et al, 2004),  (Ng & Sia, 2002), (Crespo & Garcia-Molina, 2005), 
(Kojima, 2003). This is difficult in the system with a distributed nature, but 
when a node has neighbors with similar interests, it receives required resources 
closer and thus the value of time-to-live in the queries may be decreased. This 
decreases traffic in the network. 

When the information used for topology management is delivered by the 
neighbors, or neighbor candidates, the advantage is that all nodes have the 
same information about the same neighbor. The disadvantage is that nodes are 
not making decisions based on the experience or observation about candidates 
but they have to rely on the information delivered by the neighbors and trust 
that information. Nodes may promise resource replies for the queries, but the 
actual received service does not match with the promise or has low quality. 
Thus one criterion for the goodness of the neighbor is trust, which evaluates 
also the received service (Niu, et al, 2007).  
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The age of the node may be used as criteria when selecting the neighbors. 
The goodness depends on the lifetime of the nodes (Bustamante & Qiao, 2004). 
The underlying assumption is that the longer the node has been in the network, 
the longer it will be in the network and provide resources, and thus the better 
neighbor it is. When neighbors are staying in the network, there is no need for 
searching and establishing new connections, which decreases the traffic gener-
ated by connection management. 

4.2.2 Topology Management Methods 

Topology management has to define rules for when and how the topology is 
managed to optimize the node’s neighborhood. The methods rank the nodes 
based on the defined criteria and use ranking information when selecting new 
neighbors or removing existing neighbors. A topology management method 
includes the actions to reconstruct the overlay, initiator of the actions, and the 
extent/scope of the actions.  

The methods may use one or several criteria mentioned in the previous 
chapter to rank the neighbor candidates. Most methods have a fixed optimiza-
tion target, such as to decrease the delay, and thus they are utilizing a prede-
fined criterion, but there are also more general solutions without set criteria. 
When the criteria is not defined in the algorithm, the user/programmer may 
select one or several properties of the node as criteria depending on the applica-
tion area (Alima, et al, 2002), (Singh & Haahr, 2007), (Ramaswamy, et al, 2005), 
or the general method is adapting into the scenario and selects the important 
properties of the node as criteria (Iles & Deugo, 2002), (Iles & Deugo, 2003). 

Topology management method needs an initiator of the management ac-
tions. Usual triggers are situations such as when a node is rejoining the network, 
when a node is overloading (Cooper & Garcia-Molina, 2005), or when the 
goodness of the neighborhood is below the limit, like the searching time is 
longer than expected (Sakaryan, et al, 2003A), (Sakaryan, et al, 2003B). The node 
may also have some extra capacity to deliver and thus apply for topology man-
agement. 

Topology management is usually clustering nodes based on the defined 
criteria, for example nodes with a similar interest should be in the same cluster 
and thus close to each other. In a pure P2P network, all nodes are in principle 
equal, and it is up to the topology management method to self-organize nodes 
as clusters and create the cluster structure (Singh & Haahr, 2007), (Crespo & 
Garcia-Molina, 2005).  In two-tier networks, there is a predefined hierarchical 
structure, i.e., super-peer architecture, and thus there already exist the super- 
peers or cluster heads which are defining the characteristic of a cluster belong-
ing to it (Ramaswamy, et al, 2003A), (Ramaswamy, et al, 2005). The latter case is 
very common in the networks utilizing semantic information (Löser, et al, 2003), 
(Nejdl, et al, 2003), (Airiau, et al, 2006), (Asvanund, et al, 2003), (Idris & Alt-
mann, 2006). If the topology is defined as hierarchical, the purpose of the topol-
ogy management is to define how nodes select the super-node which to connect 
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to (Lo, et al, 2005), or to define how a node will become a super-node (Zheng, et 
al, 2005), (Lo, et al, 2005). 

Hierarchical structure may also have several tiers, i.e., topology has sever-
al layers and the cluster head in the upper layer serves one or more clusters in 
the lower layer (Srivatsa, et al, 2006), (Yang & Chen, 2008). Thus topology man-
agement methods may reconstruct the connections in the current overlay net-
work or construct another overlay or overlays on top of the original and use 
those for different purposes  (Ng & Sia2002), (Crespo & Garcia-Molina, 2005) or 
define different type of connections for different purpose (Cooper & Garcia-
Molina, 2005).  

Thus when topology management achieves cluster structure, the question 
is whether there exists the cluster heads. If the originators exist, the topology 
management determines to which originator the node should connect, and how 
the originator accepts a request or prevents overloading. The big question con-
cerning the topology management is then whether the originator has criteria for 
the nodes belonging to that cluster or whether those criteria are evolving based 
on the nodes joining the cluster. This also affects the adaptation of the method. 
If it demands some special structure of the network, it is not easily included in 
the existing system. The developed method may be independent of the used 
search algorithm or it might be developed for the certain search algorithm, 
which is common in the semantic P2P systems. (Nejdl, et al, 2003), (Voulgaris, et 
al, 2004)  

Actual changing of topology consists of adding and removing connections. 
Additions and removals of connections are naturally needed when peers join or 
leave the network. When a node joins the network, it needs to add a connection 
to a node in the network. When a node leaves the network, it may inform the 
neighbors of it and disconnect all connections to neighbors. The topology adap-
tation can appear also in other situations when a node wants to change its 
neighborhood to a better one. The node may also replace the connection when it 
adds a new connection to a node and removes one existing connection. Thus 
some developed methods have only heuristics for situations when a node joins 
or disconnects, but some have heuristics to adapt the network more actively. 

Topology management produces load in the network because establishing 
and dropping connections requires messages to be sent. Thus the produced 
load should be taken into account when evaluating the gained efficiency. In the 
ideal situation, the network changes a lot only in the beginning and reaches a 
stable state where just a few changes take place. Nodes in the network can also 
have constraints concerning the capacity that topology management should 
take into account to guarantee the functionality of the network. Some devel-
oped topology management methods control the degree of a node by defining a 
maximum number for neighbors, but this is not an optimal solution. The 
amount of neighbors should be restricted based on the real capacity of a node, 
and the node adjusts its neighbors based on its capacity to handle the messages 
the neighbors are sending to it. 
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The scope of the topology management is usually the node’s neighbor-
hood, i.e., nodes one-hop or two-hops away. Thus a node constructs its own 
local connections using information on the neighbors and their neighbors. 
There are also the topology management methods where changing connections 
has larger impact, for example when two nodes are replacing one of the neigh-
bors by connecting to each other. In this situation, the dropped neighbors of the 
nodes are connected to each other (Sun & Garcia-Molina, 2004). Thus a node’s 
decision to replace a node with another also affects other nodes’ neighborhoods 
and it causes the nodes in these other neighborhoods to connect “against their 
will”.  

4.3 Interest-Based Topology Management Approaches  

Interest-based topology management methods cluster nodes according to inter-
ests.  The goal is that nodes with a similar interest will be close to each other 
and thus a node will receive the resources it requires close to it and the search 
path can therefore be decreased, which also decreases the load to the network. 
The characteristic used to illustrate the interest is usually the amount of re-
source replies the node has received to the queries it has sent to the network 
(Ramanathan, et al, 2002), (Ghanea-Hercock, et al, 2006), (Ng, et al, 2002), 
(Sripanidkulchai, et al, 2003). Some studies use information about satisfactory 
transactions and unsatisfactory transactions for interest-based topology man-
agement (Condie, et al, 2004). A node sending a reply to the query shares the 
same interest with a querying node. Thus the node uses history information 
about the queries and replies to predict the need in the future. The expectation 
is that the nodes providing results are most likely providing results also for the 
subsequent queries.  

When a node uses resource replies as criteria, it collects information local-
ly. So another node’s information on the same node is not identical. Thus a 
node rates other nodes from its point of view, i.e., how beneficial the other 
nodes are to it. Topology management methods need also to take care that deci-
sions based on local goals and locally collected information are also beneficial to 
the P2P network in general. 

 From resource replies the node collects information about neighbors, 
neighbors’ neighbors and the indirect nodes, which sent resource replies further 
than two hops away from the node. Neighbors’ neighbors and the indirect 
nodes construct the group of candidate nodes. The node saves the amount of 
replies the nodes are providing to it, and in some methods also the amount of 
replies the neighbors (Ramanathan, et al, 2002) and neighbors’ neighbors are 
forwarding to the node. 

Information about interests can be used in several ways to manage the to-
pology. When a node is rejoining the network, it may try to connect to the 
nodes it has found useful in the past. Information can be used also when the 
node has extra capacity, i.e., too few connections, or when it is overloading, i.e., 
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it has too many connections. In the first case, the node adds a new neighbor 
with similar interest, and in the latter case the node removes a neighbor that 
seems to be less relevant. There might also be a trigger that activates the topol-
ogy management in the case when a node wants to improve its neighborhood. 
Usually this is related to the time, and nodes periodically evaluate the goodness 
of their neighborhood (Ramanathan, et al, 2002).  

Basic actions applied in the interest-based methods are adding and remov-
ing nodes. A node adds as a new neighbor the node which has the highest reply 
value. It removes the neighbor that has the lowest value. All other methods are 
variations of the basic actions. If a node has extra capacity left, it might just add 
a neighbor without any special conditions, or for example, if percentage of re-
ply messages of a known candidate is greater than its neighbor with the small-
est value, a connection to that candidate node is established (Ramanathan, et al, 
2002). The method may include several additions or removals in one operation. 
A node may for example remove all neighbors which have a value lower than 
some defined limit (Ghanea-Hercock, et al, 2006).  

A topology method may also include both adding a neighbor and remov-
ing a neighbor and thus replacing some existing neighbor by some candidate 
node.  Replacing is utilized when a node has no extra capacity, but it finds a 
better neighbor for it. A node may replace a neighbor if a candidate node has 
provided more replies than it, or it may replace the neighbor with lowest value 
with a candidate that has more replies than any of the neighbors (Condie, et al, 
2004). Overtaking [PII] is one special case of replacing - a node replaces a 
neighbor by a neighbor’s neighbor and thus overtakes an existing neighbor. In 
addition to constructing the existing connections in the overlay network, the 
method may create and utilize a different kind of shortcut connections on top of 
the logical topology and use those connections for special purposes 
(Sripanidkulchai, et al, 2003). Using shortcut connections between nodes with 
similar interests, the node keeps the heterogeneity of its neighborhood, but the 
searching can be focused using the shortcuts and does not load the whole 
neighborhood. Topology algorithms manage the shortcut connections between 
nodes.  

Most of the interest-based methods using resource reply information do 
not specify the used search algorithm and are thus independent of the used 
search algorithm and easily adapted. 
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TABLE 1 Interest-based topology management algorithms. 

Algorithm Used Information Methods Search Algo-
rithm 

Ramanathan, et al, 
2002 

Received resource replies, both 
sent and forwarded by neigh-
bors, collected locally 

Adding Any 

Condie, et al, 2004 Received resource replies, col-
lected locally 

Adding 
replacing 

BFS, Any 

Ghanea-Hercock,  
et al, 2006 

Adding 
removing 

 

Ng, et al, 2002 Adding Any 
Sripanidkulchai, et 
al, 2003 

Shortcut links 
on top of the 
overlay 

Algorithm using 
shortcut links 

Auvinen Received resource replies, both 
sent and forwarded by neigh-
bors, collected locally 

Adding 
removing 
overtaking 

Any 

 
The interest-based method developed by the author uses received resource re-
plies when evaluating the neighborhood and consists of four algorithms for 
adding a neighbor, removing a neighbor, traffic estimation, and overtaking. A 
node in the network evaluates its neighbors based on the resource replies re-
ceived from and relayed by them. These replies together form the goodness 
value of the neighbor. A node saves information about neighbors and neighbor 
candidates, which are neighbors’ neighbors and other nodes which have replied 
to the node’s queries. A good neighbor is a neighbor that provides or delivers 
resource replies to the node.  

Based on the capacity of the node, it adds or removes the neighbors. If the 
node has free capacity available, it tries to add a new neighbor, and if it has too 
much traffic it drops one neighbor. If the node wants to add a new neighbor, it 
searches potential candidates from the history information where it saves in-
formation about all candidates. If the node succeeds in establishing a new con-
nection, it is satisfied, otherwise it expands the search area. The node has two 
main sources for information when it searches and selects a node to reconnect: 
how many resources a node has provided (or forwarded) in the past and how 
long time ago there has been a connection, if ever. First, the node searches can-
didates among the nodes which have delivered reply messages to it but which 
have not been its neighbor in the defined time. Thus the node does not add 
connection to a node that it has just dropped.  Then it expands the search to the 
candidates that do not have any goodness value.  Second expansion is done to 
the nodes that have no information about replies and that have not been the 
node’s neighbors before. In practice, this means that candidates have been 
neighbor’s neighbors that have not replied or relayed any replies to the node. 
Finally, if the node does not have any neighbor, it searches a node to connect 
among the candidates, which have information about replies.  Then, it might 
add a connection to a node it has just dropped. If a node needs to drop a neigh-
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bor it selects the worst neighbor, i.e., a neighbor that has the lowest goodness 
value.   

In addition to the traffic estimation algorithm that utilizes adding and re-
moving algorithms, there is also an algorithm for overtaking. Overtaking algo-
rithm moves, step by step, a node closer to those nodes that provide replies to it. 
When the querier node receives replies to a query, it calculates for each neigh-
bor and neighbor’s neighbors the amount of replies that these have relayed to it. 
Then, it checks whether there is a neighbor’s neighbor, whose proportion of the 
total amount of replies received through the neighbor is more than a defined 
overtaking threshold. If that kind of neighbor’s neighbor is found, the node 
tries to establish a connection to it and removes the connection to the current 
neighbor.  



5 SIMULATION OF PEER-TO-PEER NETWORKS 

This chapter summarizes the components that need to be modeled when simu-
lating topology management in unstructured peer-to-peer networks. 

When studying the effect of the topology management or search algo-
rithms, the peer-to-peer network where the algorithms can be evaluated is re-
quired. Setting up the real peer-to-peer network is expensive and it is hard to 
control when the size of the network increases. Because of the distributed na-
ture of the P2P networks, individual nodes do not have global knowledge of the 
networks and thus information about the real networks has to be collected sep-
arately, typically using crawlers. A crawler is a real implementation of a P2P 
node, which is put into an existing network to collect data. Each crawler has 
only a local view of the network, but several crawlers in the same network can 
provide a larger view (Stutzbach & Rejaie, 2005A), (Stutzbach & Rejaie, 2005B). 
In the case of studying topology management algorithms under development, 
the use of crawlers is not appropriate because a network containing the studied 
algorithm is needed. The only methods providing a global view of the network 
are emulators and simulators. 

Another possibility to study P2P networks is to use emulators. An emula-
tor contains the implementation of a single node, but one computer may con-
tain several copies of the emulator. The message passing is done using the net-
work layer, which increases the time needed to run the test cases but gives de-
tailed data on the actual traffic in the network.  

The third method is a simulator. Simulation provides a reliable, easily 
managed, and repeatable environment for the topology management research, 
and it is the most used method in P2P studies. When simulating the P2P net-
work, the whole network is modeled in a single computer. Thus the simulation 
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imitates the real P2P network without investments for large amount of comput-
ers and network connections. Messages between the simulated nodes are han-
dled with local data structures and do not have to be delivered on the network 
layer, which consequently increases the speed. The drawback of emulators and 
simulators is that the real delays originating from the distances of the P2P 
nodes and effects of users actions cannot be taken into account as such but have 
to be modeled. 

Parameters needed in the peer-to-peer simulator models are related to the 
nodes, resources, and queries. These parameters affect also the simulation re-
sults of the topology management algorithms.  Starting topology defines how 
many nodes there are in the network and how they are connected to each other. 
The total amount of resources, resource popularity, and distribution of re-
sources among the nodes need to be defined. The third group of parameters 
forms a query model describing the amount of queries and distribution of que-
ries into nodes.  Node distribution, resource distribution, and query distribu-
tion can be correlated or independent of each other.  The simulation may also 
include the dynamicity of the nodes, i.e., nodes are leaving and entering the 
network. 

5.1 Initial Network 

The emergence of the network can be modeled by some mechanism of adding 
or removing the nodes, or the simulation may utilize typical existing networks 
that are generated either randomly or deterministically to the specific form. The 
information of typical networks can be collected from the existing P2P networks 
or the network used in simulation can be constructed based on artificial algo-
rithms. In the first case the data is usually collected with crawlers which attain 
only a partial view of the network and because of the dynamic nature of P2P 
there are errors in the collected data.  

The parameters defining the initial peer-to-peer network in the simulation 
are the number of nodes and distribution of connections between the nodes. 
The most common networks in the P2P studies are power-law networks, ran-
dom networks, regular networks or GnutellaII-like two tier networks. Realistic 
simulations consist of tens of thousands of nodes, but small simulations are run 
in networks with only hundreds or tens of nodes. In the papers PV, PVI and 
PVII the simulations were run in random networks generated by Erdös-Renyi 
model (Albert & Barabasi, 2002). Power-law networks using Barabasi-Albert 
method (Albert & Barabasi, 2002) was used as initial network in PI, PVI and 
PVII.  The topology studies in papers PVI used also grid as initial topology and 
the latest paper PVII studied search also in GnutellaII network.  



43 
 
5.2 Resources 

In addition to the starting network topology, the resources also have significant 
influence on the simulation results and search efficiency. The resources may be 
anything that can be distributed in the peer-to-peer network. It may be service, 
which the nodes are providing to other nodes, or it may be a concrete down-
loadable item, i.e., a file, which is copied and transferred from a node to another.  
The service distributed in the peer-to-peer network may be for example compu-
ting power, file storage or printer service which is located in the providing node 
where nodes utilize this service.  

There are three aspects concerning resources. The first aspect is the popu-
larity of resources, i.e., amount of specific resource in the network. The second 
aspect is how resources are distributed to the nodes in the network. Of course, 
the total amount of resources in proportion to the amount of nodes is one pa-
rameter in the simulation. The third aspect is whether the resources can be clas-
sified into interest groups or not. 

These three aspects have to be modeled in the simulations. Each aspect 
needs to have a defined distribution from where the values are randomly se-
lected. The simplest distribution is uniform distribution. The distributions de-
rived from the existing peer-to-peer simulations are usually non-uniform. The 
real resources are not uniformly distributed: some resources are more popular 
than others and some nodes provide more resources than other nodes.  The dis-
tributions in real content sets vary in different applications and networks and 
may be available only as inaccurate snapshots (Cooper, 2004). Thus, there do 
not exist any specific general and justifiable distribution for peer-to-peer simu-
lations or not even a generally accepted benchmark data.  

The amount of different resources has to be modeled in the simulation. If 
popularity distribution is uniform, every resource has the same number of cop-
ies and every resource has same probability to be found. The distribution may 
also be non-uniform when some resources are more popular than others and 
those resources are easier to find than the less popular resources. The most used 
non-uniform distribution in peer-to-peer simulations is Zipf (Lv, et al, 2002A), 
(Tsoumakos & Roussopoulos 2003A), (Tsoumakos & Roussopoulos 2003B), (Liu, 
et al, 2005B), (Kojima, 2003), (Cooper, 2004),( Schlosser,  et al, 2002) (Condie, et 
al, 2004), (Srivatsa, et al, 2006), which is a  power-law type distribution and de-
rived from the Gnutella simulations. Although the accuracy of those simula-
tions may be questioned, the distribution of resource popularity in real net-
works is non-uniform rather than uniform.  

In addition to the amount of different resources, the distribution of re-
sources in each node also has to be modeled. The simplest case is that every 
node has the same amount of resources when the used distribution is uniform. 
In the real public peer-to-peer networks, this is rare and usually the resources 
are not uniformly distributed, but some nodes provide more resources than 
others.  For example, the 80/20 biased distribution derived from the Gnutella 
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simulations distributes resources in a way that 80% of the document results ar-
rive from the 20% of the nodes (Crespo & Garcia-Molina, 2002), (Srivatsa, et al, 
2006). Another solution for uniform distribution is to take into account the ca-
pacities of the nodes and distribute the resources proportional to those (Lv, et al, 
2002B). Thus, the node which has more capacity has also more resources to 
share. Simulation may also include nodes without any resources to provide. 
This situation is obvious in the open file sharing networks where freeriding is a 
common aspect and it can be observed in the real statistics from the Gnutella 
studies. 

When a resource is downloaded from a node to another, the copy of the 
resource is always created. Depending on the decision of the downloading node 
or the application, the copied item may be put on the node and thus the number 
of copies of the certain resource is increased. This is called replication.  The rep-
lication distribution, decision whether the resources are replicated during the 
simulation and whether there exists correlation between the node degree distri-
bution and resource distribution may be varied in the simulation cases. Both 
popularity distribution and replication distribution may evolve in the file-
sharing simulations if the nodes are providing the downloaded resources to 
other nodes. Thus, the more popular the file is, the more it is replicated and the 
easier it is to find in the future.  

When topology management is interest-based, an important aspect is how 
interest can be imitated and simulated. Normally, a user’s behavior affects the 
distributed resources and queries and thus naturally generates interest-based 
queries and resources. When there is no special information, such as metadata, 
describing the resources and interests, the interest information needs to be de-
rived from the resource. Thus, either the node has some specific interest, which 
affect to the resources set to the node (Schlosser, et al, 2002) or node has some 
resources which specify the interest of the group. It is also possible to use inter-
est categories in the simulation even if those are not needed in the real world 
application if those are just used to imitate the interest, not to describe interest 
in the system.   

Resources may be distributed to the nodes randomly or so that nodes have 
only resources belonging to their specific interests. As the studies of (Meng, et 
al, 2006) and (Shao, et al, 2005) have found, the most peers have interests, and 
thus the principle to distribute resources to nodes needs to be defined in the 
simulation. 

The topology and search studies in the PI, PV, PVI and PVII utilize non-
uniform resource distributions. In PI and PVII, the resources were distributed 
based on the number of the neighbors. The more neighbors the node had, the 
more resources it also had. PVII also used resource distribution derived from 
the GnutellaII. The topology studies used in PVII the capacity of the nodes as 
criterion of resource amounts, and PV also divided the nodes into two groups; 
one provided more resources than the other. 
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5.3 Queries 

The query model defines the amount of queries sent to the network along with 
the distribution of resources queried and the nodes sending the queries.  

The total amount of queries depends on the number of nodes and re-
sources and study case.  

Queried resource is selected from the distribution describing the probabili-
ties of resources. Usually the resource is selected randomly in peer-to-peer sim-
ulations (Cooper, 2004), (Crespo & Garcia-Molina, 2005), (Liu, et al, 2005B). Dis-
tributions from where the resource is selected can be uniform when all re-
sources have same probability to be selected or it may be proportional for ex-
ample to the amount of specific resource in the network. Then the more popular 
the resource is, the more it is queried. Most used non-uniform query distribu-
tion in peer-to-peer simulators is the Zipf mentioned already in previous chap-
ter (Tsoumakos & Roussopoulos, 2003B), (Klemm, et al, 2004), (Sripanidkulchai, 
2003), (Liu, et al, 2005B). 

The other distribution is needed for the selection of a querying node. The 
node sending a query may be selected from the uniform distribution in which 
case all nodes have equal probability to be selected as a source of a query. Other 
option is that probability of querying node is proportional for example to the 
resource amounts the node is providing or capacity of the node. So, the more 
node is providing resources to other nodes, the more it is also querying re-
sources in the network. The distribution may also be non-uniform but not pro-
portional to any specific feature of the nodes. The source node may be selected 
for example from the power-law distribution, thus there are few nodes which 
are making huge amount of queries and a lot of nodes which are making small 
amount of queries.  

The random selections of a querier node and a queried resource from the 
uniform distributions were used in PI, PVI and PVII. The PV used non-uniform 
distribution for selection of querier node. 

In the case of interest-based topology management, the interest of the 
nodes also needs to be simulated. The nodes request with in certain probability 
the resources which they are interested in. The modeling of the interest of the 
node depends on the selected method to describe the interest of the node when 
setting the resources. Besides the resources, also the interest may have different 
probabilities to be queried and, further, resources in different interest areas may 
have different probabilities to be selected. 

In simulation, events are created in the network and their consequences 
are studied. There are two types of peer-to-peer simulations: time based or que-
ry based simulations. In the first case, time is involved in the simulation and 
events, such as sending a query, are related to the time. When the simulation is 
based on a query cycle, each query (sending request getting replies) is consid-
ered as an isolated event. The next query is processed only after the previous 
has been finished unlike in time based case where several queries may be active 
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simultaneously. In both cases the simulation requires iterations. In query cycle 
based simulations number of sent queries is amount of iterations. The decision 
of initiation of a query can be done in the node level, i.e. each node makes deci-
sion independently of each other, which is simpler to execute in a time based 
simulations, or all aspects of a query are defined and controlled in the upper 
level, which is well-suited in a query based simulations. 

The topology management operations usually depend on the queries be-
cause the interest-based topology methods utilize the information collected 
from the received replies and thus some operations may be activated when a 
node receives replies to the query it has send. If the operations require an esti-
mate for the loading of the node, this can be checked either after a given 
amount of sent queries or as a function of received replies.  

Concerning the outcomes of the queries, it depends on the application and 
its needs as to which features are important. One may be interested in the total 
number of replies, the proportion of replies to the (estimated) amount of possi-
ble resources in the network, or just in the fact of finding or not finding at least 
one resource.  

5.4 Running and Monitoring P2P Simulations 

The simulation of the peer-to-peer networks may focus on the transient phase 
or on the equilibrium. In the first case one studies the behavior of the short time 
average values of relevant parameters, such as replies and topology changes, 
during the period of change in the network. When the goal is to achieve equilib-
rium, long enough simulations are needed so that it can be reliably concluded 
that the network is no longer changing or that the changes are just small scale 
fluctuations around equilibrium. 

The simulator has to save or report the information needed to evaluate the 
studied algorithm. The needed information depends on the goal of the simula-
tion. If the physical properties of the network are an issue, then the delays and 
thus the physical time is needed. This case usually requires the use of an emula-
tor for simulation. In the case of topology management algorithms the interest 
is on the quantitative and qualitative properties in the overlay level and ob-
served values during the simulation may include the final topology, sent que-
ries and received replies, lost queries and topology changes. When studying the 
topology management algorithms, the used search algorithm and its parame-
ters are also needed in the simulation.  

The topology management aims to make the network more efficient in a 
way that the required resources can be found closer or with less traffic. As men-
tioned earlier, the topology changes also generate additional load in the net-
work because of messages related to creating and managing connections and 
computations related to analyzing the traffic. Thus the ideal case would be that 
the algorithms create a network which will find equilibrium. The amount of 
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topology changes should be important only in the beginning and once the net-
work has reached the equilibrium state the changes should be rare.  

When a network is simulated with search algorithms with a limited scope, 
all resources are not necessarily found. Thus one has to define a criterion for the 
success of a query. The criterion of success rate may define that it is enough to 
find one resource or the search algorithm should find some predefined amount 
of all possible resources. The topology management algorithms may change the 
topology so that the network is partitioned and disconnected. Once again, it 
depends on the application, whether this partition is acceptable, if the criterion 
for success rate is fulfilled. 

As it is can be seen, to set up a simulation of P2P network and its topology 
management, a great number of probability distributions and their parameters 
have to be defined, together with other parameters specifying the configuration. 
To cover systematically all combinations or modeling realistically, dependen-
cies between different distributions is clearly too complex and quite impossible 
to execute.  Thus the next chapter describes simulation of topology algorithms 
in a situation where the distributions and parameters have been chosen to keep 
the simulation simple.  



6 SIMULATING TOPOLOGY MANAGEMENT AND 
DBFS 

The efficiency of P2P networks, especially the efficiency of the searching, de-
pends on the topology of the network and the used search algorithm. One 
search algorithm can function well in a certain type of network but give poor 
results in another kind of network. To avoid this situation, in addition to the 
topology management algorithms, adaptive search algorithms have also been 
developed. These utilize similar information than interest-based topology man-
agement and are easy to adapt to a system where nodes are gathering infor-
mation about received replies.  

In a P2P network where nodes have interests, the efficiency can be im-
proved utilizing either an interest-based topology management with some tra-
ditional flooding search algorithm or an adaptive search algorithm. The behav-
ior of these two approaches has not been compared systematically to conclude 
which gives better results for a given P2P network or to find out whether adap-
tive search can improve the efficiency even for a network that has been opti-
mized with a topology management algorithm. In what follows, we study sim-
ple “static” P2P networks (that is, networks where the nodes and their re-
sources do not change during the simulation) with topology management and 
adaptive search (DBFS) to find characteristics which define, when adapting the 
logical topology is the optimal operation, and in such cases, it is more beneficial 
to just concentrate on adapting the search.  
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6.1 Simulated Situation 

The previously mentioned methods are compared in a static P2P network with 
predefined amount of nodes. The number of nodes is not varied during the 
simulation. So new nodes are not added into the network and leaving the net-
work is also excluded in the simulation. The purpose of this is to keep the simu-
lation simple and focused only to changes in the topology that are due to the 
topology management algorithms. The P2P simulation requires also resources 
which can be searched. To simplify the simulation and interpretation of results 
every node has the same amount of resources which are not replicated during 
the simulation. Each resource in the network has a unique identifier. The que-
ries are designed so that the number of possible replies is constant. 

 The nodes are divided into eight non-overlapping interest groups based 
on the resources the node has. Because resources are not added or destroyed 
during the simulation, the defined interests will also remain unchanged. The 
interests are also taken into account in queries. The nodes are searching more 
frequently resources which belong to the same interest group as the querying 
node and less frequently random resources which may belong to any of the in-
terest groups. The probabilities to the interest-based query and random query 
are different and constant during the whole simulation. 

The resources are set randomly to the nodes so that the interest groups do 
not depend on the initial topology of the created network. For each query, the 
possible amount of resources matching the query is the same, but depending on 
the used time-to-live value of the search algorithm and placement of the re-
sources, all of them are not necessarily found. The number of resources per 
node matching a query varies, and consequently also the amount of nodes giv-
ing replies varies from query to query. 

The most important results of the simulation are the amount of received 
replies in relation to the sent queries and the traffic the queries are causing. 
These together define the efficiency of the network and these are observed in 
every simulation. Besides the efficiency of the network, we monitor the behav-
ior of topology management algorithms: how fast they are changing the net-
work and how fast the topology is stabilized. The search in the managed topol-
ogy is compared to the DBFS algorithm which is simulated both in initial and 
managed topologies to see whether topology management will improve the 
performance of directed search. 

6.1.1 Simulated Networks 

We simulated P2P networks with 256 and 1024 nodes. The initial topologies 
were torus and random. The average degrees of the nodes were 4 and the num-
ber of links was the same for both topologies: 2*N, where N is number of nodes. 
Random networks were created by using Erdös-Renyi model (Albert & Barabasi, 
2002). Number of resources was 4096 and these were divided into 8 interest 
groups. One resource may belong to only one group. Queries were formed so 
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that 80% of queries were interest-based targeting to resources within the same 
group where the querying node belongs. Respectively, 20% of queries were 
randomly generated, but also these may have the same interest than the node. 
Thus, 82,5% of the queries were made to the interest group 17,5% to the rest if 
the network. For each query there were 32 resources fitting the specification. 
The setup is summarized in the Appendix. 

6.1.2 Simulated Algorithms and Their Parameters 

Topology management algorithms manage the overlay topology of the P2P 
network using the local information the nodes are gathering. Each node manag-
es its local connections and favors the nodes which are providing resources to it. 
The simulated topology management algorithm from PV consists of four differ-
ent algorithms. The first algorithm, called overtaking, is replacing neighbor by 
neighbor’s neighbor, if that one is better for the node than original neighbor. 
The second algorithm uses two other algorithms for taking care of the node’s 
load by adding new connections or removing existing connections. The algo-
rithms were simulated together and the effect of traffic estimation was simulat-
ed also without the overtaking. 

The goal of the overtaking algorithm is to move the node in the logical 
network closer to the nodes, which are providing resources to it. The overtaking 
algorithm calculates the received replies that its neighbors and neighbors’ 
neighbors have sent or forwarded to it. Then it checks whether there is a neigh-
bor’s neighbor, whose proportion of all replies is more than a predefined value, 
for example 80%, and replaces the neighbor by that.  

The traffic estimation algorithm adds or removes neighbors based on the 
traffic load of the node. Traffic is estimated by the amount of the query messag-
es the nodes are receiving. There are lower and upper limits in which the nodes’ 
traffic should remain. When the traffic of a node is between lower and upper 
limits, it may accept new neighbors, but it will not initiate any topology changes 
except the overtaking. When the traffic is higher than upper traffic limit, the 
node will disconnect the connection which has provided or forwarded least re-
source replies to it and will not accept any connection requests. If the traffic is 
less than lower traffic limit, the node has extra capacity and it will add a new 
connection. By using two limit values the algorithm avoids the situation where 
the nodes are constantly adding and removing their neighbors. 

In the simulations, each node has an equal traffic capacity. The nodes are 
checking their traffic load after a given period, which is a varied parameter in 
the simulations. Because the simulation is not time based, the period is meas-
ured by sent queries. Each node sent in average 2, 4 or 6 queries between check-
ing the traffic load.  The maximum allowed traffic during the observation peri-
od was another simulation parameter. Values of 40% and 60% of k*N were used 
as maximum traffic limits, where k is number of queries per node between 
checks and N is number of nodes in the network. The lower traffic limit value 
was defined as 20% of the maximum traffic limit value.  
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One initiated query in the network is one cycle and the frequency of the 
topology management is defined with help of expected number of initiated 
queries per node, which is a varied parameter in the simulation. The number of 
elapsed cycles after node’s previous topology changes affects to the information 
available for the node. The longer the period between changes is, the more in-
formation the node has collected as a basis for deciding on topology changes.   

When nodes are using BFS algorithm, they forward the query message to 
all neighbors except the one, from which they received the message. The only 
restricting parameter in BFS search is a time-to-live (TTL) value, which defines 
the amount of hops after which the query is no more forwarded. If the node has 
a queried resource, it will send a reply to the node from where the query came 
and if the TTL value is not zero, it forwards the query to other neighbors. When 
a querying node is using DBFS algorithm, the initiator of the query is forward-
ing a query to the limited part of the neighbors, which have replied to the node 
most. The algorithm has two parameters, one defining the number of neighbors 
to which the query is forwarded and the other defining how many hops the 
query is forwarded to the selected amount of neighbors after which the search 
is using normal BFS algorithm. The simulation used 1 or 2 neighbors with 1-2 
DBFS hops. This means that the node and its neighbors sent the query to the 
small set of neighbors and after that the query was forwarded as the BFS query. 
This reduces not only the amount of nodes that will receive the query, but also 
the traffic in the network and because the neighbors are selected by using the 
amount of resource replies they have provided, it is supposedly more efficient 
than BFS search. 

Both DBFS and BFS algorithms use TTL value to limit the horizon of the 
query. TTL affects to the amount of nodes the queries are reaching and thus to 
the amount of replies they are receiving. Further, in the interest-based search 
and topology management it also affects to the decisions the nodes are making 
because it affects to the information available to topology management. The 
bigger the TTL is, the further in the network potential neighbors can be found. 
Both algorithms are simulated with several TTL values: 3, 5 and 7.  

6.2 Simulator 

The interest-based topology management does not consider properties of the 
physical network and physical time. Thus this study uses a simulator that does 
not model the elapsed physical time but is based on the sent queries. The simu-
lator uses query cycles to present the logical time. Each sent query is one cycle 
in the simulator.  

The simulator starts by reading the configuration file and initiates the 
networks used in the simulations. The configuration file defines the topologies 
of the simulated networks and amount of nodes, resources, and queries. All 
parameters that the algorithms utilize and other simulation parameters are also 
read from the configuration file. The generated random values, such as re-



52 
 
sources, queried resources and queriers, use seed values. These seed values are 
defined in the configuration file to enable controlled repetitions of simulation 
experiments. Also the topology management policy is initialized. In practice 
each node is given a starting time and interval for topology updates that pre-
vents the situation that all nodes are making changes at the same time. 

After creating a topology and setting the resources to the nodes, the simu-
lation is executed one query at a time. For each query, the simulator takes one 
random node as an initiator of the query. The simulator also draws the queried 
resources from the given distribution. The simulator uses the search algorithm 
defined in the configuration file and sends the query into the network accord-
ing to the algorithm. The nodes receiving the query will handle it and create 
replies, if they have resources matching the queried one. After the query has 
been executed possible topology updates are done according to the prescribed 
schedule. 

The simulator saves information about networks, nodes, queries and to-
pology changes into files. The simulator saves the topologies and neighbor dis-
tributions of the networks in the beginning and at the end of the simulations. 
The saved parameters about nodes are: number of neighbors, number of re-
sources and amount of sent replies. About each forwarded query are saved the 
queried resource, the initiator node of the query, the used algorithm and TTL 
value. The replying node, distance of the replying node and the found resource 
are saved on each resource reply. To keep the statistics about totally failed que-
ries, the simulator saves information about the queries, which did not receive 
any matching results. 

If the topology is optimized in the simulation, the simulator also saves in-
formation about topology changes in the network. In each round, it saves the 
amount of additions, removals and overtakings which took place in the net-
work. 

6.3 Simulation Tests 

The simulator’s correct behavior was tested by running the BFS algorithm in the 
different networks used in the simulations. The simulation results of topology 
management algorithms and DBFS algorithm were also compared to the results 
attained with BFS algorithm. Because resources and queries were distributed 
equally, the expected values for the studied parameters were easy to calculate 
for comparison. Each simulation consisted of 20 trials and each trial used same 
parameters but different random numbers.  

The simulator uses the queries as a pseudo time and the number of re-
source queries defines the duration of the simulation. The duration chosen was 
long enough to reach the state where the topology does not change anymore. 
This depends on the size of the network, the TTL value, and used policy. When 
the topology is modified based on the sent queries and received replies it is es-
sential that the simulation time is long enough so that the network has a possi-
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bility to attain a balance. In addition to the properties of the network at equilib-
rium, the rate of the changes in the topology is studied too.  

FIGURE 3 presents the average amount of replies in proportion to the av-
erage amount of queries per hop until TTL seven using the BFS algorithm in the 
torus and random networks of 256 nodes. The corresponding results of BFS al-
gorithm in the torus and random network of 1024 nodes are presented in the 
FIGURE 4. The efficiency values of the simulations in different networks are 
illustrated in the FIGURE 5. The efficiency value is calculated by R/Q, where R 
is amount of received replies and Q is amount of generated query messages. 
The averages of queries, replies and efficiency values are calculated over the all 
simulation cases and presented per an initiated query. The numerical data and 
the ranges are presented in the appendix. Success rates of different BFS simula-
tions are presented in FIGURE 6. The query is considered successful if at least 
one reply is received. Thus the success rate charts illustrate the proportion of 
successful queries per all queries. 

When results of different networks of 256 nodes are compared, the ran-
dom network with TTL 4 achieves more replies than the torus network with 
TTL 7. The total average of found resources was over 17 replies more than in 
the torus network.  

In the network of 256 nodes, each node has 16 resources. Corresponding 
resource amount per node in the bigger networks is 4. Thus in the bigger net-
work, each node has 25% of the resources the nodes in the smaller network 
have. This can be observed also directly from average reply amounts in the dif-
ferent torus networks. The amounts of replies in larger network are slightly bet-
ter because the querier node has also smaller amount of resources in the smaller 
network than the bigger one.  

 

FIGURE 3 The average amount of replies in proportion to the amount of query messages 
in networks of 256 nodes with BFS algorithm. 
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FIGURE 4 The average amount of replies in proportion to the amount of query messages 
in networks of 1024 nodes with BFS algorithm. 

 

FIGURE 5 Efficiency of BFS algorithm per TTL values in different networks. 
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FIGURE 6  Success rates of BFS algorithm per TTL values in different networks. 

Based on the success rates, it can be derived that even TTL 3 is large enough for 
torus and random networks of 256 nodes.  TTL 7 is not giving any more extra 
value compared to the huge amount of queries it is causing in hops six and sev-
en. The average amount of queries without any replies was in the torus network 
of 256 nodes with TTL 3, 3,5% while in random networks, the value was 1,2%. 
This can be explained with the shorter diameter of the random network com-
pared to the torus network. With TTL value 3 the query will reach more nodes 
in random network than in the torus network.  

Because of the long diameter of the torus network of 1024 nodes, the suc-
cess rate with TTL 7 is close to the success rate of the same size random network 
with TTL 5. TTL 3 is too small for torus network of 1024 nodes as almost half of 
queries remains without any reply.  

6.4 Simulation Cases 

Simulation experiments studied the behavior of the DBFS algorithm, the topol-
ogy management algorithms and the combination of the topology management 
and DBFS algorithms. The DBFS algorithm was simulated in static networks 
with different TTL values. The topology management algorithms were studied 
in the same networks with the same TTL values. The behavior of traffic estima-
tion and overtaking was studied with different topology change frequencies. 
The obtained results were compared to the results of DBFS algorithm to find 
out the parameters which define, when the DBFS with static network achieved 
better results than topology management and when managing the topology and 
use of BFS algorithm is more efficient. Both cases were compared also to the 
static network with BFS algorithm. Finally, the DBFS algorithm was simulated 
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also in the networks, which resulted from using the topology management al-
gorithm.  

6.4.1 DBFS 

DBFS algorithm has two main parameters: the amount of selected neighbors 
and the amount of directed hops the algorithm uses. To guarantee the compa-
rability, the simulations used similar initiation rounds as topology management 
algorithms.  In initialization rounds, the nodes searched with BFS algorithm 
and saved information about received replies. DBFS was studied with 2, 4 and 6 
initiation rounds, for 1 and 2 selected neighbors with 1 and 2 hops. The net-
works were torus and random network of 256 and 1024 nodes. As assumed, 
DBFS gave better success rates with all used parameters than BFS.  Because the 
simulated networks and amount of neighbors were quite small, the results of 1 
selected neighbor in 1 hop are presented. The results of DBFS algorithm in net-
works of 256 nodes are presented in FIGURE 7 and FIGURE 8. The correspond-
ing results of larger networks are in FIGURE 9 and FIGURE 10 and success rates 
in different networks in FIGURE 11. The cumulative values of replies and que-
ries are presented only for TTL 7, as behavior is similar for smaller values of 
TTL.  

As the figures illustrating the efficiency values show, the results are better 
in the first hops the smaller the TTL value is. Neither the equal distribution of 
resources nor the torus network are suitable for the DBFS, especially with large 
TTL value, because in the static network all directions are equally good for the 
node.  

 

FIGURE 7 The average amount of replies in proportion to the amount of query messages 
in networks of 256 nodes with DBFS algorithm. 
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FIGURE 8 Efficiency of DBFS algorithm per TTL values in different networks of 256 
nodes. 

 

FIGURE 9 The average amount of replies in proportion to the amount of query messages 
in networks of 1024 nodes with DBFS algorithm. 
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FIGURE 10 Efficiency of DBFS algorithm per TTL values in different networks of 1024 
nodes. 

 

FIGURE 11 Average of success rates in different networks with DBFS using different TTL 
values. 
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When the TTL is three, the horizon is small and traffic estimation with 
used parameters does nothing. The topology remains unchanged during the 
simulations and the results are the same as presented in the section 6.3. The re-
sults of the TTL values five and seven are presented in the TABLE 2. The topol-
ogy changes and success rates are presented as average values over 20 replica-
tions. Topologies do change but most of the changes are neighbor removals and 
the frequencies of traffic estimation and upper traffic limit values have influ-
ence on the changes. The amount of removals decreases as the interval length-
ens or the upper traffic limit increases. When TTL is five, the amount of remov-
als is significantly larger with upper traffic limit 40% than 60%.  

TABLE 2 Amount of topology changes and success rates in torus network of 256 
nodes without overtaking. 

TTL Interval of 
Traffic 
Checkings 

Upper Traffic 
Limit  

Amount of 
Additions 

Amount of Re-
movals 

Success 
Rate 

5 

2 40 0,1 162,45 98,10% 
60 0 33,5 99,98% 

4 40 0 118,8 99,73% 
60 0 0,95 99,98% 

6 40 0 111,15 99,84% 
60 0 0,05 99,98% 

7 

2 40 2,25 258,75 78,44% 
60 0,95 225,9 92,35% 

4 40 3,85 232,15 92,34% 
60 0,55 180,4 99,43% 

6 40 2,4 290,85 98,13% 
60 0,4 160,85 99,82% 

  
The efficiency values achieved with TTL five, with upper traffic limit 60% are 
almost equal to the efficiency of BFS algorithm in the static environment. By 
using upper traffic limit 40% the efficiency values are slightly better in every 
hop. With TTL 7 the efficiency values are significantly better if compared to BFS 
in the static network, especially when the upper traffic limit was 40%. The im-
provement of efficiency values is a result of the decrease of redundant connec-
tions.  

If only the efficiency values would be studied, the received results with 
TTL 7 would be good. Even if there are a lot of changes in the network, most 
changes happen in the early cycles in the simulation. However, the percentages 
of the lost queries are indicating that the topology is not ideal. Even if the per-
centages are remaining reasonable, they are measuring the queries that are not 
receiving any replies. Even in a disconnected network, it is rare that a node 
does not have path to any node that has the queried resource. 

When the topologies are studied, it is observed that, especially when using 
the TTL 7 with small intervals and upper traffic limit 40%, the networks are 
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fragmented. The most connected network is achieved with parameters interval 
6 and upper traffic limit 60%. The results of this case and best case of TTL 5 
with frequency 6 and upper traffic limit 40% are presented in FIGURE 12 and 
FIGURE 13. As FIGURE 12 shows, with TTL 7 the average amount of received 
replies is significantly smaller than with BFS in static network. This is explained 
by the neighbor removals the topology management generated. Because 
amount of connections is decreased and thus the distances are not any more 
equal, the query is reaching fewer nodes than in static torus network with the 
same TTL. However, it finds the same amount of replies with fewer query 
amounts than BFS. Thus the (unwanted) fragmentation of the network seems to 
happen mainly in between the different interest groups. The 20% of random 
queries is not enough to maintain overall connectivity. 

 

FIGURE 12 The average amount of replies in proportion to the amount of query messages 
in torus network of 256 nodes without overtaking. 
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FIGURE 13 Efficiency per TTL values in torus network of 256 nodes without overtaking. 

With overtaking the networks were fragmented. The larger the TTL, the more 
disconnected the network. FIGURE 14 presents a sample result topology with 
TTL 7 with overtaking applied. The network is decomposed to several compo-
nents: one large cluster with few nodes with high degree and several small clus-
ters. The effect of the frequency or upper traffic limit was not as clear as in the 
tests without overtaking.  

 

FIGURE 14 Topology of the network in the test case, where TTL was 7, overtaking percent 
80, upper traffic limit 60% and frequency 6. 
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With the TTL value 3, the half of topologies stayed connected and fragmented 
networks had only few nodes separated from the others. One generated topolo-
gy is presented in FIGURE 15. 

 

FIGURE 15 Topology of the network in the test case, where TTL was 3, overtaking percent 
80, upper traffic limit 60% and frequency 6. 

As FIGURE 16, FIGURE 17 and TABLE 3 show, the results are clearly better 
compared to the BFS in static network, but the percentage of the lost messages 
is significantly high with larger TTL values. So, opposite to the BFS in static 
network, the success rates are decreasing as the TTL value is increased because 
of the fragmentation of the network.  

 

FIGURE 16 The average amount of replies in proportion to the amount of query messages 
in torus network of 256 nodes with overtaking percent 80. 
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FIGURE 17 Efficiency per TTL values in torus network of 256 nodes with overtaking per-
cent 80. 

TABLE 3 Success rates without and with overtaking. 

 Without Overtaking With Overtaking 
TTL 3, UTL 60% 96,52% 95,57% 
TTL 5, UTL 40% 99,84% 84,95% (UTL60) 
TTL 7, UTL 60% 99,82% 75,87% 

 
The improvement in the efficiency is due to the star-like topologies of the con-
nected parts of the topology. Thus if only the ratio of replies to queries would 
have been studied, it could have been concluded that topology algorithms give 
better results than just using BFS in static network. The networks achieved equi-
librium quite fast and the efficiency values were improved compared to the ini-
tial networks. However, the networks were mostly disconnected and results 
cannot be considered satisfactory.   

The decomposition of the networks to possibly star-like components was 
evaluated to be a consequence of the traffic estimation being initiated too infre-
quently and the overtaking algorithm initiated too often. The traffic estimation 
should work in such a way that it prevents the nodes from overloading, but if 
several nodes have a chance to make changes to the connections between the 
traffic checks, a node may accept several new connections before checking its 
traffic. Once the node checks the traffic, it is already overloaded. As the neigh-
bors are then dropped one by one, it requires several cycles to disconnect extra 
nodes. Moreover, if the neighborhood of an overloaded node contains another 
high degree node, the traffic in other neighboring nodes is also high, and they 
do not accept new neighbors easily. Thus the nodes that are dropped are not 
accepted as neighbors by any node in the network, and the network will be dis-
connected. Finally, a node with several neighbors is also the direction from 
where other nodes are receiving replies and thus they want to overtake in that 
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direction, which leads to the star-like topologies. In small torus networks, most 
of the changes are done in a first possible cycles, so the traffic estimation algo-
rithm should check the possible overload situation more actively.  

A node should make an overtaking decision based on the received replies, 
but if the situation is checked too often, the available information is incomplete. 
If a node has a new neighbor, it does not have a chance to compete with the 
older neighbors. Even if the overtaking algorithm had an initialization phase 
when nodes were just collecting information and did not make any overtaking 
decisions, the latter checkings were done after each query. After the initializa-
tion phase, each node checked the situation after each sent query and received 
replies. This behavior might cause the situation where nodes were overtaken 
too fast and based on information of one query.  

The conclusion of the previous analysis was to make the traffic estimation 
algorithm more active and the overtaking algorithm less active. The aim of this 
was to decrease the amount of topology changes so that the information used in 
these changes is more complete. At first, the traffic estimation algorithm was 
changed so that nodes check the possible overload situation more often. The 
original traffic checking rate was k*N cycles and it was kept the same but one 
additional check for overloading was added after each 16 cycles. If the node is 
overloaded, it does not accept any new connections to the node until the situa-
tion is changed and traffic is under the upper limit value.  

Another improvement was made in the overtaking algorithm. An addi-
tional parameter controlling the rate of the overtakings was included in the 
simulator. The parameter defines how many queries the node should wait be-
fore checking the overtaking situation. This same parameter defines also the 
length of the previously used initialization phase. The new algorithms were 
tested with the overtaking periods 10, 15 and 20. In addition, different values 
were tested for the overtaking threshold (80% and 90% of replies).  

The results of the tests were evaluated based on the topology of the con-
structed network, and values of calculated functions are presented in TABLE 4. 
For each test configuration, all 20 samples of constructed topologies were 
checked to find out whether they are connected or disconnected. Also, the 
structures of the topologies were studied and average values of leaf nodes and 
maximum degrees of the nodes were calculated. Other studied parameters were 
the efficiency values and success rates. 

 The simulation tests with traffic limit value 60% gave best results when 
overtaking percent was 90. With 80% overtaking, the average efficiency values 
were better, but the networks were less stable and more centralized and amount 
of lost queries was higher. The best combinations of results were received with 
90% overtaking threshold, i.e., only with 90%; all the 20 cases formed topologies 
which were connected and the amount of leaf nodes was realistic (approximate-
ly between 20 and 40), and the largest node or nodes have 9-13 neighbors. The 
more detailed statistics about selected test cases are presented in TABLE 4. 
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TABLE 4 Selected test cases with traffic limit 60% and with TTL3.  

OT 
Per-
cent 

OT 
Pe-
riod 

Check
ing 
Inter-
val 

Discon-
nected 
Net-
works 

Leaf 
Nodes

Max 
De-
gree 

Efficiency 

Success 
Rate TTL 1 TTL 2 TTL 3 

80 10 6 2 50-84 11-38 0,396 0,174 0,090 97,02% 
80 15 6 0 45-67 11-28 0,353 0,149 0,081 97,54% 
80 20 6 0 40-67 11-26 0,330 0,139 0,077 97,73% 
90 10 2 2 34-56 9-22 0,314 0,132 0,077 97,95% 
90 10 4 1 28-55 10-21 0,294 0,125 0,074 97,85% 
90 10 6 0 25-42 9-13 0,265 0,116 0,070 98,20% 
90 15 2 0 30-45 9-13 0,277 0,117 0,071 98,18% 
90 15 4 1 26-37 9-12 0,262 0,113 0,069 98,15% 
90 15 6 1 16-32 9-12 0,240 0,107 0,067 98,34% 
90 20 2 0 23-45 10-15 0,255 0,112 0,068 98,26% 
90 20 4 0 22-37 10-14 0,239 0,105 0,066 98,25% 
90 20 6 0 15-28 9-12 0,228 0,103 0,065 98,18% 
Results of static network with BFS 0,120 0,082 0,060 96,52% 

 
It can be observed that overtaking percent has the biggest influence on the 
amount of leaf nodes and the degree of the central node (i.e., the node with the 
highest degree). With 80 percent, the amount of leaf nodes is higher than with 
90% for all used traffic checking or overtaking frequencies. With the traffic limit 
60%, the success rates were also better with overtaking percent 90. The traffic 
checking frequency does not seem to have impact on the degree size of the cen-
tral node, but shorter OT period seems to add the amount of leaf nodes. 

The test case using overtaking percent 90, OT period 20 and traffic check-
ing period 6 generated the network with good success rate, significantly better 
efficiency compared to the BFS in static network and the topology, where size 
of the central node and amount of leaf nodes were reasonable taken into ac-
count the small network size, 256 nodes.  When compared to the total amount 
of average reply amounts, there was no significant difference with BFS in static 
network, but the amount of queries decreased. 

The same parameter values were tested also with larger TTL values in to-
rus network and also in random network with and without overtaking. The re-
sults are presented in the FIGURE 18, FIGURE 19, TABLE 5 and TABLE 6. With 
TTL 5 in torus network two cases were disconnected, but in both cases only 
couple of nodes was outside. With TTL 7 almost all, 19 networks were discon-
nected. The disconnecting of network can be observed for TTL 7 already with-
out overtaking but in significantly lesser amount: three cases were disconnected 
in a way that in each one cluster of two nodes was separated. With smaller TTL 
values the networks remained unchanged without overtaking. With TTL 7, us-
ing overtaking, the average amount of queries was half of the queries in static 
network, but reply amount was just a few less than in static. The efficiency of 
the search is a consequence of the partition, which occurred in such way that 
nodes are still connected to the nodes that have resources with similar interests. 
The same reason is behind the huge amount of overtakings with TTL 7. 
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In the random networks of 256 nodes, the horizon of TTL 3 is quite similar 
to the TTL 5 in torus and thus the TTL 5 and 7 are not presented. (With larger 
TTL values networks are disconnected with or without the overtaking.) 

The efficiency values are presented in FIGURE 19, where also the efficien-
cy values of static torus and random networks are shown for comparison.  In all 
cases, the efficiency values were improved especially in the first two hops of the 
query. 

 

FIGURE 18 The average amount of replies in proportion to the amount of query messages 
in networks of 256 nodes with upper traffic limit 60, interval of traffic check-
ings 6, overtaking period 20 and overtaking percent 90. 

 

FIGURE 19 Efficiency per TTL values in networks of 256 nodes with upper traffic limit 60, 
interval of traffic checkings 6, overtaking period 20 and overtaking percent 90. 
For the comparison, efficiency of BFS in static network is also shown. 
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TABLE 5 Success rates without and with overtaking in torus and random net-

works of 256 nodes. 

Network TTL Without Overtaking With Overtaking 
Torus 3 96,52% 98,18% 

5 99,98% 99,64%  
7 99,82% 97,24% 

Random 3 98,67% 97,31% 

TABLE 6 Amount of changes without and with overtaking in torus and random 
networks of 256 nodes. 

Network TTL Without Overtaking With Overtaking 
  Additions Removals Additions Removals Overtakings 
Torus 3 0 0 0,15 3,45 260,15 

5 0 0,05 0,8 90,9 118,6 
7 0,4 160,85 12,95 262,35 409,6 

Random 3 0,15 21,25 4,8 85,55 185,85 
 

Simulation results of larger networks are presented in FIGURE 20, FIGURE 21 
and TABLE 7. Only results with the overtaking are shown because without 
overtaking the networks did not change. The networks were well-connected; 
with TTL 5 in torus network only one case was disconnected and 2 nodes were 
in separate network. Also in the random network with TTL 3 one case was dis-
connected leaving network of 3 nodes outside of the connected part, but with 
TTL 5 almost all networks were partitioned in a way that couple of nodes were 
left outside of the larger cluster. 

The efficiency values are improved especially in first hops. The efficiency 
of TTL 7 in torus network stays similar to the efficiency of static network be-
cause the topology does not change much. Also with TTL5, the amount of 
changes is so small that the improvement of efficiency is small. In the torus 
network, the smaller the TTL, the larger is the number of overtakings.  This is as 
expected as the resources are distributed randomly and all directions should be 
equally good on the average. With small TTL, the overtaking mechanism can 
adapt to local fluctuations that smooth out when the search neighborhood is 
larger. 

A clear improvement can be seen in success rates of the torus and random 
networks with TTL 3 and torus with TTL 5.  
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FIGURE 20 The average amount of replies in proportion to the amount of query messages 
in networks of 1024 nodes with upper traffic limit 60, interval of traffic check-
ings 6, overtaking period 20 and overtaking percent 90. 

 

FIGURE 21 Efficiency per TTL values in networks of 1024 nodes with upper traffic limit 60, 
interval of traffic checkings 6, overtaking period 20 and overtaking percent 90. 
For the comparison, efficiency of BFS in static networks is also shown. 
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TABLE 7 Success rates and amount of changes overtaking in torus and random 

networks of 1024 nodes. 

Network TTL Success Rate Changes 
   Additions Removals Overtakings 
Torus 3 80,41% 0,35 6,05 2419,85 

5 94,52% 0,5 8,95 628,60 
7 98,15% 0 0 28,25 

Random 3 88,69% 2,55 18,55 999,10 
5 98,16% 50,50 743,20 654,05 

 
In addition to the total amount of topology changes, the time evolution of 
changes during the simulation was studied. FIGURE 22 shows changes in a 
random network of 256 nodes (the corresponding graphs of other networks are 
included in the APPENDIX). As shown in FIGURE 22, the topology changes 
occur at the early cycles after, which the topology changes are rare. 

 

FIGURE 22 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 256 nodes with TTL 3. 

The results presented in this chapter include also the initiation phase and the 
cycles when the network is changing a lot. To study the resulted topology (i.e., 
the outcome of the algorithms), the values at the equilibrium were also studied 
and results are presented in FIGURE 23, FIGURE 24, and TABLE 8. As the FI-
GURE 23 shows, the first two hops give quite similar results in the both smaller 
networks but in the third hop the random is achieving better results compared 
to the torus. Thus the initial topology can still be seen in the performance, but 
not until the third hop. If the results are compared to the results of BFS algo-
rithm presented in the FIGURE 3, the improvement in torus network can be 
clearly seen: the amount of replies is increased and amount of queries is de-
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initial topologies to perform qualitatively similarly, which was the intended 
purpose.  

The notable improvement is in success rates of torus and random net-
works of 1024 nodes, the success rates are close to 100% whereas in a static net-
work, these rates were 54% and 86%.  

 

FIGURE 23 The average amount of replies in proportion to the amount of query messages 
in different networks after equilibrium. 

 

FIGURE 24 Efficiency per TTL values with overtaking after equilibrium. 
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TABLE 8 Success rates of networks at equilibrium. 

Network Size TTL Success Rate Success Rate 
of BFS 

Torus 256 3 99,64% 96,52% 
Random 256 3 99,28% 98,80% 
Torus 1024 3 96,67% 53,85% 

5 99,12% 86,12% 
Random 1024 3 97,26% 86,20% 

5 99,53% 99,88% 

6.4.3 Comparison of Topology Management Algorithms and DBFS 
Algorithm 

The topology management algorithms with BFS search were compared to the 
DBFS in static networks. Moreover the DBFS algorithm was studied in the net-
works reconstructed by the topology management. The results are presented in 
FIGURE 25, FIGURE 26 and TABLE 9. As DBFS and BFS produce significantly 
different amounts of forwarded queries for a given TTL level, efficiency values 
are compared as a function of the amount of query messages. 

The main observation is that the topology management clearly changes 
the immediate neighborhood of the nodes. The efficiency values for TTL 1 in 
DBFS show that the first neighbor in the selected preferred direction is in the 
same interest group in half of the cases (giving close to 4 times more replies 
than average node, especially for topologies derived from the torus - for modi-
fied random grids the effect is smaller). Also, the TTL 2 level for DBFS is clearly 
above average efficiency. On TTL 3, the effect disappears, but the performance 
is still better than in the original topology. 

The above observation does not surprise. As the original topologies and 
resource distributions did not have any clustering of interests, there was not 
much to be achieved by directed search. The moderate clustering that emerged 
from the use of topology management improves the performance of the di-
rected search but only locally.  
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FIGURE 25 Efficiency vs. query amount of DBFS algorithm in static networks and BFS and 
DBFS algorithms in the networks generated by topology management algo-
rithms. 

 

FIGURE 26 Efficiency vs. query amounts of DBFS algorithm in static networks and BFS 
and DBFS algorithms in the networks generated by topology management al-
gorithms. 
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TABLE 9 The success rates of DBFS algorithm in static networks and BFS and 

DBFS algorithms in the networks generated by topology management 
(TM) algorithms. 

Network Size TTL Success Rate 
of TM & 
DBFS 

Success 
Rate of 
TM & BFS 

Success Rate 
of DBFS in 
Static Net-
work 

Torus 256 3 96,66%  99,64% 91,19% 
Random 256 3 97,58% 99,28% 97,41% 
Torus 1024 3 83,38% 96,67%  

5 96,09% 99,12% 74,20% 
Random 1024 3 88,25% 97,26% 62,53% 

5 96,53% 99,53% 99,82% 
 

6.5 Conclusions  

The simulation of peer-to-peer networks and algorithms managing the network 
is complex and based on several parameters, which should be defined. The es-
sential part of simulation is to keep it simple so it can be controlled and the pa-
rameters affecting the results can be found. Before understanding thoroughly 
the performance of the algorithms in a simple setup, it is not advisable to try 
them on real, measurement-based data whose properties are only partially un-
derstood and controllable.  

The original purpose of the simulation was to study the topologies that 
emerge from the use of the developed topology management algorithms and 
compare the BFS search in managed networks with DBFS in static networks to 
find out when the optimization of topology is delivering better results than 
DBFS. The generated topologies, amount of queries and replies, efficiency val-
ues and success rates were studied. The simulations used two different topolo-
gies, namely, torus and random of 256 and 1024 number of nodes. All distribu-
tions of resources and queries were uniform to keep the simulation and its 
analysis simple.  

Several surprises appeared along the way. The most serious was the ten-
dency of the topology management to produce fragmented networks. As these 
were not acceptable for later trials with DBFS a lot of attention was needed to 
tame the topology management algorithm. Understanding the joint effects of 
simultaneous overtakings might have been more difficult in more complex 
networks.  

An outcome of this analysis is the impact that the overtaking on the per-
formance. The overtaking should be “tuned” with caution, since it can have a 
more dramatic impact on the network topology than the simple additions or 
deletions of connections. In particular, in some cases, it results on “star” topolo-
gies, if the interest data is clustered.  
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Another major problem arose with the traffic estimation algorithm.  For 
large networks with large TTL values, it was difficult to define traffic limit in a 
way that would keep the connections of a node within a reasonable amount but 
would not partition the network. This was also seen in the amount of neighbor 
additions compared to the amount of the neighbor removals; the amount of re-
movals was always more than amount of additions.  

The managed topologies give rather similar search performances in the 
close neighborhood (up to two hops away) independently of the initial topolo-
gy. This shows that topology management is able (in the given setup) to make 
systematic changes. However, for larger neighborhoods the effect is lost. This 
implies also that even if the search performance improves from the original to-
rus topology, the resulting performance is not really better than that for the 
original random grid for higher values of TTL. Obviously, one would like the 
topology management to perform better than simply random networks. A posi-
tive result was that even if the efficiency did not improve the amount of re-
ceived replied close to the node and success rates increased. Thus the used TTL 
value could be decreased after topology management algorithms and node 
would still receive more replies. 

It seems that the topology management cannot, in the current form and 
setup, do much more than create contacts to the neighbor’s neighbor once. After 
that, the used thresholds for different operations are too tight to allow further 
progress. A small scale sensitivity analysis was made to test the effect of differ-
ent traffic limits, but this did not change the situation. Presumably, the 80-90% 
threshold for overtaking is too high to allow iterated changes in the topology. 

The parameters used in the simulation of topology management algo-
rithms were selected so that they would work as well as possible for (almost) 
any test case. For that reason, for example, the initialization period before to-
pology changes was kept quite long.  

It is bit doubtful to generalize the findings from one simple setup, but at 
least the following observations may be valid also in a more general context: 

− overtaking has a tendency to create star-like topologies (neighbor’s 
neighbor of a star center node aims to joining the center node) 

− simultaneous overtaking in the same neighborhood should be 
avoided as they may create severe traffic overloading (two stars 
coming to contact)  

When studying topology management and adaptive search together it 
could be observed that topology management, even with its limited perfor-
mance, was able to bring some clustering to the network to be exploited by the 
search. So, rather than competitive approaches, these should be seen as collabo-
rators. This of course on precondition that topology management can be modi-
fied to exploit the biased data from directed searches.  



7 CONCLUSIONS AND CONTRIBUTION OF THESIS 

The peer-to-peer technology is utilized already in 1960s but in the last decade it 
has attained more publicity and it has challenged the traditional client-server 
architecture especially in the file-sharing applications. The main principle of the 
P2P networks is equal role of the nodes: all nodes may act as servers and clients. 
The pure unstructured P2P network is simple to implement and provides good 
scalability, but the resource discovery using flooding algorithms restricts this 
scalability. Resource discovery and topology are the main aspects affecting the 
efficiency. The efficiency of the search can be improved by changing the topolo-
gy in a way that the resources can be found closer or by using non-flooding 
search algorithms. The concentration of this thesis is to study the performance 
of developed topology management algorithms [PV, PVI] and search algo-
rithms [PI, PVII], but it also presents tools [PII, PIII, PIV] developed for the 
study. 

 The paper [PV] proposes a method combining four interest-based topolo-
gy management algorithms for self-organizing the overlay topology in the pure 
unstructured peer-to-peer networks. The algorithms utilize the local infor-
mation that the nodes collect about both their neighbors and also other nodes 
they know in the network. All the algorithms aim for nodes providing needed 
resources in the close neighborhood of the node that executes the algorithms. 
The simulations showed that this can be reached with certain parameters with-
out significant load in the network or partition of the topology. 

Solving the problem of a large amount of varied parameters was attempt-
ed with the use of neural networks. The topology management algorithms were 
further developed and the used parameters were tuned by using neural net-
works. The paper [PVI] introduces NeuroTopology algorithm. The algorithm 



76 
 
organizing the overlay topology of the peer-to-peer network is constructed by 
neural networks. Each node in the network defines by using neural network 
whether or not it establishes a connection to the node it knows. The local infor-
mation the node knows about its potential neighbor is taken as input to the 
neural network, and the output defines whether a connection is to be estab-
lished or not. As NeuroTopology is an interest-based algorithm, the local in-
formation that a node collects from other nodes includes the amount of resource 
replies arrived from the node or relayed by the node. NeuroTopology was 
trained using HDS algorithm and efficiency of the topology the NeuroTopology 
generated was tested in grid, power-law and random graph topologies. The 
results show that topologies generated by NeuroTopology are more efficient 
than other tested topologies. The challenge of the study was the complexity of 
the neural network. 

The developed resource discovery algorithm called NeuroSearch is pre-
sented in the paper [PI]. NeuroSearch uses neural networks for generating a 
search algorithm similarly as NeuroTopology is used for constructing a topolo-
gy algorithm. The algorithm decides to which neighbor nodes the resource dis-
covery query is forwarded.  NeuroSearch was simulated and tested with pow-
er-law graph networks and results were compared with BFS algorithm. It could 
be observed that by adapting the search with neural networks, about 50% more 
resources could be found with the same efficiency than with BFS for TTL2.  

An algorithm was constructed to estimate the performance of resource 
discovery algorithms from theoretical upper limits. The algorithm uses k-
Steiner minimum tree and is presented in the paper [PVII]. Five resource dis-
covery algorithms, Breadth-First Search, Self-avoiding Random Walker, High-
est-Degree Search, Dynamic Query Protocol and k-Steiner Minimum Tree, were 
analyzed by using power-law, random, and Gnutella2 topology. It was ob-
served that the studied resource discovery algorithms performed by one to two 
orders of magnitude less efficiently than optimal search that was fully aware of 
the network topology and all the resources - in particular if a big fraction of the 
resources was to be found. For finding one sample of a popular resource, the 
difference was much smaller.   

The first developed tool was a peer-to-peer middleware called Chedar 
which is based on pure peer-to-peer architecture and presented in paper [II]. 
The middleware is implemented in Java programming language and thus de-
signed for heterogeneous environments. It offers an application interface for 
peer-to-peer applications. Chedar uses the TCP/IP protocol for communication 
and algorithm guaranteeing that the resource reply is forwarded back to the 
initiator of the query message if it still exists in the network. Chedar contains 
also topology management algorithms, which are used for self-organizing the 
topology and implements several search algorithms.  

The ensure the reproducibility of the studies and avoid the problems the 
delays in real TCP connections and load of CPUs caused, all topology and re-
source discovery algorithms were studied in the P2PReal simulator described in 
paper [PIV]. P2PRealm is specially designed for optimizing neural networks 
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used in peer-to-peer networks. The user can define by input parameters the 
structure of the peer-to-peer networks and resource distribution and query pat-
terns. Also requirements for algorithms trained by neural networks can be de-
fined. The simulator provides communication by message passing, supports 
parallel computing and dynamic network.  

The third tool is P2PStudio [PIII], which can be used to monitor, control, 
and visualize the peer-to-peer networks. P2PStudio is composed of a user inter-
face (UI) and a server. The server handles the communication between user in-
terface and peer-to-peer nodes. With P2PStudio, the user can send commands 
to a node or several nodes, modify resources, modify connections, and view a 
logical topology of the network, information about the last resource query, a 
node’s parameter values, neighborhood distribution graph of the network, and 
a log of events in the network.  

As the previous studies of topology management algorithms concentrated 
on the effect of few varied parameters, the main focus of the sixth chapter of 
this thesis was to define controlled simulations and analyze more systematically 
the performance of the generated networks. Simulations for a simple setup 
were run to study the effect of different parameters and to compare the topolo-
gy management algorithms with the search algorithm using similar information.  

The simulated setup showed it was impossible to define the parameters in 
a way that the developed algorithms would have improved all topologies and 
kept the networks connected. The partition of the network was varied from the 
few disconnected nodes to the several disconnected clusters. This problem 
arose in particular with larger networks (1024 nodes) and higher TTL values, 
which explains why the feature was not observed in the original paper [PV].  

On the other hand, algorithms improved the efficiency, success rate, and 
especially the amount of received replies from the nodes close to the querier.  
This simple simulation kept all distribution of variables equal because different 
distributions of resources, interests, and queries tested with different topologies 
of varied node amounts, and with replication and dynamicity of the nodes 
might have given better results in some cases but would have done it impossi-
ble to make conclusions. 

7.1 Contributions of the Author 

Publications are produced in collaboration with other authors in a peer-to-peer 
research group. In the paper [PII], the author has implemented the middleware, 
designed and implemented topology algorithms along with the routing algo-
rithm the middleware includes. The author has further developed topology al-
gorithms and implemented and tested those in simulator [PV]. The NeuroTo-
pology algorithm trained by neural networks [PVI] is defined by the author. 

Author’s contribution to P2PReal simulator [PIV] concerns defining the 
requirements for the simulator, and the author has implemented algorithms to 
the simulator and modified the simulator. In P2PStudio tool [PIII], the author 
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has participated in design of the tool and particularly defined the interface be-
tween the tool and peer-to-peer middleware.   

The author participated in defining the neural network and inputs for 
NeuroSearch [PI] and resource discovery as a Steiner tree problem [PVII]. 
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YHTEENVETO (FINNISH SUMMARY) 

Hajautetut järjestelmät ovat muutaman vuosikymmenen jälkeen tekemässä pa-
luuta asiakas/palvelin–arkkitehtuurista takaisin vertaisverkkoihin, joissa peri-
aatteena on verkossa mukana olevien koneiden eli vertaisten tasa-arvoisuus.  
Vertaisverkossa mikä tahansa vertainen voi tarjota resursseja muille verkon 
vertaisille. Käyttämällä täysin keskittämätöntä vertaisverkkoarkkitehtuuria 
saavutetaan monia etuja, kuten skaalautuvuus ja alhaiset hankintakustannukset, 
mutta kohdataan myös haasteita. Suurin haaste liittyy käytettyihin ns. tulviviin 
(kaikkiin suuntiin lähettäviin) hakualgoritmeihin, jotka luovat verkkoon paljon 
kyselyviesteistä johtuvaa liikennettä. Hakualgoritmi luokin yleensä suurimman 
esteen vertaisverkon skaalautuvuudelle.  

Haun tehokkuuteen vaikuttaa käytetyn hakualgoritmin lisäksi myös ver-
kon topologia. Tutkimusten mukaan verkossa olevilta solmuilta löytyy kiinnos-
tuksen kohteita, joten haun suhteen olisi tehokasta, jos samasta asiasta kiinnos-
tuneet solmut olisivat lähellä toisiaan, jolloin kyselyviestien kulkemaa matkaa 
voitaisiin rajoittaa.  

Tässä väitöskirjassa, jonka otsikko on ”Kiinnostuksiin pohjautuva topolo-
gian hallinta järjestämättömissä vertaisverkoissa”, esitellään topologian hallin-
taan kehitettyjä algoritmeja, joilla vertaiset voivat hallita yhteyksiään naapurus-
toonsa käyttäen hyväkseen tietoa, jota ne keräävät hakiessaan verkosta resurs-
seja. Topologian hallinta-algoritmien lisäksi työssä tarkastellaan räätälöityjä 
hakualgoritmeja ja niiden sovittamista topologian hallintaan. Edellä mainittujen 
menetelmien tutkimukseen soveltuvia simulointityökaluja esitellään sekä ylei-
sesti että käymällä läpi esimerkinomainen simulointikoesarja. 
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APPENDIX 

This appendix presents the experiment setup and detailed data used in the 
graphs describing the results of the simulations in Chapter 6.  

The simulation was set up as follows: 
Nodes and resources 

− Grids of N=2^l nodes were used (N=256, 1024, l=8, 10). 
− There were M=2^12 resources in the network (identified with a 12 

bit binary key). So each resource has a unique identifier, l first bits 
defining the node and the rest identifying the resource within the 
node. That is, there were 16 or 4 resources on each node. 

− The nodes were divided to 8 interest groups using the first three 
leading bits in the resource/node key. 

− The node numbering implied by the resource keys was independ-
ent of numberings used in construction of the grid topologies or in 
scheduling topology management operations. 

Queries 
− Each query was designed so that it matched to 2^5=32 resources 

distributed to varying amount of nodes. For each query a random 
mask was created that fixed 7 of the 12 bits (leaving 5 bits free). 
Thus the query matched to resources that were distributed to 2, 4, 8, 
16 or 32 nodes (for N=256), (8, 16 or 32 for N=1024). 

− For queries inside the interest group, the first three bits of the mask 
(defining the nodes in the interest group) were forced to be the 
same as for the querying node. 

Simulation runs 
− 20 independent replications were made of each simulation case. 
− One simulation run consisted of 280*N queries (for N=256, 1024). 

For simulations of at equilibrium state for managed topologies the 
simulation consisted of 140*N queries. The equilibrium state was 
achieved with 140*n queries .When simulating DBFS, z*N queries 
were first made using BFS to collect data for deciding about the pre-
ferred directions (for z = 2, 4, 6). 

− For topology management z*N queries were first made to collect 
data about the resources in the search neighborhood and the traffic 
at nodes (for z = 2, 4, 6). 

− The traffic estimation period was z*N queries (for z = 2, 4, 6). 
− Each node was given random value within (1 - z*N) which de-

fined the cycle when the node checked its traffic. 
− Overloading was checked more often: every 16th cycle the node 

was checking its overload situation i.e. whether its traffic was 
more than the upper traffic limit (u*z*N, for u = 0.4, 0.6, 0.8) al-
lowed.  

− The lower traffic limit was 20% of upper traffic limit.  
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− Also for overtaking was defined the initiation rounds 2*z*N when 
the node is collecting data.  
− After that the node receiving replies checked if one of its neigh-

bors’ neighbor provides more than o percent of the replies (for o 
= 80, 90). 

− Since that the overtaking was checked after the node has sent k 
queries (k = 10, 20). 

Observed variables 
− The output of the simulation was monitored using results averaged 

over 1024 queries. From this data the following indicators were 
computed 
− Q= average number of query messages/node for each level of 

TTL 
− H= average number of found resources/query for each level of 

TTL 
− Efficiency E=H/Q  
− Number of queries without any replies (failed queries) 
− For topology management the amounts of additions, removals 

and overtakings per 1024 queries  
− In addition to point estimates (sample averages), we report the 

standard deviations of Q and H on the node level. Confidence in-
tervals can be obtained by multiplying the standard deviations by 
1.96/sqrt(20*N*#query) where #query is the amount of que-
ries/node in the run, , (i.e.  by 0.0016 for N=256 and 0.0008 for 
N=1024). 

TABLE 10 BFS in the static networks of 256 nodes. 

  Torus 256 Random 256 
Hops Q SQ H SH E Q SQ H SH E 
1 4,000 0,000 0,480 1,380 0,120 4,094 5,901 0,506 1,429 0,124
2 12,000 0,000 0,980 2,796 0,082 16,477 49,620 1,918 5,812 0,117
3 24,000 0,000 1,429 2,603 0,060 62,374 275,430 6,084 21,919 0,098
4 36,000 0,000 1,964 3,443 0,055 188,518 944,204 11,337 25,334 0,061
5 48,000 0,000 2,459 3,737 0,051 308,471 968,016 8,380 23,344 0,028
6 60,000 0,000 2,935 3,153 0,049 174,654 466,170 2,439 21,583 0,014
7 72,000 0,000 3,368 3,470 0,047 34,211 328,897 0,437 7,554 0,012
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TABLE 11 BFS in the static torus network of 1024 nodes. 

  Torus 1024 

Hops Q SQ H SH E 
1 4,0000 0,0000 0,1238 0,3590 0,0309 
2 12,0000 0,0000 0,2485 0,5425 0,0207 
3 24,0000 0,0000 0,3720 0,6231 0,0155 
4 36,0000 0,0000 0,4988 0,7687 0,0139 
5 48,0000 0,0000 0,6266 0,8581 0,0131 
6 60,0000 0,0000 0,7477 0,9052 0,0124 
7 72,0000 0,0000 0,8661 1,0559 0,0120 

 

TABLE 12  BFS in the static random network of 1024 nodes. 

  Random 1024       

Hops Q SQ H SH E 
1 4,1062 3,3708 0,1283 0,4052 0,0312 
2 16,5716 24,5754 0,5085 1,0338 0,0307 
3 65,9173 140,1060 1,9328 4,3911 0,0293 
4 246,7508 658,6451 6,0812 13,2294 0,0247 
5 744,4459 2064,2749 11,4857 14,8145 0,0155 

 
The following result of DBFS algorithm use initialization round 4 and the algo-
rithm selected one neighbor only in the first hop. 

TABLE 13 DBFS in the torus network of 256 nodes. 

  Torus 256, TTL 3 Torus 256, TTL 5 Torus 256, TTL 7 
Hops H SH E H SH E H SH E 
1 0,238 0,848 0,238 0,180 0,989 0,180 0,161 0,757 0,161 
2 0,560 1,579 0,187 0,489 1,618 0,163 0,442 1,653 0,147 
3 1,009 1,993 0,112 0,959 1,837 0,107 0,907 1,911 0,101 
4   1,453 3,224 0,069 1,432 2,903 0,068 
5   2,021 2,294 0,061 2,012 2,822 0,061 
6     2,493 2,769 0,052 
7             2,964 3,959 0,049 
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TABLE 14 DBFS in the torus network of 1024 nodes. 

  Torus 1024, TTL 5   Torus 1024, TTL 7   

Hops  H SH E H SH E 
1 0,0419 0,2132 0,0419 0,0387 0,2036 0,0386 
2 0,1115 0,3556 0,0372 0,1051 0,3540 0,0350 
3 0,2372 0,5309 0,0263 0,2322 0,4992 0,0258 
4 0,3633 0,6740 0,0173 0,3571 0,6570 0,0170 
5 0,5152 0,7560 0,0156 0,5100 0,7314 0,0155 
6   0,6336 0,8509 0,0132 
7       0,7572 0,9304 0,0126 

TABLE 15 DBFS with TTL 3 in the random network of 256 nodes. 

  Random 256, TTL 3 

Hops Q SQ H SH E 
1 1,000 0,000 0,160 0,801 0,160 
2 5,239 9,992 0,811 2,326 0,155 
3 21,976 70,192 3,003 8,451 0,137 

TABLE 16 DBFS with TTL 5 in the random network of 256 nodes. 

  Random 256, TTL 5 

Hops Q SQ H SH E 
1 1,000 0,000 0,140 0,494 0,140 
2 5,353 9,240 0,712 2,064 0,133 
3 22,717 66,310 2,815 7,834 0,124 
4 85,093 364,731 8,044 26,233 0,095 
5 238,303 1098,438 12,075 15,548 0,051 

TABLE 17 DBFS with TTL 7 in the random network of 256 nodes. 

  Random 256, TTL 7 

Hops Q SQ H SH E 
1 1,000 0,000 0,131 0,686 0,131 
2 5,345 9,060 0,713 2,184 0,133 
3 22,654 68,135 2,802 8,310 0,124 
4 84,837 374,991 8,004 25,293 0,095 
5 237,821 1115,128 12,048 15,603 0,051 
6 313,864 715,291 6,152 30,864 0,020 
7 112,924 641,609 1,133 14,396 0,010 
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TABLE 18 DBFS with TTL 3 in the random network of 1024 nodes. 

  Random 1024, TTL 3 

Hops Q SQ H SH E 
1 1,0000 0,0000 0,0385 0,2079 0,0384 
2 5,0587 5,4916 0,1864 0,5024 0,0369 
3 21,2489 36,9272 0,7615 1,5643 0,0358 

TABLE 19 DBFS with TTL 5 in the random network of 1024 nodes. 

  Random 1024, TTL 5 

Hops Q SQ H SH E 
1 1,0000 0,0000 0,0321 0,1865 0,0319 
2 5,4971 5,9796 0,1756 0,4663 0,0320 
3 23,6499 39,5265 0,7435 1,6260 0,0314 
4 94,7559 216,9430 2,7842 5,8515 0,0294 
5 347,2859 948,4843 8,1314 16,9088 0,0235 

 
The following results of topology management algorithms use interval of traffic 
estimation value 6. 

TABLE 20 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 5 and upper traffic limit 40%.  

  Torus 256, TTL 5 

Hops Q SQ H SH E 
1 3,194 7,752 0,460 1,393 0,145 
2 7,464 43,336 0,760 2,773 0,103 
3 13,876 96,560 1,055 4,754 0,077 
4 20,997 143,391 1,561 4,704 0,076 
5 28,699 185,116 2,009 4,826 0,071 

TABLE 21 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 7 and upper traffic limit 60%.  

  Torus 256, TTL 7 

Hops Q SQ H SH E 
1 2,811 11,515 0,448 1,435 0,161 
2 5,833 59,204 0,634 3,723 0,112 
3 10,071 133,719 0,818 6,880 0,084 
4 14,456 207,483 1,201 7,862 0,088 
5 19,248 277,863 1,514 9,428 0,083 
6 24,378 345,132 1,891 11,463 0,082 
7 29,797 409,866 2,211 12,395 0,078 
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TABLE 22 Topology management in torus network of 256 nodes, with TTL 3, upper 

traffic limit 60% and overtaking 80%. 

  Torus 256, TTL 3 

Hops Q SQ H SH E 
1 3,294 10,471 1,806 8,006 0,557 
2 14,233 156,165 3,967 27,211 0,294 
3 45,432 977,407 5,811 45,013 0,143 

TABLE 23 Topology management in torus network of 256 nodes, with TTL 5, upper 
traffic limit 60 and overtaking 80%. 

  Torus 256, TTL 5 

Hops Q SQ H SH E 
1 2,023 21,722 0,760 3,313 0,398 
2 14,977 282,550 2,620 35,183 0,188 
3 29,758 1474,052 2,741 72,536 0,116 
4 35,026 2305,353 1,985 73,946 0,083 
5 23,991 1382,668 1,303 65,194 0,072 

TABLE 24 Topology management in torus network of 256 nodes, with TTL 7, upper 
traffic limit 60% and overtaking 80%. 

  Torus 256, TTL 7 

Hops Q SQ H SH E 
1 1,919 22,562 0,648 3,793 0,359 
2 13,141 323,244 2,077 33,654 0,179 
3 23,303 1463,376 1,869 71,443 0,107 
4 27,401 2109,108 1,444 74,166 0,074 
5 20,213 1387,215 1,025 64,725 0,060 
6 13,737 1111,551 0,718 55,673 0,034 
7 9,904 945,704 0,462 40,084 0,022 

 
The following results of topology management algorithms are from simulations 
after improvement of the algorithms and the addition of a new parameter, the 
overtaking period. In the following tables, overtaking period value is 20, inter-
val of traffic estimation is 6 and overtaking percent is 90%.  

TABLE 25 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 3 and upper traffic limit 60%. 

  Torus 256, TTL 3 

Hops Q SQ H SH E 
1 3,991 1,582 0,909 6,286 0,228 
2 14,237 33,619 1,478 7,885 0,103 
3 38,355 207,663 2,526 16,418 0,065 
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TABLE 26 Topology management in torus network of 256 nodes, with TTL 3 and 

upper traffic limit 40%. 

  Torus 256, TTL 3 

Hops Q SQ H SH E 
1 3,905 2,836 0,908 6,283 0,233 
2 13,336 20,042 1,402 6,528 0,105 
3 34,365 137,636 2,273 12,105 0,066 

TABLE 27 Topology management in torus network of 256 nodes, with TTL 5 and 
upper traffic limit 60%. 

  Torus 256, TTL 5 

Hops Q SQ H SH E 
1 3,662 9,075 0,543 1,966 0,150 
2 10,624 38,143 0,938 2,653 0,089 
3 21,887 78,570 1,457 3,450 0,067 
4 34,301 101,352 2,123 4,506 0,062 
5 47,589 118,397 2,789 6,736 0,059 

TABLE 28 Topology management in torus network of 256 nodes, with TTL 7 and 
upper traffic limit 60%. 

  Torus 256, TTL 7 

Hops Q SQ H SH E 
1 2,271 18,869 0,589 2,699 0,277 
2 7,961 93,217 1,012 13,257 0,127 
3 15,291 201,125 1,625 23,988 0,106 
4 19,162 230,368 1,923 21,638 0,103 
5 19,305 299,223 1,828 14,318 0,102 
6 18,196 450,941 1,612 21,906 0,102 
7 17,926 610,133 1,455 32,482 0,100 

TABLE 29 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 7 and upper traffic limit 60%. 

  Torus 256, TTL 7 

Hops Q SQ H SH E 
1 2,811 11,515 0,448 1,435 0,161 
2 5,833 59,204 0,634 3,723 0,112 
3 10,071 133,719 0,818 6,880 0,084 
4 14,456 207,483 1,201 7,862 0,088 
5 19,248 277,863 1,514 9,428 0,083 
6 24,378 345,132 1,891 11,463 0,082 
7 29,797 409,866 2,211 12,395 0,078 
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TABLE 30 Topology management in torus network of 1024 nodes, with TTL 3 and 

upper traffic limit 60%. 

  Torus 1024, TTL 3 

Hops Q SQ H SH E 
1 3,997 2,577 0,279 2,309 0,070 
2 18,710 114,816 0,560 5,218 0,029 
3 67,469 760,773 1,248 15,410 0,018 

TABLE 31 Topology management in torus network of 1024 nodes, with TTL 5 and 
upper traffic limit 60%. 

  Torus 1024, TTL 5 

Hops Q SQ H SH E 
1 3,9957 1,2803 0,1521 0,5888 0,0381 
2 13,5073 25,5516 0,3039 1,0695 0,0225 
3 32,9542 144,7854 0,5511 3,0322 0,0166 
4 57,5752 359,8522 0,8488 5,9871 0,0147 
5 85,0290 632,1700 1,1534 9,0471 0,0135 

TABLE 32 Topology management in torus network of 1024 nodes, with TTL 7 and 
upper traffic limit 60%. 

  Torus 1024, TTL 7 

Hops Q SQ H SH E 
1 3,9998 0,2406 0,1252 0,3635 0,0313 
2 12,0587 1,4614 0,2518 0,5603 0,0209 
3 24,4932 10,1391 0,3820 0,6652 0,0156 
4 37,0757 22,1571 0,5151 0,8758 0,0139 
5 49,7885 36,8094 0,6531 1,0348 0,0131 
6 62,6500 54,3165 0,7843 1,2199 0,0125 
7 75,6513 74,3509 0,9194 1,6766 0,0121 

TABLE 33 Topology management in random network of 256 nodes, with TTL 3 and 
upper traffic limit 60%. 

  Random 256, TTL 3 

Hops Q SQ H SH E 
1 3,615 8,398 0,689 2,869 0,193 
2 14,948 57,346 1,955 5,680 0,131 
3 54,991 355,044 5,316 23,937 0,097 



95 
 
TABLE 34 Topology management in random network of 1024 nodes, with TTL 3 

and upper traffic limit 60%. 

  Random 1024, TTL 3 

Hops Q SQ H SH E 
1 4,0901 4,1550 0,1768 0,7926 0,0433 
2 22,6478 87,3742 0,7472 3,4540 0,0329 
3 118,7900 757,4278 3,1659 17,5324 0,0269 

TABLE 35 Topology management in random network of 1024 nodes, with TTL 5 
and upper traffic limit 60%. 

  Random 1024, TTL 5 

Hops Q SQ H SH E 
1 2,8935 12,0626 0,1323 0,4271 0,0464 
2 10,0275 70,8356 0,3188 2,1924 0,0319 
3 29,9735 404,2282 0,9033 11,4347 0,0303 
4 87,7331 1814,8314 2,4221 39,3838 0,0286 
5 229,9101 5558,4151 5,1703 62,3458 0,0250 

 

FIGURE 27 The amount of topology changes during the simulation of topology manage-
ment algorithms in torus network of 256 nodes with TTL 3. 
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FIGURE 28 The amount of topology changes during the simulation of topology manage-
ment algorithms in torus network of 1024 nodes with TTL 5. 

 

FIGURE 29 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 1024 nodes with TTL 3. 
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FIGURE 30 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 1024 nodes with TTL 5. 

TABLE 36 The average queries, replies and efficiency values of torus network of 
256 nodes at equilibrium. 

  Torus 256, TTL 3 

Hops Q SQ H SH E 
1 3,983 1,829 1,034 2,079 0,260 
2 14,912 10,399 1,646 2,736 0,110 
3 42,610 50,802 2,861 5,575 0,067 

TABLE 37 The average queries, replies and efficiency values of random network of 
256 nodes at equilibrium. 

  Random 256, TTL 3 

Hops Q SQ H SH E 
1 3,479 6,145 0,738 1,441 0,213 
2 14,522 61,883 1,965 5,845 0,136 
3 53,153 401,620 5,110 25,005 0,097 

TABLE 38 The average queries, replies and efficiency values of torus network of 
1024 nodes with TTL 3 at equilibrium. 

  Torus 1024, TTL 3 

Hops Q SQ H SH E 
1 3,9930 3,0967 0,3269 0,6664 0,0819 
2 21,5672 29,4514 0,6877 1,3120 0,0319 
3 87,0593 188,2515 1,6442 3,8631 0,0189 
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TABLE 39 The average queries, replies and efficiency values of torus network of 

1024 nodes with TTL 5 at equilibrium. 

  Torus 1024, TTL 5 

Hops Q SQ H SH E 
1 3,9924 1,5330 0,1618 0,4295 0,0405 
2 14,1151 9,7659 0,3245 0,7262 0,0230 
3 36,4153 49,5177 0,6207 1,4156 0,0170 
4 66,3347 135,5252 0,9933 2,5985 0,0150 
5 100,5774 257,5062 1,3732 4,0019 0,0137 

TABLE 40 The average queries, replies and efficiency values of random network of 
1024 nodes with TTL 3 at equilibrium. 

  Random 1024, TTL 3 

Hops Q SQ H SH E 
1 4,0773 4,3302 0,1880 0,4882 0,0461 
2 24,2453 27,2560 0,8071 1,3810 0,0333 
3 133,4158 171,7463 3,4878 4,8733 0,0261 

TABLE 41 The average queries, replies and efficiency values of random network of 
1024 nodes with TTL 5 at equilibrium. 

  Random 1024, TTL 5 

Hops Q SQ H SH E 
1 2,7638 8,9277 0,1348 0,4063 0,0491 
2 9,8103 61,4897 0,3140 1,9357 0,0321 
3 28,3704 363,6612 0,8568 10,1725 0,0304 
4 80,3731 1658,0642 2,2453 34,6015 0,0288 
5 204,6774 4940,8829 4,7891 49,3008 0,0255 

TABLE 42 The average queries, replies and efficiency values of reconstructed torus 
network of 256 nodes with DBFS. 

  Torus 256, TTL 3 

Hops Q SQ H SH E 
1 1,000 0,016 0,469 1,172 0,469 
2 5,141 11,159 1,138 2,579 0,222 
3 20,419 56,964 2,254 6,617 0,111 
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TABLE 43 The average queries, replies and efficiency values of reconstructed ran-

dom network of 256 nodes with DBFS. 

  Random 256, TTL 3 

Hops Q SQ H SH E 
1 1,000 0,023 0,321 1,302 0,321 
2 6,227 21,403 1,137 2,772 0,184 
3 26,927 181,826 3,533 18,314 0,132 

TABLE 44 The average queries, replies and efficiency values of reconstructed torus 
network of 1024 nodes with DBFS. 

  Torus 1024, TTL 3 

Hops Q SQ H SH E 
1 1,0000 0,0104 0,0996 0,3486 0,0996 
2 6,8192 13,8961 0,3273 0,8763 0,0481 
3 35,2546 93,7640 0,9561 2,4925 0,0271 

TABLE 45 The average queries, replies and efficiency values of reconstructed torus 
network of 1024 nodes with DBFS. 

  Torus 1024, TTL 5 

Hops Q SQ H SH E 
1 1,0000 0,0090 0,0460 0,2236 0,0461 
2 4,2264 5,6105 0,1410 0,4571 0,0333 
3 16,1698 31,1055 0,4171 1,0166 0,0258 
4 47,0932 111,8202 0,8818 2,3570 0,0187 
5 94,3834 267,2742 1,4283 4,2738 0,0151 

TABLE 46 The average queries, replies and efficiency values of reconstructed ran-
dom network of 1024 nodes with DBFS. 

  Random 1024, TTL 3 

Hops Q SQ H SH E 
1 1,0000 0,0070 0,0589 0,2486 0,0590 
2 7,8678 9,9336 0,3017 0,7402 0,0383 
3 49,0531 86,8017 1,5445 2,9455 0,0315 
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TABLE 47 The average queries, replies and efficiency values of reconstructed ran-

dom network of 1024 nodes with DBFS. 

  Random 1024, TTL 5 

Hops Q SQ H SH E 
1 1,0000 0,0061 0,0545 0,2754 0,0546 
2 5,4226 13,7511 0,1844 0,6819 0,0340 
3 17,7369 102,7815 0,5608 3,2139 0,0316 
4 57,8770 648,3989 1,7263 16,6835 0,0301 
5 176,6154 2909,8513 4,5178 45,0982 0,0266 
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Abstract-- Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to
look for information about resources. One solution for the
problem is to use a search algorithm that locates resources based
on the local knowledge about the network. Traditionally, the
search algorithms have been based on few simple rules, which
often reduces the performance from optimal. In this paper, we
describe the results of a process where evolutionary neural
networks are used for finding an efficient search algorithm from a
class of local search algorithms. The initial test results indicate
that an evolutionary optimization process can produce search
algorithm candidates that are competent compared to the
breadth-first search algorithm (BFS) used in Gnutella peer-to-
peer network.

Index Terms-- resource discovery, peer-to-peer networks,
multi-layer perceptrons, genetic algorithms.

I. INTRODUCTION
N the resource discovery problem, any node can possess
resources and query these resources from other nodes in the

network. The problem consists of graph with nodes, links and
resources. Resources are identified by unique IDs and nodes
may contain any number of resources. One node knows only
the resources it is currently hosting. Any node in the graph can
start a query, which means that some of the links are traversed
based on a local decision in the graph. Whenever the query
reaches the node with the queried ID, the node replies. The
goal is to locate a predetermined amount of resource instances
with a given ID using as few query packets as possible.
One possible solution for the resource discovery problem is

the breadth-first search algorithm (BFS) [1]. In BFS a node
that starts a query passes the query to all its neighbors. When
the neighbors receive the query, they pass it further to all their
neighbors except the one from which the query was received.
Nodes cache the messages that they have received and if the
query has already been received from other neighbor then
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query is dropped. Time-to-Live (TTL) value is used to limit
the number of hops the query can take by reducing TTL value
each time a query is received. When TTL decreases to zero the
query is dropped. The BFS algorithm ensures that if a resource
is located in the network it can be found from the network if
TTL is high enough. The downside of the algorithm, however,
is that it uses many query packets to find the needed resources.
Thus, we propose an alternative algorithm that is more
efficient in face of used query packets and evaluate it using
peer-to-peer scenario with power-law distributed topology [2].
The rest of this paper is organized as follows. The next

section presents the references to related work done in P2P
resource discovery. Section III describes the NeuroSearch
algorithm as a solution for the resource discovery problem.
Section IV describes the optimization process and Section V
the test case used in the study. Section VI analyzes the
simulation results and in Section VII the paper is concluded.

II. RELATEDWORK
Much research has been done regarding the resource

discovery problem. Adamic et al. [3] and Kim et al. [4]
propose a search strategy that utilizes the topological
properties of a power-law network. The search strategy first
proceeds towards highest-degree node, e.g. the node that has
the highest number of neighbors, and then gradually moves to
lower degree ones. The algorithm locates resources efficiently
if they can be found from the core of the network, but the
performance decreases when the central nodes are revisited in
search for lower degree nodes.
Lv et al. [5] evaluate BFS, expanding ring and random walk

search mechanisms with varying topologies, including random
graphs [2], power-law graphs and a snapshot of the Gnutella
network obtained in October 2000. These researchers find that
BFS is not scalable and in particular on Gnutella and power-
law graphs the effects of flooding are disastrous: the number of
messages increases drastically when TTL is increased.
Expanding ring, where TTL is extended gradually for BFS, is
the first aid to the problem. However, because it forwards
duplicate messages to the nodes that the query has already
reached, a better solution to the problem using random walkers
is proposed by the researchers. A search initiates multiple
walkers and forwards them based on a random selection of a
neighbor. In addition to the TTL as a termination condition for
the walkers, Lv et al. use checking, where the random walkers
periodically check from the query originator whether the
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walker should be terminated or not. While random walkers
increase the number of hops and thus latency, they decrease
the total traffic because the search proceeds in a depth-first
manner.
Kalogeraki et al. [6] consider two search algorithms for the

resource discovery problem. The Modified Random BFS
Search behaves like BFS, but the neighbors select only a
random subset of neighbors for forwarding the query. This
reduces traffic, but adjusting the correct size of the subset for
various networks may be difficult. The researchers’ work uses
a random graph in which all the nodes have approximately
similar degrees. Thus the performance of the algorithm in
power-law graphs cannot be directly determined from the
results. In another algorithm they present, called Intelligent
Search Mechanism, the nodes keep track of recent query
results provided by their neighbors. When a new query arrives,
the neighbors are sorted based on the similarity of the query to
earlier replies from the neighbor. Because the nodes keep track
of the earlier queries, the performance of the algorithm
improves as the network evolves.
Yang and Garcia-Molina [7] experimented with many types

of directed search strategies based on various heuristics. These
heuristics include the number of results returned, shortest

average time to satisfaction, smallest average number of hops
of received results, the highest number of results returned,
shortest message queue, shortest latency and highest degree.
Their work suggests that, to minimize the time to satisfaction
measure, the best strategy is to pass the query to the neighbor
that has had the shortest average time to satisfaction for last
ten queries. Also, when considering the bandwidth use, the
most reliable measure is the smallest average number of hops
of received results for last ten queries. The heuristics used in
the study are based on history data collected locally in each
node.
Similar use of history data is found from the work by

Tsoumakos and Roussopoulos [8]. In their proposal, called
Adaptive Probabilistic Search algorithm, neighbors keep track
of the success rates of earlier queries and forward random
walkers probabilistically, based on the earlier success rate. The
algorithm is able to adapt to different query patterns and,
therefore, performs better than random walkers.
There are certain limitations in all the approaches described

above. First, each of these algorithms uses some control
parameters (for example time-to-live, the number of walkers or
the proportion of neighbors to forward the query) that can be
used to tune the algorithm. For a search algorithm, the number

Fig. 1: Processing of NeuroSearch resource query and the NeuroSearch neural network
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of control parameters should be kept to a minimal to allow
zero configurability when applied to a real environment.
Second, while some of these approaches have mechanisms to
adapt to the environment, they do not utilize the entire
potential of the environment because they rely only on one
strategy (for example the similarity of the query and earlier
replies, shortest average time to satisfaction for last 10 queries
or the success rate of earlier queries). In general, only one
strategy cannot be efficient in all scenarios and therefore an
efficient algorithm should be able to utilize many strategies at
the same time.
To overcome these limitations a neural network based

resource discovery algorithm called NeuroSearch was
designed. NeuroSearch learns by itself the correct behavior in
given network conditions and uses many combinations of
strategies to locate resources. To authors' knowledge this is the
first time when neural networks are being applied to resource
discovery problem.

III. NEUROSEARCH RESOURCE DISCOVERY ALGORITHM
The proposed algorithm, called as NeuroSearch, makes

decision to whom of the node's neighbors the resource request
message is forwarded based on the output neuron of three-
layer perceptron neural network. The algorithm is located
inside a peer node as shown in Fig. 1 and is the same for all
peers in the network. NeuroSearch can be represented as a
function }1,0{: →IO , where [ ]71,0∈I is a 7-dimensional
input vector representing the state of a resource discovery
query. The output of O defines whether in a given state query
should be dropped O = 0 or forwarded to a peer O = 1 and is
evaluated for each neighbor peer separately.
When a resource request arrives to the algorithm it goes

through all the node's neighbors (denoted as receivers) one by
one with the neural network. The input parameters for the
neural network are:

• Bias is the bias term and has value 1.
• Hops is the number of hops the message has travelled.
• NeighborsOrder indicates in which rank this receiver

is in terms of number of neighbors compared to other
neighbors. The connection with highest rank has the
value of 0, second rank has the value of 1 and so on.

• ToNeighbors is the number of the receiver's neighbors.
• CurrentNeighbors is the number of node's neighbors.
• Sent has value 1 if the message has already been

forwarded to the receiver. Otherwise it has value of 0.
• Received has value 1 if the message has been received

earlier, else it has value of 0.
Hops and NeighborsOrder are scaled with the function

1
1)(
+

=
x

xf and Neighbors and CurrentNeighbors with

x
xf 1)( = before giving them to the neural network. Scaling is

performed to ensure that all the inputs are between 0 and 1.
There are two hidden layers in the network. In the first

hidden layer there are 15 nodes + bias and in the second

hidden layer 3 nodes + bias. Tanh is used as an activation
function in the hidden layers: 1
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Combining all together, the output O of the neural network
can be calculated with the following formula:

= = =

++=
4

1

16

1

7

1
123 )))),((1(1(

k j i
iijk IfwtwtwsO

where iI is the value of input parameter i and xyw the neural

network weights on layer x in position y.
Whenever the query locates a queried resource a reply

message is sent back to the neighbor, which forwarded the
request to the node. When all the nodes in the query path have
forwarded the reply message backward, it is finally received
by the query initiator.

IV. NEURALNETWORK OPTIMIZATION

The weights xyw are unknown and therefore they need to be

adjusted to appropriate values. For doing this we use methods
of evolutionary computing [9]. The decision, which neural
networks are better than the others is done by counting the
query packets traversed in the test network and found
resources. The fitness for the neural network is defined in two
parts. Each query j is scored for the neural network h and the
fitness is calculated by summing up all the scores after n

queries:
=

=
n

j
jh scorefitness

1

. The score is defined with the

following conditions:
1. If packets > 300 then score = 0
2. If foundResources = 0 then score =

1
11

+
−
packets

3. If foundResources < availableResources / 2 and
foundResources > 0 then score = 50 ×
foundResources – packets

4. If foundResources ≥ availableResources / 2 then
score = 50 × availableResources / 2 – packets

In the equations availableResources is the maximum
number of resource intances that can be located in the query,
foundResources is the number of resource instances that the
neural network was able to locate for the query, and packets is
the number of query packets the neural network used for the
query. The constant value 300 was set as criterion for
determining when the neural network is considered to forward
the query indefinitely and the query can be stopped. Another
constant value, 50, was selected to be large enough to guide
the training process towards neural networks that locate more
resources than other neural networks. Now a neural network
could spend 49 query packets more in a query to locate one
additional resource compared to other neural network, which
located one resource less.
The first rule ascertains that an algorithm that eventually
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stops is always better than algorithm that does not. The goal of
finding half of the available resource instances was set to
demonstrate the algorithm’s ability to balance on a
predetermined quality of service level and not just on locating
all resource instances or one resource instance. The second
rule makes sure that if none of the resources are found then the
neural network should increase the number of query packets
sent to the network. The third rule states that if the number of
found resources is not enough then the neural network
develops only by locating more resources. Finally the last rule
ensures that when half of the available resource instances are
found from the network the fitness grows if neural network
uses fewer query packets.
The optimization process had an initial population of 30

neural networks whose weights were randomly defined from
interval [-0.2, 0.2]. Next, every neural network was tested in
the peer-to-peer simulation environment and fitness value
calculated. When all neural networks had been tested 15 best
were chosen for mutation and used to breed the new generation
of neural networks. As a result, 30 neural networks were
available for testing the new generation.
Mutation was based on the Gaussian random variation and

used weighted mutation parameter to improve the adaptability
of the evolutionary search. The random variation function was
similar to the one used by Fogel and Chellapilla in their
research [10] and is given as:

,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ
,,...,1),1,0()()()(' wj

j
iii NjNjjwjw =+= σ

where wN = is the total number of weights and bias terms in

the neural network,

wN2

1=τ , )1,0(jN is a standard

Gaussian random variable resampled for every j, σ is the self-
adaptive parameter vector for defining the step size for finding
the new weight, )(' jwi is the new weight value and index

1851 ≤≤ i denotes the number of neuron enumerated over all
layers.

V. SIMULATION ENVIRONMENT
As a peer-to-peer simulation environment, we used Peer-to-

Peer Realm (P2PRealm) network simulator [11] that we have
developed. The simulator can be used to simulate the behavior
of a static peer-to-peer network and to train neural networks
using Gaussian random variation. P2PRealm has been
implemented using Java.
In the test case we used power-law graphs generated using

the Barabási-Albert model [12]. A power-law network’s
neighbor distribution follows the power-curve

γk
kP 1)( = ,

where 3=γ for Barabási-Albert graph. Therefore in power-
law networks there exist few hubs in the network that have
many neighbors as well as many nodes that have only few
neighbors. A power-law graph was selected because existing

P2P networks have shown to express power-law dependencies
[13]. The graphs tested contained 100 nodes with the highest
degree node having 25 neighbors. Small network size was
selected to allow visualisation of query paths in the network.
Dynamic changes e.g., node failures were not taken into
account to simplify the analysis. However, the approach can be
applied in dynamic scenarios also as shown in [14].
The test case data was divided into three distinct data sets as

described in [15]: a training set, a generalization set and a
validation set. Training set is used for training the neural
network. Generalization set is used to measure how well the
trained neural network performs with a new data set indicating
neural network’s ability to generalize. When performance
starts to decrease in generalization set the training can be
stopped, because the neural network adapts only to the training
set if training process is continued. Validation set is used as an
objective measure to verify how well the algorithm performs
with arbitrarily chosen new data set and ensures that the true
generalization ability of the neural network is being measured.
The training set contained two power-law topologies with

both being queried n = 50 times per generation for each neural
network. Two topologies were used to have neural networks
adapt to a wider range of situations than one topology would
have provided. The generalization set consisted of two power-
law topologies with 50 queries. When the performance started
to decrease in the generalization set the neural network having
highest fitness was selected and, as a validation set, one
topology with 100 queries was used to produce the final
simulation results.
For each topology, resource instances were allocated based

on the number of neighbors each node has. There were 25
different resources in the test case and the number of different
resources in a node was the same as the number of neighbors
the node had. This means that the largest hub had one instance
of all resources and the lower degree nodes only some of
these, randomly chosen from uniform distribution. The
querying nodes and queried resources were selected also
randomly from a uniform distribution for each query.
As stopping criteria for the optimization process, 100,000

generations were set. This seemed to take approximately two

Fig. 2: Evolution of the best neural networks in each
generation for training and generalization sets
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weeks on our desktop PC equipped with an AMD Athlon XP
1800 processor. The evolution of the best neural network in
each generation is shown in Fig. 2.

VI. SIMULATION RESULTS
To evaluate the difference between BFS and NeuroSearch,

we selected the best algorithm at the 85,736th generation and
calculated the number of packets used and found resources for
100 different queries using validation set. The 85,736th

generation was selected because between the 80,000 and
90,000 generations the neural networks had achieved steadily
good results and, in particular, in the 85,736th generation,
neural network had the best fitness. The results are presented
in Fig. 3 and Fig. 4.
The results of Fig. 3 show that the performance of

NeuroSearch regarding the number of packets is nearer to BFS
with a time-to-live value 2 (BFS-2), rather than BFS with a
time-to-live value 3 (BFS-3). In average NeuroSearch
consumes 47.2 packets per query whereas BFS-2 consumes
30.0 and BFS-3 122.0 packets. The reason why there is some
variation in the number of packets for successive BFS queries
is that the number of delivered packets depends on which node
is querying. If the query starts from a central node (nodes 0-
10), it will produce more packets than the same query started
from an edge node (nodes 90-99) because the edge query has
fewer connections where BFS can spread. In case of
NeuroSearch, the performance is stable and does not depend
on which node is querying.

Fig. 4 shows how many resources the algorithms were able
to locate. NeuroSearch’s performance in terms of located
resources is quite similar to BFS-2 at central nodes, but better
in the edge nodes. Compared to BFS-3 NeuroSearch’s
performance is constantly lower, reaching the same
performance level only at some edge nodes. The reason why
NeuroSearch is satisfied with this level of performance is that
it has already reached the goal of finding half of the available
resources as defined in the fitness function and locating more
resources is not needed.
By calculating the ratio between the located resources and

used query packets we can determine the efficiency of the
algorithms. These values are shown in Table I. The results
show that NeuroSearch’s efficiency is at the same level as
BFS-2’s locating a new resource every fifth packet. BFS-3
locates a new resource approximately every ninth packet.
Efficiency is easier to keep high when locating only few
resources because usually those can be found from the central
nodes alone. When the number of needed resources increases,
query has to spread more to the edges to locate the additional
resources. Therefore the efficiency of BFS-3 decreases
significantly. BFS-2 and NeuroSearch achieve near similar
efficiency indicating that NeuroSearch is able to sustain a good
efficiency even though it needs to locate more resources than
BFS-2.

For each query, NeuroSearch locates approximately half of
the resources or more, which can be seen in Fig. 5. There are
six queries in which NeuroSearch misses the target to locate
half of the resources. This variation results from the difference

Fig. 3: Number of packets used by the algorithms

Fig. 4: Number of resources found by the algorithms

Fig. 5: Difference of located resources to half of resources

TABLE I
EFFICIENCY OF THE ALGORITHMS

Algorithm Packets Resources Efficiency

BFS-2 3000 619 0.2063
BFS-3 12202 1295 0.1061
NeuroSearch 4719 975 0.2066
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between the training set and the validation set. Nonetheless,
the results indicate that the optimization process has found an
algorithm that is able to locate nearly half of the resources
from the network with high probability.
We analyzed the behavior of the best-evolved neural

network by tracking the path used by the queries. NeuroSearch
seems to prefer central nodes early in the query and uses
multiple paths for doing this. After reaching central nodes or
one hop later the spreading is stopped. The maximum number
of hops is 5. As verification for this the behavior of a typical
NeuroSearch query started from an edge node is illustrated in
Fig. 5. In the figure the query travels through the connections
denoted with a black line starting from node 99 with question
mark (?). Nodes marked with an exclamation mark (!) contain
the queried resource. In total the query uses 49 packets and
locates 11 resources. Six connections are traversed from both
directions, which is not shown in the figure.

VII. CONCLUSION
In this paper, a new resource discovery algorithm has been

proposed. NeuroSearch algorithm takes into account the
special characteristics of its environment and can be adjusted
to different kind of P2P networks. The algorithm’s
performance is also stable and competitive compared to the
BFS algorithm.
While NeuroSearch performs well compared to BFS it is by

no means yet designed to be optimal. For example,
NeuroSearch does not yet include history-based inputs even
though they would significantly improve the performance.
Therefore, the results obtained in [3]-[8] will be considered in
forthcoming research on NeuroSearch. There are also other
directions that were left out of this research. First, we are
studying what improvements to the performance would be
gained by varying the neural network’s internal structure.
Second, we are aiming to find out what are the scalability
factors of NeuroSearch when the network size grows, and third
we are developing an optimal resource discovery algorithm
using global knowledge to be able to measure the best
efficiency a resource discovery algorithm can achieve. Also,
we are working on a solution to speed up the optimization
process by parallelizing the evolutionary algorithm using
distributed computing. This helps us to more accurately
determine the performance maximum of NeuroSearch.
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Fig. 5: Typical NeuroSearch resource query
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Abstract

In this paper we present a new peer-to-peer (P2P)
middleware called CHEap Distributed ARchitecture
(Chedar). Chedar is totally decentralized and can be
used as a basis for P2P applications. Chedar tries
to continuously optimize its overlay network topology
for maximum performance. Currently Chedar com-
bines four different topology management algorithms
and provides functionality to monitor how the peer-to-
peer network is self-organizing. It also contains basic
search algorithms for P2P resource discovery. Chedar
has been used for building a data fusion prototype and
a P2PDisCo distributed computing application, which
provides an interface for distributing the computation
of Java applications. To allow Chedar to be used in
mobile devices, the Mobile Chedar middleware has also
been developed.

1 Introduction

Peer-to-peer technologies have received a lot of pub-
licity lately mainly because of Napster and other peer-
to-peer systems mostly developed for distributing mu-
sic and movies in the Internet. A peer-to-peer network
is also well suited for sharing other resources than files,
for example CPU time and storage space. Every node
in a P2P network may provide resources to other nodes
and consume resources the other nodes are providing,
i.e. a node may serve both as a server and a client.
Therefore there is no need for a central server which
might become the bottleneck of the network or which
failure will paralyze the whole network. Also the data
traffic is more evenly distributed in the P2P network

This work was supported in part by the Agora Center InBCT

project.

than in the centralized networks where central node’s
data traffic might be very large.

Gnutella [14], published in 2000, is a decentralized
pure peer-to-peer protocol [15]. Gnutella servents use
TCP connections for communication and the Breadth
First Search (BFS) algorithm for searching resources.
When a node wants to join the Gnutella network it
must first find one node in the network to which to
establish a connection. That node can be found for
example from a web page containing a list of nodes. In
Gnutella, a node usually has some pre-defined amount
of connections. To find new neighbors a Gnutella node
uses ping messages. A ping message is broadcasted in
the network and nodes reply to it with pong messages.
The node stores information about the active connec-
tions it has so it can try to connect to those when
joining the network after disconnecting.

In Gnutella the search queries are broadcasted in the
network. The querier sends the query message to its
neighbors, which forward the query to their neighbors
except the node from where the query arrived. The
amount of hops the query travels can be limited by
setting a time-to-live (TTL) value. Every time a node
forwards the query, it decrements the value of the TTL
by one. When the value of the TTL becomes zero the
node drops the message. If a node owns the queried
resource it sends a reply to the querier using the same
route as the query came from.

Chedar differs from Gnutella in some ways. Chedar
is a middleware, i.e. it offers an API for P2P applica-
tions. It contains new kinds of topology management
algorithms by which the overlay topology on top of the
physical network is self-organized. Those algorithms
use only the local information the nodes have on their
neighbors. The purpose of the algorithms is to create
a network which is scalable and fault-tolerant. Chedar
also has four other search algorithms implemented, in
addition to the BFS that Gnutella uses. Chedar also
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guarantees that a resource reply message can be for-
warded to the querier if it still exists in the network.
Chedar uses an XML-based, structured resource de-
scription and the XPath language for matching the
query keywords with its resources.

This paper is organized as follows. We describe
Chedar in Section 2 and its structure in Section 3.
The messages Chedar uses are described in Section 4.
The algorithms used for managing the topology of the
Chedar network are presented in Section 5 and the pa-
per is concluded in Section 6.

2 Chedar

We have developed the Chedar system for resource
sharing and distribution. Chedar is a pure peer-to-peer
middleware implemented using the Java programming
language. Any application which uses the API and im-
plements the callback functions required by the API
may use Chedar and run on it. Peers, i.e. nodes in the
network, communicate directly with each other using
TCP connections. Chedar is developed to work in a dy-
namic environment where the nodes may join or leave
the network whenever they want without causing sig-
nificant problems to the applications running on top of
Chedar. Because there are no central points in the net-
work, Chedar is fault-tolerant and scalable. In case of
link failures the topology management algorithms en-
sure that new peers will be contacted and the network
stays connected.

Chedar can be used to distribute different kinds of
resources to other nodes in the Chedar network. Dis-
tributed resources can be for example files, CPU time
or storage space. Every node stores information about
the resources it provides in XML format. When the
node receives a query about some resource it checks
by using the XPath expression whether it owns the re-
source.

In Chedar a neighbor’s goodness is defined based on
the resource replies the node receives from the neighbor
to the requests the node has sent. The more the neigh-
bor offers requested resources, the more important it is
for the node. The amount of replies the neighbor has
relayed to the node also affects it’s goodness value. The
overlay topology and the traffic in the Chedar network
is managed by the Overtaking and Overload Estima-
tion algorithms which use neighbor’s goodness value as
a measure for selecting which of the connections should
be dropped and where to connect. Also Chedar al-
ways tries to route the resource reply to the initiator
of the request. In Chedar it is possible to use multiple
search algorithms, unlike in Gnutella which only uses
the broadcasting search algorithm.

In our research project [4] Chedar has been used for
distributed computing [9] and data fusion [13] and ex-
tended also to mobile devices [10]. Peer-to-Peer Dis-
tributed Computing (P2PDisCo) software was built
on top of Chedar to speed up the training of neural
networks with evolutionary computing. In the Decen-
tralized Data Fusion System (DDFS) application each
sensor node is one Chedar node. DDFS can be used
to track targets based on the sensor measurement of
their coordinates. Mobile Chedar is an extension to
the Chedar peer-to-peer network for mobile peer-to-
peer applications and has been implemented using Java
2 Micro Edition. We have also developed P2PStudio
[8] monitoring application for the Chedar network to
study the performance of search algorithms and the
self-organizing behavior of the topology management
algorithms.

3 Structure of Chedar

Chedar consists of five main components which
are Connections, ConnectionManager, Propagation-
Engine, TopologyManager and ChedarClient. These
components are illustrated in Figure 1.

3.1 Connections

The Connections include local information used by
the topology management algorithms about the node’s
neighbors. Each neighbor is one connection object.
Chedar keeps information about active connections and
history data about the earlier connections in XML
trees. Searches can be made to the XML tree using
an XPath expression. History data also contains infor-
mation about the nodes which the peer has found out
from its neighbors. The nodes save the IP addresses
and the TCP ports of the neighbors, the types of re-
sources those provide and hit values per provided re-
source types. Hit values are described later in the next
paragraph. Chedar saves also the time when the con-
nection last replied, when the connection request has
been sent to the connection and whether the request

ChedarClient

ConnectionManager

PropagationEngineTopologyManager Connections

Figure 1. Main components of Chedar.



succeeded or not. Relayed hits and the number of the
connection’s neighbors is stored about active connec-
tions.

Every connection has three types of hit values in
Chedar. First one, called hit value, is increased by
one every time the node gets a resource reply from
its neighbor. Second one is called actual hits and is
increased when the node uses a resource the neighbor
provides. Relayed hits values of the connection include
the neighbor’s neighbor nodes and the amount of the
reply messages those have sent to the node through the
neighbor.

3.2 ConnectionManager

The ConnectionManager manages the active con-
nections and the history data by adding connections
or removing connections according to the Topology-
Manager’s requests. The ConnectionManager keeps a
cache about the information of forwarded messages and
handles all arriving messages and passes them to the
classes which have informed wanting that type of mes-
sages. The ConnectionManager has also a traffic meter
which measures the size of the resource messages going
through the node in a given time period. The traffic
meter is used by the Overload Estimation Algorithm.

3.3 TopologyManager

The TopologyManager selects the connections to es-
tablish or remove and the nodes to overtake by using
the algorithms described in the Section 5. It handles
ConnectionRequest and ConnectionReply messages,
NeighborListRequest and NeighborListReply messages
and ServiceListRequest and ServiceListReply messages
which are described in the Section 4.

3.4 PropagationEngine

The PropagationEngine handles the resource mes-
sages. The application running on top of Chedar can
select any search algorithm that is implemented in
Chedar. Currently five different resource discovery
algorithms have been implemented: BFS [12], Ran-
dom Walk [11], Highest Degree Search [1, 6] and Neu-
roSearch [16]. Some of the algorithms are reviewed
in [16]. The PropagationEngine passes the received
resource request or reply message to the search algo-
rithm specified in the message. The algorithm makes
the decision where to forward the message and creates
a reply message when needed. The algorithm returns
to the PropagationEngine the forwarded message and
a list of connections where to forward the message.

3.5 ChedarClient

The ChedarClient works as an API for Chedar. The
ChedarClient provides methods for setting and getting
the values of the parameters used in the algorithms.
Resources can be set with the ChedarClient and it
propagates events about received and sent messages
and overtakings to the application. The ChedarClient
also provides methods for establishing a connection to a
certain node and for creating a resource request. Table
1 shows the methods that are accessible in the Chedar-
Client for the applications running on top of Chedar.

By implementing Chedar’s monitoring interface,
the iMonitor, the application may get the follow-
ing events: resourceQuerySentEvent, messageForward-
edEvent, messageDiscardedEvent, resourceReplySen-
tEvent, resourceReplyReceivedEvent, overtakingEvent,
connectionRequestedEvent and connectionStatusEvent.

4 Messages

There are three types of messages used for the topol-
ogy management in Chedar. When a node wants to
establish a new connection to another node it sends a
ConnectionRequest message to it. The requested node
sends back a ConnectionReply message which includes
the information whether it accepts the request or not.

With a NeighborListRequest message the node can
query a connection’s neighbors, i.e neighbor’s neigh-
bors. The sender puts its own neighbors’ IDs into the
message. The node replies to the request by sending
back a NeighborListReply message which includes the
neighbors’ IDs. The nodes save the neighbors’ IDs to
the history data.

A node can query the resource types its neighbor
provides, e.g. file or computing time, by sending to
a connection a ServiceListRequest message which is
replied by a ServiceListReply message. The request
message includes the resource types the sender provides
and the reply message includes the replier’s resource
types.

Resources are searched with a ResourceRequest mes-
sage. An application needing a resource starts a query
using a resource discovery algorithm it wants. When
the message arrives to a node which has the requested
resource, it handles the message according to the algo-
rithm and sends the reply message back to the initiator
of the request message using the following method.

Chedar tries to guarantee that the ResourceReply
message is forwarded to the initiator of the request mes-
sage by using a simple method. Every node keeps in-
formation about ResourceRequest messages it has for-
warded. The nodes save the ID of the message and the



startChedar() Starts a Chedar node.
startConnecting() The node starts estab-

lishing connections.
setMonitor(iMonitor
monitor)

Sets a monitoring appli-
cation for events.

pingMessage() Checks if a Chedar node
is still alive.

connect(String
password)

Connects to the node.
Returns true if the pass-
word is correct.

getMyID() Returns node’s ID.
getNeighbors() Returns neighbors’ IDs.
setResources(Node
resource)

Sets a resource node to
the XML tree.

unsetResource(String
xpath)

Removes corresponding
resource from the XML
tree using an XPath ex-
pression.

listResources() Returns a list of re-
sources the node has.

createResourceQuery(
String query, String
algorithm, int ttl)

Creates a resource re-
quest message where the
query is the searched re-
source as XPath, the
algorithm is the used
search algorithm and the
ttl is a time-to-live value.
Returns the id of the cre-
ated message.

stopMessage(String id) Stops forwarding the
message with a given id.

setTrafficLimit(int
limit)

Sets a value for the traf-
fic limit.

getTrafficLimit() Returns the value of the
traffic limit.

getTrafficMeter() Returns the value of the
traffic meter.

resetTrafficMeter() Sets the value of the traf-
fic meter to zero.

forceConnection(String
id)

Establishes a connection
to the node specified
with the id.

forceDisconnection(String
id)

Disconnects the neigh-
bor specified with id.

closeAllConnections() Disconnects all node’s
connections.

Table 1. Methods accessible for applications
running on top of Chedar.

IDs of the two previous nodes of the path the message
arrived from. The reply message is forwarded to the
initiator of the request message using the same path as
the request came from, i.e. the reply message is sent
to the connection where the request arrived from. This
is a common way to route the replies in P2P networks
because it needs only information about the previous
node. In Chedar there is also other ways if the for-
warding fails. If the connection to the neighbor is not
available anymore, for example the neighbor has left
the network, the node tries to establish a new con-
nection to the second next node on the return path,
i.e. the second previous node on the query path and
sends the message there. If this does not work either,
finally the node tries to establish a new connection to
the initiator of the query and sends the reply message
directly to it. Establishing always a direct connection
to the initiator of the query would require establishing
a new TCP connection, which is not always possible,
e.g. in the presence of firewalls. Also keeping statis-
tics of which nodes have relayed replies would not be
possible.

5 Topology Management Algorithms

Chedar contains four algorithms for managing the
topology: Node Selection for adding neighbors, Node
Removal for removing neighbors, Overload Estimation
for limiting the node’s traffic and Overtaking for mov-
ing in the network. The algorithms have been further
developed and tested in the P2PRealm simulator [7]
and the behavior of the algorithms is analysed in [3].

5.1 Node Selection Algorithm

The initial list of neighbors can be obtained manu-
ally by out-of-band methods or automatically by using
advertisement systems [17] or centralized entry point
directories [5]. This has not been implemented in
Chedar, but instead it has been left to the applica-
tion running on top of Chedar. The Node Selection
Algorithm handles only the case when a Chedar node
already knows some nodes in the network.

When the node joins the network again it tries to
establish the connections it had before leaving the net-
work, i.e. connections saved in the active connections.
In the best case it manages to establish all connections
it had earlier. If the node does not manage to establish
any of those connections or it needs a new connection
for other reasons, it searches the next one from the
history as shown in Algorithm 5.1.

First it searches connections which have hit values
and tries to create a connection to one of those.



Because the node does not want to create a connection
to the same node it has just dropped it searches only
the connections which have not been requested in a
given time. If the node did not succeed in establishing
a new connection, it next searches connections based
only on the time of the last request, i.e. the node has
not tried to create a connection to those in a given
time or at all (lacking requested information). If the
node still did not successfully create a connection, it
searches connections without information for hit values
or request time. If the node does not have neighbors
then the last way to search for a new connection is
to try the connections in the history which have hit
values. Then the node may select again a neighbor
which it has just dropped.

Algorithm 5.1 (NodeSelectionAlgorithm)
Input: Connections his in node’s history
H = {h1, ..., hm}, time sets a limit for the time
which older the previous connection request must be
and neighbors is the number of node’s neighbors.
Output: Establishes a new connection
hitsNeeded = true
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H )
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H )
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded, time,
H )
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

if neighbors == 0 then do

hitsNeeded = true
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded,

time, H )
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

end if

The function SearchConnections(hitsNeeded, time-
Needed, time, H ) returns those connections C =
{c1, ..., cn} ⊆ H which meet the criteria defined in the
parameters. If the value of the parameter hitsNeeded
is true, then the function only returns the connections
which have hit values. If hitsNeeded is false the func-
tion returns the connections which do not have hit val-
ues. If the value of the parameter timeNeeded is true,
then the function only returns the connections which
have not been requested in the time defined in the pa-
rameter time. The function EstablishConnection re-
turns true, if the connection was established success-
fully.

5.2 Node Removal Algorithm

When a node wants to remove a connection it se-
lects the worst neighbor among the neighbors it cur-
rently has. The worst neighbor has the smallest good-
ness value. The goodness is the sum of the neighbor
connection’s hit values and relayed hits.

Goodness = hits + relayedhits (1)

The Node Removal Algorithm (Algorithm 5.2) is
described as follows.

Algorithm 5.2 (NodeRemovalAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections.
Output: Removes the worst connection.
c = null
lowestGoodnessV alue = ∞
for i=1 to | C | do

g = Hits(ci)+ RelayedHitsSum(ci)
if g < lowestGoodnessV alue then do

c = ci

lowestGoodnessV alue = g

end if

end for

if c �= null then do

DisconnectConnection(c)
end if

The function Hits(connection) returns the con-
nection’s hit values and the function Relayed-
HitsSum(connection) returns the sum of relayed hits



of the connection’s neighbors. The method Disconnect-
Connection(connection) removes the connection to the
neighbor.

5.3 Overload Estimation Algorithm

There is no predefined number for the connections
the node should maintain. Thus the connections are
added and dropped based on the amount of traffic
going through the node. The Overload Estimation
Algorithm compares the traffic meter value calculated
in the ConnectionManager to the predefined traffic
limit values. There are upper and lower traffic limits
which set the range where the traffic amount should
be. If the traffic is more than the predefined upper
traffic limit, one connection is dropped by using
Algorithm 5.2. If the traffic is less than the lower
traffic limit it tries to add a new connection using the
Algorithm 5.1. At the end, the algorithm resets the
traffic meter by setting its value to zero.

Algorithm 5.3 (OverloadEstimationAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections, value of the traffic meter
meter in kilobytes, value of the upper traffic limit
upperLimit in kilobytes and value of the lower traffic
limit lowerLimit in kilobytes.
Output: Establishes a new connection or removes
one connection.
overloadFlag = false
if meter > upperLimit ∧ | C |> 1 then do

overloadFlag = true
NodeRemovalAlgorithm(C )

end if

if meter < lowerLimit then do

NodeSelectionAlgorithm()
end if

meter = 0
The variable overloadFlag is true if the traffic

amount is greater than the traffic limit. In that sit-
uation the node does not accept any new connections.

5.4 Overtaking Algorithm

The Overtaking Algorithm is used to optimize the
topology. The purpose of the algorithm is that the
node moves in the network closer to the nodes which
provide it a lot of replies by overtaking the current
connection. The node does not directly connect to a
neighbor of the resource providing node but only closer
step by step and that way makes sure that it does not
lose good nodes on the path.

The idea is that when a reply message arrives to the

querier it updates the hit value of the replier node and
updates the local information concerning the relayed
hits of the neighbor of the connection from which the
node got the reply message. Then if the connection’s
hit value is bigger than 1, i.e. the node has got more
than one message from the neighbor, the node checks
whether the connection has a neighbor node whose pro-
portion of the sum of all neighbors’ relayed hits and
connection’s hits is more than the defined overtaking
percent. For example if the overtaking percent is 60%
it means that if there is the neighbor of the connection
which has forwarded over 60% of all reply messages the
node has received from the connection then the node
establishes a new connection to that node and drops
the current connection.

The advantages of the algorithm are that the
distances of the nodes which use others’ resources are
shorter than in randomly connected networks. The
algorithm creates clusters gathering close to its center
the nodes which provide a lot of resources used by
other nodes.[2, 3]

Algorithm 5.4 (OvertakingAlgorithm)
Input: Overtaking percent overtakingPercent,
node’s neighbor connection c, c’s neighbors
N = {n1, ..., nn} and c’s hit value hitV alue.
Output: Node has overtaken a neighbor if some
neighbor’s neighbor is better for the node.
if hitV alue > 1 then do

sum = 0.0
biggest = overtakingPercent/100.0
bestNeighbor = null
sum += Hits(c) + RelayedHitsSum(c)
for i=1 to | N | do

hitValue = RelayedHits(ni)
proportion = hitValue/sum
if proportion ≥ biggest then do

biggest = proportion
bestNeighbor = ni

end if

end for

if bestNeighbor �= null then do

if EstablishConnection(bestNeighbor) then do

DisconnectConnection(c)
end if

end if

end if

The function Hits(connection) returns the
connection’s hit values, the function Relayed-
HitsSum(connection) returns the sum of the relayed
hits of the connection’s neighbors and the function
RelayedHits(neighbor) returns the relayed hits of the
neighbor. The function EstablishConnection returns



true, if establishing a connection succeeded. The
method DisconnectConnection(connection) removes
the connection to the neighbor.

6 Conclusion

The Chedar peer-to-peer middleware provides a de-
centralized architecture for P2P applications. The
topology of the Chedar network is self-organized by the
topology management algorithms and different search
algorithms can be used for discovering the resources.
Future work of Chedar includes further development of
the topology management algorithms and NeuroSearch
resource discovery algorithm to optimize the search
process as well as the mobile peer-to-peer application
development on top of Mobile Chedar.

References

[1] L. A. Adamic, R. M. Lukose, and B. A. Huberman.
Local search in unstructured networks. In Handbook
of Graphs and Networks: From the Genome to the
Internet, pages 295–317. Wiley-VCH, 2003.

[2] A. Auvinen. Topology management algorithms in
chedar peer-to-peer platform. Master’s thesis, Uni-
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ABSTRACT 
Peer-to-Peer Studio has been developed as a monitoring, controlling 
and visualization tool for peer-to-peer networks. It uses a centralized 
architecture to gather events from a peer-to-peer network and can be 
used to visualize network topology and to send different commands 
to individual peer-to-peer nodes. The tool has been used with 
Chedar Peer-to-Peer network to study the behavior of different peer-
to-peer resource discovery and topology management algorithms 
and for visualizing the results of NeuroSearch resource discovery 
algorithm produced by the Peer-to-Peer Realm network simulator. 
This paper presents the features, the architecture and the protocols 
of Peer-to-Peer Studio and the experience gained from using the tool 
for peer-to-peer networks research. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques 

General Terms: Measurement, Performance. 

Keywords 
peer-to-peer; P2PStudio; monitoring tool; research infrastructure. 

1. INTRODUCTION 
Peer-to-Peer (P2P) networks consist of a set of peer nodes. Each 
peer node makes decisions on where to connect and where to 
forward resource queries resulting in a complex self-organizing 
network. Studying how different algorithms are performing requires 
collecting data from the entire P2P network to obtain a global view. 
In P2P networks research people have used crawlers [5,9] to collect 
data locally available for some peer nodes. This approach however 
is only able to gather a portion of the P2P network’s behavior, 
because some of the peers might not accept any new connections 
requested by the crawlers. Also, the crawlers can only gather 
information, which is accessible by the P2P protocol and thus they 
do not have direct means to control the peer’s actions. 

In our approach, we use a centralized server to contact peers in the 
P2P network and to set filters to the peers for what events the peers 
need to report back to the server. This allows measuring different 
properties from the P2P network extensively and globally. The 

graphical user interface presents the collected data visually thus 
making the interpretation easier compared to reading plain text log 
files. In contrast to crawlers, we note that our work is the first 
attempt to create a P2P research environment, which provides strict 
control mechanisms and accurate measurements for studying the 
behavior of different P2P algorithms. 

To monitor the events of a P2P network a specific monitoring 
interface needs to be implemented in the peer nodes. This interface 
is used for setting different event logging options and for accepting 
incoming connections for data delivery from the centralized server. 
However, in presence of a large P2P network the centralized server 
can have lots of connections to manage and presents a potential 
performance bottleneck in our approach compared to local gathering 
of data done by crawlers. This architecture can however be scaled 
up by using multiple servers as is common in studies with crawlers 
[9]. 

The rest of the paper is organized as follows. Section 2 presents 
P2PStudio, its features, architecture and protocols. Section 3 
describes how P2PStudio has been used in peer-to-peer networks 
research for studying the performance of peer-to-peer resource 
discovery and topology management algorithms. Conclusions and 
future work are discussed in Section 4. 

2. PEER-TO-PEER STUDIO 
The Cheese Factory –project [3] has implemented a Java-based 
peer-to-peer computing platform called Chedar [1]. Chedar can be 
used to build a network of workstations where each node provides 
and consumes resources such as computing power, files and devices. 
Currently, Chedar is used as a middleware for P2P Distributed 
Computing applications [7]. Chedar has also been extended to 
support mobile devices [8]. In order to test and monitor the Chedar 
network there was a need for a tool that enables to remotely control 
and monitor each peer and workstation in a centralized way. By 
executing the Guardian student project [4], the first version of Peer-
to-Peer Studio was developed in 2002. 

ServerUser
Interface

Chedar
node

Chedar
node

Chedar
node

Chedar
node

Peer-to-Peer Studio

 
Figure 1. Components of  Peer-to-Peer Studio. 

P2PStudio is Java-based and it is divided into two separate 
programs as shown in Fig. 1: the user interface (UI) and the 
server. The graphical UI connects to the server program and uses 
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it to carry out the commands entered by the user. The server 
program takes care of all of the communication between the UI 
and Chedar nodes. It also manages the data sent from Chedar 
nodes. Dividing the application into two programs allows mobility 
of the UI from the dedicated hardware of the server. For example 
the server might have privileges to connect to Chedar nodes 
through firewalls and an UI residing on a laptop only needs to be 
able to connect to the server. 

UI communicates with the server, sends requests to Chedar nodes, 
displays data from the server to the user e.g., by visualizing the 
network topology and showing diagrams. The UI also allows the 
management of Chedar nodes. Server forwards the commands sent 
by the UI, gathers information from the Chedar network and passes 
on requested data to the UI. 

2.1 User Interface 
The user interface draws a logical topology of the monitored 
network as shown in Fig. 2. From the zoomable topology view the 
user can select nodes and for example check their values, command 
queries to be sent and modify the resources owned by the nodes. 
Nodes can also be grouped together to ease the execution of a 

certain action to multiple nodes. Information on the last executed 
query is also shown in the topology view. The topology is generated 
using the WTS Veivi component from WTS Networks [12]. The 
component creates a visualization of network topology from a set of 
nodes and links optimized to minimum number of overlapping links. 
The topology is refreshed whenever the user desires or after a set 
interval. 

Another feature of the UI is to show graphs of the monitoring data 
as shown in Fig. 3. Currently, the only graph implemented is the 
neighborhood distribution, but other graphs are relatively easy to be 
plugged in. Graphs are formed by combining multiple events into a 
single value, like in the neighborhood distribution, where individual 
neighbor amount notifications are counted and the frequency of 
certain value creates one data point in the graph. Graphs can be 
zoomed and shown also in a logarithmic scale. 

The log feature of the UI allows the user to keep track of the Chedar 
network's actions almost in real time. Log presents the event 
messages coming from the Chedar nodes. The events are 
notifications of certain network events, for example forwarded 
queries, new neighbor connections or dropped messages because of 
congestion in a Chedar node. 

 
Figure 2. Topology view. 
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The user can also send commands to the server or to Chedar nodes 
via the server by typing commands in the User Interface-to-Server 
Message Protocol (UMP) format (for more details see the Section 
2.3). The Commands view allows the user to see the sent data and 
the received messages from the nodes. Also batch files can be 
executed via the commands view. Batch files are useful when a 
certain peer-to-peer query pattern and measurement scenario needs 
to be executed multiple times. 

 
Figure 3. Graph view. 

The UI can be run online as well as offline especially for 
demonstrations. For offline use there is a recording feature allowing 
the user to record actual monitoring data coming from the server to a 
file and later retrieve the recorded data in offline state. The UI also 
allows the user to create Chedar node groups and manage 
connections. 

The functioning of the UI is quite simple. When data is received 
from the server it is checked and forwarded to the addressed 
component of the UI. The data will be presented to the user in a 
form of topology, graph or text depending on the view. Sending data 
is also rather straightforward. The user assigns a command and it is 
sent to the server for further handling. 

2.2 Server 
The server program is divided into two main components: stateless 
connection manager and stateful data manager. The connection 
manager is the part of the server which takes care of all connections. 
It forwards the contents of the packets without interpreting them, 
only adding metadata about the time the packet was received and 
Chedar node’s IP address and port. A packet can arrive to the server 
either from the UI or from a Chedar node. It arrives first to the 
connection manager which forwards it to the data manager if 
necessary, otherwise directly to UI or to Chedar node(s). 

The data manager is responsible for temporarily saving data coming 
from Chedar nodes and for combining multiple individual replies to 
a single reply for UI. For example to construct a neighbor 
distribution graph, data manager needs to collect individual 
neighbor amounts from Chedar nodes and build the graph data for 

UI. This lightweight architecture of the server allows scaling to 
hundreds of Chedar nodes. 

2.3 Protocols 
User Interface, Server and Chedar nodes use three different 
protocols for communication. One binary protocol was developed as 
a container for two message protocols, one XML protocol for 
communication between the server and the Chedar nodes as well as 
one XML protocol for communication between the UI and the 
server. Both XML protocols are on the top of the binary protocol as 
illustrated in Table 1. The binary protocol is always on the top of 
TCP. 

Table 1. LAYERS OF THE PROTOCOLS. 
Message Protocol (GMP or UMP) XML 

Packet Transmission Protocol (GPTP) Binary 
TCP  

 
1) Guardian Packet Transmission Protocol (GPTP) 

The Guardian Packet Transmission Protocol (GPTP) is a binary 
protocol used between the UI and the server as well as between the 
server and the Chedar nodes. The GPTP packets are composed of a 
fixed-size 64-bit header and a data part, which varies in size. The 
header identifies the packet as a part of the Guardian-to-Chedar 
protocol and specifies the size of the data part in bytes. Without a 
specified data size, parsing an incoming XML message from a 
stream would be harder. An example of a GPTP message is shown 
in Table 2. 

Table 2. GUARDIAN PACKET TRANSMISSION 
PROTOCOL. 

 

2) Guardian Message Protocol (GMP) 

The Guardian Message Protocol (GMP) is used between the server 
and the Chedar nodes on the top of the Guardian Packet 
Transmission Protocol. Each GMP message is a complete XML 
document. The header is a standard XML declaration, and the body 
is composed of a root element which specifies the type of message, 
and a variable content. 

Here is the structure of GMP message: 

Header: XML declaration 

  <?xml version="1.0" encoding="UTF-8"?> 

Body 

  Root element: <request/> OR <reply/> OR <event/> 

  Content: various requests, replies or events as 

            XML elements and/or attributes 

There are three types of messages in the Guardian Message 
Protocol: 

32 bit synchronization header, 0x47324350 
(G2CP) 

32 bit size field, network byte order, (1234) 
Byte data 
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The request/reply pair forms a synchronous message exchange 
initiated by the server. The reply is not mandatory. Event messages 
can arrive from the Chedar nodes at any time. 

3) User Interface-to-Server Message Protocol (UMP) 

The User Interface-to-Server Message Protocol (UMP) is used 
between the UI and the server on top of the Guardian Packet 
Transmission Protocol. UMP uses similar message structure as 
GMP. The difference between UMP and GMP is in the XML 
elements and attributes. For example the UMP contains elements for 
sending a certain GMP message to all Chedar nodes. 

3. P2PSTUDIO IN PEER-TO-PEER 
NETWORKS RESEARCH 
At first, P2PStudio was developed to collect data from a Chedar 
network [1] consisting of tens of workstations. Experimenting with 
self-organization of topology and different resource discovery 
algorithms however usually requires a controlled environment to 
obtain results that are repeatable. Creating exactly same starting 
conditions for each test in a network of workstations is problematic, 
because of differencies in hardware and network traffic. Also, 
having each Chedar node pack and send data over the network is 
significantly slower than executing algorithms in a simulator, where 
only local data structures are being used. 

Therefore, the use of P2PStudio was extended by creating the Peer-
to-Peer Realm (P2PRealm) network simulator [10,6]. P2PRealm is 
Java-based and contains functionalities for creating peer-to-peer 
network scenarios with different topologies, resource distributions 
and query patterns, executing different resource discovery and 
topology management algorithms, and collecting various statistics of 
the execution to log files. In addition to textual viewing of log files, 
P2PStudio can be used for graphical viewing e.g., to plot how 
queries spread in the network and what kind of topologies emerge 
from the execution of algorithms. 

A special use case for P2PStudio and P2PRealm is the development 
of the NeuroSearch resource discovery algorithm [11], which is 
based on neural networks. Optimizing neural networks requires not 
only simulation of a certain scenario once, but usually thousands of 
times to reach a near-optimum state in learning. Therefore network 
simulators, such as Ns-2 [2], which are based on scripting languages 
and mainly developed for detailed protocol studies are not fast 
enough. For studying the behavior of neural networks, P2PStudio 
provides a view containing the inputs of neural network and the 
corresponding output decisions. 

4. CONCLUSIONS AND FUTURE WORK 
P2PStudio is a well-established research tool for peer-to-peer 
networks research providing functionalities for peer-to-peer network 
monitoring, controlling and visualization. P2PStudio has been used 
with two different peer-to-peer software, Chedar and P2PRealm, for 
algorithm development. The centralized architecture of P2PStudio is 
a potential bottleneck for scalability in the future when the size of 
the P2P networks being studied grows. As a future work we 
envision changes in the architecture to support multiple servers as 

well as adding new functionalities to UI to determine certain 
network characteristics such as diameter, shortest paths and multiple 
distinct paths between nodes. 
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Request message is sent by the server to a Chedar or a Workstation 
node. 

Reply message is sent by a Chedar or a Workstation node to the 
server. 

Event message is sent by a Chedar node to the server. 
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Abstract—Peer-to-Peer Realm (P2PRealm) is an efficient peer-to-
peer network simulator for studying algorithms based on neural 
networks. In contrast to many simulators, which emphasize on 
detailed network simulation, the speed of simulation in P2PRealm 
is essential, because neural networks require a time consuming 
training phase. Efficiency has been obtained by optimizing training 
loops inside the simulator, using Java Native Interface (JNI) as well 
as distributing the simulator to hundreds of workstations using the 
P2PDisCo platform. In this paper we describe the architecture of 
P2PRealm and its input/output interfaces. Also, we present the 
mechanisms used for internally optimizing the implementation and 
the configuration used for distribution. Finally, we present the use 
of P2PRealm with the P2PStudio network visualization tool. 

Keywords - peer-to-peer; P2PRealm; network simulation; 
research infrastructure; neural networks, optimization methods; 

I. INTRODUCTION

Peer-to-Peer (P2P) algorithms have been studied at least 
using three different approaches. These are crawlers, emulators 
and simulators. Crawler is an implementation of a peer node 
specially designed for P2P networks research. A crawler can 
collect data passing through it to get a local view of the P2P 
network. By deploying multiple crawlers, a bigger part of the 
peer-to-peer network can be monitored. However, this approach 
is not able to gather the global view of the network, because the 
behavior of nodes which are not connected to crawlers is 
unknown. This problem is solved by emulators, which contain 
the implementation of a peer node and are used to build a 
complete P2P network. Multiple emulators can be deployed 
inside one workstation usually providing quite large P2P 
networks with only a few workstations. 

Even though emulators can be used to get the global view, 
they are restricted to slow execution, because messages need to 
be passed between emulator processes through network 
protocols such as TCP. The third option, simulator, contains an 
abstracted implementation of peer nodes equivalent to 
emulators, but uses local data structures for message passing. 
The use of local data structures significantly increases the speed 
of execution and therefore is well-suited approach for 
computationally intensive algorithm studies. The downside of 
the approach is the inaccuracy of results compared to real-world 

P2P networks and the difficulty of modeling user behavior. This 
knowledge can only be obtained using crawlers or by
monitoring network traffic inside routers. 

Developing peer-to-peer resource discovery and topology 
management algorithms based on neural networks are 
computationally intensive tasks. For example, it takes a week 
for one low-cost workstation to train a good neural network 
based resource discovery algorithm for a rather small P2P 
network [23]. Therefore, in computationally intensive 
algorithmic research the most important factor to consider for a 
simulator is speed. 

This paper describes an end product of a process where 
emulators were first used for studying P2P algorithms and later 
re-implemented as an efficient simulator to decrease the time 
used for execution. Latest improvement of the simulator is the 
distributed execution on a Peer-to-Peer Distributed Computing 
platform (P2PDisCo) [11] allowing us to parameter sweep 
different features of neural network based P2P algorithms. 

The paper is structured as follows. Section 2 compares 
existing P2P simulators with our work and states their 
differences. Section 3 introduces P2PRealm network simulator 
and section 4 describes its input and output interfaces. Section 5 
describes the main use case of P2PRealm: the training of 
evolutionary neural networks for P2P resource discovery. 
Section 6 describes the internal modifications used for 
optimizing the code and the combination of P2PRealm with 
P2PDisCo platform. Section 7 illustrates the use of P2PStudio 
for visualizing the output of P2PRealm and section 8 concludes 
the paper. 

II. RELATED WORK

There are various network simulators available for studying 
P2P networks. However, many of these simulators are not 
primarily designed for speed and none of them contains 
functionalities for neural networks. Because the speed is the 
most important factor in our simulation environment, it is 
obvious that abstractions on the level of details are necessary. 
Packet-level simulators model the P2P protocols with precise 
protocol headers and field structures, whereas message-level 
simulators only take into account the number and sizes of the 

0-7803-9536-0/06/$20.00 ©2006 IEEE. 93



packets. While packet-level simulation is a desirable feature, it 
is still often too expensive in terms of computing resources. In 
addition to speed, other desirable features in our simulations are 
compilation of statistics on simulation results and visualization 
of P2P networks. From this viewpoint, we next overview some 
of the existing P2P simulators. 

A. NS-2 

NS-2 [15] is one of the most widely used network 
simulators. The NS-2 is object-oriented discrete event 
simulator, which closely follows the architecture of the OSI 
model. It suits well for simulating packet switched networks and 
small scale networks. The Parallel and Distributed Simulation 
(PADS) research group has developed an extension that allows 
network simulation to be run in parallel on multiple machines 
[17]. Being very detailed simulator, it still does not scale well 
enough and is slow from a computational point of view. In 
addition, adding new modules is not straightforward, because of 
it's complex module structure [14]. 

B. PLP2P 

Packet-level Peer-to-Peer Simulator (PLP2P) [6] provides a 
framework for other packet-level simulators, e.g. NS-2, in order 
to provide detailed model of the underlying network. This is 
done with wrappers, which translate P2P events into underlying 
packet-level simulator. The authors assert that abstracting low-
level details can impact the simulation results to a large extent. 
The scalability problem of packet-level simulations is solved by 
running simulations on parallel machines. Nevertheless, as 
training neural networks requires substantial part of available 
computing power in order to get result within reasonable time, 
we need to abstract the level of details of the P2P network. 

C. QueryCycle 

The QueryCycle simulator [19] is specialized to file-sharing 
simulations. It has realistic models for content distribution, 
query activity, download behavior etc. The content distribution 
is based on a model, where each file belongs to one category 
and that category is defined by the popularity of the file. 
Simulations proceed in query cycles representing the time 
period between issuing a query and receiving a response. 
Generated queries are passed into a queue and handled on a 
First-In-First-Out basis. 

D. 3LS 

3LS [21] is an open-source simulator for overlay networks 
designed to overcome the problems of extensibility and 
usability. The system is separated to three architectural levels: a 
network model, a protocol model and a user model. The 
network model uses a two-dimensional matrix as a storage of 
distances between the nodes. The protocol model defines the 
current protocol being simulated. The user model is the input 
interface for the user. The 3LS uses most of the memory 

resources to a graphical interface as the simulator uses main 
memory to store each event executed for visualization and this 
limits the system to less than a thousand nodes on a low-cost 
workstation [14].  

E. PeerSim 

PeerSim [18] has been developed especially with scalability 
and support for dynamicity in mind. PeerSim is Java-based and 
has two simulation engines, one is cycle-based and the other is 
event driven. Cycle-based engine allows scalable simulation but 
is not very accurate. Handling large-scale overlay networks 
requires simplifying assumptions about the simulation details. 
For example, the details of the transport communication 
protocol stack are not taken into account. Event driven engine 
supports dynamicity and is more realistic, but decreases the 
scalability of the simulation. The abstractions of cycle-based 
simulations are similar to ours. The difference is that when 
PeerSim uses the benefits of abstraction for high scalability, we 
use it to increase the computational efficiency. Parallel 
execution is a necessity in order to PeerSim to be useful for our 
research. 

F. NeuroGrid 

The NeuroGrid simulator [8] was initially designed to 
support comparative resource search simulations between 
FreeNet [5], Gnutella [16] and NeuroGrid [8] systems. The 
simulator is single-threaded, Java-based and uses discrete 
events. Several protocols are now available for NeuroGrid e.g., 
Domain Name Service (DNS) and a distributed e-mail protocol. 
NeuroGrid supports property files that specify the parameters of 
the simulation to run. This includes the protocol to simulate, the 
parameters of the network and the amount of searches.  

NeuroGrid would be a promising simulator for our research 
if it wasn’t single-threaded and non-parallel.  

G. GPS 

The General Peer-to-Peer Simulator (GPS) [24] is aiming to 
respond to a call for extensible framework for simulating P2P 
networks efficiently and accurately. Efficiency is accomplished 
with message-level simulation instead of packet-level 
simulation. Improvement to the level of detail is achieved by 
tracking the network infrastructure and using a macroscopic 
mathematical model to obtain accurate estimate of the message 
behavior, e.g. TCP. The GPS also models downloads of the 
files, which is often left out from the simulators. GPS is 
extensible for modeling any P2P protocol, integration with a 
GUI and network visualization and provides support for 
topology generation tools. 

 The GPS is still in it’s early stages and details about 
scalability, usability and performance are scarce. The GPS has 
also only been used for simulating BitTorrent, where resource 
discovery is not an essential problem. It is single-threaded, but 
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according to the authors their aim is to include multi-threading 
into the simulator in the future. 

H. Summary 

A comparison of the different characteristics for reviewed 
P2P simulators is shown in Table I. Overlay with Routers 
column tells if the simulator contains both the logical overlay 
network topology and the underlying router structure of the 
physical network. After surveying the existing literature about 
P2P simulators it is obvious that there is a need for 
standardization in the area of P2P simulation [7]. The field is 
highly fragmented and most of the current projects use their 
own simulators tailor-made for their purposes. One of the 
problems of the widely used simulators is their complexity and 
therefore poor scalability for P2P simulation purposes. 

Although our project strongly supports the call for general 
open-source P2P simulator that is easily extensible and even 
some attempts for such a simulator have recently appeared, our 
research area is still too specified to be implemented 
satisfactorily in any other way than building a specifically 
optimized simulator. Training neural nets is computationally 
very demanding and requires parallel computing and simplified 
network simulation. To the best of our knowledge P2PRealm is 
the only message-level simulator that allows simulations on 
parallel machines. In addition, there is no other neural networks 
based P2P algorithms that we know of and neither simulators 
supporting neural network algorithms. 

The problem of specifically built simulators is that the 
results are not exactly similar with the ones made by other 
simulators. This is a compromise that had to be made. In 
P2PRealm the most common P2P resource discovery algorithms 
are implemented to allow comparison with the ones neural 
networks create. This provides the baseline for results obtained 
in other simulators. 

III. PEER-TO-PEER REALM

Peer-to-Peer Realm (P2PRealm) is a Java based peer-to-peer 
network simulator designed for optimizing neural networks used 
in P2P networks. The simulator has been developed in Cheese 
Factory peer-to-peer research project [4]. With the simulator, it 
is possible to determine a certain P2P network scenario and 
requirements for a resource discovery or topology management 
algorithm and get as an output a neural network optimized for 
that scenario. For example, a P2P network scenario could 
contain Gnutella’s [16] topology, resource distribution and 
query pattern and the requirements could state that we want an 
algorithm, which needs to locate certain amount of resources 
(say 150) using as few query packets as possible. The end result 
would be an adapted resource discovery algorithm for that 
particular P2P network scenario. The first results of this kind of 
an algorithm development was reported in [23]. Also, the 
simulator contains implementations of various P2P resource 
discovery algorithms such as Breadth-First Search [13], 
Random Walker [12], Highest Degree Search [1,22] and 
optimal path K-Steiner Tree approximation [22]. These 
algorithms can be used as performance measures for neural 
network based algorithms or for studying their performance in 
different P2P network scenarios. The simulator has also been 
used for studying topology management algorithms for P2P 
networks [3]. 

The simulator is divided into four parts: P2P network, P2P 
algorithms, neural network optimization and input/output 
interface. P2P network contains the characteristics of a P2P 
network including the network topology, distribution of 
resources and query patterns of P2P network users. P2P 
algorithms contains the implementations of various resource 
discovery and topology management algorithms. Neural 
network  optimization takes care of neural network structure and 
different optimization algorithms used for training the neural 
network structure. Input/output interface is used for reading 
configuration files and for outputting the statistics of training 
and final results. The final results consist of the optimized 

TABLE I. CHARACTERISTICS OF THE CURRENT UNSTRUCTURED P2P NETWORK SIMULATORS

Level of Detail Parallel Scalability 
Overlay with 

Routers 
Dynamic 
Network Programming Language 

NS-2 Packets Yes Very low Yes No C++ 

PLP2P Packets Yes Medium - - C++ 

QueryCycle Messages No ? Yes Yes Java 

3LS Messages? No 
Very low   
(<1000 peers) Yes ? Java 

PeerSim Messages No 
Very high  
(10^6 peers) Yes Yes Java 

NeuroGrid Messages No 
High  
(300 000 peers) No Yes Java 

GPS Messages No ? No Yes Java 

P2PRealm Messages Yes 
Medium  
(100 000 peers) No Yes Java 
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neural network and the used query paths for different queries. 

IV. INPUT AND OUTPUT INTERFACES

The following information is required as an input to 
P2PRealm (described in a configuration file): 

• P2P network topologies containing the resource 
distribution 

• Query pattern 

• P2P resource discovery algorithm 

• Percentage of available resource instances to be located 
in each query 

• Number of queries executed in each training generation 

• Neural network inputs 

• Number of training generations, number of neural 
networks and the neuron structure of neural networks 

• Optimization method 

As an output Peer-to-Peer Realm (P2PRealm) provides the 
following files: 

• The used topology and neighbor distribution 

• A trace of training process with separate files for
training and generalization sets 

• The best and all neural networks of each generation

• Query routes started from each node of the P2P network 

• Configuration file, which was given as an input 

V. TRAINING NEUROSEARCH

Next, we briefly describe how P2PRealm can be used for 
P2P algorithm development. As an example we use 
NeuroSearch resource discovery algorithm [23], but other 
algorithms for example topology management algorithms based 
on neural networks could be used [9]. 

NeuroSearch resource discovery algorithm uses local
information about query situation in a peer-to-peer network to 
decide if query should be forwarded to a neighboring peer node 
or not. The local information can be e.g. number of hops the 
query has traveled, number of replies still needed to be located 
etc. The forwarding process is illustrated in the following 
algorithm: 

1. One peer node starts a query specifying a 
resource it wants to locate. 

2. For each neighbor the node has, do the 
following: 

2.1 Fill all the input fields of neural network. 
2.2 Compute the output of neural network. 

2.3 If output is greater than zero, then forward 
the query to neighbor and increase the 
number of sent query packets by one. 

3. A forwarded query packet arrives to peer node. If 
this is the first query packet arriving to this node, 
check whether the peer node contains a resource 
being queried. If peer has the queried resource 
then increase the number of found resources by 
one. 

4. Go to step 2. 

The algorithm terminates when there are no more query 
packets to process. At the end the quality of neural network is 
determined by the number of found resources and the number of 
query packets used. 

To get good neural networks, they need to be trained so the 
algorithm has to be executed many times (typically millions 
query executions). There are various neural network weight 
adjusting algorithms and depending on the used methods the 
training times can vary a lot. Still, all optimization methods 
have in common iterative behavior and therefore executing the 
algorithm efficiently is an important feature of the simulator. 

 The internal execution loops of P2PRealm used for training 
NeuroSearch are illustrated in Fig. 1. Each simulation run can 
have multiple simulation cases, where each case has its own 
environment parameters according to the input information 
described in section 4. Furthermore, each case produces 
NeuroSearch resource discovery algorithm optimized to this 
environment accordingly. With multiple cases it is possible to 
do parameter sweeps and to eliminate the need of starting the 
simulator manually each time one wants to use multiple training 
environments. The execution of different cases can also be 
distributed on Peer-to-Peer Distributed Computing platform 
[11] further described in section 6. 

Execution of one case is divided into three different 
sections: 

• Training of the neural networks 

• Analyzing the training of best neural network in 
generalization environment  

• Analyzing routes of the best neural network after the 
training 

First, the case has its P2P networks, neural networks and 
other parameters initialized. Then the simulator proceeds to the 
training phase. In each generation multiple neural networks are 
evaluated by forwarding queries according to the resource 
discovery algorithm presented above. The queries are forwarded 
in one or more P2P networks and statistics of the query 
performance of each neural network is recorded at the same 
time. Usually between generations it is worth to do more 
specific analysis of the best neural network in generalization 
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environment, where we can determine how the same neural 
network performs in an unknown environment. Generalization 
environment can be used to control when neural network is 
specializing too much on training environment and loses the 
ability to perform well in unknown but similar environments 
than the training environment. 

After the evolution has proceeded the predetermined amount 
of generations, the simulator moves to the last phase of the 
process: route analysis. In the route analysis the same 
generalization environment is initialized as earlier for the best 
neural network, but now the queries start from each peer node at 
a time. The query paths produced by these queries are recorded 
and written to files to get accurate data about input and output 
values of neural network during a query. Finally, when routes 
have been recorded, the simulation ends. 

VI. SPEEDING THE EXECUTION WITH P2PDISCO

The first implementation of P2PRealm used approximately 
one week for training the neural networks on a desktop 
computer. This was a severe limitation in research because it 

forced to study only small P2P networks and still getting results 
was very time consuming. 

We started the internal code optimization process to see how 
much can be saved by optimizing internal loops of the 
simulator. After P2PRealm was profiled we found that the use 
of Vector object instead of Array in Java consumed lots of time 
(in particular getting the size of a vector through method call). 
Java container classes such as HashMap and HashTable can 
contain only objects and therefore reimplementing them to store 
only primitive values saved some execution time. Also we found 
that caching results of different method calls to avoid new 
method calls resulted in significantly faster execution times. The 
total time decreased to about 60% with these optimizations.  

Java bytecode is interpreted in Java virtual machine yielding 
slower execution compared to compiled code.  Java Native 
Interface [20] has been developed to allow native code for 
example compiled C++ to be executed from a Java program. 
We reimplemented the calculation of neural network output 
with C yielding an execution time about 70-80% compared to 
first version of P2PRealm. Combining both the internal code 

Figure 1. Execution Loops of P2PRealm 
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optimization techniques and Java Native Interface 
implementation of neural network output calculation, we thus 
achieved execution time of about 50% compared to first version 
of P2PRealm. 

This was however not enough, because reducing execution 
time of one simulation case from a week to 3-4 days was still 
quite slow. As a solution, we started developing Peer-to-Peer 
Distributed Computing platform (P2PDisCo) [11] allowing the 
distribution of simulation cases to multiple machines. 

Earlier in our project [4] we had developed Chedar P2P 
middleware [2], which provided the basis for building 
P2PDisCo on top of it. P2PDisCo allows the workstations 
joined in a Chedar P2P network to publish certain distributed 
computing application as a resource in Chedar P2P network. 
When other Chedar nodes find this resource, it can be used to 
deliver needed input files to computing nodes and the produced 
output files to the node, which started the computations. For 
further information on the behavior of P2PDisCo the reader is 
referred to [11]. 

The speed up of execution with P2PDisCo is nearly linear, 
because each simulation case is delivered to different 
workstation. In university environment it is easy to locate 
machines, which are idle most of the time, so getting hundred of 
machines (and thus 100 times faster execution) was relatively 
easy scaling the research process to much faster rates. The 
resulting architecture is shown in the Fig. 2. Master denotes the 
peers, which create simulation cases and P2PRealm denotes the 
peers, which compute these cases. 

VII. VISUALIZATION OF DATA USING P2PSTUDIO

Peer-to-Peer Studio (P2PStudio) [10] is a monitoring, 
controlling and visualization tool for P2P networks research. 
When combined with P2PRealm only visualization features can 
be used, because current version of simulator does not provide 
monitoring data during execution of a simulation. For 
visualization, P2PStudio provides functionalities to draw 
network topology and different graphs e.g., neighbor 
distribution of the topology. Also, the location of resources and 
query paths can be illustrated on a screen to qualitatively 
analyze how algorithms are performing. In case, that the 
simulation contains neural network, the input and output values 
of a certain query will be shown in a separate table. A 
screenshot of P2PStudio is shown in Fig. 3 and the specific 
features of P2PStudio are described in separate article [10]. 

VIII. CONCLUSIONS

Peer-to-Peer Realm is a simulator for studying P2P 
networks. Its unique functionalities contain training methods for 
neural networks and optimized speed of execution. By 
combining P2PRealm with other tools developed in our project, 
the simulator can grow to a large-scale distributed P2P research 
environment. 

The future work of P2PRealm includes the parallelization of 
simulation such that multiple computers can process the same 
simulation task. Now only one simulation task can be allocated 
to a certain computer and speed ups are gained only when 
multiple cases are being simulated. Also, with the advent of 
multi-core processors for desktop machines, we are going to 
implement threaded version of simulator to support multiple 
processors within a single computer. For P2P network 
visualization, P2PStudio’s user interface can be replaced in the 
future to support large P2P networks to be visualized and better 
usability of the program. Also the list of improvements for 
P2PRealm contain different query distributions and new input 
types for neural networks. As a longer term goal, we are aiming 
to combine neural network based topology management
algorithms with neural network based resource discovery 
algorithms to study optimal construction of P2P networks. 
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Abstract

In this paper we present new topology management al-
gorithms used to self-organize the overlay of a peer-to-
peer network. The algorithms are Node Selection, Node
Removal, Overload Estimation and Overtaking algorithms.
The algorithms have been evaluated using a simple P2P
scenario using the P2PRealm network simulator. Based on
the simulation results, the algorithms produce an overlay
which is stable and has a short average distance between
nodes.

1 Introduction

Peer-to-peer (P2P) technologies have received a lot of

publicity lately mainly because of Kazaa and other P2P file

sharing systems. Other resources, for example CPU time

and storage space, can also be shared in a P2P network.

Every peer i.e. a node in the P2P network may provide

resources to other nodes and consume the resources other

nodes are providing. This means that a node may serve

both as a server and a client. Therefore there is no need for

a central server which might become the bottleneck of the

network or which failure will paralyze the whole network.

The P2P network can be structured or unstructured. In

an unstructured network, like Gnutella and our network,

a node’s place in the network is not pre-defined. A node

may join the network by establishing a connection to an-

other node on the P2P network. A resource search is not

very efficient in that kind of a network but maintaining the

topology does not produce extra work.

The topology management algorithms affect the net-

work’s overlay topology by making the network more scal-

able and effective for resource discovery. Nodes want to

stay connected to the network and find resources efficiently

without using too much of their own capacity for being in

∗This work was funded by the Agora Center InBCT project.

the network. It is suitable for example that the nodes con-

necting with a modem are in the edge of the network and

the nodes capable of handling a lot of traffic are in the cen-

ter. With topology management algorithms the network can

also be kept from partitioning.

In our proposition a central point for the topology man-

agement algorithms is the goodness of a peer. A good

neighbor provides resources to the node. The node tries

to select neighbors so that those are the best nodes the node

knows. A decision is made based on the local information

the peer has about its neighbors and neighbors’ neighbors.

This paper is organized as follows. We present the re-

lated work in Section 2. The topology management algo-

rithms are described in Section 3. Test cases and the anal-

ysis of the test results are presented in Section 4 and the

paper is concluded in Section 5.

2 Related Work

Ramanathan et al [13] have developed an algorithm
where a peer moves closer to the peers which have pro-

vided search results. In the proposed method a peer keeps

track of the replies it receives for the sent queries. When

a peer finds a good peer, i.e. a peer which provides results

and has same high degree of similar interest, it creates a

new connection to that peer. This forms clusters with sim-

ilar interests. Advantages of the method are that it reduces

the number of messages, allocates resources efficiently and

scales well with respect to the number of peers.

Condie et al [5] have proposed a protocol for forming
adaptive P2P networks. It is based on the idea that a peer

should connect to the peers from which it is likely to down-

load satisfactory content in the future. The peers save local

trust values and connection trust values for each peer they

are interacted with and use those for estimating the likeli-

hood of a future successful download.

The two preceding methods take into account only the

sender of the reply message and a new connection is estab-

lished directly to that peer. In that case the peer might lose
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good peers which appear on the route between the quering

peer and the peer providing a resource.

Pandurangan et al [12] have proposed a protocol for
forming P2P networks, without any global knowledge about

the network, guaranteeing that the distances of the nodes are

short. When using the protocol new nodes decide where to

connect and nodes make a decision when and how to re-

place the lost connections. They proved that by using the

protocol, the network has a constant degree and a logarith-

mic diameter. A central point of the protocol is a host server,

whichmakes the systemmore vulnerable to attacks and fail-

ures. The host server may also become a bottleneck of the

system because nodes search a new connection from it also

other times than just when joining the network.

Chawathe et al [3] have developed the distributed and
unstructured Gia P2P file sharing system. The goal of the

research was to develop the Gnutella-like system which

could handle a high query rate and which would work well

while the system grows. The purpose was to find the best

possible neighbors to a node i.e., the nodes which have a

lot of processing power or a large bandwidth, and they pro-

posed a topology adaptation algorithm achieving that.

Lv et al [10] have presented the algorithm that restricts
the flow of queries into each node so that they do not

become overloaded and dynamically evolves the overlay

topology so that queries flow towards the nodes that have

sufficient capacity to handle them.

There are two types of connections in the model of

Cooper and Garcia-Molina [6]: index and search links.

Nodes may select any node they want where to establish a

connection. The link types can be given probability values.

If a node becomes overloaded, it has to drop one connec-

tion.

These three methods are mainly focusing on traffic dis-

tribution. Chawathe’s et al purpose is to get the nodes
which have capacity to handle a great amount of traffic to

the center of the network. In Lv’s et al research, traffic is
distributed evenly and in the study of Cooper and Garcia-

Molina only the load the neighbor creates and the defined

amount of traffic affects to the dropping. The methods do

not take into account the amount of the resources the nodes

are providing or quering. The node may have a neighbor

which provides lots of resources to the node and with these

methods that kind of neighbor may easily drift many hops

away from the node. According to our definition a good

neighbor would be lost.

Iles and Deugo [8] have developed a flooding broadcast

meta-protocol which is capable of describing a wide range

of possible flooding broadcast network protocols. Each in-

stance of the meta-protocol is represented with two expres-

sions: CONN specifies the number of connections for the

peer to maintain and RANK is evaluated for each exist-

ing or potential connection. By using genetic programming

the automatic generation of new protocols from the meta-

protocol is provided.

Wouhaybi and Campbell [16] have developed a peer-

to-peer algorithm called Phenix which can construct low-

diameter resilient topologies. It creates a topology where

the degree of the distribution follows the power-law distri-

bution. In this case the goodness of the network is based

on the degree of the distribution. If the algorithm would

take into account also the resources provided by nodes, the

searching would be more effective.

3 Topology Management Algorithms

We have developed four algorithms for managing the

topology: Node Selection, Node Removal, Overload Esti-

mation and Overtaking. The algorithms use only local in-

formation the nodes have about their neighbors. The nodes

save information about active neighbors and in the history

information about other known nodes. The saved informa-

tion are the IP address and the port number of the neigh-

bor, the time when the neighbor has been requested and in-

formation whether the request succeeded or not. The node

saves also hit information about the neighbors. A hit value

tells how many resource replies the node has got from the

neighbor. In that case the neighbor has had the resource. A

relayed hit value is the amount of resource replies that the

neighbor’s neighbors have relayed to the node through this

neighbor.

3.1 Node Selection Algorithm

We suppose that the initial list of the neighbors can be

obtainedmanually by out-of-bandmethods or automatically

using advertisement systems [15] or centralized entry point

directories [7]. Node Selection Algorithm’s responsibility

is then to select among known nodes where to connect.

When the node joins the network again, it tries to estab-

lish connections to the neighbors it had before leaving the

network. In the best case it manages to establish the con-

nections to all the neighbors it had earlier. If the node does

not manage to establish any of those connections or it oth-

erwise needs a new neighbor, it searches the next one from

the history as shown in Algorithm 3.1. First it searches the

nodes which have hit values and tries to create a connection

to one of those. Because the node does not want to create a

connection to the same node it has just dropped, it searches

only the nodes which have not been requested in a given

time. If the node did not succeed in establishing a new con-

nection, it next searches nodes based only on the time of

the last request i.e the node has not tried to create a connec-

tion in a given time or at all (lacking requested information).

If the node still did not successfully create a connection, it

searches nodes without information for hit values or request
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time. If the node does not have neighbors, then the last way

to search a node is to try only those nodes in the history

which have hit values. Then the node may select again a

neighbor which it has just dropped.

Algorithm 3.1 (Node Selection Algorithm)
Input: Nodes his in the node’s history H = {h1, ..., hn},
time sets a limit for the time which older the previous con-

nection request must be and neighbors is the number of

node’s neighbors.

Output: Establishes a new connection
if !Connect(true, true, time, H) then do
if !Connect(false, true, time, H) then do
if !Connect(false, false, time, H) ∧ neighbors == 0

then do
Connect(true, false, time, H)
end if
end if

end if
The function Connect(hitsNeeded, timeNeeded, time, H)

tries to create a connection to the one node in the history’s

nodes which meet the criteria defined in the parameters. If

the value of the parameter hitsNeeded is true, then the func-
tion takes into account only those nodes which have hit val-

ues. If hitsNeeded is false, the function takes into account
those nodes which do not have hit values. If the value of the

parameter timeNeeded is true, then the function takes into
account only those nodes which has not been requested for

the period of the time defined in the parameter time. The
function returns true if a connection was established suc-

cesfully.

3.2 Node Removal Algorithm

When a node wants to remove a connection to a neigh-

bor, it selects the worst neighbor among the neighbors it

currently has. The worst neighbor has the smallest good-

ness value. The goodness is the sum of the neighbor’s hit

values and relayed hits.

3.3 Overload Estimation Algorithm

There is no predefined number for the connections the

node should maintain. Thus the connections are added and

dropped based on the amount of traffic going through the

node. The Overload Estimation Algorithm compares the

calculated traffic amount to the predefined traffic limit val-

ues. There are upper and lower traffic limits which set the

range where the traffic amount should be. The value of the

lower traffic limit is the fraction of the upper traffic limit de-

fined by the lower traffic limit percent. If the traffic amount

is less than the lower traffic limit, the node tries to add a new

connection using the Node Selection Algorithm described

in Section 3.1. If the traffic amount is more than the prede-

fined upper traffic limit, one connection is dropped by using

Node Removal Algorithm described in Section 3.2. At the

end, the algorithm resets the traffic amount by setting its

value to zero.

3.4 Overtaking Algorithm

The Overtaking Algorithm is used to optimize the topol-

ogy. The purpose of the algorithm is that the node moves

closer to the nodes which provide lots of replies to it by

overtaking the current neighbor. The node does not directly

connect to the resource providing node but only moves

closer step by step and that way makes sure that it does not

lose good nodes on the path.

The algorithm works such that when a reply message ar-

rives to the querier, it updates the hit value of the sender

and then adds its local information of the relayed hits of

the neighbor of the node where the node got the reply mes-

sage. Then if the neighbor’s hit value is bigger than 1, i.e

the node has got more than one message from the neigh-

bor, the node checks whether the neighbor has a neighbor

whose proportion of the neighbor’s goodness is more than

the defined overtaking percent. In that case it overtakes the

neighbor. For example if the overtaking percent is 60%, it

means that if there is the neighbors’s neighbor which has

forwarded over 60% of all the reply messages the node has

got from the connection, the node establishes a new con-

nection to that node and drops the connection to the current

neighbor.

Advantages of the algorithm are that the distances of the

nodes, which use others’ resources, are shorter than in ran-

domly connected networks. The algorithm creates a con-

nected network of clusters having those nodes close in the

center which provide lots of resources other nodes use [1].

Algorithm 3.2 (Overtaking Algorithm)
Input: The overtaking percent overtakingPercent, the

node’s neighbor c, c’s neighbors N = {n1, ..., nn} and c’s

hit value hitV alue.

Output: Node has overtaken a neighbor if some neighbor’s
neighbor is better for the node.

if hitV alue > 1 then do
biggest = overtakingPercent/100.0
bestNeighbor = null
sum = Hits(c) + RelayedHitsSum(c)
for i = 1 to | N | do
hitValue = RelayedHits(ni)

proportion = hitValue/sum
if proportion ≥ biggest then do
biggest = proportion
bestNeighbor = ni

end if
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end for
if bestNeighbor �= null then do
if EstablishConnection(bestNeighbor) then do
DisconnectConnection(c)
end if
end if

end if
The function Hits(node) returns the node’s hit values, the

function RelayedHitsSum(node) returns the sum of the re-
layed hits of the node’s neighbors and the function Relayed-

Hits(node) returns the relayed hits of the node. The func-
tion EstablishConnection(node) returns true, if establishing
a connection succeeded. The method DisconnectConnec-

tion(node) removes the connection to the node.
The behavior of the algorithm with example values is il-

lustrated in the Figure 1. The node’s neighbor has the hit

value two and the relayed hits of neighbor’s neighbors are

19 and 7. The sum of all is 28 and the percentual propor-

tion of the neighbor’s hits is 7% and neighbor’s neighbors’

68% and 25%. If the overtaking percent is defined to be 80,

nothing is done. If it is 60, then the node tries to establish

a new connection to the neighbor’s neighbor node 3 and if

it succeeds the current connection to the neighbor node 2 is

dropped.

Figure 1. A situation before and after execut-
ing the overtaking algorithm.

4 Test Cases and Analysis

The algorithms were tested in the Peer-to-Peer Realm

(P2PRealm) [9] simulator, which we have developed in our

research project [4]. A testing environment consisted of 500

nodes and in the beginning the network was normally dis-

tributed with 997 links. The initial network was connected

and in general when the network is connected the initial net-

work does not have a large impact on the results. The ini-

tial network was randomly generated and we studied if the

network could be organized with our algorithms in a more

efficient, i.e. power law distributed, network.

Resources were set such that half of the nodes provided

15 resources per node and the other half provided 5 re-

sources. So there were two groups of the nodes: those

which provided lots of resources and those which provided

small amount of resources. In addition to that in the both

groups half of the nodes had 10 times bigger probability to

query a resource than other half. The resources were iden-

tified by numbers. The resources were not transferred after

the query and therefore the resource distribution was fixed

throughout the simulations.

65500 randomly generated queries were sent to the net-

work. The algorithms were tested with three different set of

queries. The starting topology was the same in every test

and the queries were sent in same order so the cases were

repeatable. The queries used a Breadth-First Search (BFS)

algorithm [11] without any TTL value so the resources were

always found if the network was connected.

In the test environment every node had the same traffic

limit values. The traffic amount was checked each time the

simulator sent 50 resource queries to the network. The unit

for the traffic limit values was also the number of resource

queries. The algorithms were tested with upper traffic limit

values from 100 to 600 at intervals of 25. The tests were

run with the lower traffic limit percents 20, 40 and 60 and

with the overtaking percent 80 and without the overtaking.

80% was selected as the overtaking percent because in the

earlier studies we found that with 80% the network attained

the balance [1]. The balance means that the network attains

the state where no more topology changes happens.

In the analysis we studied the neighbor distribution the

algorithms created, the hop numbers and the balance of the

network. The simulator saved three kind of information dur-

ing the tests. It saved information about the resource queries

the nodes sent. At the end of each test the simulator saved

the neighbor, traffic, resource reply message and resource

amounts from each node. The third statistics the simula-

tor saved was information about the amounts of topology

changes in the network.

4.1 Neighbor Distribution

Table 1 presents the neighbor distributions with the dif-

ferent lower traffic limit percents and with and without the

overtaking. With the lower traffic limit percent 20% and

without the overtaking the networks were normally dis-

tributed. When the overtaking was used with the small up-

per traffic limit values (100-200), the topologies were stars:

one node had over 440 neighbors in all the test cases until

the upper traffic limit reached 225. The neighbor distribu-

tions with the overtaking were power law distributed.

With the lower traffic limit percent at 40% and with-

out the overtaking the networks were again normally dis-

tributed. With the overtaking and the upper traffic limit 100

one node had over 400 neighbors in all the test cases so

the topologies were stars. The neighbor distributions were

power law distributed.

With the lower traffic limit percent at 60% without and

with the overtaking the networks were normally distributed.

In this case the interval, where the traffic should be, was
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Table 1. Neighbor distributions with different lower traffic limit percents with and without overtaking.

Lower traffic limit % 20% 40% 60%

Overtaking no 80% no 80% no 80%
Distribution normally power law normally power law normally normally

smaller and overtaking did not have the same effect as with

the smaller lower traffic limit percents because the amount

of connection establishments and droppings was increased.

4.2 Average Hops

Figure 2. Average hops with different lower
traffic limit percents with overtaking.

Figure 3. Average hops with different lower
traffic limit percents without overtaking.

Figures 2 and 3 contain the average hops of the resource

messages with the different upper traffic limit values and

lower traffic limit percents without and with the overtaking.

When using the overtaking and the lower traffic limit per-

cent at 20% the resources were found closer and the number

of hops was more than one less than without the overtaking

algorithm. When the lower traffic limit percent increased,

the difference between the hop values decreased. Because

every node had the same traffic limit, it had too big influ-

ence on the topology. When the lower traffic limit percent

increased, the interval, in which the traffic should be, be-

came smaller. So the amount of connection establishments

Figure 4. The amount of changes with lower
traffic limit percents and with different upper
traffic limit values and without overtaking.

Figure 5. The amount of changes with lower
traffic limit percents and with different upper
traffic limit values and with overtaking.

and droppingswere also increased when the nodes were try-

ing to keep the traffic inside the limits and the overtaking did

not have a chance to affect the topology.

The overtaking percent parameter describes how much

better the neighbor’s neighbor has to be than other neigh-

bors so that the overtaking occurs. By defining a small over-

taking percent the nodes overtake easily and the topology

does not attain the balance. A high value forms a topology

with a balanced state. When the overtaking algorithm was

tested without any traffic limits, the generated network was

power law distributed which means that it is fault-tolerant

and the distances of the nodes in the network are short.

4.3 Network Balance

When using the lower traffic limit percents 20% and 40%

without the overtaking the networks attained the balance.

By 60% the networks gained the balance when the upper
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traffic limit value was more than 200.

When the overtaking was used and the lower traffic limit

percent was 20%, the networks were totally in balance until

the upper traffic limit value reached 225. After that there

were a few changes. With the lower traffic limit percent

at 40% the networks were balanced when the upper traffic

limit was 100 and again since the upper traffic limit value

was 400 or above. With the lower traffic limit percent at

60% after the upper traffic limit value 325 there were only

a few changes and the networks gained balance.

Figures 4 and 5 include the topology changes occured in

the tests. With the lower traffic limit percent at 20% and

without the overtaking the amount of the changes in the

networks was smallest. 40% gave also the small amount

of changes compared to 60% where the amount of changes

was much bigger. So the amount of changes increased with

the increasing lower traffic limit percent.

With the overtaking, the lower traffic limit percent at

60% created lots of changes with the upper traffic limit

value 100, i.e. the nodes in turn established and dropped

connections. The same effect was with the lower traffic

limit percent at 40% when the upper traffic limit was 125.

When the upper traffic limit was less than 275, there were

more overtakings with the lower traffic limit percents 40%

and 60% than with 20%, since that with 20% more over-

takings happened. Also with the upper traffic limit value

100-350 there were more removings with the lower traffic

limit percent 40% and after that with 20%. The amount of

the additions increased when the lower traffic limit percent

increased.

5 Conclusion

We presented four topology management algorithms

which use the goodness of the nodes when deciding on

where to connect or which neighbor should be dropped. We

studied the topology algorithms only with some parameters

and some values. The lower traffic limit percent 40% with

the overtaking and with the upper traffic limit values 350

or above were the best combinations. With those values

the amount of the changes in the network was small, the

topology got balanced, the neighbor distribution was power

law distributed and the number of the hops was the second

smallest.

Now we have started to study the topology construction

using neural networks like we have done with the Neu-

roSearch algorithm [14] for the resource discovery. In the

future it is thus easier to study the different combinations of

the input parameters about the topology and see if the pa-

rameter has some impact when deciding where to connect

or which neighbor should be dropped. In the future also

traffic limits for the nodes are set so that those represent

the distribution of the network bandwidths in the current

P2P networks. Later the algorithms can be deployed in the

Chedar P2P network [2].
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Jyväskylä, February 2004.
[2] A. Auvinen, M. Vapa, M.Weber, N. Kotilainen, and J. Vuori.

Chedar: Peer-to-peer middleware. In 20th International Par-
allel and Distributed Processing Symposium, 2006.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and

S. Shenker. Making gnutella-like p2p systems scalable. In

ACM SIGCOMM, 2003.
[4] CheeseFactory. http://tisu.it.jyu.fi/cheesefactory.
[5] T. Condie, S. D. Kamvar, and H. Garcia-Molina. Adaptive

peer-to-peer topologies. In Proceedings of the Fourth Inter-
national Conference on Peer-to-Peer Computing (P2P’04),
2004.

[6] B. F. Cooper and H. Garcia-Molina. Ad hoc, self-

supervising peer-to-peer search networks. ACM Transac-
tions on Information Systems, 23(2):169–200, 2005.

[7] Gnutellahosts. http://www.gnutellahosts.com/.
[8] M. Iles and D. Deugo. A search for routing strategies in a

peer-to-peer network using genetic programming. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed
Systems, pages 341–346, 2002.

[9] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and

J. Vuori. P2prealm - peer-to-peer network simulator. In

11th International Workshop on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks,
pages 93–99, 2006.

[10] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogene-

ity make gnutella scalable? In Electronic Proceedings
for the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[11] N. A. Lynch. Distributed Algorithms. Morgan Kauffmann
Publishers, 1996.

[12] G. Pandurangan, P. Raghavan, and E. Upfal. Building

low-diameter p2p networks. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS’01), 2002.

[13] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Find-

ing good peers in peer-to-peer networks. In Proceedings of
the International Parallel and Distributed Processing Sym-
posium (IPDPS’02), 2002.

[14] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and

J. Vuori. Resource discovery in p2p networks using evo-

lutionary neural networks. In International Conference on
Advances in Intelligent Systems Theory and Applications
(AISTA 2004), November 2004.

[15] M. Weber, J. Vuori, and M. Vapa. Advertising peer-to-peer

networks over the internet. Radiotekhnika, 133:162–170,
2003.

[16] R. H. Wouhaybi and A. T. Campbell. Phenix: Supporting re-

silient low-diameter peer-to-peer topologies. In Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2004), 2004.

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00  © 2007



 
 

 
 
 
 
 
 
 
 

 
 

PVI  
 
 

TOPOLOGY MANAGEMENT IN UNSTRUCTURED P2P  
NETWORKS USING NEURAL NETWORKS 

 
 
 
 

by 
 

Annemari Auvinen, Teemu Keltanen & Mikko Vapa 2007 
 

IEEE Congress on Evolutionary Computation 
 
 

Reproduced with kind permission by IEEE Computer Society. 
  



Abstract— Resource discovery is an essential problem in peer-
to-peer networks since there is no centralized index in which to
look for information about resources. In a pure P2P network
peers act as servers and clients at the same time and in the
Gnutella network for example, peers know only their neighbors.
In addition to developing different kinds of resource discovery
algorithms, one approach is to study the different topologies or
structures of the P2P network. In many cases topology
management is based on either technical characteristics of the
peers or their interests based on the previous resource queries. In
this paper, we propose a topology management algorithm which
does not predetermine favorable values of the characteristics of
the peers. The decision whether to connect to a certain peer is
done by a neural network, which is trained with an evolutionary
algorithm. Characteristics, which are to be taken into account,
can be determined by the inputs of the neural network.

I. INTRODUCTION

Peer-to-peer technologies have received a lot of publicity
lately mainly because of Kazaa and other peer-to-peer file
sharing systems. Other resources, for example CPU time and
storage space, can also be shared in a peer-to-peer network. In
the P2P network every peer, i.e. a node may provide resources
to other nodes and consume the resources other nodes are
providing. This means that a node may serve both as a server
and as a client. The P2P network can be structured or
unstructured. In an unstructured network, like Gnutella and in
our study, a node's place in the network is not pre-defined like
it is in a structured network. A node may join the network by
establishing a connection to another node in the P2P network.
Resource discovery is not very efficient in that kind of
network but maintaining the topology does not produce extra
work.

Topology management algorithms affect the network's
overlay topology by making the network more scalable and
effective for resource discovery. Nodes want to stay connected
to the network and find resources efficiently without using too
much of their own capacity for being in the network. It is
suitable for example that the nodes connecting with a modem
are in the edge of the network and the nodes capable of
handling a lot of traffic are in the center. With topology
management algorithms the network can be kept connected,
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A. Auvinen, T. Keltanen, and M. Vapa are with Department of
Mathematical Information Technology, University of Jyväskylä, Finland (e-
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i.e. there are no clusters, which are not connected to each
other.

In our research project we have developed four algorithms
for topology management [2]. In this paper we propose a
different kind of solution. We used neural networks to create
the algorithm by machine instead of constructing algorithm by
humane hand. The neural network gets the characteristics of
the P2P network as inputs and as an output the decision
whether to create a connection to a certain node.

The paper is organized as follows. We present related work
in Section II. Section III describes the developed
NeuroTopology algorithm for managing the topology of
unstructured P2P networks. The optimization process is
described in Section IV. Section V presents the test case used
in the study and Section VI the analysis of the simulation
results. The paper is concluded in Section VII.

II. RELATED WORK

Much research has been done regarding the efficiency of a
pure unstructured P2P network by changing the structure or
the topology of the network. One way to approach the problem
is to organize the nodes so that they form up clusters according
to their interests of the previous resource queries (interest-
based locality). Ramanathan et al. [9] searched for good
neighbors by connecting to those peers that repeatedly give
good results and disconnecting those peers that give poor
results. As a result, peers have few neighbors and they form
clusters where resources of the same interest are close to each
other. Because there are only few connections between
clusters, this is not efficient if peers are interested in resources
from multiple subjects or suddenly change their interest.
Sripanidkulchai et al. [11] formed shortcuts in the Gnutella
network to peers that, based on the previous queries, are
interested in resources of the same topic. The shortcuts form
their own logical network on top of the Gnutella topology,
which is therefore not changed. When resources are searched,
the shortcut topology is used first and if resources are not
found, the Gnutella topology is used traditionally. Condie et al.
[3] developed a protocol that connects to peers that will
probably give good results in the future. This is based on a
score assigned to peers according to their previous answers. In
addition, the reliability of the peer is also scored in order to
reduce the effect of freeriders and malicious peers distributing
corrupted files. In the study, poor peers moved to the edge of
the network and other peers formed clusters according to their
interest of resources. Crespo and Garcia-Molina [6] have
suggested Semantic Overlay Network or SON, where joining
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peers connect into one or more logical clusters based on the
content of peers’ resources and the available SON-networks in
the P2P network.

Another way to approach the topology problem is to take
into account only the technical characteristics of the peers e.g.
bandwidth or traffic amounts. These techniques do not
consider the query history or the quality of the resources.
Cooper and Garcia-Molina [4] made the overloaded peer to
disconnect neighbors that are burdening the link most or
neighbors that overrun some predetermined traffic limit. In the
study, it was also possible to concentrate on favoring efficient
peers instead of helping overloaded peers.

The studies presented above are concentrating on a single
problem or characteristic of the P2P network. As a result,
techniques that use the interest-based clustering are forming
topologies where popular nodes are under lot of strain. Similar
to this, in the techniques where only technical characteristics
are taken into account, one might discriminate the nodes that
have good resources and weaken query times. Sakarayan and
Unger [10] measured the evolution of a P2P topology when it
was affected by traffic overloading and interest-based
clustering. During resource searching, information about peers
is gathered into messages and therefore peers knowmore peers
than just their neighbors. This information consists of data
about resources owned by the peers, addresses and how long
the message was in a peer. The algorithm that reacts to traffic
overloading wakes up when the queue of incoming messages
exceeds some limit and sends warnings to nearby peers. Peers
re-route messages to avoid traffic. The algorithm that affect
interest-based locality wakes up when access times or the
distance that messages pass exceed some limit. According to
this study, locally operating algorithms can affect the
efficiency of the network also in the scale of the Internet.

Iles and Deugo [7] developed a meta-protocol that works
with the BFS algorithm. The evolution of the meta-protocol is
guided by genetic programming and it produces P2P protocols
as implementations. These protocols define the topology of the
P2P network. Two expressions affect the evolution of the
meta-protocol: CONN, which is the amount of neighbors that
is desirable for each peer to have and RANK, which is a
comparison indicator for each possible neighbor. The CONN-
expression uses information like current neighbor amount and
statistical information about the traffic amount of the peer. The
RANK-expression uses mostly information that is related to
the previous queries and their success. Measuring the success
of the evolutionary process is done with the fitness
function:

outtimedsuccessful searchessearchesfitness *5.0 . In

the study it was noticed, that the protocol used by Gnutella is
in many cases optimal and that P2P networks, where
bandwidths are small, form clusters still remaining connected.
It was also noticed, that genetic programming is an effective
search technique for the Gnutella networks and it produces
peers that are adjustable in a varying environment. The
problem of the study was small network with only 30 peers.

In this study, we do not predetermine any values of the
characteristics that are desirable for the P2P network. Instead
we try to find out whether the evolutionary neural networks are
able to form efficient P2P topologies for resource queries
when we determine the characteristics that the neural network
should take into account. These characteristics are given to the
neural network as inputs and can be e.g. bandwidth or
information about the previous resource queries. As a result,
we hope to gain a dynamic P2P network, where the topology
takes shape in interaction with the resource discovery
algorithm.

III. NEUROTOPOLOGYALGORITHM

NeuroTopology algorithm affects the overlay of the peer-to-
peer network by using a neural network for the topology
construction. NeuroTopology was implemented as a plugin for
the P2PRealm simulator [8].

The idea is that every peer has a neural network to make
decisions about establishing new connections in the P2P
network (Fig. 1). The information that the neural network
needs, is gathered during resource queries. NeuroTopology
algorithm is executed in every peer after a predefined amount
of resource queries. The NeuroTopology is described in
Algorithm 3.1:

Algorithm 3.1.
Input: The node’s u neighbor candidates are

LwwsssN hk ,,...,,...,, 121 , where 2,1 nhnk , si is

the node’s neighbor, wi is the node’s neighbor’s neighbor and
L are the nodes, from which the node has received resource

replies. T is the number of topology packets i.e., the amount

of traffic topology requests produced. aT is the number of

topology replies i.e., the amount of traffic produced when
establishing a new connection.

Output: Connections to neighbors.
For all Nbi

1. The input parameters for the neural network are set
according to the information about neighbor candidate bi.
2. Calculate the output for the candidate bi.
3. If the output is 1 then

3.1 Node u requests candidate bi to be its neighbor.
The number of topology packets is incremented by one:
t = t + 1.
3.2 The input parameters for the neural network are set
according to the information about node u.
3.3 The output for node u is calculated.
3.4 If the output is 1, the connection between nodes u
and bi is confirmed and the number of topology replies
is incremented by one ta = ta +1.
3.5 If the output is 0, node bi does not accept the
request. The number of topology packets is
incremented by one t = t +1. If bi is a neighbor of node
u, the connection to node u is dropped.

4. If the output is 0 and bi is a neighbor, the connection
to node bi is dropped.
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The algorithm goes through all neighbor candidates. A
connection to a candidate is not established one-sided but also
the candidate evaluates with the same neural network whether
it wants to establish a connection to the requesting node.

The input parameters for the neural network are:
Bias is the bias term and has value 1.
CurrentNeighborsAmount is the number of the node's
neighbors.
ToNeighborsAmounts is the number of the node's
candidate neighbor’s neighbors.
RepliesFromCandidates is the number of resource
replies received from a candidate neighbor.
RelayedRepliesFromCandidates is the number of
resource replies which a candidate neighbor has
relayed to the node.
TrafficMeter is a counter, which calculates the amount
of resource reply messages going through a candidate
neighbor.
TrafficLimit simulates the bandwidth of a candidate
neighbor. If TrafficMeter value is bigger than
Trafficlimit, the candidate neighbor will not reply to
resource requests.

All input parameters should be scaled in [0,1] so that any
parameter will not be dominant, thus slowing down the
optimization. RepliesFromCancidate, TrafficMeter and
RelayedRepliesFromCandidate can have value of zero so
those are scaled with the function

1

1
)(

x
xf .

ToNeighborsAmount, CurrentNeighborsAmount and
TrafficLimit are scaled with the function

x
xf
1

)( .

NeuroTopology uses a neural network with two hidden
layers. There are 15 nodes (neurons) and a bias in the first
hidden layer and 3 nodes and a bias in the second. The
activation function in the hidden layers is the hyperbolic
tangent (tanh)

.)(
xx

xx

ee

ee
xt

The activation function in the output node is the threshold
function

0,1

0,0
)(

x

x
xs .

The output of the neural network is attained by combining
the functions presented above and output values of the
neurons’ with the formula

3

1
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1

7

1
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k j i
iijk IfwtwtwsO

where iI is the value of input parameter i and xyw is the neural

network weights on layer x in position y.

Fig. 1: The neighbors of the peer are determined with the neural network that
receives information about neighbor candidates in its inputs.

IV. NEURALNETWORKOPTIMIZATION

Before NeuroTopology can be used for managing the
topology, the weights of the neural network have to be
optimized. We used evolutionary computing to optimize the
weights.

The fitness of the used neural network is defined based on
the amount of traffic in the P2P network. Each query j (both
resource and topology queries) is scored for the neural
network h and the fitness is sum of scores Fj.

n

j
jh Ffitness

1

.

The scores are defined as follows:

otherwise
RrTttp
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aa
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1
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(4.1)

otherwise
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GrandTttpRrifpttRr

GrandTttpRrifTttpRr

F

a

aa

aa

j

,
1

1)(),(

1)(),(2
(4.2)

Where p is the number of resource queries, r is the number
of resource replies, R is a constant which affects the impact of
the replies and the sent packets on the scoring, t is the number

of packets the topology query used, at is the number of new

connections and T is a constant which affects the impact of
new connections on the scoring. G is the goal for the number
of the resources the resource query should locate.

When measuring the performance of the P2P network in the
generalization environment (see Section V), the formula 4.1 is
used. If there are enough replies for the queries, the neural
network will receive better fitness values by decreasing the
amount of packets: )( aj TttpRrF . If there are not
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enough resources in relation to the sent packets, the neural
network will attain better fitness values by increasing the

amount of packets:
RrTttp

F
a

j
1 .

When training the neural network, formula 4.2 is used. If the
network locates the predefined amount of resources, the score
from replies is doubled. Then the neural network can attain
better fitness values by decreasing the number of packets and
topology packets. Especially, the number of new connections
is encouraged to be decreased with )(2 aj TttpRrF ,

because the current topology already has some desired
properties. If there are enough resource replies when the sent
packets are taken into account (also the topology packets) but
the goal is not achieved, the neural network will attain better
fitness values by increasing the amount of topology packets:

)( pttRrF aj . If there are not enough located resources

in proportion to sent packets, the neural network will attain
better fitness values by increasing the amount of query and

topology packets:
RrTttp

F
a

j

1 .

The optimization process had an initial population of 24
neural networks whose weights were randomly defined from
the [-0.2, 0.2] interval. Next, every neural network was tested
in the peer-to-peer simulation environment and the fitness
value was calculated. When all neural networks had been
tested, the 12 best were chosen for mutation and used to breed
the new generation of neural networks. As a result, 24 neural
networks were available to be tested at the next generation.

The mutation was based on the Gaussian random variation
and used the weighted mutation parameter to improve the
adaptability of the evolutionary search. The random variation
function was similar to the one used by Fogel and Chellapilla
in their research [5] and is given as:

,,...,1)),1,0(exp()()(' wjii NjNjj

,,...,1),1,0()()()(' wj
j

iii NjNjjwjw

where wN = is the total number of weights and bias terms

in the neural network,

wN2

1 , )1,0(jN is a standard

Gaussian random variable resampled for every j, is the self-
adaptive parameter vector for defining the step size for finding
the new weight and )(' jwi is the new weight value. This method

can be seen as a memetic algorithm because when the self-
adaptive parameter i is small, the optimization is local.

V. SIMULATION ENVIRONMENT

As a peer-to-peer simulation environment, we used the Peer-
to-Peer Realm (P2PRealm) network simulator [8] which was
originally developed for studying a resource discovery
algorithm based on neural networks [12]. In this research, we
added a neural network guided topology management
algorithm to P2PRealm.

In the test case we used a P2P network that had 100 peers.
Resources were power-law distributed so that peers with small
peer numbers had more resources than others. The amount of
resources was 491 and there were 25 different kinds of
resources. Each peer had a traffic limit which determined the
maximum amount of resource packets during 10 resource
queries. The traffic limits were:

- Nodes 0-24, traffic limit=30
- Nodes 25-49, traffic limit=15
- Nodes 50-74, traffic limit=10
- Nodes 75-99, traffic limit=6

The resource discovery algorithm had a target of finding
50% of the desired resources. The goal of finding half of the
available resource instances was set to demonstrate the
algorithm's ability to balance on a predetermined quality of
service level and not just on locating all resource instances or
one resource instance. We used breadth-first search (BFS),
highest degree search (HDS) and random walker (RW) as
resource discovery algorithms.

The test case is divided into the training environment, where
the neural networks are trained and the generalization
environment, where the performance of the best neural
network is measured in a new but similar environment
indicating the neural network’s ability to generalize. When the
performance starts to decrease in the generalization
environment, the training can be stopped. At that point the
neural network is adapting only to the training set if the
training process is continued. In the training set each
generation is started with a grid topology P2P network and
follows the algorithm:
1. Do rounds 20 times

a. 10 random peers execute resource queries
b. Execute NeuroTopology algorithm in every

peer using information from resource queries
2. Execute 10 resource queries in the P2P network
3. Calculate the fitness for the neural network using

information from step 2
The generalization set is the same as the training set, except

that resource queries were executed by every peer in the P2P
network. In order to keep traffic limits functioning properly,
the traffic meters were reset after every 10 queries. Another
difference is in the use of the fitness function (Section IV). In
the training set the parameter R was 300 and in the
generalization set the value is 50. The parameter R can be
considered as a reward for founding resources and the value
300 produces consistently well-trained neural networks. R was
selected to be large enough to guide the training process
towards neural networks that locate enough resources, but also
small enough to prevent nodes from connecting to all the
neighbors that have wanted resource during some random
query. In the generalization set the value 50 was chosen as a
standard value for comparing the neural networks that were
trained with different kind of attribute values. The value of
parameter T was 5 in both environments. This penalty term
simulates the amount of TCP-packets when establishing new
connections.
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The training of the neural networks was done using the HDS
algorithm and the amount of generations was 5000. The results
of the test case are represented in Fig. 2-6. In the training set
there is no significant improvement in the fitness value after
generation 400 but some optimization still took place because
in the generalization set the fitness is not converging until
generation 3500. In the generalization set the HDS algorithm
finds desired resources (845 of them) most of the time after
generation 400, but the amount of packets is decreasing until
generation 3500. Also the topology packets, the topology
changes and the amount of failed queries remain relatively
stable after generation 3500. “Failed queries” represents the
amount of nodes that do not reach their target of 50% found
resources. Thus, it was possible to train the neural networks in
a computationally easier environment and to use the trained
networks in a more demanding environment.

Fig. 2: Fitness in the training environment.

Fig. 3: Fitness in the generalization environment.

Fig. 4: Resource packets and replies in the generalization environment.

Fig. 5: Topology queries and replies in the generalization environment.

Fig. 6: Number of nodes that did not find 50% of all the resources in the
generalization environment.

VI. SIMULATIONRESULTS

To evaluate the efficiency of the topology that is produced
with the trained NeuroTopology algorithm, in addition to the
grid topology, we generated a power-law topology and a
random graph topology for comparison. The power-law
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topology was generated using the Barabási-Albert model and
the random graph topology using the Erdös model [1].
Parameters for the traffic limits, resource distribution and
fitness function are the same as in the generalization set of the
training neural network. The results of the networks where
peers are searching resources with highest degree search
(HDS), random walker (RW) and breadth first search with
TTL value 3 (BFS) in the above mentioned topologies, are
documented in Table 1. By calculating the ratio between the
located resources and the used query packets, we can
determine the efficiency of the algorithms. Walker algorithms
(HDS and RW) perform best in the power-law topology
finding nearly all resources with an efficiency of 0.23 and 0.18
respectively. The best topology for the BFS algorithm is the
random graph, where 470 of 845 desired resources were found
with an efficiency of 0.14. Only 13 peers reached the target of
finding 50% of all the resources.

Next, we analyze the effect of NeuroTopology with nine
different scenarios: three different starting topologies using
three different resource algorithms. Every peer executes
resource queries and then executes the NeuroTopology
algorithm that was trained using the HDS algorithm. This
procedure is done 20 times and the results are in Table 2. In
the efficiency columns the first one is counted with topology
packets and the second one without them. When comparing the
fitness values (rewarding every resource with 50 points)
between Tables 1 and 2, we can see significant improvement
in most of the cases. The power-law topology is the hardest
one to improve. For example the HDS algorithm finds roughly
the same amount of resources in the power-law P2P network
and in the NeuroTopology generated P2P network but uses
470 less packets in the latter one. Nevertheless, when
considering the traffic used by the topology management, the
fitness value remains roughly the same. A general observation
from the results is that the NeuroTopology trained using the
HDS algorithm is able to improve the efficiency of the walker

algorithms regardless of the starting topology. The training
was done using the HDS algorithm, which prefers nodes with
high neighbor amount. The BFS algorithm prefers P2P
networks where the neighbor distribution is more uniform. Due
to the different nature of these algorithms, the neural network
has not learnt to generate a topology, which improves the
efficiency of both BFS and HDS at the same time.

Values in Table 2 are average values of 20 rounds so they
do not give us information about the convergence of the P2P
network. A good topology algorithm would change the
inefficient grid topology on the early rounds and limit the
changes when the efficient topology has been reached. An
example is in Fig 7 and Fig. 8. NeuroTopology started from
the grid topology where the HDS algorithm was used. The P2P
network has converged after 4 rounds of resource queries and
topology changes. The topology after 20 rounds is presented in
Fig 9.

VII. CONCLUSION

NeuroTopology has proved to be an adaptable algorithm for
the P2P network topology management. P2P topologies
generated by NeuroTopology are significantly more efficient
than grid, random or power-law topologies. Nevertheless,
managing topology produces traffic. One has to case-
specifically consider, how worthy it is to find resources with
less query packets. For example, using the random walker in
the power-law topology without NeuroTopology uses 12%
more resource packets to find roughly the same amount of
resources compared to using NeuroTopology. Adding the
topology management traffic to the equation, the efficiency is
roughly the same. Nevertheless, the results are encouraging
and further research includes testing the algorithm in larger
P2P networks.

TABLE I
EFFICIENCIES OF RESOURCE ALGORITHMS IN STATIC P2P TOPOLOGIES

Algorithm Topology Fitness Packets Resources Failed
Queries

Hops Efficiency

HDS Grid 30059 4791 697 24 47.93 0.145
RW Grid 30449 4501 699 24 45.08 0.155
BFS Grid 10302 2598 258 99 2.92 0.099
HDS Power 38216 3634 837 6 36.34 0.230
RW Power 36193 4507 814 7 45.07 0.180
BFS Power 18293 4707 460 71 2.86 0.097
HDS Random 28209 3891 642 45 38.97 0.164
RW Random 26047 3603 593 50 36.07 0.164
BFS Random 19340 3350 470 87 2.96 0.140
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TABLE 2
EFFICIENCIES OF RESOURCE ALGORITHMSWHENUSINGNEUROTOPOLOGY

Algori
thm

Topolog
y

Fitness Improvement
in Fitness

Packets Resources Failed
Queries

Topology
Packets

Topology
Changes

Hops Efficiency Efficiency
(only

resource
packets)

HDS Grid 37502 24.76 % 3549 836 1 414 67 35.50 0.207 0.236
RW Grid 34522 13.38 % 4272 795 10 486 94 42.72 0.164 0.186
BFS Grid 22497 118.38 % 5833 589 57 510 122 2.93 0.091 0.101
HDS Power 38130 -0.23 % 3164 838 1 366 48 31.64 0.234 0.265
RW Power 37216 2.83 % 4010 837 1 384 48 40.10 0.188 0.209
BFS Power 20768 13.53 % 5923 553 62 464 99 2.90 0.085 0.093
HDS Random 37505 32.95 % 3409 834 2 456 66 34.10 0.212 0.245
RW Random 35496 36.28 % 4382 815 6 497 75 43.83 0.165 0.186
BFS Random 23382 20.90 % 5728 605 56 545 119 2.94 0.095 0.106

Fig. 7: NeuroTopology manages to make the grid P2P network more
effective for the HDS algorithm during the first four rounds of resource
querying and topology changing.

Fig. 8: The amount of topology changes convergences during the first four
rounds.

Fig. 9: End result P2P topology after 20 rounds when started from the grid
topology.

Fig. 10: Neighborhood distribution of the topology in Fig. 9.
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Abstract 

 
This paper shows that the performance of 

peer-to-peer resource discovery algorithms is upper 
bounded by a k-Steiner minimum tree and proposes an 
algorithm locating near-optimal query paths for the 
peer-to-peer resource discovery problem. Global 
knowledge of the topology and the resources from the 
peer-to-peer network are required as an input to the 
algorithm. The algorithm provides an objective measure 
for defining how good local search algorithms are. The 
performance is evaluated in simulated peer-to-peer 
scenarios and in the measured Gnutella2 P2P network 
topology with four local search algorithms: 
breadth-first search, self-avoiding random walker, 
highest degree search and Dynamic Query Protocol. 

Keywords - peer-to-peer; P2P; resource discovery; 
k-Steiner minimum tree; optimal paths; Gnutella2; 

 
1. Introduction 

Peer-to-Peer networks (P2P) are distributed systems, 
which consist of resource sharing processes. A typical 
use case for a P2P network is the file sharing, where 
users can share the files located in their computers to 
other users in the network. The shared files can be found 
by executing a query, which locates the instances of the 
queried file and returns the information for downloading 
them. Thus the processes connected to the P2P network 
act both as a client and a server consuming and offering 
resources. 

Locating resources is an essential problem in 
peer-to-peer networks, because there is no centralized 
point or index from which the information about the 
resources could be found. Therefore developing 
efficient resource discovery algorithms is crucial. 

In the peer-to-peer resource discovery problem1, any 
node can possess resources and query resources from 
other nodes in the network. The problem consists of 

                                                        
1 Note that peer-to-peer resource discovery problem differs from the 
resource discovery problem described in [4] because only one node 
needs to discover the other nodes containing resources. Peer-to-peer 
resource discovery problem has also other names such as the 
resource-location problem [12]. 

network with nodes, links and resources. Resources are 
identified by unique IDs and nodes may contain any 
number of resources. One node knows only the 
resources it is currently hosting. Any node in the 
network can start a query, which means that some of the 
links are traversed based on the local forwarding 
decisions in the network. Whenever the query reaches a 
node which has the resource, the node replies. The goal 
is to locate a predetermined amount of resource 
instances with a given ID using as few query packets as 
possible. 

The problem can be solved using a distributed search 
algorithm, in which the querying node sends a query to 
its neighbors, who in turn forward the query further until 
the algorithm stops. Whenever a queried resource is 
located, a reply message is relayed back using the query 
path. Such an algorithm works optimally if the query is 
forwarded only to the neighbors, who either provide the 
queried resource, or can provide a minimal cost path to a 
set of nodes containing the queried resource. 

With the global information about the topology and 
the resources the problem can be formulated as a Steiner 
minimum tree problem in graphs [19], giving an upper 
bound for the performance of resource discovery 
algorithms. In the Steiner tree problem, given a graph 
containing the vertices and the edges and a terminal set 
containing the vertices, the task is to compute a spanning 
tree containing all vertices in the terminal set. Steiner 
minimum tree is the tree with minimum length of all 
such spanning trees. The terminal set contains the node, 
which starts the query and the matching resource 
instances that can be located in the network. 

The peer-to-peer resource discovery problem can be 
mapped to the Steiner minimum tree problem only if the 
number of needed resource instances is the same as the 
size of the terminal set minus one (because the query 
originator also needs to be in the set). However, it is 
often sufficient to locate for example half of the 
available resources, because the query originator may 
use, e.g. download, only some of the located resources. 
Also locating only one instance is not always a feasible 
solution, because there can be many different resources 
matching the query keyword, but only some of them 
represent the resource the query initiator is interested in. 
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Usually locating only a portion of resource instances 
reduces the amount of query traffic significantly. This is 
beneficial especially in mobile and wireless peer-to-peer 
networks, where the use of battery power and therefore 
the amount of forwarded query packets should be 
minimized. Also, as was seen in the first version of 
Gnutella [18] the scalability of the peer-to-peer network 
weakens in wired networks when the resource discovery 
algorithm is not properly designed. 

In this paper we show that the peer-to-peer resource 
discovery problem with global knowledge is identical to 
the Steiner tree problem when all resources need to be 
found and therefore can be used to find optimal paths for 
the peer-to-peer resource discovery problem. Also, to 
enable only a part of the resources to be discovered we 
modify the original Steiner minimum tree problem to 
Rooted k-Steiner minimum tree problem, where k 
represents the number of resources that needs to be 
located and present an approximation algorithm for 
solving the problem.  

The approximation is needed because k-Steiner 
minimum tree problem is known to be NP-hard and thus 
no efficient polynomial algorithm exists for practically 
solving the Steiner minimum tree problem in large 
graphs. To demonstrate the use of the proposed 
algorithm we present an analysis of different 
peer-to-peer scenarios including the topology recently 
crawled from Gnutella2 network. As a comparison 
algorithms we use breadth-first search, self-avoiding 
random walk and highest degree search and the 
proposed minimum spanning tree k-Steiner algorithm 
(MST k-Steiner) as an approximation of optimal using 
global knowledge of network topology and resources. 
The results show that there is a significant gap between 
the performance of local search algorithms and the 
optimal solution. 
2. Related Work 

Peer-to-Peer resource discovery problem has been 
investigated extensively in the research literature 
[1,4,6,8,9,10,16,20,22,23,25]. 

Adamic et al. [1] propose High-Degree Seeking 
algorithm for finding one node in a graph by forwarding 
query to the highest degree neighbor, which has not yet 
been visited. They evaluate the performance of their 
algorithm in random graphs, power-law graphs and a 
snapshot of Gnutella P2P network. Compared to 
Random Walker, where query is forwarded to a 
randomly selected neighbor, the traffic reduction is in 
the order of magnitude. 

Lv et al. [12] evaluate the use of multiple Random 
Walkers and Expanding Ring algorithm against 
Breadth-First Search (BFS) in random graphs, 
power-law graphs and a regular two-dimensional grid 
graph as well as in a snapshot of Gnutella. Traffic 

reductions of one or two orders of magnitude are gained 
with multiple Random Walkers compared to the BFS. 

Crespo and Garcia-Molina [4] propose routing 
indices, which provide shortcuts for random walkers to 
locate the resources. As an evaluation graphs they use 
trees, trees with additional cycles and power-law graphs. 
Compared to random walkers routing indices reduce the 
traffic up to 50% and compared to BFS the traffic 
reduction is in the order of one or two magnitudes with 
uniform resource distributions. 

Yang and Garcia-Molina [25] propose Directed BFS, 
which selects the first neighbor based on heuristics and 
further uses BFS for forwarding the query. They also 
propose the use of Local Indices for replicating 
resources to a certain radius of hops from a node. 
Evaluations are conducted on a snapshot of Gnutella and 
the performance of these algorithms are compared to the 
BFS. The Directed BFS reduces traffic to 38% while 
locating significantly less resources than the BFS. Local 
Indices, however, locates similar numbers of resources 
as the BFS with 39% traffic generated by the BFS. 

Kalogeraki et al. [8] propose Modified Random 
Breadth-First Search as an improvement to the BFS 
algorithm. In their algorithm only a subset of neighbors 
are selected for forwarding. Also, they propose an 
Intelligent Search Mechanism, which stores the 
performance of past queries for each neighbor and thus 
can direct further queries to the neighbors, which are 
likely to have the queried resource. For evaluation they 
use randomly connected P2P network and reduce traffic 
to 35% compared to the BFS. 

Menascé [19] follows the ideas of Kalogeraki et al. 
and propose a modification of BFS, where only a subset 
of neighbors are randomly selected for forwarding. 
Evaluations are done in a random graph without a 
comparison algorithm. 

Tsoumakos and Roussopoulos [22] propose Adaptive 
Probabilistic Search, where the feedback from previous 
queries is used to tune probabilities for the further 
forwarding of random walkers. The algorithm is 
evaluated in random graphs and power-law graphs 
against Lv et al.’s multiple Random Walkers and 
Gnutella’s UDP extension for scalable searches [5]. 
While keeping approximately the same level of traffic, 
APS doubles the success rate of queries compared to 
multiple Random Walkers. 

Sarshar et al. [20] propose Percolation Search 
algorithm for power-law networks. The idea is to 
replicate copies of resources to sufficient number of 
nodes and thus ensure that the algorithm locates at least 
one replica of the resource. The algorithm’s 
performance is evaluated in power-law graphs and a 
snapshot of Gnutella P2P network without a comparison 
algorithm. 
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Fisk [6] proposes Dynamic Query Protocol (DQP), 
which has now been implemented in Gnutella2 peers. 
DQP executes first a probe query to estimate how rare 
the resource is and based on the obtained results 
calculates proper TTL and number of neighbors, which 
the query will be forwarded. The query is terminated 
when 150 resource instances has been located, there are 
no connections left to query or when the theoretical 
horizon of the query has hit the limit of 200,000 peers. 

Vapa et al. [23] propose NeuroSearch, which is a 
neural network based resource discovery algorithm. In 
NeuroSearch a neural network is given a set of heuristics 
and by calculating the output of the neural network the 
algorithm can decide which of the neighbor nodes will 
receive the query. The evaluations are done in small 
power-law graphs and the traffic is reduced 
approximately to 80% from the BFS. 

The main theme of all the papers reviewed in this 
section has been to introduce new algorithm(s) and to 
compare their performance to other algorithms of a 
similar type. However, the level of performance is not 
properly identified if the optimal performance is not 
measured in the simulations. The algorithm proposed 
later in this paper aims to overcome this problem. 
3. Steiner Minimum Tree Problem 

Let G = (V,E) be an undirected graph, where V is a set 
of vertices and E is a set of edges having edge costs. 
Given a terminal set VR ⊆ , a Steiner minimum tree 

(SMT) is a tree GT ⊆  such that T contains all vertices 
of R and the length w(T) is minimum among all Steiner 
trees. w(T) is defined as a sum of all edge costs Ee ∈  
contained in T. 

Compared to a minimum spanning tree, which 
contains all vertices of a graph, SMT spans only a subset 
of vertices and thus if the cardinality of the terminal set 
|R| = |V| these problems are equivalent. Also, if |R| = 2, 
SMT reduces to solving a shortest-path problem. 

In SMT the vertices are divided into two sets: 
terminal vertices and non-terminal vertices. Terminal 
vertices belong to a set, which has to be included in the 
solution, whereas non-terminal vertices can shorten the 
length of the solution. 

SMT is known to be NP-complete problem [9]. Being 
in complexity class NP means that there exists a 
polynomial time algorithm to check whether the given 
solution is a correct Steiner tree and whether the length 
of a given solution is less than a given bound B, but there 
is no polynomial algorithm (unless P=NP) that would 
find such a Steiner tree. Therefore exact solving of the 
problem is not practical with large graphs. Also, when a 
problem is classified as NP-complete it means that the 
problem is the hardest among all problems contained in 
NP. More information about the NP-completeness of the 
Steiner tree problem can be found in [19]. 

Because SMT is NP-complete, approximation needs 
to be used. An approximated solution is not guaranteed 
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Figure 1. Execution of MST k-Steiner Algorithm with k=4 
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to locate the Steiner minimum tree, but it can give 
guarantees that the length of a located solution is within 
certain range from the optimal solution. 
4. Peer-to-Peer Resource Discovery As 

Steiner Tree Problem 
As was described earlier the peer-to-peer resource 

discovery problem does not map to the Steiner tree 
problem if only part of the resources needs to be found. 
Therefore we introduce k-Steiner Minimum Tree 
problem as described in [3] with an addition of a root 
vertex to the solution set. In Rooted k-Steiner Minimum 
Tree problem (Rooted k-SMT) it suffices to select only k 
terminal vertices from R to be included in the Steiner 
minimum tree starting from the root vertex r. Also we 
propose an approximation algorithm for solving the 
Rooted k-SMT problem. 
4.1. Rooted k-Steiner Minimum Tree 
Problem: Rooted k-Steiner Minimum Tree 

Given: A connected graph G = (V,E), a terminal set 
VR ⊆ , a root vertex Rr ∈  and 

||2 Rk ≤≤  
Find: A Steiner tree T for R in G rooted to vertex r 

and containing k terminal vertices, such that 
w(T) = min {|w(T’)| | T’ is a Steiner tree for 
k vertices in R} 

The Rooted k-SMT becomes equivalent to the SMT 
by selecting k=|R| and as a root any vertex in R. The 
SMT thus reduces to a special case of the Rooted k-SMT 
and therefore Rooted k-SMT for all k is at least as hard 
as SMT. When applied to the resource discovery 
problem the terminal set R is formed of query originator 
as root vertex and |R|-1 resource instances. 
4.2. Approximation of Rooted k-Steiner 

Minimum Tree Problem With Minimum 
Spanning Tree 

A well-known method for approximating the SMT is 
the use of a minimum spanning tree (MST) [19,24]. The 
MST k-Steiner Minimum Tree algorithm (MST 
k-Steiner) proposed here uses the same principles as 
MST-approximation algorithm to locate a solution for 
Rooted k-SMT.  

MST k-Steiner starts by computing Voronoi regions 
of each terminal node. Voronoi region of a terminal 
node contains all the nodes which are closer to that 
terminal node than to other terminal node. Voronoi 
regions can be computed by adding one node in the 
graph G and connecting this node to all terminal nodes 
of R with edge length 0. Let GV denote this graph. Then 
by executing a minimum spanning tree on GV the 
Voronoi regions are obtained. This also gives the 
distance of each non-terminal node to its closest 
terminal node. The technique used here was introduced 
by Mehlhorn in [15]. 

Next, the Voronoi regions are used to compute the 
shortest distance graph GR of vertices in R. Let l(u,v) 
denote the edge cost of the edge between nodes u and v. 
Let l(u) denote the distance of node u from the closest 
terminal node. Let t(u) denote the closest terminal node 
of node u. Shortest distance graph GR is obtained by 
going through each edge ),( vu , Evu ∈, , vu ≠  and 
computing the two triplets (t(u), t(v), l(u)+l(u,v)+l(v)) 
and (t(v), t(u), l(u)+l(u,v)+l(v)). These triplets are 
collected in a list and only those where t(u)  t(v) and 
l(u)+l(u,v)+l(v) is the shortest are kept in the list. This 
list is used to create the graph GR by associating two 
terminal nodes u and v if they have a corresponding 
triplet in the list and setting the edge cost to be the third 
value of the triplet.  

Then a k-minimum spanning tree approximation TR 
containing k vertices is located greedily from GR by 
selecting the closest node to the spanning tree starting 
from the vertex r and decomposed back to the original 
graph by replacing the edges with their shortest paths. 
Algorithm: MST k-Steiner Minimum Tree 

Input: A connected graph G = (V,E), a terminal 
set VR ⊆ , a root vertex Rr ∈  and 

||2 Rk ≤≤  
Output: A Steiner tree T for R in G rooted to the 

vertex r containing k terminal vertices. 

(1) Add one node to the graph G and connect it to all 
terminal nodes contained in R with an edge 
having cost 0. The result is denoted as graph GV. 

(2) Replace GV with the minimum spanning tree of 
GV. 

(3) Compute the shortest path between two terminal 
nodes by iterating all edges of E in G and 
constructing the corresponding triplets. 
Transform the resulting triplets to graph GR. 

(4) Compute a k-minimum spanning tree 
approximation TR from GR rooted to the vertex r 
and containing k vertices of R. 

(5) Transform TR into subtree T of G by replacing 
each edge of TR by the corresponding shortest 
path. 

An example execution of the MST k-Steiner 
algorithm when k=4 and |R|=5 is shown in the Figure 1. 
In the figure a graph G is given with the terminal set 

{ }51 ≤≤= irR i  (denoted as  including root vertex r1, 
which is denoted as ) and the non-terminal nodes 

31, ≤≤ imi  (denoted as ). Integers associated to the 
edges represent the edge costs. 
5. Time Complexity 

MST k-Steiner executes MST algorithm once in step 
(2) and once in step (4) stopping when k nodes have 
been reached. The transformation of the graph in step (3) 
using bucket sort [19] requires at maximum |V|log|V|+|E| 
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steps, where |V| is the number of vertices in the input 
graph G and |E| is the number of edges in input graph G. 
Therefore the time complexity required for the 
algorithm is: 

MST + MSTk + |V|log|V| + |E|,        (5.1) 
where MST denotes the time required for executing the 
Minimum Spanning Tree and MSTk denotes the time 
required for executing the Minimum Spanning Tree for 
k nodes. Certainly MSTk  MST and |V|  |E|-1  |E|, 
bounding the time complexity to: 

2*MST+|E|log|E|+|E|.                       (5.2) 
Minimum Spanning Tree can be implemented for 
example using the Kruskal’s algorithm [24] having 
O(|E|log|E|) time complexity. Therefore MST k-Steiner 
algorithm’s time complexity is O(|E|log|E|), which 
allows the algorithm to be used also in large graphs. 
6. Approximation Ratio 

Approximation ratio of an algorithm is computed as a 
ratio between the worst case performance and the 
optimal performance. For k = 2 the approximation ratio 
is 1, because the shortest path to the nearest resource is 
always selected. Also when k = |R|, MST k-Steiner 
reduces to a well-known MST-approximation algorithm 
[19,24] for Steiner Minimum Tree problem having 
approximation ratio 2. So, it still remains to determine 
what the approximation ratio is when 2 < k < |R|. 

A difficult case for MST k-Steiner is a graph shown 
in Figure 2. In the scenario, the root node is located 
within S distance from 1

2
−

R  terminal nodes and within 

S +  distance from the other half of terminal nodes. The 
difference between these distances is that on the left 
hand side discovering each terminal node requires 
travelling S distance and on the right hand side 
discovering the first terminal node requires travelling S 
+  distance, but then the other terminal nodes can be 
discovered with  distance. 

Without a loss of generality the analysis can be 
restricted to cases where |R| is even. Now the 
approximation ratio  between the discovered path and 
the optimal path can be calculated for 

2
R

k =  as: 
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        (6.1) 

Considering   0 the approximation ratio becomes: 

2
R

=α        (6.2) 

This implies that when the size of the terminal set 
grows and the number of discovered terminals k is close 
to 

2
R  the approximation ratio can become large. Still, 

the approximation ratio seems to be bounded to 
2
R , 

because adding terminal node on the left hand side and 
removing one terminal node from the right hand side 
makes the optimal path longer while keeping the 
discovered path almost the same (decreased by ). In 
contrast by adding a terminal node on the right hand side 
and removing one terminal node from the left hand side 
makes the discovered path shorter while keeping the 
optimal path the same. Also decreasing k from 

2
R  will 

decrease the length of the discovered path faster than the 
optimal path thus giving a lower approximation ratio. 
Increasing k will lengthen the optimal path faster than 
the discovered path resulting in a lower approximation 
ratio than 

2
R . 

As a summary, the approximation ratio of the 
algorithm depends on the number of available resources 
and can be no less than 

2
R . It is still left for future work 

to show that the ratio could not be even worse. There are 
however approximation algorithms for k-Steiner 
Minimum Tree, which achieve constant factor 
approximation ratios [3]. They rely on integer 
programming and by relaxing the constraints to a linear 
program sustain approximation ratio guarantees. 
7. Simulations 

In this section we present an analysis of five 
algorithms: Breadth-First Search (BFS) [13], 
Self-avoiding Random Walk (RWSA), Highest Degree 
Search (HDS) [1,10], Dynamic Query Protocol (DQP) 
[6] and MST k-Steiner Minimum Tree. The simulations 
were conducted in P2PRealm network simulator. 
7.1. Peer-to-Peer Network Scenarios 

 As simulation scenarios we used power-law graphs, 
normal distributed random graphs and a recently 
measured topology of Gnutella2 P2P network [21] with 
an edge cost 1 for all edges. Power-law graphs were 
generated using Barabási-Albert model [2]. In 
power-law network few hub nodes have many neighbors 

s
ss s

2
R

1
2

−
R

 
Figure 2. A graph where MST k-Steiner makes a 

large approximation error 
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and many nodes have only few neighbors. Gnutella2 
topology was obtained by extracting the largest 
connected component from the topology data of 
02/02/05 presented in [21] and removing those nodes 
whose edges were not referenced by other nodes. Finally 
those edges whose one end point was missing were 
removed. 

Resource instances were allocated for power-law and 
random graphs based on the number of neighbors each 
node had such that the number of different resource 
instances in a node was the same as the number of 
neighbors the node had. This means that in the 
power-law graphs the hubs were more likely to contain 
the queried resource. Resources were allocated to nodes 
by randomly sampling from a uniform distribution. The 
queried resources and the querying nodes were selected 
also randomly from a uniform distribution for each 
query. 

In Gnutella2 topology the resources were allocated 
based on the measured resource distributions of  
Gnutella network in September 2003 [14]. The number 
of different resources was selected to be 10, so the 
topology files could be kept small enough, but the 
number of resource instances for each resource was 
sampled from the resource distribution of [14] which 
produced 43216 different resources instances. These 
resource instances were allocated randomly to nodes 
following the measured distribution of shared files in 
nodes [14] such that one node could not have multiple 
instances of the same resource. Now when 100 queries 
were executed each resource was queried multiple 
times, but from a different location, which was 
randomly selected. The queried resource was selected 
according to the peer keyword distribution of [14]. 

Table 1 illustrates the characteristics of each scenario 
used in the simulations. 

7.2. Results 
The tests were conducted by varying the target 

amount of resource instances that was needed to be 
found by the algorithms. The target percentage of the 
discovered resource instances determines the amount 
how many resource instances of a certain resource needs 
to be discovered out of all resource instances of that 
resource and represents the k parameter of the Rooted 
k-SMT problem. The measured variables were the 

average number of query packets used in a query as 
shown in figures 3, 4 and 5 and the average number of 
maximum hops as shown in figures 6, 7 and 8. 

As can be seen from Figure 3 in power-law graphs 
MST k-Steiner algorithm produces query paths between 
one and two orders of magnitude shorter than local 
search algorithms. Also, the approximation error of 
MST k-Steiner in the scenario is at most 2=α , because 
the theoretical optimum is k-1 query packets when each 
node can have only one instance of the queried resource. 
k-1 represents a situation that each forwarded query 
packet would locate one new resource instance and the 
query originator does not have the queried resource. 

The performance of HDS is close to the paths of MST 
k-Steiner algorithm when only one or two instances of 
resources needs to be located (resource percentage < 
3%). This is a bit surprising even though the scenario is 
designed directly for HDS type of algorithms. The 
resources are discovered more probably in the center of 
the network and as noted in [1] HDS travels those nodes 
early in the search process. However, when more 
resources needs to be discovered HDS travels multiple 
times to the central nodes and sometimes randomly 
forward the query packet decreasing the performance. 
Compared to RWSA and BFS, HDS performs 
significantly better when half of the available resource 
instances needs to be located and after that RWSA 
becomes a better algorithm. BFS in turn is at the same 
level with RWSA when less than 40% of resources 
needs to be located having TTL values between 1 and 4. 
With TTL values 5-7 BFS cannot keep up with RWSA. 
DQP is significantly less performing than BFS when 
small amount of resource instances needs to be located, 
because DQP requires always executing a two hop query 
first. DQP however reaches the same level with BFS 
when 40% or more resources needs to be located. 
Because of maximum TTL restrictions DQP cannot 
locate more than 60% of available resource instances. 

In normal distributed graphs, as shown in Figure 4, 
MST k-Steiner retains its characteristics having largest 
approximation error at most 4=α . Normal distributed 
graphs have larger diameter than power law distributed 
graphs and therefore estimating the optimal performance 
with k is too pessimistic. This argument is supported by 
the fact, that when 100% of resource instances needs to 
be discovered, the approximation ratio is at maximum 

2=α  as discussed in Section 6. It is therefore not clear, 
whether as short paths as k would exist in the normal 
distributed graph and presumably the real 
approximation error is at a similar range as in power-law 
graphs. Thus we conclude that the approximation ratio 
derived in section 6 highly overestimates the optimal 
performance in power-law and normal distributed P2P 
scenarios. 

Table 1. Simulation Scenarios
Scenario PL10000 N10000 Gnutella2 
Distribution Power-Law Normal - 
Nodes 10000 10000 74297 
Edges 19997 19997 609036 
Largest hub 161 11 360 
Resources 1000 1000 10 
Res. instances 39994 39994 43216 
Queries 100 100 100 
Diameter 8 10 12 
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The difference between local search algorithms and 
MST k-Steiner paths is again in the order of one or two 
magnitudes. In contrast to power-law graphs, the local 
search algorithms in normal distributed graphs have 
similar performance when less than half of available 
resource instances needs to be located. After that RWSA 
and HDS outperform BFS. Random graph does not 
contain hub nodes and therefore HDS does not benefit 
from its ability to travel to high degree nodes. Basically, 
HDS appears as a self-avoiding random walker, because 
all the neighbors are almost equally connected. The 
large diameter of normal distributed graph restricts DQP 

to locate only 7% of resource instances with time-to-live 
4. 

In Gnutella2 topology, as shown in Figure 5, MST 
k-Steiner does not seem to make any approximation 
error suggesting that Gnutella2 topology is highly 
connected and thus allowing each hop of a query to 
locate a new resource instance. The difference between 
MST k-Steiner paths and local search algorithms is in 
the order of a magnitude. HDS and RWSA perform 
equally well and BFS can keep up with them to 40% of 
resource instances. Then BFS departs to the level of 
DQP, which can locate at maximum 60% of resource 
instances. 
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The average of maximum hops for MST k-Steiner, 
BFS and DQP is plotted in Figures 6, 7 and 8. HDS and 
RWSA are omitted as their number of hops is shown in 
Figures 3, 4 and 5. Because HDS and RWSA forward to 
only one direction at a time their maximum hops are in 
different scale than what MST k-Steiner, BFS and DQP 
are using. Therefore if low latency in the network is 
critical, HDS and RWSA may not be suitable as local 
search algorithms. From the Figures 6 and 7, it can be 
seen that BFS and DQP require in N10000 two or three 
hops more than in PL10000 to locate the same amount of 
resource instances. BFS locates the shortest paths to 
resources and therefore has a small latency. However, 
MST k-Steiner does not seem to be using these paths. 
Reason for this is that the shortest paths do not 
necessarily contain resources along the path and 
therefore collecting some resources using a longer route 
may lead to a path which is more efficient. The latency 
in power-law graphs also stays comparable to BFS, but 
in normal distributed graphs the length of query paths 
grows significantly. This is, however, in completely 
different scale than the hops used by HDS and RWSA. 
8. Conclusion 

The Rooted k-Steiner Minimum Tree problem 
connects the resource discovery problem to a solid 
foundation of graph theory providing means to calculate 
near-optimal query paths in a graph. The MST k-Steiner 
algorithm computes an approximation of the shortest 
tree between the querying node and the nodes having the 
queried resource instances and thus is an upper bound 
for the performance of local search algorithms. The 
algorithm can be used in cases, where nodes contain 
only one instance of queried resource and the problem 
has to be further extended if multiple resource instances 
in a node is to be supported. In overall, the results 
presented here show that local search algorithms 
commonly used in P2P networks are far from optimal 
paths. 

Based on the findings in Gnutella2 topology, DQP 
has slightly lower performance than BFS, but because of 
automatic adaptation of time-to-live parameter it can be 
feasibly used in current P2P networks. HDS and RWSA 
suffer from implementation problems because to avoid 
already visited nodes they need to keep record of visited 
nodes and therefore the size of the query packet grows in 
large graphs limiting their use. 

What makes the resource discovery problem hard in 
P2P networks is that only local information is available. 
It would be interesting to know how close to the 
optimum can algorithms get using local knowledge. A 
record of the global network topology is used in Open 
Shortest Path First [17] IP routing protocol and 
Dijkstra’s algorithm for computing the shortest paths 
suggesting possibilities that MST k-Steiner tree 

algorithm could be adapted to distributed P2P networks. 
In this case, information about the resources needs to be 
at least partially cached in the nodes. This, however, 
needs further research. 
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