
166
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Interest-Based Topology
Management in Unstructured

Peer-to-Peer Networks

Annemari Soranto

JYVÄSKYLÄ STUDIES IN COMPUTING 166

Annemari Soranto

UNIVERSITY OF

JYVÄSKYLÄ 2012

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Alfa-salissa

joulukuun 20. päivänä 2012 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in building Agora, Alfa-hall, on December 20, 2012 at 12 o'clock noon.

JYVÄSKYLÄ

Management in Unstructured
Peer-to-Peer Networks

Interest-Based Topology

Interest-Based Topology
Management in Unstructured

Peer-to-Peer Networks

JYVÄSKYLÄ STUDIES IN COMPUTING 166

JYVÄSKYLÄ 2012

Interest-Based Topology

UNIVERSITY OF JYVÄSKYLÄ

Annemari Soranto

Management in Unstructured
Peer-to-Peer Networks

Copyright © , by University of Jyväskylä

URN:ISBN:978-951-39-5023-1
ISBN 978-951-39-5023-1 (PDF)

ISBN 978-951-39-5022-4 (nid.)
ISSN 1456-5390

2012

Jyväskylä University Printing House, Jyväskylä 2012

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Soranto, Annemari
Interest-Based Topology Management in Unstructured Peer-to-Peer Networks
Jyväskylä: University of Jyväskylä, 2012, 100 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 166)
ISBN 978-951-39-5022-4 (nid.)
ISBN 978-951-39-5023-1 (PDF)
Finnish summary
Diss.

Peer-to-peer networks consist of autonomous nodes that communicate with
each other to share and exploit resources in totally decentralized manner. Cur-
rent P2P applications focus mainly on providing file storage and sharing that
scales to the demand without heavy investment to centralized coordination.
Unstructured P2P networks allow varied resource search queries based on
keywords but suffer from scalability of used search algorithms. Delivering
messages in the physical network is fast, but the processing of queries and
messages at the application level requires capacity and causes delays, limiting
the usability and scalability of P2P applications.

This thesis studies algorithms both for self-organizing and managing logi-
cal topology and for performing efficient resource discovery in unstructured
peer-to-peer networks using only local information that nodes can collect while
within the network. Topology algorithms aim to organize the overlay topology
so that peers can find the resources they need close to them in logical topology.
Thus the scope of the search queries could be reduced and results would be
found with smaller overhead of query traffic.

In addition to topology management algorithms intended for general use
this thesis also studies the combination of topology management with search
algorithms that are tailored to function optimally in specific environments or
use cases.

The work covers the art of simulating P2P networks, various approaches
to topology management and adaptive search methods, some theoretical ap-
proximations of ideal search efficiency, and a systematic experiment to compare
topology management and adaptive search methods in a simple, controllable
case.

Keywords: peer-to-peer networks, P2P, overlay topology, topology
management, self-organizing, resource discovery

Author’s address Annemari Soranto
 Department of Mathematical Information Technology

University of Jyväskylä
Finland
annemari.k.soranto@jyu.fi

Supervisors Prof. Timo Tiihonen

Department of Mathematical Information Technology
University of Jyväskylä
Finland

Dr. Jarkko Vuori
Helsinki Metropolia University of Applied Sciences
Finland

Reviewers Assoc. Prof. Maria Papadopouli

Department of Computer Science
University of Crete
Greece

 Docent, Dr. Sergey Balandin
Fruct Oy
Finland

Opponent Prof. Jarmo Harju
 Department of Communications Engineering

Tampere University of Technology
Finland

ACKNOWLEDGEMENTS

This thesis is a result of a long process involving collaboration with many per-
sons over a long period of time. Everything started in the P2P research group
headed by Professor Jarkko Vuori. The articles included in this thesis originate
from this period. I would like to thank Jarkko Vuori for his inspiring guidance,
Mikko Vapa for several years of continued collaboration, and all other co-
authors of the articles, especially Niko Kotilainen and Teemu Keltanen. Work-
ing with you was instructive but also fun!

In 2007, the research appeared to have reached a dead end, and despite
several ideas and plans for advancement, the work did not lead to any progress.
I want to thank Professor Vagan Terziyan and Jani Kurhinen, both who provid-
ed instruction and guidance during this difficult phase of the process that oc-
curred before Professor Timo Tiihonen became my supervisor. As a simulation
expert, Timo provided valuable input from a different perspective, although it
took a while before mutual understanding of the research topic was reached.
The simulation described in this introduction was designed and established
under his supervision, mostly along with other work assignments, which
proved to be quite a challenging and slowly-progressing task. I am grateful to
Timo for his patient guidance and the instruction he provided during the writ-
ing process. I also thank all colleagues who have encouraged me and created a
pleasant working environment during these years.

I would like to thank Associate Professor Maria Papadopouli and Docent,
Dr. Sergey Balandin for reviewing this thesis and for their valuable comments.

This study was financially supported by GETA (Graduate School in Elec-
tronics, Telecommunications and Automation), COMAS (Graduate School in
Computing and Mathematical Sciences) and the Emil Aaltonen Foundation.

Finally, I want to thank my family for encouraging me, especially Mikko
for his patience, love, motivation, and understanding. Last but not least, I thank
my dear aunt, who always believed in me, but passed away before this thesis
was finished.

Jyväskylä 12.12.2012
Annemari Soranto

LIST OF FIGURES

FIGURE 1 Peer-to-peer and traditional client-server architectures................... 20
FIGURE 2 Topology of partially centralized architecture. 22
FIGURE 3 The average amount of replies in proportion to the amount

of query messages in networks of 256 nodes with BFS
algorithm. .. 53

FIGURE 4 The average amount of replies in proportion to the amount
of query messages in networks of 1024 nodes with BFS
algorithm. .. 54

FIGURE 5 Efficiency of BFS algorithm per TTL values in different
networks. ... 54

FIGURE 6 Success rates of BFS algorithm per TTL values in different
networks. ... 55

FIGURE 7 The average amount of replies in proportion to the amount
of query messages in networks of 256 nodes with DBFS
algorithm. .. 56

FIGURE 8 Efficiency of DBFS algorithm per TTL values in different
networks of 256 nodes. .. 57

FIGURE 9 The average amount of replies in proportion to the amount
of query messages in networks of 1024 nodes with DBFS
algorithm. .. 57

FIGURE 10 Efficiency of DBFS algorithm per TTL values in different
networks of 1024 nodes. .. 58

FIGURE 11 Average of success rates in different networks with DBFS
using different TTL values. .. 58

FIGURE 12 The average amount of replies in proportion to the amount
of query messages in torus network of 256 nodes without
overtaking. .. 60

FIGURE 13 Efficiency per TTL values in torus network of 256 nodes
without overtaking. ... 61

FIGURE 14 Topology of the network in the test case, where TTL was 7,
overtaking percent 80, upper traffic limit 60% and
frequency 6. ... 61

FIGURE 15 Topology of the network in the test case, where TTL was 3,
overtaking percent 80, upper traffic limit 60% and
frequency 6. ... 62

FIGURE 16 The average amount of replies in proportion to the amount
of query messages in torus network of 256 nodes with
overtaking percent 80. ... 62

FIGURE 17 Efficiency per TTL values in torus network of 256 nodes
with overtaking percent 80. .. 63

FIGURE 18 The average amount of replies in proportion to the amount
of query messages in networks of 256 nodes with upper

traffic limit 60, interval of traffic checkings 6, overtaking
period 20 and overtaking percent 90. .. 66

FIGURE 19 Efficiency per TTL values in networks of 256 nodes with
upper traffic limit 60, interval of traffic checkings 6,
overtaking period 20 and overtaking percent 90. For the
comparison, efficiency of BFS in static network is also
shown. .. 66

FIGURE 20 The average amount of replies in proportion to the amount
of query messages in networks of 1024 nodes with upper
traffic limit 60, interval of traffic checkings 6, overtaking
period 20 and overtaking percent 90. .. 68

FIGURE 21 Efficiency per TTL values in networks of 1024 nodes with
upper traffic limit 60, interval of traffic checkings 6,
overtaking period 20 and overtaking percent 90. For the
comparison, efficiency of BFS in static networks is also
shown. .. 68

FIGURE 22 The amount of topology changes during the simulation of
topology management algorithms in random network of
256 nodes with TTL 3. ... 69

FIGURE 23 The average amount of replies in proportion to the amount
of query messages in different networks after equilibrium. 70

FIGURE 24 Efficiency per TTL values with overtaking after equilibrium. 70
FIGURE 25 Efficiency vs. query amount of DBFS algorithm in static

networks and BFS and DBFS algorithms in the networks
generated by topology management algorithms. 72

FIGURE 26 Efficiency vs. query amounts of DBFS algorithm in static
networks and BFS and DBFS algorithms in the networks
generated by topology management algorithms. 72

FIGURE 27 The amount of topology changes during the simulation of
topology management algorithms in torus network of 256
nodes with TTL 3. .. 95

FIGURE 28 The amount of topology changes during the simulation of
topology management algorithms in torus network of 1024
nodes with TTL 5. .. 96

FIGURE 29 The amount of topology changes during the simulation of
topology management algorithms in random network of
1024 nodes with TTL 3. ... 96

FIGURE 30 The amount of topology changes during the simulation of
topology management algorithms in random network of
1024 nodes with TTL 5. ... 97

LIST OF TABLES

TABLE 1 Interest-based topology management algorithms. 39
TABLE 2 Amount of topology changes and success rates in torus

network of 256 nodes without overtaking. .. 59
TABLE 3 Success rates without and with overtaking. 63
TABLE 4 Selected test cases with traffic limit 60% and with TTL3. 65
TABLE 5 Success rates without and with overtaking in torus and

random networks of 256 nodes. ... 67
TABLE 6 Amount of changes without and with overtaking in torus

and random networks of 256 nodes. ... 67
TABLE 7 Success rates and amount of changes overtaking in torus

and random networks of 1024 nodes. ... 69
TABLE 8 Success rates of networks at equilibrium. .. 71
TABLE 9 The success rates of DBFS algorithm in static networks and

BFS and DBFS algorithms in the networks generated by
topology management (TM) algorithms. ... 73

TABLE 10 BFS in the static networks of 256 nodes. ... 88
TABLE 11 BFS in the static torus network of 1024 nodes. 89
TABLE 12 BFS in the static random network of 1024 nodes. 89
TABLE 13 DBFS in the torus network of 256 nodes. ... 89
TABLE 14 DBFS in the torus network of 1024 nodes. ... 90
TABLE 15 DBFS with TTL 3 in the random network of 256 nodes. 90
TABLE 16 DBFS with TTL 5 in the random network of 256 nodes. 90
TABLE 17 DBFS with TTL 7 in the random network of 256 nodes. 90
TABLE 18 DBFS with TTL 3 in the random network of 1024 nodes. 91
TABLE 19 DBFS with TTL 5 in the random network of 1024 nodes. 91
TABLE 20 Topology management in torus network of 256 nodes

without overtaking, with TTL 5 and upper traffic limit 40%. 91
TABLE 21 Topology management in torus network of 256 nodes

without overtaking, with TTL 7 and upper traffic limit 60%. 91
TABLE 22 Topology management in torus network of 256 nodes, with

TTL 3, upper traffic limit 60% and overtaking 80%. 92
TABLE 23 Topology management in torus network of 256 nodes, with

TTL 5, upper traffic limit 60 and overtaking 80%. 92
TABLE 24 Topology management in torus network of 256 nodes, with

TTL 7, upper traffic limit 60% and overtaking 80%. 92
TABLE 25 Topology management in torus network of 256 nodes

without overtaking, with TTL 3 and upper traffic limit 60%. 92
TABLE 26 Topology management in torus network of 256 nodes, with

TTL 3 and upper traffic limit 40%. .. 93
TABLE 27 Topology management in torus network of 256 nodes, with

TTL 5 and upper traffic limit 60%. .. 93
TABLE 28 Topology management in torus network of 256 nodes, with

TTL 7 and upper traffic limit 60%. .. 93

TABLE 29 Topology management in torus network of 256 nodes

without overtaking, with TTL 7 and upper traffic limit 60%. 93
TABLE 30 Topology management in torus network of 1024 nodes,

with TTL 3 and upper traffic limit 60%. ... 94
TABLE 31 Topology management in torus network of 1024 nodes,

with TTL 5 and upper traffic limit 60%. ... 94
TABLE 32 Topology management in torus network of 1024 nodes,

with TTL 7 and upper traffic limit 60%. ... 94
TABLE 33 Topology management in random network of 256 nodes,

with TTL 3 and upper traffic limit 60%. ... 94
TABLE 34 Topology management in random network of 1024 nodes,

with TTL 3 and upper traffic limit 60%. ... 95
TABLE 35 Topology management in random network of 1024 nodes,

with TTL 5 and upper traffic limit 60%. ... 95
TABLE 36 The average queries, replies and efficiency values of torus

network of 256 nodes at equilibrium. ... 97
TABLE 37 The average queries, replies and efficiency values of

random network of 256 nodes at equilibrium. 97
TABLE 38 The average queries, replies and efficiency values of torus

network of 1024 nodes with TTL 3 at equilibrium. 97
TABLE 39 The average queries, replies and efficiency values of torus

network of 1024 nodes with TTL 5 at equilibrium. 98
TABLE 40 The average queries, replies and efficiency values of

random network of 1024 nodes with TTL 3 at equilibrium. 98
TABLE 41 The average queries, replies and efficiency values of

random network of 1024 nodes with TTL 5 at equilibrium. 98
TABLE 42 The average queries, replies and efficiency values of

reconstructed torus network of 256 nodes with DBFS. 98
TABLE 43 The average queries, replies and efficiency values of

reconstructed random network of 256 nodes with DBFS. 99
TABLE 44 The average queries, replies and efficiency values of

reconstructed torus network of 1024 nodes with DBFS. 99
TABLE 45 The average queries, replies and efficiency values of

reconstructed torus network of 1024 nodes with DBFS. 99
TABLE 46 The average queries, replies and efficiency values of

reconstructed random network of 1024 nodes with DBFS. 99
TABLE 47 The average queries, replies and efficiency values of

reconstructed random network of 1024 nodes with DBFS. 100

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 15
1.1 Structure of the Thesis .. 16

2 PEER-TO-PEER NETWORKS .. 19
2.1 Distributed Systems ... 19
2.2 P2P Network .. 21
2.3 Unstructured and Structured P2P .. 22
2.4 Gnutella Protocol .. 23

2.4.1 Two-Tier Gnutella ... 24
2.5 Advantages and Disadvantages of Pure Unstructured P2P

Networks .. 24

3 RESOURCE DISCOVERY IN UNSTRUCTURED P2P 27
3.1 Evaluating the Search ... 27
3.2 Blind Search Methods .. 28
3.3 Informed Search Methods ... 29

4 TOPOLOGY MANAGEMENT IN UNSTRUCTURED P2P 31
4.1 Characteristics of Overlay Topologies ... 31
4.2 Topology Management .. 33

4.2.1 Characteristics of Neighbors ... 33
4.2.2 Topology Management Methods .. 35

4.3 Interest-Based Topology Management Approaches 37

5 SIMULATION OF PEER-TO-PEER NETWORKS ... 41
5.1 Initial Network .. 42
5.2 Resources ... 43
5.3 Queries ... 45
5.4 Running and Monitoring P2P Simulations ... 46

6 SIMULATING TOPOLOGY MANAGEMENT AND DBFS 48
6.1 Simulated Situation .. 49

6.1.1 Simulated Networks ... 49
6.1.2 Simulated Algorithms and Their Parameters 50

6.2 Simulator .. 51

6.3 Simulation Tests .. 52
6.4 Simulation Cases ... 55

6.4.1 DBFS .. 56
6.4.2 Topology Management Algorithms ... 58
6.4.3 Comparison of Topology Management Algorithms and

DBFS Algorithm .. 71
6.5 Conclusions ... 73

7 CONCLUSIONS AND CONTRIBUTION OF THESIS 75
7.1 Contributions of the Author .. 77

YHTEENVETO (FINNISH SUMMARY) .. 79

REFERENCES ... 80

APPENDIX ... 87

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, J. Vuori. Resource
Discovery in P2P Networks Using Evolutionary Neural Networks. Pro-
ceedings of the IEEE International Conference on Advances in Intelligent Sys-
tems - Theory and Applications, 2004.

PII A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, J. Vuori. Chedar: Peer-to-

Peer Middleware. Proceedings of the IEEE 20th International Parallel and Dis-
tributed Processing Symposium, 2006.

PIII N. Kotilainen, M. Vapa, A. Auvinen, M. Weber, J. Vuori. Peer-to-Peer Stu-
dio - Monitoring, Controlling and Visualisation Tool for Peer-to-Peer
Networks Research. Proceedings of the ACM International Workshop on Per-
formance Monitoring, Measurement and Evaluation of Heterogeneous Wireless
and Wired Networks, 2006.

PIV N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, J. Vuori. P2PRealm -
Peer-to-Peer Network Simulator. Proceedings of the IEEE 11th International
Workshop on Computer-Aided Modeling, Analysis and Design of Communica-
tion Links and Networks, pp. 93-99, 2006.

PV A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, J. Vuori. New Topology
Management Algorithms for Unstructured Peer-to-Peer Networks. Pro-
ceedings of the IEEE Second International Conference on Internet and Web Ap-
plications and Services, 2007. Best Paper Award.

PVI A. Auvinen, T. Keltanen, M. Vapa. Topology Management in Unstruc-
tured P2P Networks using Neural Networks. Proceedings of the IEEE Con-
gress on Evolutionary Computation, 2007.

PVII M. Vapa, A. Auvinen, Y. Ivanchenko, N. Kotilainen, J. Vuori. Optimal Re-

source Discovery Paths of Gnutella2. Proceedings of the IEEE 22nd Interna-
tional Conference on Advanced Information Networking and Applications, pp.
546-553, 2008.

1 INTRODUCTION

The development of technology has put peer-to-peer networks (P2P) back on
the map in last ten years. Although P2P networks have gained a lot of publicity
since 2000, this technology is not new. In the peer-to-peer network all nodes
have equal roles: nodes both provide resources to other nodes and consume
resources from other nodes. This idea of equality was already behind the AR-
PANET, which was invented in the late ‘60s. The emergence of applications
such as e-mail and the WWW in the ‘90s changed the network to client–server
architecture comprised of a small amount of powerful and dedicated servers
and a huge amount of clients using services from these servers. Since then, the
capacity of low-cost home computers and telecommunication has grown to en-
able the development of different P2P applications.

The best known application area in P2P networks is content distribution.
The file distribution systems, such as Napster and Gnutella, brought P2P into
the public eye. In addition to file services, the applications may utilize the un-
used CPU time to perform tasks that would otherwise require expensive super-
computers. The P2P networks can be used also for communications; for exam-
ple the popular internet phone application Skype is based on the peer-to-peer
model. The most popular and widely-used networks and applications have
been developed for open and voluntary use and require no service commitment
from individual nodes, only the installation of the application. However, P2P
systems can also be made available to restricted environments and be devel-
oped for the specific needs of organizations, particularly for applications where
resilience and scalability are needed.

 P2P network consists of computers, called nodes or peers, and the connec-
tions between them. The nodes and connections together form the logical to-

16

pology of the P2P network on top of the physical network. The P2P networks
can be divided into several groups based on the logical topology of the net-
work. In unstructured P2P networks, the node’s position in the network is not
predefined, whereas structured P2P networks have specific rules dictating
where the node joining the network is placed. Furthermore, unstructured net-
works can be pure or hybrid and nodes may construct one or more layers in the
topology. The hybrid network has a special server called a broker, which in-
cludes the index of the resources.

The different topologies have their own advantages and disadvantages
and properties affecting their efficiency. In particular, the topology affects the
usability of different search mechanisms, and searching for the resources is con-
sidered to be the main bottleneck in the scalability of unstructured P2P net-
works.

This thesis concentrates on the unstructured pure P2P networks where the
simplest search algorithm is flooding breadth-first search (BFS), where nodes
forward the query to their neighbors and possible replies are sent back to the
querier along the same route by which the queries were sent.

The performance analysis of P2P networks is far from simple. The real
networks are hard to monitor as they have no central control, the networks are
big, and the traffic and resources are quite diverse. Also, the expectations for
performance may differ even within the same network. Design and optimiza-
tion of networks is further complicated by the fact that the observable proper-
ties of the networks are mainly emergent and global whereas the design and
control is local. So, it is quite understandable that the literature on the analysis
of P2P networks is quite diverse and lacking commonly-used benchmarks.

The big question driving this work has been to understand how the topol-
ogy of P2P networks can be adapted to the needs of the users of the network.
For such a broad question no general solution is to be expected. So our focus is
in studying the related sub-problems and tools that will be needed when an-
swering this question in a concrete situation. The essential sub-problems consist
of the following:

1. How to make controlled experiments on P2P networks and proto-
cols?

2. How far is the real observed search performance of simple P2P pro-
tocols from theoretical limits?

3. How much the performance can be improved by careful tuning of
the parameters?

4. How to analyze systematically the performance of a topology man-
agement algorithm for a given setup?

1.1 Structure of the Thesis

The thesis is structured so that the first five chapters present background in-
formation on the study of topology management in unstructured P2P networks,

17

with a focus on the first three research questions. The actual contribution relat-
ed to these first chapters is documented in the attached papers I through VI. As
the papers have been written to obey strict page limits, they cannot cover all
aspects of a systematic analysis. Chapter 6 aims to expand on this by document-
ing a detailed analysis of a simple experiment.

Chapter 2 includes definitions of peer-to-peer networks and presents how
they are classified based on the level of centralization and the overlay structure.
The developed tools and topology management algorithms presented in this
thesis are designed for pure unstructured P2P networks, which are introduced
in greater detail by using the Gnutella protocol, for example.

Chapter 3 and Chapter 4 concentrate on two aspects affecting the efficien-
cy of pure unstructured peer-to-peer networks, namely: search algorithm and
topology. Chapter 3 presents the problem of the resource discovery in pure un-
structured networks and the most common search algorithms, which are used
when studying the search and topology management algorithms. Typically,
search algorithms depend on rules and parameters defined in the implementa-
tion phase. The NeuroSearch algorithm presented in paper PI uses neural net-
works to decide which neighboring parameters are relevant when forwarding
the query. Neither NeuroSearch nor any other developed search algorithm us-
ing local information has optimal performance. To facilitate the efficiency eval-
uation of the algorithms, paper VII presents an upper bound for efficiency to
which the algorithms can be compared to.

In the unstructured P2P network, nodes may manage their neighborhood
by adding or dropping the neighbors to improve efficiency. Chapter 4 introduc-
es the principle of topology management and its different aspects. Also, the so-
lutions developed to improve the topology are presented and compared to the
ones developed in this thesis. The topology management may be based on the
physical parameters of the network or the information collected from the logical
networks. The two algorithms presented in papers PII and PV use local infor-
mation about neighbors that nodes have collected. These algorithms improve
the efficiency of the search algorithms by organizing the topology in such a way
that nodes with similar interests are situated close to one another. The infor-
mation used in the management is rather complex and has several parameter
values that impact the results and performance.

As the real networks cannot be analyzed and optimized easily, some arti-
ficial models must be used. It is common practice for a preliminary evaluation
of a technology to explore its behavior under well-understood conditions and
simple models. After that large scale simulation with more realistic conditions
can be designed and performed. Thus, a well-designed simulator can be a use-
ful tool. The P2PRealm simulator presented in the paper PIV was developed for
the study of search and topology management algorithms, especially those us-
ing neural networks. Systematic simulation of P2P networks is a challenge due
to the lack of well-defined benchmarks, test-suites, and scenarios. The parame-
ters defining the simulation environment and their possible values are intro-
duced in Chapter 5.

18

For any algorithm, the performance depends not only on the values of the

algorithm’s own parameters, but also on the properties and parameters of the
networks used. Chapter 6 focuses on making simulation studies of the algo-
rithms in simple and controlled networks rather than in snapshots of real-world
P2P networks to be better able to control the effects of algorithms on the behav-
ior of the networks. Thanks to simple and well-controlled setup new infor-
mation about the qualitative behavior of the studied topology management al-
gorithm could be obtained. The tendency to create star-like topologies and to
create unconnected networks while optimizing the short range search efficiency
was observed and could be partially controlled. The managed network provid-
ed also a better environment to adaptive search algorithms but this effect may
be largely related to the artificial, evenly distributed resource allocation used in
the simulation. Hence no strong conclusions about the performance in real net-
works can be made. As the setup is fully artificial and has little in common
with any real use case of P2P networks, the most valuable findings are not re-
lated to the actual performance of different methods but to various aspects and
features of the methods and simulation experiments that are revealed through
systematic analysis in a simple setup.

Chapter 7 summarizes the contribution of the thesis. The appendix docu-
ments the results of different simulation tests in greater detail.

2 PEER-TO-PEER NETWORKS

The peer-to-peer networks (P2P) are a class of distributed systems. The P2P
networks can be further divided into several subclasses based on the properties
of their logical topologies. This chapter introduces different P2P networks and
discusses advantages and disadvantages of peer-to-peer architecture.

2.1 Distributed Systems

In the literature, several definitions are presented for a distributed system.
(Coulouris, et al, 2005) define it from a system infrastructure view by saying
that a “distributed system is a system in which hardware and software compo-
nents located at networked computers communicate and coordinate their ac-
tions only by passing messages”. (Tanenbaum, et al, 2002) has included a user’s
view into their definition of the distributed system. According to their defini-
tion, “a distributed system is a collection of independent computers that ap-
pears to its users as a single coherent system.” Thus the system consists of sev-
eral computers that cooperate together with messages for providing users a
service. In spite of being distributed, the system functions as if it was running
on one computer, and the user does not have to be aware of the details of dis-
tribution.

Currently, the most common distributed network architecture is the client-
server architecture. The system consists of one server and several clients. The
architecture is centralized: the server’s role is to provide a service to clients,
who request services from the server and wait for replies from it. Usually the

20

server has high performance compared to the clients. The system based on cli-
ent-server architecture is easy to manage because of the centralized server, but
at the same time, the server is also a possible bottleneck of the system and the
biggest obstacle to scalability of the system. Expensive clusters, high-capacity
communication channels, and storage are typically needed to maintain good
service in client-server architecture.

Master-slave is a distributed architecture that is used mostly for computa-
tional tasks. The architecture consists of one master unit and several other units
called slaves. The master node has some computational task, which it divides
into independent subtasks. The master sends subtasks to slaves that process the
data. After processing the data, the slaves send results back to the master. In the
master-slave architecture, the master controls the commands. Thus the architec-
ture has a centralized unit that may become the bottleneck of the system. The
architecture is well suited for situations where the tasks can be easily divided
into smaller tasks and the amount of slaves does not increase infinitely.

The third common architecture for distributed systems is a peer-to-peer
(P2P) architecture that in the purest form is totally decentralized. In the P2P
architecture, all computers can take on either role, working as masters or clients
giving out tasks, or as slaves or servers providing work and resources for the
others. Thus the architecture is scalable in terms of amount of computers, but
finding a certain resource and controlling the system is a challenge.

 These three architectures differ from each other with respect to the cen-
tralization of resources or commands. In the client-server architecture, resources
are centralized and provided by a server, but commands are decentralized and
executed by clients. In the master-slave architecture, commands are centralized,
coming from the master, but the resources are decentralized in slaves. Peer-to-
peer architecture is totally decentralized: both resources and commands are de-
centralized. The client-server and P2P architectures differ also with respect to
the location of service providers. In the client-server network, the servers are
situated in the middle of the network whereas in peer-to-peer applications the
utilized resources are available at the edges of the Internet (Coulouris, et al,
2005).

FIGURE 1 Peer-to-peer and traditional client-server architectures.

21

2.2 P2P Network

In the peer-to-peer network, all computers or peers (also called nodes) in the
network have equal roles. The main idea is that each peer in the peer-to-peer
network may both provide resources to other peers in the network and request
resources from the others. According to (Schollmeier, 2001) “the peer-to-peer
network is a distributed network architecture where the participants, i.e. peers,
share a part of their own hardware resources which are necessary to provide
service and content offered by the network. Participants are accessible by other
peers directly, without passing intermediary entities. The participants of such a
network are thus resource providers as well as resource requestors.“ In the
peer-to-peer networks, peers communicate by message passing and thus it fits
to the definition of distributed systems presented in the previous chapter
(Ciglaric & Vidram, 2002).

(Androutsellis-Theotokis & Spinellis, 2004) add the concept of self-
organizing into the definition. The nodes self-organize into network topologies
to share resources, but those topologies are also “adapting to failures and ac-
commodating transient populations of nodes while maintaining acceptable
connectivity and performance, without requiring the intermediation or support
of a global centralized server or authority.” Thus in a peer-to-peer network, dy-
namicity of the networks is considered normal behavior.

Schollmeier’s definition of peer-to-peer networks can be expanded for de-
fining a pure peer-to-peer network. In a pure peer-to-peer network, any single,
arbitrary chosen peer can be removed from the network without affecting the
service (Schollmeier, 2001). Gnutella is the best known and most used pure
peer-to-peer protocol.

Another category of peer-to-peer networks is the hybrid peer-to-peer net-
works (Schollmeier, 2001). In the hybrid peer-to-peer network, the resource re-
quests are sent to a central entity usually called an intermediate or broker,
which replies by sending information about nodes possessing the requested
resource. The requesting peer selects from the reply message a node that it
wants to utilize as a resource and establishes a connection to that node. Thus in
the hybrid peer-to-peer network, the searching is like client-server, but the ac-
tual service, for example downloading a file, is pure peer-to-peer. The popular
music file-sharing application Napster used hybrid peer-to-peer architecture.
Hybrid peer-to-peer systems are easy to implement and searching is simple, but
they have the same disadvantages as the client-server system due to centralized
architecture. The intermediate may become a bottleneck of the system, restrict-
ing the scalability.

In addition to the traditional pure and hybrid peer-to-peer networks, there
is a third class called partially centralized architecture. In a partially centralized
system, all peers are not equal, but there is a subset of peers that are called su-
pernodes or ultrapeers. Other participating peers are called leaf peers. Ul-
trapeers and leaf peers form a two-tier topology so that ultapeers form a top-

22

level topology to which leaf peers are connected through ultrapeers. An ul-
trapeer knows the resources of the leaf peers connected to it, so it can process
the resource search queries on behalf of its leaf peers. Ultrapeers have to have
sufficient capacity, but they are dynamically replaceable. (Androutsellis-
Theotokis & Spinellis, 2004), (Stutzbach & Rejaie, 2008), (Wang, et al, 2007),
(Yang & Garcia-Molina, 2003). The Kazaa file-sharing application has the two-
tier topology.

FIGURE 2 Topology of partially centralized architecture.

2.3 Unstructured and Structured P2P

Peer-to-peer networks can also be categorized into unstructured and structured
peer-to-peer networks, based on the evolution of logical topology.

In a structured network, the overlay topology is controlled and there is
mapping between resources and the peers providing them. Thus the resource
queries can be routed efficiently and it is guaranteed that the resource can be
found if it exists in the network. The disadvantage of this overlay architecture is
that maintaining the topology needs work and it is not suitable for networks
where nodes are joining and leaving the network at a very high rate (Lv, et al,
2002B). Examples of structured peer-to-peer systems are Freenet, Chord (Stoica,
et al, 2001), CAN (Ratsanamy, et al, 2001) and Tapestry (Zhao, et al, 2004).

A P2P network is unstructured when a peer’s position in the network is
not predefined. A peer can join the network by connecting to any node in the
network and freely select its neighboring peers, so the overlay topology is total-
ly nondeterministic (Androutsellis-Theotokis & Spinellis, 2004). In an unstruc-
tured P2P network, resource discovery burdens the network because it has to be
done by propagating a resource query from peer to peer. An advantage is that
the search key is not restricted to the predefined keywords used on the struc-
tured networks. Unstructured P2P is also suitable for networks where the net-

23

work is highly transient because maintaining the topology does not need extra
work.

This thesis concentrates on pure unstructured peer-to-peer networks be-
cause of their flexibility for different kinds of applications and ability to scale.

2.4 Gnutella Protocol

The most traditional pure unstructured peer-to-peer architecture uses the so-
called Gnutella protocol. Gnutella protocol was introduced in 2000 and since
that it has been used for several file sharing applications.

Because of the pure nature, the joining to the network is challenging.
When the peer wants to join the Gnutella network it needs to locate one node in
the network. The protocol does not define how this should be done, but it can
be done for example through a specific web page listing nodes. Rejoining the
network is easier because each node keeps an index of the neighbors it has.
When a node wants to rejoin the network after disconnection, it checks its index
of neighbors from a previous session and tries to reestablish connections.

Gnutella uses a propagation mechanism called flooding for searching
nodes and resources. Gnutella uses two types of messages. Ping/Pong messag-
es are for finding new nodes and Query/Query Hits messages for locating re-
sources. Gnutella node sends a Ping message to the node to which it is connect-
ed. The node replies to the message by a Pong message and includes in the
message its connection information, IP and port number, and information about
its resources. The node also forwards the Ping message to all of its neighbors.
Using the Ping message, the entering node gains knowledge of the nodes close
to it and thus finds new nodes to connect with.

Locating resources with a Query message is also implemented with a
flooding algorithm. A node sends a Query message to all its neighbors, who
then forward the Query message to their neighbors. If the node receiving the
Query message has the queried resource, it sends back as a response the so-
called Query Hit message. A Query Hit message includes IP and port number
of the sender and the number of resources that match the query. All response
messages, Pong and Query Hits are propagated back to the initiator by the
same route that the Ping or Query message came to the responder.

Gnutella protocol has two ways to restrict the flooding algorithms. The
Ping and Query messages have a time-to-live (TTL) value that is used to limit
the searchable area. Each copy of the messages has a TTL value that is de-
creased by one every time a query arrives at a node. When the value of TTL is
zero, the message is not forwarded but discarded. The nodes also keep a histo-
ry of the messages they have forwarded. When a node initiates a query, it as-
signs to it a unique ID. All nodes propagating queries add the copy of the ID
and the node from where the query arrived into its local history. If a node re-
ceives a query already included in its history, it discards it. The information

24

about the sender is used when the response message is delivered back to the
initiator.

When the node that initiated a Query message receives Query Hit replies,
it selects the nodes from which it wants to use the resource. The initiator estab-
lishes a connection to the replier and uses the resource. In the case of file distri-
bution the peers replicate files when downloading them from a peer. Thus the
principle is that all downloaded resources will be available also in the peer that
has downloaded them.

2.4.1 Two-Tier Gnutella

Modern Gnutella utilizes a two-tier overlay topology, described in chapter 2.3,
which enables more-efficient search mechanisms. When connecting to ul-
trapeers, a leaf peer uploads a set of hashes of its resource keys (filenames) to
the ultrapeer. Ultrapeers manage the queries for their leaves so that queries are
propagated in top-level topology only. (Stutzbach & Rejaie, 2008), (Rasti, et al,
2006), (Wang, et al, 2007)

Modern Gnutella uses Dynamic Query Protocol, which is totally con-
trolled by ultrapeers (Fisk 2003). The challenge of the unstructured P2P network
is that the popularity of specific resources in the network is not known and it is
hard to select a proper TTL value. In the Dynamic Query Protocol, a node uses
a probe query to gather information about popularity of the searched resource.
The probe queries are sent to specific amount of neighbors and the horizon is
varied based on the received replies.

In Gnutella protocol, a leaf node is allowed to become an ultrapeer if it
cannot find enough ultrapeers than can accept an additional leaf. Proper bal-
ance between ultrapeers and leaf peers and well-connected top-level overlay is
important in order to provide scaling and short pair-wise distances. Two popu-
lar implementations of two-tier Gnutella protocol are LimeWare and BearShare.

2.5 Advantages and Disadvantages of Pure Unstructured P2P
Networks

The pure unstructured peer-to-peer system has several advantages when com-
pared to the traditional client-server architecture, such as high availability,
scalability and fault-tolerance (Oram, 2001). The lack of central management is a
consequence of the decentralized architecture. The scalability of search algo-
rithm and freeriding are the most recognized problems in the P2P networks.

(DePaoli & Mariani, 2004) define scalability as the degree of adaptability a
system exhibits with respect to increasing load situations. P2P systems are
highly dynamic and unpredictable in size, topology and activity. Size of the
network may grow or shrink due to connecting and disconnecting peers, which
also affects the topology of the system. As (Ge, et al, 2003) states, the increasing
population of peers not only increases workload, but also increases the capacity

25

to serve the workload. Peer-to-peer networks are scalable regarding amount of
peers and resources, but the used flooding search algorithm is not scalable. This
barrier should be overcome by using more efficient search algorithms.

P2P has also lower costs because peer-to-peer networks typically utilize
unused capacity of the computers and resources already available in the net-
work, i.e. the disk space of home computers (Coulouris, et al, 2005). Thus the
system does not need any dedicated, expensive servers, space or administrators.

The fault-tolerance of the P2P network can be derived from the decentral-
ized nature and equality of the nodes. The availability of a P2P system does not
depend on any specific node, and leaving of a node is assumed to be a normal
behavior of a P2P system. The homogenous distribution of connections pro-
vides no reference points for attackers, but if the nodes are organizing as in the
small-world network model, the attacks can be targeted to peers with numerous
connections. Even in this case, elimination of one node is not enough to para-
lyze the system, but the attacking needs to be more systematic. (DePaoli & Mar-
iani, 2004)

P2P networks provide users high availability through replication. Because
peers may join and leave the network whenever they want, availability of a cer-
tain resource in a certain node is not guaranteed. But since a downloaded re-
source is usually replicated into the downloading peer, popular data can be
found from several peers in the networks. There are also peers that do not rep-
licate data or do not share any resources with other peers but instead search
and download resources that others are sharing. Those peers are called freerid-
ers, or freeloaders, and there exists several studies concerning impact of freerid-
ing to the P2P systems performance.

(Adar & Huberman, 2000) present that if a system demands that a peer
has to share a resource to be able to download a resource, this may cause peers
to share randomly generated files or other data that has no value to the system.
The authors have studied the user traffic on Gnutella and found the significant
amount of freeriding in the system. According to the authors, approximately 63%
of the peers share no files and the top 20 % shares 98% of files. A result of sig-
nificant freeriding might be that decentralized peer-to-peer network becomes
more centralized if there are just few peers that provide resources to others act-
ing just as clients. Those peers sharing popular content might become overload-
ed and thus become bottlenecks of the networks (Ramaswamy & Liu, 2003B).
Significant freeriding also affects the amount of files in the system and the
number of popular files may even decrease, which reduces a user’s interest in
using the system (Ramaswany & Liu, 2003). Because of the freeriders, the search
horizon should be expanded so that it reaches enough nodes providing re-
sources, which generates more traffic in the network.

Generally freeriding is thought as a disadvantage of the decentralized P2P
systems but according to a study of (Ge, et al, 2003) pure unstructured networks,
the limited flooding algorithm can tolerate some number for freeloaders with-
out much degradation in the query success probability and the overall system

26

throughput may increase, but performance drops sharply if this number is too
large.

In addition to the scalability of the used search algorithm and freeriders,
the lack of global knowledge of the network is a recognized problem in P2P
networks. In the client-server system, a resource placement is easy to manage,
but in the P2P system it is difficult to place data across peers so that workload
would be balanced in the network. Lack of global knowledge causes also chal-
lenges for management of replicas and resource discovery.

3 RESOURCE DISCOVERY IN UNSTRUCTURED P2P

Resource discovery is a challenge in the pure unstructured network where re-
sources are distributed across the network and location of the resources is not
known by the nodes. The use of flooding mechanisms for resource discovery is
the main barrier for the scalability of unstructured peer-to-peer networks.

(Tsoumakos & Roussopoulos, 2003A) categorize search methods as either
blind or informed methods. Blind search algorithms function without any in-
formation about resource location whereas informed methods use some kind of
index to assist with the search. Blind methods are neither accurate nor efficient.
So the goal is to maximize the number of found resources and minimize the
number of messages needed to achieve that.

This chapter briefly describes the most common blind and informed
search methods.

3.1 Evaluating the Search

(Lv, et al, 2002A) have categorized metrics used in the evaluation of search al-
gorithms for user aspects and load aspects. User aspects include success, i.e. the
probability of finding the queried object before the search terminates, and num-
ber of hops needed to find the resource. Load aspects include for example
number of search messages per node, number of visited nodes, and percentage
of message duplication.

Search algorithms are evaluated mainly based on the success and efficien-
cy of the query. The search is successful if the node receives a reply or replies to

28

the request. One common criterion is that a search is successful if the request
results to at least one reply, but the criterion may demand also more replies.
Success rate describes the proportion of successful searches to total searches,
and it is used as a measure of estimating the performance of the search algo-
rithm. Efficiency presents proportion of received replies to the generated que-
ries. Usually efficiency of the search algorithm is compared to the efficiencies of
other search algorithms, but it can also be evaluated against theoretical target
value as presented in the paper VII.

Other metrics used when estimating resource discovery algorithms are
cost and quality of results (Yang & Garcia-Molina, 2002). The used processing
power and bandwidth are main costs when processing the query. When esti-
mating quality of the results, the number of results, satisfaction, and time to
satisfaction are taken into account. The query is satisfied if at the very least a
defined amount of results is found. Time to satisfaction is the time that has
passed since the user sent the query until he got the last result needed to
achieve the satisfaction.

3.2 Blind Search Methods

The most common blind search algorithm is flooding Breadth first search (BFS)
algorithm, which is described in chapter 2.4. Advantages of BFS are that it is
easy to implement and is able to find a queried resource if it exists in the hori-
zon defined by the TTL value. So if only the number of results is used as the
quality metric, the BFS is ideal. The disadvantage is, as mentioned earlier, the
scalability problem. Because the replication ratio of the resource is not known,
the TTL value has to be high to ensure success. At the same time, the number of
duplicate queries also increases. Those produce extra work in the network and
decrease the effectiveness. (Tsoumakos & Roussopoulos, 2003A), (Tsoumakos &
Roussopoulos, 2006), (Yang & Garcia-Molina, 2002), (Lv, et al, 2002A)

There are blind algorithms derived or extended from the BFS algorithm,
for example iterative deepening. The Iterative Deepening algorithm consecu-
tively sends BFS searches and increases the depth of the query in each iteration
until the resource is found or the defined maximum depth is reached. (Yang
and Garcia-Molina, 2002) suggest that when satisfaction is the used metric, the
iterative deepening algorithm should be used. The disadvantage of the search
algorithm is that each time the depth is increased, the same query message is
also forwarded again to the same neighbors.

The random walk algorithm randomly selects a neighbor node to which
the query is sent. This is repeated in every node receiving a query message until
the query is satisfied. When only one walker is used, the user may notice delay.
This can be avoided by using multiple walkers. The initiator of the query sends
k query messages, which utilize random walk to k randomly selected neighbors.
Usually k is between 16 and 64. The random walk algorithm needs a TTL value
and periodical checking from the initiator to terminate the query. Compared to

29

BFS, the random walk algorithm increases the amount of hops a bit but reduces
message overhead significantly, and it is a more scalable search algorithm (Lv,
et al, 2002A). The disadvantage of the algorithm is variability of success rates
and number of hits, which depend on topology. (Lv, et al, 2002A), (Tsoumakos
& Roussopoulos, 2006). One specific random walk algorithm is Highest Degree
Search, which selects the neighbor that has the highest degree, i.e., highest
amount of neighbors, and that has not yet been visited (Adamic, 2001). The al-
gorithm is especially suitable for the networks with power-law distribution.

3.3 Informed Search Methods

Informed search algorithms utilize the same kind of information as the interest-
based topology management. There are several algorithms derived or extended
from the BFS algorithm that can be classified as informed search methods
(Tsoumakos & Roussopoulos, 2006), (Kalogeraki, et al, 2002). Intelligent-BFS
algorithm is an extension of Modified-BFS, where nodes select part of the
neighbors to forward the query to. The benefit is that it reduces the amount of
generated messages but covers still a large number of peers. When using Intel-
ligent-BFS search, each node stores information about recent answers for sent
resource queries and uses that information when deciding where to forward the
resource query. The node keeps a profile for each of its neighbor nodes and
stores in the profile the resource replies returned by the neighbor. When decid-
ing where to forward a query message, the node uses a query similarity metric
to find out the similar queries in profiles and rank the neighbors. Intelligent-BFS
has a high success rate and it does not produce any overhead when neighbors
are joining or leaving. The disadvantage is that intelligent-BFS still produces a
large amount of messages. (Kalogeraki, et al, 2002)

Adaptive Probabilistic Search (APS) collects information about previous
searches to define forwarding probabilities for its neighbors. Searching is done
by using k random walkers. The local index is updated based on the success of
a walker. If the walker succeeds, the relative probabilities of the nodes on the
walker’s path are increased. If the walker fails, the probabilities are decreased.
The advantage of APS algorithm is bandwidth-efficiency. (Zhang et al, 2007),
(Tsoumakos & Roussopoulos, 2006)

In Routing Indices (RI) method, each node keeps an index for every
neighbor it has. The index contains information how many resources belonging
to each resource categories can be found from that neighbor direction. The in-
formation is not gathered from the replies, but the nodes provide that infor-
mation to each other. There is no information on which node will provide a re-
source, just a direction. Searching using Routing Indices is very bandwidth-
efficient, but maintenance of routing indices uses flooding, which creates load
in dynamic networks. (Crespo & Garcia-Molina, 2002), (Tsoumakos & Rous-
sopoulos, 2003A), (Tsoumakos & Roussopoulos, 2006)

30

(Crespo & Garcia-Molina, 2002) have presented the compound and the
hop-count routing indices. In compound RI (CRI) the neighbors are ranked
based on their goodness, i.e. the estimated number of resources that may be
found from the neighbor’s direction. The query is forwarded to the neighbor
with the highest goodness value. If a node has no neighbors, the query is for-
warded back to the neighbor from which the node received the query, which in
turn selects the second best neighbor and forwards the query to that one. In
hop-count Routing Indices, aggregated RIs are saved for each hop up to the
maximum number of hops. Goodness is defined as the ratio between the num-
ber of resources available through that neighbor and the number of messages
required to get those resources. This method has higher storage and transmis-
sion cost than the CRI has.

Directed BFS (DBFS) algorithm (Yang & Garcia-Molina, 2002) uses also in-
formation on neighbors and replies. The querier sends query only to a subset of
neighbors and selects the neighbors based on the defined heuristic. The criteri-
on may be for example the amount of replies or closeness of replier. The nodes
receiving the query forward it using the BFS algorithm. The algorithm has low-
er cost than BFS without significant loss in quality of results.

4 TOPOLOGY MANAGEMENT IN UNSTRUCTURED
P2P

This chapter presents how the efficiency and scalability of unstructured peer-to-
peer networks can be improved by reconstructing the overlay topology. The
topology can be presented as a graph, and concepts and parameters from the
graph can be used to characterize P2P network topologies. The concept of to-
pology management is defined and the various methods to optimize the topol-
ogy are presented.

4.1 Characteristics of Overlay Topologies

Overlay topology of the peer-to-peer network can be presented as an undi-
rected graph G = < V, E >, where V is a set of nodes in the network and E is a
set of edges representing connections between the nodes. The topology man-
agement affects connections in the overlay by changing them, and the effect of
the management can be evaluated using properties derived from the graph of
the overlay. Networks have some simple global properties that can be used to
characterize the topology. The global parameters that affect the search perfor-
mance the most are the diameter of the networks, the average distance between
the nodes, and the average degree of the nodes. All of those have influence on
the needed TTL value, the amount of hops, i.e., the traffic the query is causing.

The distance of two nodes i and j, dij, is the number of edges (i.e. connec-
tions) of the shortest path between the nodes. Diameter of the network is the
length of the maximum distance in the network. Characteristic path length, L,

32

measures the typical distance in the network, i.e., the average shortest path

lengths from a node to all other nodes in the network. −=
n

i

n

j
ijdnnL)1/(11

(Watts & Strogatz, 1998), (Newman, 2003), (Xie, et al, 2007). Using diameter of
the graph the maximum number of hops needed for reach all the nodes in the
network can be defined and thus the maximum search path can be calculated.
The node degree, k, is the number of connections the node is maintaining, i.e.,
the number of the node’s neighbors. A more informative way to characterize
node degrees is node degree distribution, which can be formed by using Prob-
ability Distribution Function (PDF) p(k) = n(k)/n, where n(k) is the total number
of nodes with degree value k (Xie, et al, 2007).

Peer-to-peer networks can be categorized according to graph properties
such as grid, random, scale-free or small-world networks. Grids are always
constructed and not suitable to be maintained in the dynamic environments
where nodes are joining and leaving the networks whenever they want. A two-
dimensional grid graph is an m*n graph that is the graph cartesian product of
path graphs on m and n vertices. In the regular m*m grid, the nodes have an
almost equal position and the degree distribution is uniform. The regular torus
is a periodic grid, where all nodes have the same degree of 4 and the diameter is
m/2. Hypercube is a special grid used usually in parallel computing. It is a
graph, joining the vertices of a n-dimensional hypercube along the edges. It has
2n nodes of degree n and the diameter is n.

Random graph is a graph in which edges are placed between nodes ran-
domly. The number of possible edges is n(n-1)/2, where n is the number of
nodes. Each pair of nodes is connected with probability p. In random graphs,
the degree of the node follows binomial distribution, or a Poisson distribution,
in the limit of large n. (Newman, 2003)

 In real networks, also in Internet or P2P networks, degree distribution
does not usually follow the Poisson distribution but a power law γ−kkP ~)(.
Networks with power law degree distribution are called scale-free networks.
According to (Albert & Barabasi, 2002) power law is based on growth and pref-
erential attachment. Preferential attachment means that probability of connect-
ing to a node depends on node’s degree. Power law distributed network can be
formed by algorithm of the Barabasi-Albert method: In each time step, one new
node is added to network. Probability that node will be connected to node i:

=Π

j
j

i
i k

kk)(, where ki is degree of node i. (Albert & Barabasi, 2002), (Newman,

2003)
Interconnectivity of the node’s neighbors is measured by a local clustering

coefficient, which is the average probability for any two nodes sharing a neigh-
bor to be connected. The local clustering coefficient is calculated by

)1(
2

−
=

ii

i
i kk

EC where ki is degree of node i and Ei denote actually existed edges

between the node’s neighbors. The clustering coefficient of the network, C, is

33

the average of the local clustering coefficients =
n

iCn
C

1

1 . In random graph C = p.

(Albert & Barabasi, 2002), (Xie, et al, 2007). Networks, which have small charac-
teristic path lengths similar to random graphs, but a larger clustering coefficient,
are called small-world networks. (Watts & Strogatz, 1998)

4.2 Topology Management

Topology management involves constructing the overlay topology in a self-
organizing way. It affects the overlay topology of the network by defining prin-
ciples for nodes choosing their neighbors and thus making the network more
efficient for the given purpose. Topology management includes two processes
that together determine the topology. First is the process of inserting new nodes
to the network. The second process includes methods to define when and how
to make changes, and add or remove connections. The purpose of the topology
management is to maintain the neighborhood of the node so that neighbors are
the best nodes available to a specific node according to some defined criteria.
The rules may be defined by the developer of the algorithm or the algorithms
may also adapt some principles from the existing models, such as Schelling’s
model (Singh & Haahr, 2007), club concept (Asvanund, et al, 2003), (Idris &
Altmann, 2006), prisoner’s dilemma (Hales, 2005), (Lai, et al, 2003) or social
networks (Yang, et al, 2008).

4.2.1 Characteristics of Neighbors

Because there is no global knowledge of the network, nodes make decisions
regarding their neighbors based on local knowledge only. Nodes to which a
node is connected are called neighbors. Other nodes, that a node is aware of, are
called candidate nodes. Nodes decide on taking candidate nodes as their neigh-
bors based on their knowledge about some property or properties of the candi-
dates. Nodes either collect this information locally from the candidate nodes or
utilize information that the neighbors or the potential neighbors are providing.
The topology management approaches are more or less characterized by these
choices: what information to collect, what criteria to apply to the information,
and what action to take.

One popular criterion is that the node’s neighbors should be the nodes
which are the closest nodes in the physical network. The purpose is to match
logical topology to the underlying physical topology and thus prevent a situa-
tion where the flooded message goes through the same path several times in the
physical level, although it is handled at most once by the node in the applica-
tion level. Thus the purpose is to decrease the amount of traffic in the physical
network and to decrease the delay. However, in the logical topology, this solu-
tion may increase the amount of hops needed to find a searched resource. If the
used time-to-live values of the flooded messages need to be increased to find a

34

certain amount of resources, it increases the traffic both on logical and physical
levels. The methods work well in the network where data is largely replicated.
(Agrawal & Casanova, 2003), (Alima, et al, 2002), (Hu and Sereviratne, 2003),
(Liu, et al, 2003), (Liu, et al, 2004A), (Liu, et al, 2004B), (Liu, et al, 2005A), (Liu, et
al, 2005B), (Lu, et al, 2005), (Massoulie, et al, 2003), (Ni & Liu, 2004), (Ratsanamy,
et al, 2002), (Wan, et al, 2005), (Xiao, et al, 2005), (Zhang, et al, 2004)

A good neighbor can be defined also as a node providing service that the
other node needs. This service may be the capacity to handle the received mes-
sages, it may be the amount of resources or replies the node is providing, or it
may be the quality of the provided resources. This criterion for goodness is very
similar to the one used in node selection, i.e., when a node is selecting where it
will finally download the found resource from. Issues taken into account may
be physical properties of the connection or historical information about the
node and resources it has provided (Abraham, et al, 2007), (Berstein, et al, 2003),
(Habib and Chuang, 2006), (Liu, et al, 2008), (Liu, et al, 2010), (Sun, et al, 2007).

When capacity information, delivered usually by the candidate node, is
used as criteria, the purpose is to manage the load in the network. Good neigh-
bor is a node which has the capacity to handle the messages it receives from the
node. This prevents nodes from overloading and decreases the processing delay
in the network. (Lv, et al, 2002B), (Chawathe, et al, 2003)

The criterion may also be the similarity of interests. When the good node
is defined as a node providing replies for the resource requests, the purpose is
to put nodes with a similar interest close to each other in the logical network.
This clustering may be established based on the information gathered from the
received replies for the sent queries or it may involve semantic metadata de-
scribing resources or interests. In the first case, the idea is that nodes that have
provided resources to the node will provide results also for the future queries.
In the second case, there have to be some global and predefined rules for de-
scribing, classifying, and matching resources and measuring similarities (Han-
durukande, et al, 2004), (Khambatti, et al, 2004), (Broekstra, et al, 2003), (Sakar-
yan & Unger, 2003A and 2003B), (Asvanund, et al, 2003), (Idris & Altmann,
2006), (Voulgaris, et al, 2004), (Ng & Sia, 2002), (Crespo & Garcia-Molina, 2005),
(Kojima, 2003). This is difficult in the system with a distributed nature, but
when a node has neighbors with similar interests, it receives required resources
closer and thus the value of time-to-live in the queries may be decreased. This
decreases traffic in the network.

When the information used for topology management is delivered by the
neighbors, or neighbor candidates, the advantage is that all nodes have the
same information about the same neighbor. The disadvantage is that nodes are
not making decisions based on the experience or observation about candidates
but they have to rely on the information delivered by the neighbors and trust
that information. Nodes may promise resource replies for the queries, but the
actual received service does not match with the promise or has low quality.
Thus one criterion for the goodness of the neighbor is trust, which evaluates
also the received service (Niu, et al, 2007).

35

The age of the node may be used as criteria when selecting the neighbors.
The goodness depends on the lifetime of the nodes (Bustamante & Qiao, 2004).
The underlying assumption is that the longer the node has been in the network,
the longer it will be in the network and provide resources, and thus the better
neighbor it is. When neighbors are staying in the network, there is no need for
searching and establishing new connections, which decreases the traffic gener-
ated by connection management.

4.2.2 Topology Management Methods

Topology management has to define rules for when and how the topology is
managed to optimize the node’s neighborhood. The methods rank the nodes
based on the defined criteria and use ranking information when selecting new
neighbors or removing existing neighbors. A topology management method
includes the actions to reconstruct the overlay, initiator of the actions, and the
extent/scope of the actions.

The methods may use one or several criteria mentioned in the previous
chapter to rank the neighbor candidates. Most methods have a fixed optimiza-
tion target, such as to decrease the delay, and thus they are utilizing a prede-
fined criterion, but there are also more general solutions without set criteria.
When the criteria is not defined in the algorithm, the user/programmer may
select one or several properties of the node as criteria depending on the applica-
tion area (Alima, et al, 2002), (Singh & Haahr, 2007), (Ramaswamy, et al, 2005),
or the general method is adapting into the scenario and selects the important
properties of the node as criteria (Iles & Deugo, 2002), (Iles & Deugo, 2003).

Topology management method needs an initiator of the management ac-
tions. Usual triggers are situations such as when a node is rejoining the network,
when a node is overloading (Cooper & Garcia-Molina, 2005), or when the
goodness of the neighborhood is below the limit, like the searching time is
longer than expected (Sakaryan, et al, 2003A), (Sakaryan, et al, 2003B). The node
may also have some extra capacity to deliver and thus apply for topology man-
agement.

Topology management is usually clustering nodes based on the defined
criteria, for example nodes with a similar interest should be in the same cluster
and thus close to each other. In a pure P2P network, all nodes are in principle
equal, and it is up to the topology management method to self-organize nodes
as clusters and create the cluster structure (Singh & Haahr, 2007), (Crespo &
Garcia-Molina, 2005). In two-tier networks, there is a predefined hierarchical
structure, i.e., super-peer architecture, and thus there already exist the super-
peers or cluster heads which are defining the characteristic of a cluster belong-
ing to it (Ramaswamy, et al, 2003A), (Ramaswamy, et al, 2005). The latter case is
very common in the networks utilizing semantic information (Löser, et al, 2003),
(Nejdl, et al, 2003), (Airiau, et al, 2006), (Asvanund, et al, 2003), (Idris & Alt-
mann, 2006). If the topology is defined as hierarchical, the purpose of the topol-
ogy management is to define how nodes select the super-node which to connect

36

to (Lo, et al, 2005), or to define how a node will become a super-node (Zheng, et
al, 2005), (Lo, et al, 2005).

Hierarchical structure may also have several tiers, i.e., topology has sever-
al layers and the cluster head in the upper layer serves one or more clusters in
the lower layer (Srivatsa, et al, 2006), (Yang & Chen, 2008). Thus topology man-
agement methods may reconstruct the connections in the current overlay net-
work or construct another overlay or overlays on top of the original and use
those for different purposes (Ng & Sia2002), (Crespo & Garcia-Molina, 2005) or
define different type of connections for different purpose (Cooper & Garcia-
Molina, 2005).

Thus when topology management achieves cluster structure, the question
is whether there exists the cluster heads. If the originators exist, the topology
management determines to which originator the node should connect, and how
the originator accepts a request or prevents overloading. The big question con-
cerning the topology management is then whether the originator has criteria for
the nodes belonging to that cluster or whether those criteria are evolving based
on the nodes joining the cluster. This also affects the adaptation of the method.
If it demands some special structure of the network, it is not easily included in
the existing system. The developed method may be independent of the used
search algorithm or it might be developed for the certain search algorithm,
which is common in the semantic P2P systems. (Nejdl, et al, 2003), (Voulgaris, et
al, 2004)

Actual changing of topology consists of adding and removing connections.
Additions and removals of connections are naturally needed when peers join or
leave the network. When a node joins the network, it needs to add a connection
to a node in the network. When a node leaves the network, it may inform the
neighbors of it and disconnect all connections to neighbors. The topology adap-
tation can appear also in other situations when a node wants to change its
neighborhood to a better one. The node may also replace the connection when it
adds a new connection to a node and removes one existing connection. Thus
some developed methods have only heuristics for situations when a node joins
or disconnects, but some have heuristics to adapt the network more actively.

Topology management produces load in the network because establishing
and dropping connections requires messages to be sent. Thus the produced
load should be taken into account when evaluating the gained efficiency. In the
ideal situation, the network changes a lot only in the beginning and reaches a
stable state where just a few changes take place. Nodes in the network can also
have constraints concerning the capacity that topology management should
take into account to guarantee the functionality of the network. Some devel-
oped topology management methods control the degree of a node by defining a
maximum number for neighbors, but this is not an optimal solution. The
amount of neighbors should be restricted based on the real capacity of a node,
and the node adjusts its neighbors based on its capacity to handle the messages
the neighbors are sending to it.

37

The scope of the topology management is usually the node’s neighbor-
hood, i.e., nodes one-hop or two-hops away. Thus a node constructs its own
local connections using information on the neighbors and their neighbors.
There are also the topology management methods where changing connections
has larger impact, for example when two nodes are replacing one of the neigh-
bors by connecting to each other. In this situation, the dropped neighbors of the
nodes are connected to each other (Sun & Garcia-Molina, 2004). Thus a node’s
decision to replace a node with another also affects other nodes’ neighborhoods
and it causes the nodes in these other neighborhoods to connect “against their
will”.

4.3 Interest-Based Topology Management Approaches

Interest-based topology management methods cluster nodes according to inter-
ests. The goal is that nodes with a similar interest will be close to each other
and thus a node will receive the resources it requires close to it and the search
path can therefore be decreased, which also decreases the load to the network.
The characteristic used to illustrate the interest is usually the amount of re-
source replies the node has received to the queries it has sent to the network
(Ramanathan, et al, 2002), (Ghanea-Hercock, et al, 2006), (Ng, et al, 2002),
(Sripanidkulchai, et al, 2003). Some studies use information about satisfactory
transactions and unsatisfactory transactions for interest-based topology man-
agement (Condie, et al, 2004). A node sending a reply to the query shares the
same interest with a querying node. Thus the node uses history information
about the queries and replies to predict the need in the future. The expectation
is that the nodes providing results are most likely providing results also for the
subsequent queries.

When a node uses resource replies as criteria, it collects information local-
ly. So another node’s information on the same node is not identical. Thus a
node rates other nodes from its point of view, i.e., how beneficial the other
nodes are to it. Topology management methods need also to take care that deci-
sions based on local goals and locally collected information are also beneficial to
the P2P network in general.

 From resource replies the node collects information about neighbors,
neighbors’ neighbors and the indirect nodes, which sent resource replies further
than two hops away from the node. Neighbors’ neighbors and the indirect
nodes construct the group of candidate nodes. The node saves the amount of
replies the nodes are providing to it, and in some methods also the amount of
replies the neighbors (Ramanathan, et al, 2002) and neighbors’ neighbors are
forwarding to the node.

Information about interests can be used in several ways to manage the to-
pology. When a node is rejoining the network, it may try to connect to the
nodes it has found useful in the past. Information can be used also when the
node has extra capacity, i.e., too few connections, or when it is overloading, i.e.,

38

it has too many connections. In the first case, the node adds a new neighbor
with similar interest, and in the latter case the node removes a neighbor that
seems to be less relevant. There might also be a trigger that activates the topol-
ogy management in the case when a node wants to improve its neighborhood.
Usually this is related to the time, and nodes periodically evaluate the goodness
of their neighborhood (Ramanathan, et al, 2002).

Basic actions applied in the interest-based methods are adding and remov-
ing nodes. A node adds as a new neighbor the node which has the highest reply
value. It removes the neighbor that has the lowest value. All other methods are
variations of the basic actions. If a node has extra capacity left, it might just add
a neighbor without any special conditions, or for example, if percentage of re-
ply messages of a known candidate is greater than its neighbor with the small-
est value, a connection to that candidate node is established (Ramanathan, et al,
2002). The method may include several additions or removals in one operation.
A node may for example remove all neighbors which have a value lower than
some defined limit (Ghanea-Hercock, et al, 2006).

A topology method may also include both adding a neighbor and remov-
ing a neighbor and thus replacing some existing neighbor by some candidate
node. Replacing is utilized when a node has no extra capacity, but it finds a
better neighbor for it. A node may replace a neighbor if a candidate node has
provided more replies than it, or it may replace the neighbor with lowest value
with a candidate that has more replies than any of the neighbors (Condie, et al,
2004). Overtaking [PII] is one special case of replacing - a node replaces a
neighbor by a neighbor’s neighbor and thus overtakes an existing neighbor. In
addition to constructing the existing connections in the overlay network, the
method may create and utilize a different kind of shortcut connections on top of
the logical topology and use those connections for special purposes
(Sripanidkulchai, et al, 2003). Using shortcut connections between nodes with
similar interests, the node keeps the heterogeneity of its neighborhood, but the
searching can be focused using the shortcuts and does not load the whole
neighborhood. Topology algorithms manage the shortcut connections between
nodes.

Most of the interest-based methods using resource reply information do
not specify the used search algorithm and are thus independent of the used
search algorithm and easily adapted.

39

TABLE 1 Interest-based topology management algorithms.

Algorithm Used Information Methods Search Algo-
rithm

Ramanathan, et al,
2002

Received resource replies, both
sent and forwarded by neigh-
bors, collected locally

Adding Any

Condie, et al, 2004 Received resource replies, col-
lected locally

Adding
replacing

BFS, Any

Ghanea-Hercock,
et al, 2006

Adding
removing

Ng, et al, 2002 Adding Any
Sripanidkulchai, et
al, 2003

Shortcut links
on top of the
overlay

Algorithm using
shortcut links

Auvinen Received resource replies, both
sent and forwarded by neigh-
bors, collected locally

Adding
removing
overtaking

Any

The interest-based method developed by the author uses received resource re-
plies when evaluating the neighborhood and consists of four algorithms for
adding a neighbor, removing a neighbor, traffic estimation, and overtaking. A
node in the network evaluates its neighbors based on the resource replies re-
ceived from and relayed by them. These replies together form the goodness
value of the neighbor. A node saves information about neighbors and neighbor
candidates, which are neighbors’ neighbors and other nodes which have replied
to the node’s queries. A good neighbor is a neighbor that provides or delivers
resource replies to the node.

Based on the capacity of the node, it adds or removes the neighbors. If the
node has free capacity available, it tries to add a new neighbor, and if it has too
much traffic it drops one neighbor. If the node wants to add a new neighbor, it
searches potential candidates from the history information where it saves in-
formation about all candidates. If the node succeeds in establishing a new con-
nection, it is satisfied, otherwise it expands the search area. The node has two
main sources for information when it searches and selects a node to reconnect:
how many resources a node has provided (or forwarded) in the past and how
long time ago there has been a connection, if ever. First, the node searches can-
didates among the nodes which have delivered reply messages to it but which
have not been its neighbor in the defined time. Thus the node does not add
connection to a node that it has just dropped. Then it expands the search to the
candidates that do not have any goodness value. Second expansion is done to
the nodes that have no information about replies and that have not been the
node’s neighbors before. In practice, this means that candidates have been
neighbor’s neighbors that have not replied or relayed any replies to the node.
Finally, if the node does not have any neighbor, it searches a node to connect
among the candidates, which have information about replies. Then, it might
add a connection to a node it has just dropped. If a node needs to drop a neigh-

40

bor it selects the worst neighbor, i.e., a neighbor that has the lowest goodness
value.

In addition to the traffic estimation algorithm that utilizes adding and re-
moving algorithms, there is also an algorithm for overtaking. Overtaking algo-
rithm moves, step by step, a node closer to those nodes that provide replies to it.
When the querier node receives replies to a query, it calculates for each neigh-
bor and neighbor’s neighbors the amount of replies that these have relayed to it.
Then, it checks whether there is a neighbor’s neighbor, whose proportion of the
total amount of replies received through the neighbor is more than a defined
overtaking threshold. If that kind of neighbor’s neighbor is found, the node
tries to establish a connection to it and removes the connection to the current
neighbor.

5 SIMULATION OF PEER-TO-PEER NETWORKS

This chapter summarizes the components that need to be modeled when simu-
lating topology management in unstructured peer-to-peer networks.

When studying the effect of the topology management or search algo-
rithms, the peer-to-peer network where the algorithms can be evaluated is re-
quired. Setting up the real peer-to-peer network is expensive and it is hard to
control when the size of the network increases. Because of the distributed na-
ture of the P2P networks, individual nodes do not have global knowledge of the
networks and thus information about the real networks has to be collected sep-
arately, typically using crawlers. A crawler is a real implementation of a P2P
node, which is put into an existing network to collect data. Each crawler has
only a local view of the network, but several crawlers in the same network can
provide a larger view (Stutzbach & Rejaie, 2005A), (Stutzbach & Rejaie, 2005B).
In the case of studying topology management algorithms under development,
the use of crawlers is not appropriate because a network containing the studied
algorithm is needed. The only methods providing a global view of the network
are emulators and simulators.

Another possibility to study P2P networks is to use emulators. An emula-
tor contains the implementation of a single node, but one computer may con-
tain several copies of the emulator. The message passing is done using the net-
work layer, which increases the time needed to run the test cases but gives de-
tailed data on the actual traffic in the network.

The third method is a simulator. Simulation provides a reliable, easily
managed, and repeatable environment for the topology management research,
and it is the most used method in P2P studies. When simulating the P2P net-
work, the whole network is modeled in a single computer. Thus the simulation

42

imitates the real P2P network without investments for large amount of comput-
ers and network connections. Messages between the simulated nodes are han-
dled with local data structures and do not have to be delivered on the network
layer, which consequently increases the speed. The drawback of emulators and
simulators is that the real delays originating from the distances of the P2P
nodes and effects of users actions cannot be taken into account as such but have
to be modeled.

Parameters needed in the peer-to-peer simulator models are related to the
nodes, resources, and queries. These parameters affect also the simulation re-
sults of the topology management algorithms. Starting topology defines how
many nodes there are in the network and how they are connected to each other.
The total amount of resources, resource popularity, and distribution of re-
sources among the nodes need to be defined. The third group of parameters
forms a query model describing the amount of queries and distribution of que-
ries into nodes. Node distribution, resource distribution, and query distribu-
tion can be correlated or independent of each other. The simulation may also
include the dynamicity of the nodes, i.e., nodes are leaving and entering the
network.

5.1 Initial Network

The emergence of the network can be modeled by some mechanism of adding
or removing the nodes, or the simulation may utilize typical existing networks
that are generated either randomly or deterministically to the specific form. The
information of typical networks can be collected from the existing P2P networks
or the network used in simulation can be constructed based on artificial algo-
rithms. In the first case the data is usually collected with crawlers which attain
only a partial view of the network and because of the dynamic nature of P2P
there are errors in the collected data.

The parameters defining the initial peer-to-peer network in the simulation
are the number of nodes and distribution of connections between the nodes.
The most common networks in the P2P studies are power-law networks, ran-
dom networks, regular networks or GnutellaII-like two tier networks. Realistic
simulations consist of tens of thousands of nodes, but small simulations are run
in networks with only hundreds or tens of nodes. In the papers PV, PVI and
PVII the simulations were run in random networks generated by Erdös-Renyi
model (Albert & Barabasi, 2002). Power-law networks using Barabasi-Albert
method (Albert & Barabasi, 2002) was used as initial network in PI, PVI and
PVII. The topology studies in papers PVI used also grid as initial topology and
the latest paper PVII studied search also in GnutellaII network.

43

5.2 Resources

In addition to the starting network topology, the resources also have significant
influence on the simulation results and search efficiency. The resources may be
anything that can be distributed in the peer-to-peer network. It may be service,
which the nodes are providing to other nodes, or it may be a concrete down-
loadable item, i.e., a file, which is copied and transferred from a node to another.
The service distributed in the peer-to-peer network may be for example compu-
ting power, file storage or printer service which is located in the providing node
where nodes utilize this service.

There are three aspects concerning resources. The first aspect is the popu-
larity of resources, i.e., amount of specific resource in the network. The second
aspect is how resources are distributed to the nodes in the network. Of course,
the total amount of resources in proportion to the amount of nodes is one pa-
rameter in the simulation. The third aspect is whether the resources can be clas-
sified into interest groups or not.

These three aspects have to be modeled in the simulations. Each aspect
needs to have a defined distribution from where the values are randomly se-
lected. The simplest distribution is uniform distribution. The distributions de-
rived from the existing peer-to-peer simulations are usually non-uniform. The
real resources are not uniformly distributed: some resources are more popular
than others and some nodes provide more resources than other nodes. The dis-
tributions in real content sets vary in different applications and networks and
may be available only as inaccurate snapshots (Cooper, 2004). Thus, there do
not exist any specific general and justifiable distribution for peer-to-peer simu-
lations or not even a generally accepted benchmark data.

The amount of different resources has to be modeled in the simulation. If
popularity distribution is uniform, every resource has the same number of cop-
ies and every resource has same probability to be found. The distribution may
also be non-uniform when some resources are more popular than others and
those resources are easier to find than the less popular resources. The most used
non-uniform distribution in peer-to-peer simulations is Zipf (Lv, et al, 2002A),
(Tsoumakos & Roussopoulos 2003A), (Tsoumakos & Roussopoulos 2003B), (Liu,
et al, 2005B), (Kojima, 2003), (Cooper, 2004),(Schlosser, et al, 2002) (Condie, et
al, 2004), (Srivatsa, et al, 2006), which is a power-law type distribution and de-
rived from the Gnutella simulations. Although the accuracy of those simula-
tions may be questioned, the distribution of resource popularity in real net-
works is non-uniform rather than uniform.

In addition to the amount of different resources, the distribution of re-
sources in each node also has to be modeled. The simplest case is that every
node has the same amount of resources when the used distribution is uniform.
In the real public peer-to-peer networks, this is rare and usually the resources
are not uniformly distributed, but some nodes provide more resources than
others. For example, the 80/20 biased distribution derived from the Gnutella

44

simulations distributes resources in a way that 80% of the document results ar-
rive from the 20% of the nodes (Crespo & Garcia-Molina, 2002), (Srivatsa, et al,
2006). Another solution for uniform distribution is to take into account the ca-
pacities of the nodes and distribute the resources proportional to those (Lv, et al,
2002B). Thus, the node which has more capacity has also more resources to
share. Simulation may also include nodes without any resources to provide.
This situation is obvious in the open file sharing networks where freeriding is a
common aspect and it can be observed in the real statistics from the Gnutella
studies.

When a resource is downloaded from a node to another, the copy of the
resource is always created. Depending on the decision of the downloading node
or the application, the copied item may be put on the node and thus the number
of copies of the certain resource is increased. This is called replication. The rep-
lication distribution, decision whether the resources are replicated during the
simulation and whether there exists correlation between the node degree distri-
bution and resource distribution may be varied in the simulation cases. Both
popularity distribution and replication distribution may evolve in the file-
sharing simulations if the nodes are providing the downloaded resources to
other nodes. Thus, the more popular the file is, the more it is replicated and the
easier it is to find in the future.

When topology management is interest-based, an important aspect is how
interest can be imitated and simulated. Normally, a user’s behavior affects the
distributed resources and queries and thus naturally generates interest-based
queries and resources. When there is no special information, such as metadata,
describing the resources and interests, the interest information needs to be de-
rived from the resource. Thus, either the node has some specific interest, which
affect to the resources set to the node (Schlosser, et al, 2002) or node has some
resources which specify the interest of the group. It is also possible to use inter-
est categories in the simulation even if those are not needed in the real world
application if those are just used to imitate the interest, not to describe interest
in the system.

Resources may be distributed to the nodes randomly or so that nodes have
only resources belonging to their specific interests. As the studies of (Meng, et
al, 2006) and (Shao, et al, 2005) have found, the most peers have interests, and
thus the principle to distribute resources to nodes needs to be defined in the
simulation.

The topology and search studies in the PI, PV, PVI and PVII utilize non-
uniform resource distributions. In PI and PVII, the resources were distributed
based on the number of the neighbors. The more neighbors the node had, the
more resources it also had. PVII also used resource distribution derived from
the GnutellaII. The topology studies used in PVII the capacity of the nodes as
criterion of resource amounts, and PV also divided the nodes into two groups;
one provided more resources than the other.

45

5.3 Queries

The query model defines the amount of queries sent to the network along with
the distribution of resources queried and the nodes sending the queries.

The total amount of queries depends on the number of nodes and re-
sources and study case.

Queried resource is selected from the distribution describing the probabili-
ties of resources. Usually the resource is selected randomly in peer-to-peer sim-
ulations (Cooper, 2004), (Crespo & Garcia-Molina, 2005), (Liu, et al, 2005B). Dis-
tributions from where the resource is selected can be uniform when all re-
sources have same probability to be selected or it may be proportional for ex-
ample to the amount of specific resource in the network. Then the more popular
the resource is, the more it is queried. Most used non-uniform query distribu-
tion in peer-to-peer simulators is the Zipf mentioned already in previous chap-
ter (Tsoumakos & Roussopoulos, 2003B), (Klemm, et al, 2004), (Sripanidkulchai,
2003), (Liu, et al, 2005B).

The other distribution is needed for the selection of a querying node. The
node sending a query may be selected from the uniform distribution in which
case all nodes have equal probability to be selected as a source of a query. Other
option is that probability of querying node is proportional for example to the
resource amounts the node is providing or capacity of the node. So, the more
node is providing resources to other nodes, the more it is also querying re-
sources in the network. The distribution may also be non-uniform but not pro-
portional to any specific feature of the nodes. The source node may be selected
for example from the power-law distribution, thus there are few nodes which
are making huge amount of queries and a lot of nodes which are making small
amount of queries.

The random selections of a querier node and a queried resource from the
uniform distributions were used in PI, PVI and PVII. The PV used non-uniform
distribution for selection of querier node.

In the case of interest-based topology management, the interest of the
nodes also needs to be simulated. The nodes request with in certain probability
the resources which they are interested in. The modeling of the interest of the
node depends on the selected method to describe the interest of the node when
setting the resources. Besides the resources, also the interest may have different
probabilities to be queried and, further, resources in different interest areas may
have different probabilities to be selected.

In simulation, events are created in the network and their consequences
are studied. There are two types of peer-to-peer simulations: time based or que-
ry based simulations. In the first case, time is involved in the simulation and
events, such as sending a query, are related to the time. When the simulation is
based on a query cycle, each query (sending request getting replies) is consid-
ered as an isolated event. The next query is processed only after the previous
has been finished unlike in time based case where several queries may be active

46

simultaneously. In both cases the simulation requires iterations. In query cycle
based simulations number of sent queries is amount of iterations. The decision
of initiation of a query can be done in the node level, i.e. each node makes deci-
sion independently of each other, which is simpler to execute in a time based
simulations, or all aspects of a query are defined and controlled in the upper
level, which is well-suited in a query based simulations.

The topology management operations usually depend on the queries be-
cause the interest-based topology methods utilize the information collected
from the received replies and thus some operations may be activated when a
node receives replies to the query it has send. If the operations require an esti-
mate for the loading of the node, this can be checked either after a given
amount of sent queries or as a function of received replies.

Concerning the outcomes of the queries, it depends on the application and
its needs as to which features are important. One may be interested in the total
number of replies, the proportion of replies to the (estimated) amount of possi-
ble resources in the network, or just in the fact of finding or not finding at least
one resource.

5.4 Running and Monitoring P2P Simulations

The simulation of the peer-to-peer networks may focus on the transient phase
or on the equilibrium. In the first case one studies the behavior of the short time
average values of relevant parameters, such as replies and topology changes,
during the period of change in the network. When the goal is to achieve equilib-
rium, long enough simulations are needed so that it can be reliably concluded
that the network is no longer changing or that the changes are just small scale
fluctuations around equilibrium.

The simulator has to save or report the information needed to evaluate the
studied algorithm. The needed information depends on the goal of the simula-
tion. If the physical properties of the network are an issue, then the delays and
thus the physical time is needed. This case usually requires the use of an emula-
tor for simulation. In the case of topology management algorithms the interest
is on the quantitative and qualitative properties in the overlay level and ob-
served values during the simulation may include the final topology, sent que-
ries and received replies, lost queries and topology changes. When studying the
topology management algorithms, the used search algorithm and its parame-
ters are also needed in the simulation.

The topology management aims to make the network more efficient in a
way that the required resources can be found closer or with less traffic. As men-
tioned earlier, the topology changes also generate additional load in the net-
work because of messages related to creating and managing connections and
computations related to analyzing the traffic. Thus the ideal case would be that
the algorithms create a network which will find equilibrium. The amount of

47

topology changes should be important only in the beginning and once the net-
work has reached the equilibrium state the changes should be rare.

When a network is simulated with search algorithms with a limited scope,
all resources are not necessarily found. Thus one has to define a criterion for the
success of a query. The criterion of success rate may define that it is enough to
find one resource or the search algorithm should find some predefined amount
of all possible resources. The topology management algorithms may change the
topology so that the network is partitioned and disconnected. Once again, it
depends on the application, whether this partition is acceptable, if the criterion
for success rate is fulfilled.

As it is can be seen, to set up a simulation of P2P network and its topology
management, a great number of probability distributions and their parameters
have to be defined, together with other parameters specifying the configuration.
To cover systematically all combinations or modeling realistically, dependen-
cies between different distributions is clearly too complex and quite impossible
to execute. Thus the next chapter describes simulation of topology algorithms
in a situation where the distributions and parameters have been chosen to keep
the simulation simple.

6 SIMULATING TOPOLOGY MANAGEMENT AND
DBFS

The efficiency of P2P networks, especially the efficiency of the searching, de-
pends on the topology of the network and the used search algorithm. One
search algorithm can function well in a certain type of network but give poor
results in another kind of network. To avoid this situation, in addition to the
topology management algorithms, adaptive search algorithms have also been
developed. These utilize similar information than interest-based topology man-
agement and are easy to adapt to a system where nodes are gathering infor-
mation about received replies.

In a P2P network where nodes have interests, the efficiency can be im-
proved utilizing either an interest-based topology management with some tra-
ditional flooding search algorithm or an adaptive search algorithm. The behav-
ior of these two approaches has not been compared systematically to conclude
which gives better results for a given P2P network or to find out whether adap-
tive search can improve the efficiency even for a network that has been opti-
mized with a topology management algorithm. In what follows, we study sim-
ple “static” P2P networks (that is, networks where the nodes and their re-
sources do not change during the simulation) with topology management and
adaptive search (DBFS) to find characteristics which define, when adapting the
logical topology is the optimal operation, and in such cases, it is more beneficial
to just concentrate on adapting the search.

49

6.1 Simulated Situation

The previously mentioned methods are compared in a static P2P network with
predefined amount of nodes. The number of nodes is not varied during the
simulation. So new nodes are not added into the network and leaving the net-
work is also excluded in the simulation. The purpose of this is to keep the simu-
lation simple and focused only to changes in the topology that are due to the
topology management algorithms. The P2P simulation requires also resources
which can be searched. To simplify the simulation and interpretation of results
every node has the same amount of resources which are not replicated during
the simulation. Each resource in the network has a unique identifier. The que-
ries are designed so that the number of possible replies is constant.

 The nodes are divided into eight non-overlapping interest groups based
on the resources the node has. Because resources are not added or destroyed
during the simulation, the defined interests will also remain unchanged. The
interests are also taken into account in queries. The nodes are searching more
frequently resources which belong to the same interest group as the querying
node and less frequently random resources which may belong to any of the in-
terest groups. The probabilities to the interest-based query and random query
are different and constant during the whole simulation.

The resources are set randomly to the nodes so that the interest groups do
not depend on the initial topology of the created network. For each query, the
possible amount of resources matching the query is the same, but depending on
the used time-to-live value of the search algorithm and placement of the re-
sources, all of them are not necessarily found. The number of resources per
node matching a query varies, and consequently also the amount of nodes giv-
ing replies varies from query to query.

The most important results of the simulation are the amount of received
replies in relation to the sent queries and the traffic the queries are causing.
These together define the efficiency of the network and these are observed in
every simulation. Besides the efficiency of the network, we monitor the behav-
ior of topology management algorithms: how fast they are changing the net-
work and how fast the topology is stabilized. The search in the managed topol-
ogy is compared to the DBFS algorithm which is simulated both in initial and
managed topologies to see whether topology management will improve the
performance of directed search.

6.1.1 Simulated Networks

We simulated P2P networks with 256 and 1024 nodes. The initial topologies
were torus and random. The average degrees of the nodes were 4 and the num-
ber of links was the same for both topologies: 2*N, where N is number of nodes.
Random networks were created by using Erdös-Renyi model (Albert & Barabasi,
2002). Number of resources was 4096 and these were divided into 8 interest
groups. One resource may belong to only one group. Queries were formed so

50

that 80% of queries were interest-based targeting to resources within the same
group where the querying node belongs. Respectively, 20% of queries were
randomly generated, but also these may have the same interest than the node.
Thus, 82,5% of the queries were made to the interest group 17,5% to the rest if
the network. For each query there were 32 resources fitting the specification.
The setup is summarized in the Appendix.

6.1.2 Simulated Algorithms and Their Parameters

Topology management algorithms manage the overlay topology of the P2P
network using the local information the nodes are gathering. Each node manag-
es its local connections and favors the nodes which are providing resources to it.
The simulated topology management algorithm from PV consists of four differ-
ent algorithms. The first algorithm, called overtaking, is replacing neighbor by
neighbor’s neighbor, if that one is better for the node than original neighbor.
The second algorithm uses two other algorithms for taking care of the node’s
load by adding new connections or removing existing connections. The algo-
rithms were simulated together and the effect of traffic estimation was simulat-
ed also without the overtaking.

The goal of the overtaking algorithm is to move the node in the logical
network closer to the nodes, which are providing resources to it. The overtaking
algorithm calculates the received replies that its neighbors and neighbors’
neighbors have sent or forwarded to it. Then it checks whether there is a neigh-
bor’s neighbor, whose proportion of all replies is more than a predefined value,
for example 80%, and replaces the neighbor by that.

The traffic estimation algorithm adds or removes neighbors based on the
traffic load of the node. Traffic is estimated by the amount of the query messag-
es the nodes are receiving. There are lower and upper limits in which the nodes’
traffic should remain. When the traffic of a node is between lower and upper
limits, it may accept new neighbors, but it will not initiate any topology changes
except the overtaking. When the traffic is higher than upper traffic limit, the
node will disconnect the connection which has provided or forwarded least re-
source replies to it and will not accept any connection requests. If the traffic is
less than lower traffic limit, the node has extra capacity and it will add a new
connection. By using two limit values the algorithm avoids the situation where
the nodes are constantly adding and removing their neighbors.

In the simulations, each node has an equal traffic capacity. The nodes are
checking their traffic load after a given period, which is a varied parameter in
the simulations. Because the simulation is not time based, the period is meas-
ured by sent queries. Each node sent in average 2, 4 or 6 queries between check-
ing the traffic load. The maximum allowed traffic during the observation peri-
od was another simulation parameter. Values of 40% and 60% of k*N were used
as maximum traffic limits, where k is number of queries per node between
checks and N is number of nodes in the network. The lower traffic limit value
was defined as 20% of the maximum traffic limit value.

51

One initiated query in the network is one cycle and the frequency of the
topology management is defined with help of expected number of initiated
queries per node, which is a varied parameter in the simulation. The number of
elapsed cycles after node’s previous topology changes affects to the information
available for the node. The longer the period between changes is, the more in-
formation the node has collected as a basis for deciding on topology changes.

When nodes are using BFS algorithm, they forward the query message to
all neighbors except the one, from which they received the message. The only
restricting parameter in BFS search is a time-to-live (TTL) value, which defines
the amount of hops after which the query is no more forwarded. If the node has
a queried resource, it will send a reply to the node from where the query came
and if the TTL value is not zero, it forwards the query to other neighbors. When
a querying node is using DBFS algorithm, the initiator of the query is forward-
ing a query to the limited part of the neighbors, which have replied to the node
most. The algorithm has two parameters, one defining the number of neighbors
to which the query is forwarded and the other defining how many hops the
query is forwarded to the selected amount of neighbors after which the search
is using normal BFS algorithm. The simulation used 1 or 2 neighbors with 1-2
DBFS hops. This means that the node and its neighbors sent the query to the
small set of neighbors and after that the query was forwarded as the BFS query.
This reduces not only the amount of nodes that will receive the query, but also
the traffic in the network and because the neighbors are selected by using the
amount of resource replies they have provided, it is supposedly more efficient
than BFS search.

Both DBFS and BFS algorithms use TTL value to limit the horizon of the
query. TTL affects to the amount of nodes the queries are reaching and thus to
the amount of replies they are receiving. Further, in the interest-based search
and topology management it also affects to the decisions the nodes are making
because it affects to the information available to topology management. The
bigger the TTL is, the further in the network potential neighbors can be found.
Both algorithms are simulated with several TTL values: 3, 5 and 7.

6.2 Simulator

The interest-based topology management does not consider properties of the
physical network and physical time. Thus this study uses a simulator that does
not model the elapsed physical time but is based on the sent queries. The simu-
lator uses query cycles to present the logical time. Each sent query is one cycle
in the simulator.

The simulator starts by reading the configuration file and initiates the
networks used in the simulations. The configuration file defines the topologies
of the simulated networks and amount of nodes, resources, and queries. All
parameters that the algorithms utilize and other simulation parameters are also
read from the configuration file. The generated random values, such as re-

52

sources, queried resources and queriers, use seed values. These seed values are
defined in the configuration file to enable controlled repetitions of simulation
experiments. Also the topology management policy is initialized. In practice
each node is given a starting time and interval for topology updates that pre-
vents the situation that all nodes are making changes at the same time.

After creating a topology and setting the resources to the nodes, the simu-
lation is executed one query at a time. For each query, the simulator takes one
random node as an initiator of the query. The simulator also draws the queried
resources from the given distribution. The simulator uses the search algorithm
defined in the configuration file and sends the query into the network accord-
ing to the algorithm. The nodes receiving the query will handle it and create
replies, if they have resources matching the queried one. After the query has
been executed possible topology updates are done according to the prescribed
schedule.

The simulator saves information about networks, nodes, queries and to-
pology changes into files. The simulator saves the topologies and neighbor dis-
tributions of the networks in the beginning and at the end of the simulations.
The saved parameters about nodes are: number of neighbors, number of re-
sources and amount of sent replies. About each forwarded query are saved the
queried resource, the initiator node of the query, the used algorithm and TTL
value. The replying node, distance of the replying node and the found resource
are saved on each resource reply. To keep the statistics about totally failed que-
ries, the simulator saves information about the queries, which did not receive
any matching results.

If the topology is optimized in the simulation, the simulator also saves in-
formation about topology changes in the network. In each round, it saves the
amount of additions, removals and overtakings which took place in the net-
work.

6.3 Simulation Tests

The simulator’s correct behavior was tested by running the BFS algorithm in the
different networks used in the simulations. The simulation results of topology
management algorithms and DBFS algorithm were also compared to the results
attained with BFS algorithm. Because resources and queries were distributed
equally, the expected values for the studied parameters were easy to calculate
for comparison. Each simulation consisted of 20 trials and each trial used same
parameters but different random numbers.

The simulator uses the queries as a pseudo time and the number of re-
source queries defines the duration of the simulation. The duration chosen was
long enough to reach the state where the topology does not change anymore.
This depends on the size of the network, the TTL value, and used policy. When
the topology is modified based on the sent queries and received replies it is es-
sential that the simulation time is long enough so that the network has a possi-

53

bility to attain a balance. In addition to the properties of the network at equilib-
rium, the rate of the changes in the topology is studied too.

FIGURE 3 presents the average amount of replies in proportion to the av-
erage amount of queries per hop until TTL seven using the BFS algorithm in the
torus and random networks of 256 nodes. The corresponding results of BFS al-
gorithm in the torus and random network of 1024 nodes are presented in the
FIGURE 4. The efficiency values of the simulations in different networks are
illustrated in the FIGURE 5. The efficiency value is calculated by R/Q, where R
is amount of received replies and Q is amount of generated query messages.
The averages of queries, replies and efficiency values are calculated over the all
simulation cases and presented per an initiated query. The numerical data and
the ranges are presented in the appendix. Success rates of different BFS simula-
tions are presented in FIGURE 6. The query is considered successful if at least
one reply is received. Thus the success rate charts illustrate the proportion of
successful queries per all queries.

When results of different networks of 256 nodes are compared, the ran-
dom network with TTL 4 achieves more replies than the torus network with
TTL 7. The total average of found resources was over 17 replies more than in
the torus network.

In the network of 256 nodes, each node has 16 resources. Corresponding
resource amount per node in the bigger networks is 4. Thus in the bigger net-
work, each node has 25% of the resources the nodes in the smaller network
have. This can be observed also directly from average reply amounts in the dif-
ferent torus networks. The amounts of replies in larger network are slightly bet-
ter because the querier node has also smaller amount of resources in the smaller
network than the bigger one.

FIGURE 3 The average amount of replies in proportion to the amount of query messages
in networks of 256 nodes with BFS algorithm.

0

5

10

15

20

25

30

35

0 200 400 600 800

Re
pl

ie
s

Queries

Replies vs. Queries per TTL

Torus 256

Random 256

54

FIGURE 4 The average amount of replies in proportion to the amount of query messages
in networks of 1024 nodes with BFS algorithm.

FIGURE 5 Efficiency of BFS algorithm per TTL values in different networks.

0
5

10
15
20
25
30
35

0 200 400 600 800 1000

Re
pl

ie
s

Queries

Replies vs. Queries per TTL

Torus 1024

Random 1024

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

1 2 3 4 5 6 7
TTL

Efficiency of BFS

Torus 256

Torus 1024

Random 256

Random 1024

55

FIGURE 6 Success rates of BFS algorithm per TTL values in different networks.

Based on the success rates, it can be derived that even TTL 3 is large enough for
torus and random networks of 256 nodes. TTL 7 is not giving any more extra
value compared to the huge amount of queries it is causing in hops six and sev-
en. The average amount of queries without any replies was in the torus network
of 256 nodes with TTL 3, 3,5% while in random networks, the value was 1,2%.
This can be explained with the shorter diameter of the random network com-
pared to the torus network. With TTL value 3 the query will reach more nodes
in random network than in the torus network.

Because of the long diameter of the torus network of 1024 nodes, the suc-
cess rate with TTL 7 is close to the success rate of the same size random network
with TTL 5. TTL 3 is too small for torus network of 1024 nodes as almost half of
queries remains without any reply.

6.4 Simulation Cases

Simulation experiments studied the behavior of the DBFS algorithm, the topol-
ogy management algorithms and the combination of the topology management
and DBFS algorithms. The DBFS algorithm was simulated in static networks
with different TTL values. The topology management algorithms were studied
in the same networks with the same TTL values. The behavior of traffic estima-
tion and overtaking was studied with different topology change frequencies.
The obtained results were compared to the results of DBFS algorithm to find
out the parameters which define, when the DBFS with static network achieved
better results than topology management and when managing the topology and
use of BFS algorithm is more efficient. Both cases were compared also to the
static network with BFS algorithm. Finally, the DBFS algorithm was simulated

50,00%
55,00%
60,00%
65,00%
70,00%
75,00%
80,00%
85,00%
90,00%
95,00%

100,00%

3 4 5 6 7

Success Rates

Torus 256

Random 256

Torus 1024

Random 1024

56

also in the networks, which resulted from using the topology management al-
gorithm.

6.4.1 DBFS

DBFS algorithm has two main parameters: the amount of selected neighbors
and the amount of directed hops the algorithm uses. To guarantee the compa-
rability, the simulations used similar initiation rounds as topology management
algorithms. In initialization rounds, the nodes searched with BFS algorithm
and saved information about received replies. DBFS was studied with 2, 4 and 6
initiation rounds, for 1 and 2 selected neighbors with 1 and 2 hops. The net-
works were torus and random network of 256 and 1024 nodes. As assumed,
DBFS gave better success rates with all used parameters than BFS. Because the
simulated networks and amount of neighbors were quite small, the results of 1
selected neighbor in 1 hop are presented. The results of DBFS algorithm in net-
works of 256 nodes are presented in FIGURE 7 and FIGURE 8. The correspond-
ing results of larger networks are in FIGURE 9 and FIGURE 10 and success rates
in different networks in FIGURE 11. The cumulative values of replies and que-
ries are presented only for TTL 7, as behavior is similar for smaller values of
TTL.

As the figures illustrating the efficiency values show, the results are better
in the first hops the smaller the TTL value is. Neither the equal distribution of
resources nor the torus network are suitable for the DBFS, especially with large
TTL value, because in the static network all directions are equally good for the
node.

FIGURE 7 The average amount of replies in proportion to the amount of query messages
in networks of 256 nodes with DBFS algorithm.

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

Re
pl

ie
s

Queries

Replies vs. Queries per TTL

Torus 256, TTL 7

Random 256, TTL 7

57

FIGURE 8 Efficiency of DBFS algorithm per TTL values in different networks of 256
nodes.

FIGURE 9 The average amount of replies in proportion to the amount of query messages
in networks of 1024 nodes with DBFS algorithm.

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7

Efficiency of DBFS

Torus 256, TTL 3

Torus 256, TTL 5

Torus 256, TTL 7

Random 256, TTL 3

Random 256, TTL 5

Random 256, TTL 7

0

2

4

6

8

10

12

14

0 100 200 300 400 500

Replies vs. Queries per TTL

Torus 1024, TTL 7

Random 1024, TTL 5

58

FIGURE 10 Efficiency of DBFS algorithm per TTL values in different networks of 1024
nodes.

FIGURE 11 Average of success rates in different networks with DBFS using different TTL
values.

6.4.2 Topology Management Algorithms

To study the impact of topology management algorithms, traffic estimation and
overtaking, the simulations were performed both without overtaking and with
different overtaking parameters. Without overtaking, the topology changes are
based on the traffic measurements and the decisions of the traffic estimation
algorithm only. The simulations used upper traffic limit (UTL) values 40% and
60% and interval of the traffic checkings (k) was 2, 4 or 6. This means that the
maximum traffic of a node was k*N*UTL, where N is amount of nodes.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

1 2 3 4 5 6 7

Efficiency of DBFS

Torus 1024, TTL 5

Torus 1024, TTL 7

Random 1024, TTL 3

Random 1024, TTL 5

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

3 4 5 6 7
TTL

Success Rates

Torus 256

Random 256

Torus 1024

Random 1024

59

When the TTL is three, the horizon is small and traffic estimation with
used parameters does nothing. The topology remains unchanged during the
simulations and the results are the same as presented in the section 6.3. The re-
sults of the TTL values five and seven are presented in the TABLE 2. The topol-
ogy changes and success rates are presented as average values over 20 replica-
tions. Topologies do change but most of the changes are neighbor removals and
the frequencies of traffic estimation and upper traffic limit values have influ-
ence on the changes. The amount of removals decreases as the interval length-
ens or the upper traffic limit increases. When TTL is five, the amount of remov-
als is significantly larger with upper traffic limit 40% than 60%.

TABLE 2 Amount of topology changes and success rates in torus network of 256
nodes without overtaking.

TTL Interval of
Traffic
Checkings

Upper Traffic
Limit

Amount of
Additions

Amount of Re-
movals

Success
Rate

5

2 40 0,1 162,45 98,10%
60 0 33,5 99,98%

4 40 0 118,8 99,73%
60 0 0,95 99,98%

6 40 0 111,15 99,84%
60 0 0,05 99,98%

7

2 40 2,25 258,75 78,44%
60 0,95 225,9 92,35%

4 40 3,85 232,15 92,34%
60 0,55 180,4 99,43%

6 40 2,4 290,85 98,13%
60 0,4 160,85 99,82%

The efficiency values achieved with TTL five, with upper traffic limit 60% are
almost equal to the efficiency of BFS algorithm in the static environment. By
using upper traffic limit 40% the efficiency values are slightly better in every
hop. With TTL 7 the efficiency values are significantly better if compared to BFS
in the static network, especially when the upper traffic limit was 40%. The im-
provement of efficiency values is a result of the decrease of redundant connec-
tions.

If only the efficiency values would be studied, the received results with
TTL 7 would be good. Even if there are a lot of changes in the network, most
changes happen in the early cycles in the simulation. However, the percentages
of the lost queries are indicating that the topology is not ideal. Even if the per-
centages are remaining reasonable, they are measuring the queries that are not
receiving any replies. Even in a disconnected network, it is rare that a node
does not have path to any node that has the queried resource.

When the topologies are studied, it is observed that, especially when using
the TTL 7 with small intervals and upper traffic limit 40%, the networks are

60

fragmented. The most connected network is achieved with parameters interval
6 and upper traffic limit 60%. The results of this case and best case of TTL 5
with frequency 6 and upper traffic limit 40% are presented in FIGURE 12 and
FIGURE 13. As FIGURE 12 shows, with TTL 7 the average amount of received
replies is significantly smaller than with BFS in static network. This is explained
by the neighbor removals the topology management generated. Because
amount of connections is decreased and thus the distances are not any more
equal, the query is reaching fewer nodes than in static torus network with the
same TTL. However, it finds the same amount of replies with fewer query
amounts than BFS. Thus the (unwanted) fragmentation of the network seems to
happen mainly in between the different interest groups. The 20% of random
queries is not enough to maintain overall connectivity.

FIGURE 12 The average amount of replies in proportion to the amount of query messages
in torus network of 256 nodes without overtaking.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

Re
pl

ie
s

Queries

Replies vs. Queries per TTL

TTL 5, UTL 40%

TTL 7, UTL 60%

BFS, TTL 7

61

FIGURE 13 Efficiency per TTL values in torus network of 256 nodes without overtaking.

With overtaking the networks were fragmented. The larger the TTL, the more
disconnected the network. FIGURE 14 presents a sample result topology with
TTL 7 with overtaking applied. The network is decomposed to several compo-
nents: one large cluster with few nodes with high degree and several small clus-
ters. The effect of the frequency or upper traffic limit was not as clear as in the
tests without overtaking.

FIGURE 14 Topology of the network in the test case, where TTL was 7, overtaking percent
80, upper traffic limit 60% and frequency 6.

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

1 2 3 4 5 6 7

Efficiency

TTL 5, UTL 40%

TTL 7, UTL 60%

BFS, TTL 7

62

With the TTL value 3, the half of topologies stayed connected and fragmented
networks had only few nodes separated from the others. One generated topolo-
gy is presented in FIGURE 15.

FIGURE 15 Topology of the network in the test case, where TTL was 3, overtaking percent
80, upper traffic limit 60% and frequency 6.

As FIGURE 16, FIGURE 17 and TABLE 3 show, the results are clearly better
compared to the BFS in static network, but the percentage of the lost messages
is significantly high with larger TTL values. So, opposite to the BFS in static
network, the success rates are decreasing as the TTL value is increased because
of the fragmentation of the network.

FIGURE 16 The average amount of replies in proportion to the amount of query messages
in torus network of 256 nodes with overtaking percent 80.

0

2

4

6

8

10

12

14

16

0 100 200 300

Re
pl

ie
s

Queries

Replies vs. Queries with Overtaking

TTL 3, UTL 60%

TTL 5, UTL 60%

TTL7, UTL 60%

BFS, TTL 7

63

FIGURE 17 Efficiency per TTL values in torus network of 256 nodes with overtaking per-
cent 80.

TABLE 3 Success rates without and with overtaking.

 Without Overtaking With Overtaking
TTL 3, UTL 60% 96,52% 95,57%
TTL 5, UTL 40% 99,84% 84,95% (UTL60)
TTL 7, UTL 60% 99,82% 75,87%

The improvement in the efficiency is due to the star-like topologies of the con-
nected parts of the topology. Thus if only the ratio of replies to queries would
have been studied, it could have been concluded that topology algorithms give
better results than just using BFS in static network. The networks achieved equi-
librium quite fast and the efficiency values were improved compared to the ini-
tial networks. However, the networks were mostly disconnected and results
cannot be considered satisfactory.

The decomposition of the networks to possibly star-like components was
evaluated to be a consequence of the traffic estimation being initiated too infre-
quently and the overtaking algorithm initiated too often. The traffic estimation
should work in such a way that it prevents the nodes from overloading, but if
several nodes have a chance to make changes to the connections between the
traffic checks, a node may accept several new connections before checking its
traffic. Once the node checks the traffic, it is already overloaded. As the neigh-
bors are then dropped one by one, it requires several cycles to disconnect extra
nodes. Moreover, if the neighborhood of an overloaded node contains another
high degree node, the traffic in other neighboring nodes is also high, and they
do not accept new neighbors easily. Thus the nodes that are dropped are not
accepted as neighbors by any node in the network, and the network will be dis-
connected. Finally, a node with several neighbors is also the direction from
where other nodes are receiving replies and thus they want to overtake in that

0,000

0,100

0,200

0,300

0,400

0,500

0,600

1 2 3 4 5 6 7

Efficiency with Overtaking

TTL 3, UTL 60%

TTL 5, UTL 60%

TTL 7, UTL 60%

BFS, TTL 7

64

direction, which leads to the star-like topologies. In small torus networks, most
of the changes are done in a first possible cycles, so the traffic estimation algo-
rithm should check the possible overload situation more actively.

A node should make an overtaking decision based on the received replies,
but if the situation is checked too often, the available information is incomplete.
If a node has a new neighbor, it does not have a chance to compete with the
older neighbors. Even if the overtaking algorithm had an initialization phase
when nodes were just collecting information and did not make any overtaking
decisions, the latter checkings were done after each query. After the initializa-
tion phase, each node checked the situation after each sent query and received
replies. This behavior might cause the situation where nodes were overtaken
too fast and based on information of one query.

The conclusion of the previous analysis was to make the traffic estimation
algorithm more active and the overtaking algorithm less active. The aim of this
was to decrease the amount of topology changes so that the information used in
these changes is more complete. At first, the traffic estimation algorithm was
changed so that nodes check the possible overload situation more often. The
original traffic checking rate was k*N cycles and it was kept the same but one
additional check for overloading was added after each 16 cycles. If the node is
overloaded, it does not accept any new connections to the node until the situa-
tion is changed and traffic is under the upper limit value.

Another improvement was made in the overtaking algorithm. An addi-
tional parameter controlling the rate of the overtakings was included in the
simulator. The parameter defines how many queries the node should wait be-
fore checking the overtaking situation. This same parameter defines also the
length of the previously used initialization phase. The new algorithms were
tested with the overtaking periods 10, 15 and 20. In addition, different values
were tested for the overtaking threshold (80% and 90% of replies).

The results of the tests were evaluated based on the topology of the con-
structed network, and values of calculated functions are presented in TABLE 4.
For each test configuration, all 20 samples of constructed topologies were
checked to find out whether they are connected or disconnected. Also, the
structures of the topologies were studied and average values of leaf nodes and
maximum degrees of the nodes were calculated. Other studied parameters were
the efficiency values and success rates.

 The simulation tests with traffic limit value 60% gave best results when
overtaking percent was 90. With 80% overtaking, the average efficiency values
were better, but the networks were less stable and more centralized and amount
of lost queries was higher. The best combinations of results were received with
90% overtaking threshold, i.e., only with 90%; all the 20 cases formed topologies
which were connected and the amount of leaf nodes was realistic (approximate-
ly between 20 and 40), and the largest node or nodes have 9-13 neighbors. The
more detailed statistics about selected test cases are presented in TABLE 4.

65

TABLE 4 Selected test cases with traffic limit 60% and with TTL3.

OT
Per-
cent

OT
Pe-
riod

Check
ing
Inter-
val

Discon-
nected
Net-
works

Leaf
Nodes

Max
De-
gree

Efficiency

Success
Rate TTL 1 TTL 2 TTL 3

80 10 6 2 50-84 11-38 0,396 0,174 0,090 97,02%
80 15 6 0 45-67 11-28 0,353 0,149 0,081 97,54%
80 20 6 0 40-67 11-26 0,330 0,139 0,077 97,73%
90 10 2 2 34-56 9-22 0,314 0,132 0,077 97,95%
90 10 4 1 28-55 10-21 0,294 0,125 0,074 97,85%
90 10 6 0 25-42 9-13 0,265 0,116 0,070 98,20%
90 15 2 0 30-45 9-13 0,277 0,117 0,071 98,18%
90 15 4 1 26-37 9-12 0,262 0,113 0,069 98,15%
90 15 6 1 16-32 9-12 0,240 0,107 0,067 98,34%
90 20 2 0 23-45 10-15 0,255 0,112 0,068 98,26%
90 20 4 0 22-37 10-14 0,239 0,105 0,066 98,25%
90 20 6 0 15-28 9-12 0,228 0,103 0,065 98,18%
Results of static network with BFS 0,120 0,082 0,060 96,52%

It can be observed that overtaking percent has the biggest influence on the
amount of leaf nodes and the degree of the central node (i.e., the node with the
highest degree). With 80 percent, the amount of leaf nodes is higher than with
90% for all used traffic checking or overtaking frequencies. With the traffic limit
60%, the success rates were also better with overtaking percent 90. The traffic
checking frequency does not seem to have impact on the degree size of the cen-
tral node, but shorter OT period seems to add the amount of leaf nodes.

The test case using overtaking percent 90, OT period 20 and traffic check-
ing period 6 generated the network with good success rate, significantly better
efficiency compared to the BFS in static network and the topology, where size
of the central node and amount of leaf nodes were reasonable taken into ac-
count the small network size, 256 nodes. When compared to the total amount
of average reply amounts, there was no significant difference with BFS in static
network, but the amount of queries decreased.

The same parameter values were tested also with larger TTL values in to-
rus network and also in random network with and without overtaking. The re-
sults are presented in the FIGURE 18, FIGURE 19, TABLE 5 and TABLE 6. With
TTL 5 in torus network two cases were disconnected, but in both cases only
couple of nodes was outside. With TTL 7 almost all, 19 networks were discon-
nected. The disconnecting of network can be observed for TTL 7 already with-
out overtaking but in significantly lesser amount: three cases were disconnected
in a way that in each one cluster of two nodes was separated. With smaller TTL
values the networks remained unchanged without overtaking. With TTL 7, us-
ing overtaking, the average amount of queries was half of the queries in static
network, but reply amount was just a few less than in static. The efficiency of
the search is a consequence of the partition, which occurred in such way that
nodes are still connected to the nodes that have resources with similar interests.
The same reason is behind the huge amount of overtakings with TTL 7.

66

In the random networks of 256 nodes, the horizon of TTL 3 is quite similar
to the TTL 5 in torus and thus the TTL 5 and 7 are not presented. (With larger
TTL values networks are disconnected with or without the overtaking.)

The efficiency values are presented in FIGURE 19, where also the efficien-
cy values of static torus and random networks are shown for comparison. In all
cases, the efficiency values were improved especially in the first two hops of the
query.

FIGURE 18 The average amount of replies in proportion to the amount of query messages
in networks of 256 nodes with upper traffic limit 60, interval of traffic check-
ings 6, overtaking period 20 and overtaking percent 90.

FIGURE 19 Efficiency per TTL values in networks of 256 nodes with upper traffic limit 60,
interval of traffic checkings 6, overtaking period 20 and overtaking percent 90.
For the comparison, efficiency of BFS in static network is also shown.

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Replies vs. Queries per TTL

Torus 256, TTL 3

Torus 256, TTL 5

Torus 256, TTL 7

Torus 256, TTL 7, no
overtaking

Random 256, TTL 3

0,000

0,050

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5 6 7

Efficiency
Torus 256, TTL 3

Torus, TTL 5

Torus 256, TTL 7

Torus 256, TTL 7, no
overtaking
Random 256, TTL 3

Torus 256, BFS

Random 256, BFS

67

TABLE 5 Success rates without and with overtaking in torus and random net-

works of 256 nodes.

Network TTL Without Overtaking With Overtaking
Torus 3 96,52% 98,18%

5 99,98% 99,64%
7 99,82% 97,24%

Random 3 98,67% 97,31%

TABLE 6 Amount of changes without and with overtaking in torus and random
networks of 256 nodes.

Network TTL Without Overtaking With Overtaking
 Additions Removals Additions Removals Overtakings
Torus 3 0 0 0,15 3,45 260,15

5 0 0,05 0,8 90,9 118,6
7 0,4 160,85 12,95 262,35 409,6

Random 3 0,15 21,25 4,8 85,55 185,85

Simulation results of larger networks are presented in FIGURE 20, FIGURE 21
and TABLE 7. Only results with the overtaking are shown because without
overtaking the networks did not change. The networks were well-connected;
with TTL 5 in torus network only one case was disconnected and 2 nodes were
in separate network. Also in the random network with TTL 3 one case was dis-
connected leaving network of 3 nodes outside of the connected part, but with
TTL 5 almost all networks were partitioned in a way that couple of nodes were
left outside of the larger cluster.

The efficiency values are improved especially in first hops. The efficiency
of TTL 7 in torus network stays similar to the efficiency of static network be-
cause the topology does not change much. Also with TTL5, the amount of
changes is so small that the improvement of efficiency is small. In the torus
network, the smaller the TTL, the larger is the number of overtakings. This is as
expected as the resources are distributed randomly and all directions should be
equally good on the average. With small TTL, the overtaking mechanism can
adapt to local fluctuations that smooth out when the search neighborhood is
larger.

A clear improvement can be seen in success rates of the torus and random
networks with TTL 3 and torus with TTL 5.

68

FIGURE 20 The average amount of replies in proportion to the amount of query messages
in networks of 1024 nodes with upper traffic limit 60, interval of traffic check-
ings 6, overtaking period 20 and overtaking percent 90.

FIGURE 21 Efficiency per TTL values in networks of 1024 nodes with upper traffic limit 60,
interval of traffic checkings 6, overtaking period 20 and overtaking percent 90.
For the comparison, efficiency of BFS in static networks is also shown.

0
1
2
3
4
5
6
7
8
9

10

0 100 200 300 400

Replies vs. Queries per TTL

Torus 1024, TTL 3

Torus 1024, TTL 5

Torus 1024, TTL 7

Random 1024, TTL 3

Random 1024, TTL 5

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

1 2 3 4 5 6 7

Efficiency

Torus 1024, TTL 3

Torus 1024, TTL 5

Torus 1024, TTL 7

Random 1024, TTL 3

Random 1024, TTL 5

Torus, BFS TTL 7

Random, BFS TTL 5

69

TABLE 7 Success rates and amount of changes overtaking in torus and random

networks of 1024 nodes.

Network TTL Success Rate Changes
 Additions Removals Overtakings
Torus 3 80,41% 0,35 6,05 2419,85

5 94,52% 0,5 8,95 628,60
7 98,15% 0 0 28,25

Random 3 88,69% 2,55 18,55 999,10
5 98,16% 50,50 743,20 654,05

In addition to the total amount of topology changes, the time evolution of
changes during the simulation was studied. FIGURE 22 shows changes in a
random network of 256 nodes (the corresponding graphs of other networks are
included in the APPENDIX). As shown in FIGURE 22, the topology changes
occur at the early cycles after, which the topology changes are rare.

FIGURE 22 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 256 nodes with TTL 3.

The results presented in this chapter include also the initiation phase and the
cycles when the network is changing a lot. To study the resulted topology (i.e.,
the outcome of the algorithms), the values at the equilibrium were also studied
and results are presented in FIGURE 23, FIGURE 24, and TABLE 8. As the FI-
GURE 23 shows, the first two hops give quite similar results in the both smaller
networks but in the third hop the random is achieving better results compared
to the torus. Thus the initial topology can still be seen in the performance, but
not until the third hop. If the results are compared to the results of BFS algo-
rithm presented in the FIGURE 3, the improvement in torus network can be
clearly seen: the amount of replies is increased and amount of queries is de-
creased. Thus the topology management algorithm has made the two different

0

5

10

15

20

25

30

35

40

4 16 28 40 52 64 76 88 10
0

11
2

12
4

13
6

14
8

16
0

17
2

18
4

19
6

20
8

22
0

23
2

24
4

25
6

26
8

28
0

Queries/node

Topology Changes in 256 Random with TTL 3

Addings

Removings

Overtakings

70

initial topologies to perform qualitatively similarly, which was the intended
purpose.

The notable improvement is in success rates of torus and random net-
works of 1024 nodes, the success rates are close to 100% whereas in a static net-
work, these rates were 54% and 86%.

FIGURE 23 The average amount of replies in proportion to the amount of query messages
in different networks after equilibrium.

FIGURE 24 Efficiency per TTL values with overtaking after equilibrium.

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350

Replies vs. Queries at Equilibrium

Torus 256

Random 256

Random 1024 TTL 3

Random 1024 TTL 5

Torus 1024 TTL 3

Torus 1024 TTL 5

0,000

0,050

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5

Efficiency at Equilibrium

Torus 256

Random 256

Random 1024 TTL 3

Random 1024 TTL 5

Torus 1024 TTL 3

Torus 1024 TTL 5

71

TABLE 8 Success rates of networks at equilibrium.

Network Size TTL Success Rate Success Rate
of BFS

Torus 256 3 99,64% 96,52%
Random 256 3 99,28% 98,80%
Torus 1024 3 96,67% 53,85%

5 99,12% 86,12%
Random 1024 3 97,26% 86,20%

5 99,53% 99,88%

6.4.3 Comparison of Topology Management Algorithms and DBFS
Algorithm

The topology management algorithms with BFS search were compared to the
DBFS in static networks. Moreover the DBFS algorithm was studied in the net-
works reconstructed by the topology management. The results are presented in
FIGURE 25, FIGURE 26 and TABLE 9. As DBFS and BFS produce significantly
different amounts of forwarded queries for a given TTL level, efficiency values
are compared as a function of the amount of query messages.

The main observation is that the topology management clearly changes
the immediate neighborhood of the nodes. The efficiency values for TTL 1 in
DBFS show that the first neighbor in the selected preferred direction is in the
same interest group in half of the cases (giving close to 4 times more replies
than average node, especially for topologies derived from the torus - for modi-
fied random grids the effect is smaller). Also, the TTL 2 level for DBFS is clearly
above average efficiency. On TTL 3, the effect disappears, but the performance
is still better than in the original topology.

The above observation does not surprise. As the original topologies and
resource distributions did not have any clustering of interests, there was not
much to be achieved by directed search. The moderate clustering that emerged
from the use of topology management improves the performance of the di-
rected search but only locally.

72

FIGURE 25 Efficiency vs. query amount of DBFS algorithm in static networks and BFS and
DBFS algorithms in the networks generated by topology management algo-
rithms.

FIGURE 26 Efficiency vs. query amounts of DBFS algorithm in static networks and BFS
and DBFS algorithms in the networks generated by topology management al-
gorithms.

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

0 20 40 60 80

Ef
fic

ie
nc

y

Queries

Efficiency vs. Queries

Torus 256, DBFS

Torus 256, TM + BFS

Torus 256, TM + DBFS

Random 256, DBFS

Random 256, TM + BFS

Random 256, TM + DBFS

0

0,02

0,04

0,06

0,08

0,1

0,12

0 50 100 150

Ef
fic

ie
nc

y

Queries

Efficiency vs. Queries
Torus 1024,
DBFS, TTL 5

Torus 1024,
TM + BFS, TTL
3
Torus 1024,
TM + DBFS,
TTL 3
Random 1024,
DBFS, TTL 3

Random 1024,
TM + BFS, TTL
3
Random 1024,
TM +DBFS, TTL
3

73

TABLE 9 The success rates of DBFS algorithm in static networks and BFS and

DBFS algorithms in the networks generated by topology management
(TM) algorithms.

Network Size TTL Success Rate
of TM &
DBFS

Success
Rate of
TM & BFS

Success Rate
of DBFS in
Static Net-
work

Torus 256 3 96,66% 99,64% 91,19%
Random 256 3 97,58% 99,28% 97,41%
Torus 1024 3 83,38% 96,67%

5 96,09% 99,12% 74,20%
Random 1024 3 88,25% 97,26% 62,53%

5 96,53% 99,53% 99,82%

6.5 Conclusions

The simulation of peer-to-peer networks and algorithms managing the network
is complex and based on several parameters, which should be defined. The es-
sential part of simulation is to keep it simple so it can be controlled and the pa-
rameters affecting the results can be found. Before understanding thoroughly
the performance of the algorithms in a simple setup, it is not advisable to try
them on real, measurement-based data whose properties are only partially un-
derstood and controllable.

The original purpose of the simulation was to study the topologies that
emerge from the use of the developed topology management algorithms and
compare the BFS search in managed networks with DBFS in static networks to
find out when the optimization of topology is delivering better results than
DBFS. The generated topologies, amount of queries and replies, efficiency val-
ues and success rates were studied. The simulations used two different topolo-
gies, namely, torus and random of 256 and 1024 number of nodes. All distribu-
tions of resources and queries were uniform to keep the simulation and its
analysis simple.

Several surprises appeared along the way. The most serious was the ten-
dency of the topology management to produce fragmented networks. As these
were not acceptable for later trials with DBFS a lot of attention was needed to
tame the topology management algorithm. Understanding the joint effects of
simultaneous overtakings might have been more difficult in more complex
networks.

An outcome of this analysis is the impact that the overtaking on the per-
formance. The overtaking should be “tuned” with caution, since it can have a
more dramatic impact on the network topology than the simple additions or
deletions of connections. In particular, in some cases, it results on “star” topolo-
gies, if the interest data is clustered.

74

Another major problem arose with the traffic estimation algorithm. For
large networks with large TTL values, it was difficult to define traffic limit in a
way that would keep the connections of a node within a reasonable amount but
would not partition the network. This was also seen in the amount of neighbor
additions compared to the amount of the neighbor removals; the amount of re-
movals was always more than amount of additions.

The managed topologies give rather similar search performances in the
close neighborhood (up to two hops away) independently of the initial topolo-
gy. This shows that topology management is able (in the given setup) to make
systematic changes. However, for larger neighborhoods the effect is lost. This
implies also that even if the search performance improves from the original to-
rus topology, the resulting performance is not really better than that for the
original random grid for higher values of TTL. Obviously, one would like the
topology management to perform better than simply random networks. A posi-
tive result was that even if the efficiency did not improve the amount of re-
ceived replied close to the node and success rates increased. Thus the used TTL
value could be decreased after topology management algorithms and node
would still receive more replies.

It seems that the topology management cannot, in the current form and
setup, do much more than create contacts to the neighbor’s neighbor once. After
that, the used thresholds for different operations are too tight to allow further
progress. A small scale sensitivity analysis was made to test the effect of differ-
ent traffic limits, but this did not change the situation. Presumably, the 80-90%
threshold for overtaking is too high to allow iterated changes in the topology.

The parameters used in the simulation of topology management algo-
rithms were selected so that they would work as well as possible for (almost)
any test case. For that reason, for example, the initialization period before to-
pology changes was kept quite long.

It is bit doubtful to generalize the findings from one simple setup, but at
least the following observations may be valid also in a more general context:

− overtaking has a tendency to create star-like topologies (neighbor’s
neighbor of a star center node aims to joining the center node)

− simultaneous overtaking in the same neighborhood should be
avoided as they may create severe traffic overloading (two stars
coming to contact)

When studying topology management and adaptive search together it
could be observed that topology management, even with its limited perfor-
mance, was able to bring some clustering to the network to be exploited by the
search. So, rather than competitive approaches, these should be seen as collabo-
rators. This of course on precondition that topology management can be modi-
fied to exploit the biased data from directed searches.

7 CONCLUSIONS AND CONTRIBUTION OF THESIS

The peer-to-peer technology is utilized already in 1960s but in the last decade it
has attained more publicity and it has challenged the traditional client-server
architecture especially in the file-sharing applications. The main principle of the
P2P networks is equal role of the nodes: all nodes may act as servers and clients.
The pure unstructured P2P network is simple to implement and provides good
scalability, but the resource discovery using flooding algorithms restricts this
scalability. Resource discovery and topology are the main aspects affecting the
efficiency. The efficiency of the search can be improved by changing the topolo-
gy in a way that the resources can be found closer or by using non-flooding
search algorithms. The concentration of this thesis is to study the performance
of developed topology management algorithms [PV, PVI] and search algo-
rithms [PI, PVII], but it also presents tools [PII, PIII, PIV] developed for the
study.

 The paper [PV] proposes a method combining four interest-based topolo-
gy management algorithms for self-organizing the overlay topology in the pure
unstructured peer-to-peer networks. The algorithms utilize the local infor-
mation that the nodes collect about both their neighbors and also other nodes
they know in the network. All the algorithms aim for nodes providing needed
resources in the close neighborhood of the node that executes the algorithms.
The simulations showed that this can be reached with certain parameters with-
out significant load in the network or partition of the topology.

Solving the problem of a large amount of varied parameters was attempt-
ed with the use of neural networks. The topology management algorithms were
further developed and the used parameters were tuned by using neural net-
works. The paper [PVI] introduces NeuroTopology algorithm. The algorithm

76

organizing the overlay topology of the peer-to-peer network is constructed by
neural networks. Each node in the network defines by using neural network
whether or not it establishes a connection to the node it knows. The local infor-
mation the node knows about its potential neighbor is taken as input to the
neural network, and the output defines whether a connection is to be estab-
lished or not. As NeuroTopology is an interest-based algorithm, the local in-
formation that a node collects from other nodes includes the amount of resource
replies arrived from the node or relayed by the node. NeuroTopology was
trained using HDS algorithm and efficiency of the topology the NeuroTopology
generated was tested in grid, power-law and random graph topologies. The
results show that topologies generated by NeuroTopology are more efficient
than other tested topologies. The challenge of the study was the complexity of
the neural network.

The developed resource discovery algorithm called NeuroSearch is pre-
sented in the paper [PI]. NeuroSearch uses neural networks for generating a
search algorithm similarly as NeuroTopology is used for constructing a topolo-
gy algorithm. The algorithm decides to which neighbor nodes the resource dis-
covery query is forwarded. NeuroSearch was simulated and tested with pow-
er-law graph networks and results were compared with BFS algorithm. It could
be observed that by adapting the search with neural networks, about 50% more
resources could be found with the same efficiency than with BFS for TTL2.

An algorithm was constructed to estimate the performance of resource
discovery algorithms from theoretical upper limits. The algorithm uses k-
Steiner minimum tree and is presented in the paper [PVII]. Five resource dis-
covery algorithms, Breadth-First Search, Self-avoiding Random Walker, High-
est-Degree Search, Dynamic Query Protocol and k-Steiner Minimum Tree, were
analyzed by using power-law, random, and Gnutella2 topology. It was ob-
served that the studied resource discovery algorithms performed by one to two
orders of magnitude less efficiently than optimal search that was fully aware of
the network topology and all the resources - in particular if a big fraction of the
resources was to be found. For finding one sample of a popular resource, the
difference was much smaller.

The first developed tool was a peer-to-peer middleware called Chedar
which is based on pure peer-to-peer architecture and presented in paper [II].
The middleware is implemented in Java programming language and thus de-
signed for heterogeneous environments. It offers an application interface for
peer-to-peer applications. Chedar uses the TCP/IP protocol for communication
and algorithm guaranteeing that the resource reply is forwarded back to the
initiator of the query message if it still exists in the network. Chedar contains
also topology management algorithms, which are used for self-organizing the
topology and implements several search algorithms.

The ensure the reproducibility of the studies and avoid the problems the
delays in real TCP connections and load of CPUs caused, all topology and re-
source discovery algorithms were studied in the P2PReal simulator described in
paper [PIV]. P2PRealm is specially designed for optimizing neural networks

77

used in peer-to-peer networks. The user can define by input parameters the
structure of the peer-to-peer networks and resource distribution and query pat-
terns. Also requirements for algorithms trained by neural networks can be de-
fined. The simulator provides communication by message passing, supports
parallel computing and dynamic network.

The third tool is P2PStudio [PIII], which can be used to monitor, control,
and visualize the peer-to-peer networks. P2PStudio is composed of a user inter-
face (UI) and a server. The server handles the communication between user in-
terface and peer-to-peer nodes. With P2PStudio, the user can send commands
to a node or several nodes, modify resources, modify connections, and view a
logical topology of the network, information about the last resource query, a
node’s parameter values, neighborhood distribution graph of the network, and
a log of events in the network.

As the previous studies of topology management algorithms concentrated
on the effect of few varied parameters, the main focus of the sixth chapter of
this thesis was to define controlled simulations and analyze more systematically
the performance of the generated networks. Simulations for a simple setup
were run to study the effect of different parameters and to compare the topolo-
gy management algorithms with the search algorithm using similar information.

The simulated setup showed it was impossible to define the parameters in
a way that the developed algorithms would have improved all topologies and
kept the networks connected. The partition of the network was varied from the
few disconnected nodes to the several disconnected clusters. This problem
arose in particular with larger networks (1024 nodes) and higher TTL values,
which explains why the feature was not observed in the original paper [PV].

On the other hand, algorithms improved the efficiency, success rate, and
especially the amount of received replies from the nodes close to the querier.
This simple simulation kept all distribution of variables equal because different
distributions of resources, interests, and queries tested with different topologies
of varied node amounts, and with replication and dynamicity of the nodes
might have given better results in some cases but would have done it impossi-
ble to make conclusions.

7.1 Contributions of the Author

Publications are produced in collaboration with other authors in a peer-to-peer
research group. In the paper [PII], the author has implemented the middleware,
designed and implemented topology algorithms along with the routing algo-
rithm the middleware includes. The author has further developed topology al-
gorithms and implemented and tested those in simulator [PV]. The NeuroTo-
pology algorithm trained by neural networks [PVI] is defined by the author.

Author’s contribution to P2PReal simulator [PIV] concerns defining the
requirements for the simulator, and the author has implemented algorithms to
the simulator and modified the simulator. In P2PStudio tool [PIII], the author

78

has participated in design of the tool and particularly defined the interface be-
tween the tool and peer-to-peer middleware.

The author participated in defining the neural network and inputs for
NeuroSearch [PI] and resource discovery as a Steiner tree problem [PVII].

79

YHTEENVETO (FINNISH SUMMARY)

Hajautetut järjestelmät ovat muutaman vuosikymmenen jälkeen tekemässä pa-
luuta asiakas/palvelin–arkkitehtuurista takaisin vertaisverkkoihin, joissa peri-
aatteena on verkossa mukana olevien koneiden eli vertaisten tasa-arvoisuus.
Vertaisverkossa mikä tahansa vertainen voi tarjota resursseja muille verkon
vertaisille. Käyttämällä täysin keskittämätöntä vertaisverkkoarkkitehtuuria
saavutetaan monia etuja, kuten skaalautuvuus ja alhaiset hankintakustannukset,
mutta kohdataan myös haasteita. Suurin haaste liittyy käytettyihin ns. tulviviin
(kaikkiin suuntiin lähettäviin) hakualgoritmeihin, jotka luovat verkkoon paljon
kyselyviesteistä johtuvaa liikennettä. Hakualgoritmi luokin yleensä suurimman
esteen vertaisverkon skaalautuvuudelle.

Haun tehokkuuteen vaikuttaa käytetyn hakualgoritmin lisäksi myös ver-
kon topologia. Tutkimusten mukaan verkossa olevilta solmuilta löytyy kiinnos-
tuksen kohteita, joten haun suhteen olisi tehokasta, jos samasta asiasta kiinnos-
tuneet solmut olisivat lähellä toisiaan, jolloin kyselyviestien kulkemaa matkaa
voitaisiin rajoittaa.

Tässä väitöskirjassa, jonka otsikko on ”Kiinnostuksiin pohjautuva topolo-
gian hallinta järjestämättömissä vertaisverkoissa”, esitellään topologian hallin-
taan kehitettyjä algoritmeja, joilla vertaiset voivat hallita yhteyksiään naapurus-
toonsa käyttäen hyväkseen tietoa, jota ne keräävät hakiessaan verkosta resurs-
seja. Topologian hallinta-algoritmien lisäksi työssä tarkastellaan räätälöityjä
hakualgoritmeja ja niiden sovittamista topologian hallintaan. Edellä mainittujen
menetelmien tutkimukseen soveltuvia simulointityökaluja esitellään sekä ylei-
sesti että käymällä läpi esimerkinomainen simulointikoesarja.

80

REFERENCES

Abraham, A., Ye, B., Xian, C., Liu, H. & Pant, M. 2007. Multi-objective Peer-to-
Peer Neighbor-Selection Strategy Using Genetic Algorithm. Lecture Notes
in Computer Science, Vol. 4873, pp. 443-451.

Adamic, L. A., Lukose, R. M., Puniyani, A. R. & Huberman, B. A. 2001. Search
in power-law networks. Physical Review E, Vol. 64, Is. 4.

Adar, E. & Huberman, B. A. 2000. Free Riding on Gnutella. First Monday, Vol. 5,
No. 10.

Agrawal, A. & Casanova, H. 2003. Clustering Hosts in P2P and Global
Computing Platforms. In Proceedings of the 3rd International Symposium
on Cluster Computing and the Grid, pp. 367-373.

Airiau, S., Sen, S. & Dasgupta, P. 2006. Effect of Joining Decisions on Peer
Clusters. In Proceedings of the Fifth international Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 609-615.

Albert, R. & Barabasi, A-L. 2002. Statistical Mechanics of Complex Networks.
Reviews of Modern Physics, Vol. 74.

Alima, L. O., Mesaros, V., Van Roy, P. & Haridi, S. 2002. NetProber: A
Component for Enhancing Efficiency of Overlay Networks in P2P Systems.
In Proceedings of the Second international Conference on Peer-To-Peer
Computing, pp. 25-32.

Androutsellis-Theotokis, S. & Spinellis., D. 2004. A Survey of Peer-to-Peer
Content Distribution Technologies. ACM Computing Surveys, Vol. 36, No.
4 (December 2005), pp. 335-371.

Asvanund, A., Bagla, S., Kapadia, M. H., Krishnan, R., Smith, M. D. & Telang, R.
2003. Intelligent Club Management in Peer-to-Peer Networks. 1st
Workshop on Economics of Peer-to-Peer Systems.

Berstein, D. S., Feng, Z., Levine, B. N. & Zilberstein, S. 2003. Adaptive Peer
Selection. Lecture Notes in Computer Science, Vol. 2735, pp. 237-246.

Broekstra, J., Ehrig, M., Haase, P., Van Harmelen, F., Kampman, A., Sabou, M.,
Siebes, R., Staab, S., Stuckenschmidt, H. & Tempich, C. 2003. A Metadata
Model for Semantic-Based Peer-to-Peer Systems. In Proceedings of the
WWW’03 Workshop on Semantics in Peer-to-Peer and Grid Computing.

Bustamante, F. E. & Qiao, Y. 2004. Friendships that last: Peer lifespan and its
role in P2P protocols. In Web Content Caching and Distribution:
Proceedings of the 8th international Workshop, pp. 233-246.

Chawathe, Y., Ratsanamy, S., Breslau, L., Lanham, N. & Shenker, S. 2003,
Making Gnutella-like P2P Systems Scalable. In Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols
For Computer Communications, pp. 407-418.

Ciglaric., M. & Vidmar, T. 2002. Position of Modern Peer-to-Peer Systems in the
Distributed Systems Architecture. 11th Mediterranean Electrotechnical
Conference, pp. 341-345.

Cohen, E. & Shenker, S. 2002. Replication Strategies in Unstructured Peer-to-
Peer Networks. In Proceedings of the 2002 conference on Applications,

81

technologies, architectures, and protocols for computer communications,
August 2002, pp. 177-190.

Condie, T., Kamvar, S. D. & Garcia-Molina, H. 2004. Adaptive Peer-to-Peer
Topologies. In Proceedings of the Fourth international Conference on
Peer-To-Peer Computing, pp. 53-62.

Coulouris, G., Dollimore, J. & Kindberg., T. 2005. Distributes Systems: Concepts
and Design. Pearson Education Limited, England.

Cooper, B. F. 2004. A Content Model for Evaluating Peer-to-Peer Searching
Techniques. In Proceedings of the 5th ACM/IFIP/USENIX international
Conference on Middleware, pp. 18-37.

Cooper, B. F. & Garcia-Molina, H. 2005. Ad Hoc, Self-Supervising Peer-to-Peer
Search Networks. ACM Transactions on Information Systems, Vol. 23, No.
2 (April 2005).

Crespo, A. & Garcia-Molina, H. 2002, Routing Indices for Peer-to-Peer Systems.
In Proceedings of 22nd International Conference on Distributed Computing
Systems, pp. 23-32.

Crespo, A. & Garcia-Molina, H. 2005. Semantic Overlay Networks for P2P
Systems. Lecture Notes in Computer Science, Volume 3601, pp. 1-13.

DePaoli, F. & Mariani, L. 2004. Dependability in Peer-to-Peer Systems. IEEE
Internet Computing, Vol. 8, No. 4 (July-August 2004), pp. 54-61.

Fisk, A. 2003. Gnutella Dynamic Query Protocol v0.1. Gnutella Developer’s
Forum. http://www.ic.unicamp.br/~celio/peer2peer/gnutella-related/
gnutella-dynamic-protocol.htm, 5.12.2012.

Ge, Z., Figueiredo, D. R., Jaiswal, S., Kurose, J. & Towsley, D. 2003. Modeling
Peer-Peer File Sharing Systems. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications, Vol. 3, pp. 2188-2198.

Ghanea-Hercock, R. A., Wang, F. & Sun, Y. 2006. Self-Organizing and Adaptive
Peer-to-Peer Network. IEEE Transactions on Systems, Man, and
Cybernetics – part B: Cybernetics, Vol. 36, Nro. 6 (December 2006).

Habib, A. & Chuang, L. 2006. Service Differentiated Peer Selection: An Incentive
Mechanism for Peer-to-Peer Streaming. IEEE Transactions on Multimedia,
Vol. 8, No.3 (June 2006), pp. 610-621.

Hales, D. 2005. Self-organising, Open and Cooperative P2P Societies - From
Tags to Networks. Lecture Notes in Computer Science, Vol. 3464, pp. 267-
285.

Handurukande, S., Kermarrec, A-M., Fessant, F. L. & Massoulie, L. 2004.
Exploiting Semantic Clustering in the eDonkey P2P Network. In
Proceedings of the 11th Workshop on ACM SIGOPS European Workshop.

Hu, T. H. & Sereviratne, A. 2003. General Clusters in Peer-to-Peer Networks.
The 11th IEEE International Conference on Networks, pp. 277-282.

Idris, T. & Altmann, J. 2006. A Market-Managed Topology Formation
Algorithm for Peer-to-Peer File Sharing Networks. In Proceedings of 5th
International Conference on Internet Charging and QoS Technologies, pp.
61-77.

82

Iles, M. & Deugo, M. 2003. Adaptive Resource Location in a Peer-to-Peer

Network. In Proceedings of the 16th international Conference on
Developments in Applied Artificial intelligence, pp. 604-613.

Iles, M. & Deugo, M. 2002. A Search for Routing Strategies in a Peer-to-Peer
Network Using Genetic Programming. In Proceedings of 21st IEEE
Symposium on Reliable Distributed Systems, pp. 341-346.

Kalogeraki, V., Gunopulos, D. & Zeinalipour-Yazti, D. 2002. A Local Search
Mechanism for Peer-to-Peer Networks. In Proceedings of the Eleventh
international Conference on Information and Knowledge Management, pp.
300-307.

Khambatti, M., Ryu, K. D. & Dasgupta, P. 2004. Structuring Peer-to-Peer
Networks Using Interest-Based Communities. Lecture Notes in Computer
Science, Vol. 294a, pp. 48-63.

Klemm, A., Lindemann, C., Vernon, M. K. & Waldhorst, O. P. 2004.
Characterizing the Query Behavior in Peer-to-Peer File Sharing Systems.
In Proceedings of the 4th ACM SIGCOMM Conference on internet
Measurement, pp.55-67.

Kojima, K. 2003. Grouped Peer-to-Peer Networks and Self-Organization
Algorithm. In Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, Vol. 3, pp.2970-2976.

Lai, K., Feldman, M., Stoica, I. & Chuang, J. 2003. Incentives for Cooperation in
Peer-to-Peer Networks. In Workshop on Economics of Peer-toPeer
Systems.

Liu, H., Abraham, A. & Badr, Y. 2010. Neighbor Selection in Peer-to-Peer
Overlay Networks: A Swarm Intelligence Approach. Computer
Communications and Networks, Part 4, pp. 405-431.

Liu, H., Abraham, A. & Xhafa, F. 2008. Peer-to-Peer Neighbor Selection Using
Single and Multiobjective Population-based Metaheuristics,
Metaheuristics for Scheduling: Distributed Computing Environments.
Studies in Computational Intelligence, Springer Verlag, Germany, pp. 323-
340.

Liu, Y., Liu, X., Xiao, L., Ni, L. M. & Zhang, X. 2004A. Location-Aware Topology
Matching in P2P Systems. Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies , Vol. 4, pp. 2220-2230.

Liu, Y., Xiao, L, Esfahanian, A-E. & Ni, L. M. 2005A. Approaching Optimal
Peer-to-Peer Overlays. In Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 407-414.

Liu, Y., Xiao, L., Liu, X., Ni, L. M. & Zhang, X. 2005B. Location Awareness in
Unstructured Peer-to-Peer Systems. IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, Nro 2 (February 2005).

Liu, Y., Zhuang, Z., Xiao, L. & Ni, L. M. 2004B. A Distributed Approach to
Solving Overlay Mismatching Problem. In Proceedings of the 24th
International Conference on Distributed Computing Systems, pp. 132-139.

83

Liu, Y., Zhuang, Z., Xiao, L. & Ni, L. M. 2003. AOTO: Adaptive Overlay

Topology Optimization in Unstructured P2P Systems. IEEE Global
Telecommunications Conference, Vol. 7, pp. 4186-4190.

Lo, V., Zhou, D., Liu, Y., GauthierDickey, C. & Li, J. 2005. Scalable Supernode
Selection in Peer-to-Peer Overlay Networks. In Proceedings of the Second
international Workshop on Hot Topics in Peer-To-Peer Systems, pp. 18-27.

Lu, T., Fang, B., Sun, Y., Cheng, X. & Guo, L. 2005. Building Scale-Free Overlay
Mix Networks with Small-World Properties. In Proceedings of the Third
international Conference on information Technology and Applications, pp.
529-534.

Lv, Q., Cao, P., Cohen, E., Li, K. & Shenker, S. 2002A. Search and Replication in
Unstructured Peer-to-Peer Networks. In Proceedings of the 16th
International Conference on Supercomputing, pp. 84-95.

Lv, Q., Ratnasamy, S. & Shenker, S. 2002B. Can Heterogeneity Make Gnutella
Scalable?. In Proceedings of the first International Workshop on Peer-to-
Peer Systems, pp. 94-103.

Löser, A., Naumann, F., Siberski, W., Nejdl, W. & Thaden, U. 2003. Semantic
Overlay Clusters within Super-Peer Netwoks. In Proceedings of the
International Workshop on Databases, Information Systems and Peer-to-
Peer Computing, pp. 33-47.

Massoulie, L. & Kermarrec, A.-M. 2003. Network Awareness and Failure
Resilience on Self-Organising Overlay Networks. In Proceedings of the
22nd International Symposium on Reliable Distributed Systems, pp. 47-55.

Meng, S., Shi, C., Han, D., Zhu, X. & Yu, Y. 2006. A Statistical Study of Today’s
Gnutella. Lecture Notes in Computer Science, Vol. 3841, pp. 189-200.

Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I. &
Löser, A. 2003. In Proceedings of the 12th International Conference on
World Wide Web, pp. 536-543.

Newman, M. E. J. 2003. The Structure and Function of Complex Networks.
SIAM Review, Vol. 45, Issue 2, pp. 167-256.

Ng, C. H. & Sia, K. C. 2002. Peer Clustering and Firework Query Model. In
Poster Proc. of the 11th International World Wide Web Conference.

Ng, W. S., Ooi; B. C. & Tan K. 2002. BestPeer: A Self-Configurable Peer-to-Peer
System. In Proceedings of the 18th International Conference on Data
Engineering, pp. 272.

Ni, L. M. & Liu, Y. 2004. Efficient Peer-to-Peer Overlay Construction. In
Proceedings of the IEEE International Conference on E-Commerce
Technology for Dynamic E-Business, pp. 314-317.

Niu, C., Wang, J. & Shen, R. 2007. A Trust-Enhanced Topology Adaptation
Protocol for Unstructured P2P Overlays. Third International Conference
on Semantics, Knowledge and Grid, pp. 200-205.

Oram, A. 2001. Peer-to-Peer: Harnessing the Power of Distributed Technologies.
O’Reilly & Associates, Inc.

84

Ramanathan, M. K., Kalogeraki, V. & Pruyne, J. 2002. Finding Good Peers in

Peer-to-Peer Networks. In Proceedings of the 16th International
Symposium on Parallel and Distributed Processing, pp. 24-31.

Ramaswamy, L., Gedik, B. & Liu, L. 2005. A Distributed Approach to Node
Clustering in Decentralized Peer-to-Peer Networks. IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 9 (September 2005), pp. 814-
829.

Ramaswamy, L., Gedik, B. & Liu, L. 2003A. Connectivity Based Node
Clustering in Decentralized Peer-to-Peer Networks. In Proceedings of
Third International Conference on Peer-to-Peer Computing, pp. 66-73.

Ramaswamy, L. & Liu, L. 2003B. Free Riding: A New Challenge to Peer-to-Peer
File Sharing Systems. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, January 2003.

Rasti, A. H., Stutzbach, D. & Rejaie, R. 2006. On the Long-term Evolution of the
Two-Tier Gnutella Overlay. In Proceedings of 25th IEEE International
Conference on Computer Communications, pp. 1-6.

Ratsanamy, S., Francis, P., Handley, M., Karp, R. & Shenker, S. 2001. A scalable
Content-addressable Network. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications, pp. 161-172.

Ratnasamy, S., Handley, M., Karp, R. & Shenker, S. 2002. Topologically-Aware
Overlay Construction and Server Selection. In Proceedings of Twenty-
First Annual Joint Conference of the IEEE Computer and Communications
Societies, pp. 1190-1199.

Sakaryan, G. & Unger, H. 2003A. Topology Evolution in P2P Distributed
Networks. In Proceedings of IASTED: Applied Informatics, Austria, pp.
791-796.

Sakaryan, G. & Unger, H. 2003B. Influence of the Decentralized Algorithms on
Topology Evolution in P2P Distributed Networks. In Proceedings of
Design, Analysis, and Simulation of Distributed Systems.

Schlosser, M. T., Condie, T. E. & Kamvar, S. D. 2002. Simulating a File-Sharing
P2P Network. In First Workshop on Semantics in P2P and Grid
Computing.

Schollmeier, R. 2001. A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications. In
Proceedings of the First International Conference on Peer-to-Peer
Computing, pp. 101-102.

Shao, Y. & Wang, R. 2005. BuddyNet: History-Based P2P Search. In Proceedings
of 27th European Conference on IR Research, pp. 23-37.

Singh, A. & Haahr, M. 2007. Decentralized Clustering In Pure P2P Overlay
Networks Using Schelling’s Model. IEEE International Conference on
Communications, pp.1860-1866.

Sripanidkulchai, K., Maggs, B. & Zhang, H. 2003. Efficient Content Location
Using Interest-Based Locality in Peer-to-Peer Systems. Twenty-Second

85

Annual Joint Conference of the IEEE Computer and Communications., pp.
2166-2176 vol.3.

Srivatsa, M., Gedik, B. & Liu, L. 2006. Large Scaling Unstructured Peer-to-Peer
Networks with Heterogeneity-Aware Topology and Routing. IEEE
Transactions on Parallel and Distributed Systems, Vol. 17, Nro. 11
(November 2006).

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F. & Balakrishnan, H. 2001.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications.

Stutzbach., D. & Rejaie, R. 2005A. Capturing Accurate Snapshots of the Gnutella
Network. In Proceeding of 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, pp. 2825-2830.

Stutzbach, D., Rejaie, R. & Sen, S. 2008. Characterizing Unstructured Overlay
Topologies in Modern P2P File-Sharing Systems. IEEE/ACM Transactions
on Networking, Vol. 16, No. 2 (April 2008), pp. 267-280.

Stutzbach., D. & Rejaie, R. 2005B. Evaluating the Accuracy of Captured
Snapshots by Peer-to-Peer Crawlers. Lecture Notes in Computer Science,
Vol. 3431, pp. 353-357.

Sun, S., Abraham, A., Zhang, G. & Liu, H. 2007. A Particle Swarm Optimization
Algorithm for Neighbor Selection in Peer-to-Peer Networks. In
Proceedings of the 6th International Conference on Computer Information
Systems and Industrial Management Applications, pp. 166-172.

Sun, Q. & Garcia-Molina, H. 2004. SLIC: A Selfish Link-Based Incentive
Mechanism for Unstructured Peer-to-Peer Networks. In Proceedings of the
24th international Conference on Distributed Computing Systems, pp.
506–515.

Tanenbaum, A. S. & Van Steen, M. 2002. Distributes Systems: Principles and
Paradigms. Prentice-Hall.

Tsoumakos, D. & Roussopoulos, N. 2003A. A Comparison of Peer-to-Peer
Search Methods. In Proceedings of 6th International Workshop on Web
and Databases, pp. 61-66.

Tsoumakos, D. & Roussopoulos, N. 2003B. Adaptive Probabilistic Search for
Peer-to-Peer Networks. In Proceedings of the 3rd international Conference
on Peer-To-Peer Computing.

Tsoumakos, D. & Roussopoulos, N. 2006. Analysis and Comparison of P2P
Search Methods. In Proceedings of the 1st international conference on
Scalable information system.

Voulgaris, S., Kermarrec, A.-M. & Massoulie, L. 2004. Exploiting semantic
proximity in peer-to-peer content searching. In Proceedings of 10th IEEE
International Workshop on Future Trends of Distributed Computing
Systems, pp. 238-243.

Wan, H., Ishikawa, N. & Hjelm, J. 2005. Autonomous Topology Optimization
for Unstructured Peer-to-Peer Networks. In Proceedings of the 2005 11th
International Conference on Parallel and Distributed Systems, pp. 488-494.

86

Wang, Y., Yun, X. & Li, Y. 2007. Analyzing the Characteristics of Gnutella

Overlays. In Proceedings of the International Conference on Information
Technology, pp. 1095–1100.

Watts, D. J. & Strogatz, S. H. 1998. Collective dynamics of ‘small-world’
networks. Nature, Vol. 393 (June 1998), pp. 440-442.

Xiao, L., Liu, Y. & Ni, L. M. 2005. Improving Unstructured Peer-to-Peer Systems
by Adaptive Connection Establishment. IEEE Transactions on Computers,
Vol. 54, Nro. 9 (September 2005), pp. 1091-1103.

Xie. C., Guo, S., Rejaie, R. & Pan, Y. 2007. Examining Graph Properties of
Unstructured Peer-to-Peer Overlay Topology. IEEE Global Internet
Symposium, pp. 13-18.

Yang, B. & Garcia-Molina, H. 2003. Designing a Super-Peer Network. In
Proceedings of the 19th International Conference on Data Engineering, pp.
49-60.

Yang, B. & Garcia-Molina, H. 2002B. Improving Search in Peer-to-Peer
Networks. In Proceedings of 22nd International Conference on Distributed
Computing Systems, pp. 5-14.

Yang, S. J. H. & Chen, I. Y. L. 2008. A social network-based system for
supporting interactive collaboration in knowledge sharing over peer-to-
peer network. International Journal of Human-Computer Studies, Vol. 66,
Issue 1 (January 2008), pp. 36-50.

Zhang, H., Zhang, L., Shan, X. & Li, V. O. K. 2007. Probabilistic Search in P2P
Networks with High Node Degree Variation. IEEE International
Conference on Communications, pp. 1710-1715.

Zhang, X. Y., Zhang, Q., Zhang, Z., Song, G. & Zhu, W. 2004. A Construction of
Locality-Aware Overlay Network: mOverlay and Its Performance. IEEE
Journal on Selected Areas in Communications, Vol. 22, No. 1 (January
2004).

Zhao, B. Y., Ling, H., Stribling, J., Rhea, S. C., Joseph, A. D. & Kubiatowicz, J. D.
2004. Tapestry: a Resilient Global-scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, Vol. 22, Issue 1
(January 2004), pp. 41-53.

Zheng, W., Zhang, S., Ouyang, Y., Makedon, F. & Ford, J. 2005. Node Clustering
Based on Link Delay in P2P Networks. In Proceedings of the 2005 ACM
Symposium on Applied Computing, pp. 744 -749.

87

APPENDIX

This appendix presents the experiment setup and detailed data used in the
graphs describing the results of the simulations in Chapter 6.

The simulation was set up as follows:
Nodes and resources

− Grids of N=2^l nodes were used (N=256, 1024, l=8, 10).
− There were M=2^12 resources in the network (identified with a 12

bit binary key). So each resource has a unique identifier, l first bits
defining the node and the rest identifying the resource within the
node. That is, there were 16 or 4 resources on each node.

− The nodes were divided to 8 interest groups using the first three
leading bits in the resource/node key.

− The node numbering implied by the resource keys was independ-
ent of numberings used in construction of the grid topologies or in
scheduling topology management operations.

Queries
− Each query was designed so that it matched to 2^5=32 resources

distributed to varying amount of nodes. For each query a random
mask was created that fixed 7 of the 12 bits (leaving 5 bits free).
Thus the query matched to resources that were distributed to 2, 4, 8,
16 or 32 nodes (for N=256), (8, 16 or 32 for N=1024).

− For queries inside the interest group, the first three bits of the mask
(defining the nodes in the interest group) were forced to be the
same as for the querying node.

Simulation runs
− 20 independent replications were made of each simulation case.
− One simulation run consisted of 280*N queries (for N=256, 1024).

For simulations of at equilibrium state for managed topologies the
simulation consisted of 140*N queries. The equilibrium state was
achieved with 140*n queries .When simulating DBFS, z*N queries
were first made using BFS to collect data for deciding about the pre-
ferred directions (for z = 2, 4, 6).

− For topology management z*N queries were first made to collect
data about the resources in the search neighborhood and the traffic
at nodes (for z = 2, 4, 6).

− The traffic estimation period was z*N queries (for z = 2, 4, 6).
− Each node was given random value within (1 - z*N) which de-

fined the cycle when the node checked its traffic.
− Overloading was checked more often: every 16th cycle the node

was checking its overload situation i.e. whether its traffic was
more than the upper traffic limit (u*z*N, for u = 0.4, 0.6, 0.8) al-
lowed.

− The lower traffic limit was 20% of upper traffic limit.

88

− Also for overtaking was defined the initiation rounds 2*z*N when
the node is collecting data.
− After that the node receiving replies checked if one of its neigh-

bors’ neighbor provides more than o percent of the replies (for o
= 80, 90).

− Since that the overtaking was checked after the node has sent k
queries (k = 10, 20).

Observed variables
− The output of the simulation was monitored using results averaged

over 1024 queries. From this data the following indicators were
computed
− Q= average number of query messages/node for each level of

TTL
− H= average number of found resources/query for each level of

TTL
− Efficiency E=H/Q
− Number of queries without any replies (failed queries)
− For topology management the amounts of additions, removals

and overtakings per 1024 queries
− In addition to point estimates (sample averages), we report the

standard deviations of Q and H on the node level. Confidence in-
tervals can be obtained by multiplying the standard deviations by
1.96/sqrt(20*N*#query) where #query is the amount of que-
ries/node in the run, , (i.e. by 0.0016 for N=256 and 0.0008 for
N=1024).

TABLE 10 BFS in the static networks of 256 nodes.

 Torus 256 Random 256
Hops Q SQ H SH E Q SQ H SH E
1 4,000 0,000 0,480 1,380 0,120 4,094 5,901 0,506 1,429 0,124
2 12,000 0,000 0,980 2,796 0,082 16,477 49,620 1,918 5,812 0,117
3 24,000 0,000 1,429 2,603 0,060 62,374 275,430 6,084 21,919 0,098
4 36,000 0,000 1,964 3,443 0,055 188,518 944,204 11,337 25,334 0,061
5 48,000 0,000 2,459 3,737 0,051 308,471 968,016 8,380 23,344 0,028
6 60,000 0,000 2,935 3,153 0,049 174,654 466,170 2,439 21,583 0,014
7 72,000 0,000 3,368 3,470 0,047 34,211 328,897 0,437 7,554 0,012

89

TABLE 11 BFS in the static torus network of 1024 nodes.

 Torus 1024

Hops Q SQ H SH E
1 4,0000 0,0000 0,1238 0,3590 0,0309
2 12,0000 0,0000 0,2485 0,5425 0,0207
3 24,0000 0,0000 0,3720 0,6231 0,0155
4 36,0000 0,0000 0,4988 0,7687 0,0139
5 48,0000 0,0000 0,6266 0,8581 0,0131
6 60,0000 0,0000 0,7477 0,9052 0,0124
7 72,0000 0,0000 0,8661 1,0559 0,0120

TABLE 12 BFS in the static random network of 1024 nodes.

 Random 1024

Hops Q SQ H SH E
1 4,1062 3,3708 0,1283 0,4052 0,0312
2 16,5716 24,5754 0,5085 1,0338 0,0307
3 65,9173 140,1060 1,9328 4,3911 0,0293
4 246,7508 658,6451 6,0812 13,2294 0,0247
5 744,4459 2064,2749 11,4857 14,8145 0,0155

The following result of DBFS algorithm use initialization round 4 and the algo-
rithm selected one neighbor only in the first hop.

TABLE 13 DBFS in the torus network of 256 nodes.

 Torus 256, TTL 3 Torus 256, TTL 5 Torus 256, TTL 7
Hops H SH E H SH E H SH E
1 0,238 0,848 0,238 0,180 0,989 0,180 0,161 0,757 0,161
2 0,560 1,579 0,187 0,489 1,618 0,163 0,442 1,653 0,147
3 1,009 1,993 0,112 0,959 1,837 0,107 0,907 1,911 0,101
4 1,453 3,224 0,069 1,432 2,903 0,068
5 2,021 2,294 0,061 2,012 2,822 0,061
6 2,493 2,769 0,052
7 2,964 3,959 0,049

90

TABLE 14 DBFS in the torus network of 1024 nodes.

 Torus 1024, TTL 5 Torus 1024, TTL 7

Hops H SH E H SH E
1 0,0419 0,2132 0,0419 0,0387 0,2036 0,0386
2 0,1115 0,3556 0,0372 0,1051 0,3540 0,0350
3 0,2372 0,5309 0,0263 0,2322 0,4992 0,0258
4 0,3633 0,6740 0,0173 0,3571 0,6570 0,0170
5 0,5152 0,7560 0,0156 0,5100 0,7314 0,0155
6 0,6336 0,8509 0,0132
7 0,7572 0,9304 0,0126

TABLE 15 DBFS with TTL 3 in the random network of 256 nodes.

 Random 256, TTL 3

Hops Q SQ H SH E
1 1,000 0,000 0,160 0,801 0,160
2 5,239 9,992 0,811 2,326 0,155
3 21,976 70,192 3,003 8,451 0,137

TABLE 16 DBFS with TTL 5 in the random network of 256 nodes.

 Random 256, TTL 5

Hops Q SQ H SH E
1 1,000 0,000 0,140 0,494 0,140
2 5,353 9,240 0,712 2,064 0,133
3 22,717 66,310 2,815 7,834 0,124
4 85,093 364,731 8,044 26,233 0,095
5 238,303 1098,438 12,075 15,548 0,051

TABLE 17 DBFS with TTL 7 in the random network of 256 nodes.

 Random 256, TTL 7

Hops Q SQ H SH E
1 1,000 0,000 0,131 0,686 0,131
2 5,345 9,060 0,713 2,184 0,133
3 22,654 68,135 2,802 8,310 0,124
4 84,837 374,991 8,004 25,293 0,095
5 237,821 1115,128 12,048 15,603 0,051
6 313,864 715,291 6,152 30,864 0,020
7 112,924 641,609 1,133 14,396 0,010

91

TABLE 18 DBFS with TTL 3 in the random network of 1024 nodes.

 Random 1024, TTL 3

Hops Q SQ H SH E
1 1,0000 0,0000 0,0385 0,2079 0,0384
2 5,0587 5,4916 0,1864 0,5024 0,0369
3 21,2489 36,9272 0,7615 1,5643 0,0358

TABLE 19 DBFS with TTL 5 in the random network of 1024 nodes.

 Random 1024, TTL 5

Hops Q SQ H SH E
1 1,0000 0,0000 0,0321 0,1865 0,0319
2 5,4971 5,9796 0,1756 0,4663 0,0320
3 23,6499 39,5265 0,7435 1,6260 0,0314
4 94,7559 216,9430 2,7842 5,8515 0,0294
5 347,2859 948,4843 8,1314 16,9088 0,0235

The following results of topology management algorithms use interval of traffic
estimation value 6.

TABLE 20 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 5 and upper traffic limit 40%.

 Torus 256, TTL 5

Hops Q SQ H SH E
1 3,194 7,752 0,460 1,393 0,145
2 7,464 43,336 0,760 2,773 0,103
3 13,876 96,560 1,055 4,754 0,077
4 20,997 143,391 1,561 4,704 0,076
5 28,699 185,116 2,009 4,826 0,071

TABLE 21 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 7 and upper traffic limit 60%.

 Torus 256, TTL 7

Hops Q SQ H SH E
1 2,811 11,515 0,448 1,435 0,161
2 5,833 59,204 0,634 3,723 0,112
3 10,071 133,719 0,818 6,880 0,084
4 14,456 207,483 1,201 7,862 0,088
5 19,248 277,863 1,514 9,428 0,083
6 24,378 345,132 1,891 11,463 0,082
7 29,797 409,866 2,211 12,395 0,078

92

TABLE 22 Topology management in torus network of 256 nodes, with TTL 3, upper

traffic limit 60% and overtaking 80%.

 Torus 256, TTL 3

Hops Q SQ H SH E
1 3,294 10,471 1,806 8,006 0,557
2 14,233 156,165 3,967 27,211 0,294
3 45,432 977,407 5,811 45,013 0,143

TABLE 23 Topology management in torus network of 256 nodes, with TTL 5, upper
traffic limit 60 and overtaking 80%.

 Torus 256, TTL 5

Hops Q SQ H SH E
1 2,023 21,722 0,760 3,313 0,398
2 14,977 282,550 2,620 35,183 0,188
3 29,758 1474,052 2,741 72,536 0,116
4 35,026 2305,353 1,985 73,946 0,083
5 23,991 1382,668 1,303 65,194 0,072

TABLE 24 Topology management in torus network of 256 nodes, with TTL 7, upper
traffic limit 60% and overtaking 80%.

 Torus 256, TTL 7

Hops Q SQ H SH E
1 1,919 22,562 0,648 3,793 0,359
2 13,141 323,244 2,077 33,654 0,179
3 23,303 1463,376 1,869 71,443 0,107
4 27,401 2109,108 1,444 74,166 0,074
5 20,213 1387,215 1,025 64,725 0,060
6 13,737 1111,551 0,718 55,673 0,034
7 9,904 945,704 0,462 40,084 0,022

The following results of topology management algorithms are from simulations
after improvement of the algorithms and the addition of a new parameter, the
overtaking period. In the following tables, overtaking period value is 20, inter-
val of traffic estimation is 6 and overtaking percent is 90%.

TABLE 25 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 3 and upper traffic limit 60%.

 Torus 256, TTL 3

Hops Q SQ H SH E
1 3,991 1,582 0,909 6,286 0,228
2 14,237 33,619 1,478 7,885 0,103
3 38,355 207,663 2,526 16,418 0,065

93

TABLE 26 Topology management in torus network of 256 nodes, with TTL 3 and

upper traffic limit 40%.

 Torus 256, TTL 3

Hops Q SQ H SH E
1 3,905 2,836 0,908 6,283 0,233
2 13,336 20,042 1,402 6,528 0,105
3 34,365 137,636 2,273 12,105 0,066

TABLE 27 Topology management in torus network of 256 nodes, with TTL 5 and
upper traffic limit 60%.

 Torus 256, TTL 5

Hops Q SQ H SH E
1 3,662 9,075 0,543 1,966 0,150
2 10,624 38,143 0,938 2,653 0,089
3 21,887 78,570 1,457 3,450 0,067
4 34,301 101,352 2,123 4,506 0,062
5 47,589 118,397 2,789 6,736 0,059

TABLE 28 Topology management in torus network of 256 nodes, with TTL 7 and
upper traffic limit 60%.

 Torus 256, TTL 7

Hops Q SQ H SH E
1 2,271 18,869 0,589 2,699 0,277
2 7,961 93,217 1,012 13,257 0,127
3 15,291 201,125 1,625 23,988 0,106
4 19,162 230,368 1,923 21,638 0,103
5 19,305 299,223 1,828 14,318 0,102
6 18,196 450,941 1,612 21,906 0,102
7 17,926 610,133 1,455 32,482 0,100

TABLE 29 Topology management in torus network of 256 nodes without overtak-
ing, with TTL 7 and upper traffic limit 60%.

 Torus 256, TTL 7

Hops Q SQ H SH E
1 2,811 11,515 0,448 1,435 0,161
2 5,833 59,204 0,634 3,723 0,112
3 10,071 133,719 0,818 6,880 0,084
4 14,456 207,483 1,201 7,862 0,088
5 19,248 277,863 1,514 9,428 0,083
6 24,378 345,132 1,891 11,463 0,082
7 29,797 409,866 2,211 12,395 0,078

94

TABLE 30 Topology management in torus network of 1024 nodes, with TTL 3 and

upper traffic limit 60%.

 Torus 1024, TTL 3

Hops Q SQ H SH E
1 3,997 2,577 0,279 2,309 0,070
2 18,710 114,816 0,560 5,218 0,029
3 67,469 760,773 1,248 15,410 0,018

TABLE 31 Topology management in torus network of 1024 nodes, with TTL 5 and
upper traffic limit 60%.

 Torus 1024, TTL 5

Hops Q SQ H SH E
1 3,9957 1,2803 0,1521 0,5888 0,0381
2 13,5073 25,5516 0,3039 1,0695 0,0225
3 32,9542 144,7854 0,5511 3,0322 0,0166
4 57,5752 359,8522 0,8488 5,9871 0,0147
5 85,0290 632,1700 1,1534 9,0471 0,0135

TABLE 32 Topology management in torus network of 1024 nodes, with TTL 7 and
upper traffic limit 60%.

 Torus 1024, TTL 7

Hops Q SQ H SH E
1 3,9998 0,2406 0,1252 0,3635 0,0313
2 12,0587 1,4614 0,2518 0,5603 0,0209
3 24,4932 10,1391 0,3820 0,6652 0,0156
4 37,0757 22,1571 0,5151 0,8758 0,0139
5 49,7885 36,8094 0,6531 1,0348 0,0131
6 62,6500 54,3165 0,7843 1,2199 0,0125
7 75,6513 74,3509 0,9194 1,6766 0,0121

TABLE 33 Topology management in random network of 256 nodes, with TTL 3 and
upper traffic limit 60%.

 Random 256, TTL 3

Hops Q SQ H SH E
1 3,615 8,398 0,689 2,869 0,193
2 14,948 57,346 1,955 5,680 0,131
3 54,991 355,044 5,316 23,937 0,097

95

TABLE 34 Topology management in random network of 1024 nodes, with TTL 3

and upper traffic limit 60%.

 Random 1024, TTL 3

Hops Q SQ H SH E
1 4,0901 4,1550 0,1768 0,7926 0,0433
2 22,6478 87,3742 0,7472 3,4540 0,0329
3 118,7900 757,4278 3,1659 17,5324 0,0269

TABLE 35 Topology management in random network of 1024 nodes, with TTL 5
and upper traffic limit 60%.

 Random 1024, TTL 5

Hops Q SQ H SH E
1 2,8935 12,0626 0,1323 0,4271 0,0464
2 10,0275 70,8356 0,3188 2,1924 0,0319
3 29,9735 404,2282 0,9033 11,4347 0,0303
4 87,7331 1814,8314 2,4221 39,3838 0,0286
5 229,9101 5558,4151 5,1703 62,3458 0,0250

FIGURE 27 The amount of topology changes during the simulation of topology manage-
ment algorithms in torus network of 256 nodes with TTL 3.

0
5

10
15
20
25
30
35
40
45

4 16 28 40 52 64 76 88 10
0

11
2

12
4

13
6

14
8

16
0

17
2

18
4

19
6

20
8

22
0

23
2

24
4

25
6

26
8

28
0

Queries/node

Topology Changes in 256 Torus with TTL 3

Addings

Removings

Overtakings

96

FIGURE 28 The amount of topology changes during the simulation of topology manage-
ment algorithms in torus network of 1024 nodes with TTL 5.

FIGURE 29 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 1024 nodes with TTL 3.

0

5

10

15

20

25

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

Queries/node

Topology Changes in 1024 Torus with TTL 5

Addings

Removings

Overtakings

0

20

40

60

80

100

120

140

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

Queries/node

Topology Changes in 1024 Random with
TTL 3

Addings

Removing

Overtakings

97

FIGURE 30 The amount of topology changes during the simulation of topology manage-
ment algorithms in random network of 1024 nodes with TTL 5.

TABLE 36 The average queries, replies and efficiency values of torus network of
256 nodes at equilibrium.

 Torus 256, TTL 3

Hops Q SQ H SH E
1 3,983 1,829 1,034 2,079 0,260
2 14,912 10,399 1,646 2,736 0,110
3 42,610 50,802 2,861 5,575 0,067

TABLE 37 The average queries, replies and efficiency values of random network of
256 nodes at equilibrium.

 Random 256, TTL 3

Hops Q SQ H SH E
1 3,479 6,145 0,738 1,441 0,213
2 14,522 61,883 1,965 5,845 0,136
3 53,153 401,620 5,110 25,005 0,097

TABLE 38 The average queries, replies and efficiency values of torus network of
1024 nodes with TTL 3 at equilibrium.

 Torus 1024, TTL 3

Hops Q SQ H SH E
1 3,9930 3,0967 0,3269 0,6664 0,0819
2 21,5672 29,4514 0,6877 1,3120 0,0319
3 87,0593 188,2515 1,6442 3,8631 0,0189

0
20
40
60
80

100
120
140

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

Queries/node

Topology Changes in 1024 Random with TTL
5

Addings

Removing

Overtakings

98

TABLE 39 The average queries, replies and efficiency values of torus network of

1024 nodes with TTL 5 at equilibrium.

 Torus 1024, TTL 5

Hops Q SQ H SH E
1 3,9924 1,5330 0,1618 0,4295 0,0405
2 14,1151 9,7659 0,3245 0,7262 0,0230
3 36,4153 49,5177 0,6207 1,4156 0,0170
4 66,3347 135,5252 0,9933 2,5985 0,0150
5 100,5774 257,5062 1,3732 4,0019 0,0137

TABLE 40 The average queries, replies and efficiency values of random network of
1024 nodes with TTL 3 at equilibrium.

 Random 1024, TTL 3

Hops Q SQ H SH E
1 4,0773 4,3302 0,1880 0,4882 0,0461
2 24,2453 27,2560 0,8071 1,3810 0,0333
3 133,4158 171,7463 3,4878 4,8733 0,0261

TABLE 41 The average queries, replies and efficiency values of random network of
1024 nodes with TTL 5 at equilibrium.

 Random 1024, TTL 5

Hops Q SQ H SH E
1 2,7638 8,9277 0,1348 0,4063 0,0491
2 9,8103 61,4897 0,3140 1,9357 0,0321
3 28,3704 363,6612 0,8568 10,1725 0,0304
4 80,3731 1658,0642 2,2453 34,6015 0,0288
5 204,6774 4940,8829 4,7891 49,3008 0,0255

TABLE 42 The average queries, replies and efficiency values of reconstructed torus
network of 256 nodes with DBFS.

 Torus 256, TTL 3

Hops Q SQ H SH E
1 1,000 0,016 0,469 1,172 0,469
2 5,141 11,159 1,138 2,579 0,222
3 20,419 56,964 2,254 6,617 0,111

99

TABLE 43 The average queries, replies and efficiency values of reconstructed ran-

dom network of 256 nodes with DBFS.

 Random 256, TTL 3

Hops Q SQ H SH E
1 1,000 0,023 0,321 1,302 0,321
2 6,227 21,403 1,137 2,772 0,184
3 26,927 181,826 3,533 18,314 0,132

TABLE 44 The average queries, replies and efficiency values of reconstructed torus
network of 1024 nodes with DBFS.

 Torus 1024, TTL 3

Hops Q SQ H SH E
1 1,0000 0,0104 0,0996 0,3486 0,0996
2 6,8192 13,8961 0,3273 0,8763 0,0481
3 35,2546 93,7640 0,9561 2,4925 0,0271

TABLE 45 The average queries, replies and efficiency values of reconstructed torus
network of 1024 nodes with DBFS.

 Torus 1024, TTL 5

Hops Q SQ H SH E
1 1,0000 0,0090 0,0460 0,2236 0,0461
2 4,2264 5,6105 0,1410 0,4571 0,0333
3 16,1698 31,1055 0,4171 1,0166 0,0258
4 47,0932 111,8202 0,8818 2,3570 0,0187
5 94,3834 267,2742 1,4283 4,2738 0,0151

TABLE 46 The average queries, replies and efficiency values of reconstructed ran-
dom network of 1024 nodes with DBFS.

 Random 1024, TTL 3

Hops Q SQ H SH E
1 1,0000 0,0070 0,0589 0,2486 0,0590
2 7,8678 9,9336 0,3017 0,7402 0,0383
3 49,0531 86,8017 1,5445 2,9455 0,0315

100

TABLE 47 The average queries, replies and efficiency values of reconstructed ran-

dom network of 1024 nodes with DBFS.

 Random 1024, TTL 5

Hops Q SQ H SH E
1 1,0000 0,0061 0,0545 0,2754 0,0546
2 5,4226 13,7511 0,1844 0,6819 0,0340
3 17,7369 102,7815 0,5608 3,2139 0,0316
4 57,8770 648,3989 1,7263 16,6835 0,0301
5 176,6154 2909,8513 4,5178 45,0982 0,0266

ORIGINAL PAPERS

PI

RESOURCE DISCOVERY IN P2P NETWORKS USING
EVOLUTIONARY NEURAL NETWORKS

by

Mikko Vapa, Niko Kotilainen, Annemari Auvinen, Heikki Kainulainen & Jarkko
Vuori 2004

IEEE International Conference on Advances in Intelligent Systems - Theory and Ap-

plications

Reproduced with kind permission by IEEE Computer Society.

> PAPER IDENTIFICATION NUMBER: 067-04 < 1

Abstract-- Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to
look for information about resources. One solution for the
problem is to use a search algorithm that locates resources based
on the local knowledge about the network. Traditionally, the
search algorithms have been based on few simple rules, which
often reduces the performance from optimal. In this paper, we
describe the results of a process where evolutionary neural
networks are used for finding an efficient search algorithm from a
class of local search algorithms. The initial test results indicate
that an evolutionary optimization process can produce search
algorithm candidates that are competent compared to the
breadth-first search algorithm (BFS) used in Gnutella peer-to-
peer network.

Index Terms-- resource discovery, peer-to-peer networks,
multi-layer perceptrons, genetic algorithms.

I. INTRODUCTION
N the resource discovery problem, any node can possess
resources and query these resources from other nodes in the

network. The problem consists of graph with nodes, links and
resources. Resources are identified by unique IDs and nodes
may contain any number of resources. One node knows only
the resources it is currently hosting. Any node in the graph can
start a query, which means that some of the links are traversed
based on a local decision in the graph. Whenever the query
reaches the node with the queried ID, the node replies. The
goal is to locate a predetermined amount of resource instances
with a given ID using as few query packets as possible.
One possible solution for the resource discovery problem is

the breadth-first search algorithm (BFS) [1]. In BFS a node
that starts a query passes the query to all its neighbors. When
the neighbors receive the query, they pass it further to all their
neighbors except the one from which the query was received.
Nodes cache the messages that they have received and if the
query has already been received from other neighbor then

Manuscript received September 2, 2004. This work was supported in part
by the Graduate School in Electronics, Telecommunications and Automation
(GETA) and Innovations in Business, Communication and Technology
(InBCT) –project of Agora Center.
M. A. Vapa, A. K. Auvinen, and J. T. Vuori are with Department of

Mathematical Information Technology, University of Jyväskylä, Finland (e-
mail: firstname.lastname@jyu.fi).
N. P. Kotilainen is with Agora Center, University of Jyväskylä, Finland (e-

mail: niko.kotilainen@jyu.fi).
H. M. Kainulainen is with WTS Networks, Jyväskylä, Finland (e-mail:

heikki.kainulainen@wts.fi)

query is dropped. Time-to-Live (TTL) value is used to limit
the number of hops the query can take by reducing TTL value
each time a query is received. When TTL decreases to zero the
query is dropped. The BFS algorithm ensures that if a resource
is located in the network it can be found from the network if
TTL is high enough. The downside of the algorithm, however,
is that it uses many query packets to find the needed resources.
Thus, we propose an alternative algorithm that is more
efficient in face of used query packets and evaluate it using
peer-to-peer scenario with power-law distributed topology [2].
The rest of this paper is organized as follows. The next

section presents the references to related work done in P2P
resource discovery. Section III describes the NeuroSearch
algorithm as a solution for the resource discovery problem.
Section IV describes the optimization process and Section V
the test case used in the study. Section VI analyzes the
simulation results and in Section VII the paper is concluded.

II. RELATEDWORK
Much research has been done regarding the resource

discovery problem. Adamic et al. [3] and Kim et al. [4]
propose a search strategy that utilizes the topological
properties of a power-law network. The search strategy first
proceeds towards highest-degree node, e.g. the node that has
the highest number of neighbors, and then gradually moves to
lower degree ones. The algorithm locates resources efficiently
if they can be found from the core of the network, but the
performance decreases when the central nodes are revisited in
search for lower degree nodes.
Lv et al. [5] evaluate BFS, expanding ring and random walk

search mechanisms with varying topologies, including random
graphs [2], power-law graphs and a snapshot of the Gnutella
network obtained in October 2000. These researchers find that
BFS is not scalable and in particular on Gnutella and power-
law graphs the effects of flooding are disastrous: the number of
messages increases drastically when TTL is increased.
Expanding ring, where TTL is extended gradually for BFS, is
the first aid to the problem. However, because it forwards
duplicate messages to the nodes that the query has already
reached, a better solution to the problem using random walkers
is proposed by the researchers. A search initiates multiple
walkers and forwards them based on a random selection of a
neighbor. In addition to the TTL as a termination condition for
the walkers, Lv et al. use checking, where the random walkers
periodically check from the query originator whether the

Resource Discovery in P2P Networks Using
Evolutionary Neural Networks
Mikko A. VAPA, Niko P. KOTILAINEN, Annemari K. AUVINEN,

Heikki M. KAINULAINEN, and Jarkko T. VUORI

I

> PAPER IDENTIFICATION NUMBER: 067-04 < 2

walker should be terminated or not. While random walkers
increase the number of hops and thus latency, they decrease
the total traffic because the search proceeds in a depth-first
manner.
Kalogeraki et al. [6] consider two search algorithms for the

resource discovery problem. The Modified Random BFS
Search behaves like BFS, but the neighbors select only a
random subset of neighbors for forwarding the query. This
reduces traffic, but adjusting the correct size of the subset for
various networks may be difficult. The researchers’ work uses
a random graph in which all the nodes have approximately
similar degrees. Thus the performance of the algorithm in
power-law graphs cannot be directly determined from the
results. In another algorithm they present, called Intelligent
Search Mechanism, the nodes keep track of recent query
results provided by their neighbors. When a new query arrives,
the neighbors are sorted based on the similarity of the query to
earlier replies from the neighbor. Because the nodes keep track
of the earlier queries, the performance of the algorithm
improves as the network evolves.
Yang and Garcia-Molina [7] experimented with many types

of directed search strategies based on various heuristics. These
heuristics include the number of results returned, shortest

average time to satisfaction, smallest average number of hops
of received results, the highest number of results returned,
shortest message queue, shortest latency and highest degree.
Their work suggests that, to minimize the time to satisfaction
measure, the best strategy is to pass the query to the neighbor
that has had the shortest average time to satisfaction for last
ten queries. Also, when considering the bandwidth use, the
most reliable measure is the smallest average number of hops
of received results for last ten queries. The heuristics used in
the study are based on history data collected locally in each
node.
Similar use of history data is found from the work by

Tsoumakos and Roussopoulos [8]. In their proposal, called
Adaptive Probabilistic Search algorithm, neighbors keep track
of the success rates of earlier queries and forward random
walkers probabilistically, based on the earlier success rate. The
algorithm is able to adapt to different query patterns and,
therefore, performs better than random walkers.
There are certain limitations in all the approaches described

above. First, each of these algorithms uses some control
parameters (for example time-to-live, the number of walkers or
the proportion of neighbors to forward the query) that can be
used to tune the algorithm. For a search algorithm, the number

Fig. 1: Processing of NeuroSearch resource query and the NeuroSearch neural network

> PAPER IDENTIFICATION NUMBER: 067-04 < 3

of control parameters should be kept to a minimal to allow
zero configurability when applied to a real environment.
Second, while some of these approaches have mechanisms to
adapt to the environment, they do not utilize the entire
potential of the environment because they rely only on one
strategy (for example the similarity of the query and earlier
replies, shortest average time to satisfaction for last 10 queries
or the success rate of earlier queries). In general, only one
strategy cannot be efficient in all scenarios and therefore an
efficient algorithm should be able to utilize many strategies at
the same time.
To overcome these limitations a neural network based

resource discovery algorithm called NeuroSearch was
designed. NeuroSearch learns by itself the correct behavior in
given network conditions and uses many combinations of
strategies to locate resources. To authors' knowledge this is the
first time when neural networks are being applied to resource
discovery problem.

III. NEUROSEARCH RESOURCE DISCOVERY ALGORITHM
The proposed algorithm, called as NeuroSearch, makes

decision to whom of the node's neighbors the resource request
message is forwarded based on the output neuron of three-
layer perceptron neural network. The algorithm is located
inside a peer node as shown in Fig. 1 and is the same for all
peers in the network. NeuroSearch can be represented as a
function }1,0{: →IO , where []71,0∈I is a 7-dimensional
input vector representing the state of a resource discovery
query. The output of O defines whether in a given state query
should be dropped O = 0 or forwarded to a peer O = 1 and is
evaluated for each neighbor peer separately.
When a resource request arrives to the algorithm it goes

through all the node's neighbors (denoted as receivers) one by
one with the neural network. The input parameters for the
neural network are:

• Bias is the bias term and has value 1.
• Hops is the number of hops the message has travelled.
• NeighborsOrder indicates in which rank this receiver

is in terms of number of neighbors compared to other
neighbors. The connection with highest rank has the
value of 0, second rank has the value of 1 and so on.

• ToNeighbors is the number of the receiver's neighbors.
• CurrentNeighbors is the number of node's neighbors.
• Sent has value 1 if the message has already been

forwarded to the receiver. Otherwise it has value of 0.
• Received has value 1 if the message has been received

earlier, else it has value of 0.
Hops and NeighborsOrder are scaled with the function

1
1)(
+

=
x

xf and Neighbors and CurrentNeighbors with

x
xf 1)(= before giving them to the neural network. Scaling is

performed to ensure that all the inputs are between 0 and 1.
There are two hidden layers in the network. In the first

hidden layer there are 15 nodes + bias and in the second

hidden layer 3 nodes + bias. Tanh is used as an activation
function in the hidden layers: 1

1
2)(2 −

+
= − ae

at , where a is the

weighted sum of inputs to a neuron. Activation function in the
output node is the threshold function

≥
<

=
0,1
0,0

)(
a
a

as .

Combining all together, the output O of the neural network
can be calculated with the following formula:

= = =

++=
4

1

16

1

7

1
123)))),((1(1(

k j i
iijk IfwtwtwsO

where iI is the value of input parameter i and xyw the neural

network weights on layer x in position y.
Whenever the query locates a queried resource a reply

message is sent back to the neighbor, which forwarded the
request to the node. When all the nodes in the query path have
forwarded the reply message backward, it is finally received
by the query initiator.

IV. NEURALNETWORK OPTIMIZATION

The weights xyw are unknown and therefore they need to be

adjusted to appropriate values. For doing this we use methods
of evolutionary computing [9]. The decision, which neural
networks are better than the others is done by counting the
query packets traversed in the test network and found
resources. The fitness for the neural network is defined in two
parts. Each query j is scored for the neural network h and the
fitness is calculated by summing up all the scores after n

queries:
=

=
n

j
jh scorefitness

1

. The score is defined with the

following conditions:
1. If packets > 300 then score = 0
2. If foundResources = 0 then score =

1
11

+
−
packets

3. If foundResources < availableResources / 2 and
foundResources > 0 then score = 50 ×
foundResources – packets

4. If foundResources ≥ availableResources / 2 then
score = 50 × availableResources / 2 – packets

In the equations availableResources is the maximum
number of resource intances that can be located in the query,
foundResources is the number of resource instances that the
neural network was able to locate for the query, and packets is
the number of query packets the neural network used for the
query. The constant value 300 was set as criterion for
determining when the neural network is considered to forward
the query indefinitely and the query can be stopped. Another
constant value, 50, was selected to be large enough to guide
the training process towards neural networks that locate more
resources than other neural networks. Now a neural network
could spend 49 query packets more in a query to locate one
additional resource compared to other neural network, which
located one resource less.
The first rule ascertains that an algorithm that eventually

> PAPER IDENTIFICATION NUMBER: 067-04 < 4

stops is always better than algorithm that does not. The goal of
finding half of the available resource instances was set to
demonstrate the algorithm’s ability to balance on a
predetermined quality of service level and not just on locating
all resource instances or one resource instance. The second
rule makes sure that if none of the resources are found then the
neural network should increase the number of query packets
sent to the network. The third rule states that if the number of
found resources is not enough then the neural network
develops only by locating more resources. Finally the last rule
ensures that when half of the available resource instances are
found from the network the fitness grows if neural network
uses fewer query packets.
The optimization process had an initial population of 30

neural networks whose weights were randomly defined from
interval [-0.2, 0.2]. Next, every neural network was tested in
the peer-to-peer simulation environment and fitness value
calculated. When all neural networks had been tested 15 best
were chosen for mutation and used to breed the new generation
of neural networks. As a result, 30 neural networks were
available for testing the new generation.
Mutation was based on the Gaussian random variation and

used weighted mutation parameter to improve the adaptability
of the evolutionary search. The random variation function was
similar to the one used by Fogel and Chellapilla in their
research [10] and is given as:

,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ
,,...,1),1,0()()()(' wj

j
iii NjNjjwjw =+= σ

where wN = is the total number of weights and bias terms in

the neural network,

wN2

1=τ ,)1,0(jN is a standard

Gaussian random variable resampled for every j, σ is the self-
adaptive parameter vector for defining the step size for finding
the new weight,)(' jwi is the new weight value and index

1851 ≤≤ i denotes the number of neuron enumerated over all
layers.

V. SIMULATION ENVIRONMENT
As a peer-to-peer simulation environment, we used Peer-to-

Peer Realm (P2PRealm) network simulator [11] that we have
developed. The simulator can be used to simulate the behavior
of a static peer-to-peer network and to train neural networks
using Gaussian random variation. P2PRealm has been
implemented using Java.
In the test case we used power-law graphs generated using

the Barabási-Albert model [12]. A power-law network’s
neighbor distribution follows the power-curve

γk
kP 1)(= ,

where 3=γ for Barabási-Albert graph. Therefore in power-
law networks there exist few hubs in the network that have
many neighbors as well as many nodes that have only few
neighbors. A power-law graph was selected because existing

P2P networks have shown to express power-law dependencies
[13]. The graphs tested contained 100 nodes with the highest
degree node having 25 neighbors. Small network size was
selected to allow visualisation of query paths in the network.
Dynamic changes e.g., node failures were not taken into
account to simplify the analysis. However, the approach can be
applied in dynamic scenarios also as shown in [14].
The test case data was divided into three distinct data sets as

described in [15]: a training set, a generalization set and a
validation set. Training set is used for training the neural
network. Generalization set is used to measure how well the
trained neural network performs with a new data set indicating
neural network’s ability to generalize. When performance
starts to decrease in generalization set the training can be
stopped, because the neural network adapts only to the training
set if training process is continued. Validation set is used as an
objective measure to verify how well the algorithm performs
with arbitrarily chosen new data set and ensures that the true
generalization ability of the neural network is being measured.
The training set contained two power-law topologies with

both being queried n = 50 times per generation for each neural
network. Two topologies were used to have neural networks
adapt to a wider range of situations than one topology would
have provided. The generalization set consisted of two power-
law topologies with 50 queries. When the performance started
to decrease in the generalization set the neural network having
highest fitness was selected and, as a validation set, one
topology with 100 queries was used to produce the final
simulation results.
For each topology, resource instances were allocated based

on the number of neighbors each node has. There were 25
different resources in the test case and the number of different
resources in a node was the same as the number of neighbors
the node had. This means that the largest hub had one instance
of all resources and the lower degree nodes only some of
these, randomly chosen from uniform distribution. The
querying nodes and queried resources were selected also
randomly from a uniform distribution for each query.
As stopping criteria for the optimization process, 100,000

generations were set. This seemed to take approximately two

Fig. 2: Evolution of the best neural networks in each
generation for training and generalization sets

> PAPER IDENTIFICATION NUMBER: 067-04 < 5

weeks on our desktop PC equipped with an AMD Athlon XP
1800 processor. The evolution of the best neural network in
each generation is shown in Fig. 2.

VI. SIMULATION RESULTS
To evaluate the difference between BFS and NeuroSearch,

we selected the best algorithm at the 85,736th generation and
calculated the number of packets used and found resources for
100 different queries using validation set. The 85,736th

generation was selected because between the 80,000 and
90,000 generations the neural networks had achieved steadily
good results and, in particular, in the 85,736th generation,
neural network had the best fitness. The results are presented
in Fig. 3 and Fig. 4.
The results of Fig. 3 show that the performance of

NeuroSearch regarding the number of packets is nearer to BFS
with a time-to-live value 2 (BFS-2), rather than BFS with a
time-to-live value 3 (BFS-3). In average NeuroSearch
consumes 47.2 packets per query whereas BFS-2 consumes
30.0 and BFS-3 122.0 packets. The reason why there is some
variation in the number of packets for successive BFS queries
is that the number of delivered packets depends on which node
is querying. If the query starts from a central node (nodes 0-
10), it will produce more packets than the same query started
from an edge node (nodes 90-99) because the edge query has
fewer connections where BFS can spread. In case of
NeuroSearch, the performance is stable and does not depend
on which node is querying.

Fig. 4 shows how many resources the algorithms were able
to locate. NeuroSearch’s performance in terms of located
resources is quite similar to BFS-2 at central nodes, but better
in the edge nodes. Compared to BFS-3 NeuroSearch’s
performance is constantly lower, reaching the same
performance level only at some edge nodes. The reason why
NeuroSearch is satisfied with this level of performance is that
it has already reached the goal of finding half of the available
resources as defined in the fitness function and locating more
resources is not needed.
By calculating the ratio between the located resources and

used query packets we can determine the efficiency of the
algorithms. These values are shown in Table I. The results
show that NeuroSearch’s efficiency is at the same level as
BFS-2’s locating a new resource every fifth packet. BFS-3
locates a new resource approximately every ninth packet.
Efficiency is easier to keep high when locating only few
resources because usually those can be found from the central
nodes alone. When the number of needed resources increases,
query has to spread more to the edges to locate the additional
resources. Therefore the efficiency of BFS-3 decreases
significantly. BFS-2 and NeuroSearch achieve near similar
efficiency indicating that NeuroSearch is able to sustain a good
efficiency even though it needs to locate more resources than
BFS-2.

For each query, NeuroSearch locates approximately half of
the resources or more, which can be seen in Fig. 5. There are
six queries in which NeuroSearch misses the target to locate
half of the resources. This variation results from the difference

Fig. 3: Number of packets used by the algorithms

Fig. 4: Number of resources found by the algorithms

Fig. 5: Difference of located resources to half of resources

TABLE I
EFFICIENCY OF THE ALGORITHMS

Algorithm Packets Resources Efficiency

BFS-2 3000 619 0.2063
BFS-3 12202 1295 0.1061
NeuroSearch 4719 975 0.2066

> PAPER IDENTIFICATION NUMBER: 067-04 < 6

between the training set and the validation set. Nonetheless,
the results indicate that the optimization process has found an
algorithm that is able to locate nearly half of the resources
from the network with high probability.
We analyzed the behavior of the best-evolved neural

network by tracking the path used by the queries. NeuroSearch
seems to prefer central nodes early in the query and uses
multiple paths for doing this. After reaching central nodes or
one hop later the spreading is stopped. The maximum number
of hops is 5. As verification for this the behavior of a typical
NeuroSearch query started from an edge node is illustrated in
Fig. 5. In the figure the query travels through the connections
denoted with a black line starting from node 99 with question
mark (?). Nodes marked with an exclamation mark (!) contain
the queried resource. In total the query uses 49 packets and
locates 11 resources. Six connections are traversed from both
directions, which is not shown in the figure.

VII. CONCLUSION
In this paper, a new resource discovery algorithm has been

proposed. NeuroSearch algorithm takes into account the
special characteristics of its environment and can be adjusted
to different kind of P2P networks. The algorithm’s
performance is also stable and competitive compared to the
BFS algorithm.
While NeuroSearch performs well compared to BFS it is by

no means yet designed to be optimal. For example,
NeuroSearch does not yet include history-based inputs even
though they would significantly improve the performance.
Therefore, the results obtained in [3]-[8] will be considered in
forthcoming research on NeuroSearch. There are also other
directions that were left out of this research. First, we are
studying what improvements to the performance would be
gained by varying the neural network’s internal structure.
Second, we are aiming to find out what are the scalability
factors of NeuroSearch when the network size grows, and third
we are developing an optimal resource discovery algorithm
using global knowledge to be able to measure the best
efficiency a resource discovery algorithm can achieve. Also,
we are working on a solution to speed up the optimization
process by parallelizing the evolutionary algorithm using
distributed computing. This helps us to more accurately
determine the performance maximum of NeuroSearch.

ACKNOWLEDGMENT
The authors would like to thank the co-designers of

NeuroSearch Joni Töyrylä, Yevgeniy Ivanchenko, Matthieu
Weber and Hermanni Hyytiälä. Also we thank Tommi
Kärkkäinen for giving useful hints how to develop the
algorithm further and Barbara Crawford for proofreading the
article.

Fig. 5: Typical NeuroSearch resource query

> PAPER IDENTIFICATION NUMBER: 067-04 < 7

REFERENCES
[1] N. A. Lynch, Distributed Algorithms, Morgan Kauffmann Publishers,

1996.
[2] A. Barabási, Linked, Perseus Publishing, 2002.
[3] L. A. Adamic, R. M. Lukose, and B. A. Huberman, “Local Search in

Unstructured Networks”, in Handbook of Graphs and Networks: From
the Genome to the Internet, Wiley-VCH, 2003, pp. 295-317.

[4] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong, ”Path finding strategies
in scale-free networks”, Physical Review E 65, 2002.

[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication
in Unstructured Peer-to-Peer Networks”, in Proceedings of the 16th
International Conference on Supercomputing, ACM Press, 2002, pp.
84-95.

[6] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yatzi, ”A Local
Search Mechanism for Peer-to-Peer Networks”, in Proceedings of the
11th International Conference on Information and Knowledge
Management, ACM Press, 2002, pp. 300-307.

[7] B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer
networks,” in Proceedings of the 22nd IEEE International Conference
on Distributed Computing Systems (ICDCS’02), 2002.

[8] D. Tsoumakos and N. Roussopoulos, ”Adaptive Probabilistic Search for
Peer-to-Peer Networks”, in Proceedings of the Third IEEE
International Conference on P2P Computing (P2P2003), IEEE Press,
2003, pp. 102-109.

[9] K. Miettinen, M. Mäkelä, and P. Neittaanmäki and J. Périaux (eds.),
Evolutionary algorithms in engineering and computer science, John
Wiley & Sons, 1999.

[10] K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers
without relying on expert knowledge”, IEEE Trans. on Neural
Networks, 10 (6), pp. 1382-1391, 1999.

[11] J. Töyrylä, Building NeuroSearch – Intelligent Evolutionary Search
Algorithm For Peer-to-Peer Environment, Master’s Thesis, University
of Jyväskylä, 2004.

[12] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks”, Science 286 (1999) 509-512.

[13] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman, Scalability
Issues in Large Peer-to-Peer Networks – A Case Study of Gnutella,
Technical report, University of Cincinnati, 2001.

[14] Y. Ivanchenko, Adaptation of Neural Nets For Resource Discovery
Problem in Dynamic And Distributed P2P Environment, Master’s
Thesis, University of Jyväskylä, 2004.

[15] A. P. Engelbrecht, Computational Intelligence: An Introduction, John
Wiley & Sons Ltd, 2002.

PII

CHEDAR: PEER-TO-PEER MIDDLEWARE

by

Annemari Auvinen, Mikko Vapa, Matthieu Weber, Niko Kotilainen & Jarkko Vuori
2006

IEEE 20th International Parallel and Distributed Processing Symposium

Reproduced with kind permission by IEEE Computer Society.

Chedar: Peer-to-Peer Middleware

Annemari Auvinen, Mikko Vapa, Matthieu Weber, Niko Kotilainen and Jarkko Vuori

Department of Mathematical Information Technology
University of Jyväskylä

P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland
{annauvi, mikvapa, mweber, npkotila, jarkko.vuori}@jyu.fi

Abstract

In this paper we present a new peer-to-peer (P2P)
middleware called CHEap Distributed ARchitecture
(Chedar). Chedar is totally decentralized and can be
used as a basis for P2P applications. Chedar tries
to continuously optimize its overlay network topology
for maximum performance. Currently Chedar com-
bines four different topology management algorithms
and provides functionality to monitor how the peer-to-
peer network is self-organizing. It also contains basic
search algorithms for P2P resource discovery. Chedar
has been used for building a data fusion prototype and
a P2PDisCo distributed computing application, which
provides an interface for distributing the computation
of Java applications. To allow Chedar to be used in
mobile devices, the Mobile Chedar middleware has also
been developed.

1 Introduction

Peer-to-peer technologies have received a lot of pub-
licity lately mainly because of Napster and other peer-
to-peer systems mostly developed for distributing mu-
sic and movies in the Internet. A peer-to-peer network
is also well suited for sharing other resources than files,
for example CPU time and storage space. Every node
in a P2P network may provide resources to other nodes
and consume resources the other nodes are providing,
i.e. a node may serve both as a server and a client.
Therefore there is no need for a central server which
might become the bottleneck of the network or which
failure will paralyze the whole network. Also the data
traffic is more evenly distributed in the P2P network

This work was supported in part by the Agora Center InBCT

project.

than in the centralized networks where central node’s
data traffic might be very large.

Gnutella [14], published in 2000, is a decentralized
pure peer-to-peer protocol [15]. Gnutella servents use
TCP connections for communication and the Breadth
First Search (BFS) algorithm for searching resources.
When a node wants to join the Gnutella network it
must first find one node in the network to which to
establish a connection. That node can be found for
example from a web page containing a list of nodes. In
Gnutella, a node usually has some pre-defined amount
of connections. To find new neighbors a Gnutella node
uses ping messages. A ping message is broadcasted in
the network and nodes reply to it with pong messages.
The node stores information about the active connec-
tions it has so it can try to connect to those when
joining the network after disconnecting.

In Gnutella the search queries are broadcasted in the
network. The querier sends the query message to its
neighbors, which forward the query to their neighbors
except the node from where the query arrived. The
amount of hops the query travels can be limited by
setting a time-to-live (TTL) value. Every time a node
forwards the query, it decrements the value of the TTL
by one. When the value of the TTL becomes zero the
node drops the message. If a node owns the queried
resource it sends a reply to the querier using the same
route as the query came from.

Chedar differs from Gnutella in some ways. Chedar
is a middleware, i.e. it offers an API for P2P applica-
tions. It contains new kinds of topology management
algorithms by which the overlay topology on top of the
physical network is self-organized. Those algorithms
use only the local information the nodes have on their
neighbors. The purpose of the algorithms is to create
a network which is scalable and fault-tolerant. Chedar
also has four other search algorithms implemented, in
addition to the BFS that Gnutella uses. Chedar also

1-4244-0054-6/06/$20.00 ©2006 IEEE

guarantees that a resource reply message can be for-
warded to the querier if it still exists in the network.
Chedar uses an XML-based, structured resource de-
scription and the XPath language for matching the
query keywords with its resources.

This paper is organized as follows. We describe
Chedar in Section 2 and its structure in Section 3.
The messages Chedar uses are described in Section 4.
The algorithms used for managing the topology of the
Chedar network are presented in Section 5 and the pa-
per is concluded in Section 6.

2 Chedar

We have developed the Chedar system for resource
sharing and distribution. Chedar is a pure peer-to-peer
middleware implemented using the Java programming
language. Any application which uses the API and im-
plements the callback functions required by the API
may use Chedar and run on it. Peers, i.e. nodes in the
network, communicate directly with each other using
TCP connections. Chedar is developed to work in a dy-
namic environment where the nodes may join or leave
the network whenever they want without causing sig-
nificant problems to the applications running on top of
Chedar. Because there are no central points in the net-
work, Chedar is fault-tolerant and scalable. In case of
link failures the topology management algorithms en-
sure that new peers will be contacted and the network
stays connected.

Chedar can be used to distribute different kinds of
resources to other nodes in the Chedar network. Dis-
tributed resources can be for example files, CPU time
or storage space. Every node stores information about
the resources it provides in XML format. When the
node receives a query about some resource it checks
by using the XPath expression whether it owns the re-
source.

In Chedar a neighbor’s goodness is defined based on
the resource replies the node receives from the neighbor
to the requests the node has sent. The more the neigh-
bor offers requested resources, the more important it is
for the node. The amount of replies the neighbor has
relayed to the node also affects it’s goodness value. The
overlay topology and the traffic in the Chedar network
is managed by the Overtaking and Overload Estima-
tion algorithms which use neighbor’s goodness value as
a measure for selecting which of the connections should
be dropped and where to connect. Also Chedar al-
ways tries to route the resource reply to the initiator
of the request. In Chedar it is possible to use multiple
search algorithms, unlike in Gnutella which only uses
the broadcasting search algorithm.

In our research project [4] Chedar has been used for
distributed computing [9] and data fusion [13] and ex-
tended also to mobile devices [10]. Peer-to-Peer Dis-
tributed Computing (P2PDisCo) software was built
on top of Chedar to speed up the training of neural
networks with evolutionary computing. In the Decen-
tralized Data Fusion System (DDFS) application each
sensor node is one Chedar node. DDFS can be used
to track targets based on the sensor measurement of
their coordinates. Mobile Chedar is an extension to
the Chedar peer-to-peer network for mobile peer-to-
peer applications and has been implemented using Java
2 Micro Edition. We have also developed P2PStudio
[8] monitoring application for the Chedar network to
study the performance of search algorithms and the
self-organizing behavior of the topology management
algorithms.

3 Structure of Chedar

Chedar consists of five main components which
are Connections, ConnectionManager, Propagation-
Engine, TopologyManager and ChedarClient. These
components are illustrated in Figure 1.

3.1 Connections

The Connections include local information used by
the topology management algorithms about the node’s
neighbors. Each neighbor is one connection object.
Chedar keeps information about active connections and
history data about the earlier connections in XML
trees. Searches can be made to the XML tree using
an XPath expression. History data also contains infor-
mation about the nodes which the peer has found out
from its neighbors. The nodes save the IP addresses
and the TCP ports of the neighbors, the types of re-
sources those provide and hit values per provided re-
source types. Hit values are described later in the next
paragraph. Chedar saves also the time when the con-
nection last replied, when the connection request has
been sent to the connection and whether the request

ChedarClient

ConnectionManager

PropagationEngineTopologyManager Connections

Figure 1. Main components of Chedar.

succeeded or not. Relayed hits and the number of the
connection’s neighbors is stored about active connec-
tions.

Every connection has three types of hit values in
Chedar. First one, called hit value, is increased by
one every time the node gets a resource reply from
its neighbor. Second one is called actual hits and is
increased when the node uses a resource the neighbor
provides. Relayed hits values of the connection include
the neighbor’s neighbor nodes and the amount of the
reply messages those have sent to the node through the
neighbor.

3.2 ConnectionManager

The ConnectionManager manages the active con-
nections and the history data by adding connections
or removing connections according to the Topology-
Manager’s requests. The ConnectionManager keeps a
cache about the information of forwarded messages and
handles all arriving messages and passes them to the
classes which have informed wanting that type of mes-
sages. The ConnectionManager has also a traffic meter
which measures the size of the resource messages going
through the node in a given time period. The traffic
meter is used by the Overload Estimation Algorithm.

3.3 TopologyManager

The TopologyManager selects the connections to es-
tablish or remove and the nodes to overtake by using
the algorithms described in the Section 5. It handles
ConnectionRequest and ConnectionReply messages,
NeighborListRequest and NeighborListReply messages
and ServiceListRequest and ServiceListReply messages
which are described in the Section 4.

3.4 PropagationEngine

The PropagationEngine handles the resource mes-
sages. The application running on top of Chedar can
select any search algorithm that is implemented in
Chedar. Currently five different resource discovery
algorithms have been implemented: BFS [12], Ran-
dom Walk [11], Highest Degree Search [1, 6] and Neu-
roSearch [16]. Some of the algorithms are reviewed
in [16]. The PropagationEngine passes the received
resource request or reply message to the search algo-
rithm specified in the message. The algorithm makes
the decision where to forward the message and creates
a reply message when needed. The algorithm returns
to the PropagationEngine the forwarded message and
a list of connections where to forward the message.

3.5 ChedarClient

The ChedarClient works as an API for Chedar. The
ChedarClient provides methods for setting and getting
the values of the parameters used in the algorithms.
Resources can be set with the ChedarClient and it
propagates events about received and sent messages
and overtakings to the application. The ChedarClient
also provides methods for establishing a connection to a
certain node and for creating a resource request. Table
1 shows the methods that are accessible in the Chedar-
Client for the applications running on top of Chedar.

By implementing Chedar’s monitoring interface,
the iMonitor, the application may get the follow-
ing events: resourceQuerySentEvent, messageForward-
edEvent, messageDiscardedEvent, resourceReplySen-
tEvent, resourceReplyReceivedEvent, overtakingEvent,
connectionRequestedEvent and connectionStatusEvent.

4 Messages

There are three types of messages used for the topol-
ogy management in Chedar. When a node wants to
establish a new connection to another node it sends a
ConnectionRequest message to it. The requested node
sends back a ConnectionReply message which includes
the information whether it accepts the request or not.

With a NeighborListRequest message the node can
query a connection’s neighbors, i.e neighbor’s neigh-
bors. The sender puts its own neighbors’ IDs into the
message. The node replies to the request by sending
back a NeighborListReply message which includes the
neighbors’ IDs. The nodes save the neighbors’ IDs to
the history data.

A node can query the resource types its neighbor
provides, e.g. file or computing time, by sending to
a connection a ServiceListRequest message which is
replied by a ServiceListReply message. The request
message includes the resource types the sender provides
and the reply message includes the replier’s resource
types.

Resources are searched with a ResourceRequest mes-
sage. An application needing a resource starts a query
using a resource discovery algorithm it wants. When
the message arrives to a node which has the requested
resource, it handles the message according to the algo-
rithm and sends the reply message back to the initiator
of the request message using the following method.

Chedar tries to guarantee that the ResourceReply
message is forwarded to the initiator of the request mes-
sage by using a simple method. Every node keeps in-
formation about ResourceRequest messages it has for-
warded. The nodes save the ID of the message and the

startChedar() Starts a Chedar node.
startConnecting() The node starts estab-

lishing connections.
setMonitor(iMonitor
monitor)

Sets a monitoring appli-
cation for events.

pingMessage() Checks if a Chedar node
is still alive.

connect(String
password)

Connects to the node.
Returns true if the pass-
word is correct.

getMyID() Returns node’s ID.
getNeighbors() Returns neighbors’ IDs.
setResources(Node
resource)

Sets a resource node to
the XML tree.

unsetResource(String
xpath)

Removes corresponding
resource from the XML
tree using an XPath ex-
pression.

listResources() Returns a list of re-
sources the node has.

createResourceQuery(
String query, String
algorithm, int ttl)

Creates a resource re-
quest message where the
query is the searched re-
source as XPath, the
algorithm is the used
search algorithm and the
ttl is a time-to-live value.
Returns the id of the cre-
ated message.

stopMessage(String id) Stops forwarding the
message with a given id.

setTrafficLimit(int
limit)

Sets a value for the traf-
fic limit.

getTrafficLimit() Returns the value of the
traffic limit.

getTrafficMeter() Returns the value of the
traffic meter.

resetTrafficMeter() Sets the value of the traf-
fic meter to zero.

forceConnection(String
id)

Establishes a connection
to the node specified
with the id.

forceDisconnection(String
id)

Disconnects the neigh-
bor specified with id.

closeAllConnections() Disconnects all node’s
connections.

Table 1. Methods accessible for applications
running on top of Chedar.

IDs of the two previous nodes of the path the message
arrived from. The reply message is forwarded to the
initiator of the request message using the same path as
the request came from, i.e. the reply message is sent
to the connection where the request arrived from. This
is a common way to route the replies in P2P networks
because it needs only information about the previous
node. In Chedar there is also other ways if the for-
warding fails. If the connection to the neighbor is not
available anymore, for example the neighbor has left
the network, the node tries to establish a new con-
nection to the second next node on the return path,
i.e. the second previous node on the query path and
sends the message there. If this does not work either,
finally the node tries to establish a new connection to
the initiator of the query and sends the reply message
directly to it. Establishing always a direct connection
to the initiator of the query would require establishing
a new TCP connection, which is not always possible,
e.g. in the presence of firewalls. Also keeping statis-
tics of which nodes have relayed replies would not be
possible.

5 Topology Management Algorithms

Chedar contains four algorithms for managing the
topology: Node Selection for adding neighbors, Node
Removal for removing neighbors, Overload Estimation
for limiting the node’s traffic and Overtaking for mov-
ing in the network. The algorithms have been further
developed and tested in the P2PRealm simulator [7]
and the behavior of the algorithms is analysed in [3].

5.1 Node Selection Algorithm

The initial list of neighbors can be obtained manu-
ally by out-of-band methods or automatically by using
advertisement systems [17] or centralized entry point
directories [5]. This has not been implemented in
Chedar, but instead it has been left to the applica-
tion running on top of Chedar. The Node Selection
Algorithm handles only the case when a Chedar node
already knows some nodes in the network.

When the node joins the network again it tries to
establish the connections it had before leaving the net-
work, i.e. connections saved in the active connections.
In the best case it manages to establish all connections
it had earlier. If the node does not manage to establish
any of those connections or it needs a new connection
for other reasons, it searches the next one from the
history as shown in Algorithm 5.1.

First it searches connections which have hit values
and tries to create a connection to one of those.

Because the node does not want to create a connection
to the same node it has just dropped it searches only
the connections which have not been requested in a
given time. If the node did not succeed in establishing
a new connection, it next searches connections based
only on the time of the last request, i.e. the node has
not tried to create a connection to those in a given
time or at all (lacking requested information). If the
node still did not successfully create a connection, it
searches connections without information for hit values
or request time. If the node does not have neighbors
then the last way to search for a new connection is
to try the connections in the history which have hit
values. Then the node may select again a neighbor
which it has just dropped.

Algorithm 5.1 (NodeSelectionAlgorithm)
Input: Connections his in node’s history
H = {h1, ..., hm}, time sets a limit for the time
which older the previous connection request must be
and neighbors is the number of node’s neighbors.
Output: Establishes a new connection
hitsNeeded = true
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

if neighbors == 0 then do

hitsNeeded = true
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded,

time, H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

end if

The function SearchConnections(hitsNeeded, time-
Needed, time, H) returns those connections C =
{c1, ..., cn} ⊆ H which meet the criteria defined in the
parameters. If the value of the parameter hitsNeeded
is true, then the function only returns the connections
which have hit values. If hitsNeeded is false the func-
tion returns the connections which do not have hit val-
ues. If the value of the parameter timeNeeded is true,
then the function only returns the connections which
have not been requested in the time defined in the pa-
rameter time. The function EstablishConnection re-
turns true, if the connection was established success-
fully.

5.2 Node Removal Algorithm

When a node wants to remove a connection it se-
lects the worst neighbor among the neighbors it cur-
rently has. The worst neighbor has the smallest good-
ness value. The goodness is the sum of the neighbor
connection’s hit values and relayed hits.

Goodness = hits + relayedhits (1)

The Node Removal Algorithm (Algorithm 5.2) is
described as follows.

Algorithm 5.2 (NodeRemovalAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections.
Output: Removes the worst connection.
c = null
lowestGoodnessV alue = ∞
for i=1 to | C | do

g = Hits(ci)+ RelayedHitsSum(ci)
if g < lowestGoodnessV alue then do

c = ci

lowestGoodnessV alue = g

end if

end for

if c �= null then do

DisconnectConnection(c)
end if

The function Hits(connection) returns the con-
nection’s hit values and the function Relayed-
HitsSum(connection) returns the sum of relayed hits

of the connection’s neighbors. The method Disconnect-
Connection(connection) removes the connection to the
neighbor.

5.3 Overload Estimation Algorithm

There is no predefined number for the connections
the node should maintain. Thus the connections are
added and dropped based on the amount of traffic
going through the node. The Overload Estimation
Algorithm compares the traffic meter value calculated
in the ConnectionManager to the predefined traffic
limit values. There are upper and lower traffic limits
which set the range where the traffic amount should
be. If the traffic is more than the predefined upper
traffic limit, one connection is dropped by using
Algorithm 5.2. If the traffic is less than the lower
traffic limit it tries to add a new connection using the
Algorithm 5.1. At the end, the algorithm resets the
traffic meter by setting its value to zero.

Algorithm 5.3 (OverloadEstimationAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections, value of the traffic meter
meter in kilobytes, value of the upper traffic limit
upperLimit in kilobytes and value of the lower traffic
limit lowerLimit in kilobytes.
Output: Establishes a new connection or removes
one connection.
overloadFlag = false
if meter > upperLimit ∧ | C |> 1 then do

overloadFlag = true
NodeRemovalAlgorithm(C)

end if

if meter < lowerLimit then do

NodeSelectionAlgorithm()
end if

meter = 0
The variable overloadFlag is true if the traffic

amount is greater than the traffic limit. In that sit-
uation the node does not accept any new connections.

5.4 Overtaking Algorithm

The Overtaking Algorithm is used to optimize the
topology. The purpose of the algorithm is that the
node moves in the network closer to the nodes which
provide it a lot of replies by overtaking the current
connection. The node does not directly connect to a
neighbor of the resource providing node but only closer
step by step and that way makes sure that it does not
lose good nodes on the path.

The idea is that when a reply message arrives to the

querier it updates the hit value of the replier node and
updates the local information concerning the relayed
hits of the neighbor of the connection from which the
node got the reply message. Then if the connection’s
hit value is bigger than 1, i.e. the node has got more
than one message from the neighbor, the node checks
whether the connection has a neighbor node whose pro-
portion of the sum of all neighbors’ relayed hits and
connection’s hits is more than the defined overtaking
percent. For example if the overtaking percent is 60%
it means that if there is the neighbor of the connection
which has forwarded over 60% of all reply messages the
node has received from the connection then the node
establishes a new connection to that node and drops
the current connection.

The advantages of the algorithm are that the
distances of the nodes which use others’ resources are
shorter than in randomly connected networks. The
algorithm creates clusters gathering close to its center
the nodes which provide a lot of resources used by
other nodes.[2, 3]

Algorithm 5.4 (OvertakingAlgorithm)
Input: Overtaking percent overtakingPercent,
node’s neighbor connection c, c’s neighbors
N = {n1, ..., nn} and c’s hit value hitV alue.
Output: Node has overtaken a neighbor if some
neighbor’s neighbor is better for the node.
if hitV alue > 1 then do

sum = 0.0
biggest = overtakingPercent/100.0
bestNeighbor = null
sum += Hits(c) + RelayedHitsSum(c)
for i=1 to | N | do

hitValue = RelayedHits(ni)
proportion = hitValue/sum
if proportion ≥ biggest then do

biggest = proportion
bestNeighbor = ni

end if

end for

if bestNeighbor �= null then do

if EstablishConnection(bestNeighbor) then do

DisconnectConnection(c)
end if

end if

end if

The function Hits(connection) returns the
connection’s hit values, the function Relayed-
HitsSum(connection) returns the sum of the relayed
hits of the connection’s neighbors and the function
RelayedHits(neighbor) returns the relayed hits of the
neighbor. The function EstablishConnection returns

true, if establishing a connection succeeded. The
method DisconnectConnection(connection) removes
the connection to the neighbor.

6 Conclusion

The Chedar peer-to-peer middleware provides a de-
centralized architecture for P2P applications. The
topology of the Chedar network is self-organized by the
topology management algorithms and different search
algorithms can be used for discovering the resources.
Future work of Chedar includes further development of
the topology management algorithms and NeuroSearch
resource discovery algorithm to optimize the search
process as well as the mobile peer-to-peer application
development on top of Mobile Chedar.

References

[1] L. A. Adamic, R. M. Lukose, and B. A. Huberman.
Local search in unstructured networks. In Handbook
of Graphs and Networks: From the Genome to the
Internet, pages 295–317. Wiley-VCH, 2003.

[2] A. Auvinen. Topology management algorithms in
chedar peer-to-peer platform. Master’s thesis, Uni-
versity of Jyväskylä, February 2004.

[3] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and
J. Vuori. New topology management algorithms for
P2P networks. Unpublished.

[4] Cheese factory. http://tisu.it.jyu.fi/cheesefactory.
[5] Gnutellahosts. http://www.gnutellahosts.com/.
[6] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong.

Path finding strategies in scale-free networks. Physical
Review E, 65, 2002.

[7] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and
J. Vuori. P2PRealm - peer-to-peer network simulator.
Unpublished.

[8] N. Kotilainen, M. Vapa, A. Auvinen, M. Weber, and
J. Vuori. Peer-to-peer studio - monitoring, control-
ling and visualisation tool for peer-to-peer networks
research. Unpublished.

[9] N. Kotilainen, M. Vapa, M. Weber, J. Töyrylä, and
J. Vuori. P2PDisCo - java distributed computing for
workstations using chedar peer-to-peer middleware. In
Proceedings of the 19th IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2005),
2005.

[10] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori.
Mobile chedar - a peer-to-peer middleware for mo-
bile devices. In Proceedings of the Second Interna-
tional Workshop on Mobile Peer-to-Peer Computing
(MP2P05), pages 86–90. IEEE Press, 2005.

[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks.
In Proceedings of the 16th International Conference on
Supercomputing, pages 84–95. ACM Press, 2002.

[12] N. A. Lynch. Distributed Algorithms. Morgan Kauff-
mann Publishers, 1996.

[13] S. Nazarko. Evaluation of the data fusion methods
using kalman filtering and transferable belief model.
Master’s thesis, University of Jyväskylä, November
2002.

[14] A. Oram, editor. Harnessing the Power of Disruptive
Technologies. O’Reilly, Sebastopol, CA, 2001.

[15] R. Schollmeier. A definition of peer-to-peer net-
working for the classification of peer-to-peer archi-
tectures and applications. In Proceedings of First
International Conference on Peer-to-Peer Computing
(P2P’01), pages 101–102, 2001.

[16] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen,
and J. Vuori. Resource discovery in P2P networks
using evolutionary neural networks. In International
Conference on Advances in Intelligent Systems The-
ory and Applications (AISTA 2004), November 2004.

[17] M. Weber, J. Vuori, and M. Vapa. Advertising peer-
to-peer networks over the internet. Radiotekhnika,
133:162–170, 2003.

PIII

PEER-TO-PEER STUDIO - MONITORING, CONTROLLING

AND VISUALISATION TOOL FOR PEER-TO-PEER NETWORKS
RESEARCH

by

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber & Jarkko Vuori
2006

ACM International Workshop on Performance Monitoring, Measurement and Eval-

uation of Heterogeneous Wireless and Wired Networks

Reproduced with kind permission by Association for Computer Machinery.

P2PStudio – Monitoring, Controlling and Visualization Tool
for Peer-to-Peer Networks Research

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber, Jarkko Vuori
Department of Mathematical Information Technology

University of Jyväskylä, Finland
firstname.lastname@jyu.fi

ABSTRACT
Peer-to-Peer Studio has been developed as a monitoring, controlling
and visualization tool for peer-to-peer networks. It uses a centralized
architecture to gather events from a peer-to-peer network and can be
used to visualize network topology and to send different commands
to individual peer-to-peer nodes. The tool has been used with
Chedar Peer-to-Peer network to study the behavior of different peer-
to-peer resource discovery and topology management algorithms
and for visualizing the results of NeuroSearch resource discovery
algorithm produced by the Peer-to-Peer Realm network simulator.
This paper presents the features, the architecture and the protocols
of Peer-to-Peer Studio and the experience gained from using the tool
for peer-to-peer networks research.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms: Measurement, Performance.

Keywords
peer-to-peer; P2PStudio; monitoring tool; research infrastructure.

1. INTRODUCTION
Peer-to-Peer (P2P) networks consist of a set of peer nodes. Each
peer node makes decisions on where to connect and where to
forward resource queries resulting in a complex self-organizing
network. Studying how different algorithms are performing requires
collecting data from the entire P2P network to obtain a global view.
In P2P networks research people have used crawlers [5,9] to collect
data locally available for some peer nodes. This approach however
is only able to gather a portion of the P2P network’s behavior,
because some of the peers might not accept any new connections
requested by the crawlers. Also, the crawlers can only gather
information, which is accessible by the P2P protocol and thus they
do not have direct means to control the peer’s actions.

In our approach, we use a centralized server to contact peers in the
P2P network and to set filters to the peers for what events the peers
need to report back to the server. This allows measuring different
properties from the P2P network extensively and globally. The

graphical user interface presents the collected data visually thus
making the interpretation easier compared to reading plain text log
files. In contrast to crawlers, we note that our work is the first
attempt to create a P2P research environment, which provides strict
control mechanisms and accurate measurements for studying the
behavior of different P2P algorithms.

To monitor the events of a P2P network a specific monitoring
interface needs to be implemented in the peer nodes. This interface
is used for setting different event logging options and for accepting
incoming connections for data delivery from the centralized server.
However, in presence of a large P2P network the centralized server
can have lots of connections to manage and presents a potential
performance bottleneck in our approach compared to local gathering
of data done by crawlers. This architecture can however be scaled
up by using multiple servers as is common in studies with crawlers
[9].

The rest of the paper is organized as follows. Section 2 presents
P2PStudio, its features, architecture and protocols. Section 3
describes how P2PStudio has been used in peer-to-peer networks
research for studying the performance of peer-to-peer resource
discovery and topology management algorithms. Conclusions and
future work are discussed in Section 4.

2. PEER-TO-PEER STUDIO
The Cheese Factory –project [3] has implemented a Java-based
peer-to-peer computing platform called Chedar [1]. Chedar can be
used to build a network of workstations where each node provides
and consumes resources such as computing power, files and devices.
Currently, Chedar is used as a middleware for P2P Distributed
Computing applications [7]. Chedar has also been extended to
support mobile devices [8]. In order to test and monitor the Chedar
network there was a need for a tool that enables to remotely control
and monitor each peer and workstation in a centralized way. By
executing the Guardian student project [4], the first version of Peer-
to-Peer Studio was developed in 2002.

ServerUser
Interface

Chedar
node

Chedar
node

Chedar
node

Chedar
node

Peer-to-Peer Studio

Figure 1. Components of Peer-to-Peer Studio.

P2PStudio is Java-based and it is divided into two separate
programs as shown in Fig. 1: the user interface (UI) and the
server. The graphical UI connects to the server program and uses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PM2HW2N'2006, October 2, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-502-9/06/0010...$5.00.

9

it to carry out the commands entered by the user. The server
program takes care of all of the communication between the UI
and Chedar nodes. It also manages the data sent from Chedar
nodes. Dividing the application into two programs allows mobility
of the UI from the dedicated hardware of the server. For example
the server might have privileges to connect to Chedar nodes
through firewalls and an UI residing on a laptop only needs to be
able to connect to the server.

UI communicates with the server, sends requests to Chedar nodes,
displays data from the server to the user e.g., by visualizing the
network topology and showing diagrams. The UI also allows the
management of Chedar nodes. Server forwards the commands sent
by the UI, gathers information from the Chedar network and passes
on requested data to the UI.

2.1 User Interface
The user interface draws a logical topology of the monitored
network as shown in Fig. 2. From the zoomable topology view the
user can select nodes and for example check their values, command
queries to be sent and modify the resources owned by the nodes.
Nodes can also be grouped together to ease the execution of a

certain action to multiple nodes. Information on the last executed
query is also shown in the topology view. The topology is generated
using the WTS Veivi component from WTS Networks [12]. The
component creates a visualization of network topology from a set of
nodes and links optimized to minimum number of overlapping links.
The topology is refreshed whenever the user desires or after a set
interval.

Another feature of the UI is to show graphs of the monitoring data
as shown in Fig. 3. Currently, the only graph implemented is the
neighborhood distribution, but other graphs are relatively easy to be
plugged in. Graphs are formed by combining multiple events into a
single value, like in the neighborhood distribution, where individual
neighbor amount notifications are counted and the frequency of
certain value creates one data point in the graph. Graphs can be
zoomed and shown also in a logarithmic scale.

The log feature of the UI allows the user to keep track of the Chedar
network's actions almost in real time. Log presents the event
messages coming from the Chedar nodes. The events are
notifications of certain network events, for example forwarded
queries, new neighbor connections or dropped messages because of
congestion in a Chedar node.

Figure 2. Topology view.

10

The user can also send commands to the server or to Chedar nodes
via the server by typing commands in the User Interface-to-Server
Message Protocol (UMP) format (for more details see the Section
2.3). The Commands view allows the user to see the sent data and
the received messages from the nodes. Also batch files can be
executed via the commands view. Batch files are useful when a
certain peer-to-peer query pattern and measurement scenario needs
to be executed multiple times.

Figure 3. Graph view.

The UI can be run online as well as offline especially for
demonstrations. For offline use there is a recording feature allowing
the user to record actual monitoring data coming from the server to a
file and later retrieve the recorded data in offline state. The UI also
allows the user to create Chedar node groups and manage
connections.

The functioning of the UI is quite simple. When data is received
from the server it is checked and forwarded to the addressed
component of the UI. The data will be presented to the user in a
form of topology, graph or text depending on the view. Sending data
is also rather straightforward. The user assigns a command and it is
sent to the server for further handling.

2.2 Server
The server program is divided into two main components: stateless
connection manager and stateful data manager. The connection
manager is the part of the server which takes care of all connections.
It forwards the contents of the packets without interpreting them,
only adding metadata about the time the packet was received and
Chedar node’s IP address and port. A packet can arrive to the server
either from the UI or from a Chedar node. It arrives first to the
connection manager which forwards it to the data manager if
necessary, otherwise directly to UI or to Chedar node(s).

The data manager is responsible for temporarily saving data coming
from Chedar nodes and for combining multiple individual replies to
a single reply for UI. For example to construct a neighbor
distribution graph, data manager needs to collect individual
neighbor amounts from Chedar nodes and build the graph data for

UI. This lightweight architecture of the server allows scaling to
hundreds of Chedar nodes.

2.3 Protocols
User Interface, Server and Chedar nodes use three different
protocols for communication. One binary protocol was developed as
a container for two message protocols, one XML protocol for
communication between the server and the Chedar nodes as well as
one XML protocol for communication between the UI and the
server. Both XML protocols are on the top of the binary protocol as
illustrated in Table 1. The binary protocol is always on the top of
TCP.

Table 1. LAYERS OF THE PROTOCOLS.
Message Protocol (GMP or UMP) XML

Packet Transmission Protocol (GPTP) Binary
TCP

1) Guardian Packet Transmission Protocol (GPTP)

The Guardian Packet Transmission Protocol (GPTP) is a binary
protocol used between the UI and the server as well as between the
server and the Chedar nodes. The GPTP packets are composed of a
fixed-size 64-bit header and a data part, which varies in size. The
header identifies the packet as a part of the Guardian-to-Chedar
protocol and specifies the size of the data part in bytes. Without a
specified data size, parsing an incoming XML message from a
stream would be harder. An example of a GPTP message is shown
in Table 2.

Table 2. GUARDIAN PACKET TRANSMISSION
PROTOCOL.

2) Guardian Message Protocol (GMP)

The Guardian Message Protocol (GMP) is used between the server
and the Chedar nodes on the top of the Guardian Packet
Transmission Protocol. Each GMP message is a complete XML
document. The header is a standard XML declaration, and the body
is composed of a root element which specifies the type of message,
and a variable content.

Here is the structure of GMP message:

Header: XML declaration

 <?xml version="1.0" encoding="UTF-8"?>

Body

 Root element: <request/> OR <reply/> OR <event/>

 Content: various requests, replies or events as

 XML elements and/or attributes

There are three types of messages in the Guardian Message
Protocol:

32 bit synchronization header, 0x47324350
(G2CP)

32 bit size field, network byte order, (1234)
Byte data

11

The request/reply pair forms a synchronous message exchange
initiated by the server. The reply is not mandatory. Event messages
can arrive from the Chedar nodes at any time.

3) User Interface-to-Server Message Protocol (UMP)

The User Interface-to-Server Message Protocol (UMP) is used
between the UI and the server on top of the Guardian Packet
Transmission Protocol. UMP uses similar message structure as
GMP. The difference between UMP and GMP is in the XML
elements and attributes. For example the UMP contains elements for
sending a certain GMP message to all Chedar nodes.

3. P2PSTUDIO IN PEER-TO-PEER
NETWORKS RESEARCH
At first, P2PStudio was developed to collect data from a Chedar
network [1] consisting of tens of workstations. Experimenting with
self-organization of topology and different resource discovery
algorithms however usually requires a controlled environment to
obtain results that are repeatable. Creating exactly same starting
conditions for each test in a network of workstations is problematic,
because of differencies in hardware and network traffic. Also,
having each Chedar node pack and send data over the network is
significantly slower than executing algorithms in a simulator, where
only local data structures are being used.

Therefore, the use of P2PStudio was extended by creating the Peer-
to-Peer Realm (P2PRealm) network simulator [10,6]. P2PRealm is
Java-based and contains functionalities for creating peer-to-peer
network scenarios with different topologies, resource distributions
and query patterns, executing different resource discovery and
topology management algorithms, and collecting various statistics of
the execution to log files. In addition to textual viewing of log files,
P2PStudio can be used for graphical viewing e.g., to plot how
queries spread in the network and what kind of topologies emerge
from the execution of algorithms.

A special use case for P2PStudio and P2PRealm is the development
of the NeuroSearch resource discovery algorithm [11], which is
based on neural networks. Optimizing neural networks requires not
only simulation of a certain scenario once, but usually thousands of
times to reach a near-optimum state in learning. Therefore network
simulators, such as Ns-2 [2], which are based on scripting languages
and mainly developed for detailed protocol studies are not fast
enough. For studying the behavior of neural networks, P2PStudio
provides a view containing the inputs of neural network and the
corresponding output decisions.

4. CONCLUSIONS AND FUTURE WORK
P2PStudio is a well-established research tool for peer-to-peer
networks research providing functionalities for peer-to-peer network
monitoring, controlling and visualization. P2PStudio has been used
with two different peer-to-peer software, Chedar and P2PRealm, for
algorithm development. The centralized architecture of P2PStudio is
a potential bottleneck for scalability in the future when the size of
the P2P networks being studied grows. As a future work we
envision changes in the architecture to support multiple servers as

well as adding new functionalities to UI to determine certain
network characteristics such as diameter, shortest paths and multiple
distinct paths between nodes.

5. ACKNOWLEDGMENTS
The authors would like to thank the other members of the Guardian
student project: Joni Töyrylä, Jussi Rastas and Ville Pentti. Niko
Kotilainen was supported by the InBCT-project and Mikko Vapa
and Annemari Auvinen were supported by the GETA graduate
school.

6. REFERENCES
[1] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori,

“Chedar: Peer-to-Peer Middleware”, Proceedings of the 20th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2006), Rhodes Island, Greece, Arpil 2006.

[2] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan K. , X. Ya, and
Y. Haobo, “Advances in network simulation”, IEEE Computer,
Vol. 33, Issue 5, pp. 59-67, 2000.

[3] Cheese Factory – Peer-to-Peer Computing Project,
tisu.it.jyu.fi/cheesefactory.

[4] Guardian project,
www.mit.jyu.fi/opiskelu/sovellusprojektit/guardian/.

[5] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman,
“Scalability Issues in Large Peer-to-Peer Networks – A Case
Study of Gnutella”, Technical report, University of Cincinnati,
2001.

[6] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and J.
Vuori, ”P2PRealm – Peer-to-Peer Network Simulator”,
Proceedings of the 11th International Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links
and Networks (CAMAD 2006), Italy, June 2006 .

[7] N. Kotilainen, M. Vapa, M. Weber, J. Töyrylä, and J. Vuori,
"P2PDisCo – Java Distributed Computing for Workstations
Using Chedar Peer-to-Peer Middleware", Proceedings of the
19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2005), Denver, Colorado, USA, 2005.

[8] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori, "Mobile
Chedar - A Peer-to-Peer Middleware for Mobile Devices",
Workshops Proceedings of the Third IEEE Conference on
Pervasive Computing and Communications (Percom 2005),
pp. 86-90, Kauai Island, Hawaii, USA, 2005.

[9] D. Stutzbach, R. Rejaie, “Capturing Accurate Snapshots of the
Gnutella Network”, Proceedings of the 8th IEEE Global
Internet Symposium, Miami, Florida, 2005.

[10] J. Töyrylä, "Building NeuroSearch - Intelligent Evolutionary
Search Algorithm For Peer-to-Peer Environment", Master's
Thesis, University of Jyväskylä, 3.9.2004.

[11] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J.
Vuori, "Resource Discovery in P2P Networks Using
Evolutionary Neural Networks", International Conference on
Advances in Intelligent Systems - Theory and Applications
(AISTA 2004), Luxembourg, 2004.

[12] WTS Networks, www.wts.fi

Request message is sent by the server to a Chedar or a Workstation
node.

Reply message is sent by a Chedar or a Workstation node to the
server.

Event message is sent by a Chedar node to the server.

12

PIV

P2PREALM - PEER-TO-PEER NETWORK SIMULATOR

by

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Teemu Keltanen & Jarkko Vuori
2006

IEEE 11th International Workshop on Computer-Aided Modeling, Analysis and De-

sign of Communication Links and Networks

Reproduced with kind permission by IEEE Computer Society.

P2PRealm – Peer-to-Peer Network Simulator

Niko Kotilainen, Mikko Vapa+, Teemu Keltanen, Annemari Auvinen+ and Jarkko Vuori
Department of Mathematical Information Technology, University of Jyväskylä

P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland
firstname.lastname@jyu.fi

+ The works of M. Vapa and A. Auvinen are supported by Graduate School in Electronics, Telecommunications and Automation (GETA).

Abstract—Peer-to-Peer Realm (P2PRealm) is an efficient peer-to-
peer network simulator for studying algorithms based on neural
networks. In contrast to many simulators, which emphasize on
detailed network simulation, the speed of simulation in P2PRealm
is essential, because neural networks require a time consuming
training phase. Efficiency has been obtained by optimizing training
loops inside the simulator, using Java Native Interface (JNI) as well
as distributing the simulator to hundreds of workstations using the
P2PDisCo platform. In this paper we describe the architecture of
P2PRealm and its input/output interfaces. Also, we present the
mechanisms used for internally optimizing the implementation and
the configuration used for distribution. Finally, we present the use
of P2PRealm with the P2PStudio network visualization tool.

Keywords - peer-to-peer; P2PRealm; network simulation;
research infrastructure; neural networks, optimization methods;

I. INTRODUCTION

Peer-to-Peer (P2P) algorithms have been studied at least
using three different approaches. These are crawlers, emulators
and simulators. Crawler is an implementation of a peer node
specially designed for P2P networks research. A crawler can
collect data passing through it to get a local view of the P2P
network. By deploying multiple crawlers, a bigger part of the
peer-to-peer network can be monitored. However, this approach
is not able to gather the global view of the network, because the
behavior of nodes which are not connected to crawlers is
unknown. This problem is solved by emulators, which contain
the implementation of a peer node and are used to build a
complete P2P network. Multiple emulators can be deployed
inside one workstation usually providing quite large P2P
networks with only a few workstations.

Even though emulators can be used to get the global view,
they are restricted to slow execution, because messages need to
be passed between emulator processes through network
protocols such as TCP. The third option, simulator, contains an
abstracted implementation of peer nodes equivalent to
emulators, but uses local data structures for message passing.
The use of local data structures significantly increases the speed
of execution and therefore is well-suited approach for
computationally intensive algorithm studies. The downside of
the approach is the inaccuracy of results compared to real-world

P2P networks and the difficulty of modeling user behavior. This
knowledge can only be obtained using crawlers or by
monitoring network traffic inside routers.

Developing peer-to-peer resource discovery and topology
management algorithms based on neural networks are
computationally intensive tasks. For example, it takes a week
for one low-cost workstation to train a good neural network
based resource discovery algorithm for a rather small P2P
network [23]. Therefore, in computationally intensive
algorithmic research the most important factor to consider for a
simulator is speed.

This paper describes an end product of a process where
emulators were first used for studying P2P algorithms and later
re-implemented as an efficient simulator to decrease the time
used for execution. Latest improvement of the simulator is the
distributed execution on a Peer-to-Peer Distributed Computing
platform (P2PDisCo) [11] allowing us to parameter sweep
different features of neural network based P2P algorithms.

The paper is structured as follows. Section 2 compares
existing P2P simulators with our work and states their
differences. Section 3 introduces P2PRealm network simulator
and section 4 describes its input and output interfaces. Section 5
describes the main use case of P2PRealm: the training of
evolutionary neural networks for P2P resource discovery.
Section 6 describes the internal modifications used for
optimizing the code and the combination of P2PRealm with
P2PDisCo platform. Section 7 illustrates the use of P2PStudio
for visualizing the output of P2PRealm and section 8 concludes
the paper.

II. RELATED WORK

There are various network simulators available for studying
P2P networks. However, many of these simulators are not
primarily designed for speed and none of them contains
functionalities for neural networks. Because the speed is the
most important factor in our simulation environment, it is
obvious that abstractions on the level of details are necessary.
Packet-level simulators model the P2P protocols with precise
protocol headers and field structures, whereas message-level
simulators only take into account the number and sizes of the

0-7803-9536-0/06/$20.00 ©2006 IEEE. 93

packets. While packet-level simulation is a desirable feature, it
is still often too expensive in terms of computing resources. In
addition to speed, other desirable features in our simulations are
compilation of statistics on simulation results and visualization
of P2P networks. From this viewpoint, we next overview some
of the existing P2P simulators.

A. NS-2

NS-2 [15] is one of the most widely used network
simulators. The NS-2 is object-oriented discrete event
simulator, which closely follows the architecture of the OSI
model. It suits well for simulating packet switched networks and
small scale networks. The Parallel and Distributed Simulation
(PADS) research group has developed an extension that allows
network simulation to be run in parallel on multiple machines
[17]. Being very detailed simulator, it still does not scale well
enough and is slow from a computational point of view. In
addition, adding new modules is not straightforward, because of
it's complex module structure [14].

B. PLP2P

Packet-level Peer-to-Peer Simulator (PLP2P) [6] provides a
framework for other packet-level simulators, e.g. NS-2, in order
to provide detailed model of the underlying network. This is
done with wrappers, which translate P2P events into underlying
packet-level simulator. The authors assert that abstracting low-
level details can impact the simulation results to a large extent.
The scalability problem of packet-level simulations is solved by
running simulations on parallel machines. Nevertheless, as
training neural networks requires substantial part of available
computing power in order to get result within reasonable time,
we need to abstract the level of details of the P2P network.

C. QueryCycle

The QueryCycle simulator [19] is specialized to file-sharing
simulations. It has realistic models for content distribution,
query activity, download behavior etc. The content distribution
is based on a model, where each file belongs to one category
and that category is defined by the popularity of the file.
Simulations proceed in query cycles representing the time
period between issuing a query and receiving a response.
Generated queries are passed into a queue and handled on a
First-In-First-Out basis.

D. 3LS

3LS [21] is an open-source simulator for overlay networks
designed to overcome the problems of extensibility and
usability. The system is separated to three architectural levels: a
network model, a protocol model and a user model. The
network model uses a two-dimensional matrix as a storage of
distances between the nodes. The protocol model defines the
current protocol being simulated. The user model is the input
interface for the user. The 3LS uses most of the memory

resources to a graphical interface as the simulator uses main
memory to store each event executed for visualization and this
limits the system to less than a thousand nodes on a low-cost
workstation [14].

E. PeerSim

PeerSim [18] has been developed especially with scalability
and support for dynamicity in mind. PeerSim is Java-based and
has two simulation engines, one is cycle-based and the other is
event driven. Cycle-based engine allows scalable simulation but
is not very accurate. Handling large-scale overlay networks
requires simplifying assumptions about the simulation details.
For example, the details of the transport communication
protocol stack are not taken into account. Event driven engine
supports dynamicity and is more realistic, but decreases the
scalability of the simulation. The abstractions of cycle-based
simulations are similar to ours. The difference is that when
PeerSim uses the benefits of abstraction for high scalability, we
use it to increase the computational efficiency. Parallel
execution is a necessity in order to PeerSim to be useful for our
research.

F. NeuroGrid

The NeuroGrid simulator [8] was initially designed to
support comparative resource search simulations between
FreeNet [5], Gnutella [16] and NeuroGrid [8] systems. The
simulator is single-threaded, Java-based and uses discrete
events. Several protocols are now available for NeuroGrid e.g.,
Domain Name Service (DNS) and a distributed e-mail protocol.
NeuroGrid supports property files that specify the parameters of
the simulation to run. This includes the protocol to simulate, the
parameters of the network and the amount of searches.

NeuroGrid would be a promising simulator for our research
if it wasn’t single-threaded and non-parallel.

G. GPS

The General Peer-to-Peer Simulator (GPS) [24] is aiming to
respond to a call for extensible framework for simulating P2P
networks efficiently and accurately. Efficiency is accomplished
with message-level simulation instead of packet-level
simulation. Improvement to the level of detail is achieved by
tracking the network infrastructure and using a macroscopic
mathematical model to obtain accurate estimate of the message
behavior, e.g. TCP. The GPS also models downloads of the
files, which is often left out from the simulators. GPS is
extensible for modeling any P2P protocol, integration with a
GUI and network visualization and provides support for
topology generation tools.

 The GPS is still in it’s early stages and details about
scalability, usability and performance are scarce. The GPS has
also only been used for simulating BitTorrent, where resource
discovery is not an essential problem. It is single-threaded, but

94

according to the authors their aim is to include multi-threading
into the simulator in the future.

H. Summary

A comparison of the different characteristics for reviewed
P2P simulators is shown in Table I. Overlay with Routers
column tells if the simulator contains both the logical overlay
network topology and the underlying router structure of the
physical network. After surveying the existing literature about
P2P simulators it is obvious that there is a need for
standardization in the area of P2P simulation [7]. The field is
highly fragmented and most of the current projects use their
own simulators tailor-made for their purposes. One of the
problems of the widely used simulators is their complexity and
therefore poor scalability for P2P simulation purposes.

Although our project strongly supports the call for general
open-source P2P simulator that is easily extensible and even
some attempts for such a simulator have recently appeared, our
research area is still too specified to be implemented
satisfactorily in any other way than building a specifically
optimized simulator. Training neural nets is computationally
very demanding and requires parallel computing and simplified
network simulation. To the best of our knowledge P2PRealm is
the only message-level simulator that allows simulations on
parallel machines. In addition, there is no other neural networks
based P2P algorithms that we know of and neither simulators
supporting neural network algorithms.

The problem of specifically built simulators is that the
results are not exactly similar with the ones made by other
simulators. This is a compromise that had to be made. In
P2PRealm the most common P2P resource discovery algorithms
are implemented to allow comparison with the ones neural
networks create. This provides the baseline for results obtained
in other simulators.

III. PEER-TO-PEER REALM

Peer-to-Peer Realm (P2PRealm) is a Java based peer-to-peer
network simulator designed for optimizing neural networks used
in P2P networks. The simulator has been developed in Cheese
Factory peer-to-peer research project [4]. With the simulator, it
is possible to determine a certain P2P network scenario and
requirements for a resource discovery or topology management
algorithm and get as an output a neural network optimized for
that scenario. For example, a P2P network scenario could
contain Gnutella’s [16] topology, resource distribution and
query pattern and the requirements could state that we want an
algorithm, which needs to locate certain amount of resources
(say 150) using as few query packets as possible. The end result
would be an adapted resource discovery algorithm for that
particular P2P network scenario. The first results of this kind of
an algorithm development was reported in [23]. Also, the
simulator contains implementations of various P2P resource
discovery algorithms such as Breadth-First Search [13],
Random Walker [12], Highest Degree Search [1,22] and
optimal path K-Steiner Tree approximation [22]. These
algorithms can be used as performance measures for neural
network based algorithms or for studying their performance in
different P2P network scenarios. The simulator has also been
used for studying topology management algorithms for P2P
networks [3].

The simulator is divided into four parts: P2P network, P2P
algorithms, neural network optimization and input/output
interface. P2P network contains the characteristics of a P2P
network including the network topology, distribution of
resources and query patterns of P2P network users. P2P
algorithms contains the implementations of various resource
discovery and topology management algorithms. Neural
network optimization takes care of neural network structure and
different optimization algorithms used for training the neural
network structure. Input/output interface is used for reading
configuration files and for outputting the statistics of training
and final results. The final results consist of the optimized

TABLE I. CHARACTERISTICS OF THE CURRENT UNSTRUCTURED P2P NETWORK SIMULATORS

Level of Detail Parallel Scalability
Overlay with

Routers
Dynamic
Network Programming Language

NS-2 Packets Yes Very low Yes No C++

PLP2P Packets Yes Medium - - C++

QueryCycle Messages No ? Yes Yes Java

3LS Messages? No
Very low
(<1000 peers) Yes ? Java

PeerSim Messages No
Very high
(10^6 peers) Yes Yes Java

NeuroGrid Messages No
High
(300 000 peers) No Yes Java

GPS Messages No ? No Yes Java

P2PRealm Messages Yes
Medium
(100 000 peers) No Yes Java

95

neural network and the used query paths for different queries.

IV. INPUT AND OUTPUT INTERFACES

The following information is required as an input to
P2PRealm (described in a configuration file):

• P2P network topologies containing the resource
distribution

• Query pattern

• P2P resource discovery algorithm

• Percentage of available resource instances to be located
in each query

• Number of queries executed in each training generation

• Neural network inputs

• Number of training generations, number of neural
networks and the neuron structure of neural networks

• Optimization method

As an output Peer-to-Peer Realm (P2PRealm) provides the
following files:

• The used topology and neighbor distribution

• A trace of training process with separate files for
training and generalization sets

• The best and all neural networks of each generation

• Query routes started from each node of the P2P network

• Configuration file, which was given as an input

V. TRAINING NEUROSEARCH

Next, we briefly describe how P2PRealm can be used for
P2P algorithm development. As an example we use
NeuroSearch resource discovery algorithm [23], but other
algorithms for example topology management algorithms based
on neural networks could be used [9].

NeuroSearch resource discovery algorithm uses local
information about query situation in a peer-to-peer network to
decide if query should be forwarded to a neighboring peer node
or not. The local information can be e.g. number of hops the
query has traveled, number of replies still needed to be located
etc. The forwarding process is illustrated in the following
algorithm:

1. One peer node starts a query specifying a
resource it wants to locate.

2. For each neighbor the node has, do the
following:

2.1 Fill all the input fields of neural network.
2.2 Compute the output of neural network.

2.3 If output is greater than zero, then forward
the query to neighbor and increase the
number of sent query packets by one.

3. A forwarded query packet arrives to peer node. If
this is the first query packet arriving to this node,
check whether the peer node contains a resource
being queried. If peer has the queried resource
then increase the number of found resources by
one.

4. Go to step 2.

The algorithm terminates when there are no more query
packets to process. At the end the quality of neural network is
determined by the number of found resources and the number of
query packets used.

To get good neural networks, they need to be trained so the
algorithm has to be executed many times (typically millions
query executions). There are various neural network weight
adjusting algorithms and depending on the used methods the
training times can vary a lot. Still, all optimization methods
have in common iterative behavior and therefore executing the
algorithm efficiently is an important feature of the simulator.

 The internal execution loops of P2PRealm used for training
NeuroSearch are illustrated in Fig. 1. Each simulation run can
have multiple simulation cases, where each case has its own
environment parameters according to the input information
described in section 4. Furthermore, each case produces
NeuroSearch resource discovery algorithm optimized to this
environment accordingly. With multiple cases it is possible to
do parameter sweeps and to eliminate the need of starting the
simulator manually each time one wants to use multiple training
environments. The execution of different cases can also be
distributed on Peer-to-Peer Distributed Computing platform
[11] further described in section 6.

Execution of one case is divided into three different
sections:

• Training of the neural networks

• Analyzing the training of best neural network in
generalization environment

• Analyzing routes of the best neural network after the
training

First, the case has its P2P networks, neural networks and
other parameters initialized. Then the simulator proceeds to the
training phase. In each generation multiple neural networks are
evaluated by forwarding queries according to the resource
discovery algorithm presented above. The queries are forwarded
in one or more P2P networks and statistics of the query
performance of each neural network is recorded at the same
time. Usually between generations it is worth to do more
specific analysis of the best neural network in generalization

96

environment, where we can determine how the same neural
network performs in an unknown environment. Generalization
environment can be used to control when neural network is
specializing too much on training environment and loses the
ability to perform well in unknown but similar environments
than the training environment.

After the evolution has proceeded the predetermined amount
of generations, the simulator moves to the last phase of the
process: route analysis. In the route analysis the same
generalization environment is initialized as earlier for the best
neural network, but now the queries start from each peer node at
a time. The query paths produced by these queries are recorded
and written to files to get accurate data about input and output
values of neural network during a query. Finally, when routes
have been recorded, the simulation ends.

VI. SPEEDING THE EXECUTION WITH P2PDISCO

The first implementation of P2PRealm used approximately
one week for training the neural networks on a desktop
computer. This was a severe limitation in research because it

forced to study only small P2P networks and still getting results
was very time consuming.

We started the internal code optimization process to see how
much can be saved by optimizing internal loops of the
simulator. After P2PRealm was profiled we found that the use
of Vector object instead of Array in Java consumed lots of time
(in particular getting the size of a vector through method call).
Java container classes such as HashMap and HashTable can
contain only objects and therefore reimplementing them to store
only primitive values saved some execution time. Also we found
that caching results of different method calls to avoid new
method calls resulted in significantly faster execution times. The
total time decreased to about 60% with these optimizations.

Java bytecode is interpreted in Java virtual machine yielding
slower execution compared to compiled code. Java Native
Interface [20] has been developed to allow native code for
example compiled C++ to be executed from a Java program.
We reimplemented the calculation of neural network output
with C yielding an execution time about 70-80% compared to
first version of P2PRealm. Combining both the internal code

Figure 1. Execution Loops of P2PRealm

97

optimization techniques and Java Native Interface
implementation of neural network output calculation, we thus
achieved execution time of about 50% compared to first version
of P2PRealm.

This was however not enough, because reducing execution
time of one simulation case from a week to 3-4 days was still
quite slow. As a solution, we started developing Peer-to-Peer
Distributed Computing platform (P2PDisCo) [11] allowing the
distribution of simulation cases to multiple machines.

Earlier in our project [4] we had developed Chedar P2P
middleware [2], which provided the basis for building
P2PDisCo on top of it. P2PDisCo allows the workstations
joined in a Chedar P2P network to publish certain distributed
computing application as a resource in Chedar P2P network.
When other Chedar nodes find this resource, it can be used to
deliver needed input files to computing nodes and the produced
output files to the node, which started the computations. For
further information on the behavior of P2PDisCo the reader is
referred to [11].

The speed up of execution with P2PDisCo is nearly linear,
because each simulation case is delivered to different
workstation. In university environment it is easy to locate
machines, which are idle most of the time, so getting hundred of
machines (and thus 100 times faster execution) was relatively
easy scaling the research process to much faster rates. The
resulting architecture is shown in the Fig. 2. Master denotes the
peers, which create simulation cases and P2PRealm denotes the
peers, which compute these cases.

VII. VISUALIZATION OF DATA USING P2PSTUDIO

Peer-to-Peer Studio (P2PStudio) [10] is a monitoring,
controlling and visualization tool for P2P networks research.
When combined with P2PRealm only visualization features can
be used, because current version of simulator does not provide
monitoring data during execution of a simulation. For
visualization, P2PStudio provides functionalities to draw
network topology and different graphs e.g., neighbor
distribution of the topology. Also, the location of resources and
query paths can be illustrated on a screen to qualitatively
analyze how algorithms are performing. In case, that the
simulation contains neural network, the input and output values
of a certain query will be shown in a separate table. A
screenshot of P2PStudio is shown in Fig. 3 and the specific
features of P2PStudio are described in separate article [10].

VIII. CONCLUSIONS

Peer-to-Peer Realm is a simulator for studying P2P
networks. Its unique functionalities contain training methods for
neural networks and optimized speed of execution. By
combining P2PRealm with other tools developed in our project,
the simulator can grow to a large-scale distributed P2P research
environment.

The future work of P2PRealm includes the parallelization of
simulation such that multiple computers can process the same
simulation task. Now only one simulation task can be allocated
to a certain computer and speed ups are gained only when
multiple cases are being simulated. Also, with the advent of
multi-core processors for desktop machines, we are going to
implement threaded version of simulator to support multiple
processors within a single computer. For P2P network
visualization, P2PStudio’s user interface can be replaced in the
future to support large P2P networks to be visualized and better
usability of the program. Also the list of improvements for
P2PRealm contain different query distributions and new input
types for neural networks. As a longer term goal, we are aiming
to combine neural network based topology management
algorithms with neural network based resource discovery
algorithms to study optimal construction of P2P networks.

REFERENCES

[1] Adamic L., Lukose R. and Huberman B., Local Search in Unstructured
Networks, Handbook of Graphs and Networks: From the Genome to the
Internet, Wiley-VCH, 2003, 295-317.

[2] Auvinen A., Vapa M., Weber M., Kotilainen N. and Vuori J., "Chedar:
Peer-to-Peer Middleware", Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes
Island, Greece, 2006.

[3] Auvinen A., Vapa M., Weber M., Kotilainen N. and Vuori J., "New
Topology Management Algorithms for Unstructured Peer-to-Peer
Networks", unpublished.

[4] Cheese Factory –project, http://tisu.it.jyu.fi/cheesefactory

[5] Clarke I., Sandberg O., Wiley B. and Hong T., "Freenet: A distributed
anonymous information storage and retrieval service", Proceedings of
Workshop on Design Issues in Anonymity and Unobservability (ICSI),
Berkeley, CA, USA, 2000.

[6] He Q., Ammar M., Riley G., Raj H. and Fujimoto R., "Mapping Peer
Behavior to Packet-level Details: A Framework for Packet-level
Simulation of Peer-to-Peer Systems", Proceedings of the 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems (MASCOTS 2003), Orlando,
USA, 2003.

P2PRealm
P2PDisCo

P2PRealm
P2PDisCo
Chedar

P2PRealm
P2PDisCo

Master
P2PDisCo

Master
P2PDisCo

P2PStudio

TCPTCP

TCP

TCP

TCP

TCP

TCP
ChedarChedar

ChedarChedar

Figure 2. Architecture of P2PRealm combined with P2PDisCo, Chedar and
P2PStudio

98

[7] Joseph S., "An Extendible Open Source P2P Simulator", P2P Journal,
November 2003, 1-15.

[8] Joseph S. and Hoshiai T., "Decentralized Meta-Data Strategies: Effective
Peer-to-Peer Search", IEICE Transactions on Communications, Vol.E86-
B, No.6, 1740-1753.

[9] Keltanen T., “NeuroTopology: Topology Management Algorithm for P2P
Networks”, unpublished.

[10] Kotilainen N., Vapa M., Auvinen A., Weber M. and Vuori J., "P2PStudio
- Monitoring, Controlling and Visualization Tool for Peer-to-Peer
Networks Research", unpublished.

[11] Kotilainen N., Vapa M., Weber M., Töyrylä J. and Vuori J., "P2PDisCo -
Java Distributed Computing for Workstations Using Chedar Peer-to-Peer
Middleware", Proceedings of the 19th IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2005), Denver, Colorado,
USA, 2005.

[12] Lv Q., Cao P., Cohen E., Li K. and Shenker S., Search and Replication in
Unstructured Peer-to-Peer Networks, Proceedings of the 16th

International Conference on Supercomputing, ACM Press, 2002, 84-95.

[13] Lynch N. Distributed Algorithms, Morgan Kauffmann Publishers, 1996.

[14] Montresor A., Di Caro G. and Heegaard P., "Architecture of the
Simulation Environment", Technical Report: D11, BISON project,
University of Bologna, 2003.

[15] NS-2, http://www.isi.edu/nsnam/ns/

[16] Oram A., Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O'Reilly Media, 2001.

[17] PDNS - Parallel/Distributed NS,
http://www.cc.gatech.edu/computing/compass/pdns/

[18] PeerSim, http://peersim.sourceforge.net/

[19] Schlosser M., Condie T. and Kamvar S., "Simulating a P2P File-Sharing
Network", 1st Workshop on Semantics in Grid and P2P Networks, 2002.

[20] Sun Microsystems, Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

[21] Ting N. and Deters R., "3LS - A Peer-to-Peer Network Simulator",
Proceedings of the 3rd International Conference on Peer-to-Peer
Computing (P2P 2003), IEEE Press, 2003, 212-213.

[22] Vapa M., Auvinen A., Ivanchenko Y. Kotilainen N. and Vuori J.,
”Optimal Resource Discovery Paths of Gnutella2”, unpublished.

[23] Vapa M., Kotilainen N., Auvinen A., Kainulainen H. and Vuori J.,
"Resource Discovery in P2P Networks Using Evolutionary Neural
Networks", International Conference on Advances in Intelligent Systems
- Theory and Applications (AISTA 2004), Luxembourg, 2004.

[24] Yang W. and Abu-Ghazaleh N., "GPS: A General Peer-to-Peer Simulator
and its Use for Modeling BitTorrent", Proceedings of the 13th Annual
Meeting of the IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems
(MASCOTS '05), Atlanta, USA, 2005.

Figure 3. P2PStudio User Interface for P2PRealm

99

PV

NEW TOPOLOGY MANAGEMENT ALGORITHMS FOR
UNSTRUCTURED PEER-TO-PEER NETWORKS

by

Annemari Auvinen, Mikko Vapa, Matthieu Weber, Niko Kotilainen & Jarkko Vuori
2007

IEEE Second International Conference on Internet and Web Applications and Ser-

vices, Best Paper Award.

Reproduced with kind permission by IEEE Computer Society.

New TopologyManagement Algorithms for Unstructured P2P Networks ∗

Annemari Auvinen,Mikko Vapa,MatthieuWeber, Niko Kotilainen and Jarkko Vuori
Department ofMathematical Information Technology

University of Jyväskylä
P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland

(annauvi, mikvapa, mweber, npkotila)@jyu.fi, jarkko.vuori@gmail.com

Abstract

In this paper we present new topology management al-
gorithms used to self-organize the overlay of a peer-to-
peer network. The algorithms are Node Selection, Node
Removal, Overload Estimation and Overtaking algorithms.
The algorithms have been evaluated using a simple P2P
scenario using the P2PRealm network simulator. Based on
the simulation results, the algorithms produce an overlay
which is stable and has a short average distance between
nodes.

1 Introduction

Peer-to-peer (P2P) technologies have received a lot of

publicity lately mainly because of Kazaa and other P2P file

sharing systems. Other resources, for example CPU time

and storage space, can also be shared in a P2P network.

Every peer i.e. a node in the P2P network may provide

resources to other nodes and consume the resources other

nodes are providing. This means that a node may serve

both as a server and a client. Therefore there is no need for

a central server which might become the bottleneck of the

network or which failure will paralyze the whole network.

The P2P network can be structured or unstructured. In

an unstructured network, like Gnutella and our network,

a node’s place in the network is not pre-defined. A node

may join the network by establishing a connection to an-

other node on the P2P network. A resource search is not

very efficient in that kind of a network but maintaining the

topology does not produce extra work.

The topology management algorithms affect the net-

work’s overlay topology by making the network more scal-

able and effective for resource discovery. Nodes want to

stay connected to the network and find resources efficiently

without using too much of their own capacity for being in

∗This work was funded by the Agora Center InBCT project.

the network. It is suitable for example that the nodes con-

necting with a modem are in the edge of the network and

the nodes capable of handling a lot of traffic are in the cen-

ter. With topology management algorithms the network can

also be kept from partitioning.

In our proposition a central point for the topology man-

agement algorithms is the goodness of a peer. A good

neighbor provides resources to the node. The node tries

to select neighbors so that those are the best nodes the node

knows. A decision is made based on the local information

the peer has about its neighbors and neighbors’ neighbors.

This paper is organized as follows. We present the re-

lated work in Section 2. The topology management algo-

rithms are described in Section 3. Test cases and the anal-

ysis of the test results are presented in Section 4 and the

paper is concluded in Section 5.

2 Related Work

Ramanathan et al [13] have developed an algorithm
where a peer moves closer to the peers which have pro-

vided search results. In the proposed method a peer keeps

track of the replies it receives for the sent queries. When

a peer finds a good peer, i.e. a peer which provides results

and has same high degree of similar interest, it creates a

new connection to that peer. This forms clusters with sim-

ilar interests. Advantages of the method are that it reduces

the number of messages, allocates resources efficiently and

scales well with respect to the number of peers.

Condie et al [5] have proposed a protocol for forming
adaptive P2P networks. It is based on the idea that a peer

should connect to the peers from which it is likely to down-

load satisfactory content in the future. The peers save local

trust values and connection trust values for each peer they

are interacted with and use those for estimating the likeli-

hood of a future successful download.

The two preceding methods take into account only the

sender of the reply message and a new connection is estab-

lished directly to that peer. In that case the peer might lose

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

good peers which appear on the route between the quering

peer and the peer providing a resource.

Pandurangan et al [12] have proposed a protocol for
forming P2P networks, without any global knowledge about

the network, guaranteeing that the distances of the nodes are

short. When using the protocol new nodes decide where to

connect and nodes make a decision when and how to re-

place the lost connections. They proved that by using the

protocol, the network has a constant degree and a logarith-

mic diameter. A central point of the protocol is a host server,

whichmakes the systemmore vulnerable to attacks and fail-

ures. The host server may also become a bottleneck of the

system because nodes search a new connection from it also

other times than just when joining the network.

Chawathe et al [3] have developed the distributed and
unstructured Gia P2P file sharing system. The goal of the

research was to develop the Gnutella-like system which

could handle a high query rate and which would work well

while the system grows. The purpose was to find the best

possible neighbors to a node i.e., the nodes which have a

lot of processing power or a large bandwidth, and they pro-

posed a topology adaptation algorithm achieving that.

Lv et al [10] have presented the algorithm that restricts
the flow of queries into each node so that they do not

become overloaded and dynamically evolves the overlay

topology so that queries flow towards the nodes that have

sufficient capacity to handle them.

There are two types of connections in the model of

Cooper and Garcia-Molina [6]: index and search links.

Nodes may select any node they want where to establish a

connection. The link types can be given probability values.

If a node becomes overloaded, it has to drop one connec-

tion.

These three methods are mainly focusing on traffic dis-

tribution. Chawathe’s et al purpose is to get the nodes
which have capacity to handle a great amount of traffic to

the center of the network. In Lv’s et al research, traffic is
distributed evenly and in the study of Cooper and Garcia-

Molina only the load the neighbor creates and the defined

amount of traffic affects to the dropping. The methods do

not take into account the amount of the resources the nodes

are providing or quering. The node may have a neighbor

which provides lots of resources to the node and with these

methods that kind of neighbor may easily drift many hops

away from the node. According to our definition a good

neighbor would be lost.

Iles and Deugo [8] have developed a flooding broadcast

meta-protocol which is capable of describing a wide range

of possible flooding broadcast network protocols. Each in-

stance of the meta-protocol is represented with two expres-

sions: CONN specifies the number of connections for the

peer to maintain and RANK is evaluated for each exist-

ing or potential connection. By using genetic programming

the automatic generation of new protocols from the meta-

protocol is provided.

Wouhaybi and Campbell [16] have developed a peer-

to-peer algorithm called Phenix which can construct low-

diameter resilient topologies. It creates a topology where

the degree of the distribution follows the power-law distri-

bution. In this case the goodness of the network is based

on the degree of the distribution. If the algorithm would

take into account also the resources provided by nodes, the

searching would be more effective.

3 Topology Management Algorithms

We have developed four algorithms for managing the

topology: Node Selection, Node Removal, Overload Esti-

mation and Overtaking. The algorithms use only local in-

formation the nodes have about their neighbors. The nodes

save information about active neighbors and in the history

information about other known nodes. The saved informa-

tion are the IP address and the port number of the neigh-

bor, the time when the neighbor has been requested and in-

formation whether the request succeeded or not. The node

saves also hit information about the neighbors. A hit value

tells how many resource replies the node has got from the

neighbor. In that case the neighbor has had the resource. A

relayed hit value is the amount of resource replies that the

neighbor’s neighbors have relayed to the node through this

neighbor.

3.1 Node Selection Algorithm

We suppose that the initial list of the neighbors can be

obtainedmanually by out-of-bandmethods or automatically

using advertisement systems [15] or centralized entry point

directories [7]. Node Selection Algorithm’s responsibility

is then to select among known nodes where to connect.

When the node joins the network again, it tries to estab-

lish connections to the neighbors it had before leaving the

network. In the best case it manages to establish the con-

nections to all the neighbors it had earlier. If the node does

not manage to establish any of those connections or it oth-

erwise needs a new neighbor, it searches the next one from

the history as shown in Algorithm 3.1. First it searches the

nodes which have hit values and tries to create a connection

to one of those. Because the node does not want to create a

connection to the same node it has just dropped, it searches

only the nodes which have not been requested in a given

time. If the node did not succeed in establishing a new con-

nection, it next searches nodes based only on the time of

the last request i.e the node has not tried to create a connec-

tion in a given time or at all (lacking requested information).

If the node still did not successfully create a connection, it

searches nodes without information for hit values or request

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

time. If the node does not have neighbors, then the last way

to search a node is to try only those nodes in the history

which have hit values. Then the node may select again a

neighbor which it has just dropped.

Algorithm 3.1 (Node Selection Algorithm)
Input: Nodes his in the node’s history H = {h1, ..., hn},
time sets a limit for the time which older the previous con-

nection request must be and neighbors is the number of

node’s neighbors.

Output: Establishes a new connection
if !Connect(true, true, time, H) then do
if !Connect(false, true, time, H) then do
if !Connect(false, false, time, H) ∧ neighbors == 0

then do
Connect(true, false, time, H)
end if
end if

end if
The function Connect(hitsNeeded, timeNeeded, time, H)

tries to create a connection to the one node in the history’s

nodes which meet the criteria defined in the parameters. If

the value of the parameter hitsNeeded is true, then the func-
tion takes into account only those nodes which have hit val-

ues. If hitsNeeded is false, the function takes into account
those nodes which do not have hit values. If the value of the

parameter timeNeeded is true, then the function takes into
account only those nodes which has not been requested for

the period of the time defined in the parameter time. The
function returns true if a connection was established suc-

cesfully.

3.2 Node Removal Algorithm

When a node wants to remove a connection to a neigh-

bor, it selects the worst neighbor among the neighbors it

currently has. The worst neighbor has the smallest good-

ness value. The goodness is the sum of the neighbor’s hit

values and relayed hits.

3.3 Overload Estimation Algorithm

There is no predefined number for the connections the

node should maintain. Thus the connections are added and

dropped based on the amount of traffic going through the

node. The Overload Estimation Algorithm compares the

calculated traffic amount to the predefined traffic limit val-

ues. There are upper and lower traffic limits which set the

range where the traffic amount should be. The value of the

lower traffic limit is the fraction of the upper traffic limit de-

fined by the lower traffic limit percent. If the traffic amount

is less than the lower traffic limit, the node tries to add a new

connection using the Node Selection Algorithm described

in Section 3.1. If the traffic amount is more than the prede-

fined upper traffic limit, one connection is dropped by using

Node Removal Algorithm described in Section 3.2. At the

end, the algorithm resets the traffic amount by setting its

value to zero.

3.4 Overtaking Algorithm

The Overtaking Algorithm is used to optimize the topol-

ogy. The purpose of the algorithm is that the node moves

closer to the nodes which provide lots of replies to it by

overtaking the current neighbor. The node does not directly

connect to the resource providing node but only moves

closer step by step and that way makes sure that it does not

lose good nodes on the path.

The algorithm works such that when a reply message ar-

rives to the querier, it updates the hit value of the sender

and then adds its local information of the relayed hits of

the neighbor of the node where the node got the reply mes-

sage. Then if the neighbor’s hit value is bigger than 1, i.e

the node has got more than one message from the neigh-

bor, the node checks whether the neighbor has a neighbor

whose proportion of the neighbor’s goodness is more than

the defined overtaking percent. In that case it overtakes the

neighbor. For example if the overtaking percent is 60%, it

means that if there is the neighbors’s neighbor which has

forwarded over 60% of all the reply messages the node has

got from the connection, the node establishes a new con-

nection to that node and drops the connection to the current

neighbor.

Advantages of the algorithm are that the distances of the

nodes, which use others’ resources, are shorter than in ran-

domly connected networks. The algorithm creates a con-

nected network of clusters having those nodes close in the

center which provide lots of resources other nodes use [1].

Algorithm 3.2 (Overtaking Algorithm)
Input: The overtaking percent overtakingPercent, the

node’s neighbor c, c’s neighbors N = {n1, ..., nn} and c’s

hit value hitV alue.

Output: Node has overtaken a neighbor if some neighbor’s
neighbor is better for the node.

if hitV alue > 1 then do
biggest = overtakingPercent/100.0
bestNeighbor = null
sum = Hits(c) + RelayedHitsSum(c)
for i = 1 to | N | do
hitValue = RelayedHits(ni)

proportion = hitValue/sum
if proportion ≥ biggest then do
biggest = proportion
bestNeighbor = ni

end if

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

end for
if bestNeighbor �= null then do
if EstablishConnection(bestNeighbor) then do
DisconnectConnection(c)
end if
end if

end if
The function Hits(node) returns the node’s hit values, the

function RelayedHitsSum(node) returns the sum of the re-
layed hits of the node’s neighbors and the function Relayed-

Hits(node) returns the relayed hits of the node. The func-
tion EstablishConnection(node) returns true, if establishing
a connection succeeded. The method DisconnectConnec-

tion(node) removes the connection to the node.
The behavior of the algorithm with example values is il-

lustrated in the Figure 1. The node’s neighbor has the hit

value two and the relayed hits of neighbor’s neighbors are

19 and 7. The sum of all is 28 and the percentual propor-

tion of the neighbor’s hits is 7% and neighbor’s neighbors’

68% and 25%. If the overtaking percent is defined to be 80,

nothing is done. If it is 60, then the node tries to establish

a new connection to the neighbor’s neighbor node 3 and if

it succeeds the current connection to the neighbor node 2 is

dropped.

Figure 1. A situation before and after execut-
ing the overtaking algorithm.

4 Test Cases and Analysis

The algorithms were tested in the Peer-to-Peer Realm

(P2PRealm) [9] simulator, which we have developed in our

research project [4]. A testing environment consisted of 500

nodes and in the beginning the network was normally dis-

tributed with 997 links. The initial network was connected

and in general when the network is connected the initial net-

work does not have a large impact on the results. The ini-

tial network was randomly generated and we studied if the

network could be organized with our algorithms in a more

efficient, i.e. power law distributed, network.

Resources were set such that half of the nodes provided

15 resources per node and the other half provided 5 re-

sources. So there were two groups of the nodes: those

which provided lots of resources and those which provided

small amount of resources. In addition to that in the both

groups half of the nodes had 10 times bigger probability to

query a resource than other half. The resources were iden-

tified by numbers. The resources were not transferred after

the query and therefore the resource distribution was fixed

throughout the simulations.

65500 randomly generated queries were sent to the net-

work. The algorithms were tested with three different set of

queries. The starting topology was the same in every test

and the queries were sent in same order so the cases were

repeatable. The queries used a Breadth-First Search (BFS)

algorithm [11] without any TTL value so the resources were

always found if the network was connected.

In the test environment every node had the same traffic

limit values. The traffic amount was checked each time the

simulator sent 50 resource queries to the network. The unit

for the traffic limit values was also the number of resource

queries. The algorithms were tested with upper traffic limit

values from 100 to 600 at intervals of 25. The tests were

run with the lower traffic limit percents 20, 40 and 60 and

with the overtaking percent 80 and without the overtaking.

80% was selected as the overtaking percent because in the

earlier studies we found that with 80% the network attained

the balance [1]. The balance means that the network attains

the state where no more topology changes happens.

In the analysis we studied the neighbor distribution the

algorithms created, the hop numbers and the balance of the

network. The simulator saved three kind of information dur-

ing the tests. It saved information about the resource queries

the nodes sent. At the end of each test the simulator saved

the neighbor, traffic, resource reply message and resource

amounts from each node. The third statistics the simula-

tor saved was information about the amounts of topology

changes in the network.

4.1 Neighbor Distribution

Table 1 presents the neighbor distributions with the dif-

ferent lower traffic limit percents and with and without the

overtaking. With the lower traffic limit percent 20% and

without the overtaking the networks were normally dis-

tributed. When the overtaking was used with the small up-

per traffic limit values (100-200), the topologies were stars:

one node had over 440 neighbors in all the test cases until

the upper traffic limit reached 225. The neighbor distribu-

tions with the overtaking were power law distributed.

With the lower traffic limit percent at 40% and with-

out the overtaking the networks were again normally dis-

tributed. With the overtaking and the upper traffic limit 100

one node had over 400 neighbors in all the test cases so

the topologies were stars. The neighbor distributions were

power law distributed.

With the lower traffic limit percent at 60% without and

with the overtaking the networks were normally distributed.

In this case the interval, where the traffic should be, was

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

Table 1. Neighbor distributions with different lower traffic limit percents with and without overtaking.

Lower traffic limit % 20% 40% 60%

Overtaking no 80% no 80% no 80%
Distribution normally power law normally power law normally normally

smaller and overtaking did not have the same effect as with

the smaller lower traffic limit percents because the amount

of connection establishments and droppings was increased.

4.2 Average Hops

Figure 2. Average hops with different lower
traffic limit percents with overtaking.

Figure 3. Average hops with different lower
traffic limit percents without overtaking.

Figures 2 and 3 contain the average hops of the resource

messages with the different upper traffic limit values and

lower traffic limit percents without and with the overtaking.

When using the overtaking and the lower traffic limit per-

cent at 20% the resources were found closer and the number

of hops was more than one less than without the overtaking

algorithm. When the lower traffic limit percent increased,

the difference between the hop values decreased. Because

every node had the same traffic limit, it had too big influ-

ence on the topology. When the lower traffic limit percent

increased, the interval, in which the traffic should be, be-

came smaller. So the amount of connection establishments

Figure 4. The amount of changes with lower
traffic limit percents and with different upper
traffic limit values and without overtaking.

Figure 5. The amount of changes with lower
traffic limit percents and with different upper
traffic limit values and with overtaking.

and droppingswere also increased when the nodes were try-

ing to keep the traffic inside the limits and the overtaking did

not have a chance to affect the topology.

The overtaking percent parameter describes how much

better the neighbor’s neighbor has to be than other neigh-

bors so that the overtaking occurs. By defining a small over-

taking percent the nodes overtake easily and the topology

does not attain the balance. A high value forms a topology

with a balanced state. When the overtaking algorithm was

tested without any traffic limits, the generated network was

power law distributed which means that it is fault-tolerant

and the distances of the nodes in the network are short.

4.3 Network Balance

When using the lower traffic limit percents 20% and 40%

without the overtaking the networks attained the balance.

By 60% the networks gained the balance when the upper

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

traffic limit value was more than 200.

When the overtaking was used and the lower traffic limit

percent was 20%, the networks were totally in balance until

the upper traffic limit value reached 225. After that there

were a few changes. With the lower traffic limit percent

at 40% the networks were balanced when the upper traffic

limit was 100 and again since the upper traffic limit value

was 400 or above. With the lower traffic limit percent at

60% after the upper traffic limit value 325 there were only

a few changes and the networks gained balance.

Figures 4 and 5 include the topology changes occured in

the tests. With the lower traffic limit percent at 20% and

without the overtaking the amount of the changes in the

networks was smallest. 40% gave also the small amount

of changes compared to 60% where the amount of changes

was much bigger. So the amount of changes increased with

the increasing lower traffic limit percent.

With the overtaking, the lower traffic limit percent at

60% created lots of changes with the upper traffic limit

value 100, i.e. the nodes in turn established and dropped

connections. The same effect was with the lower traffic

limit percent at 40% when the upper traffic limit was 125.

When the upper traffic limit was less than 275, there were

more overtakings with the lower traffic limit percents 40%

and 60% than with 20%, since that with 20% more over-

takings happened. Also with the upper traffic limit value

100-350 there were more removings with the lower traffic

limit percent 40% and after that with 20%. The amount of

the additions increased when the lower traffic limit percent

increased.

5 Conclusion

We presented four topology management algorithms

which use the goodness of the nodes when deciding on

where to connect or which neighbor should be dropped. We

studied the topology algorithms only with some parameters

and some values. The lower traffic limit percent 40% with

the overtaking and with the upper traffic limit values 350

or above were the best combinations. With those values

the amount of the changes in the network was small, the

topology got balanced, the neighbor distribution was power

law distributed and the number of the hops was the second

smallest.

Now we have started to study the topology construction

using neural networks like we have done with the Neu-

roSearch algorithm [14] for the resource discovery. In the

future it is thus easier to study the different combinations of

the input parameters about the topology and see if the pa-

rameter has some impact when deciding where to connect

or which neighbor should be dropped. In the future also

traffic limits for the nodes are set so that those represent

the distribution of the network bandwidths in the current

P2P networks. Later the algorithms can be deployed in the

Chedar P2P network [2].

References

[1] A. Auvinen. Topology management algorithms in chedar

peer-to-peer platform. Master’s thesis, University of

Jyväskylä, February 2004.
[2] A. Auvinen, M. Vapa, M.Weber, N. Kotilainen, and J. Vuori.

Chedar: Peer-to-peer middleware. In 20th International Par-
allel and Distributed Processing Symposium, 2006.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and

S. Shenker. Making gnutella-like p2p systems scalable. In

ACM SIGCOMM, 2003.
[4] CheeseFactory. http://tisu.it.jyu.fi/cheesefactory.
[5] T. Condie, S. D. Kamvar, and H. Garcia-Molina. Adaptive

peer-to-peer topologies. In Proceedings of the Fourth Inter-
national Conference on Peer-to-Peer Computing (P2P’04),
2004.

[6] B. F. Cooper and H. Garcia-Molina. Ad hoc, self-

supervising peer-to-peer search networks. ACM Transac-
tions on Information Systems, 23(2):169–200, 2005.

[7] Gnutellahosts. http://www.gnutellahosts.com/.
[8] M. Iles and D. Deugo. A search for routing strategies in a

peer-to-peer network using genetic programming. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed
Systems, pages 341–346, 2002.

[9] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and

J. Vuori. P2prealm - peer-to-peer network simulator. In

11th International Workshop on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks,
pages 93–99, 2006.

[10] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogene-

ity make gnutella scalable? In Electronic Proceedings
for the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[11] N. A. Lynch. Distributed Algorithms. Morgan Kauffmann
Publishers, 1996.

[12] G. Pandurangan, P. Raghavan, and E. Upfal. Building

low-diameter p2p networks. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS’01), 2002.

[13] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Find-

ing good peers in peer-to-peer networks. In Proceedings of
the International Parallel and Distributed Processing Sym-
posium (IPDPS’02), 2002.

[14] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and

J. Vuori. Resource discovery in p2p networks using evo-

lutionary neural networks. In International Conference on
Advances in Intelligent Systems Theory and Applications
(AISTA 2004), November 2004.

[15] M. Weber, J. Vuori, and M. Vapa. Advertising peer-to-peer

networks over the internet. Radiotekhnika, 133:162–170,
2003.

[16] R. H. Wouhaybi and A. T. Campbell. Phenix: Supporting re-

silient low-diameter peer-to-peer topologies. In Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2004), 2004.

Second International Conference on
Internet and Web Applications and Services (ICIW'07)
0-7695-2844-9/07 $20.00 © 2007

PVI

TOPOLOGY MANAGEMENT IN UNSTRUCTURED P2P
NETWORKS USING NEURAL NETWORKS

by

Annemari Auvinen, Teemu Keltanen & Mikko Vapa 2007

IEEE Congress on Evolutionary Computation

Reproduced with kind permission by IEEE Computer Society.

Abstract— Resource discovery is an essential problem in peer-
to-peer networks since there is no centralized index in which to
look for information about resources. In a pure P2P network
peers act as servers and clients at the same time and in the
Gnutella network for example, peers know only their neighbors.
In addition to developing different kinds of resource discovery
algorithms, one approach is to study the different topologies or
structures of the P2P network. In many cases topology
management is based on either technical characteristics of the
peers or their interests based on the previous resource queries. In
this paper, we propose a topology management algorithm which
does not predetermine favorable values of the characteristics of
the peers. The decision whether to connect to a certain peer is
done by a neural network, which is trained with an evolutionary
algorithm. Characteristics, which are to be taken into account,
can be determined by the inputs of the neural network.

I. INTRODUCTION

Peer-to-peer technologies have received a lot of publicity
lately mainly because of Kazaa and other peer-to-peer file
sharing systems. Other resources, for example CPU time and
storage space, can also be shared in a peer-to-peer network. In
the P2P network every peer, i.e. a node may provide resources
to other nodes and consume the resources other nodes are
providing. This means that a node may serve both as a server
and as a client. The P2P network can be structured or
unstructured. In an unstructured network, like Gnutella and in
our study, a node's place in the network is not pre-defined like
it is in a structured network. A node may join the network by
establishing a connection to another node in the P2P network.
Resource discovery is not very efficient in that kind of
network but maintaining the topology does not produce extra
work.

Topology management algorithms affect the network's
overlay topology by making the network more scalable and
effective for resource discovery. Nodes want to stay connected
to the network and find resources efficiently without using too
much of their own capacity for being in the network. It is
suitable for example that the nodes connecting with a modem
are in the edge of the network and the nodes capable of
handling a lot of traffic are in the center. With topology
management algorithms the network can be kept connected,

Manuscript received March 15, 2007. This work was supported in part by
the Graduate School in Electronics, Telecommunications and Automation
(GETA).

A. Auvinen, T. Keltanen, and M. Vapa are with Department of
Mathematical Information Technology, University of Jyväskylä, Finland (e-
mail: firstname.lastname@jyu.fi).

i.e. there are no clusters, which are not connected to each
other.

In our research project we have developed four algorithms
for topology management [2]. In this paper we propose a
different kind of solution. We used neural networks to create
the algorithm by machine instead of constructing algorithm by
humane hand. The neural network gets the characteristics of
the P2P network as inputs and as an output the decision
whether to create a connection to a certain node.

The paper is organized as follows. We present related work
in Section II. Section III describes the developed
NeuroTopology algorithm for managing the topology of
unstructured P2P networks. The optimization process is
described in Section IV. Section V presents the test case used
in the study and Section VI the analysis of the simulation
results. The paper is concluded in Section VII.

II. RELATED WORK

Much research has been done regarding the efficiency of a
pure unstructured P2P network by changing the structure or
the topology of the network. One way to approach the problem
is to organize the nodes so that they form up clusters according
to their interests of the previous resource queries (interest-
based locality). Ramanathan et al. [9] searched for good
neighbors by connecting to those peers that repeatedly give
good results and disconnecting those peers that give poor
results. As a result, peers have few neighbors and they form
clusters where resources of the same interest are close to each
other. Because there are only few connections between
clusters, this is not efficient if peers are interested in resources
from multiple subjects or suddenly change their interest.
Sripanidkulchai et al. [11] formed shortcuts in the Gnutella
network to peers that, based on the previous queries, are
interested in resources of the same topic. The shortcuts form
their own logical network on top of the Gnutella topology,
which is therefore not changed. When resources are searched,
the shortcut topology is used first and if resources are not
found, the Gnutella topology is used traditionally. Condie et al.
[3] developed a protocol that connects to peers that will
probably give good results in the future. This is based on a
score assigned to peers according to their previous answers. In
addition, the reliability of the peer is also scored in order to
reduce the effect of freeriders and malicious peers distributing
corrupted files. In the study, poor peers moved to the edge of
the network and other peers formed clusters according to their
interest of resources. Crespo and Garcia-Molina [6] have
suggested Semantic Overlay Network or SON, where joining

Topology Management in Unstructured P2P Networks Using Neural
Networks

Annemari Auvinen, Teemu Keltanen and Mikko Vapa

2358

1-4244-1340-0/07/$25.00 c©2007 IEEE

peers connect into one or more logical clusters based on the
content of peers’ resources and the available SON-networks in
the P2P network.

Another way to approach the topology problem is to take
into account only the technical characteristics of the peers e.g.
bandwidth or traffic amounts. These techniques do not
consider the query history or the quality of the resources.
Cooper and Garcia-Molina [4] made the overloaded peer to
disconnect neighbors that are burdening the link most or
neighbors that overrun some predetermined traffic limit. In the
study, it was also possible to concentrate on favoring efficient
peers instead of helping overloaded peers.

The studies presented above are concentrating on a single
problem or characteristic of the P2P network. As a result,
techniques that use the interest-based clustering are forming
topologies where popular nodes are under lot of strain. Similar
to this, in the techniques where only technical characteristics
are taken into account, one might discriminate the nodes that
have good resources and weaken query times. Sakarayan and
Unger [10] measured the evolution of a P2P topology when it
was affected by traffic overloading and interest-based
clustering. During resource searching, information about peers
is gathered into messages and therefore peers knowmore peers
than just their neighbors. This information consists of data
about resources owned by the peers, addresses and how long
the message was in a peer. The algorithm that reacts to traffic
overloading wakes up when the queue of incoming messages
exceeds some limit and sends warnings to nearby peers. Peers
re-route messages to avoid traffic. The algorithm that affect
interest-based locality wakes up when access times or the
distance that messages pass exceed some limit. According to
this study, locally operating algorithms can affect the
efficiency of the network also in the scale of the Internet.

Iles and Deugo [7] developed a meta-protocol that works
with the BFS algorithm. The evolution of the meta-protocol is
guided by genetic programming and it produces P2P protocols
as implementations. These protocols define the topology of the
P2P network. Two expressions affect the evolution of the
meta-protocol: CONN, which is the amount of neighbors that
is desirable for each peer to have and RANK, which is a
comparison indicator for each possible neighbor. The CONN-
expression uses information like current neighbor amount and
statistical information about the traffic amount of the peer. The
RANK-expression uses mostly information that is related to
the previous queries and their success. Measuring the success
of the evolutionary process is done with the fitness
function:

outtimedsuccessful searchessearchesfitness *5.0 . In

the study it was noticed, that the protocol used by Gnutella is
in many cases optimal and that P2P networks, where
bandwidths are small, form clusters still remaining connected.
It was also noticed, that genetic programming is an effective
search technique for the Gnutella networks and it produces
peers that are adjustable in a varying environment. The
problem of the study was small network with only 30 peers.

In this study, we do not predetermine any values of the
characteristics that are desirable for the P2P network. Instead
we try to find out whether the evolutionary neural networks are
able to form efficient P2P topologies for resource queries
when we determine the characteristics that the neural network
should take into account. These characteristics are given to the
neural network as inputs and can be e.g. bandwidth or
information about the previous resource queries. As a result,
we hope to gain a dynamic P2P network, where the topology
takes shape in interaction with the resource discovery
algorithm.

III. NEUROTOPOLOGYALGORITHM

NeuroTopology algorithm affects the overlay of the peer-to-
peer network by using a neural network for the topology
construction. NeuroTopology was implemented as a plugin for
the P2PRealm simulator [8].

The idea is that every peer has a neural network to make
decisions about establishing new connections in the P2P
network (Fig. 1). The information that the neural network
needs, is gathered during resource queries. NeuroTopology
algorithm is executed in every peer after a predefined amount
of resource queries. The NeuroTopology is described in
Algorithm 3.1:

Algorithm 3.1.
Input: The node’s u neighbor candidates are

LwwsssN hk ,,...,,...,, 121 , where 2,1 nhnk , si is

the node’s neighbor, wi is the node’s neighbor’s neighbor and
L are the nodes, from which the node has received resource

replies. T is the number of topology packets i.e., the amount

of traffic topology requests produced. aT is the number of

topology replies i.e., the amount of traffic produced when
establishing a new connection.

Output: Connections to neighbors.
For all Nbi

1. The input parameters for the neural network are set
according to the information about neighbor candidate bi.
2. Calculate the output for the candidate bi.
3. If the output is 1 then

3.1 Node u requests candidate bi to be its neighbor.
The number of topology packets is incremented by one:
t = t + 1.
3.2 The input parameters for the neural network are set
according to the information about node u.
3.3 The output for node u is calculated.
3.4 If the output is 1, the connection between nodes u
and bi is confirmed and the number of topology replies
is incremented by one ta = ta +1.
3.5 If the output is 0, node bi does not accept the
request. The number of topology packets is
incremented by one t = t +1. If bi is a neighbor of node
u, the connection to node u is dropped.

4. If the output is 0 and bi is a neighbor, the connection
to node bi is dropped.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 2359

The algorithm goes through all neighbor candidates. A
connection to a candidate is not established one-sided but also
the candidate evaluates with the same neural network whether
it wants to establish a connection to the requesting node.

The input parameters for the neural network are:
Bias is the bias term and has value 1.
CurrentNeighborsAmount is the number of the node's
neighbors.
ToNeighborsAmounts is the number of the node's
candidate neighbor’s neighbors.
RepliesFromCandidates is the number of resource
replies received from a candidate neighbor.
RelayedRepliesFromCandidates is the number of
resource replies which a candidate neighbor has
relayed to the node.
TrafficMeter is a counter, which calculates the amount
of resource reply messages going through a candidate
neighbor.
TrafficLimit simulates the bandwidth of a candidate
neighbor. If TrafficMeter value is bigger than
Trafficlimit, the candidate neighbor will not reply to
resource requests.

All input parameters should be scaled in [0,1] so that any
parameter will not be dominant, thus slowing down the
optimization. RepliesFromCancidate, TrafficMeter and
RelayedRepliesFromCandidate can have value of zero so
those are scaled with the function

1

1
)(

x
xf .

ToNeighborsAmount, CurrentNeighborsAmount and
TrafficLimit are scaled with the function

x
xf
1

)(.

NeuroTopology uses a neural network with two hidden
layers. There are 15 nodes (neurons) and a bias in the first
hidden layer and 3 nodes and a bias in the second. The
activation function in the hidden layers is the hyperbolic
tangent (tanh)

.)(
xx

xx

ee

ee
xt

The activation function in the output node is the threshold
function

0,1

0,0
)(

x

x
xs .

The output of the neural network is attained by combining
the functions presented above and output values of the
neurons’ with the formula

3

1

15

1

7

1
123)))),((1(1(

k j i
iijk IfwtwtwsO

where iI is the value of input parameter i and xyw is the neural

network weights on layer x in position y.

Fig. 1: The neighbors of the peer are determined with the neural network that
receives information about neighbor candidates in its inputs.

IV. NEURALNETWORKOPTIMIZATION

Before NeuroTopology can be used for managing the
topology, the weights of the neural network have to be
optimized. We used evolutionary computing to optimize the
weights.

The fitness of the used neural network is defined based on
the amount of traffic in the P2P network. Each query j (both
resource and topology queries) is scored for the neural
network h and the fitness is sum of scores Fj.

n

j
jh Ffitness

1

.

The scores are defined as follows:

otherwise
RrTttp

TttpRrifTttpRr

F

a

aa

j ,
1

1)(),(
(4.1)

otherwise
RrTttp

GrandTttpRrifpttRr

GrandTttpRrifTttpRr

F

a

aa

aa

j

,
1

1)(),(

1)(),(2
(4.2)

Where p is the number of resource queries, r is the number
of resource replies, R is a constant which affects the impact of
the replies and the sent packets on the scoring, t is the number

of packets the topology query used, at is the number of new

connections and T is a constant which affects the impact of
new connections on the scoring. G is the goal for the number
of the resources the resource query should locate.

When measuring the performance of the P2P network in the
generalization environment (see Section V), the formula 4.1 is
used. If there are enough replies for the queries, the neural
network will receive better fitness values by decreasing the
amount of packets:)(aj TttpRrF . If there are not

2360 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

enough resources in relation to the sent packets, the neural
network will attain better fitness values by increasing the

amount of packets:
RrTttp

F
a

j
1 .

When training the neural network, formula 4.2 is used. If the
network locates the predefined amount of resources, the score
from replies is doubled. Then the neural network can attain
better fitness values by decreasing the number of packets and
topology packets. Especially, the number of new connections
is encouraged to be decreased with)(2 aj TttpRrF ,

because the current topology already has some desired
properties. If there are enough resource replies when the sent
packets are taken into account (also the topology packets) but
the goal is not achieved, the neural network will attain better
fitness values by increasing the amount of topology packets:

)(pttRrF aj . If there are not enough located resources

in proportion to sent packets, the neural network will attain
better fitness values by increasing the amount of query and

topology packets:
RrTttp

F
a

j

1 .

The optimization process had an initial population of 24
neural networks whose weights were randomly defined from
the [-0.2, 0.2] interval. Next, every neural network was tested
in the peer-to-peer simulation environment and the fitness
value was calculated. When all neural networks had been
tested, the 12 best were chosen for mutation and used to breed
the new generation of neural networks. As a result, 24 neural
networks were available to be tested at the next generation.

The mutation was based on the Gaussian random variation
and used the weighted mutation parameter to improve the
adaptability of the evolutionary search. The random variation
function was similar to the one used by Fogel and Chellapilla
in their research [5] and is given as:

,,...,1)),1,0(exp()()(' wjii NjNjj

,,...,1),1,0()()()(' wj
j

iii NjNjjwjw

where wN = is the total number of weights and bias terms

in the neural network,

wN2

1 ,)1,0(jN is a standard

Gaussian random variable resampled for every j, is the self-
adaptive parameter vector for defining the step size for finding
the new weight and)(' jwi is the new weight value. This method

can be seen as a memetic algorithm because when the self-
adaptive parameter i is small, the optimization is local.

V. SIMULATION ENVIRONMENT

As a peer-to-peer simulation environment, we used the Peer-
to-Peer Realm (P2PRealm) network simulator [8] which was
originally developed for studying a resource discovery
algorithm based on neural networks [12]. In this research, we
added a neural network guided topology management
algorithm to P2PRealm.

In the test case we used a P2P network that had 100 peers.
Resources were power-law distributed so that peers with small
peer numbers had more resources than others. The amount of
resources was 491 and there were 25 different kinds of
resources. Each peer had a traffic limit which determined the
maximum amount of resource packets during 10 resource
queries. The traffic limits were:

- Nodes 0-24, traffic limit=30
- Nodes 25-49, traffic limit=15
- Nodes 50-74, traffic limit=10
- Nodes 75-99, traffic limit=6

The resource discovery algorithm had a target of finding
50% of the desired resources. The goal of finding half of the
available resource instances was set to demonstrate the
algorithm's ability to balance on a predetermined quality of
service level and not just on locating all resource instances or
one resource instance. We used breadth-first search (BFS),
highest degree search (HDS) and random walker (RW) as
resource discovery algorithms.

The test case is divided into the training environment, where
the neural networks are trained and the generalization
environment, where the performance of the best neural
network is measured in a new but similar environment
indicating the neural network’s ability to generalize. When the
performance starts to decrease in the generalization
environment, the training can be stopped. At that point the
neural network is adapting only to the training set if the
training process is continued. In the training set each
generation is started with a grid topology P2P network and
follows the algorithm:
1. Do rounds 20 times

a. 10 random peers execute resource queries
b. Execute NeuroTopology algorithm in every

peer using information from resource queries
2. Execute 10 resource queries in the P2P network
3. Calculate the fitness for the neural network using

information from step 2
The generalization set is the same as the training set, except

that resource queries were executed by every peer in the P2P
network. In order to keep traffic limits functioning properly,
the traffic meters were reset after every 10 queries. Another
difference is in the use of the fitness function (Section IV). In
the training set the parameter R was 300 and in the
generalization set the value is 50. The parameter R can be
considered as a reward for founding resources and the value
300 produces consistently well-trained neural networks. R was
selected to be large enough to guide the training process
towards neural networks that locate enough resources, but also
small enough to prevent nodes from connecting to all the
neighbors that have wanted resource during some random
query. In the generalization set the value 50 was chosen as a
standard value for comparing the neural networks that were
trained with different kind of attribute values. The value of
parameter T was 5 in both environments. This penalty term
simulates the amount of TCP-packets when establishing new
connections.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 2361

The training of the neural networks was done using the HDS
algorithm and the amount of generations was 5000. The results
of the test case are represented in Fig. 2-6. In the training set
there is no significant improvement in the fitness value after
generation 400 but some optimization still took place because
in the generalization set the fitness is not converging until
generation 3500. In the generalization set the HDS algorithm
finds desired resources (845 of them) most of the time after
generation 400, but the amount of packets is decreasing until
generation 3500. Also the topology packets, the topology
changes and the amount of failed queries remain relatively
stable after generation 3500. “Failed queries” represents the
amount of nodes that do not reach their target of 50% found
resources. Thus, it was possible to train the neural networks in
a computationally easier environment and to use the trained
networks in a more demanding environment.

Fig. 2: Fitness in the training environment.

Fig. 3: Fitness in the generalization environment.

Fig. 4: Resource packets and replies in the generalization environment.

Fig. 5: Topology queries and replies in the generalization environment.

Fig. 6: Number of nodes that did not find 50% of all the resources in the
generalization environment.

VI. SIMULATIONRESULTS

To evaluate the efficiency of the topology that is produced
with the trained NeuroTopology algorithm, in addition to the
grid topology, we generated a power-law topology and a
random graph topology for comparison. The power-law

2362 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

topology was generated using the Barabási-Albert model and
the random graph topology using the Erdös model [1].
Parameters for the traffic limits, resource distribution and
fitness function are the same as in the generalization set of the
training neural network. The results of the networks where
peers are searching resources with highest degree search
(HDS), random walker (RW) and breadth first search with
TTL value 3 (BFS) in the above mentioned topologies, are
documented in Table 1. By calculating the ratio between the
located resources and the used query packets, we can
determine the efficiency of the algorithms. Walker algorithms
(HDS and RW) perform best in the power-law topology
finding nearly all resources with an efficiency of 0.23 and 0.18
respectively. The best topology for the BFS algorithm is the
random graph, where 470 of 845 desired resources were found
with an efficiency of 0.14. Only 13 peers reached the target of
finding 50% of all the resources.

Next, we analyze the effect of NeuroTopology with nine
different scenarios: three different starting topologies using
three different resource algorithms. Every peer executes
resource queries and then executes the NeuroTopology
algorithm that was trained using the HDS algorithm. This
procedure is done 20 times and the results are in Table 2. In
the efficiency columns the first one is counted with topology
packets and the second one without them. When comparing the
fitness values (rewarding every resource with 50 points)
between Tables 1 and 2, we can see significant improvement
in most of the cases. The power-law topology is the hardest
one to improve. For example the HDS algorithm finds roughly
the same amount of resources in the power-law P2P network
and in the NeuroTopology generated P2P network but uses
470 less packets in the latter one. Nevertheless, when
considering the traffic used by the topology management, the
fitness value remains roughly the same. A general observation
from the results is that the NeuroTopology trained using the
HDS algorithm is able to improve the efficiency of the walker

algorithms regardless of the starting topology. The training
was done using the HDS algorithm, which prefers nodes with
high neighbor amount. The BFS algorithm prefers P2P
networks where the neighbor distribution is more uniform. Due
to the different nature of these algorithms, the neural network
has not learnt to generate a topology, which improves the
efficiency of both BFS and HDS at the same time.

Values in Table 2 are average values of 20 rounds so they
do not give us information about the convergence of the P2P
network. A good topology algorithm would change the
inefficient grid topology on the early rounds and limit the
changes when the efficient topology has been reached. An
example is in Fig 7 and Fig. 8. NeuroTopology started from
the grid topology where the HDS algorithm was used. The P2P
network has converged after 4 rounds of resource queries and
topology changes. The topology after 20 rounds is presented in
Fig 9.

VII. CONCLUSION

NeuroTopology has proved to be an adaptable algorithm for
the P2P network topology management. P2P topologies
generated by NeuroTopology are significantly more efficient
than grid, random or power-law topologies. Nevertheless,
managing topology produces traffic. One has to case-
specifically consider, how worthy it is to find resources with
less query packets. For example, using the random walker in
the power-law topology without NeuroTopology uses 12%
more resource packets to find roughly the same amount of
resources compared to using NeuroTopology. Adding the
topology management traffic to the equation, the efficiency is
roughly the same. Nevertheless, the results are encouraging
and further research includes testing the algorithm in larger
P2P networks.

TABLE I
EFFICIENCIES OF RESOURCE ALGORITHMS IN STATIC P2P TOPOLOGIES

Algorithm Topology Fitness Packets Resources Failed
Queries

Hops Efficiency

HDS Grid 30059 4791 697 24 47.93 0.145
RW Grid 30449 4501 699 24 45.08 0.155
BFS Grid 10302 2598 258 99 2.92 0.099
HDS Power 38216 3634 837 6 36.34 0.230
RW Power 36193 4507 814 7 45.07 0.180
BFS Power 18293 4707 460 71 2.86 0.097
HDS Random 28209 3891 642 45 38.97 0.164
RW Random 26047 3603 593 50 36.07 0.164
BFS Random 19340 3350 470 87 2.96 0.140

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 2363

TABLE 2
EFFICIENCIES OF RESOURCE ALGORITHMSWHENUSINGNEUROTOPOLOGY

Algori
thm

Topolog
y

Fitness Improvement
in Fitness

Packets Resources Failed
Queries

Topology
Packets

Topology
Changes

Hops Efficiency Efficiency
(only

resource
packets)

HDS Grid 37502 24.76 % 3549 836 1 414 67 35.50 0.207 0.236
RW Grid 34522 13.38 % 4272 795 10 486 94 42.72 0.164 0.186
BFS Grid 22497 118.38 % 5833 589 57 510 122 2.93 0.091 0.101
HDS Power 38130 -0.23 % 3164 838 1 366 48 31.64 0.234 0.265
RW Power 37216 2.83 % 4010 837 1 384 48 40.10 0.188 0.209
BFS Power 20768 13.53 % 5923 553 62 464 99 2.90 0.085 0.093
HDS Random 37505 32.95 % 3409 834 2 456 66 34.10 0.212 0.245
RW Random 35496 36.28 % 4382 815 6 497 75 43.83 0.165 0.186
BFS Random 23382 20.90 % 5728 605 56 545 119 2.94 0.095 0.106

Fig. 7: NeuroTopology manages to make the grid P2P network more
effective for the HDS algorithm during the first four rounds of resource
querying and topology changing.

Fig. 8: The amount of topology changes convergences during the first four
rounds.

Fig. 9: End result P2P topology after 20 rounds when started from the grid
topology.

Fig. 10: Neighborhood distribution of the topology in Fig. 9.

2364 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

REFERENCES

[1] E.M. Airoldi and K.M. Carley. Sampling Algorithms for Pure
Network Topologies: a Study on the Stability and the Separability of
Metric Embeddings. SIGKDD Explor. Newsl., 7(2):13–22, 2005.

[2] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, J. Vuori. New
Topology Management Algorithms for Unstuctured P2P Networks.
Second International Conference on Internet and Web Applications
and Services, May 2007.

[3] T. Condie, S. Kamvar and H. Garcia-Molina. Adaptive Peer-to-Peer
Topologies. In Proceedings of the Fourth IEEE International
Conference on Peer-To-Peer Computing, 2004.

[4] B.F. Cooper and H. Garcia-Molina. Ad hoc, Self-Supervising Peer-to-
Peer Search Networks. Technical report, 2003.

[5] K. Chellapilla and D. Fogel. Evolving neural networks to play
checkers without relying on expert knowledge. IEEE Trans. on Neural
Networks, 10 (6), pp. 1382-1391, 1999.

[6] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P
Systems. Technical report, 2002.

[7] M. Iles and D. Deugo. Adaptive Resource Location in a Peer-to-Peer
Network. In The 16th International Conference on Industrial &
Engineering Applications of Artificial Intelligence and Expert
Systems, July 2003.

[8] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen and J. Vuori.
P2Prealm – Peer-to-Peer Network Simulator. In Proceedings of the
11th IEEE International Workshop on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks, 2006.

[9] M.K. Ramanathan, V. Kalogeraki and J. Pruyne. Finding Good Peers
in Peer-to-Peer Networks. In Proceedings of IEEE International
Parallel and Distributed Computing Symposium, April 2002.

[10] G. Sakaryan and H. Unger. Influence of the Decentralized Algorithms
on Topology Evolution in P2P Distributed Networks. In Proceedings
of Design, Analysis, and Simulation of Distributed Systems (DASD
2003), 2003.

[11] K. Sripanidkulchai, B. Maggs and H. Zhang. Efficient Content
Location Using Interest-based Locality in Peer-to-Peer Systems. In
Proceedings of Infocom, 2003.

[12] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J. Vuori.
Resource Discovery in P2P Networks Using Evolutionary Neural
Networks. In International Conference on Advances in Intelligent
Systems - Theory and Applications (AISTA 2004), November 2004.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 2365

PVII

OPTIMAL RESOURCE DISCOVERY PATHS OF GNUTELLA2

by

Mikko Vapa, Annemari Auvinen, Yevgeniy Ivanchenko, Niko Kotilainen & Jarkko
Vuori 2008

IEEE 22nd International Conference on Advanced Information Networking and Ap-

plications

Reproduced with kind permission by IEEE Computer Society.

Optimal Resource Discovery Paths of Gnutella2

Mikko Vapa, Annemari Auvinen, Yevgeniy Ivanchenko, Niko Kotilainen and Jarkko Vuori
Department of Mathematical Information Technology

P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland
firstname.lastname@jyu.fi

Abstract

This paper shows that the performance of

peer-to-peer resource discovery algorithms is upper
bounded by a k-Steiner minimum tree and proposes an
algorithm locating near-optimal query paths for the
peer-to-peer resource discovery problem. Global
knowledge of the topology and the resources from the
peer-to-peer network are required as an input to the
algorithm. The algorithm provides an objective measure
for defining how good local search algorithms are. The
performance is evaluated in simulated peer-to-peer
scenarios and in the measured Gnutella2 P2P network
topology with four local search algorithms:
breadth-first search, self-avoiding random walker,
highest degree search and Dynamic Query Protocol.

Keywords - peer-to-peer; P2P; resource discovery;
k-Steiner minimum tree; optimal paths; Gnutella2;

1. Introduction

Peer-to-Peer networks (P2P) are distributed systems,
which consist of resource sharing processes. A typical
use case for a P2P network is the file sharing, where
users can share the files located in their computers to
other users in the network. The shared files can be found
by executing a query, which locates the instances of the
queried file and returns the information for downloading
them. Thus the processes connected to the P2P network
act both as a client and a server consuming and offering
resources.

Locating resources is an essential problem in
peer-to-peer networks, because there is no centralized
point or index from which the information about the
resources could be found. Therefore developing
efficient resource discovery algorithms is crucial.

In the peer-to-peer resource discovery problem1, any
node can possess resources and query resources from
other nodes in the network. The problem consists of

1 Note that peer-to-peer resource discovery problem differs from the
resource discovery problem described in [4] because only one node
needs to discover the other nodes containing resources. Peer-to-peer
resource discovery problem has also other names such as the
resource-location problem [12].

network with nodes, links and resources. Resources are
identified by unique IDs and nodes may contain any
number of resources. One node knows only the
resources it is currently hosting. Any node in the
network can start a query, which means that some of the
links are traversed based on the local forwarding
decisions in the network. Whenever the query reaches a
node which has the resource, the node replies. The goal
is to locate a predetermined amount of resource
instances with a given ID using as few query packets as
possible.

The problem can be solved using a distributed search
algorithm, in which the querying node sends a query to
its neighbors, who in turn forward the query further until
the algorithm stops. Whenever a queried resource is
located, a reply message is relayed back using the query
path. Such an algorithm works optimally if the query is
forwarded only to the neighbors, who either provide the
queried resource, or can provide a minimal cost path to a
set of nodes containing the queried resource.

With the global information about the topology and
the resources the problem can be formulated as a Steiner
minimum tree problem in graphs [19], giving an upper
bound for the performance of resource discovery
algorithms. In the Steiner tree problem, given a graph
containing the vertices and the edges and a terminal set
containing the vertices, the task is to compute a spanning
tree containing all vertices in the terminal set. Steiner
minimum tree is the tree with minimum length of all
such spanning trees. The terminal set contains the node,
which starts the query and the matching resource
instances that can be located in the network.

The peer-to-peer resource discovery problem can be
mapped to the Steiner minimum tree problem only if the
number of needed resource instances is the same as the
size of the terminal set minus one (because the query
originator also needs to be in the set). However, it is
often sufficient to locate for example half of the
available resources, because the query originator may
use, e.g. download, only some of the located resources.
Also locating only one instance is not always a feasible
solution, because there can be many different resources
matching the query keyword, but only some of them
represent the resource the query initiator is interested in.

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.89

546

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.89

546

Usually locating only a portion of resource instances
reduces the amount of query traffic significantly. This is
beneficial especially in mobile and wireless peer-to-peer
networks, where the use of battery power and therefore
the amount of forwarded query packets should be
minimized. Also, as was seen in the first version of
Gnutella [18] the scalability of the peer-to-peer network
weakens in wired networks when the resource discovery
algorithm is not properly designed.

In this paper we show that the peer-to-peer resource
discovery problem with global knowledge is identical to
the Steiner tree problem when all resources need to be
found and therefore can be used to find optimal paths for
the peer-to-peer resource discovery problem. Also, to
enable only a part of the resources to be discovered we
modify the original Steiner minimum tree problem to
Rooted k-Steiner minimum tree problem, where k
represents the number of resources that needs to be
located and present an approximation algorithm for
solving the problem.

The approximation is needed because k-Steiner
minimum tree problem is known to be NP-hard and thus
no efficient polynomial algorithm exists for practically
solving the Steiner minimum tree problem in large
graphs. To demonstrate the use of the proposed
algorithm we present an analysis of different
peer-to-peer scenarios including the topology recently
crawled from Gnutella2 network. As a comparison
algorithms we use breadth-first search, self-avoiding
random walk and highest degree search and the
proposed minimum spanning tree k-Steiner algorithm
(MST k-Steiner) as an approximation of optimal using
global knowledge of network topology and resources.
The results show that there is a significant gap between
the performance of local search algorithms and the
optimal solution.
2. Related Work

Peer-to-Peer resource discovery problem has been
investigated extensively in the research literature
[1,4,6,8,9,10,16,20,22,23,25].

Adamic et al. [1] propose High-Degree Seeking
algorithm for finding one node in a graph by forwarding
query to the highest degree neighbor, which has not yet
been visited. They evaluate the performance of their
algorithm in random graphs, power-law graphs and a
snapshot of Gnutella P2P network. Compared to
Random Walker, where query is forwarded to a
randomly selected neighbor, the traffic reduction is in
the order of magnitude.

Lv et al. [12] evaluate the use of multiple Random
Walkers and Expanding Ring algorithm against
Breadth-First Search (BFS) in random graphs,
power-law graphs and a regular two-dimensional grid
graph as well as in a snapshot of Gnutella. Traffic

reductions of one or two orders of magnitude are gained
with multiple Random Walkers compared to the BFS.

Crespo and Garcia-Molina [4] propose routing
indices, which provide shortcuts for random walkers to
locate the resources. As an evaluation graphs they use
trees, trees with additional cycles and power-law graphs.
Compared to random walkers routing indices reduce the
traffic up to 50% and compared to BFS the traffic
reduction is in the order of one or two magnitudes with
uniform resource distributions.

Yang and Garcia-Molina [25] propose Directed BFS,
which selects the first neighbor based on heuristics and
further uses BFS for forwarding the query. They also
propose the use of Local Indices for replicating
resources to a certain radius of hops from a node.
Evaluations are conducted on a snapshot of Gnutella and
the performance of these algorithms are compared to the
BFS. The Directed BFS reduces traffic to 38% while
locating significantly less resources than the BFS. Local
Indices, however, locates similar numbers of resources
as the BFS with 39% traffic generated by the BFS.

Kalogeraki et al. [8] propose Modified Random
Breadth-First Search as an improvement to the BFS
algorithm. In their algorithm only a subset of neighbors
are selected for forwarding. Also, they propose an
Intelligent Search Mechanism, which stores the
performance of past queries for each neighbor and thus
can direct further queries to the neighbors, which are
likely to have the queried resource. For evaluation they
use randomly connected P2P network and reduce traffic
to 35% compared to the BFS.

Menascé [19] follows the ideas of Kalogeraki et al.
and propose a modification of BFS, where only a subset
of neighbors are randomly selected for forwarding.
Evaluations are done in a random graph without a
comparison algorithm.

Tsoumakos and Roussopoulos [22] propose Adaptive
Probabilistic Search, where the feedback from previous
queries is used to tune probabilities for the further
forwarding of random walkers. The algorithm is
evaluated in random graphs and power-law graphs
against Lv et al.’s multiple Random Walkers and
Gnutella’s UDP extension for scalable searches [5].
While keeping approximately the same level of traffic,
APS doubles the success rate of queries compared to
multiple Random Walkers.

Sarshar et al. [20] propose Percolation Search
algorithm for power-law networks. The idea is to
replicate copies of resources to sufficient number of
nodes and thus ensure that the algorithm locates at least
one replica of the resource. The algorithm’s
performance is evaluated in power-law graphs and a
snapshot of Gnutella P2P network without a comparison
algorithm.

547547

Fisk [6] proposes Dynamic Query Protocol (DQP),
which has now been implemented in Gnutella2 peers.
DQP executes first a probe query to estimate how rare
the resource is and based on the obtained results
calculates proper TTL and number of neighbors, which
the query will be forwarded. The query is terminated
when 150 resource instances has been located, there are
no connections left to query or when the theoretical
horizon of the query has hit the limit of 200,000 peers.

Vapa et al. [23] propose NeuroSearch, which is a
neural network based resource discovery algorithm. In
NeuroSearch a neural network is given a set of heuristics
and by calculating the output of the neural network the
algorithm can decide which of the neighbor nodes will
receive the query. The evaluations are done in small
power-law graphs and the traffic is reduced
approximately to 80% from the BFS.

The main theme of all the papers reviewed in this
section has been to introduce new algorithm(s) and to
compare their performance to other algorithms of a
similar type. However, the level of performance is not
properly identified if the optimal performance is not
measured in the simulations. The algorithm proposed
later in this paper aims to overcome this problem.
3. Steiner Minimum Tree Problem

Let G = (V,E) be an undirected graph, where V is a set
of vertices and E is a set of edges having edge costs.
Given a terminal set VR ⊆ , a Steiner minimum tree

(SMT) is a tree GT ⊆ such that T contains all vertices
of R and the length w(T) is minimum among all Steiner
trees. w(T) is defined as a sum of all edge costs Ee ∈
contained in T.

Compared to a minimum spanning tree, which
contains all vertices of a graph, SMT spans only a subset
of vertices and thus if the cardinality of the terminal set
|R| = |V| these problems are equivalent. Also, if |R| = 2,
SMT reduces to solving a shortest-path problem.

In SMT the vertices are divided into two sets:
terminal vertices and non-terminal vertices. Terminal
vertices belong to a set, which has to be included in the
solution, whereas non-terminal vertices can shorten the
length of the solution.

SMT is known to be NP-complete problem [9]. Being
in complexity class NP means that there exists a
polynomial time algorithm to check whether the given
solution is a correct Steiner tree and whether the length
of a given solution is less than a given bound B, but there
is no polynomial algorithm (unless P=NP) that would
find such a Steiner tree. Therefore exact solving of the
problem is not practical with large graphs. Also, when a
problem is classified as NP-complete it means that the
problem is the hardest among all problems contained in
NP. More information about the NP-completeness of the
Steiner tree problem can be found in [19].

Because SMT is NP-complete, approximation needs
to be used. An approximated solution is not guaranteed

1

m2

r1 r2

r5

r4r3

m1

7

13

1

6

1

31

1
m3

r4r3

r1 r2

r5

1

m2

m1

7

13

1

6

1

31

1
m3

0

0

0
0

0
r4r3

r1 r2

r5
m2

m1

1
1

1
m3

0

0

0
0

0

Graph G Graph GV after step (1) Graph GV after step (2)

r5

r1 r2

r4r3

7

15

1

6

5

r5

r1

r4r3

5

1
5

r1

r5

r4r3

m1
3

1

31

1
m3

Graph GR after step (3) Tree TR after step (4) Tree T after step (5)

Figure 1. Execution of MST k-Steiner Algorithm with k=4

548548

to locate the Steiner minimum tree, but it can give
guarantees that the length of a located solution is within
certain range from the optimal solution.
4. Peer-to-Peer Resource Discovery As

Steiner Tree Problem
As was described earlier the peer-to-peer resource

discovery problem does not map to the Steiner tree
problem if only part of the resources needs to be found.
Therefore we introduce k-Steiner Minimum Tree
problem as described in [3] with an addition of a root
vertex to the solution set. In Rooted k-Steiner Minimum
Tree problem (Rooted k-SMT) it suffices to select only k
terminal vertices from R to be included in the Steiner
minimum tree starting from the root vertex r. Also we
propose an approximation algorithm for solving the
Rooted k-SMT problem.
4.1. Rooted k-Steiner Minimum Tree
Problem: Rooted k-Steiner Minimum Tree

Given: A connected graph G = (V,E), a terminal set
VR ⊆ , a root vertex Rr ∈ and

||2 Rk ≤≤
Find: A Steiner tree T for R in G rooted to vertex r

and containing k terminal vertices, such that
w(T) = min {|w(T’)| | T’ is a Steiner tree for
k vertices in R}

The Rooted k-SMT becomes equivalent to the SMT
by selecting k=|R| and as a root any vertex in R. The
SMT thus reduces to a special case of the Rooted k-SMT
and therefore Rooted k-SMT for all k is at least as hard
as SMT. When applied to the resource discovery
problem the terminal set R is formed of query originator
as root vertex and |R|-1 resource instances.
4.2. Approximation of Rooted k-Steiner

Minimum Tree Problem With Minimum
Spanning Tree

A well-known method for approximating the SMT is
the use of a minimum spanning tree (MST) [19,24]. The
MST k-Steiner Minimum Tree algorithm (MST
k-Steiner) proposed here uses the same principles as
MST-approximation algorithm to locate a solution for
Rooted k-SMT.

MST k-Steiner starts by computing Voronoi regions
of each terminal node. Voronoi region of a terminal
node contains all the nodes which are closer to that
terminal node than to other terminal node. Voronoi
regions can be computed by adding one node in the
graph G and connecting this node to all terminal nodes
of R with edge length 0. Let GV denote this graph. Then
by executing a minimum spanning tree on GV the
Voronoi regions are obtained. This also gives the
distance of each non-terminal node to its closest
terminal node. The technique used here was introduced
by Mehlhorn in [15].

Next, the Voronoi regions are used to compute the
shortest distance graph GR of vertices in R. Let l(u,v)
denote the edge cost of the edge between nodes u and v.
Let l(u) denote the distance of node u from the closest
terminal node. Let t(u) denote the closest terminal node
of node u. Shortest distance graph GR is obtained by
going through each edge),(vu , Evu ∈, , vu ≠ and
computing the two triplets (t(u), t(v), l(u)+l(u,v)+l(v))
and (t(v), t(u), l(u)+l(u,v)+l(v)). These triplets are
collected in a list and only those where t(u) t(v) and
l(u)+l(u,v)+l(v) is the shortest are kept in the list. This
list is used to create the graph GR by associating two
terminal nodes u and v if they have a corresponding
triplet in the list and setting the edge cost to be the third
value of the triplet.

Then a k-minimum spanning tree approximation TR
containing k vertices is located greedily from GR by
selecting the closest node to the spanning tree starting
from the vertex r and decomposed back to the original
graph by replacing the edges with their shortest paths.
Algorithm: MST k-Steiner Minimum Tree

Input: A connected graph G = (V,E), a terminal
set VR ⊆ , a root vertex Rr ∈ and

||2 Rk ≤≤
Output: A Steiner tree T for R in G rooted to the

vertex r containing k terminal vertices.

(1) Add one node to the graph G and connect it to all
terminal nodes contained in R with an edge
having cost 0. The result is denoted as graph GV.

(2) Replace GV with the minimum spanning tree of
GV.

(3) Compute the shortest path between two terminal
nodes by iterating all edges of E in G and
constructing the corresponding triplets.
Transform the resulting triplets to graph GR.

(4) Compute a k-minimum spanning tree
approximation TR from GR rooted to the vertex r
and containing k vertices of R.

(5) Transform TR into subtree T of G by replacing
each edge of TR by the corresponding shortest
path.

An example execution of the MST k-Steiner
algorithm when k=4 and |R|=5 is shown in the Figure 1.
In the figure a graph G is given with the terminal set

{ }51 ≤≤= irR i (denoted as including root vertex r1,
which is denoted as) and the non-terminal nodes

31, ≤≤ imi (denoted as). Integers associated to the
edges represent the edge costs.
5. Time Complexity

MST k-Steiner executes MST algorithm once in step
(2) and once in step (4) stopping when k nodes have
been reached. The transformation of the graph in step (3)
using bucket sort [19] requires at maximum |V|log|V|+|E|

549549

steps, where |V| is the number of vertices in the input
graph G and |E| is the number of edges in input graph G.
Therefore the time complexity required for the
algorithm is:

MST + MSTk + |V|log|V| + |E|, (5.1)
where MST denotes the time required for executing the
Minimum Spanning Tree and MSTk denotes the time
required for executing the Minimum Spanning Tree for
k nodes. Certainly MSTk MST and |V| |E|-1 |E|,
bounding the time complexity to:

2*MST+|E|log|E|+|E|. (5.2)
Minimum Spanning Tree can be implemented for
example using the Kruskal’s algorithm [24] having
O(|E|log|E|) time complexity. Therefore MST k-Steiner
algorithm’s time complexity is O(|E|log|E|), which
allows the algorithm to be used also in large graphs.
6. Approximation Ratio

Approximation ratio of an algorithm is computed as a
ratio between the worst case performance and the
optimal performance. For k = 2 the approximation ratio
is 1, because the shortest path to the nearest resource is
always selected. Also when k = |R|, MST k-Steiner
reduces to a well-known MST-approximation algorithm
[19,24] for Steiner Minimum Tree problem having
approximation ratio 2. So, it still remains to determine
what the approximation ratio is when 2 < k < |R|.

A difficult case for MST k-Steiner is a graph shown
in Figure 2. In the scenario, the root node is located
within S distance from 1

2
−

R terminal nodes and within

S + distance from the other half of terminal nodes. The
difference between these distances is that on the left
hand side discovering each terminal node requires
travelling S distance and on the right hand side
discovering the first terminal node requires travelling S
+ distance, but then the other terminal nodes can be
discovered with distance.

Without a loss of generality the analysis can be
restricted to cases where |R| is even. Now the
approximation ratio between the discovered path and
the optimal path can be calculated for

2
R

k = as:

ε

ε

ε

ε
α

2

2

2

1
2

R
S

S
R

R
S

SS
R

+

+
=

+

++−
=

 (6.1)

Considering 0 the approximation ratio becomes:

2
R

=α (6.2)

This implies that when the size of the terminal set
grows and the number of discovered terminals k is close
to

2
R the approximation ratio can become large. Still,

the approximation ratio seems to be bounded to
2
R ,

because adding terminal node on the left hand side and
removing one terminal node from the right hand side
makes the optimal path longer while keeping the
discovered path almost the same (decreased by). In
contrast by adding a terminal node on the right hand side
and removing one terminal node from the left hand side
makes the discovered path shorter while keeping the
optimal path the same. Also decreasing k from

2
R will

decrease the length of the discovered path faster than the
optimal path thus giving a lower approximation ratio.
Increasing k will lengthen the optimal path faster than
the discovered path resulting in a lower approximation
ratio than

2
R .

As a summary, the approximation ratio of the
algorithm depends on the number of available resources
and can be no less than

2
R . It is still left for future work

to show that the ratio could not be even worse. There are
however approximation algorithms for k-Steiner
Minimum Tree, which achieve constant factor
approximation ratios [3]. They rely on integer
programming and by relaxing the constraints to a linear
program sustain approximation ratio guarantees.
7. Simulations

In this section we present an analysis of five
algorithms: Breadth-First Search (BFS) [13],
Self-avoiding Random Walk (RWSA), Highest Degree
Search (HDS) [1,10], Dynamic Query Protocol (DQP)
[6] and MST k-Steiner Minimum Tree. The simulations
were conducted in P2PRealm network simulator.
7.1. Peer-to-Peer Network Scenarios

 As simulation scenarios we used power-law graphs,
normal distributed random graphs and a recently
measured topology of Gnutella2 P2P network [21] with
an edge cost 1 for all edges. Power-law graphs were
generated using Barabási-Albert model [2]. In
power-law network few hub nodes have many neighbors

s
ss s

2
R

1
2

−
R

Figure 2. A graph where MST k-Steiner makes a

large approximation error

550550

and many nodes have only few neighbors. Gnutella2
topology was obtained by extracting the largest
connected component from the topology data of
02/02/05 presented in [21] and removing those nodes
whose edges were not referenced by other nodes. Finally
those edges whose one end point was missing were
removed.

Resource instances were allocated for power-law and
random graphs based on the number of neighbors each
node had such that the number of different resource
instances in a node was the same as the number of
neighbors the node had. This means that in the
power-law graphs the hubs were more likely to contain
the queried resource. Resources were allocated to nodes
by randomly sampling from a uniform distribution. The
queried resources and the querying nodes were selected
also randomly from a uniform distribution for each
query.

In Gnutella2 topology the resources were allocated
based on the measured resource distributions of
Gnutella network in September 2003 [14]. The number
of different resources was selected to be 10, so the
topology files could be kept small enough, but the
number of resource instances for each resource was
sampled from the resource distribution of [14] which
produced 43216 different resources instances. These
resource instances were allocated randomly to nodes
following the measured distribution of shared files in
nodes [14] such that one node could not have multiple
instances of the same resource. Now when 100 queries
were executed each resource was queried multiple
times, but from a different location, which was
randomly selected. The queried resource was selected
according to the peer keyword distribution of [14].

Table 1 illustrates the characteristics of each scenario
used in the simulations.

7.2. Results
The tests were conducted by varying the target

amount of resource instances that was needed to be
found by the algorithms. The target percentage of the
discovered resource instances determines the amount
how many resource instances of a certain resource needs
to be discovered out of all resource instances of that
resource and represents the k parameter of the Rooted
k-SMT problem. The measured variables were the

average number of query packets used in a query as
shown in figures 3, 4 and 5 and the average number of
maximum hops as shown in figures 6, 7 and 8.

As can be seen from Figure 3 in power-law graphs
MST k-Steiner algorithm produces query paths between
one and two orders of magnitude shorter than local
search algorithms. Also, the approximation error of
MST k-Steiner in the scenario is at most 2=α , because
the theoretical optimum is k-1 query packets when each
node can have only one instance of the queried resource.
k-1 represents a situation that each forwarded query
packet would locate one new resource instance and the
query originator does not have the queried resource.

The performance of HDS is close to the paths of MST
k-Steiner algorithm when only one or two instances of
resources needs to be located (resource percentage <
3%). This is a bit surprising even though the scenario is
designed directly for HDS type of algorithms. The
resources are discovered more probably in the center of
the network and as noted in [1] HDS travels those nodes
early in the search process. However, when more
resources needs to be discovered HDS travels multiple
times to the central nodes and sometimes randomly
forward the query packet decreasing the performance.
Compared to RWSA and BFS, HDS performs
significantly better when half of the available resource
instances needs to be located and after that RWSA
becomes a better algorithm. BFS in turn is at the same
level with RWSA when less than 40% of resources
needs to be located having TTL values between 1 and 4.
With TTL values 5-7 BFS cannot keep up with RWSA.
DQP is significantly less performing than BFS when
small amount of resource instances needs to be located,
because DQP requires always executing a two hop query
first. DQP however reaches the same level with BFS
when 40% or more resources needs to be located.
Because of maximum TTL restrictions DQP cannot
locate more than 60% of available resource instances.

In normal distributed graphs, as shown in Figure 4,
MST k-Steiner retains its characteristics having largest
approximation error at most 4=α . Normal distributed
graphs have larger diameter than power law distributed
graphs and therefore estimating the optimal performance
with k is too pessimistic. This argument is supported by
the fact, that when 100% of resource instances needs to
be discovered, the approximation ratio is at maximum

2=α as discussed in Section 6. It is therefore not clear,
whether as short paths as k would exist in the normal
distributed graph and presumably the real
approximation error is at a similar range as in power-law
graphs. Thus we conclude that the approximation ratio
derived in section 6 highly overestimates the optimal
performance in power-law and normal distributed P2P
scenarios.

Table 1. Simulation Scenarios
Scenario PL10000 N10000 Gnutella2
Distribution Power-Law Normal -
Nodes 10000 10000 74297
Edges 19997 19997 609036
Largest hub 161 11 360
Resources 1000 1000 10
Res. instances 39994 39994 43216
Queries 100 100 100
Diameter 8 10 12

551551

The difference between local search algorithms and
MST k-Steiner paths is again in the order of one or two
magnitudes. In contrast to power-law graphs, the local
search algorithms in normal distributed graphs have
similar performance when less than half of available
resource instances needs to be located. After that RWSA
and HDS outperform BFS. Random graph does not
contain hub nodes and therefore HDS does not benefit
from its ability to travel to high degree nodes. Basically,
HDS appears as a self-avoiding random walker, because
all the neighbors are almost equally connected. The
large diameter of normal distributed graph restricts DQP

to locate only 7% of resource instances with time-to-live
4.

In Gnutella2 topology, as shown in Figure 5, MST
k-Steiner does not seem to make any approximation
error suggesting that Gnutella2 topology is highly
connected and thus allowing each hop of a query to
locate a new resource instance. The difference between
MST k-Steiner paths and local search algorithms is in
the order of a magnitude. HDS and RWSA perform
equally well and BFS can keep up with them to 40% of
resource instances. Then BFS departs to the level of
DQP, which can locate at maximum 60% of resource
instances.

1

10

100

1000

10000

100000

0,0 20,0 40,0 60,0 80,0 100,0

% of Re sources

Pa
ck

et
s

/ q
ue

ry

DQP BFS RWSA
HDS k-Steiner k

Figure 3. Query packets in PL10000

1

10

100

1000

10000

100000

0,0 20,0 40,0 60,0 80,0 100,0

% of Resources

Pa
ck

et
s

/ q
ue

ry

DQP BFS RWSA
HDS k-Steiner k

Figure 4. Query packets in N10000

1

10

100

1000

10000

100000

1000000

0,0 20,0 40,0 60,0 80,0 100,0

% of Resources

Pa
ck

et
s

/ q
ue

ry

DQP BFS HDS
RWSA k-Steiner k

Figure 5. Query packets in Gnutella2

0

2

4

6

8

10

12

14

16

0,0 20,0 40,0 60,0 80,0 100,0
% of Resources

H
op

s

k-Steiner DQP BFS

Figure 6. Maximum number of hops in PL10000

0

5

10

15

20

25

30

35

40

45

0 ,0 20,0 40,0 60,0 80,0 100 ,0

% o f R eso ur ces

H
op

s
k-Steiner DQP BFS

Figure 7. Maximum number of hops in N10000

0

10

20

30

40

50

60

70

0,0 20,0 40,0 60,0 80,0 100,0
% of Re source s

H
op

s

k-Steiner DQP BFS

Figure 8. Maximum number of hops in Gnutella2

552552

The average of maximum hops for MST k-Steiner,
BFS and DQP is plotted in Figures 6, 7 and 8. HDS and
RWSA are omitted as their number of hops is shown in
Figures 3, 4 and 5. Because HDS and RWSA forward to
only one direction at a time their maximum hops are in
different scale than what MST k-Steiner, BFS and DQP
are using. Therefore if low latency in the network is
critical, HDS and RWSA may not be suitable as local
search algorithms. From the Figures 6 and 7, it can be
seen that BFS and DQP require in N10000 two or three
hops more than in PL10000 to locate the same amount of
resource instances. BFS locates the shortest paths to
resources and therefore has a small latency. However,
MST k-Steiner does not seem to be using these paths.
Reason for this is that the shortest paths do not
necessarily contain resources along the path and
therefore collecting some resources using a longer route
may lead to a path which is more efficient. The latency
in power-law graphs also stays comparable to BFS, but
in normal distributed graphs the length of query paths
grows significantly. This is, however, in completely
different scale than the hops used by HDS and RWSA.
8. Conclusion

The Rooted k-Steiner Minimum Tree problem
connects the resource discovery problem to a solid
foundation of graph theory providing means to calculate
near-optimal query paths in a graph. The MST k-Steiner
algorithm computes an approximation of the shortest
tree between the querying node and the nodes having the
queried resource instances and thus is an upper bound
for the performance of local search algorithms. The
algorithm can be used in cases, where nodes contain
only one instance of queried resource and the problem
has to be further extended if multiple resource instances
in a node is to be supported. In overall, the results
presented here show that local search algorithms
commonly used in P2P networks are far from optimal
paths.

Based on the findings in Gnutella2 topology, DQP
has slightly lower performance than BFS, but because of
automatic adaptation of time-to-live parameter it can be
feasibly used in current P2P networks. HDS and RWSA
suffer from implementation problems because to avoid
already visited nodes they need to keep record of visited
nodes and therefore the size of the query packet grows in
large graphs limiting their use.

What makes the resource discovery problem hard in
P2P networks is that only local information is available.
It would be interesting to know how close to the
optimum can algorithms get using local knowledge. A
record of the global network topology is used in Open
Shortest Path First [17] IP routing protocol and
Dijkstra’s algorithm for computing the shortest paths
suggesting possibilities that MST k-Steiner tree

algorithm could be adapted to distributed P2P networks.
In this case, information about the resources needs to be
at least partially cached in the nodes. This, however,
needs further research.
References
[1] L. A. Adamic, R. M. Lukose, B. A. Huberman, ”Local Search in

Unstructured Networks”, Handbook of Graphs and Networks: From the
Genome to the Internet, Wiley-VCH, 2003, pp. 295-317.

[2] A.-L. Barabási, R. Albert, ”Emergence of Scaling in Random Networks”,
Science 286, 1999, pp. 509-512.

[3] F. A. Chudak, T. Roughgarden, D. P. Williamson, “Approximate k-MSTs
and k-Steiner Trees via the Primal-Dual Method and Lagrangean
Relaxation”, Proceedings of the 8th International Integer Programming and
Combinatorial Optimization Conference (IPCO), Springer, 2001, pp.
60-70.

[4] A. Crespo, H. Garcia-Molina, “Routing Indices For Peer-to-Peer Systems”,
Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS’02), IEEE Press, 2002, pp. 23-33.

[5] S. Daswani, A. Fisk, “Gnutella UDP extension for scalable searches
(GUESS) v. 0.1”.

[6] A. Fisk, “Gnutella Dynamic Query Protocol v0.1”, Gnutella Developer’s
Forum, May 2003.�

[7] M. Harchol-Balter, T. Leighton, D. Lewin, “Resource Discovery in
Distributed Networks”, 18th Annual ACM-SIGACT/SIGOPS Symposium
on Principles of Distributed Computing (PODC’99), Atlanta, 1999.

[8] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yatzi, “A Local Search
Mechanism for Peer-to-Peer Networks”, Proceedings of the 11th
International Conference on Information and Knowledge Management,
ACM Press, 2002, pp. 300-307.

[9] R. M. Karp, ”Reducibility Among Combinatorial Problems”, Complexity
of Computer Computations, Plenum Press, New York, 1975, pp. 85-103.

[10] B. J. Kim, C. N. Yoon, S. K. Han, H. Jeong, “Path finding strategies in
scale-free networks”, Physical Review E 65, 2002.

[11] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, J. Vuori, ”P2PRealm –
Peer-to-Peer Network Simulator”, 11th International Workshop on
Computer Aided Modeling and Design of Communication Links and
Networks, IEEE Communications Society, pp. 93-99, Trento, Italy, 2006.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and Replication in
Unstructured Peer-to-Peer Networks”, Proceedings of the 16th International
Conference on Supercomputing, ACM Press, 2002, pp. 84-95.

[13] N. Lynch, “Distributed Algorithms”, Morgan Kauffmann Publishers, 1996.
[14] P. Makosiej, G. Sakaryan, H. Unger, “Measurement Study of Shared

Content and User Request Structure in Peer-to-Peer Gnutella Network”,
Proceedings of Design, Analysis, and Simulation of Distributed Systems
(DASD 2004), Arlington, USA, April 2004. pp. 115-124.

[15] K. Mehlhorn, “A faster approximation algorithm for the Steiner problem in
graphs”, Information Processing Letters, vol. 27 issue 3, 1988, p. 125-128.

[16] D. A. Menascé, “Scalable P2P Search”, IEEE Internet Computing, Vol. 7,
No. 2, March-April 2003, pp. 83-87.

[17] J. Moy, "OSPF Version 2”, RFC 2328, The Internet Society, April 1998.
[18] A. Oram, ”Peer-to-Peer: Harnessing the Power of Disruptive Technologies”,

O’Reilly & Associates, March 2001.
[19] H.-J. Prömel, A. Steger, “The Steiner Tree Problem: A Tour through

Graphs, Algorithms, and Complexity”, Advanced Lectures in Mathematics,
Vieweg Verlag, 2002.

[20] N. Sarshar, P. O. Boykin, V. P. Roychowdhury, ”Percolation Search in
Power Law Networks: Making Unstructured Peer-to-Peer Networks
Scalable”, Proceedings of the Fourth International Conference on P2P
Computing (P2P’04), IEEE Press, 2004, pp. 2-9.

[21] D. Stutzbach, R. Rejaie, S. Sen, “Characterizing Unstructured Overlay
Topologies in Modern P2P File-Sharing Systems”, Proceedings of the
ACM SIGCOMM Internet Measurement Conference, Berkeley, October
2005.

[22] D. Tsoumakos, N. Roussopoulos, ”Adaptive Probabilistic Search for
Peer-to-Peer Networks”, Proceedings of the Third International Conference
on P2P Computing (P2P’03), IEEE Press, 2003, pp. 102-109.

[23] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, J. Vuori, ”Resource
Discovery in P2P Networks Using Evolutionary Neural Networks”,
International Conference on Advances in Intelligent Systems – Theory and
Applications (AISTA 2004), 2004.

[24] B. Y. Wu, K.-M. Chao, ”Spanning Trees and Optimization Problems”,
Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2004.

[25] B. Yang, H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks”,
Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS’02), IEEE Press, 2002, pp. 5-14.

553553

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Structure of the Thesis

	2 PEER-TO-PEER NETWORKS
	2.1 Distributed Systems
	2.2 P2P Network
	2.3 Unstructured and Structured P2P
	2.4 Gnutella Protocol
	2.5 Advantages and Disadvantages of Pure Unstructured P2P Networks

	3 RESOURCE DISCOVERY IN UNSTRUCTURED P2P
	3.1 Evaluating the Search
	3.2 Blind Search Methods
	3.3 Informed Search Methods

	4 TOPOLOGY MANAGEMENT IN UNSTRUCTURED P2P
	4.1 Characteristics of Overlay Topologies
	4.2 Topology Management
	4.3 Interest-Based Topology Management Approaches

	5 SIMULATION OF PEER-TO-PEER NETWORKS
	5.1 Initial Network
	5.2 Resources
	5.3 Queries
	5.4 Running and Monitoring P2P Simulations

	6 SIMULATING TOPOLOGY MANAGEMENT AND DBFS
	6.1 Simulated Situation
	6.2 Simulator
	6.3 Simulation Tests
	6.4 Simulation Cases
	6.5 Conclusions

	7 CONCLUSIONS AND CONTRIBUTION OF THESIS
	7.1 Contributions of the Author

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	APPENDIX
	ORIGINAL PAPERS
	RESOURCE DISCOVERY IN P2P NETWORKS USINGEVOLUTIONARY NEURAL NETWORKS
	CHEDAR: PEER-TO-PEER MIDDLEWARE
	PEER-TO-PEER STUDIO - MONITORING, CONTROLLING AND VISUALISATION TOOL FOR PEER-TO-PEER NETWORKS RESEARCH
	P2PREALM - PEER-TO-PEER NETWORK SIMULATOR
	NEW TOPOLOGY MANAGEMENT ALGORITHMS FOR UNSTRUCTURED PEER-TO-PEER NETWORKS
	TOPOLOGY MANAGEMENT IN UNSTRUCTURED P2P NETWORKS USING NEURAL NETWORKS
	OPTIMAL RESOURCE DISCOVERY PATHS OF GNUTELLA2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

