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In an attempt to answer this question [localization of brain processes], the 
neurologist Karl Lashley, in a series of experiments beginning around 1920 and 
running for many years, tried to discover where in its brain a rat stores its 
knowledge about maze running. In his book The Conscious Brain, Steven Rose 
describes Lashley's trials and tribulations this way: 

Lashley was attempting to identify the locus of memory within the cortex, 
and, to do so, first trained rats to run mazes, and then removed various 
cortical regions. He allowed the animals to recover and tested the retention 
of the maze-running skills. To his surprise it was not possible to find a 
particular region corresponding to the ability to remember the way through a 
maze. Instead all the rats which had had cortex regions removed suffered 
some kind of impairment, and the extent of the impairment was roughly 
proportional to the amount of cortex taken off. Removing cortex damaged 
the motor and sensory capacities of the animals, and they would limp, hop, 
roll, or stagger, but somehow they always managed to traverse the maze. So 
far as memory 'as concerned, the cortex appeared to be equipotential, that is, 
with all regions of equal possible utility. Indeed, Lashley concluded rather 
gloomily in his last paper "In Search of the Engram", which appeared in 
1950, that the only conclusion was that memory was not possible at all.’ 

D. Hofstadter (1999) 
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1 INTRODUCTION  

Working memory (WM) is at the core of any cognitive function as it is necessary for the integration 
of information over time (Nan, Knösche, Zysset, & Friederici, 2008) helping us make sense of the 
continuity of our experience of time and of our self. The study of WM is central to understanding 
how memory and thought work (Wager & Smith, 2003). Despite WM’s critical role in high-level 
cognitive functions, its functioning and mapping in the neural tissue is poorly understood. If we want 
to comprehend all other aspects of cognition, it is fundamental to first explain how humans store and 
process information. 

Why is the scientific study of WM for music important? Music is ubiquitous and seems to be 
associated with a distinct brain architecture. In recent years there has been a significant increase in 
research studies on low- and high-level music processing in the brain, including phenomena such as 
perception of psycho-acoustic features, performance, and music-driven emotion and memory, aimed 
to describe and understand the music-brain interaction: how music engages the brain and how it 
affects cognition in different ways. In addition to being the foundation of cognition, memory is also 
crucial in emotion, and it should be noted that emotion in music is thought to be one of the major 
factors that shape how and what we remember (Dolan, 2002). The mnemotechnic power of music is 
well known: “Beyond the repetitive motions of walking and dancing, music may allow an ability to 
organize, to follow intricate sequences, or to hold great volumes of information in mind—this is the 
narrative or mnemonic power of music” (Sacks, 2007). Indeed the engraving, persistent quality of 
musical memory is of extraordinarily remarkable accuracy, and the study of music-related memory 
circuits in the brain could illuminate on the intriguingly distinct way in which our selective brains 
listen to music. Finally it is important to emphasize that the study of how memory encodes music 
will also tell us about the nature of human memory in general. 

Auditory WM has been mainly studied using vocal stimuli and only recently a few studies have 
started investigating the neural networks engaged in auditory WM for music. Preliminary findings in 
research on auditory WM show differences between linguistic and musical memory (Deutsch, 1970; 
Salamé & Baddeley, 1989), leading to the speculation of specific networks encoding memory for 
music. However, the finding that musical training enhances the performance during verbal tasks 
(Chan, Ho, & Cheung, 1998) reveals rather overlapping structures for verbal and tonal WM. 
Similarly, Koelsch, Schulze, Sammler, Fritz, Müller and Gruber (2009) studied auditory WM during 
rehearsal and storage for syllables and pitches in non-musicians and found that WM for both verbal 
and tonal information share neocortical, subcortical and cerebellar networks, providing evidence for a 
high degree of overlap between the functional architecture of verbal and tonal WM. Interestingly, a 
later study (Schulze, Zysset, Mueller, Friederici, & Koelsch, 2011) revealed specific verbal and 
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tonal-related WM components only in musicians, suggesting functional plasticity1 induced by music 
training. Thus the question about the existence of a specialized memory system for non-phonological 
information remains open. 

In addition to the scarcity of WM studies dealing specifically with music, most experimental settings 
typically employ simpler materials. Certainly in neuroscience WM has been rarely studied in 
naturalistic listening situations and rather using artificial target detection tasks (e.g., n-back and 
Sternberg2 tasks) with manipulated stimuli, all of which might create mental states not characteristic 
of brain’s behaviour in more natural, attentive situations. 

If we consider that humans have evolved in a natural complex auditory scene environment, capable 
of segregating auditory objects for interaction and survival (Janata, 2002), it is reasonable to believe 
that in studying music-driven cognitive processes in the brain, more naturalistic approaches are 
crucial if we aim at a) mapping those functional brain areas engaged in acoustically complex 
environment-conditioned processing, and b) comparing and supporting the experimental findings 
resulting from the use of artificially created stimuli against more natural and complex approaches 
that most reliably replicate the acoustic environments our brains have adapted to. 

Thus we used a naturalistic setting, denoting both a) a non-manipulated, complex, real-life music 
stimulus and b) a natural continuous, free listening condition. In our setting participants attentively 
listened to the piece from beginning to end, without performing any tasks. This allowed subjects to 
move away from possible mental states arising from such target detection tasks that may not be 
characteristic of brain’s behaviour in more natural, attentive situations. Such paradigm constitutes 
an unusual approach as opposed to the usual practice in research studies focusing on auditory 
processing in the brain (Koelsch et al., 2009, Pallesen, Brattico, Bailey, Korvenoja, Koivisto, Gjedde, 
& Carlson, 2010; Pereira, Teixeira, Figueiredo, Xavier, Castro, & Brattico, 2011; Brattico, Alluri, 
Bogert, Jacobsen, Vartiainen, Nieminen, & Tervaniemi, 2011; Levitin & Menon, 2003; Janata, 
Tillmann, & Bharucha, 2002). Even if still ecologically significant, findings derived from traditional 
approaches employing artificially controlled musical stimuli would need to be validated against 
results coming from rich, naturalistic approaches, more representative of the complex auditory 
phenomena the brain has evolved to respond to. 

                                                             
1 Functional plasticity refers to the nervous system's remarkable ability to respond, reorganize and adapt in response to internal and 
external changes. This ability has important implications for learning (Bellis, 2003). The induced changes may occur as a consequence 
of very different events such as the normal development and maturation of the organism, the acquisition of new skills (learning), 
following damage to the nervous system and as a result of sensory deprivation (Shaw, McEachern, & Eachern, 2001). It is influenced by 
the constant interaction between the individual and his environment. Thus we can think of plasticity as the bridge between brain and 
behaviour (Gjelsvik, 2008). 

2 During an n-back task participants must continuously monitor the identity or location of stimuli that appear sequentially, and indicate, 
usually by pressing a button, whether the currently presented stimulus has been presented n items before its onset (Owen, McMillan, 
Laird, & Bullmore, 2005), thus for n > 0 the task requires both maintenance and updating of the last n stimuli in order (Andrade, 
2010). Pallesen et al. (2010) used the n-back paradigms in tasks about memorizing octaves of chords, whereby participants had to 
respond after each stimulus by pressing a button a) whether the octave of the chord matched that of the previous trial (n=1); b) 
whether the  octave matched the chord presented two trials back (n=2). The Sternberg task (Sternberg, 1969) is another test of 
maintenance in WM, where participants are asked to press a button to indicate that the probe stimulus currently presented was 
previously displayed in a set of stimuli, usually containing 3-9 elements (Andrade, 2002).  
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Our goal in the present study was to determine the topography of music-elicited WM using a 
naturalistic attentive listening condition and a non-manipulated piece of music, and not to determine 
the specificity of neural networks recruited for musical WM versus verbal WM, as we did not use an 
analogous verbal condition that would allow drawing such conclusions. Thus the resulting findings do 
not extend beyond the scope of exploring the functional neuroarchitecture of WM for music in a 
naturalistic setting in musicians. 

We hope that the findings of this study will offer a valuable contribution to the ongoing research on 
musical WM, and in WM in general, by a) using a naturalistic paradigm, whereby activation of 
WM-related neural networks is studied by tracing motivic repetition that naturally occurs in 
Western tonal music, to more traditional approaches, given the scarcity of such functional magnetic 
resonance imaging (fMRI) studies; b) controlling for the variance accounted by the acoustic features 
in the music in order to fine-tune the identification of WM function in the brain. 

The structure of this thesis is as follows: first, a theoretical background presenting an overview of 
relevant background concepts related to methodology in the field of cognitive neuroscience used in 
the present study is provided. This section includes a description of some of the influential 
psychological and neuroanatomical theories of WM and the challenges they face, as well as a report 
on fMRI studies related to WM with auditory stimuli with special emphasis on the neuroanatomical 
findings. This is followed by an exhaustive explanation of the methodological process, including the 
perceptual and fMRI experiment. Finally, results are reported and discussed. 
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2 THEORETICAL BACKGROUND 

2.1 COGNITIVE NEUROSCIENCE OF MUSIC 

Cognitive neuroscience is the interdisciplinary study of human cognition with special emphasis in the 
neural substrates of cognitive processes, that is, it studies the biological substrates underpinning 
cognition, the fundamental question about the representation of knowledge in the brain. 

In the words of Milner, Squire, and Kandel (1998): 

“...cognitive psychology was concerned not simply with specifying the input and 
output for a particular behaviour but also with analyzing the process by which sensory 
information is transformed into perception and action—that is, with evaluating how a stimulus 
leads to a particular behavioural response. In redirecting scientific attention to mental 
operations, cognitive psychologists focused on information processing, on the flow of sensory 
information from sensory receptors to its eventual use in memory and action. It was implicit in 
the cognitive approach to behaviour that each perceptual or motor act has an internal 
representation in the brain: a representation of information in patterns of neural activity”. 

Thus, in cognitive neuroscience particular signals of the nervous system are of interest inasmuch they 
can be used to explain cognitive functions, and in this sense it is a functional neuroscience. To relate 
changes in neural activity to specific cognitive functions, the cognitive psychology community has 
long acknowledged the necessity for the insight of neuroimaging techniques. Particularly, cognitive 
neuroscience has been long and profoundly concerned with the study of the neuronal mechanisms 
enabling the storage and retrieval of information about the world, since these bind almost every 
aspect of information processing (perception, decision making, motor control, emotion, and 
consciousness [Wilson & Keil, 2001]). 

As for the growing interest and development of cognitive neuroscience in the musical domain, the 
last twenty years have been crucial in this respect. Music is ubiquitous, a human feature, as ancient 
as homo sapiens, deeply rooted in our biology, with a seemingly distinct and extensive functional 
neuroarchitecture, capable of inducing vivid, intense emotions, all of which makes it an appealing 
phenomenon to study different areas of human nature. Sensory-motor mechanisms can be also 
studied using music since they activate not only when performing, but also when listening to it 
(Lahav, Saltzman, & Schlaug, 2007;  Zatorre, Chen, & Penhune, 2007; Haueisen & Knösche, 2001). 
Moreover, musicians —experts in the musical domain— exhibit functional and structural changes in 
the brain, what also has driven music into a device for studying brain plasticity (Hyde, Lerch, 
Norton, Forgeard, Winner, & Evans, 2009;  Gaser & Schlaug, 2003; Schlaug, 2006;  Münte, 
Altenmüller, & Jäncke, 2002).  
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2.1.1 FMRI AND THE BOLD SIGNAL 

Functional magnetic resonance imaging (fMRI) is in neuroscience the prevalent neuroimaging 
method —with high spatial and medium temporal resolution— that has undergone an explosive 
growth in recent years, used by researchers and clinicians to image human brain activity in response 
to given mental tasks, allowing them to assess correlates of brain activity on a time scale of roughly 
a few seconds. 

FMRI does not trace activity from single neurons, but rather activity arising from large population 
of neurons, and it does this in a non-invasive manner. Series of brain images are acquired during the 
course of an fMRI experiment, which allows researchers to measure the signal change between those 
images and make inferences (Lindquist, 2008). Thus fMRI provides a unique perspective on brain 
function. However, what researchers actually measure is not neuronal activity directly, i.e., changes 
in electrical potential or in chemical gradients. They use an indirect measure of brain activity given 
by another physiological marker: metabolic changes associated to neuronal activity. Specifically, 
fMRI uses blood properties as indices of brain activity. These properties fluctuate according to the 
metabolic demands of active neurons (the principle of neurovascular coupling: the relationship 
between changes in cerebral blood flow [CBF] and local neural activity; see Figure 1).   

 

 

 

 

 

 

 

In particular, fMRI measures the change in magnetization between oxygen-rich (oxyhemoglobin) and 
oxygen-poor blood (deoxyhemoglobin), the so-called BOLD (blood-oxygen-level-dependent) contrast 
(Huettel, Song, & McCarthy, 2009). The justification of this contrast relies on the principle that 
neuronal activity demands an increase in energy, supplied through glucose and oxygen by the 
vascular system to the tissue. Oxygen is carried on molecules of hemoglobin, which has iron in it, 
and the magnetic properties of hemoglobin change based on whether they have oxygen attached to 
them (diamagnetic) or not (paramagnetic2F

3). Thus the amount of iron flowing into that region 

                                                             
3 Paramagnetic material is only magnetically attracted in presence of an externally applied magnetic field, whereas diamagnetic material 
is repelled by them (Miessler & Tarr, 2004). 

Figure 1. Principle of neurovascular coupling: neuronal activation 
requires a higher consumption of oxygen which is supplied by blood 
perfusing the tissue. Concentration of oxygenated and deoxygenated 
hemoglobins (oxyHb, deoxyHb) are modulated after a neuronal 
stimulus. 
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changes, this is, the magnetic and thermodynamic properties of the area change. As a result, there is 
an increase in concentration of oxyhemoglobin and a decrease of deoxyhemoglobin in the area. 
Because deoxyhemoglobin has paramagnetic properties, it is precisely its relative decrease what 
makes it detectable by the scanner (Moridani, 2009). Hence we can see the difference magnetically 
between the resting state and the active state of the brain. This allows ‘watching’ the brain in action 
as it is working. 

 

 

 

So when a part of our brains is used, the oxygen requirements in that area increase and the vascular 
system responds accordingly, although with certain delay. Thus the BOLD response to brief neuronal 
activity consists of a short onset delay, a rise to a peak after a few seconds, a return to baseline, and 
a prolonged undershoot (see Figure 2). Sometimes an initial decrease in the BOLD signal is reported 
due to initial oxygen extraction before increases in blood flow (Huettel et al., 2009). The course of 
changes in blood flow is called the hemodynamic response (HDR). The HDR has interferences from 
various sources, and statistical techniques are needed to remove the noise. 

A linear system is often used to model the HDR, i.e., the magnitude of the HDR to individual 
stimuli is assumed to be equal to the summation of independent responses to each stimulus. 
However, neuronal activity expected very close in time (derived from not sufficiently separated 
stimuli) leads to a reduced than expected hemodynamic amplitude (known as refractory effect). 
Inter-stimulus interval should be at least 5-6 seconds, which seems to be the refractory period for 
many types of stimuli, to guarantee the return of the hemodynamic response to baseline. In the 
presence of refractory effects a linear model will overestimate the hemodynamic response and reduce 
effectiveness of experimental analysis (Huettel et al., 2009). Many statistical techniques to analyse 
fMRI data exist, which aim at producing a spatial map of localized significant signal changes in the 
brain in response to the task under investigation (Jezzard, Matthews, & Smith, 2001). 

Figure 2. The standard canonical model for the 
HRF used in fMRI data analysis illustrates the main 
features of the response. 
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In short, the fMRI signal can be described as the underlying neuronal activity expressed through the 
hemodynamic response, with added noise (Frackowiak, Ashburner, Penny, & Zeki, 2004), and it is 
actually reflecting fluctuations in oxygen rich blood flow that lag behind the underlying neural 
activity, since the vascular system is very slow. FMRI can then show what parts of the brain are 
active over several seconds, what makes fMRI very good at telling where things are happening but 
not very good at telling when they are happening. 

2.1.2 FMRI: PROS AND CONS 

Despite currently being the backbone of neuroimaging in cognitive neuroscience, allowing the 
acquisition of knowledge and insights into brain function, there are some drawbacks associated with 
the use of fMRI. We mentioned earlier that the HDR is a very slow response, unlike 
magnetoencephalography (MEG) or electroencephalography (EEG) measurements, with a temporal 
resolution to the millisecond. Another limitation is the fact that fMRI does not provide evidence of a 
brain region being essential for a function, although this limitation also applies to EEG and MEG 
techniques as well. Thus it would require integration with i.e., transcranial magnetic stimulation 
(TMS) to allow for reversible interference (Jezzard et al., 2001). In addition, the magnitude of the 
fMRI signal reflects differences across brain regions or even conditions within the same region, a 
problem that does not derive from the inability to estimate cerebral metabolic rate of oxygen 
(CMRO2) from the BOLD signal, but to the sensitivity of the HDR to the spatial and temporal 
sparsity of the activated neuronal population (Logothetis, 2008). Furthermore, fMRI may potentially 
confuse excitation and inhibition, which complicates the interpretation of fMRI data. 

Another downside is noted by Attwell and Iadecola (2002) when highlighting the assumption that 
HDR is determined by energy use of neuronal populations. It has been recently suggested that the 
HDR is driven by neurotransmitter-related signalling and not directly by the local energy needs of 
the brain, because most energy is used to power postsynaptic currents and action potentials rather 
than presynaptic or glial activity. Another consideration is the cost of fMRI: behavioural experiments 
are preferred over fMRI if the hypothesis can be addressed by both (Henson, 2005). 

When analyzing fMRI time series, statistical packages like SPM facilitate the task but they can be 
easily misused if their principles are not fully understood. Statistical errors are frequent in fMRI 
analysis, one of the reasons of the fair amount of contradictory results. Another reason is that there 
are few attempts at replication (Henson, 2005). The interpretation and conclusion drawn from fMRI 
results often ignore the actual limitations of the methodology. 

Finally, fMRI studies are an area of research very vulnerable to being sensationalised (Caulfield, 
Rachul, Zarzeczny, & Walter, 2010). Fancy, clean images of brains showing impressive results in 
form of red blobs with accompanying fitting scientific narrative are very seducing, and lead to think 
of fMRI as a translucent window, through which we can clearly and unmistakably observe 
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psychological processes as they happen inside the brain. That is the reason why neuroimaging is 
dangerously tempting for bad science and has been so often used for unethical commercialization. 
Logothetis (2008) indicates that many of the limitations of fMRI are not related to physics or poor 
engineering (and therefore solved by increasing the power of the scanners), but inherently to brain 
complex circuitry and functional organization, facts ignored by inappropriate designs. It is therefore 
central to the use of neuroimaging techniques that scientists fully understand their tools and agree 
on the experimental protocols suitable for fMRI in order to maximize the chances for significant 
unbiased results. Additionally, not all psychological theories can be confirmed or disconfirmed by the 
use of fMRI. 

It should be noted that, despite all the disadvantages described, fMRI is certainly not the only 
methodology with limitations. Its non-invasive nature grants its wide use by neuroscientists and 
medical community. Of special importance is its high spatial resolution that allows locating certain 
critical areas vey precisely, which helps neurosurgeons minimize side effects when placing implants or 
removing tumours. Brain mapping is also useful in detecting distinct brain “signatures” that physical 
injury or some diseases might be identified with, as well as in diagnosing neurodegenerative diseases 
like Parkinson's and Alzheimer's, and tracking how treatments work. It principally contributes to 
observing our brains more intimately, while they learn and adapt to the environment. 

In this section we have emphasized the limitations over the advantages of fMRI, since knowing the 
vulnerabilities of the technique is central in deciding how far to go when interpreting the results. To 
take full advantage of any methodology, researchers should understand its foundations, assumptions 
and limitations. 

2.2 WHAT IS WORKING MEMORY? 

2.2.1 SHORT-TERM AND LONG-TERM MEMORY 

Memory is the capacity to encode, store and retrieve information (Wilson & Keil, 2001). It was in 
1898 when W. James first hypothesized that memory might not be a unitary system. Half a century 
later the hypothesis of a two-component view (short-term and long-term memory [STM and LTM, 
respectively]) started to emerge upon empirical evidence (specially the amnesiac syndrome: preserved 
STM with impaired LTM or vice versa). STM reflects an ability to hold a limited amount of 
information that remains temporarily accessible and does not cause permanent anatomical or 
chemical changes in the synapses between nerve cells, whereas LTM persists much longer because it 
shapes structural changes in the brain (long‐term memories result from grouping associated items 
through connections between neural networks [Squire & Kandel, 2008]). LTM is an extensive store 
and record of prior events, existing in all theoretical views (Cowan, 2008). 
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The modal model (Atkinson & Shiffrin, 1968) suggested that STM is crucial for LTM, thus damage 
to STM mechanisms would impair learning, but such evidence was not found. This motivated the 
dual-task paradigm advanced by Baddeley and Hitch (1974), where participants performed two 
distinct STM-dependent tasks, one of which was gradually increased to absorb more STM capacity, 
with the other task being impaired but never obliterated, thus leading to a reformulation of the STM 
hypothesis and the proposal of a multicomponent STM (term replaced by WM), one of the most 
influential models to date, containing an executive centre (limited attentional control) with two 
independent slave subsystems (a visual-spatial system and speech-based information system [Wilson 
& Keil, 2001]). The term “working memory” was first used by Miller, Galanter and Pribram (1960) 
applied to certain aspect of memory used to plan and perform behaviour (i.e., retaining partial 
results in solving a calculation [Cowan, 2008]). This term was then adopted by Baddeley and Hitch 
(1974) when demonstrated that only one STM mechanism or store could not account for different 
STM-related processes. 

The two possible ways in which STM and LTM may differ still remains controversial though: a) in 
duration, whereby STM items decay with time; b) in capacity, whereby there is a limited amount of 
items that STM can hold (N. Cowan, 2008). Thus within the information-processing capabilities of 
the memory system, STM represents a bottleneck both in its time limit and in its information 
capacity (Snyder, 2000), and according to different measurement, its capacity seems to be an average 
of seven different elements, plus or minus two (Miller, 1956). 

2.2.2 SHORT-TERM MEMORY VERSUS WORKING MEMORY 

Although STM and WM are used interchangeably in the literature, STM can be thought of as a 
passive store component capable of temporarily holding certain amount of information, whereas WM 
extends beyond the mere storage to be conceived as an information manager, as a link between STM 
and LTM. However, discrepancies about the definition of WM exist in the current literature: it has 
been defined a) as a STM system applied to cognitive tasks (Engle, Tuholski, Laughlin, 1999; 
Conway, Kane, Bunting, Hambrick, Wilhelm, Engle, 2005); a) as a multi-component system that 
stores and manipulates information in STM (Baddeley & Hitch, 1974); (c) as the use of attention to 
manage STM (Engle, 2002); d) as immediate perceptions together with related activated long-term 
memories, semi-activated contextual information not in consciousness plus information that has just 
been in consciousness (Snyder, 2000). In this line (d) other authors’ views (Engel & Singer, 2001; 
Ruchkin, Grafman, Cameron, & Berndt, 2003; Ward, 2003; Cowan, 1999; Ericsson & Kintsch, 1995) 
regard WM not as a separate system, but as an activated subset of LTM.  

From different theoretical views, WM seems to be a type of memory in the short term domain that 
performs information-processing functions, is more attention demanding, and correlates with 
cognitive needs: WM includes STM plus extra processing mechanisms that help to make use of STM. 
Miyake and Shah (1999) propose a unifying definition of WM (p. 450):  
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 "Working memory is those mechanisms or processes that are involved in the control, 
regulation, and active maintenance of task-relevant information in the service of complex 
cognition, including novel as well as familiar, skilled tasks. It consists of a set of processes and 
mechanisms and is not a fixed 'place' or 'box' in the cognitive architecture. It is not a 
completely unitary system in the sense that it involves multiple representational codes and/or 
different subsystems. Its capacity limits reflect multiple factors and may even be an emergent 
property of the multiple processes and mechanisms involved. Working memory is closely linked 
to LTM, and its contents consist primarily of currently activated LTM representations, but 
can also extend to LTM representations that are closely linked to activated retrieval cues and, 
hence, can be quickly reactivated." 

Working memory and music 

According to Snyder (2000), limitations deriving from our memory capacity influence how humans 
perceive temporal patterns of events and the boundaries between them, guiding our decisions about 
how events relate to one another in order to comprehend them as a whole and predict future events. 
Music that is intended as a communicative tool should respect the structure of memory “even if we 
want to work against that structure” (p. 3). 

WM mechanisms are needed to form a coherent representation of the auditory flow by allowing to 
retain information over time. However, as an unfolding sequence of temporal events, all music 
properties are at mercy of the human WM thresholds, limiting our capacity for retention. 
Segmentation of the undifferentiated auditory stream in smaller units is crucial for this coherence 
representation. Lerdahl and Jackendoff (1983) emphasized the importance of segmenting the 
continuous flow of musical events (“when a listener has construed a grouping structure, he has gone a 
long way towards ‘making sense’ of it” [p.13]). Identifying musical events is an end product of the 
ongoing perceiving process which is governed by certain rules to segregate elements (Handel, in 
Cambouropoulos, 2009, p. 12). 

2.3 PSYCHOLOGICAL AND FUNCTIONAL NEUROANATOMICAL 
THEORIES OF WORKING MEMORY 

According to Milner et al. (1998), there are two key components in the study of memory: a) where it 
is stored and what brain systems are involved (the systems problem of memory); and b) how 
memory is stored at each site (the molecular problem of memory). The scope of the present study 
lies within the systems problem of memory. This represents a difficulty in that strictly psychological 
theories of WM cannot be tested, unless they associate neuroanatomical loci for their functional 
modules. In the following we will examine first some psychological theories about WM, to proceed 
with the neuroanatomical findings and the assumptions derived thereof. 
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2.3.1 PSYCHOLOGICAL THEORIES 

There have been several different models of WM, but Baddeley and Hitch’s (1974) tripartite WM 
model comprising storage and processing components has been extremely influential, allowing to 
explore cognition and to generate new hypotheses in various fields. Their model has been 
consolidated and minor changes have been introduced. Baddeley and Hitch's multicomponent model 
(1974) resulted from experimental work based on dual task studies, founded on the idea that tasks 
requiring the same processing mechanisms will show interference effects when performed 
simultaneously. Their experiments showed auditory and visual dissociation, whereby verbal tasks, 
and not visual, interfered with other verbal tasks in STM, and so WM model was proposed 
consisting of separate memory systems: (1) visuo-spatial sketchpad (for visual information) and (2) 
phonological loop (for auditory-linguistic information [Snyder, 2009]). These subsystems have passive 
storage and active rehearsal mechanisms and are subordinate to a third component: (3) the central 
executive (thinking and planning), which manipulates the WM information. Without rehearsal, 
information rapidly decays in a matter of seconds. In this rehearsal process, selective attention is 
involved. Auditory WM therefore involves attending, listening, processing, storing and recalling 
(Andrade, 2002). Most recently a (4) episodic buffer has been included in the model (Baddeley, 2000) 
as a third subsystem necessary to explain cross-domain associations, which is also assumed to act as 
a link or buffering mechanism between WM and LTM. However, Baddeley’s model does not 
emphasize the contributions of LTM, which would reduce the WM load by organizing and grouping 
information in WM into a smaller number of units (Miller, 1956; Ericsson & Kintsch, 1995). In 2007, 
Baddeley introduced a hedonic detector to incorporate emotional processing in his WM model (p. 
294) to account for how emotion mediates memory storage. 

A number of studies have supported Baddeley’s WM model, but some research has also challenged 
the empirical basis of the model, resulting in some conflicts and inconsistencies. For instance, the 
hypothesis of modality-specific storage systems for spatial location and verbal recall in WM was 
contradicted when these systems were equally impaired by articulatory suppression4 (Jones, Farrand, 
Stuart, & Morris, 1995). This apparent division between visual and verbal STM would be then a 
misapprehension (Jones et al., 1995) of the fact that what is being disrupted during the articulatory 
suppression is serial recall (coding of order information) in verbal memory rather than item 
information. His model has also been criticized for not specifying whether musical information is 
subserved by the phonological loop, and for ignoring other sensory modalities (i.e., olfactory, tactile, 
gustatory) besides visual and auditory buffers. 

Berz (1995) studied music-related STM in connection with LTM, plus the influence of background 
music and speech on the performance of several tasks. He found differences in the nature of both the 
processing and storage of musical stimuli. According to Berz, most compelling evidence for a separate 
musical component in Baddeley’s multicomponent model of WM is the phenomenon of the 
                                                             
4 Method that consists in ‘occupying’ or ‘using’ the phonological loop by i.e., repeating a word. By engaging the phonological loop in 
this way, it can be determined whether other tasks requiring the same loop are inhibited. 
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unattended music effect, this is, unattended instrumental music would cause same disruptions on 
verbal performance as would unattended speech if there was one global store for both (Berz, 1995). 
His model is an extension of Baddeley and Hitch’s model, in that he included an additional 
subsystem separate from the phonological loop accounting for both short-term storage and processing 
of musical information. He suggests a processing of information held in STM with structures kept in 
LTM, thus supporting the use of LTM in information and strategies for WM. 

Cowan’s Embedded-Processes Model (1999) is an attempt to synthesize a number of empirical 
findings. His WM model relies on five principles: a) WM information derives from LTM, the 
currently activated subset of LTM, and the activated subset of memory in the focus of attention and 
awareness; b) there exist different processing limits to different faculties; c) the focus of attention is 
voluntarily (central executive system) and involuntarily (attentional orienting system) controlled; d) 
there is habituation, that is, unchanged features of a stimulus over a long time do not elicit 
awareness since they are of no key importance to the individual; e) awareness increases processing 
(number of features encoded). Cowan regards WM not a separate system from LTM, but as subset 
of LTM representations, and as such WM would arise by focusing attention (with a capacity=4 
items) onto an unlimited set of activated LTM representations (Cowan, 1995, 2005). He proposes 
that WM is not limited to one mechanism, and any necessary group of mechanisms at the 
individual’s disposal is likely to be used to retrieve the needed information. According to Cowan, 
using more than one mechanism is usually less taxing than relying on just one (Cowan, 1999). His 
idea of WM assumes activation mechanisms, attentional and executive mechanisms, and LTM 
retrieval mechanisms cooperating to build an effective WM system. 

2.3.2 NEUROANATOMICAL THEORIES  

2.3.2.1 THE PREFRONTAL CORTEX 

Although the mapping of the functional architecture of the WM in the brain is a very intricate 
current research subject, there is consensus in the research community about the critical involvement 
of areas in the prefrontal cortex (PFC) in WM functions, as indicated by Fuster's (1987) main 
results from single unit recordings. The PFC, and particularly the dorsolateral prefrontal cortex 
(dlPFC), has been consistently found active in tasks requiring executive functions (Kane & Engle, 
2002). Two types of WM executive processes have been traditionally distinguished that are predicted 
to be assigned to different brain structures: a) executive control, i.e., regulation of encoding, strategy 
selection, manipulation and retrieval of information; b) active maintenance, i.e., keeping information 
available online. Executive control is thought to be embodied by the PFC; however, consensus 
regarding the loci of maintenance functions has not been reached so far. Some locate maintenance 
functions in posterior (parietal) regions of the brain, assigning the PFC a mediator role in controlling 
the information stored in those posterior areas (Knight & D’Esposito, 2003; Postle & Rypma, 2000; 
Curtis & D’Esposito, 2003; Postle, 2006). Others, in contrast, hypothesize dorsolateral regions to also 
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reflect maintenance of online sensory representations per se (Cohen, Perlstein, Braver, Nystrom, 
Noll, Jonides, & Smith, 1997; Goldman-Rakic, 1987). 

2.3.2.2 MATERIAL-FUNCTIONAL DISTINCTION 

The organization of the PFC has been studied with regards to the material type (verbal, spatial, and 
object information without spatial features) stored in WM, but also by executive function or process 
type (function), allowing then for a polymodal representation of information in overlapping areas. 
The material versus function distinction derived primarily from Baddeley’s influential 
multicomponent model of WM. Neuroimaging studies addressed how the brain would embody these 
i.e., verbal and visual subcomponents and whether the hypothesized psychological distinctions (of 
either functional or material nature), validated in behavioural studies, were respected by brain 
patterns of activation. However, specialization by material type raises a problem in that distinct 
material categories may underlie different types of strategies (Courtney, Petit, Maisog, Ungerleider, 
& Haxby, 1998), which would be confounded, thus creating the illusion of different activation 
patterns based on material type (Wager & Smith, 2003).  

According to a functional organization, superior and ventral frontal cortices are implicated in 
executive and rehearsal processes respectively. Evidently, this presupposes that the experimental 
tasks targeted at mapping different functions in the brain must be able to distinguish these 
non-modality specific processes (Coltheart, 2006a). Concerning the material distinction, spatial and 
non-spatial WM seems to be coded in dorsolateral and ventrolateral regions respectively (Wager & 
Smith, 2003). However, results from neuroimaging studies on segregation-by-domain WM are not 
consistent, or have failed to provide evidence about an organization of the cortex by material type in 
WM (D’Esposito & Postle, 2002; Stern, Owen, Tracey, Look, Rosen, & Petrides, 2000). An 
explanation could lie in the designs or analyses employed, susceptible to contamination by 
stimulus-related variance (Postle, 2006). In opposition, it appears that a topographic distinction 
(mid-ventrolateral mid-dorsolateral) might exist according to the nature of the WM process rather 
than the material type (Petrides, Alivisatos, & Evans, 1995). Owen (1997) suggests that conflicting 
evidence derived from electrophysiological recording studies with monkeys (Funahashi, Bruce, & 
Goldman-Rakic, 1989, 1990; Wilson, O’Scalaidhe, & Goldman-Rakic, 1993) might be due to either a) 
a minor task design change producing subtle alterations in processing requirements; or b) a further 
sensory modality-based specialization within the dorsolateral and ventrolateral systems that an fMRI 
approach cannot detect, whereas electrophysiological techniques can. In fact, based on his review of 
neuroimaging results, Owen (1997) indicated that stimulus-modality specialization might occur 
within the ventrolateral prefrontal cortex (vlPFC), thus segregation by material type and process 
would be represented across the lateral PFC at different neuroanatomical levels. 
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2.3.2.3 MOVING AWAY FROM THE SUB-COMPONENT PARADIGM  

In the lack of neuroimaging converging evidence to date in support of a sub-component model of 
memory where different sensory-modalities or functions are represented topographically in the brain 
tissue, new theories that try to make sense of such disparity of results emphasize the importance of 
parietal and temporal brain areas specialized in perceptual-processing as necessary mediators for 
information storage (Jonides, Lacey, & Nee, 2005). Storage that does not recruit perceptual 
mechanisms would challenge this idea, as pointed out by Jonides (2005). More evidence to move 
away from this multi-buffer paradigm is, for instance, the fact that inhibition of the dlPFC using 
TMS or rTMS (Mottaghy, Pascual-Leone, Kemna, Töpper, Herzog, Muller-Gartner, & Krause, 2003; 
Oliveri, Caltagirone, Filippi, Traversa, Cicinelli, Pasqualetti, & Rossini, 2000; Koch, Oliveri, 
Torriero, Carlesimo, Turriziani, & Caltagirone, 2005), despite interfering with WM tasks, does not 
completely break down executive functions, thus supporting the existence of additional areas (either 
more general or more specific) performing this function (Mottaghy, 2006). For Fuster (2001) 
executive functions result from the connections between the PFC and LTM representations, and 
WM arises from the sustained activation of such network. It seems that conscious recall of sensory 
contents requires information binding to combine the spatially isolated brain areas within this 
emergent distributed network (Damasio, 1990; Fodor & Pylyshyn, 1988). In relation to this, Crick & 
Koch (1990) posited that binding and sensory awareness might be intimately related. It also has 
been proposed that information transfer to WM is mediated by a temporal pattern of synchronous 
discharges in selected neuronal populations induced by attentional mechanisms, i.e., binding of 
neural activity by synchronization activates WM (Crick & Koch, 1990). Similarly, Engel and Singer 
(2001) support the hypothesis that neural synchrony within millisecond precision may be implicated 
in arousal, perceptual integration, attentional selection and WM. Hence temporal dynamics within 
neuronal populations seems to be critical for the functioning of WM (Tallon-Baudry, Bertrand, 
Peronet, & Pernier, 1998; Sarnthein, Petsche, Rappelsberger, Shaw, & Stein, 1998; Engel & Singer, 
2001). 

In short, the two fundamental obstacles that the standard multi-component model faces are 
following: a) its aim to locate specialized buffers onto brain tissue, which has been challenged by the 
prolific incoming empirical evidence, leading to new theories, i.e., WM arises from the coordination of 
sensory-, representation-, and action-related systems (Postle, 2006); b) the many new dissociations 
uncovered by neuroimaging research within the postulated sensory buffers, hence demanding the 
accommodation of an increasing number of specialized subcomponents by the model. 

2.3.2.4 SUMMARY 

WM is defined as system that facilitates the temporal storage of sensorial information in a limited 
quantity, that also includes control, regulation and active maintenance of such information. It is one 
of the most intensively studied subjects in cognitive psychology. Current neuroimaging attempts to 
map functional multi-component models of WM described in the literature has been to date a 
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challenging undertaking, thus suggesting WM might not be a dedicated system in a restricted area in 
the brain anatomy, but a more complex network, a property emerging from the interactions of neural 
population in highly distributed brain areas (D’Esposito, 2007; Postle, 2006; Fuster, 2001). Studies 
on executive function reviewed by Collette, Hogge, Salmon and Van der Linden (2006) agree with 
the hypothesis that executive functions are not restricted to anterior cerebral areas, but disseminated 
throughout the brain. Also questions of transient or sustained activity are critical in studying 
executive processes, hence the importance of considering temporal dimension (Collete et al., 2006) 
when looking at patterns of activity. 

Last, a mention about the assumptions of the task designs. In the study of WM, recognition tasks 
(identification of a previously presented stimulus, i.e., n-back or Sternberg tasks) and recall tasks 
(actively retrieval to conscious memory of a previously presented stimulus, i.e., largely span task) are 
widely used in the literature. Both paradigms (recognition and recall) are assumed to trigger the 
same processes, but this may not be the case. 

2.3.3 NEUROIMAGING STUDIES OF MUSIC-RELATED WORKING MEMORY  

The functional neuroarchitecture of the phonological loop has so far been explored primarily for 
language and fMRI studies indicate that Broca’s area and premotor areas (premotor supplementary 
motor area [pre-SMA], supplementary motor area [SMA], ventrolateral premotor cortex [vlPMC] and 
dorsolateral premotor cortex [dlPMC]) activate significantly during the phonological rehearsal 
process (Awh, Jonides, Smith, Schumacher, Koeppe, & Katz, 1996; Fiez, Raife, Balota, Schwarz, 
Raichle, & Petersen, 1996; Gruber & von Cramon, 2003; Paulesu, Frith, & Frackowiak, 1993; 
Ravizza, Delgado, Chein, Becker, & Fiez, 2004). However, within the auditory WM, differences in 
the study of linguistic and musical memory have been found. Deutsch (1970) observed a dissociation 
between tones and phonemes in a WM task with tones, where tones impaired performance to a 
greater extent than phonemes. Results obtained by Salamé & Baddeley (1989) using a verbal WM 
task that was interfered by instrumental and vocal music indicated a similar dissociation, namely, 
that vocal music interfered more with the task than instrumental music. Findings were interpreted 
by the authors in terms of a phonological store that excluded non speech-like sounds. However, Chan 
et al. (1998) found that musicians perform better in verbal tasks than non-musicians, which 
emphasized common underlying processes for verbal and tonal WM. 

Using fMRI, Hickok, Buchsbaum and Humphries (2003) investigated verbal (nonsense sentences) and 
tonal (novel piano melodies) WM in non-musicians and observed the activation of Broca’s area and 
left premotor regions in both conditions. These areas were also found in another experiment with 
non-musicians conducted by Koelsch et al. (2009) employing sung syllables as stimuli, whereby either 
their pitch or syllable had to be remembered. Both conditions recruited strikingly similar areas: 
Broca’s area, ventrolateral premotor cortex (vlPMC), dorsal premotor cortex, the planum temporale, 
inferior parietal lobe, the anterior insula, basal ganglia and thalamus, and the cerebellum, thus 



THEORETICAL BACKGROUND 

16 

dissuading from the idea of a ‘tonal’ loop. Schulze et al. (2011) introduced musicians along with non-
musicians to explore whether WM for verbal and tonal information rely on the same or different 
functional neuroarchitecture in both groups. The overlapping topography between the verbal and 
non-verbal condition resulting from the performance of non-musicians validated the previous 
findings. Conversely, musicians’ performance in the verbal task involved additional structures in both 
conditions. More specifically, there were a number of core WM structures —with significantly 
different weightings for both musicians and non-musicians— recruited in both tonal and verbal WM 
(Broca’s area, left premotor cortex, pre-SMA/SMA, left insular cortex, left inferior parietal lobe), 
plus specific structures were recruited by musicians only during verbal (right insular cortex) or only 
during tonal WM (right globus pallidus, right caudate nucleus, left cuneus and left cerebellum; plus 
the right premotor cortex, the left putamen, and the right cerebellum were more strongly engaged 
than in the verbal condition). 

With this different activation pattern for verbal vs. musical WM in musicians, Schulze et al. (2011) 
provided the first neuroimaging evidence supporting the hypothesis that auditory WM might not be 
a unitary system, and a distinction exists in musicians. It is known that musical expertise 
encompasses both anatomical and functional changes in the brain (Münte et al., 2002), and 
contributes to improved WM performance (Gaab, Gaser, & Schlaug, 2006). Recent neuroimaging 
evidence provided by Schulze, Mueller, and Koelsch (2011) has supported this view. In their study, 
musicians exhibited better WM performance for structured (tonal) over non-structured (atonal) 
sequences as well as differences in neurofunctional footprint, whereas no significant differences 
between the two conditions were observed in non-musicians, denoting musical proficiency as a 
facilitating factor for auditory WM.  

In summary, neuroimaging methods have been crucial in detecting brain regions actively engaged in 
memory for music, providing evidence for the existence of specific subcomponents for musical and 
verbal WM in musicians. Schulze and Koelsch (2012) suggest that although there seems to be a 
considerable overlap of the underlying mechanisms and neural correlates of verbal and tonal WM, 
preliminary findings point to the existence of both a tonal and a phonological loop in musicians, 
proposing that functional plasticity has been induced by musical training. Regarding the core 
common areas, engagement of similar areas for language and music is reasonable to be expected 
since, after all, music processing shares some circuitry with spoken language processing, especially 
when subjects are experts in both music and language systems (Koelsch, Gunter, von Cramon, 
Zysset, & Lohmann, 2002; Patel, Gibson, Ratner, Besson, & Holcomb, 1998; Patel, 2003; Steinbeis & 
Koelsch, 2008).  
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3 METHODOLOGY 

3.1 OVERVIEW 

In this study the activation of music-related neural networks involved in WM was investigated by 
tracking the repetition of the two salient motifs in the piece. In music, WM gets activated even if 
subjects have already a LTM of the piece overall (Jonides, Lewis, Nee, Lustig, Berman, & Moore, 
2008). Hence, this did not represent a problem for the study. We predicted the temporal course of 
HDR to the repetition of the musical motifs. A perceptual test was conducted to fragment the music 
into small segments, a necessary step for subsequently extracting the relevant motifs thereof and 
build the WM model about the neural networks underpinning WM for music. Next, the model was 
correlated against the fMRI brain signal at each voxel in the brain to retrieve the relevant brain 
areas involved in WM for music. To ensure that the observed activations were due to memory 
formation and retrieval rather than sensory processing, time series of acoustic features of the music 
were also added to the model as nuisance regressors (regressors of no interest) to remove the effect of 
the acoustic content in the brain and isolate the effects of WM processes. In the next sections we 
first proceed to describe the perceptual experiment aimed at retrieving the motifs in the piece, 
followed by an in-depth explanation of the materials and methods adopted in the fMRI analysis. 

3.2 PERCEPTUAL EXPERIMENT 

Segmentation, or phrasing, of the auditory stream is a fundamental process in music perception 
crucial for making sense of the musical flow due to our limited memory capacity. Listeners 
automatically detect structural boundaries in the music that correspond to different sized structural 
units, i.e., movements, sections, themes and motifs. Lerdahl and Jackendoff (1983) regarded these 
structural divisions groups as "the most basic component of musical understanding”. 

Thus, to build the WM regressor, the music stimulus needed to be fragmented into small segments, 
from which relevant motivic material (repetitions and variations) —expected to trigger WM— were 
extracted to build the WM model. With this aim a perceptual test was carried out where 
participants’ task was to segment the piece in real time as they listened to it. 

3.2.1 PARTICIPANTS 

A total of 26 participants (female=11; age range=18-56; mean age=30±8 SD; musical training: 
starting age=11±5 SD years; mean total training=11±8 SD years; mean listening time=7±3 SD 
hours/week; mean practicing time: 30±25 SD min/day) took part in the experiment. We decided to 
recruit participants that were at least amateur musicians, who could understand how to perform this 
music-specific task. 
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3.2.2 PROCEDURE 

The segmentation protocol was conducted on a computer running a Max/MSP5 environment-based 
platform. Participants were instructed to (1) fill in a personal background information form; (2) 
listen to the entire piece of music from beginning to end once without performing the segmentation 
task; (3) perform the segmentation task (to avoid fatigue effects, listeners did not segment the music 
from the beginning to the end; instead ten6 long sections of the music were presented to the 
participants twice in randomized order); (4) answer general questions about their performance (see 
Figure 3 for screenshots of the experiment platform). During the perceptual test participants 
segmented the music while listening to it in real-time. Participants were instructed to click with a 
computer mouse on a grey button (labelled “CLICK TO PLAY THE MUSIC EXCERPTS”) to 
trigger the playback of one random excerpt at a time and immediately proceed to segment it by 
clicking on the red button beside it (labelled “CLICK TO SEGMENT THE MUSIC EXCERPTS”) 
every time they heard a boundary in the music, i.e., the end or beginning of a segment. For each 
segment, clicks were logged as time coordinates (in milliseconds) at which they occurred for further 
analysis. The segmenting task was defined to the participants in terms of cutting the excerpts into 
small phrases or motifs where appropriate boundaries were found while the music was playing. The 
criteria to define these motifs or phrases were up to the participants. 

3.2.3 RESULTS  

There was great variation among participants’ number of clicks (mean=60± 38 SD; range=15-137). 
A greater number of clicks revealed a more fine-grained segmentation within consistent hierarchical 
boundaries. Participants’ clicks (segmentation points) were merged into a one-dimensional array of 
values (time coordinates in milliseconds). Kernel Density Estimation (KDE) was used to estimate the 
unknown underlying distribution of the data. KDE is a statistical non-parametric method of 
estimating the probability density function (PDF) of a random variable (Silverman, 1986) and can 
                                                             
5 MAX/MSP 5.1 (Cycling ’74, San Francisco, CA 94103, USA) 
6 These excerpts correspond to higher level section boundaries of the stimulus starting at (1) 0:00, (2) 1:08, (3) 1:28, (4) 2:23, (5) 
2:56, (6) 3:39, (7) 4:36, (8) 5:08, (9) 6:17, (10) 7:07 with an average length of 50.6 seconds each. 

Figure 3. Screens 1-4 of the Max/MSP-based platform. From left to right, the personal background information form; the main 
experiment screen, with tasks (1) [listening to the entire piece] and (2) [perform the segmentation on the excerpts]; general questions 
about performance; end-of-the-experiment screen. 
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be thought of as a smoothed form of a histogram. A non-parametric approach suits the collected 
data because it is assumed to have a nonstandard distribution. 

 

 

 

 

 

 

 

 

 

A KDE was computed for the vector of clicks by placing a kernel function over each observation in 
the sample (see Figure 4). The estimate was based on a normal kernel function, using a window 
parameter (width). The kernel bandwidth controls the degree of smoothness and its choice is crucial 
in density estimation: the wider the bandwidth, the smoother the estimate. If too small, the density 
estimate becomes spiky (if arbitrarily small, as many spikes as single data points in the set) and bias 
is reduced with respect to the true density but at expense of a larger variance in the estimates; while 
if too large, it will oversmooth the estimate which will mask the data structure, reducing the 
variance at the expense of a larger bias (see APPENDIX A for a detailed explanation). Thus, we 
want a compromise that minimizes the error between true and estimated density. Considering this, 
several KDE curves were plotted and a bandwidth of one second seemed a good compromise across 
participants’ clicks. The bandwidth of the kernel-smoothing window was set to 1 second after several 
trials (see APPENDIX A for Matlab code). 

In our data, the density was evaluated at 478000 equally spaced points (corresponding to 
milliseconds of the entire stimulus excluding the final applause) covering the data range. Next, 
maxima in the KDE function were extracted (see APPENDIX A) by adjusting different density 
thresholds. The lower the threshold, the more fine-grained segmentation is obtained (i.e., more subtle 
boundaries in the music coming to the surface). We applied a threshold that produced sixty-four 
peaks (segmentation points), which seemed a good compromise for a ~8 minute piece if we are 
looking for STM chunks. 

Figure 4. A total of 3289 clicks were recorded in the perceptual test, spanning along a time 
axis of 478000 equally spaced points (milliseconds of the stimulus excluding the end 
applause). Important for the KDE is not the kernel function itself (Gaussian, Epanechnikov 
or quadratic), but the bandwidth selection (Silverman, 1986). In this case, the bandwidth of 
the kernel-smoothing window was set to one second after several trials. 
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Using MIR Toolbox’s (Lartillot & Toiviainen, 2007) mirsegment function, the resulting segmentation 
points of the analysis can be visualized, as shown in Figure 5. 

 
.] 

 

A small lag in the participants’ responses was found occasionally, since the segmenting task was done 
in real time. Adios Nonino is a very dynamic piece, full of rubato sections and long cadences, at 
which different participants, even those possessing high musical expertise, will tend to click along its 
whole length, either at the beginning, at the middle, or at the end. The piano introduction was hard 
to segment especially when listening to it for the first time due to its unpredictiveness, and most of 
the density points belonging to this section did not therefore reach the established threshold for 
peak-picking. Other non-cadencial, more rhythmical sections seemed easier to chunk, showing high 
density peaks, which denoted accurately occurring boundary locations. 

3.2.4 PARTICIPANTS’ SELF-REPORT 

At the end of the experiment, participants were asked (a) to briefly list the criteria (e.g. musical 
features) they used for segmenting, (b) whether they were familiar with the piece, (c) to rate the 
difficulty of the task [1=very easy; 2=easy; 3=intermediate; 4=difficult; 5=very difficult]; and (d) to 
describe their alert status from beginning to end of the task (alert, normal, tired, sleepy). 
Participants rated the difficulty of the task on average as intermediate and difficult. No participants 
considered the task very easy; four rated it as easy, and two considered the task very difficult. With 
regard to alertness, most of the participants reported to be in normal or alert state throughout the 
experiment, although six participants declared to become less alert towards the end. Only four out of 
26 participants acknowledged being familiar with the music (hence replicating the frequency 
observed in the study by Alluri, Toiviainen, Jääskeläinen, Glerean, Sams, and Brattico, 2012). When 
examining the reported criteria used by the participants to segment the music, assorted responses are 

Figure 5. Segmentation of the music according to the participants’ KDE, as plotted on the 
audio waveform using mirsegment [MIR Toolbox]). The last segment corresponds to part of 
the final long cadence plus the applause from the live performance. 
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found. A summary of the different segmentation formulas, as reported by participants, follows: 
rhythm, harmonic rhythm, pauses, key change, melody change, timbral change, repeating patterns, 
drastic changes in dynamics, melodic contour, expectations in mood change, melody and bass line, 
different features in different parts of the music, chord progression (functional structure), texture 
changes, piano bass when acting as accompaniment, and cadences. 

3.2.5 MOTIF IDENTIFICATION: MOTIF A AND B 

From the sixty-four segments we proceeded to identify the main motifs —and their repetitions and 
variations— which are the building blocks of Piazzolla’s tango, thereby discarding the remaining 
musical content, which belongs to a more introductory, transitional or developmental nature. In 
doing so, two salient motifs and their occurrences were identified. Following this observation, we 
decided to join two segments as they accounted for a single complete instance of one motif. The 
density value of the segmentation peak between these joined segments had yielded a very low (the 
7th lowest value out of 64) at the chosen threshold, which also supported the decision of fusing them 
together. 

 
 

Thus, from the 63 segments, 34 correspond to the two salient motifs of the piece that we have 
identified as motif A (11 appearances) and motif B (23 appearances; see schema of the sequence of 
motifs in Figure 6). Motif A is characterized as being slow, rubato, more expressive and cadential, 
whereas motif B is fast and very rhythmical with a clear beat. With regards to timbre, different 
occurrences of motif A’s melody are featured by the piano, cello and bandoneon, whereas in case of 
motif B, melody is always featured by the bandoneon. Motif A has hefty tempo changes, so it is 
expanding and retracting constantly. If we take the extreme case, the first and third instances of 
motif A have a duration of 20 and 2 seconds, respectively, whereas changes in tempo for motif B are 
more subtle. Motifs also vary in melodic contour and display ornaments (especially motif A). In 
regards to tonality, motifs are continuously transposed, i.e., motif A is transposed up by a 2nd 
minor, 2nd major, 3rd minor, 3rd major, 4th augmented and 7th minor; and down by a 2nd minor. 

Figure 6. Temporal evolution of the 
motifs A and B and their variations in 
the piece, plus the main featuring 
instrument. 
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Motif B is transposed up by a 3rd major, 4th and 5th; and down by a 2nd minor, 3rd minor, 3rd 
major and 4th. 

3.3 FMRI EXPERIMENT 

3.3.1 FMRI DATA ACQUISITION 

3.3.1.1 PARTICIPANTS 

Eleven healthy participants with no history of neurological or psychological disorders, with formal 
musical training (styles: classical=5, folk=2, pop/rock=4; instruments: string=4, percussion=3, 
wind=2, keyboard=2; mean starting age=9.1±3.4 SD years; mean total training=16.1±6 SD years; 
mean practice time=2.5±1.2 SD hours/day) took part in the fMRI experiment (females=5; age 
range=19-31; mean=23.2±3.7 SD; handedness: 9 right-handed , 2 n/a). 

3.3.1.2 STIMULUS MATERIAL 

The music piece used for the listening experiment was Adios Nonino, an ~8-minute tango piece by 
Argentinian composer Astor Piazzolla (1921-1992). The recording is an emblematic performance 
during Astor Piazzolla’s Sexteto European tour (1989-1990) recorded live at MAD (Moulin a 
Danses), Lausanne, Switzerland on November 4th, 19897. The piece, written in October 1959 while in 
New York in memory of his father, Vicente "Nonino" Piazzolla, a few days after his father's death, 
has proven to be one of Piazzolla's most well-known compositions. However, only two of the subjects 
reported to be familiar with the piece. 

Adios Nonino is characterized by two well-defined, salient motifs. Musical recursion is a specific 
feature of Western tonal classical tradition, in which naturally occurring repetition and variation 
patterns in the music constitute a distinct attribute, hence allowing the study of motif-tracking in 
the context of real music. Moreover, Adios Nonino is a very challenging music stimulus rich in 
timbre and modulations, and particularly in this very vibrant and dynamic performance, exhibiting 
strong shifts in tempo, dynamics, and rhythm, which is in effect representative of a complex auditory 
scene. 

3.3.1.3 TASK SPECIFICATION 

Participants were instructed to listen to the stimulus (average sound level=80 dB) with gradient 
noise attenuating (~30dB) headphones (plus extra attenuation via cotton inserted in the headset), 

                                                             
7 Audio CD (May 23, 2006). Label: Milan Records; ASIN: B000F6ZID8. Performers: Astor Piazzolla (bandoneon); Horacio Malvicino 
(guitar); Carlos Nozzi (violoncello); Angel Ridolfi (double bass, upright bass); Daniel Binelli (bandoneon); Gerardo Gandini (piano). 
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and remain still and relaxed as they underwent fMRI scanning while keeping their eyes open. The 
study protocol proceeded under local ethical committee guidelines. 

3.3.1.4 FMRI IMAGES 

Functional images were acquired at the 3-T scanner (3.0 T Signa VH/I General Electric) at the 
Advanced Magnetic Imaging (AMI) Centre (Aalto University, Espoo, Finland) with a temporal 
resolution of 2 seconds. Thirty-three oblique slices (thickness=4 mm, interslice skip=0 mm) 
providing whole-brain coverage were imaged (echo time=32 ms; flip angle=75°) per participant, with 
a field of view of 200x200 mm and a matrix size of 64x64, using a single-shot gradient echo planar 
imaging (EPI) pulse sequence. To measure BOLD changes, each EPI acquisition was run for 
256 volumes (the first 4 volumes were later discarded to allow for the magnetization to stabilize) per 
participant. T1-weighted structural images (field of view=260×260 mm; matrix=256×256; 
thickness=1 mm; interslice skip=0 mm) were also collected for individual coregistration. 

3.3.2 FMRI DATA ANALYSIS 

3.3.2.1 FMRI DATA PREPROCESSING 

Functional MRI scans were first partly preprocessed in SPM5 (Statistical Parametric Mapping 5)8. 
For each participant low-resolution images were realigned (translation and rotation corrections did 
not exceed 2 mm and 20, respectively) and registered to the corresponding high-resolution 
T1-weighted structural images. These were in turn registered to the MNI (Montreal Neurological 
Institute; Evans, Kamber, Collins, & MacDonald, 1994) standard brain template using a 12 
parameter affine transformation. Images were next segmented into gray matter, and normalized. 
Functional images were then blurred to best accommodate anatomical and functional variations 
across participants as well as to enhance the signal-to-noise by means of spatial smoothing using a 
6 mm full-width-at-half-maximum Gaussian filter. 

The rest of the fMRI data processing was carried out in Matlab. Following the spatial smoothing 
operation, the fMRI signal was detrended by means of spline interpolation (anchor points=6) in 
order to remove low frequency noise, thereby filtering out the slow scanner drift and other potential 
drift-inducing sources in the fMRI time series like thermal noise from the scanner's field strength, 
physiological effects like heart-rate, respiration, and basal metabolism fluctuation. Spline 
interpolation finds the underlying function (trend) between the equally spaced anchor points or 
nodes in the signal (anchor points are defined to be the middle point of the segment in the time axis 
and the mean of the time series values in the y axis), thus capturing the non-linearities in the 
scanner drift and removing the fitted trend from the data. As a result the residual has these low 
frequencies removed. As well as subtracting the low frequency fluctuations, removal of 

                                                             
8 Wellcome Trust Centre for Neuroimaging, London, UK (http://www.fil.ion.ucl.ac.uk/spm). 
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high-frequency fluctuations in the data is a typical procedure that can be advantageous, aimed at 
maximizing the signal-to-noise ratio (Jezzard et al., 2001). To this end and following the detrending 
operation, temporal filtering (Gaussian smoothing with kernel width=5 s) was applied to the fMRI 
signal. 

Movement-related variance components in fMRI time-series (resulting from residual motion artefacts 
from the registration operation) are another source and one of the most serious confounds of brain 
analysis (Frackowiak et al., 2004) that can reduce the sensitivity to true activations. To solve this, 
six variable parameters (vector of x, y, and z translations and rotations about the major axes at each 
time point describing each voxel displacement relative to the template image [Jezzard et al., 2001]) 
were treated as nuisance terms and regressed from each voxel’s time series. We saved these resulting 
residuals for further statistical analysis. 

A generic model for describing fMRI data introduced by Lindquist (2008) is shown in Eq. 1 for 
activation in a single voxel in one subject). The assumptions made are a) each volume contains N 
voxels, b) sampled at T time points, c) repeated for M subjects, and d) present components in the 
data are task-related BOLD response, nuisance covariates and noise. 

 𝑦𝑖𝑗(𝑡) = �𝑧𝑖𝑗𝑔(𝑡)𝛾𝑖𝑗𝑔 + �𝑥𝑖𝑗𝑘(𝑡)𝛽𝑖𝑗𝑘 + 𝜀𝑖𝑗

𝐾

𝑘=1

𝐺

𝑔=1

(𝑡) Eq. 1 

for i=1,…,N, j=1,…,M, and t=1. Where 𝑧𝑖𝑗𝑔(𝑡) is the contribution of nuisance terms at time t with 
amplitude 𝛾𝑖𝑗𝑔; 𝑥𝑖𝑗𝑘(𝑡) is the task-related HDR for the kth condition at time t with amplitude 𝛽𝑖𝑗𝑘; 
and 𝜀𝑖𝑗(𝑡) the noise process. 

3.3.2.2 STATISTICAL MODELLING  

In the following we will introduce the statistical analysis method used, followed by an explanation of 
the processing of the regressor of interest (WM model) used in the correlation analysis and the 
perceptual experiment used to fragment the music. Questions about orthogonality between the 
regressor of interest and nuisance regressors are also dealt with, after which we proceed with the 
intrasubject and subsequent second-level statistical analyses. 

3.3.2.2.1 Correlational analysis 

Correlational designs are used to uncover functional areas in the brain by quantifying the 
correspondence between predicted and measured BOLD signal to a stimulus. The underlying idea is 
that the magnitude of the hemodynamic response changes as a function of cognitive ‘load’, relying on 
the assumption of linearity of the BOLD responses initiated by the stimulus (Jezzard et al., 2001). 



METHODOLOGY 

25 

Thus the shape of the response to the stimulus of interest must be predicted first, and only then 
correlation coefficients between each voxel time course and the predicted waveform of the effect of 
interest can be calculated. 

For two time courses X (actual) and Y (predicted), the correlation coefficient is computed as  

 𝑟 =  
∑(𝑋 − 𝑋�)(𝑌 −  𝑌�)

�∑(𝑋 − 𝑋�)2 ∑(𝑌 −  𝑌�)2
 

Eq. 2 

which returns 0 for no correlation, 1 for perfect positive correlation and -1 for perfect negative 
correlation. This correlation operation is repeated for every voxel time course in the brain. The 
resulting r values are then thresholded for significance, which will produce a map of significant 
activity in the brain for the specific condition under investigation. 

3.3.2.2.2 Design matrix specification 

In fMRI studies the design matrix is the mathematical structure that contains the explanatory 
variables as they change over time. It is formulated as an n×p matrix, where n is the number of 
observations over time and p is the number of variables (Frackowiak et al., 2004). Thus columns 
represent the different factors, effects of interest but also effects of no interest (nuisance regressors), 
designed to remove the variance associated with unwanted known sources of variability; and the 
rows specify values for each factor at each observation in time. In our approach we have used a 
binary explanatory variable (WM) indicating whether the effect is ‘on’ (an activation) or ‘off’ (no 
activation), represented by ones or zeros respectively. Factors can be also continuous functions 
measuring different levels of the variable, as is the case of our nuisance regressors (movement 
parameters and acoustic features).  

When designing the model, the number of columns in crucial. Overfitting the model with too many 
regressors reduces the number of available degrees of freedom in the data, which leads to reduced 
sensitivity to detect any activation (Jezzard et al., 2001). Similarly, correlated factors can confound 
the validity of the model, since the explained variance is shared between them. 

 𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 
1    1    0    0
⋮     ⋮     ⋮     ⋮
1    1    0    0
1    0    1    0
⋮     ⋮     ⋮     ⋮
1    0    1    0
1    0    0    1
⋮     ⋮     ⋮     ⋮
1    0    0    1

 ⎦
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

Figure 7. Example of a binary design matrix. 
Columns represent observations over time, 
rows represent the different variables. 
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3.3.2.2.3 Building the regressor of interest  

WM regressor 

To build the hypothesis of WM, we chose from the thirty-four motivic segments resulting from the 
perceptual experiment (see Figure 8), those thought to trigger WM, namely all occurrences of motif 
A and B except the first instance thereof. These repetitions and variations constitute the ‘on’ 
condition, while the rest of the music is assumed not to elicit WM. 

 

Segments 45 to 49 were found to significantly deviate from both main motifs’ identities. However, 
given the identical repetitive nature of the sequence, it was included in the WM hypothesis assuming 
it would trigger WM. Similarly as proceeded previously for motifs A and B, the first motif of this 
sequence (segment #45) was discarded and the rest was included in the model as part of the ‘on’ 
condition. Hence the regressor of interest was defined as a time series vector (sampling rate=1 Hz) of 
binary values having ones for the ‘on’ conditions and zeros elsewhere. 

 

 

This regressor underwent further processing to be comparable with participants’ brain responses 
prior to correlational analysis. To this end, the regressor time series was convolved with a canonical 
double-gamma hemodynamic response function (HRF) in order to match the hemodynamic response 
delay typical of dependent (BOLD) contrast (see Figure 9). In this operation, the WM time series of 
predicted activations acts as the input of a linear time invariant (LTI) system and the HRF as the 

Figure 8. Segments corresponding to motivic material in the piece used to build the WM regressor. For the rest of the music not 
represented here zeros are assigned. 

Figure 9. LTI systems typically model the expected HDR as the convolution of a 
finite impulse function (assumed neuronal activity caused by the task under 
investigation, usually depicted as a delta function) positioned at event onset with a 
canonical HRF (impulse response function): 𝑓g(t) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝑑𝑡

0 . Figure 
adapted from Lindquist, 2008. 
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impulse response function. LTI systems are typically used to model the relationship between the 
stimulus and the HDR (Lindquist, 2008). 

Once convolved, the WM regressor —with a sampling rate of 1 Hz (one value per second)— was 
downsampled to .5 Hz to match the sampling rate of the fMRI scanner. Next, the first 13 samples 
(26 s) of the WM and AC nuisance regressors were removed. Those corresponded to the first 4 
volumes excluded after the fMRI acquisition due to T1 stabilizing effects, and to the subsequent 9 
samples (matching the length of the HRF) to avoid artefacts resulting from the convolution 
operation. Finally the last 12 samples (24 s) of brain volumes and regressors corresponding to the 
applause from the live performance were also excluded. The final time series had a length of 231 
samples. 

REP regressor  

We proceeded by designing an additional regressor: one that is identical to the WM regressor but 
contains the excluded first instances of the motifs, in other words, all the motifs are represented in 
this new regressor (see Figure 10). This condition will be called REP in the following. We 
hypothesized that the correlates of this new variable do not reflect WM activation (since the first 
appearances of the motifs —those that would not trigger WM recall— are always ‘on’), although we 
do not know the underpinning phenomenon it is related to. The motivation behind the REP 
regressor was to perform a subtraction (t-test) WM-REP on the final resulting statistical brain maps 
(from the correlation analysis with each regressor), which would filter out the insignificant overlap of 
activated brain areas between them. This might uncover a more nuanced map of significant 
activations that would expose active areas implicated in WM (those significantly higher and lower z-
-scores of the WM map over the REP map), thus fine-tuning the results.  

 

 

 

 

 

 
  

Figure 10. Regressors WM and REP 
before and after being convolved, side 
by side.  
 



METHODOLOGY 

28 

3.3.2.2.4 AC nuisance regressors  

Time courses of perceptually validated acoustic features (in the following referred to as acoustic 
components, AC) provided by Alluri et el. (2012) were added to the model in a second statistical run 
as nuisance regressors (see Figure 11) to remove the variation evoked by the acoustic features in the 
brain signal and best isolate the WM effect, but also to observe the extent to which musical feature 
processing networks might be involved in or might overlap with music-relevant WM processes in the 
brain when comparing the results of the two analyses (post-processed acoustic components were 
provided by the author9). The acoustic components (n=6) correspond to the main timbral, tonal, 
and rhythmic features in the stimulus and are continuous-valued variables (see Alluri, 2012, for an 
in-depth acoustic description). 

 
.  

                                                             
9 Post-processing included convolution with a double-gamma HRF, detrending, and downsampling, to match the fMRI data. 

Figure 11. AC nuisance regressors convolved and resampled. 
They correspond from left to right to fullness, brightness, 
timbral complexity, key clarity, pulse clarity, and activity. 
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3.3.2.2.5 Orthogonality of regressors  

As mentioned in 3.3.2.2.2 (design matrix specification), collinearity between regressors should be 
avoided for design efficiency, as it would reduce the validity of the analysis preventing the 
identification of independent effects (Huettel et al., 2009). 

Orthogonality between acoustic components and the WM regressor was examined. To do so, 
Pearson’s correlation coefficients (r) were calculated between the WM regressor and each of the 
acoustic components. These were mostly weak (r range=0.09-0.21), but their significance had to be 
corrected due to serial correlation, as the data points are not independent from each other. In order 
to estimate the significance of the r coefficients, the effective degrees of freedom were calculated 
between each AC and the WM regressor following Pyper and Peterman’s (1998) procedure (for a 
detailed explanation see 3.3.2.2.6 [intra-subject analysis]). The degrees of freedom ranged from 46 to 
80 across AC, and were used along with the r coefficients to compute the corrected p-value. 
Corrected p-values were large (range=0.10-0.46), indicating with confidence that the effect of interest 
and the individual AC are independent. 

 
 

 

 

 

 

 

 

However we needed to test also whether a linear combination of the AC, rather than individual 
components, could account for our WM variable. Thus we performed multiple regression whereby the 
WM variable was regressed against the whole set of AC, solving the general linear model 

 𝑌 =  𝑋𝛽 + 𝛼 Eq. 3 

Where the response Y is the WM time series; the set of predictors X are the AC; 𝛽 is the coefficient 
estimate (one in this case) of the multiple linear regression of the WM responses on the AC 
predictors; and 𝛼 is the intercept. We obtained a moderate r2 of 0.13, suggesting there is some 
variance in the WM regressor that can be explained by the AC. Thus some of the signal of interest 
may be removed, which cannot be avoided using a naturalistic setting, where independence between 

Figure 12. An overdetermined model 
with linearly dependent variables is 
rank deficient: the condition of 
independence among the regressors 
should be met to ensure that the 
resulting estimates are independent 
thus validating the use of the model. 
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the motivic structure and the temporal evolution of the AC cannot be controlled for. However, we 
can say with certainty that most of the variance in WM cannot be explained by the AC. 

The REP regressor was also tested for orthogonality against the AC following the same procedure, 
by computing Pearson’s r correlation between REP and individual AC, which resulted in two AC 
(fullness and key clarity [Alluri et al., 2012]) with moderate-low correlation coefficients of r=0.26 
(corrected p=0.09) and r=-0.25 (corrected p=0.05) respectively10. Therefore the REP condition can 
be moderately explained by two acoustic components (fullness at r=0.26 and key clarity at r=-0.25). 

3.3.2.2.6 Intra-subject analysis 

The following procedure was run for the brain data time series with and without AC regressed out 
(i.e., with and without the variance accounted by the acoustic components). A non-parametric 
approach similar to that adopted by Alluri, 2011 was followed in order to analyse the fMRI data 
series. 

We computed Pearson’s correlation coefficients for all participants between each voxel time course 
and the WM regressor. The sampling distribution of Pearson’s r coefficients is not normally 
distributed, becoming increasingly skewed as r deviates from zero. In order to reduce the skewness 
and make the sampling distribution approximately normal, we convert the r maps into z-scores 
images using the Fisher’s Z-transform (Fisher, 1915), defined by 

 𝑧 =  
√𝑛 − 3

2 ∙ ln
1 + 𝑟
1 − 𝑟 = arctan (𝑟) 

Eq. 4 

where z has a Gaussian distribution with zero mean and unit variance and has a standard error of  

 𝜎𝑧 =  
1

√𝑁 − 3
 Eq. 5 

where N=number of samples. 

SERIAL CORRELATION 

The distribution of correlation coefficients is assumed to be based on the number of n independent 
observations, for which the degrees of freedom are n-2. However in our fMRI time series, this 
assumption of independency between adjacent data points is not met because of the effect of the 
HRF and the smoothing operation in the temporal domain, and so the data is serially correlated and 

                                                             
10 We also calculated r2 between REP and the full set of AC, which was slightly higher (r2=0.14) than the obtained r2 (=0.13) with the 
WM regressor. 
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the true number of independent samples is lower than the total number of scans. Certainly this 
overestimation of degrees of freedom (DoF) in the computation of the coefficients underestimates the 
error variance, which produces inflated test statistics (type I errors [Monti, 2011]). Simply stated, 
detecting significant correlations between predicted and observed response increases with 
smoothness, to the point that even in the absence of neuronal response, intrinsic autocorrelations 
lead to high test statistics (Friston, Jezzard, & Turner, 1994). Therefore these obtained Fisher 
z-scores had to be corrected due to this problem. 

To correct the Fisher z-scores for significance, we first estimated the effective DoF by following a 
non-parametric procedure described in Pyper and Peterman (1998) based on a Monte-Carlo 
simulation. The effective degrees of freedom are given by Eq. 6: 

 
1
𝑑𝑓 ≈

1
𝑁 + 

2
𝑁�

𝑁 − 𝑗
𝑁  𝜌𝑥𝑥(𝑗)

 

𝑗

𝜌𝑦𝑦(𝑗) Eq. 6 

where N is the number of observations, and 𝜌𝑥𝑥(𝑗) and 𝜌𝑦𝑦(𝑗) are the autocorrelations of the signals 
at lag j.  

Accordingly, a Monte Carlo simulation (number of trials n=10000) was run, where a randomly 
chosen voxel time course was used along with the WM time series as inputs x and y in Eq. 6 to 
obtain the effective DoF. This operation was simulated for each participant for the total number of 
trials after which estimates were averaged. Thus resulting effective degrees of freedom accounting for 
the temporal dependence in the time series ranged from 45 to 50 across participants. 

Once obtained the DoF across participants, we proceeded to normalize the z-scores as shown in Eq. 7 
by dividing them by the standard error (see Eq. 5), where effective degrees of freedom enter in the 
calculation. 

 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑧 =  

𝑧
1

�𝑑𝑓 − 3

 Eq. 7 

At this stage for each participant we had a corrected z-score map. 

3.3.2.2.7 Group-level analysis  

Once the corrected statistical maps at individual level were obtained (first-level analysis), 
second-level analysis was carried out on these results to produce group maps of significant voxels. 
The idea is to combine participants’ results and produce an “average” activation map. To do so, and 
following the approach described in Lazar (2008), Fisher’s method (1950) was used to obtain the 
pooled group-level map from the individual p-value images, whereby the group statistic is 
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 𝑇𝐹 =  −2� ln 𝑝𝑖

𝑘

𝑖=1

 Eq. 8 

where p is the p-value associated with the t-statistic from subject i from k individuals. Thus 
participants’ z-scores were transformed to the corresponding p-values, which were pooled across 
participants using Eq. 7. This resulted in a group t-statistic that under the H0 follows a Chi-square 
distribution Χ 2𝑘

 2
, with 2k degrees of freedom. Using the CDF (cumulative distribution function), we 

computed the upper tail probabilities at each of the Chi-square t-statistic values with v degrees of 

freedom defined by 1 − 𝑃(Χ 
 2v). 

3.3.2.3 STATISTICAL INFERENCE  

The resulting group map was thresholded at a significance level of p=.0005. However, type I errors 
due to multiple comparisons have to be accounted for when making statistical inferences in a dataset 
of these dimensions (over 200k data points). The multiple comparisons problem was tackled by 
means of a cluster-wise significance approach described in Ledberg, Åkerman and Roland (1998) 
based on a Monte Carlo procedure to obtain an approximation of the cluster size (CS) distribution 
at a particular significance level, from which the critical CS threshold can be selected (see 
APPENDIX B for a detailed explanation). Consequently, the obtained corrected critical CS was of 8 
voxels for a cluster-defining threshold set at p=.0005 (Z=3.48). 

MarsBaR v0.4211 was used to extract the regions falling under each cluster (the ROIs are based on a 
manual parcellation of a single brain [colin27] in MNI space). Subsequently, we proceeded to find the 
number of voxels and the x y z positions for the maximum within each region. The resulting 
coordinates, in MNI space, were transformed to Talairach space using the first approach described in  
“The MNI brain and the Talairach atlas” (2012), whereby the SPM95 PET template is mapped onto 
the MNI-compatible SPM96 template using the SPM96’s spatial normalization algorithm with an 
affine transform12.  

Finally, the labels for each brain region were retrieved using the Talairach JAVA applet (Lancaster, 
Rainey, Summerlin, Freitas, Fox, Evans, Toga, & Mazziotta, 1997; Lancaster, Woldorff, Parsons, 
Liotti, Freitas, & Rainey, 2000) 

This whole statistical procedure was re-run using the REP regressor for further subtraction as 
explained in the next section. 

                                                             
11 MarsBaR v0.42 (http://marsbar.sourceforge.net) 
12 An affine transformation is any transformation that preserves collinearity (i.e., all points lying on a line initially still lie on a line after 
transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation [Weisstein, 
n.d.]) 
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4 RESULTS 

Examples of the activation images produced with the WM regressor, in both participants’ brain 
responses including and excluding AC, are plotted in Figure 13. Conservative settings for plotting 
purposes were used (p=.0001 and CS=20). 

  
Figure 13. Transversal images showing activation and deactivation to the WM condition in both the brain responses including and 
excluding AC. A conservative threshold of p=.0001 (z=3.89) and CS ≥ 20 for plotting purposes was used. Voxels are color-coded red 
and blue for positive and negative correlation respectively. 

The first thing we can observe distinctly between the two maps is that whereas the cortical areas 
reflect mostly similar overlapping activations, it is in the subcortical areas where the difference is 
evident: when the AC are removed from the brain responses, so is most of the subcortical activation. 

At this point we might want to reveal the contributions of each specific state by means of 
subtracting the two maps. However, by doing straight subtraction on the thresholded binary maps, 
important information could be lost, i.e., two voxels falling within significant threshold yet with 
significantly different p-values would yield a subtraction value of zero. Therefore it is recommended 
to use the continuous map to get a more nuanced subtraction image, and so the method that ensures 
a higher power would be a Student's t-test on the participant-level z-maps. The t-test is carried out 
at each voxel across participants yielding a t-test statistic per voxel. The subtraction procedure is 
explained in detail in APPENDIX D. 

Thus we can observe the significant differences in BOLD signal change above threshold in both 
maps, i.e., eliminate non-significant differences and leave the activation that is significantly higher 
(or lower for negative correlations) in one map over the other and vice versa. 
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4.1 Subtraction of WM maps resulting from the AC-inclusive and 
AC-exclusive brain responses 

Using the subtraction procedure described in APPENDIX D we obtained the significantly higher and 
lower z-scores in the AC-exclusive and AC-inclusive residuals. A transversal view of the overlaid 
resulting maps is shown in Figure 14 and Figure 15. 

 
Figure 14. Images obtained after performing the subtraction of WM maps in AC-inclusive vs. AC-exclusive responses. Red indicates 
significantly higher z-scores (positive correlations) in the AC-inclusive responses, and green indicates significantly higher z-scores in the 
AC-exclusive responses. Blue and cyan denote significantly lower z-scores (negative correlation) in the AC-inclusive and AC-exclusive 
responses, respectively. Images were thresholded at p=.0005 (z=3.48), with a critical CS ≥ 8. 

 

 

Figure 15. Orthographic projection of the resulting subtraction of WM maps in AC-inclusive vs. AC-exclusive brain responses. Here we 
can observe the extensive subcortical activation to the WM regressor in the responses including the AC (in red) as opposed to the more 
reduced significant activation in the responses excluding the acoustic content (in green). 
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This subtraction map shows the effect of the WM stimulus in the brain with and without AC. As 
shown in Figure 14, a wide network of cortical and subcortical areas light up responding to the WM 
condition in the AC-inclusive brain responses, while much of the subcortical activation pattern is 
removed in the AC-exclusive responses while the cortical activity remains. This reveals that part of 
the activations present during the WM condition a) are being pruned with the removal of AC, or b) 
are significantly weaker when compared to the activation map in the AC-inclusive brain responses 
and so there are not shown in this subtraction. Hence the assumption is that the acoustic correlates 
might be also subserving WM processing. Figure 16 shows the cortical differences in activation from 
the two subtractions. 

  

Figure 16. Figures showing the cortical differences in activation between WM in the AC-inclusive responses (left) and in the 
AC-exclusive responses (right). 

4.2 Subtraction of WM vs. REP maps resulting from both AC-inclusive 
and AC-exclusive brain responses 

We performed the same subtraction procedure for the WM and REP maps with the aim of 
extracting only the significant areas in WM with respect to REP. The results from this subtraction 
(in both residuals with and without AC regressed out) will be the focus of discussion in the present 
study, from which we will draw conclusions about WM for music (see Figure 17 and Figure 18 for 
transversal and orthographic views of the resulting maps, and see Table 1 & Table 2 for the listed 
clusters and brain regions obtained in these subtractions). 
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Figure 17. Transversal views of the subtraction WM vs. REP maps in both AC-inclusive and AC-exclusive responses, expected to reflect 
activations exclusively due to WM. Red indicates significantly higher z-scores (positive correlations) in the AC-inclusive responses, and 
green indicates significantly higher z-scores in the AC-exclusive responses. Blue and cyan denote significantly lower z-scores (negative 
correlation) in the AC-inclusive and AC-exclusive responses, respectively. Images were thresholded at p=.0005 (z=3.48), with a critical 
CS ≥ 8.  

 
Figure 18. Orthographic projection of the resulting subtraction WM vs. REP maps in both AC-inclusive and AC-exclusive brain 
responses. As in Figure 15, it can be seen how subcortical activation is pruned when the AC have been regressed out from the brain 
signal. 
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Significant WM-related areas in the AC-inclusive brain responses 

The t-test results revealed 10 and 19 significant clusters corresponding to positively correlating areas 
in cerebellar and cerebral regions respectively, and 4 clusters in cerebral areas that correlated 
negatively with the WM condition. An extensive right-lateralized effect was observed in cerebral as 
well as cerebellar activations, while predominantly left-lateralized for the deactivations. The WM 
regressor strongly activated a number of networks in cerebellar regions (right tonsil z=5.35, left 
semi-lunar lobule z=4.82, right tuber z=4.79, right culmen z=4.54, left tonsil z=4.50), and the 
largest cluster (k=70) comprised areas of the right declive and culmen. Within the prefrontal cortex 
(PFC) an extensive number of areas responded to the condition (R k=260; L k=84), with highest 
peak z-values in the right superior frontal gyrus (SFG; BA10, z=5.09), left inferior frontal gyrus 
(IFG; BA47, z=4.66), right IFG (BA47, z=4.24; BA45, z=4.16), right medial frontal gyrus (MedFG; 
BA9, z=4.34), left MedFG (BA6, z=4.45), and right precentral gyrus (PreG; BA44, z=4.61), thus 
revealing the significant recruitment of the bilateral vlPFC, bilateral dlPFC and (predominantly 
right) Broca’s area. 

WM-driven activations were observed in large foci in the right-left MedFG (BA6; k=95) and right 
PreG (BA44; k=108). Bilateral activation was associated with the IFG (BA47) and the PreG 
(BA44), considerably greater in the right hemisphere. Similarly greater activation was found in the 
right MedFG (BA32, BA6 and BA9) compared to its left hemispheric counterpart (BA32 and BA6). 
A region in BA10 in the left middle frontal gyrus (MFG) was also active, while a localized more 
medial region within BA10 significantly deactivated. Cortical structures in the right IFG (BA45) and 
right SFG (BA6 and especially large in BA10) also activated but did not show a contralateral effect. 
A sizable decrease of activation in the occipital region was seen in the left-hemispheric cuneus 
prolonging to the superior occipital gyrus (BA19, k=110), and a similar contralateral deactivation 
co-occurred in a small portion (k=10) of the middle and occipital temporal gyri (BA19). Subcortical 
structures were seen in the limbic region where a small activated area was observed in the right 
anterior cingulate (BA24) as well as the subcallosal and parahippocampal gyrus (BA34), whereas a 
decrease in activation occurred in the contralateral parahippocampal gyrus. Additionally, the right 
hippocampus and right red nucleus (brainstem) activated during the WM condition. The extensive 
basal ganglia (putamen, caudate and nucleus of globus pallidus) and thalamus activation to the WM 
condition were predominantly right-lateralized. 
 

Significant WM-related areas in the AC-exclusive brain responses 

In the absence of the AC-dependent activation, the t-test produced 9 and 14 positive correlating 
clusters in cerebellar and cerebral regions respectively, and other 4 cerebral clusters that correlated 
negatively with the WM regressor. In the following report of the results we will focus in contrasting 
the results with the previous t-test (without the removal of the AC-correlating voxels). 
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Overall bilateral decrease in activation was observed in cerebellar as well as cerebral regions in the 
absence of the AC-correlating voxels, with a number of intersecting loci, as it was expected, plus a 
few new activated areas. Within the PFC, left medial and superior regions in the frontal gyri were 
reduced (BA10, BA44), and right PreG (BA44) and SFG (BA6) were also drastically reduced in 
number of activated voxels. The previous activation in BA47 found active in the left hemisphere, as 
well as the right BA45, BA32 and BA19 were absent in this new activation map. However, increased 
activation was observed in the left MedFG (BA32), as well as in the right IFG (BA47) and MedFG 
(BA9). Moreover, the t-test revealed new active areas in the left IFG (BA45) and MedFG (BA9). 
The decreased activation in the right occipital cortex (middle temporal gyrus [MTG], BA19) was 
absent. The limbic structures were reduced to the right parahippocampal gyrus (BA19 and BA30). A 
left temporal region in the hippocampus was found active, and areas belonging to the right subgyral 
area and right middle temporal gyrus (BA19 and BA39) were involved in decreased activation. 
Activation previously found in the brainstem was suppressed. Sublobar regions in the globus pallidus 
and thalamus were absent in this map, and other activations in the caudate and putamen were 
considerable reduced. However, a sizable (k=76) new area, right insula (BA13), arose in the map. 
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Table 1 & Table 2. Subtraction (t-test) results for WM 
versus REP maps in both AC-inclusive (Table 1) and 
AC-exclusive (Table 2) brain responses. Results reflect 
significantly higher (activation) and lower (deactivation) 
z-scores for the WM condition. The significance threshold 
was set to p=.0005 (z=3.48) and the CS ≥ 8 voxels. The 
table reports the numbered clusters under which the falling 
regions are detailed, with information about the hemisphere 
location (H), cluster size (k; i.e., number of voxels in the 
activated cluster), Brodmann area (BA), Talairach 
coordinates (TAL) and their respective peak z-scores. 
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5 DISCUSSION 

The aim of this study was to detect WM-driven activations in the neural tissue resulting from the 
continuous listening of a real piece of music. The whole brain of eleven healthy participants was 
imaged during a naturalistic listening and their BOLD responses were recorded. We predicted the 
temporal evolution of WM activations in the brain triggered by the repetition of the musical motifs 
in the piece. The expected hemodynamic response (HDR) to stimulus-driven activation was 
correlated against the actual BOLD signal at each voxel at participant level. To ensure the 
activations were due to WM, time courses of perceptually validated acoustic features were regressed 
out from the brain responses. By means of a subtraction (t-test) we compared the maps obtained 
using the brain responses including and excluding the acoustic correlates in the brain to see extent to 
which acoustic sensory processing interferes with the WM condition. As a result we clearly observed 
extensive subcortical activity being removed when filtering out the acoustic processing correlates in 
the brain. Similarly, when we included the first instance of each motif, and we subtracted it to 
conditions including only motif repetitions, considerable subcortical processing was pruned or 
significantly decreased when filtering out the AC-dependent voxels. This might expose dependence of 
part of WM encoding on the acoustic processing regions, and thus WM-related processing might rely 
on those overlapping AC-dependent networks. The significant remaining cerebrocortical activation in 
the AC-filtered map was expected to reveal more relevant areas for WM processing, as they do not 
intersect with the AC-processing in the brain. As for cortical activity, a rightward asymmetry 
comprising ventral and dorsal areas in the prefrontal cortex was observed. In the next section the 
results of the analysis will be discussed in detail. 

Distributed activity in the brain derived from the attentive listening task was observed. We could 
attribute this high degree of distributedness to the fact that WM is a complex, high-level cognitive 
process. The assumption that a high-level mental process has a high degree of distributedness has 
support in the literature: distributed networks are known to support cognition, responding even 
during simple tasks (Curtis & D’Esposito, 2003). In addition, results reviewed by Collete et al. 
(2006) on WM indicate that executive functioning relies on a distributed cerebral network rather 
than in a restricted set of anterior cerebral areas (…). Furthermore, the use of a naturalistic 
paradigm represents an added complexity: “Perception of and action in a complex environment 
usually requires the parallel processing of information related to different objects or events that have 
to be kept apart to allow sensory segmentation and goal-directed behaviour” (Engel & Singer, 2001). 
Thus, as investigated in this study, WM for music is subserved by a number of cortical and 
subcortical brain structures distributed over the prefrontal cortex, limbic and paralimbic areas and 
cerebellum. 
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5.1 NEUROANATOMY OF WORKING MEMORY FOR MUSIC 

The discussion will focus first in the results derived from the brain responses including the acoustic 
components, and differences between these AC-inclusive brain responses and the AC-exclusive 
responses will be subsequently commented.  

Correlational analysis revealed mainly right-lateralized cerebellar responses to the WM regressor 
(tonsil, culmen, lingual, nodule, dentate, pyramis). In a study by Leung & Alain (2011) right 
cerebellar activity in the tonsil, culmen and pyramis was revealed in a WM task relevant to location 
and category. This cerebellar activation might be in connection with temporal processing of the 
stimuli used (Mathiak, Hertrich, Grodd, & Ackermann, 2004). In Alluri et al. (2012) increased 
activation in cerebellar areas (declive, uvula and pyramis) was found to correlate with high values of 
fullness and activity in the Piazzolla stimulus. Thus neural substrate underlying these acoustic 
features might aid in the WM encoding of the music. A large number of prefrontal cortical regions 
activated in response to the WM predictor. Regions in the vlPFC and dlPFC (bilateral inferior 
[BA47] and right superior [BA10] frontal gyri respectively) correlated positively, areas that within 
the PFC seem to be critical for WM functions (Kane & Engle, 2002), with the IFG reflecting WM 
aspects in the integration of information over time (Nan et al., 2008). Activity in BA47 has in the 
context of music been linked with the processing of musical temporal structure, specifically with 
extracting the correct temporal information in a sequence (Chen et al. 2008). Another recruited area 
in the IFG was BA45 (right hemisphere). Area BA45 has been found to be part of a vlPFC node in a 
dissociative ventral-dorsal WM model (Petrides, 2005), whereby the vlPFC node mediates in active 
information retrieval and encoding, and the dlPFC manipulates and monitors information. It has 
also been associated with verbal and non-verbal retrieval from LTM (Petrides, 1996). In our study, 
area BA44 in the PreG responded strongly right lateralized. The role of the left BA44 corresponding 
to the Broca’s area (covering the pars triangularis and pars opercularis) as a syntactic processor or 
as a WM resource in sentence comprehension has been debated over the last 30 years and remains 
controversial (Rogalsky, Matchin, & Hickok, 2008). In the context of music, fMRI studies (Koelsch & 
Siebel, 2005) using chord sequence and melody paradigms have linked music syntactic processing 
with a predominantly right activation in the pars opercularis. It has been likewise observed active in 
WM for pitch (Zatorre, Evans, & Meyer, 1994; Koelsch & Siebel, 2005) as well as in music-driven 
rhythmic tasks or while playing music (Peretz & Zatorre, 2003). In addition, left-hemispheric 
activation of Broca’s area has responded to musical imagery involving semantic retrieval (Halpern & 
Zatorre, 1999). 

Regions in the bilateral MedFG (BA6), right SFG (BA6) and left MedFG (BA9) were found active 
in response to the WM regressor. These areas have been observed active while continuously updating 
information and maintaining temporal order in WM (Wager & Smith, 2003). The left MedFG 
(BA32) also activated in response to WM, which in storage tasks has been found to be frequently 
active for increased demands in selective attention to features of a stimulus to be stored in WM 
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(Wager & Smith, 2003). In Alluri et al. (2012) the left MedFG (BA6) was seen active with low levels 
of activity in the music. 

Active cerebral subcortical structures were recruited in the right hippocampus, right 
parahippocampal gyrus (BA34) and a small region in the right subcallosal gyrus (BA34). The 
hippocampus has been known to be crucial in the formation of new long-term memories based on 
episodic or autobiographical events (Cohen & Eichenbaum, 1993; Squire & Butters, 1984) as well as 
a novelty detector (VanElzakker, Fevurly, Breindel, & Spencer, 2008), and in WM it has an 
important role during maintenance tasks (Nichols, Kao, Verfaellie, & Gabrieli, 2006). The 
parahippocampal gyrus is also important in spatial memory, specifically for the encoding and 
recognition of scenes (Aguirre, Detre, Alsop, & D’Esposito, 1996). A region in the left 
parahippocampal gyrus (BA28) was observed to correlate negatively in the presence of the 
AC-correlating voxels. Interestingly, Blood and Zatorre (2001) observed regional cerebral flood flow 
(rCBF) decreases in the left hippocampus with increasing chills intensity. Hence this left-localized 
inhibition might be associated to habituation of emotional responses triggered by the motifs once 
they became familiar upon being coded in WM. Two other alternative explanations were posited by 
Peretz and Zatorre, (2001): a) pleasure might be maximized not only by activating the limbic 
system, but also by simultaneously decreasing activity in brain structures associated with negative 
emotions; b) decreases in this area might occur in relation to anticipation of the chills response than 
to the chills response itself, as suggested in two studies by Ketter, Andreason, George, Lee, Gill, 
Parekh, Willis, et al. (1996) and Breiter, Gollub, Weisskoff, Kennedy, Makris, Berke, Goodman, et 
al., (1997), where amygdala decreases correlated with ratings of ‘craving’ rather than rush. In any 
case, the modulation of the limbic system seems to be a complex matter. In the context of acoustic 
feature processing in the brain, decreased pulse clarity was found to be associated with activation in 
the left hippocampus (Alluri et al., 2012). The recruitment of this limbic area in connection to 
decrease of pulse clarity was interpreted by the authors to be associated with the tension caused by 
the perceived lack of pulse clarity. This tension may be pleasurable, thus activating emotion-related 
brain areas. 

The putamen remained bilaterally and extensively activated. The role of the putamen has been 
primarily related to motor skills (DeLong, Alexander, Georgopoulos, Crutcher, & Mitchell, 1984), 
but also in implicit and motivational learning (Packard & Knowlton, 2002). Interestingly, the left 
putamen was involved in both the phonological and tonal loop, but more strongly in the latter, 
exclusively in musicians in Schulze’s (2011) study on verbal and tonal WM. Likewise, in Pallesen et 
al. (2010) musicians showed larger BOLD responses than non-musicians in the right putamen (along 
with other areas) during a musical chord WM task. In acoustic feature processing in the brain, the 
right putamen was active in response brightness, whereas the left putamen correlated negatively with 
pulse clarity in the music (Alluri et al., 2012). Another subcortical activation was observed in the 
caudate region (mainly right-lateralized). As part of the basal ganglia, the caudate has been shown 
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to be involved not only in motoric functions, but also in learning and memory (Packard & Knowlton, 
2002). 

Areas in the midbrain, and anterior cingulate (BA24), left nucleus of globus pallidus, and 
predominantly right thalamus positively correlated with the WM regressor. Thalamic activity has 
been frequently linked to perceptual and cognitive tasks and particularly to the alert component in 
attention (Wager & Smith, 2003), whereas the anterior cingulate has been reported to cooperate with 
the dorsolateral prefrontal cortex for attention shifting (Osaka, Osaka, Kondo, Morishita, & 
Fukuyama, 2004). 

A sized area that correlated negatively in response to the WM regressor was the left-right BA19 
(specifically localized in the left cuneus, left superior occipital gyrus and right MTG), an area 
involved in visual processing. In reference to this deactivated area, Levitin & Menon (2003) reported 
greater activation in a similar region in the cuneus and superior and middle occipital gyri among 
other nearby areas in the presence of scrambled music compared to non-scrambled music. From this 
finding the authors did not infer this activation as reflecting processing of scrambled music, since 
many of these regions are known to be deactivated during both auditory and visual processing 
(Laurienti, Burdette, Wallace, Yen, Field, & Stein, 2002). In the study carried out by Alluri et al. 
(2012), the left-right MTG (with leftward bias) seemed to be implicated in the perceptual processing 
of timbral features of the Piazzolla piece that was used in the present study. However the only 
regions in the MTG in our study showed negative correlations with the WM regressor. This might 
imply that this musical set of features were not significant for WM to encode the motivic material in 
the music. 

Comparison with the results in the AC-exclusive responses 

Here we will discuss some differences with the results obtained from the correlational analysis when 
the AC were included as nuisance regressors, thus being removed from the brain responses. Whereas 
activity in area BA47 (IFG) was exhibited bilaterally when the AC-correlating voxels remained in 
the data, this activation was right lateralized in the AC-exclusive brain responses. Conversely, BA45 
in the IFG was left-lateralized, but right-lateralized in the AC-inclusive responses. For BA44 (PreG) 
there was activation in both hemispheres but with decreased extension compared to the responses 
including the acoustic content. The active regions found in the AC-inclusive responses in the 
bilateral MedFG (BA6), right SFG (BA6) and left MedFG (BA9) were also found when 
AC-correlating voxels were excluded from the analysis. However, as previously mentioned, fewer 
cerebral subcortical structures were recruited. Subcortical active regions were found within the left 
hippocampus and right parahippocampal gyrus (BA19 and BA30). The putamen, bilaterally and 
extensively activated in the AC-inclusive brain responses, decreased considerably in size once the AC 
time courses were extracted from the data. The mainly right lateralized caudate region found in the 
AC-inclusive responses was present in the AC-exclusive responses but smaller in volume. The 
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midbrain and anterior cingulate (BA24), left nucleus of globus pallidus, and thalamus were not 
recruited, that had been active in the AC-inclusive brain responses. The negatively correlating area 
BA19 in response to the WM regressor in the AC-inclusive responses was also found to 
approximately overlap in the AC-exclusive brain responses (recruiting left cuneus, left middle 
occipital gyrus, right MTG extending to a small portion in BA39). Finally, a large portion of the 
right insula (BA13) was observed to respond to the WM regressor once the AC in the data were 
excluded, which was not recruited in the presence of the AC-correlating voxels. This brain structure 
functions as an integral hub activating in response to a number of functions of different nature 
(cognitive, emotional, and regulatory), and has recently been implicated in critical cognitive control 
and attentional processes (in salient-event detection) aiding different brain regions to properly 
respond to salient stimuli (Menon & Uddin, 2010). Alluri et al. (2012) found the bilateral insula 
(BA13) active to decreased pulse clarity in the music.  

5.2 HEMISPHERIC SPECIALIZATION 

Whereas studies on verbal WM have found support for a left hemispheric pattern (Wager & Smith, 
2003), in our study we observed a rightward bias in response to the music-related WM effect 
especially pronounced in the presence of the acoustic-related content in the data. Likewise, 
right-hemispheric predominance has been implicated in a stream segmentation study in natural 
settings which engaged a ventral network (including the recruitment of vlPFC [BA47, 44/45] for 
detecting salient events, and dorsal network (including dlPFC [BA9]) for maintaining attention and 
updating WM (Sridharan, Levitin, Chafe, Berger, & Menon, 2007). These same regions were 
observed in the present study to be active in music-driven WM, and in fact it seems sensible to 
consider these segmentation processes as sharing brain circuits with WM, since stream segmentation 
into perceptually meaningful chunks is a necessary requirement for WM encoding. Furthermore, 
tempo-tracking structures in music are bilateral, whereas similar structures in speech are 
predominantly left-lateralized (Levitin & Tirovolas, 2009). This rightward trend has been dominant 
in the literature on memory-related experiments with music (Zatorre et al., 1994; Griffiths, 
Johnsrude, Dean, & Green, 1999). 

5.3 CONTRAST WITH PREVIOUS STUDIES 

When contrasting with music-related studies in WM, we did find somewhat significant intersecting 
areas, although we failed to detect other equally significant areas within our results. For instance, we 
found some of the common core regions involved in tonal and verbal WM in musicians reported by 
Schulze (2011), namely Broca’s area, right cerebellum and left putamen, but did not locate others, 
such as the left-right premotor dorsal/premotor ventral (PMd/PMv), left inferior parietal lobule 
(IPL), pre-SMA/SMA, left insula, left inferior frontal sulcus (IFS), left intra parietal sulcus/superior 
parietal lobule (IPS/SPL). From the subcomponent regions specific to the so called “tonal loop” in 
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musicians (which included left cuneus, right globus pallidus, right caudate nucleus, and left 
cerebellum), we identified in our study the right caudate region and left cerebellum (we did find 
activation in the left globus pallidus, instead of its right-sided homologue). The involvement of the 
planum temporale and superior marginal gyrus (SMG) has been also reported in the literature 
(Gaab, Gaser, Zaehle, Jancke, & Schlaug, 2003; Zatorre et al., 1994) in pitch WM memory tasks, but 
were not present in our study. Similarly, the STG seems to be important in short-term auditory 
retention (Zatorre & Samson, 1991; Gaab et al., 2003; Zatorre et al., 1994; Schulze et al., 2011), but 
we did not find this region active.  

As for the results in the brain responses excluding the acoustic correlates, the same regions reported 
to intersect with Schulze’s tonal loop were found, namely, Broca's area, cerebellum, caudate region 
and putamen. However the recruitment of these areas was smaller than in the AC-inclusive 
responses. From the subcortical areas, the putamen was also found active but extensively pruned, 
and in the the case of the globus pallidus, completely removed from the map. 
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6 CONCLUSIONS AND FURTHER RESEARCH 

We studied music-related WM in musicians using a naturalistic non-standard procedure: a) 
participants’ task was to listen attentively to a piece of music while their responses were recorded, 
instead of performing auditory-cued tasks; b) an unusually complex stimulus was used containing 
strong shifts in tempo, timbre, dynamics, tonality and rhythm, more representative of the complex 
auditory scene environment our brains have evolved to respond to. In the present study the effect of 
interest —WM activation in the brain— is assumed to be elicited by similar, repeated music material 
in the piece. 

We showed that a naturalistic approach to study WM is viable by using Western tonal music, which 
provides naturally occurring motivic repetition and variation —recognizable units— serving as WM 
trigger, thus facilitating the phenomenon of motif-tracking in the context of real music without the 
need for artificially manipulated stimuli. To reveal the activated networks in the brain, we correlated 
participants’ BOLD signal with the expected hemodynamic response employing non-parametric 
procedures to tackle specific problems avoiding “black box” approaches. We decided to filter out 
perceptual correlates of a set of musical features from the data, expecting this would aid to 
exclusively uncover the executive processes of WM. However, significant subcortical processing active 
in response to the WM condition in the AC-inclusive brain responses was pruned with the removal of 
the acoustic content, suggesting these areas, involved with perceptual processing of acoustic features, 
aid in the encoding and retrieval of WM. 

The results derived from the pooled participant map revealed a widely distributed network of 
cortical and subcortical areas, predominantly right-lateralized, responding to the WM model, some of 
which had been previously reported in the literature on WM for non-verbal stimuli (cerebellum, 
prefrontal cortices, and motor-related areas). Additionally —and interestingly— limbic and 
paralimbic structures were recruited in our study in response to the WM regressor that had not been 
found in previous studies. Hence the contribution of different perceptual areas seems to be relevant 
to mnemonic processing.  

Due to the characteristics of our WM regressor, this study assumed transient effects derived from the 
regressor’s predictions. Thus sustained activity subserving WM was not included in the study. 
Continuous and transient patterns of neural activity might suggest different functional roles (Collette 
et al., 2006). Additionally, the similarity between the motif presentation and subsequent repetitions 
could be perceptually quantified (i.e., have participants rate the similarity of pairwise comparisons 
[first motif vs. successive appearances], allowing for parametrically varying degrees of similarity. The 
predicted response would then be modelled as a function of the continuous values representing 
different levels of memory load (which reflect fluctuations in HDR intensity) smoothed with a HRF, 
rather than specified by a binary-valued vector for states 'on' and 'off'. 
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To deepen into questions of brain specialization, musicians’ responses could be contrasted against 
non-musicians’. There is evidence that confers musicians an enhanced ability to retrieve, monitor, 
and chunk information over non-musicians (Chen et al., 2008), crucial processes for WM efficiency 
which could be detected in the brain dynamics. For instance, we might see not also differences in 
asymmetry across groups for WM, but also within groups across different conditions, i.e., due to 
different levels of complexity in the music. For instance, although musicians tend to rely on left-sided 
brain for music processing in a greater extent than non-musicians (Fujioka, Trainor, Ross, Kakigi, & 
Pantev, 2005), possibly explained by a more consciously learned or analytic approach to the musical 
input, complex music has been reported to drive even trained musicians into strongly using their 
‘right brain’ (Vollmer-Haase, Finke, Hartje, & Bulla-Hellwig, 1998; McGilchrist, 2010). 
Vollmer-Haase’s explanation is the increased WM requirement to analyse this complex musical 
material, while McGilchrist proposes it may lie in the perceptual “new” experience of this music on 
different hearings, due to the impossibility of attending to all parts as a whole. 

6.1 WORKING MEMORY AS AN EMERGENT TEMPORAL 
INTEGRATION MECHANISM 

To date very often neurovascular effects do not produce the findings that would support or disprove 
psychological theories, because a) postulates of psychological nature might not prove easy to support 
by mapping function onto brain tissue; b) psychological hypotheses do not normally provide a 
localizationist account of the different functional modules represented in them (Yonelinas, 2002; 
Heathcote, 2003; Cohen & Squire, 1980;  Schacter & Tulving, 1994; Baddeley, 1992). Associating 
distinct brain loci with functions A and B is no support for a theory if it does not predict this result, 
or, in other words, given two independent processes A and B, it does not follow that different brain 
areas will be activated by them. Hence the assumptions deriving from two different fMRI results do 
not necessarily challenge a theory about the mind that is not strictly neuroanatomical in nature. 
Clearly this does not render the finding in any way meaningless, but can say little if the purpose is 
solely to discard or support a psychological theory that lacks neuroanatomical considerations 
(Coltheart, 2006a, 2006b). 

However, in the light of an theory of WM as an non-modular, emergent property arising from the 
interaction of a highly distributed neural network advanced by some researchers (Postle, 2006; Hazy, 
Frank, & O’Reilly, 2006; D’Esposito, Postle, & Rypma, 2000; Collete et al., 2006, Miyake & Shah, 
1999), we can make some observations, namely, that filtering out the acoustic features from the 
music in order to find the underlying WM main executive function might be the wrong approach to 
studying music-driven WM networks, and the only purpose of this subtraction operation, whereby 
the acoustic correlates are removed, is to observe the significant implication of the subcortical 
sensory subsystems co-responsible for WM retrieval, filtered out with the exclusion of the acoustic 
correlates that are necessary for the encoding of the memoranda they represent. 
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Thus WM’s executive centre might then fundamentally be an emergent property arising from the 
ad-hoc activation of the perceptual neural circuitry that is stimulus-dependent plus areas in the 
prefrontal cortex, as posited by Fuster (1995), instead of consisting of a fixed 'place' in the cognitive 
architecture. The PFC, in cooperation with the other brain areas, seems to subserve the common 
underlying process to all function: temporal integration, a uniform requirement of all WM tasks, as 
well as of many others (Duncan & Owen, 2000), thus the neural substrate of WM would be as widely 
distributed as the LTM that supports it (Fuster, 2001). 

6.2 MOVING AWAY FROM THE LOCALIZATIONIST APPROACH 

The problem of studying complex fMRI data is inherently one of statistical choice and therefore one 
about the assumptions made. Neuroimaging techniques are an illuminating method for looking at the 
brain enabling to map the topography related to brain function. However, inferences about 
recruitment of specific areas only tell about their engagement, and not requirement, in the process 
under investigation. Additionally, the very nature of executive processes has rendered very difficult 
for neuroimaging methods to produce homogeneous results as to what their underpinning neural 
correlates are (Collete et al., 2006). WM, as a complex top-down cognitive process, is dependent on 
an intricate and widely distributed network. Attempting to separate the individual processes being 
measured in such distributed circuitry becomes a challenging task, and so the use of subtraction 
paradigms aiming to isolate the effect of interest has its limitations (McGilchrist, 2010). Moreover, 
the spatial and temporal resolution inherent to functional neuroimaging is not optimal, particularly 
when studying memory and attention, that would allow the detection of topographic differences 
within anatomical regions related to specific memoranda or the temporal evolution of neural 
excitability at cellular level (Fuster, 2001), because not only the localization of function, but its 
temporal pattern of activity, is crucial to best characterize function. 

The configuration and behaviour of interdependent connections between distant areas seems to be 
crucial in understanding cognitive functions. Thus more meaningful results could be obtained using 
multivariate fMRI analysis techniques that model interactions between different regions (Curtis & 
D’Esposito, 2003), attempting to understand brain function in a connectionist context, which are 
critical in showing plasticity in the brain. Thus we move from the localizationist approach 
(localization of information) to functional integration (assessment of patterns of information 
representation). For instance, phase synchronization of neural sources can reveal information 
exchange among them, and their timing can be a factor in establishing a causal relationship between 
the sources (Handy, 2009). 

Furthermore, the use of a naturalistic setting to study musical WM using the motivic material as our 
WM trigger should motivate a similar naturalistic approach to studying verbal WM. Insofar as 
musical motifs are the iterated, recognizable musical structures upon which a piece is built that 
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render it coherent, a linguistic discourse is characterized by a theme or subject matter embodied by 
recurring ideas across the text. 

We are just now beginning to unravel the systems problem of WM for music, and so how WM is 
formed in the brain remains an open issue. This study points in the direction of exploring the 
functional brain topology of music-elicited WM in a first-time naturalistic listening condition in 
musicians. In view of the recruitment of hippocampal regions within the present study, we cannot 
ignore another component to memory: emotion, which is thought to play an influential role in the 
mnemonic power of music as to how and what we remember. Evidence on the robust integration of 
musical, memory and emotion, i.e., in autobiographical memories, has been reported (Janata, 2009; 
Ashley & Luce, 2004; Eschrich, Münte, & Altenmüller, 2008; Jäncke, 2008). However, research on 
how memory interacts with cognitive and emotional processes is still at an elementary stage.  
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APPENDIX A 

KDE - KERNEL DENSITY ESTIMATION 

Given a random sample x1, x2,…, xn, i=1, 2,…, n, drawn from an distribution with unknown density 
f(x), the kernel density estimator of f is defined by the function 𝑓ℎ(𝑥) as follows: 

 𝑓ℎ(𝑥) =  
1
𝑛ℎ  �𝐾 �

𝑥 −  𝑋𝑖
ℎ � 

𝑛

𝑖=1

 Eq.9 

where K is called the kernel, an estimator of the density in x by counting the frequency of other 
points Xi in the same bin as x and weighting them differently depending on their distance from x.  
The density value of f in x from points Xi depends on how much closer Xi points are to x (the closer 
to x, the more weight they have), a property fulfilled by kernel functions (usually a PDF that 
integrates to 1 and is nonnegative); The factor of 1/h is so that 𝑓ℎ will integrate to 1; and h > 0 is 
the bandwidth of the kernel (Biba et al., 2007). 
 

 
MATLAB CODE 

% KDE for the perceptual data, where x is the vector of density values 
% evaluated at the points in xi. 478000 is the number of equally points 
% (miliseconds) that cover the range of the data, and the width of the 
% kernel is 1000 ms.  
 
[x,xi]=ksdensity(data, 0:100:478000,'width', 1000) 
 
% THRESHOLDING & PEAK FINDING 
 
% Obtains the indices in the data set x, where x reaches a peak, i.e., a 
local  
% maximum. Peaks are found by testing for a negative second derivative at 
each  % of the values 
ind=find(diff(sign(diff(x)))==-2); 
 
% density threshold=23*10-7 that retrieves 64 peaks 

kde=ind(find(x(ind)>0.0000023));  

 
% obtains segmentation points (peaks) in seconds (rounded-up) 
kde=round(kde1/10); 
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APPENDIX B 

CLUSTER-SIZE ESTIMATION  

In this method by Ledberg et al. (1998), we use the brain statistical images (signal-SI), obtained 
from the correlational analysis between the WM regressor and participants’ brain signal, to generate 
noise statistical images (noise-SI) that are similar to the signal-SIs in spatial spectral properties 
except they contain no signal of interest. To generate noise-SIs we followed the random-phase 
approach in Ebisuzaki (1997; see APPENDIX C).  The idea behind is to derive a confidence interval 
from random series generated using to the original series, and having, therefore, similar properties. 

Generation of simulated noise images  

We compute the ACF of these noise-SIs as a measurement of spatial dependency in order to generate 
noise images with the same spatial correlation as the noise-SI (the ACF is not estimated in the 
signal-SI because the presence of a signal might affect the spatial dependency in the SI). These 
noise-SIs are transformed into pseudo-normal distributed images, and their ACF is used in turn to 
generate normally distributed images. To generate images with the same ACF as the pseudo-normal 
noise-SIs, first an image U of uncorrelated normally distributed random variables is generated. Then 
we convolve this image with a filter kernel K giving an image S with the desired ACF as follows: 

 𝑆(𝑢) = 𝑈(𝑢) ∗ 𝐾(𝑢) Eq. 10 

To generate the filter kernel K, Ledberg et. al (1998) used the convolution and correlation theorems 
of Fourier theory, from which following expression is derived for K:   

 𝐾 = 𝐼𝐹𝑇|𝐹𝑇(𝑃)| Eq. 11 

where IFT and FT denote the inverse Fourier transform and the Fourier transform respectively, and 
P represents the pseudo-normal transformed noise-SI.  

S is then normalized to zero mean and unit variance, so now it is a normally distributed image that 
has the same ACF as the pseudo normal transformed noise-SI. Variance and bias of the ACF might 
influence K, and an error in K leads to errors in the estimation of probability distribution of cluster 
sizes. Therefore it is crucial to ensure that S has the same ACF that the original noise-SIs. Thus K 
was estimated as the mean of several ACF kernels obtained in a Monte Carlo simulation (number of 
runs=110 times [10 per participant]). 
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Estimation of the distribution of the cluster size statistic 

A cluster is defined to be a set of above-threshold connected voxels (“connected” meaning having at 
least one side in common [6-connectivity]). We aim at estimating the probability that a cluster of 
size ≥ v (cluster size [CS] is the number of voxels it contains) has occurred by chance.  The 
probability distribution of cluster sizes above a given threshold is derived from the 100 generated 
normally distributed random images using Eq. 10, and subsequently used to estimate probabilities 
for the clusters detected in the statistical images generated by testing the hypothesis. 

To estimate the distribution of the cluster sizes we generated 100 Noise-SIs using the equation above. 
As a result from all the noise-SIs, the distribution of cluster sizes of 8 voxels is obtained for p=.0005 
(Z=3.48). 

  Figure 19. Critical cluster threshold distribution at 
p=.0005. The x axis represents the number of voxels 
and y axis the probability it occurs at the given 
threshold. 
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APPENDIX C 

RANDOM-PHASE TEST 

The random-phase test is a nonparametric test which attempts to create random time series that 
could have come from PA, the population from which A is a member.  The statistical test is based 
on generating a large number of random series with the same power spectra as the first series but 
with random phases in the Fourier modes. Specifically, the participant’s brain signal is correlated 
with the phase-shifted WM regressor, which produces a randomly generated image identical to the 
signal-SI in spatial spectral properties except it shows no stimulus-dependent activations. It is 
important therefore to preserve the fundamental properties of the original series. Ebisuzaki’s 
procedure is a way of ‘‘resampling’’ in the frequency domain, which preserves the power spectrum 
and not the distribution of values of the original series. Thus the resampled series retain the same 
autocorrelation as the original series.  

The procedure, described as follows (Ebisuzaki, 1997), was applied to the WM regressor for further 
correlation with the participant’s brain signal to generate the noise-SIs: 

1. The discrete Fourier transform (DFT) of the WM regressor (𝑎�𝑖) is computed by Eq.12, where 
𝛿𝑘= 0 except for k = 0, N/2 (even N) in which case 𝛿𝑘 = 1: 

 𝑎�𝑘 =  
2 −  𝛿𝑘
𝑁 � 𝑎𝑗𝑒2𝜋𝑗𝑘/𝑁

𝑁−1

𝑗=0

 Eq.12 

2. Let 𝑟̃0 = 0, 𝑟̃𝑘 =  |𝑎�𝑘| exp(𝑖𝜃𝑘) for 0 < k < N/2, and 𝑟̃𝑁/2 = 21/2�𝑎�𝑁/2� cos(𝜃𝑁/2)  for even N, 
where 𝜃𝑘 is a uniform random variable from [0, 2𝜋).   Here we create a Fourier series with the 
original (WM) series’ power spectrum but with random phases.  

3. Finally we compute the IFT of 𝑟̃𝑘 (see Eq.13), which gives ri a random series with the same 
autocorrelation as the WM series. The power spectrum of the randomly generated and WM 
original time series is the same, except the phases of ri are random. 

 𝑟𝑗 = 𝑅𝑒 �𝑟̃𝑘𝑒−2𝜋𝑖𝑗𝑘/𝑁
𝑛

𝑘=0

 Eq.13 

where n = N/2 or 𝑁−1
2

 for even and odd N respectively.  
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APPENDIX D 

SUBTRACTION (t-test) BETWEEN ACTIVATION MAPS 

A Student’s t-test was performed to subtract one map to the other. By using a t-test the difference 
in means is weighted by the standard deviation in the significant voxels from the two maps being 
contrasted, thus assigning high t-values to large differences with small standard deviations, and low 
t-values to small differences with large standard deviations. The t-score is calculated per voxel time 
series X across participants, where subscripts 1 and 2 represent the two maps being compared, using 
the formula:  

 𝑡 =  
 𝑋�1 −   𝑋�2
𝑠𝑋�1−𝑋�2

 Eq.14 

where 

 𝑠𝑋�1−𝑋�2 =  �
𝑠𝑝2

 

𝑛1
+ 
𝑠𝑝2

 

𝑛2
 Eq.15 

and 𝑠𝑝2 is the pooled variance 

 𝑠𝑝2  
=  
∑(𝑋1 − 𝑋�1)2 + ∑(𝑋2 − 𝑋�2)2 

𝑛1 + 𝑛2 − 2  Eq.16 

The map of p-values cannot be used in the t-test, because p-values are not normally distributed so 
they violate the basic assumption of parametric statistics. Therefore the t-test was performed on the 
participants’ z-score maps. Specifically, since we aimed at finding significantly different positive and 
negative z-scores, z-values were entered into a right- and a left-tailed t-tests for significantly higher 
and significantly lower z-values (alpha=0.05) respectively, one voxel at a time, which yielded a t-
statistic per voxel. Thus a map was produced that revealed significantly higher or lower activations 
for the original maps compared. However, this map includes significant differences below the 
threshold of interest (p=.0005) that need to be filtered out. 

To do this, we took the pooled z-value map for the condition of interest thresholded at a significant 
level p=.0005 with a corrected CS threshold of 8 (as estimated using APPENDIX B). As a result, we 
obtained a binary map indicating voxels for which the pooled z-value is significant only for the 
condition of interest, which can be used as a mask to extract the significant values from the resulting 
t-statistic map. 

In short, the idea behind the whole map subtraction procedure is to leave the significant z-scores in 
the map of interest while removing the non-significant overlap between them. 
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