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Abstract

A new method is presented to obtain a local active noise control that is optimal in stochastic environment. The
method uses numerical acoustical modeling that is performed in the frequency domain by using a sequence of
finite element discretizations of the Helmholtz equation. The stochasticity of domain geometry and primary noise
source is considered. Reference signals from an array of microphones are mapped to secondary loudspeakers, by an
off-line optimized linear mapping. The frequency dependent linear mapping is optimized to minimize the expected
value of error in a quiet zone, which is approximated by the numerical model and can be interpreted as a stochastic
virtual microphone. A least squares formulation leads to a quadratic optimization problem. The presented active
noise control method gives robust and efficient noise attenuation, which is demonstrated by a numerical study in
a passenger car cabin. The numerical results demonstrate that a significant, stable local noise attenuation of 20-32
dB can be obtained at lower frequencies (< 500 Hz) by two microphones, and 8-36 dB attenuation at frequencies
up to 1000 Hz, when 8 microphones are used.

Keywords: Active noise control, Stochastic domain, Helmholtz equation, Finite element method, Passenger car,
Quadratic optimization

1. Introduction

Active noise control (ANC) [1-4] is a well-established noise control technique nowadays. ANC is based on
artificially produced secondary, opposite-phase anti-sound, and it has proven to be effective in low frequency noise
attenuation. Passive methods such as absorbing and insulating acoustic materials are commonly used to attenuate
high frequency noise, but in many applications they tend to be less effective and too heavy and bulky, if used in low
frequency noise attenuation. Thus, ANC methods are of special interest in applications such as passenger cars and
aircrafts, where low frequency noise is present and excessive weight has to be avoided.

The basic idea of ANC goes back to Paul Lueg’s patent in 1936 [5]. The topic did not receive much attention
until the rapid development of digital technology in 1980’s, which enabled the research and development of ANC
controllers and necessary circuitry. Since then, ANC techniques have been of a considerable research interest. There
have been plenty of ANC studies in aircraft [6-9] and car cabin applications [10-19]. Aircraft propeller and car
engine are typical low frequency noise sources that are considered relatively easy to control by ANC techniques, as
engine rotation can be used as a reference signal to the system that controls secondary source actuators. Nowadays,
there are commercial ANC systems available from several manufacturers for such applications.

The low frequency sources in cabin cavity are mainly due to structural vibration from engine and tires [20].
Especially structure-borne noise is low frequency: the mechanical vibratory noise from tires is mainly below 1 kHz
and main frequencies of engine noise are below 500 Hz. Furthermore, low frequency noise is often amplified by
resonances of the cabin structure. Road noise, that is generated by the interaction between wheel and road surface,
is another significant noise source in cars, but it has been considered more difficult for ANC methods, mainly due
to lack of a proper reference signal. ANC methods for road noise cancelation have been studied in, e.g. [17-19].

Numerical tools are nowadays popular in acoustical investigations and they have been used to study ANC
methods. However, it is not easy to assess the effectiveness of ANC in a complicated three-dimensional domain.
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Accurate modeling of acoustics can be a formidable task [21], particularly due to complicated noise sources and
boundary impedances. Finite/boundary element method (FEM/BEM) can be used to simulate acoustical fields in
ANC systems [22-25], and these methods have also been combined with a optimization methods to optimize for
example sensor/actuator locations and the acoustic source strengths [26-31].

In typical ANC applications, there are unpredictable changes that occur in the acoustical space. In a passenger
car, for example, driver, passengers, and parts of the machinery move. Stochastic domains can be conveniently used
to model such random geometrical changes. There are plenty of publications on partial differential equations (PDEs)
with stochastic coefficients, but PDEs in stochastic domains have had much less attention. In [32], a mapping from
random to fixed domain is used to transform the problem to be one with stochastic coefficients. Fictitious domain
approach is used in [33-35] and an extended finite element method is employed in [36] to treat stochastic domains.

The expected value of sound pressure can be conveniently computed in a stochastic domain by integrating
numerically the product of sound pressure and probability density function over sampled set of possible domains.
Thus, a functional of stochastic PDE solution can be computed directly, without any approximation of the solution to
the actual stochastic PDE. This is a non-intrusive approach which allows using a solution method for non-stochastic
problems without any modification. In [37], this approach was used to develop a method to study the performance
of a local noise control that is optimal in a stochastic domain and in [31], the method was further used to find optimal
secondary source locations for such local ANC system. However, the method could be used only for performance
assessment purposes. A practical implementation of the method in a ANC system was not possible, particularly
due to the unrealistic assumption of constant time-harmonic noise source.

In this paper, we propose a novel ANC method for enclosed cavities. The method is based on [37], but the opti-
mization of secondary source signals is now reformulated such that an arbitrary number of reference microphones is
used to adapt optimal ANC to prevailing acoustic field. This means that the system remains optimal even if changes
in phase and amplitude of the noise occur. Moreover, a stochastic model of the noise source is considered, which
allows location and properties of the noise source to vary to some extent. This should also make the model less sen-
sitive to inaccuracy in noise source modeling. Most ANC systems employ error microphones to adapt the control
system to the prevailing acoustical field. The presented method does not use actual error microphones, instead we
could say that it employs purely virtual error microphones based on the acoustical model. Due to the stochastic
geometry in the acoustical model, the locations of these virtual error microphones are allowed to be stochastic. This
enables an efficient, local active noise control which is robust in highly random environment.

The contribution of this paper is the novel method to obtain an optimal local ANC in stochastic environment.
The acoustical model used in the numerical example of Section 5 is not realistic, although the boundary parameter
values and geometries should be indicative, and thus the results should be as well. The acoustical model can be
interchanged without changing the method that is described here. Accurate modeling of the acoustics is out of the
scope of this paper.

This paper is organized as follows. In Section 2, a mathematical model of sound propagation, the Helmholtz
partial differential equation, and a numerical method to solve it are briefly presented. In Section 3, the active local
noise control in a stochastic domain with a stochastic noise source is formulated as a quadratic optimization problem.
In Section 4, the details are given on how to implement the ANC system in practice. In Section 5, the performance
of optimal ANC in a three-dimensional car cabin is studied numerically. In Section 6, concluding remarks are given.

2. Acoustic model

The time harmonic sound propagation is modeled by the Helmholtz equation
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where p is the density of the material, and c is the speed of sound. The complex-valued sound pressure p defines

the amplitude and the phase of the sound pressure. The sound pressure at time ¢ is obtained by Re (e*mp>, where

w is the angular frequency of sound and i = v/—1.
A partially absorbing wall material is described by the impedance boundary conditions
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where 7 is the absorption coefficient depending on the properties of the surface material and f is sound source term
on part S C 0f2. The value 7 = 1 approximates a perfectly absorbing material and the value n = 0 approximates



a sound-hard material (the Neumann boundary condition). The absorption model is a simplification which is not
very accurate with large values of 7). Note also that the absorption coefficient can be frequency dependent with the
considered frequency domain formulation. An approximate solution for the partial differential equation Eq. (1) can
be obtained using a finite element method [38-40].

3. The noise control problem

An acoustical model is considered in an enclosed stochastic domain (r), where r is a stochastic variable con-
forming to known probability density function Fy(r). The total pressure field p (x,r,s,~y) is a sum of the sound
pressures due to stochastic noise source and n, anti-noise sources

p(X,I‘,S7"}/) :p()(xvrvs) +’YTP (X,I‘), (3)

where po(x, 1, s) is the sound pressure originating from a stochastic primary noise source,

p(xr) = (pl (x,1),p2 (X,1), -+, pn, (X, r))T
is a vector of sound pressures due to secondary sources and v = (71, ... ,'y,,,a)T is a complex-valued vector that
contains coeflicients v; that alter the amplitudes and phases of each secondary source. The noise source py is a
function of stochastic variable s that conforms to a known probability density function F(s).

To attenuate noise in a control volume, we will find an optimal linear form between reference signal measure-
ments and secondary source amplitudes. A complex-valued vector m, which contains perturbed noise measure-
ments, is defined as ,
)

m:(mlv"'amnm =m+e, (4)

where m = (my, ... ,mnm)T is measured sound pressure at n,, measurement points and e = (eq, ..., enm)T is
a normally-distributed variable containing corresponding measurement errors. We assume the real and imaginary
parts of e; are normally distributed with mean values g = pg = 0 and standard deviations 0% and o4. Let us also
define n, X n,, complex-valued matrix C such that

Substituting this from Eq. (3) yields

p(x,1,5,C) = po(x,1,8) + (m+e)” CTp(x,r). (6)

The linear mapping C is optimized such that noise is minimized in a control volume denoted by Vi (r) C

Q(r). To shorten the presentation, let us denote the integral of g (e) times the normal probability density function

fn (x; L4 02) with the mean value p and the standard deviation o2 as
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Let us now denote the ith column vector of the matrix C as C;, ie. C = (C1,Cq,---,C,, ). Notice that

C(m+e) =>"" C;(m; + ¢;). Our noise measure is defined as
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where overline symbol - denotes element-wise complex conjugate, superscript -/ denotes the Hermitian conjugate.
Let us note that

| hEme)e - 1 ©)
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for all normal distribution probability density functions f,, (33; 1, 02). We obtain now
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where §;; is the Kronecker delta function. The expected value of the noise measure is given by
E[N (r,s,C)] :/ / N (r,s,C) Fy(s) ds F; (r) dr. (13)

An approximation of the integral (13) is chosen as the objective function for optimization. It is given by the
numerical quadrature

Fr (rj) ) (14)
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where the pairs (rj, w;) give the quadrature points and weights for r and the pairs (s, w;) give the quadrature
points and weights for s. Our intermediate optimization problem reads

mCin J(C). (15)

In order to give the objective function in a convenient matrix form, the following notations are introduced:

A = Zw{Fr (r;) ZwZFS (sk)/ . (mimj + (51"7‘02»2) ppH dx,
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where 02 = 02-27% + 02'2,% (see Eq. (12)). Furthermore, we define the following matrix and vectors
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where c; is a vector corresponding to the ith row of the matrix C. By expanding terms and by using the notations
in Egs. (16) and (17), the objective function in Eq. (14) can be expressed in a form

J(c)=cTAc+cTb+¢'b +a. (18)

In the case when there are no constraints, the linear mapping C is given by the optimality condition V. J = 0. This
leads to the system of linear equations
Ac = —b, (19)



which has the solution
c=—-A"1b (20)

A real-valued formulation for Eq. (18) is given in Appendix A. More specific details for the noise control
formulation are given in [41].
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Figure 1: A block diagram illustrating the presented ANC system. It is assumed here, that the sensor microphones
are located such that feedback is not significant compared to the primary noise.

4. Implementation of active noise control

To implement the presented ANC system in a practical environment, it is necessary first to perform off-line
computations to produce the matrix C for each frequency. In Fig. 1, the ANC system is illustrated in a block
diagram. The following steps are performed for each considered frequency.

1. Compute the sound fields in the control volume V. due to the primary noise source py and the secondary
noise sources, vector p, using the finite element model. If the control volume V. is reduced to a set of points
(i.e. virtual error microphones), the reciprocity principle can be used, see Appendix B.

2. Compute the sound field due to the noise source py on the reference microphone locations, i.e. vector m,
using the finite element model. The reciprocity principle can be used.

3. Assemble the matrix A and vector b in Eq. (17) and solve the system of linear equations, Eq. (19). The resulting
matrix C is stored to a database.

The matrix database is stored in the ANC controller. The following procedure is performed in the controller circuit
during ANC operation in frequency domain.

1. Complex-valued pressure amplitudes (i.e. the phase and amplitude of the signal) in reference microphones,
the vector m (see Eq. (6)), are obtained for each considered frequency.

2. For each considered frequency, the complex-valued pressure amplitude of each secondary source, the vector
7 in Eq. (3), is obtained by multiplying m with the pre-computed matrix C, as in Eq. (5) with e = 0.
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Figure 2: (a) Primary noise source and measurement point locations L1...L8 and R1...R8. Locations of circle-shaped
secondary sources Al...A6 are drawn as magenta circles; A1 is located on the left door, A2, A3 and A4 are located on
the right door, A5 and A6 are located on the roof. (b) Driver’s posture parameters from left to right: 7, is sideways
bending, 79 is forward bending and r3 is head rotation. Lower figures correspond to the lowest, and upper to the
highest parameter values.



Table 1: Sound absorption coefficients for car cabin materials

Material n  Material n
Roof material 0.9  Soft plastic 0.4
Hard plastic ~ 0.03  Soft floor material 0.3
Glass 0.04 Seats 0.8
Steel 0.04 Human (driver) 0.4
Rubber 0.15

5. A numerical demonstration: active noise control in a car interior

5.1. Noise control in a car cabin

As a numerical example, we will study the presented local active noise control in BMW 330i car interior (see Fig.
2a). The height of studied car interior is 1.3 m, width 1.8 m and length is 3.1 m. It is assumed here, that the driver
is alone in otherwise empty car. Thus, the cabin interior excluding the driver is the computation domain €2 (r) for
acoustical sound pressure field.

The objective of the noise control is to minimize noise in driver’s ears. Thus, we define control volume V¢ (see
Eq. (8)) as a set of two points

Vo (r) ={x*(r), x"(r)} € Q(r), (21)

where x° (r) and x°" (r) are the coordinates of the left and right ears, respectively; these points can be interpreted
as virtual error microphones. The noise measure equation (8) reads now

N(r,5,€) =N (|p (x,1.5,C¢) ) +9 (p (x7.x,5,C.e) ). (22

Various driver’s properties alter sound propagation inside the car cabin. Especially posture and head position
affect the sound pressure that is experienced in ears and these parameters lead to the stochasticity of the computation
domain. As in [37], the domain stochasticity variable r = (rq, 7“2,7“3)T consists of three parameters: 7 is driver’s
sideways bending angle, 5 is forward bending angle, and 73 is head rotation angle to left/right (see Fig. 2b); all
these variables are degrees by dimension.

The probability density function F; for the variable r is given by a piecewise trilinear function defined by the
nodal values at 53 = 125 points, and elsewhere by trilinear interpolation, thus F} (r) is composed of 2° = 8
trilinear functions. The integral in Eq. (13) is approximated by a three-dimensional generalization of the trapezoidal
quadrature rule.

The primary noise source is modeled as a vibrating quadrangular surface behind the leg room, which is a sim-
plification resembling the real primary noise source (see Fig. 2a). The amplitude f (see Eq. (2)) of the quadrangular
noise source is given by a bilinear function specified by the corner values f (z;,y;) = s;, ¢ = 1...4, where s; is
the amplitude coefficient for the ith corner of the quadrangular noise source surface located at (z;, y;) defining the
noise source stochasticity variable s = (s1, $2, s3, 54)T

The probability density function Fg for the variable s is given by a piecewise quadrilinear function defined
by the nodal values at 3* = 81 points, and elsewhere by quadrilinear interpolation, thus F; (s) is composed of
2% = 16 quadrilinear functions. The integral in Eq. (13) is approximated by a four-dimensional generalization of
the trapezoidal quadrature rule.

5.2. Numerical study

5.2.1. Model definition
For the stochastic variable r defining the domain (2, we will use sampling r € R = R; X Ry X Rj3, where

Ry = {-30.0, —20.0, —10.0, 0.0, 10.0, 20.0, 30.0},
R, = {-10.0, —5.0, 0.0, 5.0, 10.0, 15.0, 20.0} , and (23)
Ry = {-75.0, —50.0, —25.0, 0.0, 25.0, 50.0, 75.0} .

For stochastic variable s defining the sound source, we will use sampling s € S = 57 x Sy x S3 x Sy, where

Sy =8 =85 =84 ={0.5,0.75, 1.0, 1.25, 1.5} . (24)

On the boundaries of hyper-quadrangles defined by sets R and S, probability density functions are set to zero,
ie. Fr(r) = 0and F; (s) = 0, from which it follows that we do not need to create samples for these sampling
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Figure 3: Expected noise attenuation in left (red dashed line) and right (blue solid line) ear. Shaded regions corre-
spond to standard deviation (dark narrow region) and minimum / maximum (light, wide region) with respect to the
stochastic features. In addition, a group of expected noise attenuation curves are plotted when the measurement
error has the standard deviation 0> = 4%. The active noise control is based on (a) 2 measurement points (L1, R1)
(b) 4 measurement points (L1, L2, R1, R2).

points. In addition, the probability function values at the center point of the hyper-quadrangles are set so that the
integral of the probability density function over the probability space is one.

The locations of reference signal measurement points and secondary sources for ANC are presented in Fig. 2a
and they are labeled as follows: L1...L8 for left side measurement points, R1...R8 for right side measurement points
and A1...A6 for six circle-shaped secondary sources. The absorbency coefficients (see Eq. (2)) were set per material
as listed in Table 1.

To solve the Helmholtz equation in Eq. (1) with the finite element method, a collection of meshes consisting of
tetrahedra and triangles were generated with Ansys ICEM CFD. Standard linear Lagrangian basis functions were
used in finite elements. The solutions were computed with a damped Helmholtz preconditioner technique described
in [39, 40]. Each mesh corresponds to a different driver posture and they were generated so that there are at least 10
nodes per wavelength at the highest studied frequency (1000 Hz). The total number of meshes needed for domain
sampling is 53> = 125 which is the number of parameter combinations (r1, 72, 73).

The study was performed in the frequency range 10-1000 Hz with 10 Hz steps. This means that 100 frequencies
are sampled. By employing the reciprocity principle (see Appendix B) a sound source is placed in each of 16 mea-
surement points and 2 ears. The acoustic model is solved for all 125 sampled driver’s postures for each 18 sources.
Thus, a discrete Helmholtz equation is solved 125 x 100 x 18 = 225000 times.

5.2.2. Expected noise attenuation and measurement error sensitivity

There are several error sources in the presented ANC method that are due to inaccuracy of microphones and
loudspeakers and the model itself. To obtain good noise control, the ANC method should not be too sensitive to
such errors.

The sensitivity of the performance to measurement error in the model is adjusted by the standard deviation
parameters o7 (see Eq. (16)). These parameters are set proportional to the absolute value of the measured value

|m;| as 02 = &|m;|. This is based on the assumption that the measurement error is proportional to the amplitude

K3

of measurement value. It was observed by numerical experiments that the error can be underestimated, thus the
coefficient £ was set small, ¢ = 10~%. Due to the quadratic formulation, even small standard deviation values Ji2
decrease the error sensitivity significantly. If the values o7 were not underestimated, the results would indeed have
very low error sensitivity, but the expected noise attenuation would be poor.

The influence of the measurement error e; is studied by considering the measurement error present in the real
and imaginary parts of each measurement m;. The error in this study is due to coefficients kg ~ N (O, 0’%) and
ks ~ N (07 O’%) that are used to multiply the real and imaginary parts of the error, i.e. the perturbed measurement

is
m; =m; + e, (25)

where e; = kxmsy +1kgmg. The noise attenuation is sampled with 100 different measurement errors. In Fig. 3, 25
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Figure 4: The influence of the number of measurement points to the noise control. In both figures, noise attenuation
as a function of frequency is plotted, when the active noise control is based on 2, 4, 8, and 16 measurement points
(blue solid line, magenta dashed line, green dot-dash line and red dotted line, respectively). (a) ANC performance
is plotted without measurement error, (b) ANC performance is plotted with 4% measurement error.

perturbed noise attenuation curves are drawn, and hereafter in Figs. 4-6, the mean value of all 100 perturbed noise
attenuation values is drawn. Sampled values of stochastic variables r and s are set as in Egs. (23) and (24).

Fig. 3 shows a typical noise attenuation obtained by ANC when the data from 2 and 4 measurement points are
used. The standard deviation and min/max curves reveal that the noise control is robust with respect to stochastic
features: the worst sampled values produce still good, around 20 dB reduced noise attenuation at low frequencies.
It can be seen from perturbed noise attenuation curves that 4% measurement error can cause 10-30 dB deterioration
of the noise control at low frequencies.

In Fig. 4, the performance of ANC with different number of measurement points is studied. In Fig. 4a it is seen
that increasing the number of measurement points enhances the noise control. Fig. 4b shows the same results as
Fig. 4a, but with 4% measurement error. With errors in measurements, the noise control is slightly less effective,
which is expected. The enhancement gained by increased number of measurement points is also reduced.
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Figure 5: The influence of the level of measurement error to the noise control. In all figures, the expected average
noise attenuation in ears with a normally distributed measurement error having the standard deviation 02 = 0%,
1%, 2% and 4% is plotted with blue, magenta, green and red (from lowest to topmost) solid lines, respectively. Dotted
lines correspond to the noise attenuation with the largest sampled measurement error. The active noise control
based on (a) 2, (b) 4, (c) 8 and (d) 16 measurement points, respectively.
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Figure 6: The influence of the level of measurement error to the noise control, as in Fig 5, when the optimal matrix
C is calculated without measurement error term (o; = 0 in Eq. (16)). See the caption of Fig. 5 for the explanation
for the lines drawn. The active noise control based on (a) 2, (b) 4 measurement points.

In Fig. 5, each line of Fig. 4a are plotted as a separate figure together with lines that correspond to 1%, 2% and
4% measurement errors. In addition to these lines, the corresponding noise attenuation with the largest sampled
measurement error is plotted. The figure clearly shows that the error sensitivity is very reasonable, and even with
the large (4%) measurement error, the noise attenuation is very good. It can be also concluded that a large number of
measurements is not required to get very good attenuation, but with increasing the number, it is possible to further
enhance the noise control performance.

The influence of the measurement error control variables ¢; can be seen by comparing Fig. 6 to Figs. 5a and 5b,
when the optimal matrix is computed without measurement error term (o; = 0 in Eq. (16)). When the number of
measurement points used is at least 4, the error sensitivity causes poor results, even with small 1% measurement
error.

6. Conclusions

A local active noise control (ANC) method that is optimal in stochastic environment was presented. The ANC
method uses modeling data that is obtained by acoustical simulations using the finite element method in stochastic
computational domain. The noise control obtained by the ANC method is not sensitive to measurement errors or
changes in noise source or geometry.

The efficiency of the ANC method was demonstrated numerically in a car interior with a driver in varying
postures. Sound attenuation of 50-60 dB was obtained at lowest frequency (10 Hz). The error sensitivity of the
ANC method was studied and it was found that with 1-4% error, 30-46 dB expected attenuation was obtained at
low frequencies, and expected attenuation was more than 20 dB up to 500 Hz. It can be concluded, that the numerical
results are very good. The results could be further enhanced by choosing optimal locations for sensor and secondary
source locations.

The acoustical finite element model (especially boundary impedances, noise source model and geometries) used
in the numerical example is demonstrative and is not accurate nor realistic. Thus, the results obtained in the numer-
ical example are not reproducible in real experiments. However, the model should be suggestive and the results can
be used to estimate the efficiency of the ANC method. To implement the ANC method in real environment, more
accurate acoustical model is needed. The acoustical model used in this paper can be interchanged without changing
the method that is described here.
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Appendix A. Real-valued formulation of the quadratic program in Eq. (18)

To use most general purpose quadratic program (QP) solvers, the minimization problem for the objective func-
tion equation (18) must be transformed into a real-valued problem, as complex-valued problem types are not gen-
erally supported. This is necessary, for example, if it is desired to construct linear or quadratic constraints for the
proposed formulation.

Let us first define 2n,n,, X 2n,n,, real-valued matrix and vectors of length 2n,n,:

~ RA SA = Rb - Re
A = 2(—SA %A)’b:2<3b>andc:<%c>’ (A1)

where notations of Eq. (17) are being used. With these notations, we can express Eq. (18) as a real-valued QP-type
objective function as

1 e -
J(c) = §eTAé +¢Tb + a. (A.2)

There are several efficient methods available for quadratic optimization problems (see, for example [42]), and they
can be applied for this problem.

Appendix B. Reciprocity principle

To evaluate the objective function Eq. (18), the pressure amplitude caused by each primary and secondary source
is needed in each measurement point as well as in driver’s ears for each driver sample r;. By reciprocity principle it
is known that observation stays the same when exchanging the locations of sound source and the observer [43, 44].
The sound pressure amplitude caused by many different sources can be resolved by performing a simulation for
each combination of sampled driver posture, sampled frequency, and measurement point. The pressure amplitude
at location y is given by integral

ps ) = [ py0) sl dx. (8.1)

S

where pg (y) is the sound pressure propagated from the surface S measured at location y, fs(x) is the sound source
term on surface S, and py (x) is the sound pressure of sound source located at y measured at the location x.
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